]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mcore/mcore.c
Update copyright years.
[thirdparty/gcc.git] / gcc / config / mcore / mcore.c
1 /* Output routines for Motorola MCore processor
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published
8 by the Free Software Foundation; either version 3, or (at your
9 option) any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #define IN_TARGET_CODE 1
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "stringpool.h"
33 #include "attribs.h"
34 #include "emit-rtl.h"
35 #include "diagnostic-core.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "calls.h"
39 #include "mcore.h"
40 #include "output.h"
41 #include "explow.h"
42 #include "expr.h"
43 #include "cfgrtl.h"
44 #include "builtins.h"
45 #include "regs.h"
46
47 /* This file should be included last. */
48 #include "target-def.h"
49
50 /* For dumping information about frame sizes. */
51 char * mcore_current_function_name = 0;
52 long mcore_current_compilation_timestamp = 0;
53
54 /* Global variables for machine-dependent things. */
55
56 /* Provides the class number of the smallest class containing
57 reg number. */
58 const enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER] =
59 {
60 GENERAL_REGS, ONLYR1_REGS, LRW_REGS, LRW_REGS,
61 LRW_REGS, LRW_REGS, LRW_REGS, LRW_REGS,
62 LRW_REGS, LRW_REGS, LRW_REGS, LRW_REGS,
63 LRW_REGS, LRW_REGS, LRW_REGS, GENERAL_REGS,
64 GENERAL_REGS, C_REGS, NO_REGS, NO_REGS,
65 };
66
67 struct mcore_frame
68 {
69 int arg_size; /* Stdarg spills (bytes). */
70 int reg_size; /* Non-volatile reg saves (bytes). */
71 int reg_mask; /* Non-volatile reg saves. */
72 int local_size; /* Locals. */
73 int outbound_size; /* Arg overflow on calls out. */
74 int pad_outbound;
75 int pad_local;
76 int pad_reg;
77 /* Describe the steps we'll use to grow it. */
78 #define MAX_STACK_GROWS 4 /* Gives us some spare space. */
79 int growth[MAX_STACK_GROWS];
80 int arg_offset;
81 int reg_offset;
82 int reg_growth;
83 int local_growth;
84 };
85
86 typedef enum
87 {
88 COND_NO,
89 COND_MOV_INSN,
90 COND_CLR_INSN,
91 COND_INC_INSN,
92 COND_DEC_INSN,
93 COND_BRANCH_INSN
94 }
95 cond_type;
96
97 static void output_stack_adjust (int, int);
98 static int calc_live_regs (int *);
99 static int try_constant_tricks (HOST_WIDE_INT, HOST_WIDE_INT *, HOST_WIDE_INT *);
100 static const char * output_inline_const (machine_mode, rtx *);
101 static void layout_mcore_frame (struct mcore_frame *);
102 static void mcore_setup_incoming_varargs (cumulative_args_t, machine_mode, tree, int *, int);
103 static cond_type is_cond_candidate (rtx);
104 static rtx_insn *emit_new_cond_insn (rtx_insn *, int);
105 static rtx_insn *conditionalize_block (rtx_insn *);
106 static void conditionalize_optimization (void);
107 static void mcore_reorg (void);
108 static rtx handle_structs_in_regs (machine_mode, const_tree, int);
109 static void mcore_mark_dllexport (tree);
110 static void mcore_mark_dllimport (tree);
111 static int mcore_dllexport_p (tree);
112 static int mcore_dllimport_p (tree);
113 static tree mcore_handle_naked_attribute (tree *, tree, tree, int, bool *);
114 #ifdef OBJECT_FORMAT_ELF
115 static void mcore_asm_named_section (const char *,
116 unsigned int, tree);
117 #endif
118 static void mcore_print_operand (FILE *, rtx, int);
119 static void mcore_print_operand_address (FILE *, machine_mode, rtx);
120 static bool mcore_print_operand_punct_valid_p (unsigned char code);
121 static void mcore_unique_section (tree, int);
122 static void mcore_encode_section_info (tree, rtx, int);
123 static const char *mcore_strip_name_encoding (const char *);
124 static int mcore_const_costs (rtx, RTX_CODE);
125 static int mcore_and_cost (rtx);
126 static int mcore_ior_cost (rtx);
127 static bool mcore_rtx_costs (rtx, machine_mode, int, int,
128 int *, bool);
129 static void mcore_external_libcall (rtx);
130 static bool mcore_return_in_memory (const_tree, const_tree);
131 static int mcore_arg_partial_bytes (cumulative_args_t,
132 machine_mode,
133 tree, bool);
134 static rtx mcore_function_arg (cumulative_args_t,
135 machine_mode,
136 const_tree, bool);
137 static void mcore_function_arg_advance (cumulative_args_t,
138 machine_mode,
139 const_tree, bool);
140 static unsigned int mcore_function_arg_boundary (machine_mode,
141 const_tree);
142 static void mcore_asm_trampoline_template (FILE *);
143 static void mcore_trampoline_init (rtx, tree, rtx);
144 static bool mcore_warn_func_return (tree);
145 static void mcore_option_override (void);
146 static bool mcore_legitimate_constant_p (machine_mode, rtx);
147 static bool mcore_legitimate_address_p (machine_mode, rtx, bool,
148 addr_space_t);
149 static bool mcore_hard_regno_mode_ok (unsigned int, machine_mode);
150 static bool mcore_modes_tieable_p (machine_mode, machine_mode);
151 \f
152 /* MCore specific attributes. */
153
154 static const struct attribute_spec mcore_attribute_table[] =
155 {
156 /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
157 affects_type_identity, handler, exclude } */
158 { "dllexport", 0, 0, true, false, false, false, NULL, NULL },
159 { "dllimport", 0, 0, true, false, false, false, NULL, NULL },
160 { "naked", 0, 0, true, false, false, false,
161 mcore_handle_naked_attribute, NULL },
162 { NULL, 0, 0, false, false, false, false, NULL, NULL }
163 };
164 \f
165 /* Initialize the GCC target structure. */
166 #undef TARGET_ASM_EXTERNAL_LIBCALL
167 #define TARGET_ASM_EXTERNAL_LIBCALL mcore_external_libcall
168
169 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
170 #undef TARGET_MERGE_DECL_ATTRIBUTES
171 #define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
172 #endif
173
174 #ifdef OBJECT_FORMAT_ELF
175 #undef TARGET_ASM_UNALIGNED_HI_OP
176 #define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
177 #undef TARGET_ASM_UNALIGNED_SI_OP
178 #define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
179 #endif
180
181 #undef TARGET_PRINT_OPERAND
182 #define TARGET_PRINT_OPERAND mcore_print_operand
183 #undef TARGET_PRINT_OPERAND_ADDRESS
184 #define TARGET_PRINT_OPERAND_ADDRESS mcore_print_operand_address
185 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
186 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P mcore_print_operand_punct_valid_p
187
188 #undef TARGET_ATTRIBUTE_TABLE
189 #define TARGET_ATTRIBUTE_TABLE mcore_attribute_table
190 #undef TARGET_ASM_UNIQUE_SECTION
191 #define TARGET_ASM_UNIQUE_SECTION mcore_unique_section
192 #undef TARGET_ASM_FUNCTION_RODATA_SECTION
193 #define TARGET_ASM_FUNCTION_RODATA_SECTION default_no_function_rodata_section
194 #undef TARGET_ENCODE_SECTION_INFO
195 #define TARGET_ENCODE_SECTION_INFO mcore_encode_section_info
196 #undef TARGET_STRIP_NAME_ENCODING
197 #define TARGET_STRIP_NAME_ENCODING mcore_strip_name_encoding
198 #undef TARGET_RTX_COSTS
199 #define TARGET_RTX_COSTS mcore_rtx_costs
200 #undef TARGET_ADDRESS_COST
201 #define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
202 #undef TARGET_MACHINE_DEPENDENT_REORG
203 #define TARGET_MACHINE_DEPENDENT_REORG mcore_reorg
204
205 #undef TARGET_PROMOTE_FUNCTION_MODE
206 #define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
207 #undef TARGET_PROMOTE_PROTOTYPES
208 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
209
210 #undef TARGET_RETURN_IN_MEMORY
211 #define TARGET_RETURN_IN_MEMORY mcore_return_in_memory
212 #undef TARGET_MUST_PASS_IN_STACK
213 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
214 #undef TARGET_PASS_BY_REFERENCE
215 #define TARGET_PASS_BY_REFERENCE hook_pass_by_reference_must_pass_in_stack
216 #undef TARGET_ARG_PARTIAL_BYTES
217 #define TARGET_ARG_PARTIAL_BYTES mcore_arg_partial_bytes
218 #undef TARGET_FUNCTION_ARG
219 #define TARGET_FUNCTION_ARG mcore_function_arg
220 #undef TARGET_FUNCTION_ARG_ADVANCE
221 #define TARGET_FUNCTION_ARG_ADVANCE mcore_function_arg_advance
222 #undef TARGET_FUNCTION_ARG_BOUNDARY
223 #define TARGET_FUNCTION_ARG_BOUNDARY mcore_function_arg_boundary
224
225 #undef TARGET_SETUP_INCOMING_VARARGS
226 #define TARGET_SETUP_INCOMING_VARARGS mcore_setup_incoming_varargs
227
228 #undef TARGET_ASM_TRAMPOLINE_TEMPLATE
229 #define TARGET_ASM_TRAMPOLINE_TEMPLATE mcore_asm_trampoline_template
230 #undef TARGET_TRAMPOLINE_INIT
231 #define TARGET_TRAMPOLINE_INIT mcore_trampoline_init
232
233 #undef TARGET_OPTION_OVERRIDE
234 #define TARGET_OPTION_OVERRIDE mcore_option_override
235
236 #undef TARGET_LEGITIMATE_CONSTANT_P
237 #define TARGET_LEGITIMATE_CONSTANT_P mcore_legitimate_constant_p
238 #undef TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
239 #define TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P mcore_legitimate_address_p
240
241 #undef TARGET_LRA_P
242 #define TARGET_LRA_P hook_bool_void_false
243
244 #undef TARGET_WARN_FUNC_RETURN
245 #define TARGET_WARN_FUNC_RETURN mcore_warn_func_return
246
247 #undef TARGET_HARD_REGNO_MODE_OK
248 #define TARGET_HARD_REGNO_MODE_OK mcore_hard_regno_mode_ok
249
250 #undef TARGET_MODES_TIEABLE_P
251 #define TARGET_MODES_TIEABLE_P mcore_modes_tieable_p
252
253 #undef TARGET_CONSTANT_ALIGNMENT
254 #define TARGET_CONSTANT_ALIGNMENT constant_alignment_word_strings
255
256 struct gcc_target targetm = TARGET_INITIALIZER;
257 \f
258 /* Adjust the stack and return the number of bytes taken to do it. */
259 static void
260 output_stack_adjust (int direction, int size)
261 {
262 /* If extending stack a lot, we do it incrementally. */
263 if (direction < 0 && size > mcore_stack_increment && mcore_stack_increment > 0)
264 {
265 rtx tmp = gen_rtx_REG (SImode, 1);
266 rtx memref;
267
268 emit_insn (gen_movsi (tmp, GEN_INT (mcore_stack_increment)));
269 do
270 {
271 emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
272 memref = gen_rtx_MEM (SImode, stack_pointer_rtx);
273 MEM_VOLATILE_P (memref) = 1;
274 emit_insn (gen_movsi (memref, stack_pointer_rtx));
275 size -= mcore_stack_increment;
276 }
277 while (size > mcore_stack_increment);
278
279 /* SIZE is now the residual for the last adjustment,
280 which doesn't require a probe. */
281 }
282
283 if (size)
284 {
285 rtx insn;
286 rtx val = GEN_INT (size);
287
288 if (size > 32)
289 {
290 rtx nval = gen_rtx_REG (SImode, 1);
291 emit_insn (gen_movsi (nval, val));
292 val = nval;
293 }
294
295 if (direction > 0)
296 insn = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, val);
297 else
298 insn = gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, val);
299
300 emit_insn (insn);
301 }
302 }
303
304 /* Work out the registers which need to be saved,
305 both as a mask and a count. */
306
307 static int
308 calc_live_regs (int * count)
309 {
310 int reg;
311 int live_regs_mask = 0;
312
313 * count = 0;
314
315 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
316 {
317 if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
318 {
319 (*count)++;
320 live_regs_mask |= (1 << reg);
321 }
322 }
323
324 return live_regs_mask;
325 }
326
327 /* Print the operand address in x to the stream. */
328
329 static void
330 mcore_print_operand_address (FILE * stream, machine_mode /*mode*/, rtx x)
331 {
332 switch (GET_CODE (x))
333 {
334 case REG:
335 fprintf (stream, "(%s)", reg_names[REGNO (x)]);
336 break;
337
338 case PLUS:
339 {
340 rtx base = XEXP (x, 0);
341 rtx index = XEXP (x, 1);
342
343 if (GET_CODE (base) != REG)
344 {
345 /* Ensure that BASE is a register (one of them must be). */
346 rtx temp = base;
347 base = index;
348 index = temp;
349 }
350
351 switch (GET_CODE (index))
352 {
353 case CONST_INT:
354 fprintf (stream, "(%s," HOST_WIDE_INT_PRINT_DEC ")",
355 reg_names[REGNO(base)], INTVAL (index));
356 break;
357
358 default:
359 gcc_unreachable ();
360 }
361 }
362
363 break;
364
365 default:
366 output_addr_const (stream, x);
367 break;
368 }
369 }
370
371 static bool
372 mcore_print_operand_punct_valid_p (unsigned char code)
373 {
374 return (code == '.' || code == '#' || code == '*' || code == '^'
375 || code == '!');
376 }
377
378 /* Print operand x (an rtx) in assembler syntax to file stream
379 according to modifier code.
380
381 'R' print the next register or memory location along, i.e. the lsw in
382 a double word value
383 'O' print a constant without the #
384 'M' print a constant as its negative
385 'P' print log2 of a power of two
386 'Q' print log2 of an inverse of a power of two
387 'U' print register for ldm/stm instruction
388 'X' print byte number for xtrbN instruction. */
389
390 static void
391 mcore_print_operand (FILE * stream, rtx x, int code)
392 {
393 switch (code)
394 {
395 case 'N':
396 if (INTVAL(x) == -1)
397 fprintf (asm_out_file, "32");
398 else
399 fprintf (asm_out_file, "%d", exact_log2 (INTVAL (x) + 1));
400 break;
401 case 'P':
402 fprintf (asm_out_file, "%d", exact_log2 (INTVAL (x) & 0xffffffff));
403 break;
404 case 'Q':
405 fprintf (asm_out_file, "%d", exact_log2 (~INTVAL (x)));
406 break;
407 case 'O':
408 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
409 break;
410 case 'M':
411 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, - INTVAL (x));
412 break;
413 case 'R':
414 /* Next location along in memory or register. */
415 switch (GET_CODE (x))
416 {
417 case REG:
418 fputs (reg_names[REGNO (x) + 1], (stream));
419 break;
420 case MEM:
421 mcore_print_operand_address
422 (stream, GET_MODE (x), XEXP (adjust_address (x, SImode, 4), 0));
423 break;
424 default:
425 gcc_unreachable ();
426 }
427 break;
428 case 'U':
429 fprintf (asm_out_file, "%s-%s", reg_names[REGNO (x)],
430 reg_names[REGNO (x) + 3]);
431 break;
432 case 'x':
433 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
434 break;
435 case 'X':
436 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, 3 - INTVAL (x) / 8);
437 break;
438
439 default:
440 switch (GET_CODE (x))
441 {
442 case REG:
443 fputs (reg_names[REGNO (x)], (stream));
444 break;
445 case MEM:
446 output_address (GET_MODE (x), XEXP (x, 0));
447 break;
448 default:
449 output_addr_const (stream, x);
450 break;
451 }
452 break;
453 }
454 }
455
456 /* What does a constant cost ? */
457
458 static int
459 mcore_const_costs (rtx exp, enum rtx_code code)
460 {
461 HOST_WIDE_INT val = INTVAL (exp);
462
463 /* Easy constants. */
464 if ( CONST_OK_FOR_I (val)
465 || CONST_OK_FOR_M (val)
466 || CONST_OK_FOR_N (val)
467 || (code == PLUS && CONST_OK_FOR_L (val)))
468 return 1;
469 else if (code == AND
470 && ( CONST_OK_FOR_M (~val)
471 || CONST_OK_FOR_N (~val)))
472 return 2;
473 else if (code == PLUS
474 && ( CONST_OK_FOR_I (-val)
475 || CONST_OK_FOR_M (-val)
476 || CONST_OK_FOR_N (-val)))
477 return 2;
478
479 return 5;
480 }
481
482 /* What does an and instruction cost - we do this b/c immediates may
483 have been relaxed. We want to ensure that cse will cse relaxed immeds
484 out. Otherwise we'll get bad code (multiple reloads of the same const). */
485
486 static int
487 mcore_and_cost (rtx x)
488 {
489 HOST_WIDE_INT val;
490
491 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
492 return 2;
493
494 val = INTVAL (XEXP (x, 1));
495
496 /* Do it directly. */
497 if (CONST_OK_FOR_K (val) || CONST_OK_FOR_M (~val))
498 return 2;
499 /* Takes one instruction to load. */
500 else if (const_ok_for_mcore (val))
501 return 3;
502 /* Takes two instructions to load. */
503 else if (TARGET_HARDLIT && mcore_const_ok_for_inline (val))
504 return 4;
505
506 /* Takes a lrw to load. */
507 return 5;
508 }
509
510 /* What does an or cost - see and_cost(). */
511
512 static int
513 mcore_ior_cost (rtx x)
514 {
515 HOST_WIDE_INT val;
516
517 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
518 return 2;
519
520 val = INTVAL (XEXP (x, 1));
521
522 /* Do it directly with bclri. */
523 if (CONST_OK_FOR_M (val))
524 return 2;
525 /* Takes one instruction to load. */
526 else if (const_ok_for_mcore (val))
527 return 3;
528 /* Takes two instructions to load. */
529 else if (TARGET_HARDLIT && mcore_const_ok_for_inline (val))
530 return 4;
531
532 /* Takes a lrw to load. */
533 return 5;
534 }
535
536 static bool
537 mcore_rtx_costs (rtx x, machine_mode mode ATTRIBUTE_UNUSED, int outer_code,
538 int opno ATTRIBUTE_UNUSED,
539 int * total, bool speed ATTRIBUTE_UNUSED)
540 {
541 int code = GET_CODE (x);
542
543 switch (code)
544 {
545 case CONST_INT:
546 *total = mcore_const_costs (x, (enum rtx_code) outer_code);
547 return true;
548 case CONST:
549 case LABEL_REF:
550 case SYMBOL_REF:
551 *total = 5;
552 return true;
553 case CONST_DOUBLE:
554 *total = 10;
555 return true;
556
557 case AND:
558 *total = COSTS_N_INSNS (mcore_and_cost (x));
559 return true;
560
561 case IOR:
562 *total = COSTS_N_INSNS (mcore_ior_cost (x));
563 return true;
564
565 case DIV:
566 case UDIV:
567 case MOD:
568 case UMOD:
569 case FLOAT:
570 case FIX:
571 *total = COSTS_N_INSNS (100);
572 return true;
573
574 default:
575 return false;
576 }
577 }
578
579 /* Prepare the operands for a comparison. Return whether the branch/setcc
580 should reverse the operands. */
581
582 bool
583 mcore_gen_compare (enum rtx_code code, rtx op0, rtx op1)
584 {
585 rtx cc_reg = gen_rtx_REG (CCmode, CC_REG);
586 bool invert;
587
588 if (GET_CODE (op1) == CONST_INT)
589 {
590 HOST_WIDE_INT val = INTVAL (op1);
591
592 switch (code)
593 {
594 case GTU:
595 /* Unsigned > 0 is the same as != 0; everything else is converted
596 below to LEU (reversed cmphs). */
597 if (val == 0)
598 code = NE;
599 break;
600
601 /* Check whether (LE A imm) can become (LT A imm + 1),
602 or (GT A imm) can become (GE A imm + 1). */
603 case GT:
604 case LE:
605 if (CONST_OK_FOR_J (val + 1))
606 {
607 op1 = GEN_INT (val + 1);
608 code = code == LE ? LT : GE;
609 }
610 break;
611
612 default:
613 break;
614 }
615 }
616
617 if (CONSTANT_P (op1) && GET_CODE (op1) != CONST_INT)
618 op1 = force_reg (SImode, op1);
619
620 /* cmpnei: 0-31 (K immediate)
621 cmplti: 1-32 (J immediate, 0 using btsti x,31). */
622 invert = false;
623 switch (code)
624 {
625 case EQ: /* Use inverted condition, cmpne. */
626 code = NE;
627 invert = true;
628 /* FALLTHRU */
629
630 case NE: /* Use normal condition, cmpne. */
631 if (GET_CODE (op1) == CONST_INT && ! CONST_OK_FOR_K (INTVAL (op1)))
632 op1 = force_reg (SImode, op1);
633 break;
634
635 case LE: /* Use inverted condition, reversed cmplt. */
636 code = GT;
637 invert = true;
638 /* FALLTHRU */
639
640 case GT: /* Use normal condition, reversed cmplt. */
641 if (GET_CODE (op1) == CONST_INT)
642 op1 = force_reg (SImode, op1);
643 break;
644
645 case GE: /* Use inverted condition, cmplt. */
646 code = LT;
647 invert = true;
648 /* FALLTHRU */
649
650 case LT: /* Use normal condition, cmplt. */
651 if (GET_CODE (op1) == CONST_INT &&
652 /* covered by btsti x,31. */
653 INTVAL (op1) != 0 &&
654 ! CONST_OK_FOR_J (INTVAL (op1)))
655 op1 = force_reg (SImode, op1);
656 break;
657
658 case GTU: /* Use inverted condition, cmple. */
659 /* We coped with unsigned > 0 above. */
660 gcc_assert (GET_CODE (op1) != CONST_INT || INTVAL (op1) != 0);
661 code = LEU;
662 invert = true;
663 /* FALLTHRU */
664
665 case LEU: /* Use normal condition, reversed cmphs. */
666 if (GET_CODE (op1) == CONST_INT && INTVAL (op1) != 0)
667 op1 = force_reg (SImode, op1);
668 break;
669
670 case LTU: /* Use inverted condition, cmphs. */
671 code = GEU;
672 invert = true;
673 /* FALLTHRU */
674
675 case GEU: /* Use normal condition, cmphs. */
676 if (GET_CODE (op1) == CONST_INT && INTVAL (op1) != 0)
677 op1 = force_reg (SImode, op1);
678 break;
679
680 default:
681 break;
682 }
683
684 emit_insn (gen_rtx_SET (cc_reg, gen_rtx_fmt_ee (code, CCmode, op0, op1)));
685 return invert;
686 }
687
688 int
689 mcore_symbolic_address_p (rtx x)
690 {
691 switch (GET_CODE (x))
692 {
693 case SYMBOL_REF:
694 case LABEL_REF:
695 return 1;
696 case CONST:
697 x = XEXP (x, 0);
698 return ( (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
699 || GET_CODE (XEXP (x, 0)) == LABEL_REF)
700 && GET_CODE (XEXP (x, 1)) == CONST_INT);
701 default:
702 return 0;
703 }
704 }
705
706 /* Functions to output assembly code for a function call. */
707
708 char *
709 mcore_output_call (rtx operands[], int index)
710 {
711 static char buffer[20];
712 rtx addr = operands [index];
713
714 if (REG_P (addr))
715 {
716 if (TARGET_CG_DATA)
717 {
718 gcc_assert (mcore_current_function_name);
719
720 ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name,
721 "unknown", 1);
722 }
723
724 sprintf (buffer, "jsr\t%%%d", index);
725 }
726 else
727 {
728 if (TARGET_CG_DATA)
729 {
730 gcc_assert (mcore_current_function_name);
731 gcc_assert (GET_CODE (addr) == SYMBOL_REF);
732
733 ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name,
734 XSTR (addr, 0), 0);
735 }
736
737 sprintf (buffer, "jbsr\t%%%d", index);
738 }
739
740 return buffer;
741 }
742
743 /* Can we load a constant with a single instruction ? */
744
745 int
746 const_ok_for_mcore (HOST_WIDE_INT value)
747 {
748 if (value >= 0 && value <= 127)
749 return 1;
750
751 /* Try exact power of two. */
752 if (CONST_OK_FOR_M (value))
753 return 1;
754
755 /* Try exact power of two - 1. */
756 if (CONST_OK_FOR_N (value) && value != -1)
757 return 1;
758
759 return 0;
760 }
761
762 /* Can we load a constant inline with up to 2 instructions ? */
763
764 int
765 mcore_const_ok_for_inline (HOST_WIDE_INT value)
766 {
767 HOST_WIDE_INT x, y;
768
769 return try_constant_tricks (value, & x, & y) > 0;
770 }
771
772 /* Are we loading the constant using a not ? */
773
774 int
775 mcore_const_trick_uses_not (HOST_WIDE_INT value)
776 {
777 HOST_WIDE_INT x, y;
778
779 return try_constant_tricks (value, & x, & y) == 2;
780 }
781
782 /* Try tricks to load a constant inline and return the trick number if
783 success (0 is non-inlinable).
784
785 0: not inlinable
786 1: single instruction (do the usual thing)
787 2: single insn followed by a 'not'
788 3: single insn followed by a subi
789 4: single insn followed by an addi
790 5: single insn followed by rsubi
791 6: single insn followed by bseti
792 7: single insn followed by bclri
793 8: single insn followed by rotli
794 9: single insn followed by lsli
795 10: single insn followed by ixh
796 11: single insn followed by ixw. */
797
798 static int
799 try_constant_tricks (HOST_WIDE_INT value, HOST_WIDE_INT * x, HOST_WIDE_INT * y)
800 {
801 HOST_WIDE_INT i;
802 unsigned HOST_WIDE_INT bit, shf, rot;
803
804 if (const_ok_for_mcore (value))
805 return 1; /* Do the usual thing. */
806
807 if (! TARGET_HARDLIT)
808 return 0;
809
810 if (const_ok_for_mcore (~value))
811 {
812 *x = ~value;
813 return 2;
814 }
815
816 for (i = 1; i <= 32; i++)
817 {
818 if (const_ok_for_mcore (value - i))
819 {
820 *x = value - i;
821 *y = i;
822
823 return 3;
824 }
825
826 if (const_ok_for_mcore (value + i))
827 {
828 *x = value + i;
829 *y = i;
830
831 return 4;
832 }
833 }
834
835 bit = 0x80000000ULL;
836
837 for (i = 0; i <= 31; i++)
838 {
839 if (const_ok_for_mcore (i - value))
840 {
841 *x = i - value;
842 *y = i;
843
844 return 5;
845 }
846
847 if (const_ok_for_mcore (value & ~bit))
848 {
849 *y = bit;
850 *x = value & ~bit;
851 return 6;
852 }
853
854 if (const_ok_for_mcore (value | bit))
855 {
856 *y = ~bit;
857 *x = value | bit;
858
859 return 7;
860 }
861
862 bit >>= 1;
863 }
864
865 shf = value;
866 rot = value;
867
868 for (i = 1; i < 31; i++)
869 {
870 int c;
871
872 /* MCore has rotate left. */
873 c = rot << 31;
874 rot >>= 1;
875 rot &= 0x7FFFFFFF;
876 rot |= c; /* Simulate rotate. */
877
878 if (const_ok_for_mcore (rot))
879 {
880 *y = i;
881 *x = rot;
882
883 return 8;
884 }
885
886 if (shf & 1)
887 shf = 0; /* Can't use logical shift, low order bit is one. */
888
889 shf >>= 1;
890
891 if (shf != 0 && const_ok_for_mcore (shf))
892 {
893 *y = i;
894 *x = shf;
895
896 return 9;
897 }
898 }
899
900 if ((value % 3) == 0 && const_ok_for_mcore (value / 3))
901 {
902 *x = value / 3;
903
904 return 10;
905 }
906
907 if ((value % 5) == 0 && const_ok_for_mcore (value / 5))
908 {
909 *x = value / 5;
910
911 return 11;
912 }
913
914 return 0;
915 }
916
917 /* Check whether reg is dead at first. This is done by searching ahead
918 for either the next use (i.e., reg is live), a death note, or a set of
919 reg. Don't just use dead_or_set_p() since reload does not always mark
920 deaths (especially if PRESERVE_DEATH_NOTES_REGNO_P is not defined). We
921 can ignore subregs by extracting the actual register. BRC */
922
923 int
924 mcore_is_dead (rtx_insn *first, rtx reg)
925 {
926 rtx_insn *insn;
927
928 /* For mcore, subregs can't live independently of their parent regs. */
929 if (GET_CODE (reg) == SUBREG)
930 reg = SUBREG_REG (reg);
931
932 /* Dies immediately. */
933 if (dead_or_set_p (first, reg))
934 return 1;
935
936 /* Look for conclusive evidence of live/death, otherwise we have
937 to assume that it is live. */
938 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
939 {
940 if (JUMP_P (insn))
941 return 0; /* We lose track, assume it is alive. */
942
943 else if (CALL_P (insn))
944 {
945 /* Call's might use it for target or register parms. */
946 if (reg_referenced_p (reg, PATTERN (insn))
947 || find_reg_fusage (insn, USE, reg))
948 return 0;
949 else if (dead_or_set_p (insn, reg))
950 return 1;
951 }
952 else if (NONJUMP_INSN_P (insn))
953 {
954 if (reg_referenced_p (reg, PATTERN (insn)))
955 return 0;
956 else if (dead_or_set_p (insn, reg))
957 return 1;
958 }
959 }
960
961 /* No conclusive evidence either way, we cannot take the chance
962 that control flow hid the use from us -- "I'm not dead yet". */
963 return 0;
964 }
965
966 /* Count the number of ones in mask. */
967
968 int
969 mcore_num_ones (HOST_WIDE_INT mask)
970 {
971 /* A trick to count set bits recently posted on comp.compilers. */
972 mask = (mask >> 1 & 0x55555555) + (mask & 0x55555555);
973 mask = ((mask >> 2) & 0x33333333) + (mask & 0x33333333);
974 mask = ((mask >> 4) + mask) & 0x0f0f0f0f;
975 mask = ((mask >> 8) + mask);
976
977 return (mask + (mask >> 16)) & 0xff;
978 }
979
980 /* Count the number of zeros in mask. */
981
982 int
983 mcore_num_zeros (HOST_WIDE_INT mask)
984 {
985 return 32 - mcore_num_ones (mask);
986 }
987
988 /* Determine byte being masked. */
989
990 int
991 mcore_byte_offset (unsigned int mask)
992 {
993 if (mask == 0x00ffffffL)
994 return 0;
995 else if (mask == 0xff00ffffL)
996 return 1;
997 else if (mask == 0xffff00ffL)
998 return 2;
999 else if (mask == 0xffffff00L)
1000 return 3;
1001
1002 return -1;
1003 }
1004
1005 /* Determine halfword being masked. */
1006
1007 int
1008 mcore_halfword_offset (unsigned int mask)
1009 {
1010 if (mask == 0x0000ffffL)
1011 return 0;
1012 else if (mask == 0xffff0000L)
1013 return 1;
1014
1015 return -1;
1016 }
1017
1018 /* Output a series of bseti's corresponding to mask. */
1019
1020 const char *
1021 mcore_output_bseti (rtx dst, int mask)
1022 {
1023 rtx out_operands[2];
1024 int bit;
1025
1026 out_operands[0] = dst;
1027
1028 for (bit = 0; bit < 32; bit++)
1029 {
1030 if ((mask & 0x1) == 0x1)
1031 {
1032 out_operands[1] = GEN_INT (bit);
1033
1034 output_asm_insn ("bseti\t%0,%1", out_operands);
1035 }
1036 mask >>= 1;
1037 }
1038
1039 return "";
1040 }
1041
1042 /* Output a series of bclri's corresponding to mask. */
1043
1044 const char *
1045 mcore_output_bclri (rtx dst, int mask)
1046 {
1047 rtx out_operands[2];
1048 int bit;
1049
1050 out_operands[0] = dst;
1051
1052 for (bit = 0; bit < 32; bit++)
1053 {
1054 if ((mask & 0x1) == 0x0)
1055 {
1056 out_operands[1] = GEN_INT (bit);
1057
1058 output_asm_insn ("bclri\t%0,%1", out_operands);
1059 }
1060
1061 mask >>= 1;
1062 }
1063
1064 return "";
1065 }
1066
1067 /* Output a conditional move of two constants that are +/- 1 within each
1068 other. See the "movtK" patterns in mcore.md. I'm not sure this is
1069 really worth the effort. */
1070
1071 const char *
1072 mcore_output_cmov (rtx operands[], int cmp_t, const char * test)
1073 {
1074 HOST_WIDE_INT load_value;
1075 HOST_WIDE_INT adjust_value;
1076 rtx out_operands[4];
1077
1078 out_operands[0] = operands[0];
1079
1080 /* Check to see which constant is loadable. */
1081 if (const_ok_for_mcore (INTVAL (operands[1])))
1082 {
1083 out_operands[1] = operands[1];
1084 out_operands[2] = operands[2];
1085 }
1086 else if (const_ok_for_mcore (INTVAL (operands[2])))
1087 {
1088 out_operands[1] = operands[2];
1089 out_operands[2] = operands[1];
1090
1091 /* Complement test since constants are swapped. */
1092 cmp_t = (cmp_t == 0);
1093 }
1094 load_value = INTVAL (out_operands[1]);
1095 adjust_value = INTVAL (out_operands[2]);
1096
1097 /* First output the test if folded into the pattern. */
1098
1099 if (test)
1100 output_asm_insn (test, operands);
1101
1102 /* Load the constant - for now, only support constants that can be
1103 generated with a single instruction. maybe add general inlinable
1104 constants later (this will increase the # of patterns since the
1105 instruction sequence has a different length attribute). */
1106 if (load_value >= 0 && load_value <= 127)
1107 output_asm_insn ("movi\t%0,%1", out_operands);
1108 else if (CONST_OK_FOR_M (load_value))
1109 output_asm_insn ("bgeni\t%0,%P1", out_operands);
1110 else if (CONST_OK_FOR_N (load_value))
1111 output_asm_insn ("bmaski\t%0,%N1", out_operands);
1112
1113 /* Output the constant adjustment. */
1114 if (load_value > adjust_value)
1115 {
1116 if (cmp_t)
1117 output_asm_insn ("decf\t%0", out_operands);
1118 else
1119 output_asm_insn ("dect\t%0", out_operands);
1120 }
1121 else
1122 {
1123 if (cmp_t)
1124 output_asm_insn ("incf\t%0", out_operands);
1125 else
1126 output_asm_insn ("inct\t%0", out_operands);
1127 }
1128
1129 return "";
1130 }
1131
1132 /* Outputs the peephole for moving a constant that gets not'ed followed
1133 by an and (i.e. combine the not and the and into andn). BRC */
1134
1135 const char *
1136 mcore_output_andn (rtx insn ATTRIBUTE_UNUSED, rtx operands[])
1137 {
1138 HOST_WIDE_INT x, y;
1139 rtx out_operands[3];
1140 const char * load_op;
1141 char buf[256];
1142 int trick_no;
1143
1144 trick_no = try_constant_tricks (INTVAL (operands[1]), &x, &y);
1145 gcc_assert (trick_no == 2);
1146
1147 out_operands[0] = operands[0];
1148 out_operands[1] = GEN_INT (x);
1149 out_operands[2] = operands[2];
1150
1151 if (x >= 0 && x <= 127)
1152 load_op = "movi\t%0,%1";
1153
1154 /* Try exact power of two. */
1155 else if (CONST_OK_FOR_M (x))
1156 load_op = "bgeni\t%0,%P1";
1157
1158 /* Try exact power of two - 1. */
1159 else if (CONST_OK_FOR_N (x))
1160 load_op = "bmaski\t%0,%N1";
1161
1162 else
1163 {
1164 load_op = "BADMOVI-andn\t%0, %1";
1165 gcc_unreachable ();
1166 }
1167
1168 sprintf (buf, "%s\n\tandn\t%%2,%%0", load_op);
1169 output_asm_insn (buf, out_operands);
1170
1171 return "";
1172 }
1173
1174 /* Output an inline constant. */
1175
1176 static const char *
1177 output_inline_const (machine_mode mode, rtx operands[])
1178 {
1179 HOST_WIDE_INT x = 0, y = 0;
1180 int trick_no;
1181 rtx out_operands[3];
1182 char buf[256];
1183 char load_op[256];
1184 const char *dst_fmt;
1185 HOST_WIDE_INT value;
1186
1187 value = INTVAL (operands[1]);
1188
1189 trick_no = try_constant_tricks (value, &x, &y);
1190 /* lrw's are handled separately: Large inlinable constants never get
1191 turned into lrw's. Our caller uses try_constant_tricks to back
1192 off to an lrw rather than calling this routine. */
1193 gcc_assert (trick_no != 0);
1194
1195 if (trick_no == 1)
1196 x = value;
1197
1198 /* operands: 0 = dst, 1 = load immed., 2 = immed. adjustment. */
1199 out_operands[0] = operands[0];
1200 out_operands[1] = GEN_INT (x);
1201
1202 if (trick_no > 2)
1203 out_operands[2] = GEN_INT (y);
1204
1205 /* Select dst format based on mode. */
1206 if (mode == DImode && (! TARGET_LITTLE_END))
1207 dst_fmt = "%R0";
1208 else
1209 dst_fmt = "%0";
1210
1211 if (x >= 0 && x <= 127)
1212 sprintf (load_op, "movi\t%s,%%1", dst_fmt);
1213
1214 /* Try exact power of two. */
1215 else if (CONST_OK_FOR_M (x))
1216 sprintf (load_op, "bgeni\t%s,%%P1", dst_fmt);
1217
1218 /* Try exact power of two - 1. */
1219 else if (CONST_OK_FOR_N (x))
1220 sprintf (load_op, "bmaski\t%s,%%N1", dst_fmt);
1221
1222 else
1223 {
1224 sprintf (load_op, "BADMOVI-inline_const %s, %%1", dst_fmt);
1225 gcc_unreachable ();
1226 }
1227
1228 switch (trick_no)
1229 {
1230 case 1:
1231 strcpy (buf, load_op);
1232 break;
1233 case 2: /* not */
1234 sprintf (buf, "%s\n\tnot\t%s\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1235 break;
1236 case 3: /* add */
1237 sprintf (buf, "%s\n\taddi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1238 break;
1239 case 4: /* sub */
1240 sprintf (buf, "%s\n\tsubi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1241 break;
1242 case 5: /* rsub */
1243 /* Never happens unless -mrsubi, see try_constant_tricks(). */
1244 sprintf (buf, "%s\n\trsubi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1245 break;
1246 case 6: /* bseti */
1247 sprintf (buf, "%s\n\tbseti\t%s,%%P2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1248 break;
1249 case 7: /* bclr */
1250 sprintf (buf, "%s\n\tbclri\t%s,%%Q2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1251 break;
1252 case 8: /* rotl */
1253 sprintf (buf, "%s\n\trotli\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1254 break;
1255 case 9: /* lsl */
1256 sprintf (buf, "%s\n\tlsli\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
1257 break;
1258 case 10: /* ixh */
1259 sprintf (buf, "%s\n\tixh\t%s,%s\t// %ld 0x%lx", load_op, dst_fmt, dst_fmt, value, value);
1260 break;
1261 case 11: /* ixw */
1262 sprintf (buf, "%s\n\tixw\t%s,%s\t// %ld 0x%lx", load_op, dst_fmt, dst_fmt, value, value);
1263 break;
1264 default:
1265 return "";
1266 }
1267
1268 output_asm_insn (buf, out_operands);
1269
1270 return "";
1271 }
1272
1273 /* Output a move of a word or less value. */
1274
1275 const char *
1276 mcore_output_move (rtx insn ATTRIBUTE_UNUSED, rtx operands[],
1277 machine_mode mode ATTRIBUTE_UNUSED)
1278 {
1279 rtx dst = operands[0];
1280 rtx src = operands[1];
1281
1282 if (GET_CODE (dst) == REG)
1283 {
1284 if (GET_CODE (src) == REG)
1285 {
1286 if (REGNO (src) == CC_REG) /* r-c */
1287 return "mvc\t%0";
1288 else
1289 return "mov\t%0,%1"; /* r-r*/
1290 }
1291 else if (GET_CODE (src) == MEM)
1292 {
1293 if (GET_CODE (XEXP (src, 0)) == LABEL_REF)
1294 return "lrw\t%0,[%1]"; /* a-R */
1295 else
1296 switch (GET_MODE (src)) /* r-m */
1297 {
1298 case E_SImode:
1299 return "ldw\t%0,%1";
1300 case E_HImode:
1301 return "ld.h\t%0,%1";
1302 case E_QImode:
1303 return "ld.b\t%0,%1";
1304 default:
1305 gcc_unreachable ();
1306 }
1307 }
1308 else if (GET_CODE (src) == CONST_INT)
1309 {
1310 HOST_WIDE_INT x, y;
1311
1312 if (CONST_OK_FOR_I (INTVAL (src))) /* r-I */
1313 return "movi\t%0,%1";
1314 else if (CONST_OK_FOR_M (INTVAL (src))) /* r-M */
1315 return "bgeni\t%0,%P1\t// %1 %x1";
1316 else if (CONST_OK_FOR_N (INTVAL (src))) /* r-N */
1317 return "bmaski\t%0,%N1\t// %1 %x1";
1318 else if (try_constant_tricks (INTVAL (src), &x, &y)) /* R-P */
1319 return output_inline_const (SImode, operands); /* 1-2 insns */
1320 else
1321 return "lrw\t%0,%x1\t// %1"; /* Get it from literal pool. */
1322 }
1323 else
1324 return "lrw\t%0, %1"; /* Into the literal pool. */
1325 }
1326 else if (GET_CODE (dst) == MEM) /* m-r */
1327 switch (GET_MODE (dst))
1328 {
1329 case E_SImode:
1330 return "stw\t%1,%0";
1331 case E_HImode:
1332 return "st.h\t%1,%0";
1333 case E_QImode:
1334 return "st.b\t%1,%0";
1335 default:
1336 gcc_unreachable ();
1337 }
1338
1339 gcc_unreachable ();
1340 }
1341
1342 /* Return a sequence of instructions to perform DI or DF move.
1343 Since the MCORE cannot move a DI or DF in one instruction, we have
1344 to take care when we see overlapping source and dest registers. */
1345
1346 const char *
1347 mcore_output_movedouble (rtx operands[], machine_mode mode ATTRIBUTE_UNUSED)
1348 {
1349 rtx dst = operands[0];
1350 rtx src = operands[1];
1351
1352 if (GET_CODE (dst) == REG)
1353 {
1354 if (GET_CODE (src) == REG)
1355 {
1356 int dstreg = REGNO (dst);
1357 int srcreg = REGNO (src);
1358
1359 /* Ensure the second source not overwritten. */
1360 if (srcreg + 1 == dstreg)
1361 return "mov %R0,%R1\n\tmov %0,%1";
1362 else
1363 return "mov %0,%1\n\tmov %R0,%R1";
1364 }
1365 else if (GET_CODE (src) == MEM)
1366 {
1367 rtx memexp = XEXP (src, 0);
1368 int dstreg = REGNO (dst);
1369 int basereg = -1;
1370
1371 if (GET_CODE (memexp) == LABEL_REF)
1372 return "lrw\t%0,[%1]\n\tlrw\t%R0,[%R1]";
1373 else if (GET_CODE (memexp) == REG)
1374 basereg = REGNO (memexp);
1375 else if (GET_CODE (memexp) == PLUS)
1376 {
1377 if (GET_CODE (XEXP (memexp, 0)) == REG)
1378 basereg = REGNO (XEXP (memexp, 0));
1379 else if (GET_CODE (XEXP (memexp, 1)) == REG)
1380 basereg = REGNO (XEXP (memexp, 1));
1381 else
1382 gcc_unreachable ();
1383 }
1384 else
1385 gcc_unreachable ();
1386
1387 /* ??? length attribute is wrong here. */
1388 if (dstreg == basereg)
1389 {
1390 /* Just load them in reverse order. */
1391 return "ldw\t%R0,%R1\n\tldw\t%0,%1";
1392
1393 /* XXX: alternative: move basereg to basereg+1
1394 and then fall through. */
1395 }
1396 else
1397 return "ldw\t%0,%1\n\tldw\t%R0,%R1";
1398 }
1399 else if (GET_CODE (src) == CONST_INT)
1400 {
1401 if (TARGET_LITTLE_END)
1402 {
1403 if (CONST_OK_FOR_I (INTVAL (src)))
1404 output_asm_insn ("movi %0,%1", operands);
1405 else if (CONST_OK_FOR_M (INTVAL (src)))
1406 output_asm_insn ("bgeni %0,%P1", operands);
1407 else if (CONST_OK_FOR_N (INTVAL (src)))
1408 output_asm_insn ("bmaski %0,%N1", operands);
1409 else
1410 gcc_unreachable ();
1411
1412 if (INTVAL (src) < 0)
1413 return "bmaski %R0,32";
1414 else
1415 return "movi %R0,0";
1416 }
1417 else
1418 {
1419 if (CONST_OK_FOR_I (INTVAL (src)))
1420 output_asm_insn ("movi %R0,%1", operands);
1421 else if (CONST_OK_FOR_M (INTVAL (src)))
1422 output_asm_insn ("bgeni %R0,%P1", operands);
1423 else if (CONST_OK_FOR_N (INTVAL (src)))
1424 output_asm_insn ("bmaski %R0,%N1", operands);
1425 else
1426 gcc_unreachable ();
1427
1428 if (INTVAL (src) < 0)
1429 return "bmaski %0,32";
1430 else
1431 return "movi %0,0";
1432 }
1433 }
1434 else
1435 gcc_unreachable ();
1436 }
1437 else if (GET_CODE (dst) == MEM && GET_CODE (src) == REG)
1438 return "stw\t%1,%0\n\tstw\t%R1,%R0";
1439 else
1440 gcc_unreachable ();
1441 }
1442
1443 /* Predicates used by the templates. */
1444
1445 int
1446 mcore_arith_S_operand (rtx op)
1447 {
1448 if (GET_CODE (op) == CONST_INT && CONST_OK_FOR_M (~INTVAL (op)))
1449 return 1;
1450
1451 return 0;
1452 }
1453
1454 /* Expand insert bit field. BRC */
1455
1456 int
1457 mcore_expand_insv (rtx operands[])
1458 {
1459 int width = INTVAL (operands[1]);
1460 int posn = INTVAL (operands[2]);
1461 int mask;
1462 rtx mreg, sreg, ereg;
1463
1464 /* To get width 1 insv, the test in store_bit_field() (expmed.c, line 191)
1465 for width==1 must be removed. Look around line 368. This is something
1466 we really want the md part to do. */
1467 if (width == 1 && GET_CODE (operands[3]) == CONST_INT)
1468 {
1469 /* Do directly with bseti or bclri. */
1470 /* RBE: 2/97 consider only low bit of constant. */
1471 if ((INTVAL (operands[3]) & 1) == 0)
1472 {
1473 mask = ~(1 << posn);
1474 emit_insn (gen_rtx_SET (operands[0],
1475 gen_rtx_AND (SImode, operands[0],
1476 GEN_INT (mask))));
1477 }
1478 else
1479 {
1480 mask = 1 << posn;
1481 emit_insn (gen_rtx_SET (operands[0],
1482 gen_rtx_IOR (SImode, operands[0],
1483 GEN_INT (mask))));
1484 }
1485
1486 return 1;
1487 }
1488
1489 /* Look at some bit-field placements that we aren't interested
1490 in handling ourselves, unless specifically directed to do so. */
1491 if (! TARGET_W_FIELD)
1492 return 0; /* Generally, give up about now. */
1493
1494 if (width == 8 && posn % 8 == 0)
1495 /* Byte sized and aligned; let caller break it up. */
1496 return 0;
1497
1498 if (width == 16 && posn % 16 == 0)
1499 /* Short sized and aligned; let caller break it up. */
1500 return 0;
1501
1502 /* The general case - we can do this a little bit better than what the
1503 machine independent part tries. This will get rid of all the subregs
1504 that mess up constant folding in combine when working with relaxed
1505 immediates. */
1506
1507 /* If setting the entire field, do it directly. */
1508 if (GET_CODE (operands[3]) == CONST_INT
1509 && INTVAL (operands[3]) == ((1 << width) - 1))
1510 {
1511 mreg = force_reg (SImode, GEN_INT (INTVAL (operands[3]) << posn));
1512 emit_insn (gen_rtx_SET (operands[0],
1513 gen_rtx_IOR (SImode, operands[0], mreg)));
1514 return 1;
1515 }
1516
1517 /* Generate the clear mask. */
1518 mreg = force_reg (SImode, GEN_INT (~(((1 << width) - 1) << posn)));
1519
1520 /* Clear the field, to overlay it later with the source. */
1521 emit_insn (gen_rtx_SET (operands[0],
1522 gen_rtx_AND (SImode, operands[0], mreg)));
1523
1524 /* If the source is constant 0, we've nothing to add back. */
1525 if (GET_CODE (operands[3]) == CONST_INT && INTVAL (operands[3]) == 0)
1526 return 1;
1527
1528 /* XXX: Should we worry about more games with constant values?
1529 We've covered the high profile: set/clear single-bit and many-bit
1530 fields. How often do we see "arbitrary bit pattern" constants? */
1531 sreg = copy_to_mode_reg (SImode, operands[3]);
1532
1533 /* Extract src as same width as dst (needed for signed values). We
1534 always have to do this since we widen everything to SImode.
1535 We don't have to mask if we're shifting this up against the
1536 MSB of the register (e.g., the shift will push out any hi-order
1537 bits. */
1538 if (width + posn != (int) GET_MODE_SIZE (SImode))
1539 {
1540 ereg = force_reg (SImode, GEN_INT ((1 << width) - 1));
1541 emit_insn (gen_rtx_SET (sreg, gen_rtx_AND (SImode, sreg, ereg)));
1542 }
1543
1544 /* Insert source value in dest. */
1545 if (posn != 0)
1546 emit_insn (gen_rtx_SET (sreg, gen_rtx_ASHIFT (SImode, sreg,
1547 GEN_INT (posn))));
1548
1549 emit_insn (gen_rtx_SET (operands[0],
1550 gen_rtx_IOR (SImode, operands[0], sreg)));
1551
1552 return 1;
1553 }
1554 \f
1555 /* ??? Block move stuff stolen from m88k. This code has not been
1556 verified for correctness. */
1557
1558 /* Emit code to perform a block move. Choose the best method.
1559
1560 OPERANDS[0] is the destination.
1561 OPERANDS[1] is the source.
1562 OPERANDS[2] is the size.
1563 OPERANDS[3] is the alignment safe to use. */
1564
1565 /* Emit code to perform a block move with an offset sequence of ldw/st
1566 instructions (..., ldw 0, stw 1, ldw 1, stw 0, ...). SIZE and ALIGN are
1567 known constants. DEST and SRC are registers. OFFSET is the known
1568 starting point for the output pattern. */
1569
1570 static const machine_mode mode_from_align[] =
1571 {
1572 VOIDmode, QImode, HImode, VOIDmode, SImode,
1573 };
1574
1575 static void
1576 block_move_sequence (rtx dst_mem, rtx src_mem, int size, int align)
1577 {
1578 rtx temp[2];
1579 machine_mode mode[2];
1580 int amount[2];
1581 bool active[2];
1582 int phase = 0;
1583 int next;
1584 int offset_ld = 0;
1585 int offset_st = 0;
1586 rtx x;
1587
1588 x = XEXP (dst_mem, 0);
1589 if (!REG_P (x))
1590 {
1591 x = force_reg (Pmode, x);
1592 dst_mem = replace_equiv_address (dst_mem, x);
1593 }
1594
1595 x = XEXP (src_mem, 0);
1596 if (!REG_P (x))
1597 {
1598 x = force_reg (Pmode, x);
1599 src_mem = replace_equiv_address (src_mem, x);
1600 }
1601
1602 active[0] = active[1] = false;
1603
1604 do
1605 {
1606 next = phase;
1607 phase ^= 1;
1608
1609 if (size > 0)
1610 {
1611 int next_amount;
1612
1613 next_amount = (size >= 4 ? 4 : (size >= 2 ? 2 : 1));
1614 next_amount = MIN (next_amount, align);
1615
1616 amount[next] = next_amount;
1617 mode[next] = mode_from_align[next_amount];
1618 temp[next] = gen_reg_rtx (mode[next]);
1619
1620 x = adjust_address (src_mem, mode[next], offset_ld);
1621 emit_insn (gen_rtx_SET (temp[next], x));
1622
1623 offset_ld += next_amount;
1624 size -= next_amount;
1625 active[next] = true;
1626 }
1627
1628 if (active[phase])
1629 {
1630 active[phase] = false;
1631
1632 x = adjust_address (dst_mem, mode[phase], offset_st);
1633 emit_insn (gen_rtx_SET (x, temp[phase]));
1634
1635 offset_st += amount[phase];
1636 }
1637 }
1638 while (active[next]);
1639 }
1640
1641 bool
1642 mcore_expand_block_move (rtx *operands)
1643 {
1644 HOST_WIDE_INT align, bytes, max;
1645
1646 if (GET_CODE (operands[2]) != CONST_INT)
1647 return false;
1648
1649 bytes = INTVAL (operands[2]);
1650 align = INTVAL (operands[3]);
1651
1652 if (bytes <= 0)
1653 return false;
1654 if (align > 4)
1655 align = 4;
1656
1657 switch (align)
1658 {
1659 case 4:
1660 if (bytes & 1)
1661 max = 4*4;
1662 else if (bytes & 3)
1663 max = 8*4;
1664 else
1665 max = 16*4;
1666 break;
1667 case 2:
1668 max = 4*2;
1669 break;
1670 case 1:
1671 max = 4*1;
1672 break;
1673 default:
1674 gcc_unreachable ();
1675 }
1676
1677 if (bytes <= max)
1678 {
1679 block_move_sequence (operands[0], operands[1], bytes, align);
1680 return true;
1681 }
1682
1683 return false;
1684 }
1685 \f
1686
1687 /* Code to generate prologue and epilogue sequences. */
1688 static int number_of_regs_before_varargs;
1689
1690 /* Set by TARGET_SETUP_INCOMING_VARARGS to indicate to prolog that this is
1691 for a varargs function. */
1692 static int current_function_anonymous_args;
1693
1694 #define STACK_BYTES (STACK_BOUNDARY/BITS_PER_UNIT)
1695 #define STORE_REACH (64) /* Maximum displace of word store + 4. */
1696 #define ADDI_REACH (32) /* Maximum addi operand. */
1697
1698 static void
1699 layout_mcore_frame (struct mcore_frame * infp)
1700 {
1701 int n;
1702 unsigned int i;
1703 int nbytes;
1704 int regarg;
1705 int localregarg;
1706 int outbounds;
1707 unsigned int growths;
1708 int step;
1709
1710 /* Might have to spill bytes to re-assemble a big argument that
1711 was passed partially in registers and partially on the stack. */
1712 nbytes = crtl->args.pretend_args_size;
1713
1714 /* Determine how much space for spilled anonymous args (e.g., stdarg). */
1715 if (current_function_anonymous_args)
1716 nbytes += (NPARM_REGS - number_of_regs_before_varargs) * UNITS_PER_WORD;
1717
1718 infp->arg_size = nbytes;
1719
1720 /* How much space to save non-volatile registers we stomp. */
1721 infp->reg_mask = calc_live_regs (& n);
1722 infp->reg_size = n * 4;
1723
1724 /* And the rest of it... locals and space for overflowed outbounds. */
1725 infp->local_size = get_frame_size ();
1726 infp->outbound_size = crtl->outgoing_args_size;
1727
1728 /* Make sure we have a whole number of words for the locals. */
1729 if (infp->local_size % STACK_BYTES)
1730 infp->local_size = (infp->local_size + STACK_BYTES - 1) & ~ (STACK_BYTES -1);
1731
1732 /* Only thing we know we have to pad is the outbound space, since
1733 we've aligned our locals assuming that base of locals is aligned. */
1734 infp->pad_local = 0;
1735 infp->pad_reg = 0;
1736 infp->pad_outbound = 0;
1737 if (infp->outbound_size % STACK_BYTES)
1738 infp->pad_outbound = STACK_BYTES - (infp->outbound_size % STACK_BYTES);
1739
1740 /* Now we see how we want to stage the prologue so that it does
1741 the most appropriate stack growth and register saves to either:
1742 (1) run fast,
1743 (2) reduce instruction space, or
1744 (3) reduce stack space. */
1745 for (i = 0; i < ARRAY_SIZE (infp->growth); i++)
1746 infp->growth[i] = 0;
1747
1748 regarg = infp->reg_size + infp->arg_size;
1749 localregarg = infp->local_size + regarg;
1750 outbounds = infp->outbound_size + infp->pad_outbound;
1751 growths = 0;
1752
1753 /* XXX: Consider one where we consider localregarg + outbound too! */
1754
1755 /* Frame of <= 32 bytes and using stm would get <= 2 registers.
1756 use stw's with offsets and buy the frame in one shot. */
1757 if (localregarg <= ADDI_REACH
1758 && (infp->reg_size <= 8 || (infp->reg_mask & 0xc000) != 0xc000))
1759 {
1760 /* Make sure we'll be aligned. */
1761 if (localregarg % STACK_BYTES)
1762 infp->pad_reg = STACK_BYTES - (localregarg % STACK_BYTES);
1763
1764 step = localregarg + infp->pad_reg;
1765 infp->reg_offset = infp->local_size;
1766
1767 if (outbounds + step <= ADDI_REACH && !frame_pointer_needed)
1768 {
1769 step += outbounds;
1770 infp->reg_offset += outbounds;
1771 outbounds = 0;
1772 }
1773
1774 infp->arg_offset = step - 4;
1775 infp->growth[growths++] = step;
1776 infp->reg_growth = growths;
1777 infp->local_growth = growths;
1778
1779 /* If we haven't already folded it in. */
1780 if (outbounds)
1781 infp->growth[growths++] = outbounds;
1782
1783 goto finish;
1784 }
1785
1786 /* Frame can't be done with a single subi, but can be done with 2
1787 insns. If the 'stm' is getting <= 2 registers, we use stw's and
1788 shift some of the stack purchase into the first subi, so both are
1789 single instructions. */
1790 if (localregarg <= STORE_REACH
1791 && (infp->local_size > ADDI_REACH)
1792 && (infp->reg_size <= 8 || (infp->reg_mask & 0xc000) != 0xc000))
1793 {
1794 int all;
1795
1796 /* Make sure we'll be aligned; use either pad_reg or pad_local. */
1797 if (localregarg % STACK_BYTES)
1798 infp->pad_reg = STACK_BYTES - (localregarg % STACK_BYTES);
1799
1800 all = localregarg + infp->pad_reg + infp->pad_local;
1801 step = ADDI_REACH; /* As much up front as we can. */
1802 if (step > all)
1803 step = all;
1804
1805 /* XXX: Consider whether step will still be aligned; we believe so. */
1806 infp->arg_offset = step - 4;
1807 infp->growth[growths++] = step;
1808 infp->reg_growth = growths;
1809 infp->reg_offset = step - infp->pad_reg - infp->reg_size;
1810 all -= step;
1811
1812 /* Can we fold in any space required for outbounds? */
1813 if (outbounds + all <= ADDI_REACH && !frame_pointer_needed)
1814 {
1815 all += outbounds;
1816 outbounds = 0;
1817 }
1818
1819 /* Get the rest of the locals in place. */
1820 step = all;
1821 infp->growth[growths++] = step;
1822 infp->local_growth = growths;
1823 all -= step;
1824
1825 gcc_assert (all == 0);
1826
1827 /* Finish off if we need to do so. */
1828 if (outbounds)
1829 infp->growth[growths++] = outbounds;
1830
1831 goto finish;
1832 }
1833
1834 /* Registers + args is nicely aligned, so we'll buy that in one shot.
1835 Then we buy the rest of the frame in 1 or 2 steps depending on
1836 whether we need a frame pointer. */
1837 if ((regarg % STACK_BYTES) == 0)
1838 {
1839 infp->growth[growths++] = regarg;
1840 infp->reg_growth = growths;
1841 infp->arg_offset = regarg - 4;
1842 infp->reg_offset = 0;
1843
1844 if (infp->local_size % STACK_BYTES)
1845 infp->pad_local = STACK_BYTES - (infp->local_size % STACK_BYTES);
1846
1847 step = infp->local_size + infp->pad_local;
1848
1849 if (!frame_pointer_needed)
1850 {
1851 step += outbounds;
1852 outbounds = 0;
1853 }
1854
1855 infp->growth[growths++] = step;
1856 infp->local_growth = growths;
1857
1858 /* If there's any left to be done. */
1859 if (outbounds)
1860 infp->growth[growths++] = outbounds;
1861
1862 goto finish;
1863 }
1864
1865 /* XXX: optimizations that we'll want to play with....
1866 -- regarg is not aligned, but it's a small number of registers;
1867 use some of localsize so that regarg is aligned and then
1868 save the registers. */
1869
1870 /* Simple encoding; plods down the stack buying the pieces as it goes.
1871 -- does not optimize space consumption.
1872 -- does not attempt to optimize instruction counts.
1873 -- but it is safe for all alignments. */
1874 if (regarg % STACK_BYTES != 0)
1875 infp->pad_reg = STACK_BYTES - (regarg % STACK_BYTES);
1876
1877 infp->growth[growths++] = infp->arg_size + infp->reg_size + infp->pad_reg;
1878 infp->reg_growth = growths;
1879 infp->arg_offset = infp->growth[0] - 4;
1880 infp->reg_offset = 0;
1881
1882 if (frame_pointer_needed)
1883 {
1884 if (infp->local_size % STACK_BYTES != 0)
1885 infp->pad_local = STACK_BYTES - (infp->local_size % STACK_BYTES);
1886
1887 infp->growth[growths++] = infp->local_size + infp->pad_local;
1888 infp->local_growth = growths;
1889
1890 infp->growth[growths++] = outbounds;
1891 }
1892 else
1893 {
1894 if ((infp->local_size + outbounds) % STACK_BYTES != 0)
1895 infp->pad_local = STACK_BYTES - ((infp->local_size + outbounds) % STACK_BYTES);
1896
1897 infp->growth[growths++] = infp->local_size + infp->pad_local + outbounds;
1898 infp->local_growth = growths;
1899 }
1900
1901 /* Anything else that we've forgotten?, plus a few consistency checks. */
1902 finish:
1903 gcc_assert (infp->reg_offset >= 0);
1904 gcc_assert (growths <= MAX_STACK_GROWS);
1905
1906 for (i = 0; i < growths; i++)
1907 gcc_assert (!(infp->growth[i] % STACK_BYTES));
1908 }
1909
1910 /* Define the offset between two registers, one to be eliminated, and
1911 the other its replacement, at the start of a routine. */
1912
1913 int
1914 mcore_initial_elimination_offset (int from, int to)
1915 {
1916 int above_frame;
1917 int below_frame;
1918 struct mcore_frame fi;
1919
1920 layout_mcore_frame (& fi);
1921
1922 /* fp to ap */
1923 above_frame = fi.local_size + fi.pad_local + fi.reg_size + fi.pad_reg;
1924 /* sp to fp */
1925 below_frame = fi.outbound_size + fi.pad_outbound;
1926
1927 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
1928 return above_frame;
1929
1930 if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
1931 return above_frame + below_frame;
1932
1933 if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
1934 return below_frame;
1935
1936 gcc_unreachable ();
1937 }
1938
1939 /* Keep track of some information about varargs for the prolog. */
1940
1941 static void
1942 mcore_setup_incoming_varargs (cumulative_args_t args_so_far_v,
1943 machine_mode mode, tree type,
1944 int * ptr_pretend_size ATTRIBUTE_UNUSED,
1945 int second_time ATTRIBUTE_UNUSED)
1946 {
1947 CUMULATIVE_ARGS *args_so_far = get_cumulative_args (args_so_far_v);
1948
1949 current_function_anonymous_args = 1;
1950
1951 /* We need to know how many argument registers are used before
1952 the varargs start, so that we can push the remaining argument
1953 registers during the prologue. */
1954 number_of_regs_before_varargs = *args_so_far + mcore_num_arg_regs (mode, type);
1955
1956 /* There is a bug somewhere in the arg handling code.
1957 Until I can find it this workaround always pushes the
1958 last named argument onto the stack. */
1959 number_of_regs_before_varargs = *args_so_far;
1960
1961 /* The last named argument may be split between argument registers
1962 and the stack. Allow for this here. */
1963 if (number_of_regs_before_varargs > NPARM_REGS)
1964 number_of_regs_before_varargs = NPARM_REGS;
1965 }
1966
1967 void
1968 mcore_expand_prolog (void)
1969 {
1970 struct mcore_frame fi;
1971 int space_allocated = 0;
1972 int growth = 0;
1973
1974 /* Find out what we're doing. */
1975 layout_mcore_frame (&fi);
1976
1977 space_allocated = fi.arg_size + fi.reg_size + fi.local_size +
1978 fi.outbound_size + fi.pad_outbound + fi.pad_local + fi.pad_reg;
1979
1980 if (TARGET_CG_DATA)
1981 {
1982 /* Emit a symbol for this routine's frame size. */
1983 rtx x;
1984
1985 x = DECL_RTL (current_function_decl);
1986
1987 gcc_assert (GET_CODE (x) == MEM);
1988
1989 x = XEXP (x, 0);
1990
1991 gcc_assert (GET_CODE (x) == SYMBOL_REF);
1992
1993 free (mcore_current_function_name);
1994
1995 mcore_current_function_name = xstrdup (XSTR (x, 0));
1996
1997 ASM_OUTPUT_CG_NODE (asm_out_file, mcore_current_function_name, space_allocated);
1998
1999 if (cfun->calls_alloca)
2000 ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name, "alloca", 1);
2001
2002 /* 970425: RBE:
2003 We're looking at how the 8byte alignment affects stack layout
2004 and where we had to pad things. This emits information we can
2005 extract which tells us about frame sizes and the like. */
2006 fprintf (asm_out_file,
2007 "\t.equ\t__$frame$info$_%s_$_%d_%d_x%x_%d_%d_%d,0\n",
2008 mcore_current_function_name,
2009 fi.arg_size, fi.reg_size, fi.reg_mask,
2010 fi.local_size, fi.outbound_size,
2011 frame_pointer_needed);
2012 }
2013
2014 if (mcore_naked_function_p ())
2015 return;
2016
2017 /* Handle stdarg+regsaves in one shot: can't be more than 64 bytes. */
2018 output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
2019
2020 /* If we have a parameter passed partially in regs and partially in memory,
2021 the registers will have been stored to memory already in function.c. So
2022 we only need to do something here for varargs functions. */
2023 if (fi.arg_size != 0 && crtl->args.pretend_args_size == 0)
2024 {
2025 int offset;
2026 int rn = FIRST_PARM_REG + NPARM_REGS - 1;
2027 int remaining = fi.arg_size;
2028
2029 for (offset = fi.arg_offset; remaining >= 4; offset -= 4, rn--, remaining -= 4)
2030 {
2031 emit_insn (gen_movsi
2032 (gen_rtx_MEM (SImode,
2033 plus_constant (Pmode, stack_pointer_rtx,
2034 offset)),
2035 gen_rtx_REG (SImode, rn)));
2036 }
2037 }
2038
2039 /* Do we need another stack adjustment before we do the register saves? */
2040 if (growth < fi.reg_growth)
2041 output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
2042
2043 if (fi.reg_size != 0)
2044 {
2045 int i;
2046 int offs = fi.reg_offset;
2047
2048 for (i = 15; i >= 0; i--)
2049 {
2050 if (offs == 0 && i == 15 && ((fi.reg_mask & 0xc000) == 0xc000))
2051 {
2052 int first_reg = 15;
2053
2054 while (fi.reg_mask & (1 << first_reg))
2055 first_reg--;
2056 first_reg++;
2057
2058 emit_insn (gen_store_multiple (gen_rtx_MEM (SImode, stack_pointer_rtx),
2059 gen_rtx_REG (SImode, first_reg),
2060 GEN_INT (16 - first_reg)));
2061
2062 i -= (15 - first_reg);
2063 offs += (16 - first_reg) * 4;
2064 }
2065 else if (fi.reg_mask & (1 << i))
2066 {
2067 emit_insn (gen_movsi
2068 (gen_rtx_MEM (SImode,
2069 plus_constant (Pmode, stack_pointer_rtx,
2070 offs)),
2071 gen_rtx_REG (SImode, i)));
2072 offs += 4;
2073 }
2074 }
2075 }
2076
2077 /* Figure the locals + outbounds. */
2078 if (frame_pointer_needed)
2079 {
2080 /* If we haven't already purchased to 'fp'. */
2081 if (growth < fi.local_growth)
2082 output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
2083
2084 emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
2085
2086 /* ... and then go any remaining distance for outbounds, etc. */
2087 if (fi.growth[growth])
2088 output_stack_adjust (-1, fi.growth[growth++]);
2089 }
2090 else
2091 {
2092 if (growth < fi.local_growth)
2093 output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
2094 if (fi.growth[growth])
2095 output_stack_adjust (-1, fi.growth[growth++]);
2096 }
2097 }
2098
2099 void
2100 mcore_expand_epilog (void)
2101 {
2102 struct mcore_frame fi;
2103 int i;
2104 int offs;
2105 int growth = MAX_STACK_GROWS - 1 ;
2106
2107
2108 /* Find out what we're doing. */
2109 layout_mcore_frame(&fi);
2110
2111 if (mcore_naked_function_p ())
2112 return;
2113
2114 /* If we had a frame pointer, restore the sp from that. */
2115 if (frame_pointer_needed)
2116 {
2117 emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
2118 growth = fi.local_growth - 1;
2119 }
2120 else
2121 {
2122 /* XXX: while loop should accumulate and do a single sell. */
2123 while (growth >= fi.local_growth)
2124 {
2125 if (fi.growth[growth] != 0)
2126 output_stack_adjust (1, fi.growth[growth]);
2127 growth--;
2128 }
2129 }
2130
2131 /* Make sure we've shrunk stack back to the point where the registers
2132 were laid down. This is typically 0/1 iterations. Then pull the
2133 register save information back off the stack. */
2134 while (growth >= fi.reg_growth)
2135 output_stack_adjust ( 1, fi.growth[growth--]);
2136
2137 offs = fi.reg_offset;
2138
2139 for (i = 15; i >= 0; i--)
2140 {
2141 if (offs == 0 && i == 15 && ((fi.reg_mask & 0xc000) == 0xc000))
2142 {
2143 int first_reg;
2144
2145 /* Find the starting register. */
2146 first_reg = 15;
2147
2148 while (fi.reg_mask & (1 << first_reg))
2149 first_reg--;
2150
2151 first_reg++;
2152
2153 emit_insn (gen_load_multiple (gen_rtx_REG (SImode, first_reg),
2154 gen_rtx_MEM (SImode, stack_pointer_rtx),
2155 GEN_INT (16 - first_reg)));
2156
2157 i -= (15 - first_reg);
2158 offs += (16 - first_reg) * 4;
2159 }
2160 else if (fi.reg_mask & (1 << i))
2161 {
2162 emit_insn (gen_movsi
2163 (gen_rtx_REG (SImode, i),
2164 gen_rtx_MEM (SImode,
2165 plus_constant (Pmode, stack_pointer_rtx,
2166 offs))));
2167 offs += 4;
2168 }
2169 }
2170
2171 /* Give back anything else. */
2172 /* XXX: Should accumulate total and then give it back. */
2173 while (growth >= 0)
2174 output_stack_adjust ( 1, fi.growth[growth--]);
2175 }
2176 \f
2177 /* This code is borrowed from the SH port. */
2178
2179 /* The MCORE cannot load a large constant into a register, constants have to
2180 come from a pc relative load. The reference of a pc relative load
2181 instruction must be less than 1k in front of the instruction. This
2182 means that we often have to dump a constant inside a function, and
2183 generate code to branch around it.
2184
2185 It is important to minimize this, since the branches will slow things
2186 down and make things bigger.
2187
2188 Worst case code looks like:
2189
2190 lrw L1,r0
2191 br L2
2192 align
2193 L1: .long value
2194 L2:
2195 ..
2196
2197 lrw L3,r0
2198 br L4
2199 align
2200 L3: .long value
2201 L4:
2202 ..
2203
2204 We fix this by performing a scan before scheduling, which notices which
2205 instructions need to have their operands fetched from the constant table
2206 and builds the table.
2207
2208 The algorithm is:
2209
2210 scan, find an instruction which needs a pcrel move. Look forward, find the
2211 last barrier which is within MAX_COUNT bytes of the requirement.
2212 If there isn't one, make one. Process all the instructions between
2213 the find and the barrier.
2214
2215 In the above example, we can tell that L3 is within 1k of L1, so
2216 the first move can be shrunk from the 2 insn+constant sequence into
2217 just 1 insn, and the constant moved to L3 to make:
2218
2219 lrw L1,r0
2220 ..
2221 lrw L3,r0
2222 bra L4
2223 align
2224 L3:.long value
2225 L4:.long value
2226
2227 Then the second move becomes the target for the shortening process. */
2228
2229 typedef struct
2230 {
2231 rtx value; /* Value in table. */
2232 rtx label; /* Label of value. */
2233 } pool_node;
2234
2235 /* The maximum number of constants that can fit into one pool, since
2236 the pc relative range is 0...1020 bytes and constants are at least 4
2237 bytes long. We subtract 4 from the range to allow for the case where
2238 we need to add a branch/align before the constant pool. */
2239
2240 #define MAX_COUNT 1016
2241 #define MAX_POOL_SIZE (MAX_COUNT/4)
2242 static pool_node pool_vector[MAX_POOL_SIZE];
2243 static int pool_size;
2244
2245 /* Dump out any constants accumulated in the final pass. These
2246 will only be labels. */
2247
2248 const char *
2249 mcore_output_jump_label_table (void)
2250 {
2251 int i;
2252
2253 if (pool_size)
2254 {
2255 fprintf (asm_out_file, "\t.align 2\n");
2256
2257 for (i = 0; i < pool_size; i++)
2258 {
2259 pool_node * p = pool_vector + i;
2260
2261 (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (p->label));
2262
2263 output_asm_insn (".long %0", &p->value);
2264 }
2265
2266 pool_size = 0;
2267 }
2268
2269 return "";
2270 }
2271
2272 /* Check whether insn is a candidate for a conditional. */
2273
2274 static cond_type
2275 is_cond_candidate (rtx insn)
2276 {
2277 /* The only things we conditionalize are those that can be directly
2278 changed into a conditional. Only bother with SImode items. If
2279 we wanted to be a little more aggressive, we could also do other
2280 modes such as DImode with reg-reg move or load 0. */
2281 if (NONJUMP_INSN_P (insn))
2282 {
2283 rtx pat = PATTERN (insn);
2284 rtx src, dst;
2285
2286 if (GET_CODE (pat) != SET)
2287 return COND_NO;
2288
2289 dst = XEXP (pat, 0);
2290
2291 if ((GET_CODE (dst) != REG &&
2292 GET_CODE (dst) != SUBREG) ||
2293 GET_MODE (dst) != SImode)
2294 return COND_NO;
2295
2296 src = XEXP (pat, 1);
2297
2298 if ((GET_CODE (src) == REG ||
2299 (GET_CODE (src) == SUBREG &&
2300 GET_CODE (SUBREG_REG (src)) == REG)) &&
2301 GET_MODE (src) == SImode)
2302 return COND_MOV_INSN;
2303 else if (GET_CODE (src) == CONST_INT &&
2304 INTVAL (src) == 0)
2305 return COND_CLR_INSN;
2306 else if (GET_CODE (src) == PLUS &&
2307 (GET_CODE (XEXP (src, 0)) == REG ||
2308 (GET_CODE (XEXP (src, 0)) == SUBREG &&
2309 GET_CODE (SUBREG_REG (XEXP (src, 0))) == REG)) &&
2310 GET_MODE (XEXP (src, 0)) == SImode &&
2311 GET_CODE (XEXP (src, 1)) == CONST_INT &&
2312 INTVAL (XEXP (src, 1)) == 1)
2313 return COND_INC_INSN;
2314 else if (((GET_CODE (src) == MINUS &&
2315 GET_CODE (XEXP (src, 1)) == CONST_INT &&
2316 INTVAL( XEXP (src, 1)) == 1) ||
2317 (GET_CODE (src) == PLUS &&
2318 GET_CODE (XEXP (src, 1)) == CONST_INT &&
2319 INTVAL (XEXP (src, 1)) == -1)) &&
2320 (GET_CODE (XEXP (src, 0)) == REG ||
2321 (GET_CODE (XEXP (src, 0)) == SUBREG &&
2322 GET_CODE (SUBREG_REG (XEXP (src, 0))) == REG)) &&
2323 GET_MODE (XEXP (src, 0)) == SImode)
2324 return COND_DEC_INSN;
2325
2326 /* Some insns that we don't bother with:
2327 (set (rx:DI) (ry:DI))
2328 (set (rx:DI) (const_int 0))
2329 */
2330
2331 }
2332 else if (JUMP_P (insn)
2333 && GET_CODE (PATTERN (insn)) == SET
2334 && GET_CODE (XEXP (PATTERN (insn), 1)) == LABEL_REF)
2335 return COND_BRANCH_INSN;
2336
2337 return COND_NO;
2338 }
2339
2340 /* Emit a conditional version of insn and replace the old insn with the
2341 new one. Return the new insn if emitted. */
2342
2343 static rtx_insn *
2344 emit_new_cond_insn (rtx_insn *insn, int cond)
2345 {
2346 rtx c_insn = 0;
2347 rtx pat, dst, src;
2348 cond_type num;
2349
2350 if ((num = is_cond_candidate (insn)) == COND_NO)
2351 return NULL;
2352
2353 pat = PATTERN (insn);
2354
2355 if (NONJUMP_INSN_P (insn))
2356 {
2357 dst = SET_DEST (pat);
2358 src = SET_SRC (pat);
2359 }
2360 else
2361 {
2362 dst = JUMP_LABEL (insn);
2363 src = NULL_RTX;
2364 }
2365
2366 switch (num)
2367 {
2368 case COND_MOV_INSN:
2369 case COND_CLR_INSN:
2370 if (cond)
2371 c_insn = gen_movt0 (dst, src, dst);
2372 else
2373 c_insn = gen_movt0 (dst, dst, src);
2374 break;
2375
2376 case COND_INC_INSN:
2377 if (cond)
2378 c_insn = gen_incscc (dst, dst);
2379 else
2380 c_insn = gen_incscc_false (dst, dst);
2381 break;
2382
2383 case COND_DEC_INSN:
2384 if (cond)
2385 c_insn = gen_decscc (dst, dst);
2386 else
2387 c_insn = gen_decscc_false (dst, dst);
2388 break;
2389
2390 case COND_BRANCH_INSN:
2391 if (cond)
2392 c_insn = gen_branch_true (dst);
2393 else
2394 c_insn = gen_branch_false (dst);
2395 break;
2396
2397 default:
2398 return NULL;
2399 }
2400
2401 /* Only copy the notes if they exist. */
2402 if (rtx_length [GET_CODE (c_insn)] >= 7 && rtx_length [GET_CODE (insn)] >= 7)
2403 {
2404 /* We really don't need to bother with the notes and links at this
2405 point, but go ahead and save the notes. This will help is_dead()
2406 when applying peepholes (links don't matter since they are not
2407 used any more beyond this point for the mcore). */
2408 REG_NOTES (c_insn) = REG_NOTES (insn);
2409 }
2410
2411 if (num == COND_BRANCH_INSN)
2412 {
2413 /* For jumps, we need to be a little bit careful and emit the new jump
2414 before the old one and to update the use count for the target label.
2415 This way, the barrier following the old (uncond) jump will get
2416 deleted, but the label won't. */
2417 c_insn = emit_jump_insn_before (c_insn, insn);
2418
2419 ++ LABEL_NUSES (dst);
2420
2421 JUMP_LABEL (c_insn) = dst;
2422 }
2423 else
2424 c_insn = emit_insn_after (c_insn, insn);
2425
2426 delete_insn (insn);
2427
2428 return as_a <rtx_insn *> (c_insn);
2429 }
2430
2431 /* Attempt to change a basic block into a series of conditional insns. This
2432 works by taking the branch at the end of the 1st block and scanning for the
2433 end of the 2nd block. If all instructions in the 2nd block have cond.
2434 versions and the label at the start of block 3 is the same as the target
2435 from the branch at block 1, then conditionalize all insn in block 2 using
2436 the inverse condition of the branch at block 1. (Note I'm bending the
2437 definition of basic block here.)
2438
2439 e.g., change:
2440
2441 bt L2 <-- end of block 1 (delete)
2442 mov r7,r8
2443 addu r7,1
2444 br L3 <-- end of block 2
2445
2446 L2: ... <-- start of block 3 (NUSES==1)
2447 L3: ...
2448
2449 to:
2450
2451 movf r7,r8
2452 incf r7
2453 bf L3
2454
2455 L3: ...
2456
2457 we can delete the L2 label if NUSES==1 and re-apply the optimization
2458 starting at the last instruction of block 2. This may allow an entire
2459 if-then-else statement to be conditionalized. BRC */
2460 static rtx_insn *
2461 conditionalize_block (rtx_insn *first)
2462 {
2463 rtx_insn *insn;
2464 rtx br_pat;
2465 rtx_insn *end_blk_1_br = 0;
2466 rtx_insn *end_blk_2_insn = 0;
2467 rtx_insn *start_blk_3_lab = 0;
2468 int cond;
2469 int br_lab_num;
2470 int blk_size = 0;
2471
2472
2473 /* Check that the first insn is a candidate conditional jump. This is
2474 the one that we'll eliminate. If not, advance to the next insn to
2475 try. */
2476 if (! JUMP_P (first)
2477 || GET_CODE (PATTERN (first)) != SET
2478 || GET_CODE (XEXP (PATTERN (first), 1)) != IF_THEN_ELSE)
2479 return NEXT_INSN (first);
2480
2481 /* Extract some information we need. */
2482 end_blk_1_br = first;
2483 br_pat = PATTERN (end_blk_1_br);
2484
2485 /* Complement the condition since we use the reverse cond. for the insns. */
2486 cond = (GET_CODE (XEXP (XEXP (br_pat, 1), 0)) == EQ);
2487
2488 /* Determine what kind of branch we have. */
2489 if (GET_CODE (XEXP (XEXP (br_pat, 1), 1)) == LABEL_REF)
2490 {
2491 /* A normal branch, so extract label out of first arm. */
2492 br_lab_num = CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (br_pat, 1), 1), 0));
2493 }
2494 else
2495 {
2496 /* An inverse branch, so extract the label out of the 2nd arm
2497 and complement the condition. */
2498 cond = (cond == 0);
2499 br_lab_num = CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (br_pat, 1), 2), 0));
2500 }
2501
2502 /* Scan forward for the start of block 2: it must start with a
2503 label and that label must be the same as the branch target
2504 label from block 1. We don't care about whether block 2 actually
2505 ends with a branch or a label (an uncond. branch is
2506 conditionalizable). */
2507 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
2508 {
2509 enum rtx_code code;
2510
2511 code = GET_CODE (insn);
2512
2513 /* Look for the label at the start of block 3. */
2514 if (code == CODE_LABEL && CODE_LABEL_NUMBER (insn) == br_lab_num)
2515 break;
2516
2517 /* Skip barriers, notes, and conditionalizable insns. If the
2518 insn is not conditionalizable or makes this optimization fail,
2519 just return the next insn so we can start over from that point. */
2520 if (code != BARRIER && code != NOTE && !is_cond_candidate (insn))
2521 return NEXT_INSN (insn);
2522
2523 /* Remember the last real insn before the label (i.e. end of block 2). */
2524 if (code == JUMP_INSN || code == INSN)
2525 {
2526 blk_size ++;
2527 end_blk_2_insn = insn;
2528 }
2529 }
2530
2531 if (!insn)
2532 return insn;
2533
2534 /* It is possible for this optimization to slow performance if the blocks
2535 are long. This really depends upon whether the branch is likely taken
2536 or not. If the branch is taken, we slow performance in many cases. But,
2537 if the branch is not taken, we always help performance (for a single
2538 block, but for a double block (i.e. when the optimization is re-applied)
2539 this is not true since the 'right thing' depends on the overall length of
2540 the collapsed block). As a compromise, don't apply this optimization on
2541 blocks larger than size 2 (unlikely for the mcore) when speed is important.
2542 the best threshold depends on the latencies of the instructions (i.e.,
2543 the branch penalty). */
2544 if (optimize > 1 && blk_size > 2)
2545 return insn;
2546
2547 /* At this point, we've found the start of block 3 and we know that
2548 it is the destination of the branch from block 1. Also, all
2549 instructions in the block 2 are conditionalizable. So, apply the
2550 conditionalization and delete the branch. */
2551 start_blk_3_lab = insn;
2552
2553 for (insn = NEXT_INSN (end_blk_1_br); insn != start_blk_3_lab;
2554 insn = NEXT_INSN (insn))
2555 {
2556 rtx_insn *newinsn;
2557
2558 if (insn->deleted ())
2559 continue;
2560
2561 /* Try to form a conditional variant of the instruction and emit it. */
2562 if ((newinsn = emit_new_cond_insn (insn, cond)))
2563 {
2564 if (end_blk_2_insn == insn)
2565 end_blk_2_insn = newinsn;
2566
2567 insn = newinsn;
2568 }
2569 }
2570
2571 /* Note whether we will delete the label starting blk 3 when the jump
2572 gets deleted. If so, we want to re-apply this optimization at the
2573 last real instruction right before the label. */
2574 if (LABEL_NUSES (start_blk_3_lab) == 1)
2575 {
2576 start_blk_3_lab = 0;
2577 }
2578
2579 /* ??? we probably should redistribute the death notes for this insn, esp.
2580 the death of cc, but it doesn't really matter this late in the game.
2581 The peepholes all use is_dead() which will find the correct death
2582 regardless of whether there is a note. */
2583 delete_insn (end_blk_1_br);
2584
2585 if (! start_blk_3_lab)
2586 return end_blk_2_insn;
2587
2588 /* Return the insn right after the label at the start of block 3. */
2589 return NEXT_INSN (start_blk_3_lab);
2590 }
2591
2592 /* Apply the conditionalization of blocks optimization. This is the
2593 outer loop that traverses through the insns scanning for a branch
2594 that signifies an opportunity to apply the optimization. Note that
2595 this optimization is applied late. If we could apply it earlier,
2596 say before cse 2, it may expose more optimization opportunities.
2597 but, the pay back probably isn't really worth the effort (we'd have
2598 to update all reg/flow/notes/links/etc to make it work - and stick it
2599 in before cse 2). */
2600
2601 static void
2602 conditionalize_optimization (void)
2603 {
2604 rtx_insn *insn;
2605
2606 for (insn = get_insns (); insn; insn = conditionalize_block (insn))
2607 continue;
2608 }
2609
2610 /* This is to handle loads from the constant pool. */
2611
2612 static void
2613 mcore_reorg (void)
2614 {
2615 /* Reset this variable. */
2616 current_function_anonymous_args = 0;
2617
2618 if (optimize == 0)
2619 return;
2620
2621 /* Conditionalize blocks where we can. */
2622 conditionalize_optimization ();
2623
2624 /* Literal pool generation is now pushed off until the assembler. */
2625 }
2626
2627 \f
2628 /* Return true if X is something that can be moved directly into r15. */
2629
2630 bool
2631 mcore_r15_operand_p (rtx x)
2632 {
2633 switch (GET_CODE (x))
2634 {
2635 case CONST_INT:
2636 return mcore_const_ok_for_inline (INTVAL (x));
2637
2638 case REG:
2639 case SUBREG:
2640 case MEM:
2641 return 1;
2642
2643 default:
2644 return 0;
2645 }
2646 }
2647
2648 /* Implement SECONDARY_RELOAD_CLASS. If RCLASS contains r15, and we can't
2649 directly move X into it, use r1-r14 as a temporary. */
2650
2651 enum reg_class
2652 mcore_secondary_reload_class (enum reg_class rclass,
2653 machine_mode mode ATTRIBUTE_UNUSED, rtx x)
2654 {
2655 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], 15)
2656 && !mcore_r15_operand_p (x))
2657 return LRW_REGS;
2658 return NO_REGS;
2659 }
2660
2661 /* Return the reg_class to use when reloading the rtx X into the class
2662 RCLASS. If X is too complex to move directly into r15, prefer to
2663 use LRW_REGS instead. */
2664
2665 enum reg_class
2666 mcore_reload_class (rtx x, enum reg_class rclass)
2667 {
2668 if (reg_class_subset_p (LRW_REGS, rclass) && !mcore_r15_operand_p (x))
2669 return LRW_REGS;
2670
2671 return rclass;
2672 }
2673
2674 /* Tell me if a pair of reg/subreg rtx's actually refer to the same
2675 register. Note that the current version doesn't worry about whether
2676 they are the same mode or note (e.g., a QImode in r2 matches an HImode
2677 in r2 matches an SImode in r2. Might think in the future about whether
2678 we want to be able to say something about modes. */
2679
2680 int
2681 mcore_is_same_reg (rtx x, rtx y)
2682 {
2683 /* Strip any and all of the subreg wrappers. */
2684 while (GET_CODE (x) == SUBREG)
2685 x = SUBREG_REG (x);
2686
2687 while (GET_CODE (y) == SUBREG)
2688 y = SUBREG_REG (y);
2689
2690 if (GET_CODE(x) == REG && GET_CODE(y) == REG && REGNO(x) == REGNO(y))
2691 return 1;
2692
2693 return 0;
2694 }
2695
2696 static void
2697 mcore_option_override (void)
2698 {
2699 /* Only the m340 supports little endian code. */
2700 if (TARGET_LITTLE_END && ! TARGET_M340)
2701 target_flags |= MASK_M340;
2702 }
2703
2704 \f
2705 /* Compute the number of word sized registers needed to
2706 hold a function argument of mode MODE and type TYPE. */
2707
2708 int
2709 mcore_num_arg_regs (machine_mode mode, const_tree type)
2710 {
2711 int size;
2712
2713 if (targetm.calls.must_pass_in_stack (mode, type))
2714 return 0;
2715
2716 if (type && mode == BLKmode)
2717 size = int_size_in_bytes (type);
2718 else
2719 size = GET_MODE_SIZE (mode);
2720
2721 return ROUND_ADVANCE (size);
2722 }
2723
2724 static rtx
2725 handle_structs_in_regs (machine_mode mode, const_tree type, int reg)
2726 {
2727 int size;
2728
2729 /* The MCore ABI defines that a structure whose size is not a whole multiple
2730 of bytes is passed packed into registers (or spilled onto the stack if
2731 not enough registers are available) with the last few bytes of the
2732 structure being packed, left-justified, into the last register/stack slot.
2733 GCC handles this correctly if the last word is in a stack slot, but we
2734 have to generate a special, PARALLEL RTX if the last word is in an
2735 argument register. */
2736 if (type
2737 && TYPE_MODE (type) == BLKmode
2738 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
2739 && (size = int_size_in_bytes (type)) > UNITS_PER_WORD
2740 && (size % UNITS_PER_WORD != 0)
2741 && (reg + mcore_num_arg_regs (mode, type) <= (FIRST_PARM_REG + NPARM_REGS)))
2742 {
2743 rtx arg_regs [NPARM_REGS];
2744 int nregs;
2745 rtx result;
2746 rtvec rtvec;
2747
2748 for (nregs = 0; size > 0; size -= UNITS_PER_WORD)
2749 {
2750 arg_regs [nregs] =
2751 gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, reg ++),
2752 GEN_INT (nregs * UNITS_PER_WORD));
2753 nregs ++;
2754 }
2755
2756 /* We assume here that NPARM_REGS == 6. The assert checks this. */
2757 gcc_assert (ARRAY_SIZE (arg_regs) == 6);
2758 rtvec = gen_rtvec (nregs, arg_regs[0], arg_regs[1], arg_regs[2],
2759 arg_regs[3], arg_regs[4], arg_regs[5]);
2760
2761 result = gen_rtx_PARALLEL (mode, rtvec);
2762 return result;
2763 }
2764
2765 return gen_rtx_REG (mode, reg);
2766 }
2767
2768 rtx
2769 mcore_function_value (const_tree valtype, const_tree func)
2770 {
2771 machine_mode mode;
2772 int unsigned_p;
2773
2774 mode = TYPE_MODE (valtype);
2775
2776 /* Since we promote return types, we must promote the mode here too. */
2777 mode = promote_function_mode (valtype, mode, &unsigned_p, func, 1);
2778
2779 return handle_structs_in_regs (mode, valtype, FIRST_RET_REG);
2780 }
2781
2782 /* Define where to put the arguments to a function.
2783 Value is zero to push the argument on the stack,
2784 or a hard register in which to store the argument.
2785
2786 MODE is the argument's machine mode.
2787 TYPE is the data type of the argument (as a tree).
2788 This is null for libcalls where that information may
2789 not be available.
2790 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2791 the preceding args and about the function being called.
2792 NAMED is nonzero if this argument is a named parameter
2793 (otherwise it is an extra parameter matching an ellipsis).
2794
2795 On MCore the first args are normally in registers
2796 and the rest are pushed. Any arg that starts within the first
2797 NPARM_REGS words is at least partially passed in a register unless
2798 its data type forbids. */
2799
2800 static rtx
2801 mcore_function_arg (cumulative_args_t cum, machine_mode mode,
2802 const_tree type, bool named)
2803 {
2804 int arg_reg;
2805
2806 if (! named || mode == VOIDmode)
2807 return 0;
2808
2809 if (targetm.calls.must_pass_in_stack (mode, type))
2810 return 0;
2811
2812 arg_reg = ROUND_REG (*get_cumulative_args (cum), mode);
2813
2814 if (arg_reg < NPARM_REGS)
2815 return handle_structs_in_regs (mode, type, FIRST_PARM_REG + arg_reg);
2816
2817 return 0;
2818 }
2819
2820 static void
2821 mcore_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
2822 const_tree type, bool named ATTRIBUTE_UNUSED)
2823 {
2824 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
2825
2826 *cum = (ROUND_REG (*cum, mode)
2827 + (int)named * mcore_num_arg_regs (mode, type));
2828 }
2829
2830 static unsigned int
2831 mcore_function_arg_boundary (machine_mode mode,
2832 const_tree type ATTRIBUTE_UNUSED)
2833 {
2834 /* Doubles must be aligned to an 8 byte boundary. */
2835 return (mode != BLKmode && GET_MODE_SIZE (mode) == 8
2836 ? BIGGEST_ALIGNMENT
2837 : PARM_BOUNDARY);
2838 }
2839
2840 /* Returns the number of bytes of argument registers required to hold *part*
2841 of a parameter of machine mode MODE and type TYPE (which may be NULL if
2842 the type is not known). If the argument fits entirely in the argument
2843 registers, or entirely on the stack, then 0 is returned. CUM is the
2844 number of argument registers already used by earlier parameters to
2845 the function. */
2846
2847 static int
2848 mcore_arg_partial_bytes (cumulative_args_t cum, machine_mode mode,
2849 tree type, bool named)
2850 {
2851 int reg = ROUND_REG (*get_cumulative_args (cum), mode);
2852
2853 if (named == 0)
2854 return 0;
2855
2856 if (targetm.calls.must_pass_in_stack (mode, type))
2857 return 0;
2858
2859 /* REG is not the *hardware* register number of the register that holds
2860 the argument, it is the *argument* register number. So for example,
2861 the first argument to a function goes in argument register 0, which
2862 translates (for the MCore) into hardware register 2. The second
2863 argument goes into argument register 1, which translates into hardware
2864 register 3, and so on. NPARM_REGS is the number of argument registers
2865 supported by the target, not the maximum hardware register number of
2866 the target. */
2867 if (reg >= NPARM_REGS)
2868 return 0;
2869
2870 /* If the argument fits entirely in registers, return 0. */
2871 if (reg + mcore_num_arg_regs (mode, type) <= NPARM_REGS)
2872 return 0;
2873
2874 /* The argument overflows the number of available argument registers.
2875 Compute how many argument registers have not yet been assigned to
2876 hold an argument. */
2877 reg = NPARM_REGS - reg;
2878
2879 /* Return partially in registers and partially on the stack. */
2880 return reg * UNITS_PER_WORD;
2881 }
2882 \f
2883 /* Return nonzero if SYMBOL is marked as being dllexport'd. */
2884
2885 int
2886 mcore_dllexport_name_p (const char * symbol)
2887 {
2888 return symbol[0] == '@' && symbol[1] == 'e' && symbol[2] == '.';
2889 }
2890
2891 /* Return nonzero if SYMBOL is marked as being dllimport'd. */
2892
2893 int
2894 mcore_dllimport_name_p (const char * symbol)
2895 {
2896 return symbol[0] == '@' && symbol[1] == 'i' && symbol[2] == '.';
2897 }
2898
2899 /* Mark a DECL as being dllexport'd. */
2900
2901 static void
2902 mcore_mark_dllexport (tree decl)
2903 {
2904 const char * oldname;
2905 char * newname;
2906 rtx rtlname;
2907 tree idp;
2908
2909 rtlname = XEXP (DECL_RTL (decl), 0);
2910
2911 if (GET_CODE (rtlname) == MEM)
2912 rtlname = XEXP (rtlname, 0);
2913 gcc_assert (GET_CODE (rtlname) == SYMBOL_REF);
2914 oldname = XSTR (rtlname, 0);
2915
2916 if (mcore_dllexport_name_p (oldname))
2917 return; /* Already done. */
2918
2919 newname = XALLOCAVEC (char, strlen (oldname) + 4);
2920 sprintf (newname, "@e.%s", oldname);
2921
2922 /* We pass newname through get_identifier to ensure it has a unique
2923 address. RTL processing can sometimes peek inside the symbol ref
2924 and compare the string's addresses to see if two symbols are
2925 identical. */
2926 /* ??? At least I think that's why we do this. */
2927 idp = get_identifier (newname);
2928
2929 XEXP (DECL_RTL (decl), 0) =
2930 gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (idp));
2931 }
2932
2933 /* Mark a DECL as being dllimport'd. */
2934
2935 static void
2936 mcore_mark_dllimport (tree decl)
2937 {
2938 const char * oldname;
2939 char * newname;
2940 tree idp;
2941 rtx rtlname;
2942 rtx newrtl;
2943
2944 rtlname = XEXP (DECL_RTL (decl), 0);
2945
2946 if (GET_CODE (rtlname) == MEM)
2947 rtlname = XEXP (rtlname, 0);
2948 gcc_assert (GET_CODE (rtlname) == SYMBOL_REF);
2949 oldname = XSTR (rtlname, 0);
2950
2951 gcc_assert (!mcore_dllexport_name_p (oldname));
2952 if (mcore_dllimport_name_p (oldname))
2953 return; /* Already done. */
2954
2955 /* ??? One can well ask why we're making these checks here,
2956 and that would be a good question. */
2957
2958 /* Imported variables can't be initialized. */
2959 if (TREE_CODE (decl) == VAR_DECL
2960 && !DECL_VIRTUAL_P (decl)
2961 && DECL_INITIAL (decl))
2962 {
2963 error ("initialized variable %q+D is marked dllimport", decl);
2964 return;
2965 }
2966
2967 /* `extern' needn't be specified with dllimport.
2968 Specify `extern' now and hope for the best. Sigh. */
2969 if (TREE_CODE (decl) == VAR_DECL
2970 /* ??? Is this test for vtables needed? */
2971 && !DECL_VIRTUAL_P (decl))
2972 {
2973 DECL_EXTERNAL (decl) = 1;
2974 TREE_PUBLIC (decl) = 1;
2975 }
2976
2977 newname = XALLOCAVEC (char, strlen (oldname) + 11);
2978 sprintf (newname, "@i.__imp_%s", oldname);
2979
2980 /* We pass newname through get_identifier to ensure it has a unique
2981 address. RTL processing can sometimes peek inside the symbol ref
2982 and compare the string's addresses to see if two symbols are
2983 identical. */
2984 /* ??? At least I think that's why we do this. */
2985 idp = get_identifier (newname);
2986
2987 newrtl = gen_rtx_MEM (Pmode,
2988 gen_rtx_SYMBOL_REF (Pmode,
2989 IDENTIFIER_POINTER (idp)));
2990 XEXP (DECL_RTL (decl), 0) = newrtl;
2991 }
2992
2993 static int
2994 mcore_dllexport_p (tree decl)
2995 {
2996 if ( TREE_CODE (decl) != VAR_DECL
2997 && TREE_CODE (decl) != FUNCTION_DECL)
2998 return 0;
2999
3000 return lookup_attribute ("dllexport", DECL_ATTRIBUTES (decl)) != 0;
3001 }
3002
3003 static int
3004 mcore_dllimport_p (tree decl)
3005 {
3006 if ( TREE_CODE (decl) != VAR_DECL
3007 && TREE_CODE (decl) != FUNCTION_DECL)
3008 return 0;
3009
3010 return lookup_attribute ("dllimport", DECL_ATTRIBUTES (decl)) != 0;
3011 }
3012
3013 /* We must mark dll symbols specially. Definitions of dllexport'd objects
3014 install some info in the .drective (PE) or .exports (ELF) sections. */
3015
3016 static void
3017 mcore_encode_section_info (tree decl, rtx rtl ATTRIBUTE_UNUSED, int first ATTRIBUTE_UNUSED)
3018 {
3019 /* Mark the decl so we can tell from the rtl whether the object is
3020 dllexport'd or dllimport'd. */
3021 if (mcore_dllexport_p (decl))
3022 mcore_mark_dllexport (decl);
3023 else if (mcore_dllimport_p (decl))
3024 mcore_mark_dllimport (decl);
3025
3026 /* It might be that DECL has already been marked as dllimport, but
3027 a subsequent definition nullified that. The attribute is gone
3028 but DECL_RTL still has @i.__imp_foo. We need to remove that. */
3029 else if ((TREE_CODE (decl) == FUNCTION_DECL
3030 || TREE_CODE (decl) == VAR_DECL)
3031 && DECL_RTL (decl) != NULL_RTX
3032 && GET_CODE (DECL_RTL (decl)) == MEM
3033 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == MEM
3034 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == SYMBOL_REF
3035 && mcore_dllimport_name_p (XSTR (XEXP (XEXP (DECL_RTL (decl), 0), 0), 0)))
3036 {
3037 const char * oldname = XSTR (XEXP (XEXP (DECL_RTL (decl), 0), 0), 0);
3038 tree idp = get_identifier (oldname + 9);
3039 rtx newrtl = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (idp));
3040
3041 XEXP (DECL_RTL (decl), 0) = newrtl;
3042
3043 /* We previously set TREE_PUBLIC and DECL_EXTERNAL.
3044 ??? We leave these alone for now. */
3045 }
3046 }
3047
3048 /* Undo the effects of the above. */
3049
3050 static const char *
3051 mcore_strip_name_encoding (const char * str)
3052 {
3053 return str + (str[0] == '@' ? 3 : 0);
3054 }
3055
3056 /* MCore specific attribute support.
3057 dllexport - for exporting a function/variable that will live in a dll
3058 dllimport - for importing a function/variable from a dll
3059 naked - do not create a function prologue/epilogue. */
3060
3061 /* Handle a "naked" attribute; arguments as in
3062 struct attribute_spec.handler. */
3063
3064 static tree
3065 mcore_handle_naked_attribute (tree * node, tree name, tree args ATTRIBUTE_UNUSED,
3066 int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
3067 {
3068 if (TREE_CODE (*node) != FUNCTION_DECL)
3069 {
3070 warning (OPT_Wattributes, "%qE attribute only applies to functions",
3071 name);
3072 *no_add_attrs = true;
3073 }
3074
3075 return NULL_TREE;
3076 }
3077
3078 /* ??? It looks like this is PE specific? Oh well, this is what the
3079 old code did as well. */
3080
3081 static void
3082 mcore_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
3083 {
3084 int len;
3085 const char * name;
3086 char * string;
3087 const char * prefix;
3088
3089 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
3090
3091 /* Strip off any encoding in name. */
3092 name = (* targetm.strip_name_encoding) (name);
3093
3094 /* The object is put in, for example, section .text$foo.
3095 The linker will then ultimately place them in .text
3096 (everything from the $ on is stripped). */
3097 if (TREE_CODE (decl) == FUNCTION_DECL)
3098 prefix = ".text$";
3099 /* For compatibility with EPOC, we ignore the fact that the
3100 section might have relocs against it. */
3101 else if (decl_readonly_section (decl, 0))
3102 prefix = ".rdata$";
3103 else
3104 prefix = ".data$";
3105
3106 len = strlen (name) + strlen (prefix);
3107 string = XALLOCAVEC (char, len + 1);
3108
3109 sprintf (string, "%s%s", prefix, name);
3110
3111 set_decl_section_name (decl, string);
3112 }
3113
3114 int
3115 mcore_naked_function_p (void)
3116 {
3117 return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE;
3118 }
3119
3120 static bool
3121 mcore_warn_func_return (tree decl)
3122 {
3123 /* Naked functions are implemented entirely in assembly, including the
3124 return sequence, so suppress warnings about this. */
3125 return lookup_attribute ("naked", DECL_ATTRIBUTES (decl)) == NULL_TREE;
3126 }
3127
3128 #ifdef OBJECT_FORMAT_ELF
3129 static void
3130 mcore_asm_named_section (const char *name,
3131 unsigned int flags ATTRIBUTE_UNUSED,
3132 tree decl ATTRIBUTE_UNUSED)
3133 {
3134 fprintf (asm_out_file, "\t.section %s\n", name);
3135 }
3136 #endif /* OBJECT_FORMAT_ELF */
3137
3138 /* Worker function for TARGET_ASM_EXTERNAL_LIBCALL. */
3139
3140 static void
3141 mcore_external_libcall (rtx fun)
3142 {
3143 fprintf (asm_out_file, "\t.import\t");
3144 assemble_name (asm_out_file, XSTR (fun, 0));
3145 fprintf (asm_out_file, "\n");
3146 }
3147
3148 /* Worker function for TARGET_RETURN_IN_MEMORY. */
3149
3150 static bool
3151 mcore_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
3152 {
3153 const HOST_WIDE_INT size = int_size_in_bytes (type);
3154 return (size == -1 || size > 2 * UNITS_PER_WORD);
3155 }
3156
3157 /* Worker function for TARGET_ASM_TRAMPOLINE_TEMPLATE.
3158 Output assembler code for a block containing the constant parts
3159 of a trampoline, leaving space for the variable parts.
3160
3161 On the MCore, the trampoline looks like:
3162 lrw r1, function
3163 lrw r13, area
3164 jmp r13
3165 or r0, r0
3166 .literals */
3167
3168 static void
3169 mcore_asm_trampoline_template (FILE *f)
3170 {
3171 fprintf (f, "\t.short 0x7102\n");
3172 fprintf (f, "\t.short 0x7d02\n");
3173 fprintf (f, "\t.short 0x00cd\n");
3174 fprintf (f, "\t.short 0x1e00\n");
3175 fprintf (f, "\t.long 0\n");
3176 fprintf (f, "\t.long 0\n");
3177 }
3178
3179 /* Worker function for TARGET_TRAMPOLINE_INIT. */
3180
3181 static void
3182 mcore_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
3183 {
3184 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
3185 rtx mem;
3186
3187 emit_block_move (m_tramp, assemble_trampoline_template (),
3188 GEN_INT (2*UNITS_PER_WORD), BLOCK_OP_NORMAL);
3189
3190 mem = adjust_address (m_tramp, SImode, 8);
3191 emit_move_insn (mem, chain_value);
3192 mem = adjust_address (m_tramp, SImode, 12);
3193 emit_move_insn (mem, fnaddr);
3194 }
3195
3196 /* Implement TARGET_LEGITIMATE_CONSTANT_P
3197
3198 On the MCore, allow anything but a double. */
3199
3200 static bool
3201 mcore_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
3202 {
3203 return GET_CODE (x) != CONST_DOUBLE;
3204 }
3205
3206 /* Helper function for `mcore_legitimate_address_p'. */
3207
3208 static bool
3209 mcore_reg_ok_for_base_p (const_rtx reg, bool strict_p)
3210 {
3211 if (strict_p)
3212 return REGNO_OK_FOR_BASE_P (REGNO (reg));
3213 else
3214 return (REGNO (reg) <= 16 || !HARD_REGISTER_P (reg));
3215 }
3216
3217 static bool
3218 mcore_base_register_rtx_p (const_rtx x, bool strict_p)
3219 {
3220 return REG_P(x) && mcore_reg_ok_for_base_p (x, strict_p);
3221 }
3222
3223 /* A legitimate index for a QI is 0..15, for HI is 0..30, for SI is 0..60,
3224 and for DI is 0..56 because we use two SI loads, etc. */
3225
3226 static bool
3227 mcore_legitimate_index_p (machine_mode mode, const_rtx op)
3228 {
3229 if (CONST_INT_P (op))
3230 {
3231 if (GET_MODE_SIZE (mode) >= 4
3232 && (((unsigned HOST_WIDE_INT) INTVAL (op)) % 4) == 0
3233 && ((unsigned HOST_WIDE_INT) INTVAL (op))
3234 <= (unsigned HOST_WIDE_INT) 64 - GET_MODE_SIZE (mode))
3235 return true;
3236 if (GET_MODE_SIZE (mode) == 2
3237 && (((unsigned HOST_WIDE_INT) INTVAL (op)) % 2) == 0
3238 && ((unsigned HOST_WIDE_INT) INTVAL (op)) <= 30)
3239 return true;
3240 if (GET_MODE_SIZE (mode) == 1
3241 && ((unsigned HOST_WIDE_INT) INTVAL (op)) <= 15)
3242 return true;
3243 }
3244 return false;
3245 }
3246
3247
3248 /* Worker function for TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P.
3249
3250 Allow REG
3251 REG + disp */
3252
3253 static bool
3254 mcore_legitimate_address_p (machine_mode mode, rtx x, bool strict_p,
3255 addr_space_t as)
3256 {
3257 gcc_assert (ADDR_SPACE_GENERIC_P (as));
3258
3259 if (mcore_base_register_rtx_p (x, strict_p))
3260 return true;
3261 else if (GET_CODE (x) == PLUS || GET_CODE (x) == LO_SUM)
3262 {
3263 rtx xop0 = XEXP (x, 0);
3264 rtx xop1 = XEXP (x, 1);
3265 if (mcore_base_register_rtx_p (xop0, strict_p)
3266 && mcore_legitimate_index_p (mode, xop1))
3267 return true;
3268 if (mcore_base_register_rtx_p (xop1, strict_p)
3269 && mcore_legitimate_index_p (mode, xop0))
3270 return true;
3271 }
3272
3273 return false;
3274 }
3275
3276 /* Implement TARGET_HARD_REGNO_MODE_OK. We may keep double values in
3277 even registers. */
3278
3279 static bool
3280 mcore_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
3281 {
3282 if (TARGET_8ALIGN && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
3283 return (regno & 1) == 0;
3284
3285 return regno < 18;
3286 }
3287
3288 /* Implement TARGET_MODES_TIEABLE_P. */
3289
3290 static bool
3291 mcore_modes_tieable_p (machine_mode mode1, machine_mode mode2)
3292 {
3293 return mode1 == mode2 || GET_MODE_CLASS (mode1) == GET_MODE_CLASS (mode2);
3294 }