]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mips/mips.c
gimple-predict.h: New file.
[thirdparty/gcc.git] / gcc / config / mips / mips.c
1 /* Subroutines used for MIPS code generation.
2 Copyright (C) 1989-2015 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky, lich@inria.inria.fr.
4 Changes by Michael Meissner, meissner@osf.org.
5 64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
6 Brendan Eich, brendan@microunity.com.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "backend.h"
28 #include "cfghooks.h"
29 #include "tree.h"
30 #include "gimple.h"
31 #include "rtl.h"
32 #include "df.h"
33 #include "regs.h"
34 #include "insn-config.h"
35 #include "conditions.h"
36 #include "insn-attr.h"
37 #include "recog.h"
38 #include "output.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "stor-layout.h"
44 #include "calls.h"
45 #include "flags.h"
46 #include "expmed.h"
47 #include "dojump.h"
48 #include "explow.h"
49 #include "emit-rtl.h"
50 #include "stmt.h"
51 #include "expr.h"
52 #include "insn-codes.h"
53 #include "optabs.h"
54 #include "libfuncs.h"
55 #include "reload.h"
56 #include "tm_p.h"
57 #include "gstab.h"
58 #include "debug.h"
59 #include "target.h"
60 #include "common/common-target.h"
61 #include "langhooks.h"
62 #include "cfgrtl.h"
63 #include "cfganal.h"
64 #include "lcm.h"
65 #include "cfgbuild.h"
66 #include "cfgcleanup.h"
67 #include "sched-int.h"
68 #include "internal-fn.h"
69 #include "gimple-fold.h"
70 #include "tree-eh.h"
71 #include "gimplify.h"
72 #include "diagnostic.h"
73 #include "target-globals.h"
74 #include "opts.h"
75 #include "tree-pass.h"
76 #include "context.h"
77 #include "cgraph.h"
78 #include "builtins.h"
79 #include "rtl-iter.h"
80
81 /* This file should be included last. */
82 #include "target-def.h"
83
84 /* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */
85 #define UNSPEC_ADDRESS_P(X) \
86 (GET_CODE (X) == UNSPEC \
87 && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
88 && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
89
90 /* Extract the symbol or label from UNSPEC wrapper X. */
91 #define UNSPEC_ADDRESS(X) \
92 XVECEXP (X, 0, 0)
93
94 /* Extract the symbol type from UNSPEC wrapper X. */
95 #define UNSPEC_ADDRESS_TYPE(X) \
96 ((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
97
98 /* The maximum distance between the top of the stack frame and the
99 value $sp has when we save and restore registers.
100
101 The value for normal-mode code must be a SMALL_OPERAND and must
102 preserve the maximum stack alignment. We therefore use a value
103 of 0x7ff0 in this case.
104
105 microMIPS LWM and SWM support 12-bit offsets (from -0x800 to 0x7ff),
106 so we use a maximum of 0x7f0 for TARGET_MICROMIPS.
107
108 MIPS16e SAVE and RESTORE instructions can adjust the stack pointer by
109 up to 0x7f8 bytes and can usually save or restore all the registers
110 that we need to save or restore. (Note that we can only use these
111 instructions for o32, for which the stack alignment is 8 bytes.)
112
113 We use a maximum gap of 0x100 or 0x400 for MIPS16 code when SAVE and
114 RESTORE are not available. We can then use unextended instructions
115 to save and restore registers, and to allocate and deallocate the top
116 part of the frame. */
117 #define MIPS_MAX_FIRST_STACK_STEP \
118 (!TARGET_COMPRESSION ? 0x7ff0 \
119 : TARGET_MICROMIPS || GENERATE_MIPS16E_SAVE_RESTORE ? 0x7f8 \
120 : TARGET_64BIT ? 0x100 : 0x400)
121
122 /* True if INSN is a mips.md pattern or asm statement. */
123 /* ??? This test exists through the compiler, perhaps it should be
124 moved to rtl.h. */
125 #define USEFUL_INSN_P(INSN) \
126 (NONDEBUG_INSN_P (INSN) \
127 && GET_CODE (PATTERN (INSN)) != USE \
128 && GET_CODE (PATTERN (INSN)) != CLOBBER)
129
130 /* If INSN is a delayed branch sequence, return the first instruction
131 in the sequence, otherwise return INSN itself. */
132 #define SEQ_BEGIN(INSN) \
133 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
134 ? as_a <rtx_insn *> (XVECEXP (PATTERN (INSN), 0, 0)) \
135 : (INSN))
136
137 /* Likewise for the last instruction in a delayed branch sequence. */
138 #define SEQ_END(INSN) \
139 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
140 ? as_a <rtx_insn *> (XVECEXP (PATTERN (INSN), \
141 0, \
142 XVECLEN (PATTERN (INSN), 0) - 1)) \
143 : (INSN))
144
145 /* Execute the following loop body with SUBINSN set to each instruction
146 between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive. */
147 #define FOR_EACH_SUBINSN(SUBINSN, INSN) \
148 for ((SUBINSN) = SEQ_BEGIN (INSN); \
149 (SUBINSN) != NEXT_INSN (SEQ_END (INSN)); \
150 (SUBINSN) = NEXT_INSN (SUBINSN))
151
152 /* True if bit BIT is set in VALUE. */
153 #define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0)
154
155 /* Return the opcode for a ptr_mode load of the form:
156
157 l[wd] DEST, OFFSET(BASE). */
158 #define MIPS_LOAD_PTR(DEST, OFFSET, BASE) \
159 (((ptr_mode == DImode ? 0x37 : 0x23) << 26) \
160 | ((BASE) << 21) \
161 | ((DEST) << 16) \
162 | (OFFSET))
163
164 /* Return the opcode to move register SRC into register DEST. */
165 #define MIPS_MOVE(DEST, SRC) \
166 ((TARGET_64BIT ? 0x2d : 0x21) \
167 | ((DEST) << 11) \
168 | ((SRC) << 21))
169
170 /* Return the opcode for:
171
172 lui DEST, VALUE. */
173 #define MIPS_LUI(DEST, VALUE) \
174 ((0xf << 26) | ((DEST) << 16) | (VALUE))
175
176 /* Return the opcode to jump to register DEST. When the JR opcode is not
177 available use JALR $0, DEST. */
178 #define MIPS_JR(DEST) \
179 (((DEST) << 21) | (ISA_HAS_JR ? 0x8 : 0x9))
180
181 /* Return the opcode for:
182
183 bal . + (1 + OFFSET) * 4. */
184 #define MIPS_BAL(OFFSET) \
185 ((0x1 << 26) | (0x11 << 16) | (OFFSET))
186
187 /* Return the usual opcode for a nop. */
188 #define MIPS_NOP 0
189
190 /* Classifies an address.
191
192 ADDRESS_REG
193 A natural register + offset address. The register satisfies
194 mips_valid_base_register_p and the offset is a const_arith_operand.
195
196 ADDRESS_LO_SUM
197 A LO_SUM rtx. The first operand is a valid base register and
198 the second operand is a symbolic address.
199
200 ADDRESS_CONST_INT
201 A signed 16-bit constant address.
202
203 ADDRESS_SYMBOLIC:
204 A constant symbolic address. */
205 enum mips_address_type {
206 ADDRESS_REG,
207 ADDRESS_LO_SUM,
208 ADDRESS_CONST_INT,
209 ADDRESS_SYMBOLIC
210 };
211
212 /* Macros to create an enumeration identifier for a function prototype. */
213 #define MIPS_FTYPE_NAME1(A, B) MIPS_##A##_FTYPE_##B
214 #define MIPS_FTYPE_NAME2(A, B, C) MIPS_##A##_FTYPE_##B##_##C
215 #define MIPS_FTYPE_NAME3(A, B, C, D) MIPS_##A##_FTYPE_##B##_##C##_##D
216 #define MIPS_FTYPE_NAME4(A, B, C, D, E) MIPS_##A##_FTYPE_##B##_##C##_##D##_##E
217
218 /* Classifies the prototype of a built-in function. */
219 enum mips_function_type {
220 #define DEF_MIPS_FTYPE(NARGS, LIST) MIPS_FTYPE_NAME##NARGS LIST,
221 #include "config/mips/mips-ftypes.def"
222 #undef DEF_MIPS_FTYPE
223 MIPS_MAX_FTYPE_MAX
224 };
225
226 /* Specifies how a built-in function should be converted into rtl. */
227 enum mips_builtin_type {
228 /* The function corresponds directly to an .md pattern. The return
229 value is mapped to operand 0 and the arguments are mapped to
230 operands 1 and above. */
231 MIPS_BUILTIN_DIRECT,
232
233 /* The function corresponds directly to an .md pattern. There is no return
234 value and the arguments are mapped to operands 0 and above. */
235 MIPS_BUILTIN_DIRECT_NO_TARGET,
236
237 /* The function corresponds to a comparison instruction followed by
238 a mips_cond_move_tf_ps pattern. The first two arguments are the
239 values to compare and the second two arguments are the vector
240 operands for the movt.ps or movf.ps instruction (in assembly order). */
241 MIPS_BUILTIN_MOVF,
242 MIPS_BUILTIN_MOVT,
243
244 /* The function corresponds to a V2SF comparison instruction. Operand 0
245 of this instruction is the result of the comparison, which has mode
246 CCV2 or CCV4. The function arguments are mapped to operands 1 and
247 above. The function's return value is an SImode boolean that is
248 true under the following conditions:
249
250 MIPS_BUILTIN_CMP_ANY: one of the registers is true
251 MIPS_BUILTIN_CMP_ALL: all of the registers are true
252 MIPS_BUILTIN_CMP_LOWER: the first register is true
253 MIPS_BUILTIN_CMP_UPPER: the second register is true. */
254 MIPS_BUILTIN_CMP_ANY,
255 MIPS_BUILTIN_CMP_ALL,
256 MIPS_BUILTIN_CMP_UPPER,
257 MIPS_BUILTIN_CMP_LOWER,
258
259 /* As above, but the instruction only sets a single $fcc register. */
260 MIPS_BUILTIN_CMP_SINGLE,
261
262 /* For generating bposge32 branch instructions in MIPS32 DSP ASE. */
263 MIPS_BUILTIN_BPOSGE32
264 };
265
266 /* Invoke MACRO (COND) for each C.cond.fmt condition. */
267 #define MIPS_FP_CONDITIONS(MACRO) \
268 MACRO (f), \
269 MACRO (un), \
270 MACRO (eq), \
271 MACRO (ueq), \
272 MACRO (olt), \
273 MACRO (ult), \
274 MACRO (ole), \
275 MACRO (ule), \
276 MACRO (sf), \
277 MACRO (ngle), \
278 MACRO (seq), \
279 MACRO (ngl), \
280 MACRO (lt), \
281 MACRO (nge), \
282 MACRO (le), \
283 MACRO (ngt)
284
285 /* Enumerates the codes above as MIPS_FP_COND_<X>. */
286 #define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X
287 enum mips_fp_condition {
288 MIPS_FP_CONDITIONS (DECLARE_MIPS_COND)
289 };
290 #undef DECLARE_MIPS_COND
291
292 /* Index X provides the string representation of MIPS_FP_COND_<X>. */
293 #define STRINGIFY(X) #X
294 static const char *const mips_fp_conditions[] = {
295 MIPS_FP_CONDITIONS (STRINGIFY)
296 };
297 #undef STRINGIFY
298
299 /* A class used to control a comdat-style stub that we output in each
300 translation unit that needs it. */
301 class mips_one_only_stub {
302 public:
303 virtual ~mips_one_only_stub () {}
304
305 /* Return the name of the stub. */
306 virtual const char *get_name () = 0;
307
308 /* Output the body of the function to asm_out_file. */
309 virtual void output_body () = 0;
310 };
311
312 /* Tuning information that is automatically derived from other sources
313 (such as the scheduler). */
314 static struct {
315 /* The architecture and tuning settings that this structure describes. */
316 enum processor arch;
317 enum processor tune;
318
319 /* True if this structure describes MIPS16 settings. */
320 bool mips16_p;
321
322 /* True if the structure has been initialized. */
323 bool initialized_p;
324
325 /* True if "MULT $0, $0" is preferable to "MTLO $0; MTHI $0"
326 when optimizing for speed. */
327 bool fast_mult_zero_zero_p;
328 } mips_tuning_info;
329
330 /* Information about a function's frame layout. */
331 struct GTY(()) mips_frame_info {
332 /* The size of the frame in bytes. */
333 HOST_WIDE_INT total_size;
334
335 /* The number of bytes allocated to variables. */
336 HOST_WIDE_INT var_size;
337
338 /* The number of bytes allocated to outgoing function arguments. */
339 HOST_WIDE_INT args_size;
340
341 /* The number of bytes allocated to the .cprestore slot, or 0 if there
342 is no such slot. */
343 HOST_WIDE_INT cprestore_size;
344
345 /* Bit X is set if the function saves or restores GPR X. */
346 unsigned int mask;
347
348 /* Likewise FPR X. */
349 unsigned int fmask;
350
351 /* Likewise doubleword accumulator X ($acX). */
352 unsigned int acc_mask;
353
354 /* The number of GPRs, FPRs, doubleword accumulators and COP0
355 registers saved. */
356 unsigned int num_gp;
357 unsigned int num_fp;
358 unsigned int num_acc;
359 unsigned int num_cop0_regs;
360
361 /* The offset of the topmost GPR, FPR, accumulator and COP0-register
362 save slots from the top of the frame, or zero if no such slots are
363 needed. */
364 HOST_WIDE_INT gp_save_offset;
365 HOST_WIDE_INT fp_save_offset;
366 HOST_WIDE_INT acc_save_offset;
367 HOST_WIDE_INT cop0_save_offset;
368
369 /* Likewise, but giving offsets from the bottom of the frame. */
370 HOST_WIDE_INT gp_sp_offset;
371 HOST_WIDE_INT fp_sp_offset;
372 HOST_WIDE_INT acc_sp_offset;
373 HOST_WIDE_INT cop0_sp_offset;
374
375 /* Similar, but the value passed to _mcount. */
376 HOST_WIDE_INT ra_fp_offset;
377
378 /* The offset of arg_pointer_rtx from the bottom of the frame. */
379 HOST_WIDE_INT arg_pointer_offset;
380
381 /* The offset of hard_frame_pointer_rtx from the bottom of the frame. */
382 HOST_WIDE_INT hard_frame_pointer_offset;
383 };
384
385 struct GTY(()) machine_function {
386 /* The next floating-point condition-code register to allocate
387 for ISA_HAS_8CC targets, relative to ST_REG_FIRST. */
388 unsigned int next_fcc;
389
390 /* The register returned by mips16_gp_pseudo_reg; see there for details. */
391 rtx mips16_gp_pseudo_rtx;
392
393 /* The number of extra stack bytes taken up by register varargs.
394 This area is allocated by the callee at the very top of the frame. */
395 int varargs_size;
396
397 /* The current frame information, calculated by mips_compute_frame_info. */
398 struct mips_frame_info frame;
399
400 /* The register to use as the function's global pointer, or INVALID_REGNUM
401 if the function doesn't need one. */
402 unsigned int global_pointer;
403
404 /* How many instructions it takes to load a label into $AT, or 0 if
405 this property hasn't yet been calculated. */
406 unsigned int load_label_num_insns;
407
408 /* True if mips_adjust_insn_length should ignore an instruction's
409 hazard attribute. */
410 bool ignore_hazard_length_p;
411
412 /* True if the whole function is suitable for .set noreorder and
413 .set nomacro. */
414 bool all_noreorder_p;
415
416 /* True if the function has "inflexible" and "flexible" references
417 to the global pointer. See mips_cfun_has_inflexible_gp_ref_p
418 and mips_cfun_has_flexible_gp_ref_p for details. */
419 bool has_inflexible_gp_insn_p;
420 bool has_flexible_gp_insn_p;
421
422 /* True if the function's prologue must load the global pointer
423 value into pic_offset_table_rtx and store the same value in
424 the function's cprestore slot (if any). Even if this value
425 is currently false, we may decide to set it to true later;
426 see mips_must_initialize_gp_p () for details. */
427 bool must_initialize_gp_p;
428
429 /* True if the current function must restore $gp after any potential
430 clobber. This value is only meaningful during the first post-epilogue
431 split_insns pass; see mips_must_initialize_gp_p () for details. */
432 bool must_restore_gp_when_clobbered_p;
433
434 /* True if this is an interrupt handler. */
435 bool interrupt_handler_p;
436
437 /* True if this is an interrupt handler that uses shadow registers. */
438 bool use_shadow_register_set_p;
439
440 /* True if this is an interrupt handler that should keep interrupts
441 masked. */
442 bool keep_interrupts_masked_p;
443
444 /* True if this is an interrupt handler that should use DERET
445 instead of ERET. */
446 bool use_debug_exception_return_p;
447 };
448
449 /* Information about a single argument. */
450 struct mips_arg_info {
451 /* True if the argument is passed in a floating-point register, or
452 would have been if we hadn't run out of registers. */
453 bool fpr_p;
454
455 /* The number of words passed in registers, rounded up. */
456 unsigned int reg_words;
457
458 /* For EABI, the offset of the first register from GP_ARG_FIRST or
459 FP_ARG_FIRST. For other ABIs, the offset of the first register from
460 the start of the ABI's argument structure (see the CUMULATIVE_ARGS
461 comment for details).
462
463 The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
464 on the stack. */
465 unsigned int reg_offset;
466
467 /* The number of words that must be passed on the stack, rounded up. */
468 unsigned int stack_words;
469
470 /* The offset from the start of the stack overflow area of the argument's
471 first stack word. Only meaningful when STACK_WORDS is nonzero. */
472 unsigned int stack_offset;
473 };
474
475 /* Information about an address described by mips_address_type.
476
477 ADDRESS_CONST_INT
478 No fields are used.
479
480 ADDRESS_REG
481 REG is the base register and OFFSET is the constant offset.
482
483 ADDRESS_LO_SUM
484 REG and OFFSET are the operands to the LO_SUM and SYMBOL_TYPE
485 is the type of symbol it references.
486
487 ADDRESS_SYMBOLIC
488 SYMBOL_TYPE is the type of symbol that the address references. */
489 struct mips_address_info {
490 enum mips_address_type type;
491 rtx reg;
492 rtx offset;
493 enum mips_symbol_type symbol_type;
494 };
495
496 /* One stage in a constant building sequence. These sequences have
497 the form:
498
499 A = VALUE[0]
500 A = A CODE[1] VALUE[1]
501 A = A CODE[2] VALUE[2]
502 ...
503
504 where A is an accumulator, each CODE[i] is a binary rtl operation
505 and each VALUE[i] is a constant integer. CODE[0] is undefined. */
506 struct mips_integer_op {
507 enum rtx_code code;
508 unsigned HOST_WIDE_INT value;
509 };
510
511 /* The largest number of operations needed to load an integer constant.
512 The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI.
513 When the lowest bit is clear, we can try, but reject a sequence with
514 an extra SLL at the end. */
515 #define MIPS_MAX_INTEGER_OPS 7
516
517 /* Information about a MIPS16e SAVE or RESTORE instruction. */
518 struct mips16e_save_restore_info {
519 /* The number of argument registers saved by a SAVE instruction.
520 0 for RESTORE instructions. */
521 unsigned int nargs;
522
523 /* Bit X is set if the instruction saves or restores GPR X. */
524 unsigned int mask;
525
526 /* The total number of bytes to allocate. */
527 HOST_WIDE_INT size;
528 };
529
530 /* Costs of various operations on the different architectures. */
531
532 struct mips_rtx_cost_data
533 {
534 unsigned short fp_add;
535 unsigned short fp_mult_sf;
536 unsigned short fp_mult_df;
537 unsigned short fp_div_sf;
538 unsigned short fp_div_df;
539 unsigned short int_mult_si;
540 unsigned short int_mult_di;
541 unsigned short int_div_si;
542 unsigned short int_div_di;
543 unsigned short branch_cost;
544 unsigned short memory_latency;
545 };
546
547 /* Global variables for machine-dependent things. */
548
549 /* The -G setting, or the configuration's default small-data limit if
550 no -G option is given. */
551 static unsigned int mips_small_data_threshold;
552
553 /* The number of file directives written by mips_output_filename. */
554 int num_source_filenames;
555
556 /* The name that appeared in the last .file directive written by
557 mips_output_filename, or "" if mips_output_filename hasn't
558 written anything yet. */
559 const char *current_function_file = "";
560
561 /* Arrays that map GCC register numbers to debugger register numbers. */
562 int mips_dbx_regno[FIRST_PSEUDO_REGISTER];
563 int mips_dwarf_regno[FIRST_PSEUDO_REGISTER];
564
565 /* Information about the current function's epilogue, used only while
566 expanding it. */
567 static struct {
568 /* A list of queued REG_CFA_RESTORE notes. */
569 rtx cfa_restores;
570
571 /* The CFA is currently defined as CFA_REG + CFA_OFFSET. */
572 rtx cfa_reg;
573 HOST_WIDE_INT cfa_offset;
574
575 /* The offset of the CFA from the stack pointer while restoring
576 registers. */
577 HOST_WIDE_INT cfa_restore_sp_offset;
578 } mips_epilogue;
579
580 /* The nesting depth of the PRINT_OPERAND '%(', '%<' and '%[' constructs. */
581 struct mips_asm_switch mips_noreorder = { "reorder", 0 };
582 struct mips_asm_switch mips_nomacro = { "macro", 0 };
583 struct mips_asm_switch mips_noat = { "at", 0 };
584
585 /* True if we're writing out a branch-likely instruction rather than a
586 normal branch. */
587 static bool mips_branch_likely;
588
589 /* The current instruction-set architecture. */
590 enum processor mips_arch;
591 const struct mips_cpu_info *mips_arch_info;
592
593 /* The processor that we should tune the code for. */
594 enum processor mips_tune;
595 const struct mips_cpu_info *mips_tune_info;
596
597 /* The ISA level associated with mips_arch. */
598 int mips_isa;
599
600 /* The ISA revision level. This is 0 for MIPS I to V and N for
601 MIPS{32,64}rN. */
602 int mips_isa_rev;
603
604 /* The architecture selected by -mipsN, or null if -mipsN wasn't used. */
605 static const struct mips_cpu_info *mips_isa_option_info;
606
607 /* Which cost information to use. */
608 static const struct mips_rtx_cost_data *mips_cost;
609
610 /* The ambient target flags, excluding MASK_MIPS16. */
611 static int mips_base_target_flags;
612
613 /* The default compression mode. */
614 unsigned int mips_base_compression_flags;
615
616 /* The ambient values of other global variables. */
617 static int mips_base_schedule_insns; /* flag_schedule_insns */
618 static int mips_base_reorder_blocks_and_partition; /* flag_reorder... */
619 static int mips_base_move_loop_invariants; /* flag_move_loop_invariants */
620 static int mips_base_align_loops; /* align_loops */
621 static int mips_base_align_jumps; /* align_jumps */
622 static int mips_base_align_functions; /* align_functions */
623
624 /* Index [M][R] is true if register R is allowed to hold a value of mode M. */
625 bool mips_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
626
627 /* Index C is true if character C is a valid PRINT_OPERAND punctation
628 character. */
629 static bool mips_print_operand_punct[256];
630
631 static GTY (()) int mips_output_filename_first_time = 1;
632
633 /* mips_split_p[X] is true if symbols of type X can be split by
634 mips_split_symbol. */
635 bool mips_split_p[NUM_SYMBOL_TYPES];
636
637 /* mips_split_hi_p[X] is true if the high parts of symbols of type X
638 can be split by mips_split_symbol. */
639 bool mips_split_hi_p[NUM_SYMBOL_TYPES];
640
641 /* mips_use_pcrel_pool_p[X] is true if symbols of type X should be
642 forced into a PC-relative constant pool. */
643 bool mips_use_pcrel_pool_p[NUM_SYMBOL_TYPES];
644
645 /* mips_lo_relocs[X] is the relocation to use when a symbol of type X
646 appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or
647 if they are matched by a special .md file pattern. */
648 const char *mips_lo_relocs[NUM_SYMBOL_TYPES];
649
650 /* Likewise for HIGHs. */
651 const char *mips_hi_relocs[NUM_SYMBOL_TYPES];
652
653 /* Target state for MIPS16. */
654 struct target_globals *mips16_globals;
655
656 /* Target state for MICROMIPS. */
657 struct target_globals *micromips_globals;
658
659 /* Cached value of can_issue_more. This is cached in mips_variable_issue hook
660 and returned from mips_sched_reorder2. */
661 static int cached_can_issue_more;
662
663 /* The stubs for various MIPS16 support functions, if used. */
664 static mips_one_only_stub *mips16_rdhwr_stub;
665 static mips_one_only_stub *mips16_get_fcsr_stub;
666 static mips_one_only_stub *mips16_set_fcsr_stub;
667
668 /* Index R is the smallest register class that contains register R. */
669 const enum reg_class mips_regno_to_class[FIRST_PSEUDO_REGISTER] = {
670 LEA_REGS, LEA_REGS, M16_STORE_REGS, V1_REG,
671 M16_STORE_REGS, M16_STORE_REGS, M16_STORE_REGS, M16_STORE_REGS,
672 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
673 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
674 M16_REGS, M16_STORE_REGS, LEA_REGS, LEA_REGS,
675 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
676 T_REG, PIC_FN_ADDR_REG, LEA_REGS, LEA_REGS,
677 LEA_REGS, M16_SP_REGS, LEA_REGS, LEA_REGS,
678
679 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
680 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
681 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
682 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
683 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
684 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
685 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
686 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
687 MD0_REG, MD1_REG, NO_REGS, ST_REGS,
688 ST_REGS, ST_REGS, ST_REGS, ST_REGS,
689 ST_REGS, ST_REGS, ST_REGS, NO_REGS,
690 NO_REGS, FRAME_REGS, FRAME_REGS, NO_REGS,
691 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
692 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
693 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
694 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
695 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
696 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
697 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
698 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
699 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
700 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
701 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
702 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
703 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
704 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
705 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
706 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
707 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
708 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
709 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
710 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
711 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
712 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
713 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
714 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
715 DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS,
716 DSP_ACC_REGS, DSP_ACC_REGS, ALL_REGS, ALL_REGS,
717 ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS
718 };
719
720 /* The value of TARGET_ATTRIBUTE_TABLE. */
721 static const struct attribute_spec mips_attribute_table[] = {
722 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
723 om_diagnostic } */
724 { "long_call", 0, 0, false, true, true, NULL, false },
725 { "far", 0, 0, false, true, true, NULL, false },
726 { "near", 0, 0, false, true, true, NULL, false },
727 /* We would really like to treat "mips16" and "nomips16" as type
728 attributes, but GCC doesn't provide the hooks we need to support
729 the right conversion rules. As declaration attributes, they affect
730 code generation but don't carry other semantics. */
731 { "mips16", 0, 0, true, false, false, NULL, false },
732 { "nomips16", 0, 0, true, false, false, NULL, false },
733 { "micromips", 0, 0, true, false, false, NULL, false },
734 { "nomicromips", 0, 0, true, false, false, NULL, false },
735 { "nocompression", 0, 0, true, false, false, NULL, false },
736 /* Allow functions to be specified as interrupt handlers */
737 { "interrupt", 0, 0, false, true, true, NULL, false },
738 { "use_shadow_register_set", 0, 0, false, true, true, NULL, false },
739 { "keep_interrupts_masked", 0, 0, false, true, true, NULL, false },
740 { "use_debug_exception_return", 0, 0, false, true, true, NULL, false },
741 { NULL, 0, 0, false, false, false, NULL, false }
742 };
743 \f
744 /* A table describing all the processors GCC knows about; see
745 mips-cpus.def for details. */
746 static const struct mips_cpu_info mips_cpu_info_table[] = {
747 #define MIPS_CPU(NAME, CPU, ISA, FLAGS) \
748 { NAME, CPU, ISA, FLAGS },
749 #include "mips-cpus.def"
750 #undef MIPS_CPU
751 };
752
753 /* Default costs. If these are used for a processor we should look
754 up the actual costs. */
755 #define DEFAULT_COSTS COSTS_N_INSNS (6), /* fp_add */ \
756 COSTS_N_INSNS (7), /* fp_mult_sf */ \
757 COSTS_N_INSNS (8), /* fp_mult_df */ \
758 COSTS_N_INSNS (23), /* fp_div_sf */ \
759 COSTS_N_INSNS (36), /* fp_div_df */ \
760 COSTS_N_INSNS (10), /* int_mult_si */ \
761 COSTS_N_INSNS (10), /* int_mult_di */ \
762 COSTS_N_INSNS (69), /* int_div_si */ \
763 COSTS_N_INSNS (69), /* int_div_di */ \
764 2, /* branch_cost */ \
765 4 /* memory_latency */
766
767 /* Floating-point costs for processors without an FPU. Just assume that
768 all floating-point libcalls are very expensive. */
769 #define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */ \
770 COSTS_N_INSNS (256), /* fp_mult_sf */ \
771 COSTS_N_INSNS (256), /* fp_mult_df */ \
772 COSTS_N_INSNS (256), /* fp_div_sf */ \
773 COSTS_N_INSNS (256) /* fp_div_df */
774
775 /* Costs to use when optimizing for size. */
776 static const struct mips_rtx_cost_data mips_rtx_cost_optimize_size = {
777 COSTS_N_INSNS (1), /* fp_add */
778 COSTS_N_INSNS (1), /* fp_mult_sf */
779 COSTS_N_INSNS (1), /* fp_mult_df */
780 COSTS_N_INSNS (1), /* fp_div_sf */
781 COSTS_N_INSNS (1), /* fp_div_df */
782 COSTS_N_INSNS (1), /* int_mult_si */
783 COSTS_N_INSNS (1), /* int_mult_di */
784 COSTS_N_INSNS (1), /* int_div_si */
785 COSTS_N_INSNS (1), /* int_div_di */
786 2, /* branch_cost */
787 4 /* memory_latency */
788 };
789
790 /* Costs to use when optimizing for speed, indexed by processor. */
791 static const struct mips_rtx_cost_data
792 mips_rtx_cost_data[NUM_PROCESSOR_VALUES] = {
793 { /* R3000 */
794 COSTS_N_INSNS (2), /* fp_add */
795 COSTS_N_INSNS (4), /* fp_mult_sf */
796 COSTS_N_INSNS (5), /* fp_mult_df */
797 COSTS_N_INSNS (12), /* fp_div_sf */
798 COSTS_N_INSNS (19), /* fp_div_df */
799 COSTS_N_INSNS (12), /* int_mult_si */
800 COSTS_N_INSNS (12), /* int_mult_di */
801 COSTS_N_INSNS (35), /* int_div_si */
802 COSTS_N_INSNS (35), /* int_div_di */
803 1, /* branch_cost */
804 4 /* memory_latency */
805 },
806 { /* 4KC */
807 SOFT_FP_COSTS,
808 COSTS_N_INSNS (6), /* int_mult_si */
809 COSTS_N_INSNS (6), /* int_mult_di */
810 COSTS_N_INSNS (36), /* int_div_si */
811 COSTS_N_INSNS (36), /* int_div_di */
812 1, /* branch_cost */
813 4 /* memory_latency */
814 },
815 { /* 4KP */
816 SOFT_FP_COSTS,
817 COSTS_N_INSNS (36), /* int_mult_si */
818 COSTS_N_INSNS (36), /* int_mult_di */
819 COSTS_N_INSNS (37), /* int_div_si */
820 COSTS_N_INSNS (37), /* int_div_di */
821 1, /* branch_cost */
822 4 /* memory_latency */
823 },
824 { /* 5KC */
825 SOFT_FP_COSTS,
826 COSTS_N_INSNS (4), /* int_mult_si */
827 COSTS_N_INSNS (11), /* int_mult_di */
828 COSTS_N_INSNS (36), /* int_div_si */
829 COSTS_N_INSNS (68), /* int_div_di */
830 1, /* branch_cost */
831 4 /* memory_latency */
832 },
833 { /* 5KF */
834 COSTS_N_INSNS (4), /* fp_add */
835 COSTS_N_INSNS (4), /* fp_mult_sf */
836 COSTS_N_INSNS (5), /* fp_mult_df */
837 COSTS_N_INSNS (17), /* fp_div_sf */
838 COSTS_N_INSNS (32), /* fp_div_df */
839 COSTS_N_INSNS (4), /* int_mult_si */
840 COSTS_N_INSNS (11), /* int_mult_di */
841 COSTS_N_INSNS (36), /* int_div_si */
842 COSTS_N_INSNS (68), /* int_div_di */
843 1, /* branch_cost */
844 4 /* memory_latency */
845 },
846 { /* 20KC */
847 COSTS_N_INSNS (4), /* fp_add */
848 COSTS_N_INSNS (4), /* fp_mult_sf */
849 COSTS_N_INSNS (5), /* fp_mult_df */
850 COSTS_N_INSNS (17), /* fp_div_sf */
851 COSTS_N_INSNS (32), /* fp_div_df */
852 COSTS_N_INSNS (4), /* int_mult_si */
853 COSTS_N_INSNS (7), /* int_mult_di */
854 COSTS_N_INSNS (42), /* int_div_si */
855 COSTS_N_INSNS (72), /* int_div_di */
856 1, /* branch_cost */
857 4 /* memory_latency */
858 },
859 { /* 24KC */
860 SOFT_FP_COSTS,
861 COSTS_N_INSNS (5), /* int_mult_si */
862 COSTS_N_INSNS (5), /* int_mult_di */
863 COSTS_N_INSNS (41), /* int_div_si */
864 COSTS_N_INSNS (41), /* int_div_di */
865 1, /* branch_cost */
866 4 /* memory_latency */
867 },
868 { /* 24KF2_1 */
869 COSTS_N_INSNS (8), /* fp_add */
870 COSTS_N_INSNS (8), /* fp_mult_sf */
871 COSTS_N_INSNS (10), /* fp_mult_df */
872 COSTS_N_INSNS (34), /* fp_div_sf */
873 COSTS_N_INSNS (64), /* fp_div_df */
874 COSTS_N_INSNS (5), /* int_mult_si */
875 COSTS_N_INSNS (5), /* int_mult_di */
876 COSTS_N_INSNS (41), /* int_div_si */
877 COSTS_N_INSNS (41), /* int_div_di */
878 1, /* branch_cost */
879 4 /* memory_latency */
880 },
881 { /* 24KF1_1 */
882 COSTS_N_INSNS (4), /* fp_add */
883 COSTS_N_INSNS (4), /* fp_mult_sf */
884 COSTS_N_INSNS (5), /* fp_mult_df */
885 COSTS_N_INSNS (17), /* fp_div_sf */
886 COSTS_N_INSNS (32), /* fp_div_df */
887 COSTS_N_INSNS (5), /* int_mult_si */
888 COSTS_N_INSNS (5), /* int_mult_di */
889 COSTS_N_INSNS (41), /* int_div_si */
890 COSTS_N_INSNS (41), /* int_div_di */
891 1, /* branch_cost */
892 4 /* memory_latency */
893 },
894 { /* 74KC */
895 SOFT_FP_COSTS,
896 COSTS_N_INSNS (5), /* int_mult_si */
897 COSTS_N_INSNS (5), /* int_mult_di */
898 COSTS_N_INSNS (41), /* int_div_si */
899 COSTS_N_INSNS (41), /* int_div_di */
900 1, /* branch_cost */
901 4 /* memory_latency */
902 },
903 { /* 74KF2_1 */
904 COSTS_N_INSNS (8), /* fp_add */
905 COSTS_N_INSNS (8), /* fp_mult_sf */
906 COSTS_N_INSNS (10), /* fp_mult_df */
907 COSTS_N_INSNS (34), /* fp_div_sf */
908 COSTS_N_INSNS (64), /* fp_div_df */
909 COSTS_N_INSNS (5), /* int_mult_si */
910 COSTS_N_INSNS (5), /* int_mult_di */
911 COSTS_N_INSNS (41), /* int_div_si */
912 COSTS_N_INSNS (41), /* int_div_di */
913 1, /* branch_cost */
914 4 /* memory_latency */
915 },
916 { /* 74KF1_1 */
917 COSTS_N_INSNS (4), /* fp_add */
918 COSTS_N_INSNS (4), /* fp_mult_sf */
919 COSTS_N_INSNS (5), /* fp_mult_df */
920 COSTS_N_INSNS (17), /* fp_div_sf */
921 COSTS_N_INSNS (32), /* fp_div_df */
922 COSTS_N_INSNS (5), /* int_mult_si */
923 COSTS_N_INSNS (5), /* int_mult_di */
924 COSTS_N_INSNS (41), /* int_div_si */
925 COSTS_N_INSNS (41), /* int_div_di */
926 1, /* branch_cost */
927 4 /* memory_latency */
928 },
929 { /* 74KF3_2 */
930 COSTS_N_INSNS (6), /* fp_add */
931 COSTS_N_INSNS (6), /* fp_mult_sf */
932 COSTS_N_INSNS (7), /* fp_mult_df */
933 COSTS_N_INSNS (25), /* fp_div_sf */
934 COSTS_N_INSNS (48), /* fp_div_df */
935 COSTS_N_INSNS (5), /* int_mult_si */
936 COSTS_N_INSNS (5), /* int_mult_di */
937 COSTS_N_INSNS (41), /* int_div_si */
938 COSTS_N_INSNS (41), /* int_div_di */
939 1, /* branch_cost */
940 4 /* memory_latency */
941 },
942 { /* Loongson-2E */
943 DEFAULT_COSTS
944 },
945 { /* Loongson-2F */
946 DEFAULT_COSTS
947 },
948 { /* Loongson-3A */
949 DEFAULT_COSTS
950 },
951 { /* M4k */
952 DEFAULT_COSTS
953 },
954 /* Octeon */
955 {
956 SOFT_FP_COSTS,
957 COSTS_N_INSNS (5), /* int_mult_si */
958 COSTS_N_INSNS (5), /* int_mult_di */
959 COSTS_N_INSNS (72), /* int_div_si */
960 COSTS_N_INSNS (72), /* int_div_di */
961 1, /* branch_cost */
962 4 /* memory_latency */
963 },
964 /* Octeon II */
965 {
966 SOFT_FP_COSTS,
967 COSTS_N_INSNS (6), /* int_mult_si */
968 COSTS_N_INSNS (6), /* int_mult_di */
969 COSTS_N_INSNS (18), /* int_div_si */
970 COSTS_N_INSNS (35), /* int_div_di */
971 4, /* branch_cost */
972 4 /* memory_latency */
973 },
974 /* Octeon III */
975 {
976 COSTS_N_INSNS (6), /* fp_add */
977 COSTS_N_INSNS (6), /* fp_mult_sf */
978 COSTS_N_INSNS (7), /* fp_mult_df */
979 COSTS_N_INSNS (25), /* fp_div_sf */
980 COSTS_N_INSNS (48), /* fp_div_df */
981 COSTS_N_INSNS (6), /* int_mult_si */
982 COSTS_N_INSNS (6), /* int_mult_di */
983 COSTS_N_INSNS (18), /* int_div_si */
984 COSTS_N_INSNS (35), /* int_div_di */
985 4, /* branch_cost */
986 4 /* memory_latency */
987 },
988 { /* R3900 */
989 COSTS_N_INSNS (2), /* fp_add */
990 COSTS_N_INSNS (4), /* fp_mult_sf */
991 COSTS_N_INSNS (5), /* fp_mult_df */
992 COSTS_N_INSNS (12), /* fp_div_sf */
993 COSTS_N_INSNS (19), /* fp_div_df */
994 COSTS_N_INSNS (2), /* int_mult_si */
995 COSTS_N_INSNS (2), /* int_mult_di */
996 COSTS_N_INSNS (35), /* int_div_si */
997 COSTS_N_INSNS (35), /* int_div_di */
998 1, /* branch_cost */
999 4 /* memory_latency */
1000 },
1001 { /* R6000 */
1002 COSTS_N_INSNS (3), /* fp_add */
1003 COSTS_N_INSNS (5), /* fp_mult_sf */
1004 COSTS_N_INSNS (6), /* fp_mult_df */
1005 COSTS_N_INSNS (15), /* fp_div_sf */
1006 COSTS_N_INSNS (16), /* fp_div_df */
1007 COSTS_N_INSNS (17), /* int_mult_si */
1008 COSTS_N_INSNS (17), /* int_mult_di */
1009 COSTS_N_INSNS (38), /* int_div_si */
1010 COSTS_N_INSNS (38), /* int_div_di */
1011 2, /* branch_cost */
1012 6 /* memory_latency */
1013 },
1014 { /* R4000 */
1015 COSTS_N_INSNS (6), /* fp_add */
1016 COSTS_N_INSNS (7), /* fp_mult_sf */
1017 COSTS_N_INSNS (8), /* fp_mult_df */
1018 COSTS_N_INSNS (23), /* fp_div_sf */
1019 COSTS_N_INSNS (36), /* fp_div_df */
1020 COSTS_N_INSNS (10), /* int_mult_si */
1021 COSTS_N_INSNS (10), /* int_mult_di */
1022 COSTS_N_INSNS (69), /* int_div_si */
1023 COSTS_N_INSNS (69), /* int_div_di */
1024 2, /* branch_cost */
1025 6 /* memory_latency */
1026 },
1027 { /* R4100 */
1028 DEFAULT_COSTS
1029 },
1030 { /* R4111 */
1031 DEFAULT_COSTS
1032 },
1033 { /* R4120 */
1034 DEFAULT_COSTS
1035 },
1036 { /* R4130 */
1037 /* The only costs that appear to be updated here are
1038 integer multiplication. */
1039 SOFT_FP_COSTS,
1040 COSTS_N_INSNS (4), /* int_mult_si */
1041 COSTS_N_INSNS (6), /* int_mult_di */
1042 COSTS_N_INSNS (69), /* int_div_si */
1043 COSTS_N_INSNS (69), /* int_div_di */
1044 1, /* branch_cost */
1045 4 /* memory_latency */
1046 },
1047 { /* R4300 */
1048 DEFAULT_COSTS
1049 },
1050 { /* R4600 */
1051 DEFAULT_COSTS
1052 },
1053 { /* R4650 */
1054 DEFAULT_COSTS
1055 },
1056 { /* R4700 */
1057 DEFAULT_COSTS
1058 },
1059 { /* R5000 */
1060 COSTS_N_INSNS (6), /* fp_add */
1061 COSTS_N_INSNS (4), /* fp_mult_sf */
1062 COSTS_N_INSNS (5), /* fp_mult_df */
1063 COSTS_N_INSNS (23), /* fp_div_sf */
1064 COSTS_N_INSNS (36), /* fp_div_df */
1065 COSTS_N_INSNS (5), /* int_mult_si */
1066 COSTS_N_INSNS (5), /* int_mult_di */
1067 COSTS_N_INSNS (36), /* int_div_si */
1068 COSTS_N_INSNS (36), /* int_div_di */
1069 1, /* branch_cost */
1070 4 /* memory_latency */
1071 },
1072 { /* R5400 */
1073 COSTS_N_INSNS (6), /* fp_add */
1074 COSTS_N_INSNS (5), /* fp_mult_sf */
1075 COSTS_N_INSNS (6), /* fp_mult_df */
1076 COSTS_N_INSNS (30), /* fp_div_sf */
1077 COSTS_N_INSNS (59), /* fp_div_df */
1078 COSTS_N_INSNS (3), /* int_mult_si */
1079 COSTS_N_INSNS (4), /* int_mult_di */
1080 COSTS_N_INSNS (42), /* int_div_si */
1081 COSTS_N_INSNS (74), /* int_div_di */
1082 1, /* branch_cost */
1083 4 /* memory_latency */
1084 },
1085 { /* R5500 */
1086 COSTS_N_INSNS (6), /* fp_add */
1087 COSTS_N_INSNS (5), /* fp_mult_sf */
1088 COSTS_N_INSNS (6), /* fp_mult_df */
1089 COSTS_N_INSNS (30), /* fp_div_sf */
1090 COSTS_N_INSNS (59), /* fp_div_df */
1091 COSTS_N_INSNS (5), /* int_mult_si */
1092 COSTS_N_INSNS (9), /* int_mult_di */
1093 COSTS_N_INSNS (42), /* int_div_si */
1094 COSTS_N_INSNS (74), /* int_div_di */
1095 1, /* branch_cost */
1096 4 /* memory_latency */
1097 },
1098 { /* R5900 */
1099 COSTS_N_INSNS (4), /* fp_add */
1100 COSTS_N_INSNS (4), /* fp_mult_sf */
1101 COSTS_N_INSNS (256), /* fp_mult_df */
1102 COSTS_N_INSNS (8), /* fp_div_sf */
1103 COSTS_N_INSNS (256), /* fp_div_df */
1104 COSTS_N_INSNS (4), /* int_mult_si */
1105 COSTS_N_INSNS (256), /* int_mult_di */
1106 COSTS_N_INSNS (37), /* int_div_si */
1107 COSTS_N_INSNS (256), /* int_div_di */
1108 1, /* branch_cost */
1109 4 /* memory_latency */
1110 },
1111 { /* R7000 */
1112 /* The only costs that are changed here are
1113 integer multiplication. */
1114 COSTS_N_INSNS (6), /* fp_add */
1115 COSTS_N_INSNS (7), /* fp_mult_sf */
1116 COSTS_N_INSNS (8), /* fp_mult_df */
1117 COSTS_N_INSNS (23), /* fp_div_sf */
1118 COSTS_N_INSNS (36), /* fp_div_df */
1119 COSTS_N_INSNS (5), /* int_mult_si */
1120 COSTS_N_INSNS (9), /* int_mult_di */
1121 COSTS_N_INSNS (69), /* int_div_si */
1122 COSTS_N_INSNS (69), /* int_div_di */
1123 1, /* branch_cost */
1124 4 /* memory_latency */
1125 },
1126 { /* R8000 */
1127 DEFAULT_COSTS
1128 },
1129 { /* R9000 */
1130 /* The only costs that are changed here are
1131 integer multiplication. */
1132 COSTS_N_INSNS (6), /* fp_add */
1133 COSTS_N_INSNS (7), /* fp_mult_sf */
1134 COSTS_N_INSNS (8), /* fp_mult_df */
1135 COSTS_N_INSNS (23), /* fp_div_sf */
1136 COSTS_N_INSNS (36), /* fp_div_df */
1137 COSTS_N_INSNS (3), /* int_mult_si */
1138 COSTS_N_INSNS (8), /* int_mult_di */
1139 COSTS_N_INSNS (69), /* int_div_si */
1140 COSTS_N_INSNS (69), /* int_div_di */
1141 1, /* branch_cost */
1142 4 /* memory_latency */
1143 },
1144 { /* R1x000 */
1145 COSTS_N_INSNS (2), /* fp_add */
1146 COSTS_N_INSNS (2), /* fp_mult_sf */
1147 COSTS_N_INSNS (2), /* fp_mult_df */
1148 COSTS_N_INSNS (12), /* fp_div_sf */
1149 COSTS_N_INSNS (19), /* fp_div_df */
1150 COSTS_N_INSNS (5), /* int_mult_si */
1151 COSTS_N_INSNS (9), /* int_mult_di */
1152 COSTS_N_INSNS (34), /* int_div_si */
1153 COSTS_N_INSNS (66), /* int_div_di */
1154 1, /* branch_cost */
1155 4 /* memory_latency */
1156 },
1157 { /* SB1 */
1158 /* These costs are the same as the SB-1A below. */
1159 COSTS_N_INSNS (4), /* fp_add */
1160 COSTS_N_INSNS (4), /* fp_mult_sf */
1161 COSTS_N_INSNS (4), /* fp_mult_df */
1162 COSTS_N_INSNS (24), /* fp_div_sf */
1163 COSTS_N_INSNS (32), /* fp_div_df */
1164 COSTS_N_INSNS (3), /* int_mult_si */
1165 COSTS_N_INSNS (4), /* int_mult_di */
1166 COSTS_N_INSNS (36), /* int_div_si */
1167 COSTS_N_INSNS (68), /* int_div_di */
1168 1, /* branch_cost */
1169 4 /* memory_latency */
1170 },
1171 { /* SB1-A */
1172 /* These costs are the same as the SB-1 above. */
1173 COSTS_N_INSNS (4), /* fp_add */
1174 COSTS_N_INSNS (4), /* fp_mult_sf */
1175 COSTS_N_INSNS (4), /* fp_mult_df */
1176 COSTS_N_INSNS (24), /* fp_div_sf */
1177 COSTS_N_INSNS (32), /* fp_div_df */
1178 COSTS_N_INSNS (3), /* int_mult_si */
1179 COSTS_N_INSNS (4), /* int_mult_di */
1180 COSTS_N_INSNS (36), /* int_div_si */
1181 COSTS_N_INSNS (68), /* int_div_di */
1182 1, /* branch_cost */
1183 4 /* memory_latency */
1184 },
1185 { /* SR71000 */
1186 DEFAULT_COSTS
1187 },
1188 { /* XLR */
1189 SOFT_FP_COSTS,
1190 COSTS_N_INSNS (8), /* int_mult_si */
1191 COSTS_N_INSNS (8), /* int_mult_di */
1192 COSTS_N_INSNS (72), /* int_div_si */
1193 COSTS_N_INSNS (72), /* int_div_di */
1194 1, /* branch_cost */
1195 4 /* memory_latency */
1196 },
1197 { /* XLP */
1198 /* These costs are the same as 5KF above. */
1199 COSTS_N_INSNS (4), /* fp_add */
1200 COSTS_N_INSNS (4), /* fp_mult_sf */
1201 COSTS_N_INSNS (5), /* fp_mult_df */
1202 COSTS_N_INSNS (17), /* fp_div_sf */
1203 COSTS_N_INSNS (32), /* fp_div_df */
1204 COSTS_N_INSNS (4), /* int_mult_si */
1205 COSTS_N_INSNS (11), /* int_mult_di */
1206 COSTS_N_INSNS (36), /* int_div_si */
1207 COSTS_N_INSNS (68), /* int_div_di */
1208 1, /* branch_cost */
1209 4 /* memory_latency */
1210 },
1211 { /* P5600 */
1212 COSTS_N_INSNS (4), /* fp_add */
1213 COSTS_N_INSNS (5), /* fp_mult_sf */
1214 COSTS_N_INSNS (5), /* fp_mult_df */
1215 COSTS_N_INSNS (17), /* fp_div_sf */
1216 COSTS_N_INSNS (17), /* fp_div_df */
1217 COSTS_N_INSNS (5), /* int_mult_si */
1218 COSTS_N_INSNS (5), /* int_mult_di */
1219 COSTS_N_INSNS (8), /* int_div_si */
1220 COSTS_N_INSNS (8), /* int_div_di */
1221 2, /* branch_cost */
1222 4 /* memory_latency */
1223 },
1224 { /* W32 */
1225 COSTS_N_INSNS (4), /* fp_add */
1226 COSTS_N_INSNS (4), /* fp_mult_sf */
1227 COSTS_N_INSNS (5), /* fp_mult_df */
1228 COSTS_N_INSNS (17), /* fp_div_sf */
1229 COSTS_N_INSNS (32), /* fp_div_df */
1230 COSTS_N_INSNS (5), /* int_mult_si */
1231 COSTS_N_INSNS (5), /* int_mult_di */
1232 COSTS_N_INSNS (41), /* int_div_si */
1233 COSTS_N_INSNS (41), /* int_div_di */
1234 1, /* branch_cost */
1235 4 /* memory_latency */
1236 },
1237 { /* W64 */
1238 COSTS_N_INSNS (4), /* fp_add */
1239 COSTS_N_INSNS (4), /* fp_mult_sf */
1240 COSTS_N_INSNS (5), /* fp_mult_df */
1241 COSTS_N_INSNS (17), /* fp_div_sf */
1242 COSTS_N_INSNS (32), /* fp_div_df */
1243 COSTS_N_INSNS (5), /* int_mult_si */
1244 COSTS_N_INSNS (5), /* int_mult_di */
1245 COSTS_N_INSNS (41), /* int_div_si */
1246 COSTS_N_INSNS (41), /* int_div_di */
1247 1, /* branch_cost */
1248 4 /* memory_latency */
1249 }
1250 };
1251 \f
1252 static rtx mips_find_pic_call_symbol (rtx_insn *, rtx, bool);
1253 static int mips_register_move_cost (machine_mode, reg_class_t,
1254 reg_class_t);
1255 static unsigned int mips_function_arg_boundary (machine_mode, const_tree);
1256 static machine_mode mips_get_reg_raw_mode (int regno);
1257 \f
1258 /* This hash table keeps track of implicit "mips16" and "nomips16" attributes
1259 for -mflip_mips16. It maps decl names onto a boolean mode setting. */
1260 static GTY (()) hash_map<nofree_string_hash, bool> *mflip_mips16_htab;
1261
1262 /* True if -mflip-mips16 should next add an attribute for the default MIPS16
1263 mode, false if it should next add an attribute for the opposite mode. */
1264 static GTY(()) bool mips16_flipper;
1265
1266 /* DECL is a function that needs a default "mips16" or "nomips16" attribute
1267 for -mflip-mips16. Return true if it should use "mips16" and false if
1268 it should use "nomips16". */
1269
1270 static bool
1271 mflip_mips16_use_mips16_p (tree decl)
1272 {
1273 const char *name;
1274 bool base_is_mips16 = (mips_base_compression_flags & MASK_MIPS16) != 0;
1275
1276 /* Use the opposite of the command-line setting for anonymous decls. */
1277 if (!DECL_NAME (decl))
1278 return !base_is_mips16;
1279
1280 if (!mflip_mips16_htab)
1281 mflip_mips16_htab = hash_map<nofree_string_hash, bool>::create_ggc (37);
1282
1283 name = IDENTIFIER_POINTER (DECL_NAME (decl));
1284
1285 bool existed;
1286 bool *slot = &mflip_mips16_htab->get_or_insert (name, &existed);
1287 if (!existed)
1288 {
1289 mips16_flipper = !mips16_flipper;
1290 *slot = mips16_flipper ? !base_is_mips16 : base_is_mips16;
1291 }
1292 return *slot;
1293 }
1294 \f
1295 /* Predicates to test for presence of "near" and "far"/"long_call"
1296 attributes on the given TYPE. */
1297
1298 static bool
1299 mips_near_type_p (const_tree type)
1300 {
1301 return lookup_attribute ("near", TYPE_ATTRIBUTES (type)) != NULL;
1302 }
1303
1304 static bool
1305 mips_far_type_p (const_tree type)
1306 {
1307 return (lookup_attribute ("long_call", TYPE_ATTRIBUTES (type)) != NULL
1308 || lookup_attribute ("far", TYPE_ATTRIBUTES (type)) != NULL);
1309 }
1310
1311
1312 /* Check if the interrupt attribute is set for a function. */
1313
1314 static bool
1315 mips_interrupt_type_p (tree type)
1316 {
1317 return lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type)) != NULL;
1318 }
1319
1320 /* Check if the attribute to use shadow register set is set for a function. */
1321
1322 static bool
1323 mips_use_shadow_register_set_p (tree type)
1324 {
1325 return lookup_attribute ("use_shadow_register_set",
1326 TYPE_ATTRIBUTES (type)) != NULL;
1327 }
1328
1329 /* Check if the attribute to keep interrupts masked is set for a function. */
1330
1331 static bool
1332 mips_keep_interrupts_masked_p (tree type)
1333 {
1334 return lookup_attribute ("keep_interrupts_masked",
1335 TYPE_ATTRIBUTES (type)) != NULL;
1336 }
1337
1338 /* Check if the attribute to use debug exception return is set for
1339 a function. */
1340
1341 static bool
1342 mips_use_debug_exception_return_p (tree type)
1343 {
1344 return lookup_attribute ("use_debug_exception_return",
1345 TYPE_ATTRIBUTES (type)) != NULL;
1346 }
1347
1348 /* Return the set of compression modes that are explicitly required
1349 by the attributes in ATTRIBUTES. */
1350
1351 static unsigned int
1352 mips_get_compress_on_flags (tree attributes)
1353 {
1354 unsigned int flags = 0;
1355
1356 if (lookup_attribute ("mips16", attributes) != NULL)
1357 flags |= MASK_MIPS16;
1358
1359 if (lookup_attribute ("micromips", attributes) != NULL)
1360 flags |= MASK_MICROMIPS;
1361
1362 return flags;
1363 }
1364
1365 /* Return the set of compression modes that are explicitly forbidden
1366 by the attributes in ATTRIBUTES. */
1367
1368 static unsigned int
1369 mips_get_compress_off_flags (tree attributes)
1370 {
1371 unsigned int flags = 0;
1372
1373 if (lookup_attribute ("nocompression", attributes) != NULL)
1374 flags |= MASK_MIPS16 | MASK_MICROMIPS;
1375
1376 if (lookup_attribute ("nomips16", attributes) != NULL)
1377 flags |= MASK_MIPS16;
1378
1379 if (lookup_attribute ("nomicromips", attributes) != NULL)
1380 flags |= MASK_MICROMIPS;
1381
1382 return flags;
1383 }
1384
1385 /* Return the compression mode that should be used for function DECL.
1386 Return the ambient setting if DECL is null. */
1387
1388 static unsigned int
1389 mips_get_compress_mode (tree decl)
1390 {
1391 unsigned int flags, force_on;
1392
1393 flags = mips_base_compression_flags;
1394 if (decl)
1395 {
1396 /* Nested functions must use the same frame pointer as their
1397 parent and must therefore use the same ISA mode. */
1398 tree parent = decl_function_context (decl);
1399 if (parent)
1400 decl = parent;
1401 force_on = mips_get_compress_on_flags (DECL_ATTRIBUTES (decl));
1402 if (force_on)
1403 return force_on;
1404 flags &= ~mips_get_compress_off_flags (DECL_ATTRIBUTES (decl));
1405 }
1406 return flags;
1407 }
1408
1409 /* Return the attribute name associated with MASK_MIPS16 and MASK_MICROMIPS
1410 flags FLAGS. */
1411
1412 static const char *
1413 mips_get_compress_on_name (unsigned int flags)
1414 {
1415 if (flags == MASK_MIPS16)
1416 return "mips16";
1417 return "micromips";
1418 }
1419
1420 /* Return the attribute name that forbids MASK_MIPS16 and MASK_MICROMIPS
1421 flags FLAGS. */
1422
1423 static const char *
1424 mips_get_compress_off_name (unsigned int flags)
1425 {
1426 if (flags == MASK_MIPS16)
1427 return "nomips16";
1428 if (flags == MASK_MICROMIPS)
1429 return "nomicromips";
1430 return "nocompression";
1431 }
1432
1433 /* Implement TARGET_COMP_TYPE_ATTRIBUTES. */
1434
1435 static int
1436 mips_comp_type_attributes (const_tree type1, const_tree type2)
1437 {
1438 /* Disallow mixed near/far attributes. */
1439 if (mips_far_type_p (type1) && mips_near_type_p (type2))
1440 return 0;
1441 if (mips_near_type_p (type1) && mips_far_type_p (type2))
1442 return 0;
1443 return 1;
1444 }
1445
1446 /* Implement TARGET_INSERT_ATTRIBUTES. */
1447
1448 static void
1449 mips_insert_attributes (tree decl, tree *attributes)
1450 {
1451 const char *name;
1452 unsigned int compression_flags, nocompression_flags;
1453
1454 /* Check for "mips16" and "nomips16" attributes. */
1455 compression_flags = mips_get_compress_on_flags (*attributes);
1456 nocompression_flags = mips_get_compress_off_flags (*attributes);
1457
1458 if (TREE_CODE (decl) != FUNCTION_DECL)
1459 {
1460 if (nocompression_flags)
1461 error ("%qs attribute only applies to functions",
1462 mips_get_compress_off_name (nocompression_flags));
1463
1464 if (compression_flags)
1465 error ("%qs attribute only applies to functions",
1466 mips_get_compress_on_name (nocompression_flags));
1467 }
1468 else
1469 {
1470 compression_flags |= mips_get_compress_on_flags (DECL_ATTRIBUTES (decl));
1471 nocompression_flags |=
1472 mips_get_compress_off_flags (DECL_ATTRIBUTES (decl));
1473
1474 if (compression_flags && nocompression_flags)
1475 error ("%qE cannot have both %qs and %qs attributes",
1476 DECL_NAME (decl), mips_get_compress_on_name (compression_flags),
1477 mips_get_compress_off_name (nocompression_flags));
1478
1479 if (compression_flags & MASK_MIPS16
1480 && compression_flags & MASK_MICROMIPS)
1481 error ("%qE cannot have both %qs and %qs attributes",
1482 DECL_NAME (decl), "mips16", "micromips");
1483
1484 if (TARGET_FLIP_MIPS16
1485 && !DECL_ARTIFICIAL (decl)
1486 && compression_flags == 0
1487 && nocompression_flags == 0)
1488 {
1489 /* Implement -mflip-mips16. If DECL has neither a "nomips16" nor a
1490 "mips16" attribute, arbitrarily pick one. We must pick the same
1491 setting for duplicate declarations of a function. */
1492 name = mflip_mips16_use_mips16_p (decl) ? "mips16" : "nomips16";
1493 *attributes = tree_cons (get_identifier (name), NULL, *attributes);
1494 name = "nomicromips";
1495 *attributes = tree_cons (get_identifier (name), NULL, *attributes);
1496 }
1497 }
1498 }
1499
1500 /* Implement TARGET_MERGE_DECL_ATTRIBUTES. */
1501
1502 static tree
1503 mips_merge_decl_attributes (tree olddecl, tree newdecl)
1504 {
1505 unsigned int diff;
1506
1507 diff = (mips_get_compress_on_flags (DECL_ATTRIBUTES (olddecl))
1508 ^ mips_get_compress_on_flags (DECL_ATTRIBUTES (newdecl)));
1509 if (diff)
1510 error ("%qE redeclared with conflicting %qs attributes",
1511 DECL_NAME (newdecl), mips_get_compress_on_name (diff));
1512
1513 diff = (mips_get_compress_off_flags (DECL_ATTRIBUTES (olddecl))
1514 ^ mips_get_compress_off_flags (DECL_ATTRIBUTES (newdecl)));
1515 if (diff)
1516 error ("%qE redeclared with conflicting %qs attributes",
1517 DECL_NAME (newdecl), mips_get_compress_off_name (diff));
1518
1519 return merge_attributes (DECL_ATTRIBUTES (olddecl),
1520 DECL_ATTRIBUTES (newdecl));
1521 }
1522
1523 /* Implement TARGET_CAN_INLINE_P. */
1524
1525 static bool
1526 mips_can_inline_p (tree caller, tree callee)
1527 {
1528 if (mips_get_compress_mode (callee) != mips_get_compress_mode (caller))
1529 return false;
1530 return default_target_can_inline_p (caller, callee);
1531 }
1532 \f
1533 /* If X is a PLUS of a CONST_INT, return the two terms in *BASE_PTR
1534 and *OFFSET_PTR. Return X in *BASE_PTR and 0 in *OFFSET_PTR otherwise. */
1535
1536 static void
1537 mips_split_plus (rtx x, rtx *base_ptr, HOST_WIDE_INT *offset_ptr)
1538 {
1539 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
1540 {
1541 *base_ptr = XEXP (x, 0);
1542 *offset_ptr = INTVAL (XEXP (x, 1));
1543 }
1544 else
1545 {
1546 *base_ptr = x;
1547 *offset_ptr = 0;
1548 }
1549 }
1550 \f
1551 static unsigned int mips_build_integer (struct mips_integer_op *,
1552 unsigned HOST_WIDE_INT);
1553
1554 /* A subroutine of mips_build_integer, with the same interface.
1555 Assume that the final action in the sequence should be a left shift. */
1556
1557 static unsigned int
1558 mips_build_shift (struct mips_integer_op *codes, HOST_WIDE_INT value)
1559 {
1560 unsigned int i, shift;
1561
1562 /* Shift VALUE right until its lowest bit is set. Shift arithmetically
1563 since signed numbers are easier to load than unsigned ones. */
1564 shift = 0;
1565 while ((value & 1) == 0)
1566 value /= 2, shift++;
1567
1568 i = mips_build_integer (codes, value);
1569 codes[i].code = ASHIFT;
1570 codes[i].value = shift;
1571 return i + 1;
1572 }
1573
1574 /* As for mips_build_shift, but assume that the final action will be
1575 an IOR or PLUS operation. */
1576
1577 static unsigned int
1578 mips_build_lower (struct mips_integer_op *codes, unsigned HOST_WIDE_INT value)
1579 {
1580 unsigned HOST_WIDE_INT high;
1581 unsigned int i;
1582
1583 high = value & ~(unsigned HOST_WIDE_INT) 0xffff;
1584 if (!LUI_OPERAND (high) && (value & 0x18000) == 0x18000)
1585 {
1586 /* The constant is too complex to load with a simple LUI/ORI pair,
1587 so we want to give the recursive call as many trailing zeros as
1588 possible. In this case, we know bit 16 is set and that the
1589 low 16 bits form a negative number. If we subtract that number
1590 from VALUE, we will clear at least the lowest 17 bits, maybe more. */
1591 i = mips_build_integer (codes, CONST_HIGH_PART (value));
1592 codes[i].code = PLUS;
1593 codes[i].value = CONST_LOW_PART (value);
1594 }
1595 else
1596 {
1597 /* Either this is a simple LUI/ORI pair, or clearing the lowest 16
1598 bits gives a value with at least 17 trailing zeros. */
1599 i = mips_build_integer (codes, high);
1600 codes[i].code = IOR;
1601 codes[i].value = value & 0xffff;
1602 }
1603 return i + 1;
1604 }
1605
1606 /* Fill CODES with a sequence of rtl operations to load VALUE.
1607 Return the number of operations needed. */
1608
1609 static unsigned int
1610 mips_build_integer (struct mips_integer_op *codes,
1611 unsigned HOST_WIDE_INT value)
1612 {
1613 if (SMALL_OPERAND (value)
1614 || SMALL_OPERAND_UNSIGNED (value)
1615 || LUI_OPERAND (value))
1616 {
1617 /* The value can be loaded with a single instruction. */
1618 codes[0].code = UNKNOWN;
1619 codes[0].value = value;
1620 return 1;
1621 }
1622 else if ((value & 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value)))
1623 {
1624 /* Either the constant is a simple LUI/ORI combination or its
1625 lowest bit is set. We don't want to shift in this case. */
1626 return mips_build_lower (codes, value);
1627 }
1628 else if ((value & 0xffff) == 0)
1629 {
1630 /* The constant will need at least three actions. The lowest
1631 16 bits are clear, so the final action will be a shift. */
1632 return mips_build_shift (codes, value);
1633 }
1634 else
1635 {
1636 /* The final action could be a shift, add or inclusive OR.
1637 Rather than use a complex condition to select the best
1638 approach, try both mips_build_shift and mips_build_lower
1639 and pick the one that gives the shortest sequence.
1640 Note that this case is only used once per constant. */
1641 struct mips_integer_op alt_codes[MIPS_MAX_INTEGER_OPS];
1642 unsigned int cost, alt_cost;
1643
1644 cost = mips_build_shift (codes, value);
1645 alt_cost = mips_build_lower (alt_codes, value);
1646 if (alt_cost < cost)
1647 {
1648 memcpy (codes, alt_codes, alt_cost * sizeof (codes[0]));
1649 cost = alt_cost;
1650 }
1651 return cost;
1652 }
1653 }
1654 \f
1655 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
1656
1657 static bool
1658 mips_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1659 {
1660 return mips_const_insns (x) > 0;
1661 }
1662 \f
1663 /* Return a SYMBOL_REF for a MIPS16 function called NAME. */
1664
1665 static rtx
1666 mips16_stub_function (const char *name)
1667 {
1668 rtx x;
1669
1670 x = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
1671 SYMBOL_REF_FLAGS (x) |= (SYMBOL_FLAG_EXTERNAL | SYMBOL_FLAG_FUNCTION);
1672 return x;
1673 }
1674
1675 /* Return a legitimate call address for STUB, given that STUB is a MIPS16
1676 support function. */
1677
1678 static rtx
1679 mips16_stub_call_address (mips_one_only_stub *stub)
1680 {
1681 rtx fn = mips16_stub_function (stub->get_name ());
1682 SYMBOL_REF_FLAGS (fn) |= SYMBOL_FLAG_LOCAL;
1683 if (!call_insn_operand (fn, VOIDmode))
1684 fn = force_reg (Pmode, fn);
1685 return fn;
1686 }
1687 \f
1688 /* A stub for moving the thread pointer into TLS_GET_TP_REGNUM. */
1689
1690 class mips16_rdhwr_one_only_stub : public mips_one_only_stub
1691 {
1692 virtual const char *get_name ();
1693 virtual void output_body ();
1694 };
1695
1696 const char *
1697 mips16_rdhwr_one_only_stub::get_name ()
1698 {
1699 return "__mips16_rdhwr";
1700 }
1701
1702 void
1703 mips16_rdhwr_one_only_stub::output_body ()
1704 {
1705 fprintf (asm_out_file,
1706 "\t.set\tpush\n"
1707 "\t.set\tmips32r2\n"
1708 "\t.set\tnoreorder\n"
1709 "\trdhwr\t$3,$29\n"
1710 "\t.set\tpop\n"
1711 "\tj\t$31\n");
1712 }
1713
1714 /* A stub for moving the FCSR into GET_FCSR_REGNUM. */
1715 class mips16_get_fcsr_one_only_stub : public mips_one_only_stub
1716 {
1717 virtual const char *get_name ();
1718 virtual void output_body ();
1719 };
1720
1721 const char *
1722 mips16_get_fcsr_one_only_stub::get_name ()
1723 {
1724 return "__mips16_get_fcsr";
1725 }
1726
1727 void
1728 mips16_get_fcsr_one_only_stub::output_body ()
1729 {
1730 fprintf (asm_out_file,
1731 "\tcfc1\t%s,$31\n"
1732 "\tj\t$31\n", reg_names[GET_FCSR_REGNUM]);
1733 }
1734
1735 /* A stub for moving SET_FCSR_REGNUM into the FCSR. */
1736 class mips16_set_fcsr_one_only_stub : public mips_one_only_stub
1737 {
1738 virtual const char *get_name ();
1739 virtual void output_body ();
1740 };
1741
1742 const char *
1743 mips16_set_fcsr_one_only_stub::get_name ()
1744 {
1745 return "__mips16_set_fcsr";
1746 }
1747
1748 void
1749 mips16_set_fcsr_one_only_stub::output_body ()
1750 {
1751 fprintf (asm_out_file,
1752 "\tctc1\t%s,$31\n"
1753 "\tj\t$31\n", reg_names[SET_FCSR_REGNUM]);
1754 }
1755 \f
1756 /* Return true if symbols of type TYPE require a GOT access. */
1757
1758 static bool
1759 mips_got_symbol_type_p (enum mips_symbol_type type)
1760 {
1761 switch (type)
1762 {
1763 case SYMBOL_GOT_PAGE_OFST:
1764 case SYMBOL_GOT_DISP:
1765 return true;
1766
1767 default:
1768 return false;
1769 }
1770 }
1771
1772 /* Return true if X is a thread-local symbol. */
1773
1774 static bool
1775 mips_tls_symbol_p (rtx x)
1776 {
1777 return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
1778 }
1779
1780 /* Return true if SYMBOL_REF X is associated with a global symbol
1781 (in the STB_GLOBAL sense). */
1782
1783 static bool
1784 mips_global_symbol_p (const_rtx x)
1785 {
1786 const_tree decl = SYMBOL_REF_DECL (x);
1787
1788 if (!decl)
1789 return !SYMBOL_REF_LOCAL_P (x) || SYMBOL_REF_EXTERNAL_P (x);
1790
1791 /* Weakref symbols are not TREE_PUBLIC, but their targets are global
1792 or weak symbols. Relocations in the object file will be against
1793 the target symbol, so it's that symbol's binding that matters here. */
1794 return DECL_P (decl) && (TREE_PUBLIC (decl) || DECL_WEAK (decl));
1795 }
1796
1797 /* Return true if function X is a libgcc MIPS16 stub function. */
1798
1799 static bool
1800 mips16_stub_function_p (const_rtx x)
1801 {
1802 return (GET_CODE (x) == SYMBOL_REF
1803 && strncmp (XSTR (x, 0), "__mips16_", 9) == 0);
1804 }
1805
1806 /* Return true if function X is a locally-defined and locally-binding
1807 MIPS16 function. */
1808
1809 static bool
1810 mips16_local_function_p (const_rtx x)
1811 {
1812 return (GET_CODE (x) == SYMBOL_REF
1813 && SYMBOL_REF_LOCAL_P (x)
1814 && !SYMBOL_REF_EXTERNAL_P (x)
1815 && (mips_get_compress_mode (SYMBOL_REF_DECL (x)) & MASK_MIPS16));
1816 }
1817
1818 /* Return true if SYMBOL_REF X binds locally. */
1819
1820 static bool
1821 mips_symbol_binds_local_p (const_rtx x)
1822 {
1823 return (SYMBOL_REF_DECL (x)
1824 ? targetm.binds_local_p (SYMBOL_REF_DECL (x))
1825 : SYMBOL_REF_LOCAL_P (x));
1826 }
1827
1828 /* Return true if rtx constants of mode MODE should be put into a small
1829 data section. */
1830
1831 static bool
1832 mips_rtx_constant_in_small_data_p (machine_mode mode)
1833 {
1834 return (!TARGET_EMBEDDED_DATA
1835 && TARGET_LOCAL_SDATA
1836 && GET_MODE_SIZE (mode) <= mips_small_data_threshold);
1837 }
1838
1839 /* Return true if X should not be moved directly into register $25.
1840 We need this because many versions of GAS will treat "la $25,foo" as
1841 part of a call sequence and so allow a global "foo" to be lazily bound. */
1842
1843 bool
1844 mips_dangerous_for_la25_p (rtx x)
1845 {
1846 return (!TARGET_EXPLICIT_RELOCS
1847 && TARGET_USE_GOT
1848 && GET_CODE (x) == SYMBOL_REF
1849 && mips_global_symbol_p (x));
1850 }
1851
1852 /* Return true if calls to X might need $25 to be valid on entry. */
1853
1854 bool
1855 mips_use_pic_fn_addr_reg_p (const_rtx x)
1856 {
1857 if (!TARGET_USE_PIC_FN_ADDR_REG)
1858 return false;
1859
1860 /* MIPS16 stub functions are guaranteed not to use $25. */
1861 if (mips16_stub_function_p (x))
1862 return false;
1863
1864 if (GET_CODE (x) == SYMBOL_REF)
1865 {
1866 /* If PLTs and copy relocations are available, the static linker
1867 will make sure that $25 is valid on entry to the target function. */
1868 if (TARGET_ABICALLS_PIC0)
1869 return false;
1870
1871 /* Locally-defined functions use absolute accesses to set up
1872 the global pointer. */
1873 if (TARGET_ABSOLUTE_ABICALLS
1874 && mips_symbol_binds_local_p (x)
1875 && !SYMBOL_REF_EXTERNAL_P (x))
1876 return false;
1877 }
1878
1879 return true;
1880 }
1881
1882 /* Return the method that should be used to access SYMBOL_REF or
1883 LABEL_REF X in context CONTEXT. */
1884
1885 static enum mips_symbol_type
1886 mips_classify_symbol (const_rtx x, enum mips_symbol_context context)
1887 {
1888 if (TARGET_RTP_PIC)
1889 return SYMBOL_GOT_DISP;
1890
1891 if (GET_CODE (x) == LABEL_REF)
1892 {
1893 /* Only return SYMBOL_PC_RELATIVE if we are generating MIPS16
1894 code and if we know that the label is in the current function's
1895 text section. LABEL_REFs are used for jump tables as well as
1896 text labels, so we must check whether jump tables live in the
1897 text section. */
1898 if (TARGET_MIPS16_SHORT_JUMP_TABLES
1899 && !LABEL_REF_NONLOCAL_P (x))
1900 return SYMBOL_PC_RELATIVE;
1901
1902 if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
1903 return SYMBOL_GOT_PAGE_OFST;
1904
1905 return SYMBOL_ABSOLUTE;
1906 }
1907
1908 gcc_assert (GET_CODE (x) == SYMBOL_REF);
1909
1910 if (SYMBOL_REF_TLS_MODEL (x))
1911 return SYMBOL_TLS;
1912
1913 if (CONSTANT_POOL_ADDRESS_P (x))
1914 {
1915 if (TARGET_MIPS16_TEXT_LOADS)
1916 return SYMBOL_PC_RELATIVE;
1917
1918 if (TARGET_MIPS16_PCREL_LOADS && context == SYMBOL_CONTEXT_MEM)
1919 return SYMBOL_PC_RELATIVE;
1920
1921 if (mips_rtx_constant_in_small_data_p (get_pool_mode (x)))
1922 return SYMBOL_GP_RELATIVE;
1923 }
1924
1925 /* Do not use small-data accesses for weak symbols; they may end up
1926 being zero. */
1927 if (TARGET_GPOPT && SYMBOL_REF_SMALL_P (x) && !SYMBOL_REF_WEAK (x))
1928 return SYMBOL_GP_RELATIVE;
1929
1930 /* Don't use GOT accesses for locally-binding symbols when -mno-shared
1931 is in effect. */
1932 if (TARGET_ABICALLS_PIC2
1933 && !(TARGET_ABSOLUTE_ABICALLS && mips_symbol_binds_local_p (x)))
1934 {
1935 /* There are three cases to consider:
1936
1937 - o32 PIC (either with or without explicit relocs)
1938 - n32/n64 PIC without explicit relocs
1939 - n32/n64 PIC with explicit relocs
1940
1941 In the first case, both local and global accesses will use an
1942 R_MIPS_GOT16 relocation. We must correctly predict which of
1943 the two semantics (local or global) the assembler and linker
1944 will apply. The choice depends on the symbol's binding rather
1945 than its visibility.
1946
1947 In the second case, the assembler will not use R_MIPS_GOT16
1948 relocations, but it chooses between local and global accesses
1949 in the same way as for o32 PIC.
1950
1951 In the third case we have more freedom since both forms of
1952 access will work for any kind of symbol. However, there seems
1953 little point in doing things differently. */
1954 if (mips_global_symbol_p (x))
1955 return SYMBOL_GOT_DISP;
1956
1957 return SYMBOL_GOT_PAGE_OFST;
1958 }
1959
1960 return SYMBOL_ABSOLUTE;
1961 }
1962
1963 /* Classify the base of symbolic expression X, given that X appears in
1964 context CONTEXT. */
1965
1966 static enum mips_symbol_type
1967 mips_classify_symbolic_expression (rtx x, enum mips_symbol_context context)
1968 {
1969 rtx offset;
1970
1971 split_const (x, &x, &offset);
1972 if (UNSPEC_ADDRESS_P (x))
1973 return UNSPEC_ADDRESS_TYPE (x);
1974
1975 return mips_classify_symbol (x, context);
1976 }
1977
1978 /* Return true if OFFSET is within the range [0, ALIGN), where ALIGN
1979 is the alignment in bytes of SYMBOL_REF X. */
1980
1981 static bool
1982 mips_offset_within_alignment_p (rtx x, HOST_WIDE_INT offset)
1983 {
1984 HOST_WIDE_INT align;
1985
1986 align = SYMBOL_REF_DECL (x) ? DECL_ALIGN_UNIT (SYMBOL_REF_DECL (x)) : 1;
1987 return IN_RANGE (offset, 0, align - 1);
1988 }
1989
1990 /* Return true if X is a symbolic constant that can be used in context
1991 CONTEXT. If it is, store the type of the symbol in *SYMBOL_TYPE. */
1992
1993 bool
1994 mips_symbolic_constant_p (rtx x, enum mips_symbol_context context,
1995 enum mips_symbol_type *symbol_type)
1996 {
1997 rtx offset;
1998
1999 split_const (x, &x, &offset);
2000 if (UNSPEC_ADDRESS_P (x))
2001 {
2002 *symbol_type = UNSPEC_ADDRESS_TYPE (x);
2003 x = UNSPEC_ADDRESS (x);
2004 }
2005 else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
2006 {
2007 *symbol_type = mips_classify_symbol (x, context);
2008 if (*symbol_type == SYMBOL_TLS)
2009 return false;
2010 }
2011 else
2012 return false;
2013
2014 if (offset == const0_rtx)
2015 return true;
2016
2017 /* Check whether a nonzero offset is valid for the underlying
2018 relocations. */
2019 switch (*symbol_type)
2020 {
2021 case SYMBOL_ABSOLUTE:
2022 case SYMBOL_64_HIGH:
2023 case SYMBOL_64_MID:
2024 case SYMBOL_64_LOW:
2025 /* If the target has 64-bit pointers and the object file only
2026 supports 32-bit symbols, the values of those symbols will be
2027 sign-extended. In this case we can't allow an arbitrary offset
2028 in case the 32-bit value X + OFFSET has a different sign from X. */
2029 if (Pmode == DImode && !ABI_HAS_64BIT_SYMBOLS)
2030 return offset_within_block_p (x, INTVAL (offset));
2031
2032 /* In other cases the relocations can handle any offset. */
2033 return true;
2034
2035 case SYMBOL_PC_RELATIVE:
2036 /* Allow constant pool references to be converted to LABEL+CONSTANT.
2037 In this case, we no longer have access to the underlying constant,
2038 but the original symbol-based access was known to be valid. */
2039 if (GET_CODE (x) == LABEL_REF)
2040 return true;
2041
2042 /* Fall through. */
2043
2044 case SYMBOL_GP_RELATIVE:
2045 /* Make sure that the offset refers to something within the
2046 same object block. This should guarantee that the final
2047 PC- or GP-relative offset is within the 16-bit limit. */
2048 return offset_within_block_p (x, INTVAL (offset));
2049
2050 case SYMBOL_GOT_PAGE_OFST:
2051 case SYMBOL_GOTOFF_PAGE:
2052 /* If the symbol is global, the GOT entry will contain the symbol's
2053 address, and we will apply a 16-bit offset after loading it.
2054 If the symbol is local, the linker should provide enough local
2055 GOT entries for a 16-bit offset, but larger offsets may lead
2056 to GOT overflow. */
2057 return SMALL_INT (offset);
2058
2059 case SYMBOL_TPREL:
2060 case SYMBOL_DTPREL:
2061 /* There is no carry between the HI and LO REL relocations, so the
2062 offset is only valid if we know it won't lead to such a carry. */
2063 return mips_offset_within_alignment_p (x, INTVAL (offset));
2064
2065 case SYMBOL_GOT_DISP:
2066 case SYMBOL_GOTOFF_DISP:
2067 case SYMBOL_GOTOFF_CALL:
2068 case SYMBOL_GOTOFF_LOADGP:
2069 case SYMBOL_TLSGD:
2070 case SYMBOL_TLSLDM:
2071 case SYMBOL_GOTTPREL:
2072 case SYMBOL_TLS:
2073 case SYMBOL_HALF:
2074 return false;
2075 }
2076 gcc_unreachable ();
2077 }
2078 \f
2079 /* Like mips_symbol_insns, but treat extended MIPS16 instructions as a
2080 single instruction. We rely on the fact that, in the worst case,
2081 all instructions involved in a MIPS16 address calculation are usually
2082 extended ones. */
2083
2084 static int
2085 mips_symbol_insns_1 (enum mips_symbol_type type, machine_mode mode)
2086 {
2087 if (mips_use_pcrel_pool_p[(int) type])
2088 {
2089 if (mode == MAX_MACHINE_MODE)
2090 /* LEAs will be converted into constant-pool references by
2091 mips_reorg. */
2092 type = SYMBOL_PC_RELATIVE;
2093 else
2094 /* The constant must be loaded and then dereferenced. */
2095 return 0;
2096 }
2097
2098 switch (type)
2099 {
2100 case SYMBOL_ABSOLUTE:
2101 /* When using 64-bit symbols, we need 5 preparatory instructions,
2102 such as:
2103
2104 lui $at,%highest(symbol)
2105 daddiu $at,$at,%higher(symbol)
2106 dsll $at,$at,16
2107 daddiu $at,$at,%hi(symbol)
2108 dsll $at,$at,16
2109
2110 The final address is then $at + %lo(symbol). With 32-bit
2111 symbols we just need a preparatory LUI for normal mode and
2112 a preparatory LI and SLL for MIPS16. */
2113 return ABI_HAS_64BIT_SYMBOLS ? 6 : TARGET_MIPS16 ? 3 : 2;
2114
2115 case SYMBOL_GP_RELATIVE:
2116 /* Treat GP-relative accesses as taking a single instruction on
2117 MIPS16 too; the copy of $gp can often be shared. */
2118 return 1;
2119
2120 case SYMBOL_PC_RELATIVE:
2121 /* PC-relative constants can be only be used with ADDIUPC,
2122 DADDIUPC, LWPC and LDPC. */
2123 if (mode == MAX_MACHINE_MODE
2124 || GET_MODE_SIZE (mode) == 4
2125 || GET_MODE_SIZE (mode) == 8)
2126 return 1;
2127
2128 /* The constant must be loaded using ADDIUPC or DADDIUPC first. */
2129 return 0;
2130
2131 case SYMBOL_GOT_DISP:
2132 /* The constant will have to be loaded from the GOT before it
2133 is used in an address. */
2134 if (mode != MAX_MACHINE_MODE)
2135 return 0;
2136
2137 /* Fall through. */
2138
2139 case SYMBOL_GOT_PAGE_OFST:
2140 /* Unless -funit-at-a-time is in effect, we can't be sure whether the
2141 local/global classification is accurate. The worst cases are:
2142
2143 (1) For local symbols when generating o32 or o64 code. The assembler
2144 will use:
2145
2146 lw $at,%got(symbol)
2147 nop
2148
2149 ...and the final address will be $at + %lo(symbol).
2150
2151 (2) For global symbols when -mxgot. The assembler will use:
2152
2153 lui $at,%got_hi(symbol)
2154 (d)addu $at,$at,$gp
2155
2156 ...and the final address will be $at + %got_lo(symbol). */
2157 return 3;
2158
2159 case SYMBOL_GOTOFF_PAGE:
2160 case SYMBOL_GOTOFF_DISP:
2161 case SYMBOL_GOTOFF_CALL:
2162 case SYMBOL_GOTOFF_LOADGP:
2163 case SYMBOL_64_HIGH:
2164 case SYMBOL_64_MID:
2165 case SYMBOL_64_LOW:
2166 case SYMBOL_TLSGD:
2167 case SYMBOL_TLSLDM:
2168 case SYMBOL_DTPREL:
2169 case SYMBOL_GOTTPREL:
2170 case SYMBOL_TPREL:
2171 case SYMBOL_HALF:
2172 /* A 16-bit constant formed by a single relocation, or a 32-bit
2173 constant formed from a high 16-bit relocation and a low 16-bit
2174 relocation. Use mips_split_p to determine which. 32-bit
2175 constants need an "lui; addiu" sequence for normal mode and
2176 an "li; sll; addiu" sequence for MIPS16 mode. */
2177 return !mips_split_p[type] ? 1 : TARGET_MIPS16 ? 3 : 2;
2178
2179 case SYMBOL_TLS:
2180 /* We don't treat a bare TLS symbol as a constant. */
2181 return 0;
2182 }
2183 gcc_unreachable ();
2184 }
2185
2186 /* If MODE is MAX_MACHINE_MODE, return the number of instructions needed
2187 to load symbols of type TYPE into a register. Return 0 if the given
2188 type of symbol cannot be used as an immediate operand.
2189
2190 Otherwise, return the number of instructions needed to load or store
2191 values of mode MODE to or from addresses of type TYPE. Return 0 if
2192 the given type of symbol is not valid in addresses.
2193
2194 In both cases, instruction counts are based off BASE_INSN_LENGTH. */
2195
2196 static int
2197 mips_symbol_insns (enum mips_symbol_type type, machine_mode mode)
2198 {
2199 return mips_symbol_insns_1 (type, mode) * (TARGET_MIPS16 ? 2 : 1);
2200 }
2201 \f
2202 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
2203
2204 static bool
2205 mips_cannot_force_const_mem (machine_mode mode, rtx x)
2206 {
2207 enum mips_symbol_type type;
2208 rtx base, offset;
2209
2210 /* There is no assembler syntax for expressing an address-sized
2211 high part. */
2212 if (GET_CODE (x) == HIGH)
2213 return true;
2214
2215 /* As an optimization, reject constants that mips_legitimize_move
2216 can expand inline.
2217
2218 Suppose we have a multi-instruction sequence that loads constant C
2219 into register R. If R does not get allocated a hard register, and
2220 R is used in an operand that allows both registers and memory
2221 references, reload will consider forcing C into memory and using
2222 one of the instruction's memory alternatives. Returning false
2223 here will force it to use an input reload instead. */
2224 if (CONST_INT_P (x) && mips_legitimate_constant_p (mode, x))
2225 return true;
2226
2227 split_const (x, &base, &offset);
2228 if (mips_symbolic_constant_p (base, SYMBOL_CONTEXT_LEA, &type))
2229 {
2230 /* See whether we explicitly want these symbols in the pool. */
2231 if (mips_use_pcrel_pool_p[(int) type])
2232 return false;
2233
2234 /* The same optimization as for CONST_INT. */
2235 if (SMALL_INT (offset) && mips_symbol_insns (type, MAX_MACHINE_MODE) > 0)
2236 return true;
2237
2238 /* If MIPS16 constant pools live in the text section, they should
2239 not refer to anything that might need run-time relocation. */
2240 if (TARGET_MIPS16_PCREL_LOADS && mips_got_symbol_type_p (type))
2241 return true;
2242 }
2243
2244 /* TLS symbols must be computed by mips_legitimize_move. */
2245 if (tls_referenced_p (x))
2246 return true;
2247
2248 return false;
2249 }
2250
2251 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. We can't use blocks for
2252 constants when we're using a per-function constant pool. */
2253
2254 static bool
2255 mips_use_blocks_for_constant_p (machine_mode mode ATTRIBUTE_UNUSED,
2256 const_rtx x ATTRIBUTE_UNUSED)
2257 {
2258 return !TARGET_MIPS16_PCREL_LOADS;
2259 }
2260 \f
2261 /* Return true if register REGNO is a valid base register for mode MODE.
2262 STRICT_P is true if REG_OK_STRICT is in effect. */
2263
2264 int
2265 mips_regno_mode_ok_for_base_p (int regno, machine_mode mode,
2266 bool strict_p)
2267 {
2268 if (!HARD_REGISTER_NUM_P (regno))
2269 {
2270 if (!strict_p)
2271 return true;
2272 regno = reg_renumber[regno];
2273 }
2274
2275 /* These fake registers will be eliminated to either the stack or
2276 hard frame pointer, both of which are usually valid base registers.
2277 Reload deals with the cases where the eliminated form isn't valid. */
2278 if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
2279 return true;
2280
2281 /* In MIPS16 mode, the stack pointer can only address word and doubleword
2282 values, nothing smaller. */
2283 if (TARGET_MIPS16 && regno == STACK_POINTER_REGNUM)
2284 return GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;
2285
2286 return TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
2287 }
2288
2289 /* Return true if X is a valid base register for mode MODE.
2290 STRICT_P is true if REG_OK_STRICT is in effect. */
2291
2292 static bool
2293 mips_valid_base_register_p (rtx x, machine_mode mode, bool strict_p)
2294 {
2295 if (!strict_p && GET_CODE (x) == SUBREG)
2296 x = SUBREG_REG (x);
2297
2298 return (REG_P (x)
2299 && mips_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p));
2300 }
2301
2302 /* Return true if, for every base register BASE_REG, (plus BASE_REG X)
2303 can address a value of mode MODE. */
2304
2305 static bool
2306 mips_valid_offset_p (rtx x, machine_mode mode)
2307 {
2308 /* Check that X is a signed 16-bit number. */
2309 if (!const_arith_operand (x, Pmode))
2310 return false;
2311
2312 /* We may need to split multiword moves, so make sure that every word
2313 is accessible. */
2314 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
2315 && !SMALL_OPERAND (INTVAL (x) + GET_MODE_SIZE (mode) - UNITS_PER_WORD))
2316 return false;
2317
2318 return true;
2319 }
2320
2321 /* Return true if a LO_SUM can address a value of mode MODE when the
2322 LO_SUM symbol has type SYMBOL_TYPE. */
2323
2324 static bool
2325 mips_valid_lo_sum_p (enum mips_symbol_type symbol_type, machine_mode mode)
2326 {
2327 /* Check that symbols of type SYMBOL_TYPE can be used to access values
2328 of mode MODE. */
2329 if (mips_symbol_insns (symbol_type, mode) == 0)
2330 return false;
2331
2332 /* Check that there is a known low-part relocation. */
2333 if (mips_lo_relocs[symbol_type] == NULL)
2334 return false;
2335
2336 /* We may need to split multiword moves, so make sure that each word
2337 can be accessed without inducing a carry. This is mainly needed
2338 for o64, which has historically only guaranteed 64-bit alignment
2339 for 128-bit types. */
2340 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
2341 && GET_MODE_BITSIZE (mode) > GET_MODE_ALIGNMENT (mode))
2342 return false;
2343
2344 return true;
2345 }
2346
2347 /* Return true if X is a valid address for machine mode MODE. If it is,
2348 fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in
2349 effect. */
2350
2351 static bool
2352 mips_classify_address (struct mips_address_info *info, rtx x,
2353 machine_mode mode, bool strict_p)
2354 {
2355 switch (GET_CODE (x))
2356 {
2357 case REG:
2358 case SUBREG:
2359 info->type = ADDRESS_REG;
2360 info->reg = x;
2361 info->offset = const0_rtx;
2362 return mips_valid_base_register_p (info->reg, mode, strict_p);
2363
2364 case PLUS:
2365 info->type = ADDRESS_REG;
2366 info->reg = XEXP (x, 0);
2367 info->offset = XEXP (x, 1);
2368 return (mips_valid_base_register_p (info->reg, mode, strict_p)
2369 && mips_valid_offset_p (info->offset, mode));
2370
2371 case LO_SUM:
2372 info->type = ADDRESS_LO_SUM;
2373 info->reg = XEXP (x, 0);
2374 info->offset = XEXP (x, 1);
2375 /* We have to trust the creator of the LO_SUM to do something vaguely
2376 sane. Target-independent code that creates a LO_SUM should also
2377 create and verify the matching HIGH. Target-independent code that
2378 adds an offset to a LO_SUM must prove that the offset will not
2379 induce a carry. Failure to do either of these things would be
2380 a bug, and we are not required to check for it here. The MIPS
2381 backend itself should only create LO_SUMs for valid symbolic
2382 constants, with the high part being either a HIGH or a copy
2383 of _gp. */
2384 info->symbol_type
2385 = mips_classify_symbolic_expression (info->offset, SYMBOL_CONTEXT_MEM);
2386 return (mips_valid_base_register_p (info->reg, mode, strict_p)
2387 && mips_valid_lo_sum_p (info->symbol_type, mode));
2388
2389 case CONST_INT:
2390 /* Small-integer addresses don't occur very often, but they
2391 are legitimate if $0 is a valid base register. */
2392 info->type = ADDRESS_CONST_INT;
2393 return !TARGET_MIPS16 && SMALL_INT (x);
2394
2395 case CONST:
2396 case LABEL_REF:
2397 case SYMBOL_REF:
2398 info->type = ADDRESS_SYMBOLIC;
2399 return (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_MEM,
2400 &info->symbol_type)
2401 && mips_symbol_insns (info->symbol_type, mode) > 0
2402 && !mips_split_p[info->symbol_type]);
2403
2404 default:
2405 return false;
2406 }
2407 }
2408
2409 /* Implement TARGET_LEGITIMATE_ADDRESS_P. */
2410
2411 static bool
2412 mips_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
2413 {
2414 struct mips_address_info addr;
2415
2416 return mips_classify_address (&addr, x, mode, strict_p);
2417 }
2418
2419 /* Return true if X is a legitimate $sp-based address for mode MODE. */
2420
2421 bool
2422 mips_stack_address_p (rtx x, machine_mode mode)
2423 {
2424 struct mips_address_info addr;
2425
2426 return (mips_classify_address (&addr, x, mode, false)
2427 && addr.type == ADDRESS_REG
2428 && addr.reg == stack_pointer_rtx);
2429 }
2430
2431 /* Return true if ADDR matches the pattern for the LWXS load scaled indexed
2432 address instruction. Note that such addresses are not considered
2433 legitimate in the TARGET_LEGITIMATE_ADDRESS_P sense, because their use
2434 is so restricted. */
2435
2436 static bool
2437 mips_lwxs_address_p (rtx addr)
2438 {
2439 if (ISA_HAS_LWXS
2440 && GET_CODE (addr) == PLUS
2441 && REG_P (XEXP (addr, 1)))
2442 {
2443 rtx offset = XEXP (addr, 0);
2444 if (GET_CODE (offset) == MULT
2445 && REG_P (XEXP (offset, 0))
2446 && CONST_INT_P (XEXP (offset, 1))
2447 && INTVAL (XEXP (offset, 1)) == 4)
2448 return true;
2449 }
2450 return false;
2451 }
2452
2453 /* Return true if ADDR matches the pattern for the L{B,H,W,D}{,U}X load
2454 indexed address instruction. Note that such addresses are
2455 not considered legitimate in the TARGET_LEGITIMATE_ADDRESS_P
2456 sense, because their use is so restricted. */
2457
2458 static bool
2459 mips_lx_address_p (rtx addr, machine_mode mode)
2460 {
2461 if (GET_CODE (addr) != PLUS
2462 || !REG_P (XEXP (addr, 0))
2463 || !REG_P (XEXP (addr, 1)))
2464 return false;
2465 if (ISA_HAS_LBX && mode == QImode)
2466 return true;
2467 if (ISA_HAS_LHX && mode == HImode)
2468 return true;
2469 if (ISA_HAS_LWX && mode == SImode)
2470 return true;
2471 if (ISA_HAS_LDX && mode == DImode)
2472 return true;
2473 return false;
2474 }
2475 \f
2476 /* Return true if a value at OFFSET bytes from base register BASE can be
2477 accessed using an unextended MIPS16 instruction. MODE is the mode of
2478 the value.
2479
2480 Usually the offset in an unextended instruction is a 5-bit field.
2481 The offset is unsigned and shifted left once for LH and SH, twice
2482 for LW and SW, and so on. An exception is LWSP and SWSP, which have
2483 an 8-bit immediate field that's shifted left twice. */
2484
2485 static bool
2486 mips16_unextended_reference_p (machine_mode mode, rtx base,
2487 unsigned HOST_WIDE_INT offset)
2488 {
2489 if (mode != BLKmode && offset % GET_MODE_SIZE (mode) == 0)
2490 {
2491 if (GET_MODE_SIZE (mode) == 4 && base == stack_pointer_rtx)
2492 return offset < 256U * GET_MODE_SIZE (mode);
2493 return offset < 32U * GET_MODE_SIZE (mode);
2494 }
2495 return false;
2496 }
2497
2498 /* Return the number of instructions needed to load or store a value
2499 of mode MODE at address X, assuming that BASE_INSN_LENGTH is the
2500 length of one instruction. Return 0 if X isn't valid for MODE.
2501 Assume that multiword moves may need to be split into word moves
2502 if MIGHT_SPLIT_P, otherwise assume that a single load or store is
2503 enough. */
2504
2505 int
2506 mips_address_insns (rtx x, machine_mode mode, bool might_split_p)
2507 {
2508 struct mips_address_info addr;
2509 int factor;
2510
2511 /* BLKmode is used for single unaligned loads and stores and should
2512 not count as a multiword mode. (GET_MODE_SIZE (BLKmode) is pretty
2513 meaningless, so we have to single it out as a special case one way
2514 or the other.) */
2515 if (mode != BLKmode && might_split_p)
2516 factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2517 else
2518 factor = 1;
2519
2520 if (mips_classify_address (&addr, x, mode, false))
2521 switch (addr.type)
2522 {
2523 case ADDRESS_REG:
2524 if (TARGET_MIPS16
2525 && !mips16_unextended_reference_p (mode, addr.reg,
2526 UINTVAL (addr.offset)))
2527 return factor * 2;
2528 return factor;
2529
2530 case ADDRESS_LO_SUM:
2531 return TARGET_MIPS16 ? factor * 2 : factor;
2532
2533 case ADDRESS_CONST_INT:
2534 return factor;
2535
2536 case ADDRESS_SYMBOLIC:
2537 return factor * mips_symbol_insns (addr.symbol_type, mode);
2538 }
2539 return 0;
2540 }
2541
2542 /* Return true if X fits within an unsigned field of BITS bits that is
2543 shifted left SHIFT bits before being used. */
2544
2545 bool
2546 mips_unsigned_immediate_p (unsigned HOST_WIDE_INT x, int bits, int shift = 0)
2547 {
2548 return (x & ((1 << shift) - 1)) == 0 && x < ((unsigned) 1 << (shift + bits));
2549 }
2550
2551 /* Return true if X fits within a signed field of BITS bits that is
2552 shifted left SHIFT bits before being used. */
2553
2554 bool
2555 mips_signed_immediate_p (unsigned HOST_WIDE_INT x, int bits, int shift = 0)
2556 {
2557 x += 1 << (bits + shift - 1);
2558 return mips_unsigned_immediate_p (x, bits, shift);
2559 }
2560
2561 /* Return true if X is legitimate for accessing values of mode MODE,
2562 if it is based on a MIPS16 register, and if the offset satisfies
2563 OFFSET_PREDICATE. */
2564
2565 bool
2566 m16_based_address_p (rtx x, machine_mode mode,
2567 insn_operand_predicate_fn offset_predicate)
2568 {
2569 struct mips_address_info addr;
2570
2571 return (mips_classify_address (&addr, x, mode, false)
2572 && addr.type == ADDRESS_REG
2573 && M16_REG_P (REGNO (addr.reg))
2574 && offset_predicate (addr.offset, mode));
2575 }
2576
2577 /* Return true if X is a legitimate address that conforms to the requirements
2578 for a microMIPS LWSP or SWSP insn. */
2579
2580 bool
2581 lwsp_swsp_address_p (rtx x, machine_mode mode)
2582 {
2583 struct mips_address_info addr;
2584
2585 return (mips_classify_address (&addr, x, mode, false)
2586 && addr.type == ADDRESS_REG
2587 && REGNO (addr.reg) == STACK_POINTER_REGNUM
2588 && uw5_operand (addr.offset, mode));
2589 }
2590
2591 /* Return true if X is a legitimate address with a 12-bit offset.
2592 MODE is the mode of the value being accessed. */
2593
2594 bool
2595 umips_12bit_offset_address_p (rtx x, machine_mode mode)
2596 {
2597 struct mips_address_info addr;
2598
2599 return (mips_classify_address (&addr, x, mode, false)
2600 && addr.type == ADDRESS_REG
2601 && CONST_INT_P (addr.offset)
2602 && UMIPS_12BIT_OFFSET_P (INTVAL (addr.offset)));
2603 }
2604
2605 /* Return true if X is a legitimate address with a 9-bit offset.
2606 MODE is the mode of the value being accessed. */
2607
2608 bool
2609 mips_9bit_offset_address_p (rtx x, machine_mode mode)
2610 {
2611 struct mips_address_info addr;
2612
2613 return (mips_classify_address (&addr, x, mode, false)
2614 && addr.type == ADDRESS_REG
2615 && CONST_INT_P (addr.offset)
2616 && MIPS_9BIT_OFFSET_P (INTVAL (addr.offset)));
2617 }
2618
2619 /* Return the number of instructions needed to load constant X,
2620 assuming that BASE_INSN_LENGTH is the length of one instruction.
2621 Return 0 if X isn't a valid constant. */
2622
2623 int
2624 mips_const_insns (rtx x)
2625 {
2626 struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
2627 enum mips_symbol_type symbol_type;
2628 rtx offset;
2629
2630 switch (GET_CODE (x))
2631 {
2632 case HIGH:
2633 if (!mips_symbolic_constant_p (XEXP (x, 0), SYMBOL_CONTEXT_LEA,
2634 &symbol_type)
2635 || !mips_split_p[symbol_type])
2636 return 0;
2637
2638 /* This is simply an LUI for normal mode. It is an extended
2639 LI followed by an extended SLL for MIPS16. */
2640 return TARGET_MIPS16 ? 4 : 1;
2641
2642 case CONST_INT:
2643 if (TARGET_MIPS16)
2644 /* Unsigned 8-bit constants can be loaded using an unextended
2645 LI instruction. Unsigned 16-bit constants can be loaded
2646 using an extended LI. Negative constants must be loaded
2647 using LI and then negated. */
2648 return (IN_RANGE (INTVAL (x), 0, 255) ? 1
2649 : SMALL_OPERAND_UNSIGNED (INTVAL (x)) ? 2
2650 : IN_RANGE (-INTVAL (x), 0, 255) ? 2
2651 : SMALL_OPERAND_UNSIGNED (-INTVAL (x)) ? 3
2652 : 0);
2653
2654 return mips_build_integer (codes, INTVAL (x));
2655
2656 case CONST_DOUBLE:
2657 case CONST_VECTOR:
2658 /* Allow zeros for normal mode, where we can use $0. */
2659 return !TARGET_MIPS16 && x == CONST0_RTX (GET_MODE (x)) ? 1 : 0;
2660
2661 case CONST:
2662 if (CONST_GP_P (x))
2663 return 1;
2664
2665 /* See if we can refer to X directly. */
2666 if (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_LEA, &symbol_type))
2667 return mips_symbol_insns (symbol_type, MAX_MACHINE_MODE);
2668
2669 /* Otherwise try splitting the constant into a base and offset.
2670 If the offset is a 16-bit value, we can load the base address
2671 into a register and then use (D)ADDIU to add in the offset.
2672 If the offset is larger, we can load the base and offset
2673 into separate registers and add them together with (D)ADDU.
2674 However, the latter is only possible before reload; during
2675 and after reload, we must have the option of forcing the
2676 constant into the pool instead. */
2677 split_const (x, &x, &offset);
2678 if (offset != 0)
2679 {
2680 int n = mips_const_insns (x);
2681 if (n != 0)
2682 {
2683 if (SMALL_INT (offset))
2684 return n + 1;
2685 else if (!targetm.cannot_force_const_mem (GET_MODE (x), x))
2686 return n + 1 + mips_build_integer (codes, INTVAL (offset));
2687 }
2688 }
2689 return 0;
2690
2691 case SYMBOL_REF:
2692 case LABEL_REF:
2693 return mips_symbol_insns (mips_classify_symbol (x, SYMBOL_CONTEXT_LEA),
2694 MAX_MACHINE_MODE);
2695
2696 default:
2697 return 0;
2698 }
2699 }
2700
2701 /* X is a doubleword constant that can be handled by splitting it into
2702 two words and loading each word separately. Return the number of
2703 instructions required to do this, assuming that BASE_INSN_LENGTH
2704 is the length of one instruction. */
2705
2706 int
2707 mips_split_const_insns (rtx x)
2708 {
2709 unsigned int low, high;
2710
2711 low = mips_const_insns (mips_subword (x, false));
2712 high = mips_const_insns (mips_subword (x, true));
2713 gcc_assert (low > 0 && high > 0);
2714 return low + high;
2715 }
2716
2717 /* Return the number of instructions needed to implement INSN,
2718 given that it loads from or stores to MEM. Assume that
2719 BASE_INSN_LENGTH is the length of one instruction. */
2720
2721 int
2722 mips_load_store_insns (rtx mem, rtx_insn *insn)
2723 {
2724 machine_mode mode;
2725 bool might_split_p;
2726 rtx set;
2727
2728 gcc_assert (MEM_P (mem));
2729 mode = GET_MODE (mem);
2730
2731 /* Try to prove that INSN does not need to be split. */
2732 might_split_p = GET_MODE_SIZE (mode) > UNITS_PER_WORD;
2733 if (might_split_p)
2734 {
2735 set = single_set (insn);
2736 if (set && !mips_split_move_insn_p (SET_DEST (set), SET_SRC (set), insn))
2737 might_split_p = false;
2738 }
2739
2740 return mips_address_insns (XEXP (mem, 0), mode, might_split_p);
2741 }
2742
2743 /* Return the number of instructions needed for an integer division,
2744 assuming that BASE_INSN_LENGTH is the length of one instruction. */
2745
2746 int
2747 mips_idiv_insns (void)
2748 {
2749 int count;
2750
2751 count = 1;
2752 if (TARGET_CHECK_ZERO_DIV)
2753 {
2754 if (GENERATE_DIVIDE_TRAPS)
2755 count++;
2756 else
2757 count += 2;
2758 }
2759
2760 if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
2761 count++;
2762 return count;
2763 }
2764 \f
2765 /* Emit a move from SRC to DEST. Assume that the move expanders can
2766 handle all moves if !can_create_pseudo_p (). The distinction is
2767 important because, unlike emit_move_insn, the move expanders know
2768 how to force Pmode objects into the constant pool even when the
2769 constant pool address is not itself legitimate. */
2770
2771 rtx_insn *
2772 mips_emit_move (rtx dest, rtx src)
2773 {
2774 return (can_create_pseudo_p ()
2775 ? emit_move_insn (dest, src)
2776 : emit_move_insn_1 (dest, src));
2777 }
2778
2779 /* Emit a move from SRC to DEST, splitting compound moves into individual
2780 instructions. SPLIT_TYPE is the type of split to perform. */
2781
2782 static void
2783 mips_emit_move_or_split (rtx dest, rtx src, enum mips_split_type split_type)
2784 {
2785 if (mips_split_move_p (dest, src, split_type))
2786 mips_split_move (dest, src, split_type);
2787 else
2788 mips_emit_move (dest, src);
2789 }
2790
2791 /* Emit an instruction of the form (set TARGET (CODE OP0)). */
2792
2793 static void
2794 mips_emit_unary (enum rtx_code code, rtx target, rtx op0)
2795 {
2796 emit_insn (gen_rtx_SET (target, gen_rtx_fmt_e (code, GET_MODE (op0), op0)));
2797 }
2798
2799 /* Compute (CODE OP0) and store the result in a new register of mode MODE.
2800 Return that new register. */
2801
2802 static rtx
2803 mips_force_unary (machine_mode mode, enum rtx_code code, rtx op0)
2804 {
2805 rtx reg;
2806
2807 reg = gen_reg_rtx (mode);
2808 mips_emit_unary (code, reg, op0);
2809 return reg;
2810 }
2811
2812 /* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */
2813
2814 void
2815 mips_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
2816 {
2817 emit_insn (gen_rtx_SET (target, gen_rtx_fmt_ee (code, GET_MODE (target),
2818 op0, op1)));
2819 }
2820
2821 /* Compute (CODE OP0 OP1) and store the result in a new register
2822 of mode MODE. Return that new register. */
2823
2824 static rtx
2825 mips_force_binary (machine_mode mode, enum rtx_code code, rtx op0, rtx op1)
2826 {
2827 rtx reg;
2828
2829 reg = gen_reg_rtx (mode);
2830 mips_emit_binary (code, reg, op0, op1);
2831 return reg;
2832 }
2833
2834 /* Copy VALUE to a register and return that register. If new pseudos
2835 are allowed, copy it into a new register, otherwise use DEST. */
2836
2837 static rtx
2838 mips_force_temporary (rtx dest, rtx value)
2839 {
2840 if (can_create_pseudo_p ())
2841 return force_reg (Pmode, value);
2842 else
2843 {
2844 mips_emit_move (dest, value);
2845 return dest;
2846 }
2847 }
2848
2849 /* Emit a call sequence with call pattern PATTERN and return the call
2850 instruction itself (which is not necessarily the last instruction
2851 emitted). ORIG_ADDR is the original, unlegitimized address,
2852 ADDR is the legitimized form, and LAZY_P is true if the call
2853 address is lazily-bound. */
2854
2855 static rtx_insn *
2856 mips_emit_call_insn (rtx pattern, rtx orig_addr, rtx addr, bool lazy_p)
2857 {
2858 rtx_insn *insn;
2859 rtx reg;
2860
2861 insn = emit_call_insn (pattern);
2862
2863 if (TARGET_MIPS16 && mips_use_pic_fn_addr_reg_p (orig_addr))
2864 {
2865 /* MIPS16 JALRs only take MIPS16 registers. If the target
2866 function requires $25 to be valid on entry, we must copy it
2867 there separately. The move instruction can be put in the
2868 call's delay slot. */
2869 reg = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
2870 emit_insn_before (gen_move_insn (reg, addr), insn);
2871 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), reg);
2872 }
2873
2874 if (lazy_p)
2875 /* Lazy-binding stubs require $gp to be valid on entry. */
2876 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
2877
2878 if (TARGET_USE_GOT)
2879 {
2880 /* See the comment above load_call<mode> for details. */
2881 use_reg (&CALL_INSN_FUNCTION_USAGE (insn),
2882 gen_rtx_REG (Pmode, GOT_VERSION_REGNUM));
2883 emit_insn (gen_update_got_version ());
2884 }
2885
2886 if (TARGET_MIPS16
2887 && TARGET_EXPLICIT_RELOCS
2888 && TARGET_CALL_CLOBBERED_GP)
2889 {
2890 rtx post_call_tmp_reg = gen_rtx_REG (word_mode, POST_CALL_TMP_REG);
2891 clobber_reg (&CALL_INSN_FUNCTION_USAGE (insn), post_call_tmp_reg);
2892 }
2893
2894 return insn;
2895 }
2896 \f
2897 /* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE,
2898 then add CONST_INT OFFSET to the result. */
2899
2900 static rtx
2901 mips_unspec_address_offset (rtx base, rtx offset,
2902 enum mips_symbol_type symbol_type)
2903 {
2904 base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
2905 UNSPEC_ADDRESS_FIRST + symbol_type);
2906 if (offset != const0_rtx)
2907 base = gen_rtx_PLUS (Pmode, base, offset);
2908 return gen_rtx_CONST (Pmode, base);
2909 }
2910
2911 /* Return an UNSPEC address with underlying address ADDRESS and symbol
2912 type SYMBOL_TYPE. */
2913
2914 rtx
2915 mips_unspec_address (rtx address, enum mips_symbol_type symbol_type)
2916 {
2917 rtx base, offset;
2918
2919 split_const (address, &base, &offset);
2920 return mips_unspec_address_offset (base, offset, symbol_type);
2921 }
2922
2923 /* If OP is an UNSPEC address, return the address to which it refers,
2924 otherwise return OP itself. */
2925
2926 rtx
2927 mips_strip_unspec_address (rtx op)
2928 {
2929 rtx base, offset;
2930
2931 split_const (op, &base, &offset);
2932 if (UNSPEC_ADDRESS_P (base))
2933 op = plus_constant (Pmode, UNSPEC_ADDRESS (base), INTVAL (offset));
2934 return op;
2935 }
2936
2937 /* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
2938 high part to BASE and return the result. Just return BASE otherwise.
2939 TEMP is as for mips_force_temporary.
2940
2941 The returned expression can be used as the first operand to a LO_SUM. */
2942
2943 static rtx
2944 mips_unspec_offset_high (rtx temp, rtx base, rtx addr,
2945 enum mips_symbol_type symbol_type)
2946 {
2947 if (mips_split_p[symbol_type])
2948 {
2949 addr = gen_rtx_HIGH (Pmode, mips_unspec_address (addr, symbol_type));
2950 addr = mips_force_temporary (temp, addr);
2951 base = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, addr, base));
2952 }
2953 return base;
2954 }
2955 \f
2956 /* Return an instruction that copies $gp into register REG. We want
2957 GCC to treat the register's value as constant, so that its value
2958 can be rematerialized on demand. */
2959
2960 static rtx
2961 gen_load_const_gp (rtx reg)
2962 {
2963 return PMODE_INSN (gen_load_const_gp, (reg));
2964 }
2965
2966 /* Return a pseudo register that contains the value of $gp throughout
2967 the current function. Such registers are needed by MIPS16 functions,
2968 for which $gp itself is not a valid base register or addition operand. */
2969
2970 static rtx
2971 mips16_gp_pseudo_reg (void)
2972 {
2973 if (cfun->machine->mips16_gp_pseudo_rtx == NULL_RTX)
2974 {
2975 rtx_insn *scan;
2976
2977 cfun->machine->mips16_gp_pseudo_rtx = gen_reg_rtx (Pmode);
2978
2979 push_topmost_sequence ();
2980
2981 scan = get_insns ();
2982 while (NEXT_INSN (scan) && !INSN_P (NEXT_INSN (scan)))
2983 scan = NEXT_INSN (scan);
2984
2985 rtx set = gen_load_const_gp (cfun->machine->mips16_gp_pseudo_rtx);
2986 rtx_insn *insn = emit_insn_after (set, scan);
2987 INSN_LOCATION (insn) = 0;
2988
2989 pop_topmost_sequence ();
2990 }
2991
2992 return cfun->machine->mips16_gp_pseudo_rtx;
2993 }
2994
2995 /* Return a base register that holds pic_offset_table_rtx.
2996 TEMP, if nonnull, is a scratch Pmode base register. */
2997
2998 rtx
2999 mips_pic_base_register (rtx temp)
3000 {
3001 if (!TARGET_MIPS16)
3002 return pic_offset_table_rtx;
3003
3004 if (currently_expanding_to_rtl)
3005 return mips16_gp_pseudo_reg ();
3006
3007 if (can_create_pseudo_p ())
3008 temp = gen_reg_rtx (Pmode);
3009
3010 if (TARGET_USE_GOT)
3011 /* The first post-reload split exposes all references to $gp
3012 (both uses and definitions). All references must remain
3013 explicit after that point.
3014
3015 It is safe to introduce uses of $gp at any time, so for
3016 simplicity, we do that before the split too. */
3017 mips_emit_move (temp, pic_offset_table_rtx);
3018 else
3019 emit_insn (gen_load_const_gp (temp));
3020 return temp;
3021 }
3022
3023 /* Return the RHS of a load_call<mode> insn. */
3024
3025 static rtx
3026 mips_unspec_call (rtx reg, rtx symbol)
3027 {
3028 rtvec vec;
3029
3030 vec = gen_rtvec (3, reg, symbol, gen_rtx_REG (SImode, GOT_VERSION_REGNUM));
3031 return gen_rtx_UNSPEC (Pmode, vec, UNSPEC_LOAD_CALL);
3032 }
3033
3034 /* If SRC is the RHS of a load_call<mode> insn, return the underlying symbol
3035 reference. Return NULL_RTX otherwise. */
3036
3037 static rtx
3038 mips_strip_unspec_call (rtx src)
3039 {
3040 if (GET_CODE (src) == UNSPEC && XINT (src, 1) == UNSPEC_LOAD_CALL)
3041 return mips_strip_unspec_address (XVECEXP (src, 0, 1));
3042 return NULL_RTX;
3043 }
3044
3045 /* Create and return a GOT reference of type TYPE for address ADDR.
3046 TEMP, if nonnull, is a scratch Pmode base register. */
3047
3048 rtx
3049 mips_got_load (rtx temp, rtx addr, enum mips_symbol_type type)
3050 {
3051 rtx base, high, lo_sum_symbol;
3052
3053 base = mips_pic_base_register (temp);
3054
3055 /* If we used the temporary register to load $gp, we can't use
3056 it for the high part as well. */
3057 if (temp != NULL && reg_overlap_mentioned_p (base, temp))
3058 temp = NULL;
3059
3060 high = mips_unspec_offset_high (temp, base, addr, type);
3061 lo_sum_symbol = mips_unspec_address (addr, type);
3062
3063 if (type == SYMBOL_GOTOFF_CALL)
3064 return mips_unspec_call (high, lo_sum_symbol);
3065 else
3066 return PMODE_INSN (gen_unspec_got, (high, lo_sum_symbol));
3067 }
3068
3069 /* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise
3070 it appears in a MEM of that mode. Return true if ADDR is a legitimate
3071 constant in that context and can be split into high and low parts.
3072 If so, and if LOW_OUT is nonnull, emit the high part and store the
3073 low part in *LOW_OUT. Leave *LOW_OUT unchanged otherwise.
3074
3075 TEMP is as for mips_force_temporary and is used to load the high
3076 part into a register.
3077
3078 When MODE is MAX_MACHINE_MODE, the low part is guaranteed to be
3079 a legitimize SET_SRC for an .md pattern, otherwise the low part
3080 is guaranteed to be a legitimate address for mode MODE. */
3081
3082 bool
3083 mips_split_symbol (rtx temp, rtx addr, machine_mode mode, rtx *low_out)
3084 {
3085 enum mips_symbol_context context;
3086 enum mips_symbol_type symbol_type;
3087 rtx high;
3088
3089 context = (mode == MAX_MACHINE_MODE
3090 ? SYMBOL_CONTEXT_LEA
3091 : SYMBOL_CONTEXT_MEM);
3092 if (GET_CODE (addr) == HIGH && context == SYMBOL_CONTEXT_LEA)
3093 {
3094 addr = XEXP (addr, 0);
3095 if (mips_symbolic_constant_p (addr, context, &symbol_type)
3096 && mips_symbol_insns (symbol_type, mode) > 0
3097 && mips_split_hi_p[symbol_type])
3098 {
3099 if (low_out)
3100 switch (symbol_type)
3101 {
3102 case SYMBOL_GOT_PAGE_OFST:
3103 /* The high part of a page/ofst pair is loaded from the GOT. */
3104 *low_out = mips_got_load (temp, addr, SYMBOL_GOTOFF_PAGE);
3105 break;
3106
3107 default:
3108 gcc_unreachable ();
3109 }
3110 return true;
3111 }
3112 }
3113 else
3114 {
3115 if (mips_symbolic_constant_p (addr, context, &symbol_type)
3116 && mips_symbol_insns (symbol_type, mode) > 0
3117 && mips_split_p[symbol_type])
3118 {
3119 if (low_out)
3120 switch (symbol_type)
3121 {
3122 case SYMBOL_GOT_DISP:
3123 /* SYMBOL_GOT_DISP symbols are loaded from the GOT. */
3124 *low_out = mips_got_load (temp, addr, SYMBOL_GOTOFF_DISP);
3125 break;
3126
3127 case SYMBOL_GP_RELATIVE:
3128 high = mips_pic_base_register (temp);
3129 *low_out = gen_rtx_LO_SUM (Pmode, high, addr);
3130 break;
3131
3132 default:
3133 high = gen_rtx_HIGH (Pmode, copy_rtx (addr));
3134 high = mips_force_temporary (temp, high);
3135 *low_out = gen_rtx_LO_SUM (Pmode, high, addr);
3136 break;
3137 }
3138 return true;
3139 }
3140 }
3141 return false;
3142 }
3143
3144 /* Return a legitimate address for REG + OFFSET. TEMP is as for
3145 mips_force_temporary; it is only needed when OFFSET is not a
3146 SMALL_OPERAND. */
3147
3148 static rtx
3149 mips_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
3150 {
3151 if (!SMALL_OPERAND (offset))
3152 {
3153 rtx high;
3154
3155 if (TARGET_MIPS16)
3156 {
3157 /* Load the full offset into a register so that we can use
3158 an unextended instruction for the address itself. */
3159 high = GEN_INT (offset);
3160 offset = 0;
3161 }
3162 else
3163 {
3164 /* Leave OFFSET as a 16-bit offset and put the excess in HIGH.
3165 The addition inside the macro CONST_HIGH_PART may cause an
3166 overflow, so we need to force a sign-extension check. */
3167 high = gen_int_mode (CONST_HIGH_PART (offset), Pmode);
3168 offset = CONST_LOW_PART (offset);
3169 }
3170 high = mips_force_temporary (temp, high);
3171 reg = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
3172 }
3173 return plus_constant (Pmode, reg, offset);
3174 }
3175 \f
3176 /* The __tls_get_attr symbol. */
3177 static GTY(()) rtx mips_tls_symbol;
3178
3179 /* Return an instruction sequence that calls __tls_get_addr. SYM is
3180 the TLS symbol we are referencing and TYPE is the symbol type to use
3181 (either global dynamic or local dynamic). V0 is an RTX for the
3182 return value location. */
3183
3184 static rtx
3185 mips_call_tls_get_addr (rtx sym, enum mips_symbol_type type, rtx v0)
3186 {
3187 rtx insn, loc, a0;
3188
3189 a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);
3190
3191 if (!mips_tls_symbol)
3192 mips_tls_symbol = init_one_libfunc ("__tls_get_addr");
3193
3194 loc = mips_unspec_address (sym, type);
3195
3196 start_sequence ();
3197
3198 emit_insn (gen_rtx_SET (a0, gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx,
3199 loc)));
3200 insn = mips_expand_call (MIPS_CALL_NORMAL, v0, mips_tls_symbol,
3201 const0_rtx, NULL_RTX, false);
3202 RTL_CONST_CALL_P (insn) = 1;
3203 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
3204 insn = get_insns ();
3205
3206 end_sequence ();
3207
3208 return insn;
3209 }
3210
3211 /* Return a pseudo register that contains the current thread pointer. */
3212
3213 rtx
3214 mips_expand_thread_pointer (rtx tp)
3215 {
3216 rtx fn;
3217
3218 if (TARGET_MIPS16)
3219 {
3220 if (!mips16_rdhwr_stub)
3221 mips16_rdhwr_stub = new mips16_rdhwr_one_only_stub ();
3222 fn = mips16_stub_call_address (mips16_rdhwr_stub);
3223 emit_insn (PMODE_INSN (gen_tls_get_tp_mips16, (tp, fn)));
3224 }
3225 else
3226 emit_insn (PMODE_INSN (gen_tls_get_tp, (tp)));
3227 return tp;
3228 }
3229
3230 static rtx
3231 mips_get_tp (void)
3232 {
3233 return mips_expand_thread_pointer (gen_reg_rtx (Pmode));
3234 }
3235
3236 /* Generate the code to access LOC, a thread-local SYMBOL_REF, and return
3237 its address. The return value will be both a valid address and a valid
3238 SET_SRC (either a REG or a LO_SUM). */
3239
3240 static rtx
3241 mips_legitimize_tls_address (rtx loc)
3242 {
3243 rtx dest, insn, v0, tp, tmp1, tmp2, eqv, offset;
3244 enum tls_model model;
3245
3246 model = SYMBOL_REF_TLS_MODEL (loc);
3247 /* Only TARGET_ABICALLS code can have more than one module; other
3248 code must be be static and should not use a GOT. All TLS models
3249 reduce to local exec in this situation. */
3250 if (!TARGET_ABICALLS)
3251 model = TLS_MODEL_LOCAL_EXEC;
3252
3253 switch (model)
3254 {
3255 case TLS_MODEL_GLOBAL_DYNAMIC:
3256 v0 = gen_rtx_REG (Pmode, GP_RETURN);
3257 insn = mips_call_tls_get_addr (loc, SYMBOL_TLSGD, v0);
3258 dest = gen_reg_rtx (Pmode);
3259 emit_libcall_block (insn, dest, v0, loc);
3260 break;
3261
3262 case TLS_MODEL_LOCAL_DYNAMIC:
3263 v0 = gen_rtx_REG (Pmode, GP_RETURN);
3264 insn = mips_call_tls_get_addr (loc, SYMBOL_TLSLDM, v0);
3265 tmp1 = gen_reg_rtx (Pmode);
3266
3267 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
3268 share the LDM result with other LD model accesses. */
3269 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
3270 UNSPEC_TLS_LDM);
3271 emit_libcall_block (insn, tmp1, v0, eqv);
3272
3273 offset = mips_unspec_address (loc, SYMBOL_DTPREL);
3274 if (mips_split_p[SYMBOL_DTPREL])
3275 {
3276 tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_DTPREL);
3277 dest = gen_rtx_LO_SUM (Pmode, tmp2, offset);
3278 }
3279 else
3280 dest = expand_binop (Pmode, add_optab, tmp1, offset,
3281 0, 0, OPTAB_DIRECT);
3282 break;
3283
3284 case TLS_MODEL_INITIAL_EXEC:
3285 tp = mips_get_tp ();
3286 tmp1 = gen_reg_rtx (Pmode);
3287 tmp2 = mips_unspec_address (loc, SYMBOL_GOTTPREL);
3288 if (Pmode == DImode)
3289 emit_insn (gen_load_gotdi (tmp1, pic_offset_table_rtx, tmp2));
3290 else
3291 emit_insn (gen_load_gotsi (tmp1, pic_offset_table_rtx, tmp2));
3292 dest = gen_reg_rtx (Pmode);
3293 emit_insn (gen_add3_insn (dest, tmp1, tp));
3294 break;
3295
3296 case TLS_MODEL_LOCAL_EXEC:
3297 tmp1 = mips_get_tp ();
3298 offset = mips_unspec_address (loc, SYMBOL_TPREL);
3299 if (mips_split_p[SYMBOL_TPREL])
3300 {
3301 tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_TPREL);
3302 dest = gen_rtx_LO_SUM (Pmode, tmp2, offset);
3303 }
3304 else
3305 dest = expand_binop (Pmode, add_optab, tmp1, offset,
3306 0, 0, OPTAB_DIRECT);
3307 break;
3308
3309 default:
3310 gcc_unreachable ();
3311 }
3312 return dest;
3313 }
3314 \f
3315 /* Implement "TARGET = __builtin_mips_get_fcsr ()" for MIPS16,
3316 using a stub. */
3317
3318 void
3319 mips16_expand_get_fcsr (rtx target)
3320 {
3321 if (!mips16_get_fcsr_stub)
3322 mips16_get_fcsr_stub = new mips16_get_fcsr_one_only_stub ();
3323 rtx fn = mips16_stub_call_address (mips16_get_fcsr_stub);
3324 emit_insn (PMODE_INSN (gen_mips_get_fcsr_mips16, (fn)));
3325 emit_move_insn (target, gen_rtx_REG (SImode, GET_FCSR_REGNUM));
3326 }
3327
3328 /* Implement __builtin_mips_set_fcsr (TARGET) for MIPS16, using a stub. */
3329
3330 void
3331 mips16_expand_set_fcsr (rtx newval)
3332 {
3333 if (!mips16_set_fcsr_stub)
3334 mips16_set_fcsr_stub = new mips16_set_fcsr_one_only_stub ();
3335 rtx fn = mips16_stub_call_address (mips16_set_fcsr_stub);
3336 emit_move_insn (gen_rtx_REG (SImode, SET_FCSR_REGNUM), newval);
3337 emit_insn (PMODE_INSN (gen_mips_set_fcsr_mips16, (fn)));
3338 }
3339 \f
3340 /* If X is not a valid address for mode MODE, force it into a register. */
3341
3342 static rtx
3343 mips_force_address (rtx x, machine_mode mode)
3344 {
3345 if (!mips_legitimate_address_p (mode, x, false))
3346 x = force_reg (Pmode, x);
3347 return x;
3348 }
3349
3350 /* This function is used to implement LEGITIMIZE_ADDRESS. If X can
3351 be legitimized in a way that the generic machinery might not expect,
3352 return a new address, otherwise return NULL. MODE is the mode of
3353 the memory being accessed. */
3354
3355 static rtx
3356 mips_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
3357 machine_mode mode)
3358 {
3359 rtx base, addr;
3360 HOST_WIDE_INT offset;
3361
3362 if (mips_tls_symbol_p (x))
3363 return mips_legitimize_tls_address (x);
3364
3365 /* See if the address can split into a high part and a LO_SUM. */
3366 if (mips_split_symbol (NULL, x, mode, &addr))
3367 return mips_force_address (addr, mode);
3368
3369 /* Handle BASE + OFFSET using mips_add_offset. */
3370 mips_split_plus (x, &base, &offset);
3371 if (offset != 0)
3372 {
3373 if (!mips_valid_base_register_p (base, mode, false))
3374 base = copy_to_mode_reg (Pmode, base);
3375 addr = mips_add_offset (NULL, base, offset);
3376 return mips_force_address (addr, mode);
3377 }
3378
3379 return x;
3380 }
3381
3382 /* Load VALUE into DEST. TEMP is as for mips_force_temporary. */
3383
3384 void
3385 mips_move_integer (rtx temp, rtx dest, unsigned HOST_WIDE_INT value)
3386 {
3387 struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
3388 machine_mode mode;
3389 unsigned int i, num_ops;
3390 rtx x;
3391
3392 mode = GET_MODE (dest);
3393 num_ops = mips_build_integer (codes, value);
3394
3395 /* Apply each binary operation to X. Invariant: X is a legitimate
3396 source operand for a SET pattern. */
3397 x = GEN_INT (codes[0].value);
3398 for (i = 1; i < num_ops; i++)
3399 {
3400 if (!can_create_pseudo_p ())
3401 {
3402 emit_insn (gen_rtx_SET (temp, x));
3403 x = temp;
3404 }
3405 else
3406 x = force_reg (mode, x);
3407 x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
3408 }
3409
3410 emit_insn (gen_rtx_SET (dest, x));
3411 }
3412
3413 /* Subroutine of mips_legitimize_move. Move constant SRC into register
3414 DEST given that SRC satisfies immediate_operand but doesn't satisfy
3415 move_operand. */
3416
3417 static void
3418 mips_legitimize_const_move (machine_mode mode, rtx dest, rtx src)
3419 {
3420 rtx base, offset;
3421
3422 /* Split moves of big integers into smaller pieces. */
3423 if (splittable_const_int_operand (src, mode))
3424 {
3425 mips_move_integer (dest, dest, INTVAL (src));
3426 return;
3427 }
3428
3429 /* Split moves of symbolic constants into high/low pairs. */
3430 if (mips_split_symbol (dest, src, MAX_MACHINE_MODE, &src))
3431 {
3432 emit_insn (gen_rtx_SET (dest, src));
3433 return;
3434 }
3435
3436 /* Generate the appropriate access sequences for TLS symbols. */
3437 if (mips_tls_symbol_p (src))
3438 {
3439 mips_emit_move (dest, mips_legitimize_tls_address (src));
3440 return;
3441 }
3442
3443 /* If we have (const (plus symbol offset)), and that expression cannot
3444 be forced into memory, load the symbol first and add in the offset.
3445 In non-MIPS16 mode, prefer to do this even if the constant _can_ be
3446 forced into memory, as it usually produces better code. */
3447 split_const (src, &base, &offset);
3448 if (offset != const0_rtx
3449 && (targetm.cannot_force_const_mem (mode, src)
3450 || (!TARGET_MIPS16 && can_create_pseudo_p ())))
3451 {
3452 base = mips_force_temporary (dest, base);
3453 mips_emit_move (dest, mips_add_offset (NULL, base, INTVAL (offset)));
3454 return;
3455 }
3456
3457 src = force_const_mem (mode, src);
3458
3459 /* When using explicit relocs, constant pool references are sometimes
3460 not legitimate addresses. */
3461 mips_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0));
3462 mips_emit_move (dest, src);
3463 }
3464
3465 /* If (set DEST SRC) is not a valid move instruction, emit an equivalent
3466 sequence that is valid. */
3467
3468 bool
3469 mips_legitimize_move (machine_mode mode, rtx dest, rtx src)
3470 {
3471 if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
3472 {
3473 mips_emit_move (dest, force_reg (mode, src));
3474 return true;
3475 }
3476
3477 /* We need to deal with constants that would be legitimate
3478 immediate_operands but aren't legitimate move_operands. */
3479 if (CONSTANT_P (src) && !move_operand (src, mode))
3480 {
3481 mips_legitimize_const_move (mode, dest, src);
3482 set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
3483 return true;
3484 }
3485 return false;
3486 }
3487 \f
3488 /* Return true if value X in context CONTEXT is a small-data address
3489 that can be rewritten as a LO_SUM. */
3490
3491 static bool
3492 mips_rewrite_small_data_p (rtx x, enum mips_symbol_context context)
3493 {
3494 enum mips_symbol_type symbol_type;
3495
3496 return (mips_lo_relocs[SYMBOL_GP_RELATIVE]
3497 && !mips_split_p[SYMBOL_GP_RELATIVE]
3498 && mips_symbolic_constant_p (x, context, &symbol_type)
3499 && symbol_type == SYMBOL_GP_RELATIVE);
3500 }
3501
3502 /* Return true if OP refers to small data symbols directly, not through
3503 a LO_SUM. CONTEXT is the context in which X appears. */
3504
3505 static int
3506 mips_small_data_pattern_1 (rtx x, enum mips_symbol_context context)
3507 {
3508 subrtx_var_iterator::array_type array;
3509 FOR_EACH_SUBRTX_VAR (iter, array, x, ALL)
3510 {
3511 rtx x = *iter;
3512
3513 /* Ignore things like "g" constraints in asms. We make no particular
3514 guarantee about which symbolic constants are acceptable as asm operands
3515 versus which must be forced into a GPR. */
3516 if (GET_CODE (x) == LO_SUM || GET_CODE (x) == ASM_OPERANDS)
3517 iter.skip_subrtxes ();
3518 else if (MEM_P (x))
3519 {
3520 if (mips_small_data_pattern_1 (XEXP (x, 0), SYMBOL_CONTEXT_MEM))
3521 return true;
3522 iter.skip_subrtxes ();
3523 }
3524 else if (mips_rewrite_small_data_p (x, context))
3525 return true;
3526 }
3527 return false;
3528 }
3529
3530 /* Return true if OP refers to small data symbols directly, not through
3531 a LO_SUM. */
3532
3533 bool
3534 mips_small_data_pattern_p (rtx op)
3535 {
3536 return mips_small_data_pattern_1 (op, SYMBOL_CONTEXT_LEA);
3537 }
3538
3539 /* Rewrite *LOC so that it refers to small data using explicit
3540 relocations. CONTEXT is the context in which *LOC appears. */
3541
3542 static void
3543 mips_rewrite_small_data_1 (rtx *loc, enum mips_symbol_context context)
3544 {
3545 subrtx_ptr_iterator::array_type array;
3546 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3547 {
3548 rtx *loc = *iter;
3549 if (MEM_P (*loc))
3550 {
3551 mips_rewrite_small_data_1 (&XEXP (*loc, 0), SYMBOL_CONTEXT_MEM);
3552 iter.skip_subrtxes ();
3553 }
3554 else if (mips_rewrite_small_data_p (*loc, context))
3555 {
3556 *loc = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, *loc);
3557 iter.skip_subrtxes ();
3558 }
3559 else if (GET_CODE (*loc) == LO_SUM)
3560 iter.skip_subrtxes ();
3561 }
3562 }
3563
3564 /* Rewrite instruction pattern PATTERN so that it refers to small data
3565 using explicit relocations. */
3566
3567 rtx
3568 mips_rewrite_small_data (rtx pattern)
3569 {
3570 pattern = copy_insn (pattern);
3571 mips_rewrite_small_data_1 (&pattern, SYMBOL_CONTEXT_LEA);
3572 return pattern;
3573 }
3574 \f
3575 /* The cost of loading values from the constant pool. It should be
3576 larger than the cost of any constant we want to synthesize inline. */
3577 #define CONSTANT_POOL_COST COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 8)
3578
3579 /* Return the cost of X when used as an operand to the MIPS16 instruction
3580 that implements CODE. Return -1 if there is no such instruction, or if
3581 X is not a valid immediate operand for it. */
3582
3583 static int
3584 mips16_constant_cost (int code, HOST_WIDE_INT x)
3585 {
3586 switch (code)
3587 {
3588 case ASHIFT:
3589 case ASHIFTRT:
3590 case LSHIFTRT:
3591 /* Shifts by between 1 and 8 bits (inclusive) are unextended,
3592 other shifts are extended. The shift patterns truncate the shift
3593 count to the right size, so there are no out-of-range values. */
3594 if (IN_RANGE (x, 1, 8))
3595 return 0;
3596 return COSTS_N_INSNS (1);
3597
3598 case PLUS:
3599 if (IN_RANGE (x, -128, 127))
3600 return 0;
3601 if (SMALL_OPERAND (x))
3602 return COSTS_N_INSNS (1);
3603 return -1;
3604
3605 case LEU:
3606 /* Like LE, but reject the always-true case. */
3607 if (x == -1)
3608 return -1;
3609 case LE:
3610 /* We add 1 to the immediate and use SLT. */
3611 x += 1;
3612 case XOR:
3613 /* We can use CMPI for an xor with an unsigned 16-bit X. */
3614 case LT:
3615 case LTU:
3616 if (IN_RANGE (x, 0, 255))
3617 return 0;
3618 if (SMALL_OPERAND_UNSIGNED (x))
3619 return COSTS_N_INSNS (1);
3620 return -1;
3621
3622 case EQ:
3623 case NE:
3624 /* Equality comparisons with 0 are cheap. */
3625 if (x == 0)
3626 return 0;
3627 return -1;
3628
3629 default:
3630 return -1;
3631 }
3632 }
3633
3634 /* Return true if there is a non-MIPS16 instruction that implements CODE
3635 and if that instruction accepts X as an immediate operand. */
3636
3637 static int
3638 mips_immediate_operand_p (int code, HOST_WIDE_INT x)
3639 {
3640 switch (code)
3641 {
3642 case ASHIFT:
3643 case ASHIFTRT:
3644 case LSHIFTRT:
3645 /* All shift counts are truncated to a valid constant. */
3646 return true;
3647
3648 case ROTATE:
3649 case ROTATERT:
3650 /* Likewise rotates, if the target supports rotates at all. */
3651 return ISA_HAS_ROR;
3652
3653 case AND:
3654 case IOR:
3655 case XOR:
3656 /* These instructions take 16-bit unsigned immediates. */
3657 return SMALL_OPERAND_UNSIGNED (x);
3658
3659 case PLUS:
3660 case LT:
3661 case LTU:
3662 /* These instructions take 16-bit signed immediates. */
3663 return SMALL_OPERAND (x);
3664
3665 case EQ:
3666 case NE:
3667 case GT:
3668 case GTU:
3669 /* The "immediate" forms of these instructions are really
3670 implemented as comparisons with register 0. */
3671 return x == 0;
3672
3673 case GE:
3674 case GEU:
3675 /* Likewise, meaning that the only valid immediate operand is 1. */
3676 return x == 1;
3677
3678 case LE:
3679 /* We add 1 to the immediate and use SLT. */
3680 return SMALL_OPERAND (x + 1);
3681
3682 case LEU:
3683 /* Likewise SLTU, but reject the always-true case. */
3684 return SMALL_OPERAND (x + 1) && x + 1 != 0;
3685
3686 case SIGN_EXTRACT:
3687 case ZERO_EXTRACT:
3688 /* The bit position and size are immediate operands. */
3689 return ISA_HAS_EXT_INS;
3690
3691 default:
3692 /* By default assume that $0 can be used for 0. */
3693 return x == 0;
3694 }
3695 }
3696
3697 /* Return the cost of binary operation X, given that the instruction
3698 sequence for a word-sized or smaller operation has cost SINGLE_COST
3699 and that the sequence of a double-word operation has cost DOUBLE_COST.
3700 If SPEED is true, optimize for speed otherwise optimize for size. */
3701
3702 static int
3703 mips_binary_cost (rtx x, int single_cost, int double_cost, bool speed)
3704 {
3705 int cost;
3706
3707 if (GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD * 2)
3708 cost = double_cost;
3709 else
3710 cost = single_cost;
3711 return (cost
3712 + set_src_cost (XEXP (x, 0), GET_MODE (x), speed)
3713 + rtx_cost (XEXP (x, 1), GET_MODE (x), GET_CODE (x), 1, speed));
3714 }
3715
3716 /* Return the cost of floating-point multiplications of mode MODE. */
3717
3718 static int
3719 mips_fp_mult_cost (machine_mode mode)
3720 {
3721 return mode == DFmode ? mips_cost->fp_mult_df : mips_cost->fp_mult_sf;
3722 }
3723
3724 /* Return the cost of floating-point divisions of mode MODE. */
3725
3726 static int
3727 mips_fp_div_cost (machine_mode mode)
3728 {
3729 return mode == DFmode ? mips_cost->fp_div_df : mips_cost->fp_div_sf;
3730 }
3731
3732 /* Return the cost of sign-extending OP to mode MODE, not including the
3733 cost of OP itself. */
3734
3735 static int
3736 mips_sign_extend_cost (machine_mode mode, rtx op)
3737 {
3738 if (MEM_P (op))
3739 /* Extended loads are as cheap as unextended ones. */
3740 return 0;
3741
3742 if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
3743 /* A sign extension from SImode to DImode in 64-bit mode is free. */
3744 return 0;
3745
3746 if (ISA_HAS_SEB_SEH || GENERATE_MIPS16E)
3747 /* We can use SEB or SEH. */
3748 return COSTS_N_INSNS (1);
3749
3750 /* We need to use a shift left and a shift right. */
3751 return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2);
3752 }
3753
3754 /* Return the cost of zero-extending OP to mode MODE, not including the
3755 cost of OP itself. */
3756
3757 static int
3758 mips_zero_extend_cost (machine_mode mode, rtx op)
3759 {
3760 if (MEM_P (op))
3761 /* Extended loads are as cheap as unextended ones. */
3762 return 0;
3763
3764 if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
3765 /* We need a shift left by 32 bits and a shift right by 32 bits. */
3766 return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2);
3767
3768 if (GENERATE_MIPS16E)
3769 /* We can use ZEB or ZEH. */
3770 return COSTS_N_INSNS (1);
3771
3772 if (TARGET_MIPS16)
3773 /* We need to load 0xff or 0xffff into a register and use AND. */
3774 return COSTS_N_INSNS (GET_MODE (op) == QImode ? 2 : 3);
3775
3776 /* We can use ANDI. */
3777 return COSTS_N_INSNS (1);
3778 }
3779
3780 /* Return the cost of moving between two registers of mode MODE,
3781 assuming that the move will be in pieces of at most UNITS bytes. */
3782
3783 static int
3784 mips_set_reg_reg_piece_cost (machine_mode mode, unsigned int units)
3785 {
3786 return COSTS_N_INSNS ((GET_MODE_SIZE (mode) + units - 1) / units);
3787 }
3788
3789 /* Return the cost of moving between two registers of mode MODE. */
3790
3791 static int
3792 mips_set_reg_reg_cost (machine_mode mode)
3793 {
3794 switch (GET_MODE_CLASS (mode))
3795 {
3796 case MODE_CC:
3797 return mips_set_reg_reg_piece_cost (mode, GET_MODE_SIZE (CCmode));
3798
3799 case MODE_FLOAT:
3800 case MODE_COMPLEX_FLOAT:
3801 case MODE_VECTOR_FLOAT:
3802 if (TARGET_HARD_FLOAT)
3803 return mips_set_reg_reg_piece_cost (mode, UNITS_PER_HWFPVALUE);
3804 /* Fall through */
3805
3806 default:
3807 return mips_set_reg_reg_piece_cost (mode, UNITS_PER_WORD);
3808 }
3809 }
3810
3811 /* Implement TARGET_RTX_COSTS. */
3812
3813 static bool
3814 mips_rtx_costs (rtx x, machine_mode mode, int outer_code,
3815 int opno ATTRIBUTE_UNUSED, int *total, bool speed)
3816 {
3817 int code = GET_CODE (x);
3818 bool float_mode_p = FLOAT_MODE_P (mode);
3819 int cost;
3820 rtx addr;
3821
3822 /* The cost of a COMPARE is hard to define for MIPS. COMPAREs don't
3823 appear in the instruction stream, and the cost of a comparison is
3824 really the cost of the branch or scc condition. At the time of
3825 writing, GCC only uses an explicit outer COMPARE code when optabs
3826 is testing whether a constant is expensive enough to force into a
3827 register. We want optabs to pass such constants through the MIPS
3828 expanders instead, so make all constants very cheap here. */
3829 if (outer_code == COMPARE)
3830 {
3831 gcc_assert (CONSTANT_P (x));
3832 *total = 0;
3833 return true;
3834 }
3835
3836 switch (code)
3837 {
3838 case CONST_INT:
3839 /* Treat *clear_upper32-style ANDs as having zero cost in the
3840 second operand. The cost is entirely in the first operand.
3841
3842 ??? This is needed because we would otherwise try to CSE
3843 the constant operand. Although that's the right thing for
3844 instructions that continue to be a register operation throughout
3845 compilation, it is disastrous for instructions that could
3846 later be converted into a memory operation. */
3847 if (TARGET_64BIT
3848 && outer_code == AND
3849 && UINTVAL (x) == 0xffffffff)
3850 {
3851 *total = 0;
3852 return true;
3853 }
3854
3855 if (TARGET_MIPS16)
3856 {
3857 cost = mips16_constant_cost (outer_code, INTVAL (x));
3858 if (cost >= 0)
3859 {
3860 *total = cost;
3861 return true;
3862 }
3863 }
3864 else
3865 {
3866 /* When not optimizing for size, we care more about the cost
3867 of hot code, and hot code is often in a loop. If a constant
3868 operand needs to be forced into a register, we will often be
3869 able to hoist the constant load out of the loop, so the load
3870 should not contribute to the cost. */
3871 if (speed || mips_immediate_operand_p (outer_code, INTVAL (x)))
3872 {
3873 *total = 0;
3874 return true;
3875 }
3876 }
3877 /* Fall through. */
3878
3879 case CONST:
3880 case SYMBOL_REF:
3881 case LABEL_REF:
3882 case CONST_DOUBLE:
3883 if (force_to_mem_operand (x, VOIDmode))
3884 {
3885 *total = COSTS_N_INSNS (1);
3886 return true;
3887 }
3888 cost = mips_const_insns (x);
3889 if (cost > 0)
3890 {
3891 /* If the constant is likely to be stored in a GPR, SETs of
3892 single-insn constants are as cheap as register sets; we
3893 never want to CSE them.
3894
3895 Don't reduce the cost of storing a floating-point zero in
3896 FPRs. If we have a zero in an FPR for other reasons, we
3897 can get better cfg-cleanup and delayed-branch results by
3898 using it consistently, rather than using $0 sometimes and
3899 an FPR at other times. Also, moves between floating-point
3900 registers are sometimes cheaper than (D)MTC1 $0. */
3901 if (cost == 1
3902 && outer_code == SET
3903 && !(float_mode_p && TARGET_HARD_FLOAT))
3904 cost = 0;
3905 /* When non-MIPS16 code loads a constant N>1 times, we rarely
3906 want to CSE the constant itself. It is usually better to
3907 have N copies of the last operation in the sequence and one
3908 shared copy of the other operations. (Note that this is
3909 not true for MIPS16 code, where the final operation in the
3910 sequence is often an extended instruction.)
3911
3912 Also, if we have a CONST_INT, we don't know whether it is
3913 for a word or doubleword operation, so we cannot rely on
3914 the result of mips_build_integer. */
3915 else if (!TARGET_MIPS16
3916 && (outer_code == SET || GET_MODE (x) == VOIDmode))
3917 cost = 1;
3918 *total = COSTS_N_INSNS (cost);
3919 return true;
3920 }
3921 /* The value will need to be fetched from the constant pool. */
3922 *total = CONSTANT_POOL_COST;
3923 return true;
3924
3925 case MEM:
3926 /* If the address is legitimate, return the number of
3927 instructions it needs. */
3928 addr = XEXP (x, 0);
3929 cost = mips_address_insns (addr, mode, true);
3930 if (cost > 0)
3931 {
3932 *total = COSTS_N_INSNS (cost + 1);
3933 return true;
3934 }
3935 /* Check for a scaled indexed address. */
3936 if (mips_lwxs_address_p (addr)
3937 || mips_lx_address_p (addr, mode))
3938 {
3939 *total = COSTS_N_INSNS (2);
3940 return true;
3941 }
3942 /* Otherwise use the default handling. */
3943 return false;
3944
3945 case FFS:
3946 *total = COSTS_N_INSNS (6);
3947 return false;
3948
3949 case NOT:
3950 *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1);
3951 return false;
3952
3953 case AND:
3954 /* Check for a *clear_upper32 pattern and treat it like a zero
3955 extension. See the pattern's comment for details. */
3956 if (TARGET_64BIT
3957 && mode == DImode
3958 && CONST_INT_P (XEXP (x, 1))
3959 && UINTVAL (XEXP (x, 1)) == 0xffffffff)
3960 {
3961 *total = (mips_zero_extend_cost (mode, XEXP (x, 0))
3962 + set_src_cost (XEXP (x, 0), mode, speed));
3963 return true;
3964 }
3965 if (ISA_HAS_CINS && CONST_INT_P (XEXP (x, 1)))
3966 {
3967 rtx op = XEXP (x, 0);
3968 if (GET_CODE (op) == ASHIFT
3969 && CONST_INT_P (XEXP (op, 1))
3970 && mask_low_and_shift_p (mode, XEXP (x, 1), XEXP (op, 1), 32))
3971 {
3972 *total = COSTS_N_INSNS (1);
3973 *total += set_src_cost (XEXP (op, 0), mode, speed);
3974 return true;
3975 }
3976 }
3977 /* (AND (NOT op0) (NOT op1) is a nor operation that can be done in
3978 a single instruction. */
3979 if (!TARGET_MIPS16
3980 && GET_CODE (XEXP (x, 0)) == NOT
3981 && GET_CODE (XEXP (x, 1)) == NOT)
3982 {
3983 cost = GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1;
3984 *total = (COSTS_N_INSNS (cost)
3985 + set_src_cost (XEXP (XEXP (x, 0), 0), mode, speed)
3986 + set_src_cost (XEXP (XEXP (x, 1), 0), mode, speed));
3987 return true;
3988 }
3989
3990 /* Fall through. */
3991
3992 case IOR:
3993 case XOR:
3994 /* Double-word operations use two single-word operations. */
3995 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (2),
3996 speed);
3997 return true;
3998
3999 case ASHIFT:
4000 case ASHIFTRT:
4001 case LSHIFTRT:
4002 case ROTATE:
4003 case ROTATERT:
4004 if (CONSTANT_P (XEXP (x, 1)))
4005 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4),
4006 speed);
4007 else
4008 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (12),
4009 speed);
4010 return true;
4011
4012 case ABS:
4013 if (float_mode_p)
4014 *total = mips_cost->fp_add;
4015 else
4016 *total = COSTS_N_INSNS (4);
4017 return false;
4018
4019 case LO_SUM:
4020 /* Low-part immediates need an extended MIPS16 instruction. */
4021 *total = (COSTS_N_INSNS (TARGET_MIPS16 ? 2 : 1)
4022 + set_src_cost (XEXP (x, 0), mode, speed));
4023 return true;
4024
4025 case LT:
4026 case LTU:
4027 case LE:
4028 case LEU:
4029 case GT:
4030 case GTU:
4031 case GE:
4032 case GEU:
4033 case EQ:
4034 case NE:
4035 case UNORDERED:
4036 case LTGT:
4037 /* Branch comparisons have VOIDmode, so use the first operand's
4038 mode instead. */
4039 mode = GET_MODE (XEXP (x, 0));
4040 if (FLOAT_MODE_P (mode))
4041 {
4042 *total = mips_cost->fp_add;
4043 return false;
4044 }
4045 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4),
4046 speed);
4047 return true;
4048
4049 case MINUS:
4050 if (float_mode_p && ISA_HAS_UNFUSED_MADD4 && !HONOR_SIGNED_ZEROS (mode))
4051 {
4052 /* See if we can use NMADD or NMSUB via the *nmadd4<mode>_fastmath
4053 or *nmsub4<mode>_fastmath patterns. These patterns check for
4054 HONOR_SIGNED_ZEROS so we check here too. */
4055 rtx op0 = XEXP (x, 0);
4056 rtx op1 = XEXP (x, 1);
4057 if (GET_CODE (op0) == MULT && GET_CODE (XEXP (op0, 0)) == NEG)
4058 {
4059 *total = (mips_fp_mult_cost (mode)
4060 + set_src_cost (XEXP (XEXP (op0, 0), 0), mode, speed)
4061 + set_src_cost (XEXP (op0, 1), mode, speed)
4062 + set_src_cost (op1, mode, speed));
4063 return true;
4064 }
4065 if (GET_CODE (op1) == MULT)
4066 {
4067 *total = (mips_fp_mult_cost (mode)
4068 + set_src_cost (op0, mode, speed)
4069 + set_src_cost (XEXP (op1, 0), mode, speed)
4070 + set_src_cost (XEXP (op1, 1), mode, speed));
4071 return true;
4072 }
4073 }
4074 /* Fall through. */
4075
4076 case PLUS:
4077 if (float_mode_p)
4078 {
4079 /* If this is part of a MADD or MSUB, treat the PLUS as
4080 being free. */
4081 if (ISA_HAS_UNFUSED_MADD4 && GET_CODE (XEXP (x, 0)) == MULT)
4082 *total = 0;
4083 else
4084 *total = mips_cost->fp_add;
4085 return false;
4086 }
4087
4088 /* If it's an add + mult (which is equivalent to shift left) and
4089 it's immediate operand satisfies const_immlsa_operand predicate. */
4090 if (((ISA_HAS_LSA && mode == SImode)
4091 || (ISA_HAS_DLSA && mode == DImode))
4092 && GET_CODE (XEXP (x, 0)) == MULT)
4093 {
4094 rtx op2 = XEXP (XEXP (x, 0), 1);
4095 if (const_immlsa_operand (op2, mode))
4096 {
4097 *total = (COSTS_N_INSNS (1)
4098 + set_src_cost (XEXP (XEXP (x, 0), 0), mode, speed)
4099 + set_src_cost (XEXP (x, 1), mode, speed));
4100 return true;
4101 }
4102 }
4103
4104 /* Double-word operations require three single-word operations and
4105 an SLTU. The MIPS16 version then needs to move the result of
4106 the SLTU from $24 to a MIPS16 register. */
4107 *total = mips_binary_cost (x, COSTS_N_INSNS (1),
4108 COSTS_N_INSNS (TARGET_MIPS16 ? 5 : 4),
4109 speed);
4110 return true;
4111
4112 case NEG:
4113 if (float_mode_p && ISA_HAS_UNFUSED_MADD4)
4114 {
4115 /* See if we can use NMADD or NMSUB via the *nmadd4<mode> or
4116 *nmsub4<mode> patterns. */
4117 rtx op = XEXP (x, 0);
4118 if ((GET_CODE (op) == PLUS || GET_CODE (op) == MINUS)
4119 && GET_CODE (XEXP (op, 0)) == MULT)
4120 {
4121 *total = (mips_fp_mult_cost (mode)
4122 + set_src_cost (XEXP (XEXP (op, 0), 0), mode, speed)
4123 + set_src_cost (XEXP (XEXP (op, 0), 1), mode, speed)
4124 + set_src_cost (XEXP (op, 1), mode, speed));
4125 return true;
4126 }
4127 }
4128
4129 if (float_mode_p)
4130 *total = mips_cost->fp_add;
4131 else
4132 *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 4 : 1);
4133 return false;
4134
4135 case FMA:
4136 *total = mips_fp_mult_cost (mode);
4137 return false;
4138
4139 case MULT:
4140 if (float_mode_p)
4141 *total = mips_fp_mult_cost (mode);
4142 else if (mode == DImode && !TARGET_64BIT)
4143 /* Synthesized from 2 mulsi3s, 1 mulsidi3 and two additions,
4144 where the mulsidi3 always includes an MFHI and an MFLO. */
4145 *total = (speed
4146 ? mips_cost->int_mult_si * 3 + 6
4147 : COSTS_N_INSNS (ISA_HAS_MUL3 ? 7 : 9));
4148 else if (!speed)
4149 *total = COSTS_N_INSNS ((ISA_HAS_MUL3 || ISA_HAS_R6MUL) ? 1 : 2) + 1;
4150 else if (mode == DImode)
4151 *total = mips_cost->int_mult_di;
4152 else
4153 *total = mips_cost->int_mult_si;
4154 return false;
4155
4156 case DIV:
4157 /* Check for a reciprocal. */
4158 if (float_mode_p
4159 && ISA_HAS_FP_RECIP_RSQRT (mode)
4160 && flag_unsafe_math_optimizations
4161 && XEXP (x, 0) == CONST1_RTX (mode))
4162 {
4163 if (outer_code == SQRT || GET_CODE (XEXP (x, 1)) == SQRT)
4164 /* An rsqrt<mode>a or rsqrt<mode>b pattern. Count the
4165 division as being free. */
4166 *total = set_src_cost (XEXP (x, 1), mode, speed);
4167 else
4168 *total = (mips_fp_div_cost (mode)
4169 + set_src_cost (XEXP (x, 1), mode, speed));
4170 return true;
4171 }
4172 /* Fall through. */
4173
4174 case SQRT:
4175 case MOD:
4176 if (float_mode_p)
4177 {
4178 *total = mips_fp_div_cost (mode);
4179 return false;
4180 }
4181 /* Fall through. */
4182
4183 case UDIV:
4184 case UMOD:
4185 if (!speed)
4186 {
4187 /* It is our responsibility to make division by a power of 2
4188 as cheap as 2 register additions if we want the division
4189 expanders to be used for such operations; see the setting
4190 of sdiv_pow2_cheap in optabs.c. Using (D)DIV for MIPS16
4191 should always produce shorter code than using
4192 expand_sdiv2_pow2. */
4193 if (TARGET_MIPS16
4194 && CONST_INT_P (XEXP (x, 1))
4195 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
4196 {
4197 *total = COSTS_N_INSNS (2);
4198 *total += set_src_cost (XEXP (x, 0), mode, speed);
4199 return true;
4200 }
4201 *total = COSTS_N_INSNS (mips_idiv_insns ());
4202 }
4203 else if (mode == DImode)
4204 *total = mips_cost->int_div_di;
4205 else
4206 *total = mips_cost->int_div_si;
4207 return false;
4208
4209 case SIGN_EXTEND:
4210 *total = mips_sign_extend_cost (mode, XEXP (x, 0));
4211 return false;
4212
4213 case ZERO_EXTEND:
4214 if (outer_code == SET
4215 && ISA_HAS_BADDU
4216 && (GET_CODE (XEXP (x, 0)) == TRUNCATE
4217 || GET_CODE (XEXP (x, 0)) == SUBREG)
4218 && GET_MODE (XEXP (x, 0)) == QImode
4219 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS)
4220 {
4221 *total = set_src_cost (XEXP (XEXP (x, 0), 0), VOIDmode, speed);
4222 return true;
4223 }
4224 *total = mips_zero_extend_cost (mode, XEXP (x, 0));
4225 return false;
4226 case TRUNCATE:
4227 /* Costings for highpart multiplies. Matching patterns of the form:
4228
4229 (lshiftrt:DI (mult:DI (sign_extend:DI (...)
4230 (sign_extend:DI (...))
4231 (const_int 32)
4232 */
4233 if (ISA_HAS_R6MUL
4234 && (GET_CODE (XEXP (x, 0)) == ASHIFTRT
4235 || GET_CODE (XEXP (x, 0)) == LSHIFTRT)
4236 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4237 && ((INTVAL (XEXP (XEXP (x, 0), 1)) == 32
4238 && GET_MODE (XEXP (x, 0)) == DImode)
4239 || (ISA_HAS_R6DMUL
4240 && INTVAL (XEXP (XEXP (x, 0), 1)) == 64
4241 && GET_MODE (XEXP (x, 0)) == TImode))
4242 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
4243 && ((GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND
4244 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SIGN_EXTEND)
4245 || (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
4246 && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1))
4247 == ZERO_EXTEND))))
4248 {
4249 if (!speed)
4250 *total = COSTS_N_INSNS (1) + 1;
4251 else if (mode == DImode)
4252 *total = mips_cost->int_mult_di;
4253 else
4254 *total = mips_cost->int_mult_si;
4255
4256 /* Sign extension is free, zero extension costs for DImode when
4257 on a 64bit core / when DMUL is present. */
4258 for (int i = 0; i < 2; ++i)
4259 {
4260 rtx op = XEXP (XEXP (XEXP (x, 0), 0), i);
4261 if (ISA_HAS_R6DMUL
4262 && GET_CODE (op) == ZERO_EXTEND
4263 && GET_MODE (op) == DImode)
4264 *total += rtx_cost (op, DImode, MULT, i, speed);
4265 else
4266 *total += rtx_cost (XEXP (op, 0), VOIDmode, GET_CODE (op),
4267 0, speed);
4268 }
4269
4270 return true;
4271 }
4272 return false;
4273
4274 case FLOAT:
4275 case UNSIGNED_FLOAT:
4276 case FIX:
4277 case FLOAT_EXTEND:
4278 case FLOAT_TRUNCATE:
4279 *total = mips_cost->fp_add;
4280 return false;
4281
4282 case SET:
4283 if (register_operand (SET_DEST (x), VOIDmode)
4284 && reg_or_0_operand (SET_SRC (x), VOIDmode))
4285 {
4286 *total = mips_set_reg_reg_cost (GET_MODE (SET_DEST (x)));
4287 return true;
4288 }
4289 return false;
4290
4291 default:
4292 return false;
4293 }
4294 }
4295
4296 /* Implement TARGET_ADDRESS_COST. */
4297
4298 static int
4299 mips_address_cost (rtx addr, machine_mode mode,
4300 addr_space_t as ATTRIBUTE_UNUSED,
4301 bool speed ATTRIBUTE_UNUSED)
4302 {
4303 return mips_address_insns (addr, mode, false);
4304 }
4305 \f
4306 /* Information about a single instruction in a multi-instruction
4307 asm sequence. */
4308 struct mips_multi_member {
4309 /* True if this is a label, false if it is code. */
4310 bool is_label_p;
4311
4312 /* The output_asm_insn format of the instruction. */
4313 const char *format;
4314
4315 /* The operands to the instruction. */
4316 rtx operands[MAX_RECOG_OPERANDS];
4317 };
4318 typedef struct mips_multi_member mips_multi_member;
4319
4320 /* The instructions that make up the current multi-insn sequence. */
4321 static vec<mips_multi_member> mips_multi_members;
4322
4323 /* How many instructions (as opposed to labels) are in the current
4324 multi-insn sequence. */
4325 static unsigned int mips_multi_num_insns;
4326
4327 /* Start a new multi-insn sequence. */
4328
4329 static void
4330 mips_multi_start (void)
4331 {
4332 mips_multi_members.truncate (0);
4333 mips_multi_num_insns = 0;
4334 }
4335
4336 /* Add a new, uninitialized member to the current multi-insn sequence. */
4337
4338 static struct mips_multi_member *
4339 mips_multi_add (void)
4340 {
4341 mips_multi_member empty;
4342 return mips_multi_members.safe_push (empty);
4343 }
4344
4345 /* Add a normal insn with the given asm format to the current multi-insn
4346 sequence. The other arguments are a null-terminated list of operands. */
4347
4348 static void
4349 mips_multi_add_insn (const char *format, ...)
4350 {
4351 struct mips_multi_member *member;
4352 va_list ap;
4353 unsigned int i;
4354 rtx op;
4355
4356 member = mips_multi_add ();
4357 member->is_label_p = false;
4358 member->format = format;
4359 va_start (ap, format);
4360 i = 0;
4361 while ((op = va_arg (ap, rtx)))
4362 member->operands[i++] = op;
4363 va_end (ap);
4364 mips_multi_num_insns++;
4365 }
4366
4367 /* Add the given label definition to the current multi-insn sequence.
4368 The definition should include the colon. */
4369
4370 static void
4371 mips_multi_add_label (const char *label)
4372 {
4373 struct mips_multi_member *member;
4374
4375 member = mips_multi_add ();
4376 member->is_label_p = true;
4377 member->format = label;
4378 }
4379
4380 /* Return the index of the last member of the current multi-insn sequence. */
4381
4382 static unsigned int
4383 mips_multi_last_index (void)
4384 {
4385 return mips_multi_members.length () - 1;
4386 }
4387
4388 /* Add a copy of an existing instruction to the current multi-insn
4389 sequence. I is the index of the instruction that should be copied. */
4390
4391 static void
4392 mips_multi_copy_insn (unsigned int i)
4393 {
4394 struct mips_multi_member *member;
4395
4396 member = mips_multi_add ();
4397 memcpy (member, &mips_multi_members[i], sizeof (*member));
4398 gcc_assert (!member->is_label_p);
4399 }
4400
4401 /* Change the operand of an existing instruction in the current
4402 multi-insn sequence. I is the index of the instruction,
4403 OP is the index of the operand, and X is the new value. */
4404
4405 static void
4406 mips_multi_set_operand (unsigned int i, unsigned int op, rtx x)
4407 {
4408 mips_multi_members[i].operands[op] = x;
4409 }
4410
4411 /* Write out the asm code for the current multi-insn sequence. */
4412
4413 static void
4414 mips_multi_write (void)
4415 {
4416 struct mips_multi_member *member;
4417 unsigned int i;
4418
4419 FOR_EACH_VEC_ELT (mips_multi_members, i, member)
4420 if (member->is_label_p)
4421 fprintf (asm_out_file, "%s\n", member->format);
4422 else
4423 output_asm_insn (member->format, member->operands);
4424 }
4425 \f
4426 /* Return one word of double-word value OP, taking into account the fixed
4427 endianness of certain registers. HIGH_P is true to select the high part,
4428 false to select the low part. */
4429
4430 rtx
4431 mips_subword (rtx op, bool high_p)
4432 {
4433 unsigned int byte, offset;
4434 machine_mode mode;
4435
4436 mode = GET_MODE (op);
4437 if (mode == VOIDmode)
4438 mode = TARGET_64BIT ? TImode : DImode;
4439
4440 if (TARGET_BIG_ENDIAN ? !high_p : high_p)
4441 byte = UNITS_PER_WORD;
4442 else
4443 byte = 0;
4444
4445 if (FP_REG_RTX_P (op))
4446 {
4447 /* Paired FPRs are always ordered little-endian. */
4448 offset = (UNITS_PER_WORD < UNITS_PER_HWFPVALUE ? high_p : byte != 0);
4449 return gen_rtx_REG (word_mode, REGNO (op) + offset);
4450 }
4451
4452 if (MEM_P (op))
4453 return mips_rewrite_small_data (adjust_address (op, word_mode, byte));
4454
4455 return simplify_gen_subreg (word_mode, op, mode, byte);
4456 }
4457
4458 /* Return true if SRC should be moved into DEST using "MULT $0, $0".
4459 SPLIT_TYPE is the condition under which moves should be split. */
4460
4461 static bool
4462 mips_mult_move_p (rtx dest, rtx src, enum mips_split_type split_type)
4463 {
4464 return ((split_type != SPLIT_FOR_SPEED
4465 || mips_tuning_info.fast_mult_zero_zero_p)
4466 && src == const0_rtx
4467 && REG_P (dest)
4468 && GET_MODE_SIZE (GET_MODE (dest)) == 2 * UNITS_PER_WORD
4469 && (ISA_HAS_DSP_MULT
4470 ? ACC_REG_P (REGNO (dest))
4471 : MD_REG_P (REGNO (dest))));
4472 }
4473
4474 /* Return true if a move from SRC to DEST should be split into two.
4475 SPLIT_TYPE describes the split condition. */
4476
4477 bool
4478 mips_split_move_p (rtx dest, rtx src, enum mips_split_type split_type)
4479 {
4480 /* Check whether the move can be done using some variant of MULT $0,$0. */
4481 if (mips_mult_move_p (dest, src, split_type))
4482 return false;
4483
4484 /* FPR-to-FPR moves can be done in a single instruction, if they're
4485 allowed at all. */
4486 unsigned int size = GET_MODE_SIZE (GET_MODE (dest));
4487 if (size == 8 && FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
4488 return false;
4489
4490 /* Check for floating-point loads and stores. */
4491 if (size == 8 && ISA_HAS_LDC1_SDC1)
4492 {
4493 if (FP_REG_RTX_P (dest) && MEM_P (src))
4494 return false;
4495 if (FP_REG_RTX_P (src) && MEM_P (dest))
4496 return false;
4497 }
4498
4499 /* Otherwise split all multiword moves. */
4500 return size > UNITS_PER_WORD;
4501 }
4502
4503 /* Split a move from SRC to DEST, given that mips_split_move_p holds.
4504 SPLIT_TYPE describes the split condition. */
4505
4506 void
4507 mips_split_move (rtx dest, rtx src, enum mips_split_type split_type)
4508 {
4509 rtx low_dest;
4510
4511 gcc_checking_assert (mips_split_move_p (dest, src, split_type));
4512 if (FP_REG_RTX_P (dest) || FP_REG_RTX_P (src))
4513 {
4514 if (!TARGET_64BIT && GET_MODE (dest) == DImode)
4515 emit_insn (gen_move_doubleword_fprdi (dest, src));
4516 else if (!TARGET_64BIT && GET_MODE (dest) == DFmode)
4517 emit_insn (gen_move_doubleword_fprdf (dest, src));
4518 else if (!TARGET_64BIT && GET_MODE (dest) == V2SFmode)
4519 emit_insn (gen_move_doubleword_fprv2sf (dest, src));
4520 else if (!TARGET_64BIT && GET_MODE (dest) == V2SImode)
4521 emit_insn (gen_move_doubleword_fprv2si (dest, src));
4522 else if (!TARGET_64BIT && GET_MODE (dest) == V4HImode)
4523 emit_insn (gen_move_doubleword_fprv4hi (dest, src));
4524 else if (!TARGET_64BIT && GET_MODE (dest) == V8QImode)
4525 emit_insn (gen_move_doubleword_fprv8qi (dest, src));
4526 else if (TARGET_64BIT && GET_MODE (dest) == TFmode)
4527 emit_insn (gen_move_doubleword_fprtf (dest, src));
4528 else
4529 gcc_unreachable ();
4530 }
4531 else if (REG_P (dest) && REGNO (dest) == MD_REG_FIRST)
4532 {
4533 low_dest = mips_subword (dest, false);
4534 mips_emit_move (low_dest, mips_subword (src, false));
4535 if (TARGET_64BIT)
4536 emit_insn (gen_mthidi_ti (dest, mips_subword (src, true), low_dest));
4537 else
4538 emit_insn (gen_mthisi_di (dest, mips_subword (src, true), low_dest));
4539 }
4540 else if (REG_P (src) && REGNO (src) == MD_REG_FIRST)
4541 {
4542 mips_emit_move (mips_subword (dest, false), mips_subword (src, false));
4543 if (TARGET_64BIT)
4544 emit_insn (gen_mfhidi_ti (mips_subword (dest, true), src));
4545 else
4546 emit_insn (gen_mfhisi_di (mips_subword (dest, true), src));
4547 }
4548 else
4549 {
4550 /* The operation can be split into two normal moves. Decide in
4551 which order to do them. */
4552 low_dest = mips_subword (dest, false);
4553 if (REG_P (low_dest)
4554 && reg_overlap_mentioned_p (low_dest, src))
4555 {
4556 mips_emit_move (mips_subword (dest, true), mips_subword (src, true));
4557 mips_emit_move (low_dest, mips_subword (src, false));
4558 }
4559 else
4560 {
4561 mips_emit_move (low_dest, mips_subword (src, false));
4562 mips_emit_move (mips_subword (dest, true), mips_subword (src, true));
4563 }
4564 }
4565 }
4566
4567 /* Return the split type for instruction INSN. */
4568
4569 static enum mips_split_type
4570 mips_insn_split_type (rtx insn)
4571 {
4572 basic_block bb = BLOCK_FOR_INSN (insn);
4573 if (bb)
4574 {
4575 if (optimize_bb_for_speed_p (bb))
4576 return SPLIT_FOR_SPEED;
4577 else
4578 return SPLIT_FOR_SIZE;
4579 }
4580 /* Once CFG information has been removed, we should trust the optimization
4581 decisions made by previous passes and only split where necessary. */
4582 return SPLIT_IF_NECESSARY;
4583 }
4584
4585 /* Return true if a move from SRC to DEST in INSN should be split. */
4586
4587 bool
4588 mips_split_move_insn_p (rtx dest, rtx src, rtx insn)
4589 {
4590 return mips_split_move_p (dest, src, mips_insn_split_type (insn));
4591 }
4592
4593 /* Split a move from SRC to DEST in INSN, given that mips_split_move_insn_p
4594 holds. */
4595
4596 void
4597 mips_split_move_insn (rtx dest, rtx src, rtx insn)
4598 {
4599 mips_split_move (dest, src, mips_insn_split_type (insn));
4600 }
4601 \f
4602 /* Return the appropriate instructions to move SRC into DEST. Assume
4603 that SRC is operand 1 and DEST is operand 0. */
4604
4605 const char *
4606 mips_output_move (rtx dest, rtx src)
4607 {
4608 enum rtx_code dest_code, src_code;
4609 machine_mode mode;
4610 enum mips_symbol_type symbol_type;
4611 bool dbl_p;
4612
4613 dest_code = GET_CODE (dest);
4614 src_code = GET_CODE (src);
4615 mode = GET_MODE (dest);
4616 dbl_p = (GET_MODE_SIZE (mode) == 8);
4617
4618 if (mips_split_move_p (dest, src, SPLIT_IF_NECESSARY))
4619 return "#";
4620
4621 if ((src_code == REG && GP_REG_P (REGNO (src)))
4622 || (!TARGET_MIPS16 && src == CONST0_RTX (mode)))
4623 {
4624 if (dest_code == REG)
4625 {
4626 if (GP_REG_P (REGNO (dest)))
4627 return "move\t%0,%z1";
4628
4629 if (mips_mult_move_p (dest, src, SPLIT_IF_NECESSARY))
4630 {
4631 if (ISA_HAS_DSP_MULT)
4632 return "mult\t%q0,%.,%.";
4633 else
4634 return "mult\t%.,%.";
4635 }
4636
4637 /* Moves to HI are handled by special .md insns. */
4638 if (REGNO (dest) == LO_REGNUM)
4639 return "mtlo\t%z1";
4640
4641 if (DSP_ACC_REG_P (REGNO (dest)))
4642 {
4643 static char retval[] = "mt__\t%z1,%q0";
4644
4645 retval[2] = reg_names[REGNO (dest)][4];
4646 retval[3] = reg_names[REGNO (dest)][5];
4647 return retval;
4648 }
4649
4650 if (FP_REG_P (REGNO (dest)))
4651 return dbl_p ? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0";
4652
4653 if (ALL_COP_REG_P (REGNO (dest)))
4654 {
4655 static char retval[] = "dmtc_\t%z1,%0";
4656
4657 retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
4658 return dbl_p ? retval : retval + 1;
4659 }
4660 }
4661 if (dest_code == MEM)
4662 switch (GET_MODE_SIZE (mode))
4663 {
4664 case 1: return "sb\t%z1,%0";
4665 case 2: return "sh\t%z1,%0";
4666 case 4: return "sw\t%z1,%0";
4667 case 8: return "sd\t%z1,%0";
4668 }
4669 }
4670 if (dest_code == REG && GP_REG_P (REGNO (dest)))
4671 {
4672 if (src_code == REG)
4673 {
4674 /* Moves from HI are handled by special .md insns. */
4675 if (REGNO (src) == LO_REGNUM)
4676 {
4677 /* When generating VR4120 or VR4130 code, we use MACC and
4678 DMACC instead of MFLO. This avoids both the normal
4679 MIPS III HI/LO hazards and the errata related to
4680 -mfix-vr4130. */
4681 if (ISA_HAS_MACCHI)
4682 return dbl_p ? "dmacc\t%0,%.,%." : "macc\t%0,%.,%.";
4683 return "mflo\t%0";
4684 }
4685
4686 if (DSP_ACC_REG_P (REGNO (src)))
4687 {
4688 static char retval[] = "mf__\t%0,%q1";
4689
4690 retval[2] = reg_names[REGNO (src)][4];
4691 retval[3] = reg_names[REGNO (src)][5];
4692 return retval;
4693 }
4694
4695 if (FP_REG_P (REGNO (src)))
4696 return dbl_p ? "dmfc1\t%0,%1" : "mfc1\t%0,%1";
4697
4698 if (ALL_COP_REG_P (REGNO (src)))
4699 {
4700 static char retval[] = "dmfc_\t%0,%1";
4701
4702 retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
4703 return dbl_p ? retval : retval + 1;
4704 }
4705 }
4706
4707 if (src_code == MEM)
4708 switch (GET_MODE_SIZE (mode))
4709 {
4710 case 1: return "lbu\t%0,%1";
4711 case 2: return "lhu\t%0,%1";
4712 case 4: return "lw\t%0,%1";
4713 case 8: return "ld\t%0,%1";
4714 }
4715
4716 if (src_code == CONST_INT)
4717 {
4718 /* Don't use the X format for the operand itself, because that
4719 will give out-of-range numbers for 64-bit hosts and 32-bit
4720 targets. */
4721 if (!TARGET_MIPS16)
4722 return "li\t%0,%1\t\t\t# %X1";
4723
4724 if (SMALL_OPERAND_UNSIGNED (INTVAL (src)))
4725 return "li\t%0,%1";
4726
4727 if (SMALL_OPERAND_UNSIGNED (-INTVAL (src)))
4728 return "#";
4729 }
4730
4731 if (src_code == HIGH)
4732 return TARGET_MIPS16 ? "#" : "lui\t%0,%h1";
4733
4734 if (CONST_GP_P (src))
4735 return "move\t%0,%1";
4736
4737 if (mips_symbolic_constant_p (src, SYMBOL_CONTEXT_LEA, &symbol_type)
4738 && mips_lo_relocs[symbol_type] != 0)
4739 {
4740 /* A signed 16-bit constant formed by applying a relocation
4741 operator to a symbolic address. */
4742 gcc_assert (!mips_split_p[symbol_type]);
4743 return "li\t%0,%R1";
4744 }
4745
4746 if (symbolic_operand (src, VOIDmode))
4747 {
4748 gcc_assert (TARGET_MIPS16
4749 ? TARGET_MIPS16_TEXT_LOADS
4750 : !TARGET_EXPLICIT_RELOCS);
4751 return dbl_p ? "dla\t%0,%1" : "la\t%0,%1";
4752 }
4753 }
4754 if (src_code == REG && FP_REG_P (REGNO (src)))
4755 {
4756 if (dest_code == REG && FP_REG_P (REGNO (dest)))
4757 {
4758 if (GET_MODE (dest) == V2SFmode)
4759 return "mov.ps\t%0,%1";
4760 else
4761 return dbl_p ? "mov.d\t%0,%1" : "mov.s\t%0,%1";
4762 }
4763
4764 if (dest_code == MEM)
4765 return dbl_p ? "sdc1\t%1,%0" : "swc1\t%1,%0";
4766 }
4767 if (dest_code == REG && FP_REG_P (REGNO (dest)))
4768 {
4769 if (src_code == MEM)
4770 return dbl_p ? "ldc1\t%0,%1" : "lwc1\t%0,%1";
4771 }
4772 if (dest_code == REG && ALL_COP_REG_P (REGNO (dest)) && src_code == MEM)
4773 {
4774 static char retval[] = "l_c_\t%0,%1";
4775
4776 retval[1] = (dbl_p ? 'd' : 'w');
4777 retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
4778 return retval;
4779 }
4780 if (dest_code == MEM && src_code == REG && ALL_COP_REG_P (REGNO (src)))
4781 {
4782 static char retval[] = "s_c_\t%1,%0";
4783
4784 retval[1] = (dbl_p ? 'd' : 'w');
4785 retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
4786 return retval;
4787 }
4788 gcc_unreachable ();
4789 }
4790 \f
4791 /* Return true if CMP1 is a suitable second operand for integer ordering
4792 test CODE. See also the *sCC patterns in mips.md. */
4793
4794 static bool
4795 mips_int_order_operand_ok_p (enum rtx_code code, rtx cmp1)
4796 {
4797 switch (code)
4798 {
4799 case GT:
4800 case GTU:
4801 return reg_or_0_operand (cmp1, VOIDmode);
4802
4803 case GE:
4804 case GEU:
4805 return !TARGET_MIPS16 && cmp1 == const1_rtx;
4806
4807 case LT:
4808 case LTU:
4809 return arith_operand (cmp1, VOIDmode);
4810
4811 case LE:
4812 return sle_operand (cmp1, VOIDmode);
4813
4814 case LEU:
4815 return sleu_operand (cmp1, VOIDmode);
4816
4817 default:
4818 gcc_unreachable ();
4819 }
4820 }
4821
4822 /* Return true if *CMP1 (of mode MODE) is a valid second operand for
4823 integer ordering test *CODE, or if an equivalent combination can
4824 be formed by adjusting *CODE and *CMP1. When returning true, update
4825 *CODE and *CMP1 with the chosen code and operand, otherwise leave
4826 them alone. */
4827
4828 static bool
4829 mips_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1,
4830 machine_mode mode)
4831 {
4832 HOST_WIDE_INT plus_one;
4833
4834 if (mips_int_order_operand_ok_p (*code, *cmp1))
4835 return true;
4836
4837 if (CONST_INT_P (*cmp1))
4838 switch (*code)
4839 {
4840 case LE:
4841 plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
4842 if (INTVAL (*cmp1) < plus_one)
4843 {
4844 *code = LT;
4845 *cmp1 = force_reg (mode, GEN_INT (plus_one));
4846 return true;
4847 }
4848 break;
4849
4850 case LEU:
4851 plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
4852 if (plus_one != 0)
4853 {
4854 *code = LTU;
4855 *cmp1 = force_reg (mode, GEN_INT (plus_one));
4856 return true;
4857 }
4858 break;
4859
4860 default:
4861 break;
4862 }
4863 return false;
4864 }
4865
4866 /* Compare CMP0 and CMP1 using ordering test CODE and store the result
4867 in TARGET. CMP0 and TARGET are register_operands. If INVERT_PTR
4868 is nonnull, it's OK to set TARGET to the inverse of the result and
4869 flip *INVERT_PTR instead. */
4870
4871 static void
4872 mips_emit_int_order_test (enum rtx_code code, bool *invert_ptr,
4873 rtx target, rtx cmp0, rtx cmp1)
4874 {
4875 machine_mode mode;
4876
4877 /* First see if there is a MIPS instruction that can do this operation.
4878 If not, try doing the same for the inverse operation. If that also
4879 fails, force CMP1 into a register and try again. */
4880 mode = GET_MODE (cmp0);
4881 if (mips_canonicalize_int_order_test (&code, &cmp1, mode))
4882 mips_emit_binary (code, target, cmp0, cmp1);
4883 else
4884 {
4885 enum rtx_code inv_code = reverse_condition (code);
4886 if (!mips_canonicalize_int_order_test (&inv_code, &cmp1, mode))
4887 {
4888 cmp1 = force_reg (mode, cmp1);
4889 mips_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1);
4890 }
4891 else if (invert_ptr == 0)
4892 {
4893 rtx inv_target;
4894
4895 inv_target = mips_force_binary (GET_MODE (target),
4896 inv_code, cmp0, cmp1);
4897 mips_emit_binary (XOR, target, inv_target, const1_rtx);
4898 }
4899 else
4900 {
4901 *invert_ptr = !*invert_ptr;
4902 mips_emit_binary (inv_code, target, cmp0, cmp1);
4903 }
4904 }
4905 }
4906
4907 /* Return a register that is zero iff CMP0 and CMP1 are equal.
4908 The register will have the same mode as CMP0. */
4909
4910 static rtx
4911 mips_zero_if_equal (rtx cmp0, rtx cmp1)
4912 {
4913 if (cmp1 == const0_rtx)
4914 return cmp0;
4915
4916 if (uns_arith_operand (cmp1, VOIDmode))
4917 return expand_binop (GET_MODE (cmp0), xor_optab,
4918 cmp0, cmp1, 0, 0, OPTAB_DIRECT);
4919
4920 return expand_binop (GET_MODE (cmp0), sub_optab,
4921 cmp0, cmp1, 0, 0, OPTAB_DIRECT);
4922 }
4923
4924 /* Convert *CODE into a code that can be used in a floating-point
4925 scc instruction (C.cond.fmt). Return true if the values of
4926 the condition code registers will be inverted, with 0 indicating
4927 that the condition holds. */
4928
4929 static bool
4930 mips_reversed_fp_cond (enum rtx_code *code)
4931 {
4932 switch (*code)
4933 {
4934 case NE:
4935 case LTGT:
4936 case ORDERED:
4937 *code = reverse_condition_maybe_unordered (*code);
4938 return true;
4939
4940 default:
4941 return false;
4942 }
4943 }
4944
4945 /* Allocate a floating-point condition-code register of mode MODE.
4946
4947 These condition code registers are used for certain kinds
4948 of compound operation, such as compare and branches, vconds,
4949 and built-in functions. At expand time, their use is entirely
4950 controlled by MIPS-specific code and is entirely internal
4951 to these compound operations.
4952
4953 We could (and did in the past) expose condition-code values
4954 as pseudo registers and leave the register allocator to pick
4955 appropriate registers. The problem is that it is not practically
4956 possible for the rtl optimizers to guarantee that no spills will
4957 be needed, even when AVOID_CCMODE_COPIES is defined. We would
4958 therefore need spill and reload sequences to handle the worst case.
4959
4960 Although such sequences do exist, they are very expensive and are
4961 not something we'd want to use. This is especially true of CCV2 and
4962 CCV4, where all the shuffling would greatly outweigh whatever benefit
4963 the vectorization itself provides.
4964
4965 The main benefit of having more than one condition-code register
4966 is to allow the pipelining of operations, especially those involving
4967 comparisons and conditional moves. We don't really expect the
4968 registers to be live for long periods, and certainly never want
4969 them to be live across calls.
4970
4971 Also, there should be no penalty attached to using all the available
4972 registers. They are simply bits in the same underlying FPU control
4973 register.
4974
4975 We therefore expose the hardware registers from the outset and use
4976 a simple round-robin allocation scheme. */
4977
4978 static rtx
4979 mips_allocate_fcc (machine_mode mode)
4980 {
4981 unsigned int regno, count;
4982
4983 gcc_assert (TARGET_HARD_FLOAT && ISA_HAS_8CC);
4984
4985 if (mode == CCmode)
4986 count = 1;
4987 else if (mode == CCV2mode)
4988 count = 2;
4989 else if (mode == CCV4mode)
4990 count = 4;
4991 else
4992 gcc_unreachable ();
4993
4994 cfun->machine->next_fcc += -cfun->machine->next_fcc & (count - 1);
4995 if (cfun->machine->next_fcc > ST_REG_LAST - ST_REG_FIRST)
4996 cfun->machine->next_fcc = 0;
4997 regno = ST_REG_FIRST + cfun->machine->next_fcc;
4998 cfun->machine->next_fcc += count;
4999 return gen_rtx_REG (mode, regno);
5000 }
5001
5002 /* Convert a comparison into something that can be used in a branch or
5003 conditional move. On entry, *OP0 and *OP1 are the values being
5004 compared and *CODE is the code used to compare them.
5005
5006 Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
5007 If NEED_EQ_NE_P, then only EQ or NE comparisons against zero are possible,
5008 otherwise any standard branch condition can be used. The standard branch
5009 conditions are:
5010
5011 - EQ or NE between two registers.
5012 - any comparison between a register and zero. */
5013
5014 static void
5015 mips_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p)
5016 {
5017 rtx cmp_op0 = *op0;
5018 rtx cmp_op1 = *op1;
5019
5020 if (GET_MODE_CLASS (GET_MODE (*op0)) == MODE_INT)
5021 {
5022 if (!need_eq_ne_p && *op1 == const0_rtx)
5023 ;
5024 else if (*code == EQ || *code == NE)
5025 {
5026 if (need_eq_ne_p)
5027 {
5028 *op0 = mips_zero_if_equal (cmp_op0, cmp_op1);
5029 *op1 = const0_rtx;
5030 }
5031 else
5032 *op1 = force_reg (GET_MODE (cmp_op0), cmp_op1);
5033 }
5034 else
5035 {
5036 /* The comparison needs a separate scc instruction. Store the
5037 result of the scc in *OP0 and compare it against zero. */
5038 bool invert = false;
5039 *op0 = gen_reg_rtx (GET_MODE (cmp_op0));
5040 mips_emit_int_order_test (*code, &invert, *op0, cmp_op0, cmp_op1);
5041 *code = (invert ? EQ : NE);
5042 *op1 = const0_rtx;
5043 }
5044 }
5045 else if (ALL_FIXED_POINT_MODE_P (GET_MODE (cmp_op0)))
5046 {
5047 *op0 = gen_rtx_REG (CCDSPmode, CCDSP_CC_REGNUM);
5048 mips_emit_binary (*code, *op0, cmp_op0, cmp_op1);
5049 *code = NE;
5050 *op1 = const0_rtx;
5051 }
5052 else
5053 {
5054 enum rtx_code cmp_code;
5055
5056 /* Floating-point tests use a separate C.cond.fmt or CMP.cond.fmt
5057 comparison to set a register. The branch or conditional move will
5058 then compare that register against zero.
5059
5060 Set CMP_CODE to the code of the comparison instruction and
5061 *CODE to the code that the branch or move should use. */
5062 cmp_code = *code;
5063 if (ISA_HAS_CCF)
5064 {
5065 /* All FP conditions can be implemented directly with CMP.cond.fmt
5066 or by reversing the operands. */
5067 *code = NE;
5068 *op0 = gen_reg_rtx (CCFmode);
5069 }
5070 else
5071 {
5072 /* Three FP conditions cannot be implemented by reversing the
5073 operands for C.cond.fmt, instead a reversed condition code is
5074 required and a test for false. */
5075 *code = mips_reversed_fp_cond (&cmp_code) ? EQ : NE;
5076 if (ISA_HAS_8CC)
5077 *op0 = mips_allocate_fcc (CCmode);
5078 else
5079 *op0 = gen_rtx_REG (CCmode, FPSW_REGNUM);
5080 }
5081
5082 *op1 = const0_rtx;
5083 mips_emit_binary (cmp_code, *op0, cmp_op0, cmp_op1);
5084 }
5085 }
5086 \f
5087 /* Try performing the comparison in OPERANDS[1], whose arms are OPERANDS[2]
5088 and OPERAND[3]. Store the result in OPERANDS[0].
5089
5090 On 64-bit targets, the mode of the comparison and target will always be
5091 SImode, thus possibly narrower than that of the comparison's operands. */
5092
5093 void
5094 mips_expand_scc (rtx operands[])
5095 {
5096 rtx target = operands[0];
5097 enum rtx_code code = GET_CODE (operands[1]);
5098 rtx op0 = operands[2];
5099 rtx op1 = operands[3];
5100
5101 gcc_assert (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT);
5102
5103 if (code == EQ || code == NE)
5104 {
5105 if (ISA_HAS_SEQ_SNE
5106 && reg_imm10_operand (op1, GET_MODE (op1)))
5107 mips_emit_binary (code, target, op0, op1);
5108 else
5109 {
5110 rtx zie = mips_zero_if_equal (op0, op1);
5111 mips_emit_binary (code, target, zie, const0_rtx);
5112 }
5113 }
5114 else
5115 mips_emit_int_order_test (code, 0, target, op0, op1);
5116 }
5117
5118 /* Compare OPERANDS[1] with OPERANDS[2] using comparison code
5119 CODE and jump to OPERANDS[3] if the condition holds. */
5120
5121 void
5122 mips_expand_conditional_branch (rtx *operands)
5123 {
5124 enum rtx_code code = GET_CODE (operands[0]);
5125 rtx op0 = operands[1];
5126 rtx op1 = operands[2];
5127 rtx condition;
5128
5129 mips_emit_compare (&code, &op0, &op1, TARGET_MIPS16);
5130 condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5131 emit_jump_insn (gen_condjump (condition, operands[3]));
5132 }
5133
5134 /* Implement:
5135
5136 (set temp (COND:CCV2 CMP_OP0 CMP_OP1))
5137 (set DEST (unspec [TRUE_SRC FALSE_SRC temp] UNSPEC_MOVE_TF_PS)) */
5138
5139 void
5140 mips_expand_vcondv2sf (rtx dest, rtx true_src, rtx false_src,
5141 enum rtx_code cond, rtx cmp_op0, rtx cmp_op1)
5142 {
5143 rtx cmp_result;
5144 bool reversed_p;
5145
5146 reversed_p = mips_reversed_fp_cond (&cond);
5147 cmp_result = mips_allocate_fcc (CCV2mode);
5148 emit_insn (gen_scc_ps (cmp_result,
5149 gen_rtx_fmt_ee (cond, VOIDmode, cmp_op0, cmp_op1)));
5150 if (reversed_p)
5151 emit_insn (gen_mips_cond_move_tf_ps (dest, false_src, true_src,
5152 cmp_result));
5153 else
5154 emit_insn (gen_mips_cond_move_tf_ps (dest, true_src, false_src,
5155 cmp_result));
5156 }
5157
5158 /* Perform the comparison in OPERANDS[1]. Move OPERANDS[2] into OPERANDS[0]
5159 if the condition holds, otherwise move OPERANDS[3] into OPERANDS[0]. */
5160
5161 void
5162 mips_expand_conditional_move (rtx *operands)
5163 {
5164 rtx cond;
5165 enum rtx_code code = GET_CODE (operands[1]);
5166 rtx op0 = XEXP (operands[1], 0);
5167 rtx op1 = XEXP (operands[1], 1);
5168
5169 mips_emit_compare (&code, &op0, &op1, true);
5170 cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
5171
5172 /* There is no direct support for general conditional GP move involving
5173 two registers using SEL. */
5174 if (ISA_HAS_SEL
5175 && INTEGRAL_MODE_P (GET_MODE (operands[2]))
5176 && register_operand (operands[2], VOIDmode)
5177 && register_operand (operands[3], VOIDmode))
5178 {
5179 machine_mode mode = GET_MODE (operands[0]);
5180 rtx temp = gen_reg_rtx (mode);
5181 rtx temp2 = gen_reg_rtx (mode);
5182
5183 emit_insn (gen_rtx_SET (temp,
5184 gen_rtx_IF_THEN_ELSE (mode, cond,
5185 operands[2], const0_rtx)));
5186
5187 /* Flip the test for the second operand. */
5188 cond = gen_rtx_fmt_ee ((code == EQ) ? NE : EQ, GET_MODE (op0), op0, op1);
5189
5190 emit_insn (gen_rtx_SET (temp2,
5191 gen_rtx_IF_THEN_ELSE (mode, cond,
5192 operands[3], const0_rtx)));
5193
5194 /* Merge the two results, at least one is guaranteed to be zero. */
5195 emit_insn (gen_rtx_SET (operands[0], gen_rtx_IOR (mode, temp, temp2)));
5196 }
5197 else
5198 {
5199 if (FLOAT_MODE_P (GET_MODE (operands[2])) && !ISA_HAS_SEL)
5200 {
5201 operands[2] = force_reg (GET_MODE (operands[0]), operands[2]);
5202 operands[3] = force_reg (GET_MODE (operands[0]), operands[3]);
5203 }
5204
5205 emit_insn (gen_rtx_SET (operands[0],
5206 gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), cond,
5207 operands[2], operands[3])));
5208 }
5209 }
5210
5211 /* Perform the comparison in COMPARISON, then trap if the condition holds. */
5212
5213 void
5214 mips_expand_conditional_trap (rtx comparison)
5215 {
5216 rtx op0, op1;
5217 machine_mode mode;
5218 enum rtx_code code;
5219
5220 /* MIPS conditional trap instructions don't have GT or LE flavors,
5221 so we must swap the operands and convert to LT and GE respectively. */
5222 code = GET_CODE (comparison);
5223 switch (code)
5224 {
5225 case GT:
5226 case LE:
5227 case GTU:
5228 case LEU:
5229 code = swap_condition (code);
5230 op0 = XEXP (comparison, 1);
5231 op1 = XEXP (comparison, 0);
5232 break;
5233
5234 default:
5235 op0 = XEXP (comparison, 0);
5236 op1 = XEXP (comparison, 1);
5237 break;
5238 }
5239
5240 mode = GET_MODE (XEXP (comparison, 0));
5241 op0 = force_reg (mode, op0);
5242 if (!(ISA_HAS_COND_TRAPI
5243 ? arith_operand (op1, mode)
5244 : reg_or_0_operand (op1, mode)))
5245 op1 = force_reg (mode, op1);
5246
5247 emit_insn (gen_rtx_TRAP_IF (VOIDmode,
5248 gen_rtx_fmt_ee (code, mode, op0, op1),
5249 const0_rtx));
5250 }
5251 \f
5252 /* Initialize *CUM for a call to a function of type FNTYPE. */
5253
5254 void
5255 mips_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype)
5256 {
5257 memset (cum, 0, sizeof (*cum));
5258 cum->prototype = (fntype && prototype_p (fntype));
5259 cum->gp_reg_found = (cum->prototype && stdarg_p (fntype));
5260 }
5261
5262 /* Fill INFO with information about a single argument. CUM is the
5263 cumulative state for earlier arguments. MODE is the mode of this
5264 argument and TYPE is its type (if known). NAMED is true if this
5265 is a named (fixed) argument rather than a variable one. */
5266
5267 static void
5268 mips_get_arg_info (struct mips_arg_info *info, const CUMULATIVE_ARGS *cum,
5269 machine_mode mode, const_tree type, bool named)
5270 {
5271 bool doubleword_aligned_p;
5272 unsigned int num_bytes, num_words, max_regs;
5273
5274 /* Work out the size of the argument. */
5275 num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
5276 num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
5277
5278 /* Decide whether it should go in a floating-point register, assuming
5279 one is free. Later code checks for availability.
5280
5281 The checks against UNITS_PER_FPVALUE handle the soft-float and
5282 single-float cases. */
5283 switch (mips_abi)
5284 {
5285 case ABI_EABI:
5286 /* The EABI conventions have traditionally been defined in terms
5287 of TYPE_MODE, regardless of the actual type. */
5288 info->fpr_p = ((GET_MODE_CLASS (mode) == MODE_FLOAT
5289 || mode == V2SFmode)
5290 && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
5291 break;
5292
5293 case ABI_32:
5294 case ABI_O64:
5295 /* Only leading floating-point scalars are passed in
5296 floating-point registers. We also handle vector floats the same
5297 say, which is OK because they are not covered by the standard ABI. */
5298 gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || mode != V2SFmode);
5299 info->fpr_p = (!cum->gp_reg_found
5300 && cum->arg_number < 2
5301 && (type == 0
5302 || SCALAR_FLOAT_TYPE_P (type)
5303 || VECTOR_FLOAT_TYPE_P (type))
5304 && (GET_MODE_CLASS (mode) == MODE_FLOAT
5305 || mode == V2SFmode)
5306 && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
5307 break;
5308
5309 case ABI_N32:
5310 case ABI_64:
5311 /* Scalar, complex and vector floating-point types are passed in
5312 floating-point registers, as long as this is a named rather
5313 than a variable argument. */
5314 gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || mode != V2SFmode);
5315 info->fpr_p = (named
5316 && (type == 0 || FLOAT_TYPE_P (type))
5317 && (GET_MODE_CLASS (mode) == MODE_FLOAT
5318 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
5319 || mode == V2SFmode)
5320 && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE);
5321
5322 /* ??? According to the ABI documentation, the real and imaginary
5323 parts of complex floats should be passed in individual registers.
5324 The real and imaginary parts of stack arguments are supposed
5325 to be contiguous and there should be an extra word of padding
5326 at the end.
5327
5328 This has two problems. First, it makes it impossible to use a
5329 single "void *" va_list type, since register and stack arguments
5330 are passed differently. (At the time of writing, MIPSpro cannot
5331 handle complex float varargs correctly.) Second, it's unclear
5332 what should happen when there is only one register free.
5333
5334 For now, we assume that named complex floats should go into FPRs
5335 if there are two FPRs free, otherwise they should be passed in the
5336 same way as a struct containing two floats. */
5337 if (info->fpr_p
5338 && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
5339 && GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE)
5340 {
5341 if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1)
5342 info->fpr_p = false;
5343 else
5344 num_words = 2;
5345 }
5346 break;
5347
5348 default:
5349 gcc_unreachable ();
5350 }
5351
5352 /* See whether the argument has doubleword alignment. */
5353 doubleword_aligned_p = (mips_function_arg_boundary (mode, type)
5354 > BITS_PER_WORD);
5355
5356 /* Set REG_OFFSET to the register count we're interested in.
5357 The EABI allocates the floating-point registers separately,
5358 but the other ABIs allocate them like integer registers. */
5359 info->reg_offset = (mips_abi == ABI_EABI && info->fpr_p
5360 ? cum->num_fprs
5361 : cum->num_gprs);
5362
5363 /* Advance to an even register if the argument is doubleword-aligned. */
5364 if (doubleword_aligned_p)
5365 info->reg_offset += info->reg_offset & 1;
5366
5367 /* Work out the offset of a stack argument. */
5368 info->stack_offset = cum->stack_words;
5369 if (doubleword_aligned_p)
5370 info->stack_offset += info->stack_offset & 1;
5371
5372 max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;
5373
5374 /* Partition the argument between registers and stack. */
5375 info->reg_words = MIN (num_words, max_regs);
5376 info->stack_words = num_words - info->reg_words;
5377 }
5378
5379 /* INFO describes a register argument that has the normal format for the
5380 argument's mode. Return the register it uses, assuming that FPRs are
5381 available if HARD_FLOAT_P. */
5382
5383 static unsigned int
5384 mips_arg_regno (const struct mips_arg_info *info, bool hard_float_p)
5385 {
5386 if (!info->fpr_p || !hard_float_p)
5387 return GP_ARG_FIRST + info->reg_offset;
5388 else if (mips_abi == ABI_32 && TARGET_DOUBLE_FLOAT && info->reg_offset > 0)
5389 /* In o32, the second argument is always passed in $f14
5390 for TARGET_DOUBLE_FLOAT, regardless of whether the
5391 first argument was a word or doubleword. */
5392 return FP_ARG_FIRST + 2;
5393 else
5394 return FP_ARG_FIRST + info->reg_offset;
5395 }
5396
5397 /* Implement TARGET_STRICT_ARGUMENT_NAMING. */
5398
5399 static bool
5400 mips_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED)
5401 {
5402 return !TARGET_OLDABI;
5403 }
5404
5405 /* Implement TARGET_FUNCTION_ARG. */
5406
5407 static rtx
5408 mips_function_arg (cumulative_args_t cum_v, machine_mode mode,
5409 const_tree type, bool named)
5410 {
5411 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
5412 struct mips_arg_info info;
5413
5414 /* We will be called with a mode of VOIDmode after the last argument
5415 has been seen. Whatever we return will be passed to the call expander.
5416 If we need a MIPS16 fp_code, return a REG with the code stored as
5417 the mode. */
5418 if (mode == VOIDmode)
5419 {
5420 if (TARGET_MIPS16 && cum->fp_code != 0)
5421 return gen_rtx_REG ((machine_mode) cum->fp_code, 0);
5422 else
5423 return NULL;
5424 }
5425
5426 mips_get_arg_info (&info, cum, mode, type, named);
5427
5428 /* Return straight away if the whole argument is passed on the stack. */
5429 if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
5430 return NULL;
5431
5432 /* The n32 and n64 ABIs say that if any 64-bit chunk of the structure
5433 contains a double in its entirety, then that 64-bit chunk is passed
5434 in a floating-point register. */
5435 if (TARGET_NEWABI
5436 && TARGET_HARD_FLOAT
5437 && named
5438 && type != 0
5439 && TREE_CODE (type) == RECORD_TYPE
5440 && TYPE_SIZE_UNIT (type)
5441 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
5442 {
5443 tree field;
5444
5445 /* First check to see if there is any such field. */
5446 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5447 if (TREE_CODE (field) == FIELD_DECL
5448 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
5449 && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
5450 && tree_fits_shwi_p (bit_position (field))
5451 && int_bit_position (field) % BITS_PER_WORD == 0)
5452 break;
5453
5454 if (field != 0)
5455 {
5456 /* Now handle the special case by returning a PARALLEL
5457 indicating where each 64-bit chunk goes. INFO.REG_WORDS
5458 chunks are passed in registers. */
5459 unsigned int i;
5460 HOST_WIDE_INT bitpos;
5461 rtx ret;
5462
5463 /* assign_parms checks the mode of ENTRY_PARM, so we must
5464 use the actual mode here. */
5465 ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
5466
5467 bitpos = 0;
5468 field = TYPE_FIELDS (type);
5469 for (i = 0; i < info.reg_words; i++)
5470 {
5471 rtx reg;
5472
5473 for (; field; field = DECL_CHAIN (field))
5474 if (TREE_CODE (field) == FIELD_DECL
5475 && int_bit_position (field) >= bitpos)
5476 break;
5477
5478 if (field
5479 && int_bit_position (field) == bitpos
5480 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
5481 && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
5482 reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
5483 else
5484 reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);
5485
5486 XVECEXP (ret, 0, i)
5487 = gen_rtx_EXPR_LIST (VOIDmode, reg,
5488 GEN_INT (bitpos / BITS_PER_UNIT));
5489
5490 bitpos += BITS_PER_WORD;
5491 }
5492 return ret;
5493 }
5494 }
5495
5496 /* Handle the n32/n64 conventions for passing complex floating-point
5497 arguments in FPR pairs. The real part goes in the lower register
5498 and the imaginary part goes in the upper register. */
5499 if (TARGET_NEWABI
5500 && info.fpr_p
5501 && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5502 {
5503 rtx real, imag;
5504 machine_mode inner;
5505 unsigned int regno;
5506
5507 inner = GET_MODE_INNER (mode);
5508 regno = FP_ARG_FIRST + info.reg_offset;
5509 if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner))
5510 {
5511 /* Real part in registers, imaginary part on stack. */
5512 gcc_assert (info.stack_words == info.reg_words);
5513 return gen_rtx_REG (inner, regno);
5514 }
5515 else
5516 {
5517 gcc_assert (info.stack_words == 0);
5518 real = gen_rtx_EXPR_LIST (VOIDmode,
5519 gen_rtx_REG (inner, regno),
5520 const0_rtx);
5521 imag = gen_rtx_EXPR_LIST (VOIDmode,
5522 gen_rtx_REG (inner,
5523 regno + info.reg_words / 2),
5524 GEN_INT (GET_MODE_SIZE (inner)));
5525 return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag));
5526 }
5527 }
5528
5529 return gen_rtx_REG (mode, mips_arg_regno (&info, TARGET_HARD_FLOAT));
5530 }
5531
5532 /* Implement TARGET_FUNCTION_ARG_ADVANCE. */
5533
5534 static void
5535 mips_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
5536 const_tree type, bool named)
5537 {
5538 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
5539 struct mips_arg_info info;
5540
5541 mips_get_arg_info (&info, cum, mode, type, named);
5542
5543 if (!info.fpr_p)
5544 cum->gp_reg_found = true;
5545
5546 /* See the comment above the CUMULATIVE_ARGS structure in mips.h for
5547 an explanation of what this code does. It assumes that we're using
5548 either the o32 or the o64 ABI, both of which pass at most 2 arguments
5549 in FPRs. */
5550 if (cum->arg_number < 2 && info.fpr_p)
5551 cum->fp_code += (mode == SFmode ? 1 : 2) << (cum->arg_number * 2);
5552
5553 /* Advance the register count. This has the effect of setting
5554 num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned
5555 argument required us to skip the final GPR and pass the whole
5556 argument on the stack. */
5557 if (mips_abi != ABI_EABI || !info.fpr_p)
5558 cum->num_gprs = info.reg_offset + info.reg_words;
5559 else if (info.reg_words > 0)
5560 cum->num_fprs += MAX_FPRS_PER_FMT;
5561
5562 /* Advance the stack word count. */
5563 if (info.stack_words > 0)
5564 cum->stack_words = info.stack_offset + info.stack_words;
5565
5566 cum->arg_number++;
5567 }
5568
5569 /* Implement TARGET_ARG_PARTIAL_BYTES. */
5570
5571 static int
5572 mips_arg_partial_bytes (cumulative_args_t cum,
5573 machine_mode mode, tree type, bool named)
5574 {
5575 struct mips_arg_info info;
5576
5577 mips_get_arg_info (&info, get_cumulative_args (cum), mode, type, named);
5578 return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
5579 }
5580
5581 /* Implement TARGET_FUNCTION_ARG_BOUNDARY. Every parameter gets at
5582 least PARM_BOUNDARY bits of alignment, but will be given anything up
5583 to STACK_BOUNDARY bits if the type requires it. */
5584
5585 static unsigned int
5586 mips_function_arg_boundary (machine_mode mode, const_tree type)
5587 {
5588 unsigned int alignment;
5589
5590 alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
5591 if (alignment < PARM_BOUNDARY)
5592 alignment = PARM_BOUNDARY;
5593 if (alignment > STACK_BOUNDARY)
5594 alignment = STACK_BOUNDARY;
5595 return alignment;
5596 }
5597
5598 /* Implement TARGET_GET_RAW_RESULT_MODE and TARGET_GET_RAW_ARG_MODE. */
5599
5600 static machine_mode
5601 mips_get_reg_raw_mode (int regno)
5602 {
5603 if (TARGET_FLOATXX && FP_REG_P (regno))
5604 return DFmode;
5605 return default_get_reg_raw_mode (regno);
5606 }
5607
5608 /* Return true if FUNCTION_ARG_PADDING (MODE, TYPE) should return
5609 upward rather than downward. In other words, return true if the
5610 first byte of the stack slot has useful data, false if the last
5611 byte does. */
5612
5613 bool
5614 mips_pad_arg_upward (machine_mode mode, const_tree type)
5615 {
5616 /* On little-endian targets, the first byte of every stack argument
5617 is passed in the first byte of the stack slot. */
5618 if (!BYTES_BIG_ENDIAN)
5619 return true;
5620
5621 /* Otherwise, integral types are padded downward: the last byte of a
5622 stack argument is passed in the last byte of the stack slot. */
5623 if (type != 0
5624 ? (INTEGRAL_TYPE_P (type)
5625 || POINTER_TYPE_P (type)
5626 || FIXED_POINT_TYPE_P (type))
5627 : (SCALAR_INT_MODE_P (mode)
5628 || ALL_SCALAR_FIXED_POINT_MODE_P (mode)))
5629 return false;
5630
5631 /* Big-endian o64 pads floating-point arguments downward. */
5632 if (mips_abi == ABI_O64)
5633 if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
5634 return false;
5635
5636 /* Other types are padded upward for o32, o64, n32 and n64. */
5637 if (mips_abi != ABI_EABI)
5638 return true;
5639
5640 /* Arguments smaller than a stack slot are padded downward. */
5641 if (mode != BLKmode)
5642 return GET_MODE_BITSIZE (mode) >= PARM_BOUNDARY;
5643 else
5644 return int_size_in_bytes (type) >= (PARM_BOUNDARY / BITS_PER_UNIT);
5645 }
5646
5647 /* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...). Return !BYTES_BIG_ENDIAN
5648 if the least significant byte of the register has useful data. Return
5649 the opposite if the most significant byte does. */
5650
5651 bool
5652 mips_pad_reg_upward (machine_mode mode, tree type)
5653 {
5654 /* No shifting is required for floating-point arguments. */
5655 if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
5656 return !BYTES_BIG_ENDIAN;
5657
5658 /* Otherwise, apply the same padding to register arguments as we do
5659 to stack arguments. */
5660 return mips_pad_arg_upward (mode, type);
5661 }
5662
5663 /* Return nonzero when an argument must be passed by reference. */
5664
5665 static bool
5666 mips_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
5667 machine_mode mode, const_tree type,
5668 bool named ATTRIBUTE_UNUSED)
5669 {
5670 if (mips_abi == ABI_EABI)
5671 {
5672 int size;
5673
5674 /* ??? How should SCmode be handled? */
5675 if (mode == DImode || mode == DFmode
5676 || mode == DQmode || mode == UDQmode
5677 || mode == DAmode || mode == UDAmode)
5678 return 0;
5679
5680 size = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
5681 return size == -1 || size > UNITS_PER_WORD;
5682 }
5683 else
5684 {
5685 /* If we have a variable-sized parameter, we have no choice. */
5686 return targetm.calls.must_pass_in_stack (mode, type);
5687 }
5688 }
5689
5690 /* Implement TARGET_CALLEE_COPIES. */
5691
5692 static bool
5693 mips_callee_copies (cumulative_args_t cum ATTRIBUTE_UNUSED,
5694 machine_mode mode ATTRIBUTE_UNUSED,
5695 const_tree type ATTRIBUTE_UNUSED, bool named)
5696 {
5697 return mips_abi == ABI_EABI && named;
5698 }
5699 \f
5700 /* See whether VALTYPE is a record whose fields should be returned in
5701 floating-point registers. If so, return the number of fields and
5702 list them in FIELDS (which should have two elements). Return 0
5703 otherwise.
5704
5705 For n32 & n64, a structure with one or two fields is returned in
5706 floating-point registers as long as every field has a floating-point
5707 type. */
5708
5709 static int
5710 mips_fpr_return_fields (const_tree valtype, tree *fields)
5711 {
5712 tree field;
5713 int i;
5714
5715 if (!TARGET_NEWABI)
5716 return 0;
5717
5718 if (TREE_CODE (valtype) != RECORD_TYPE)
5719 return 0;
5720
5721 i = 0;
5722 for (field = TYPE_FIELDS (valtype); field != 0; field = DECL_CHAIN (field))
5723 {
5724 if (TREE_CODE (field) != FIELD_DECL)
5725 continue;
5726
5727 if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (field)))
5728 return 0;
5729
5730 if (i == 2)
5731 return 0;
5732
5733 fields[i++] = field;
5734 }
5735 return i;
5736 }
5737
5738 /* Implement TARGET_RETURN_IN_MSB. For n32 & n64, we should return
5739 a value in the most significant part of $2/$3 if:
5740
5741 - the target is big-endian;
5742
5743 - the value has a structure or union type (we generalize this to
5744 cover aggregates from other languages too); and
5745
5746 - the structure is not returned in floating-point registers. */
5747
5748 static bool
5749 mips_return_in_msb (const_tree valtype)
5750 {
5751 tree fields[2];
5752
5753 return (TARGET_NEWABI
5754 && TARGET_BIG_ENDIAN
5755 && AGGREGATE_TYPE_P (valtype)
5756 && mips_fpr_return_fields (valtype, fields) == 0);
5757 }
5758
5759 /* Return true if the function return value MODE will get returned in a
5760 floating-point register. */
5761
5762 static bool
5763 mips_return_mode_in_fpr_p (machine_mode mode)
5764 {
5765 gcc_assert (TARGET_PAIRED_SINGLE_FLOAT || mode != V2SFmode);
5766 return ((GET_MODE_CLASS (mode) == MODE_FLOAT
5767 || mode == V2SFmode
5768 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5769 && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_HWFPVALUE);
5770 }
5771
5772 /* Return the representation of an FPR return register when the
5773 value being returned in FP_RETURN has mode VALUE_MODE and the
5774 return type itself has mode TYPE_MODE. On NewABI targets,
5775 the two modes may be different for structures like:
5776
5777 struct __attribute__((packed)) foo { float f; }
5778
5779 where we return the SFmode value of "f" in FP_RETURN, but where
5780 the structure itself has mode BLKmode. */
5781
5782 static rtx
5783 mips_return_fpr_single (machine_mode type_mode,
5784 machine_mode value_mode)
5785 {
5786 rtx x;
5787
5788 x = gen_rtx_REG (value_mode, FP_RETURN);
5789 if (type_mode != value_mode)
5790 {
5791 x = gen_rtx_EXPR_LIST (VOIDmode, x, const0_rtx);
5792 x = gen_rtx_PARALLEL (type_mode, gen_rtvec (1, x));
5793 }
5794 return x;
5795 }
5796
5797 /* Return a composite value in a pair of floating-point registers.
5798 MODE1 and OFFSET1 are the mode and byte offset for the first value,
5799 likewise MODE2 and OFFSET2 for the second. MODE is the mode of the
5800 complete value.
5801
5802 For n32 & n64, $f0 always holds the first value and $f2 the second.
5803 Otherwise the values are packed together as closely as possible. */
5804
5805 static rtx
5806 mips_return_fpr_pair (machine_mode mode,
5807 machine_mode mode1, HOST_WIDE_INT offset1,
5808 machine_mode mode2, HOST_WIDE_INT offset2)
5809 {
5810 int inc;
5811
5812 inc = (TARGET_NEWABI || mips_abi == ABI_32 ? 2 : MAX_FPRS_PER_FMT);
5813 return gen_rtx_PARALLEL
5814 (mode,
5815 gen_rtvec (2,
5816 gen_rtx_EXPR_LIST (VOIDmode,
5817 gen_rtx_REG (mode1, FP_RETURN),
5818 GEN_INT (offset1)),
5819 gen_rtx_EXPR_LIST (VOIDmode,
5820 gen_rtx_REG (mode2, FP_RETURN + inc),
5821 GEN_INT (offset2))));
5822
5823 }
5824
5825 /* Implement TARGET_FUNCTION_VALUE and TARGET_LIBCALL_VALUE.
5826 For normal calls, VALTYPE is the return type and MODE is VOIDmode.
5827 For libcalls, VALTYPE is null and MODE is the mode of the return value. */
5828
5829 static rtx
5830 mips_function_value_1 (const_tree valtype, const_tree fn_decl_or_type,
5831 machine_mode mode)
5832 {
5833 if (valtype)
5834 {
5835 tree fields[2];
5836 int unsigned_p;
5837 const_tree func;
5838
5839 if (fn_decl_or_type && DECL_P (fn_decl_or_type))
5840 func = fn_decl_or_type;
5841 else
5842 func = NULL;
5843
5844 mode = TYPE_MODE (valtype);
5845 unsigned_p = TYPE_UNSIGNED (valtype);
5846
5847 /* Since TARGET_PROMOTE_FUNCTION_MODE unconditionally promotes,
5848 return values, promote the mode here too. */
5849 mode = promote_function_mode (valtype, mode, &unsigned_p, func, 1);
5850
5851 /* Handle structures whose fields are returned in $f0/$f2. */
5852 switch (mips_fpr_return_fields (valtype, fields))
5853 {
5854 case 1:
5855 return mips_return_fpr_single (mode,
5856 TYPE_MODE (TREE_TYPE (fields[0])));
5857
5858 case 2:
5859 return mips_return_fpr_pair (mode,
5860 TYPE_MODE (TREE_TYPE (fields[0])),
5861 int_byte_position (fields[0]),
5862 TYPE_MODE (TREE_TYPE (fields[1])),
5863 int_byte_position (fields[1]));
5864 }
5865
5866 /* If a value is passed in the most significant part of a register, see
5867 whether we have to round the mode up to a whole number of words. */
5868 if (mips_return_in_msb (valtype))
5869 {
5870 HOST_WIDE_INT size = int_size_in_bytes (valtype);
5871 if (size % UNITS_PER_WORD != 0)
5872 {
5873 size += UNITS_PER_WORD - size % UNITS_PER_WORD;
5874 mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
5875 }
5876 }
5877
5878 /* For EABI, the class of return register depends entirely on MODE.
5879 For example, "struct { some_type x; }" and "union { some_type x; }"
5880 are returned in the same way as a bare "some_type" would be.
5881 Other ABIs only use FPRs for scalar, complex or vector types. */
5882 if (mips_abi != ABI_EABI && !FLOAT_TYPE_P (valtype))
5883 return gen_rtx_REG (mode, GP_RETURN);
5884 }
5885
5886 if (!TARGET_MIPS16)
5887 {
5888 /* Handle long doubles for n32 & n64. */
5889 if (mode == TFmode)
5890 return mips_return_fpr_pair (mode,
5891 DImode, 0,
5892 DImode, GET_MODE_SIZE (mode) / 2);
5893
5894 if (mips_return_mode_in_fpr_p (mode))
5895 {
5896 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5897 return mips_return_fpr_pair (mode,
5898 GET_MODE_INNER (mode), 0,
5899 GET_MODE_INNER (mode),
5900 GET_MODE_SIZE (mode) / 2);
5901 else
5902 return gen_rtx_REG (mode, FP_RETURN);
5903 }
5904 }
5905
5906 return gen_rtx_REG (mode, GP_RETURN);
5907 }
5908
5909 /* Implement TARGET_FUNCTION_VALUE. */
5910
5911 static rtx
5912 mips_function_value (const_tree valtype, const_tree fn_decl_or_type,
5913 bool outgoing ATTRIBUTE_UNUSED)
5914 {
5915 return mips_function_value_1 (valtype, fn_decl_or_type, VOIDmode);
5916 }
5917
5918 /* Implement TARGET_LIBCALL_VALUE. */
5919
5920 static rtx
5921 mips_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
5922 {
5923 return mips_function_value_1 (NULL_TREE, NULL_TREE, mode);
5924 }
5925
5926 /* Implement TARGET_FUNCTION_VALUE_REGNO_P.
5927
5928 On the MIPS, R2 R3 and F0 F2 are the only register thus used. */
5929
5930 static bool
5931 mips_function_value_regno_p (const unsigned int regno)
5932 {
5933 /* Most types only require one GPR or one FPR for return values but for
5934 hard-float two FPRs can be used for _Complex types (for all ABIs)
5935 and long doubles (for n64). */
5936 if (regno == GP_RETURN
5937 || regno == FP_RETURN
5938 || (FP_RETURN != GP_RETURN
5939 && regno == FP_RETURN + 2))
5940 return true;
5941
5942 /* For o32 FP32, _Complex double will be returned in four 32-bit registers.
5943 This does not apply to o32 FPXX as floating-point function argument and
5944 return registers are described as 64-bit even though floating-point
5945 registers are primarily described as 32-bit internally.
5946 See: mips_get_reg_raw_mode. */
5947 if ((mips_abi == ABI_32 && TARGET_FLOAT32)
5948 && FP_RETURN != GP_RETURN
5949 && (regno == FP_RETURN + 1
5950 || regno == FP_RETURN + 3))
5951 return true;
5952
5953 return false;
5954 }
5955
5956 /* Implement TARGET_RETURN_IN_MEMORY. Under the o32 and o64 ABIs,
5957 all BLKmode objects are returned in memory. Under the n32, n64
5958 and embedded ABIs, small structures are returned in a register.
5959 Objects with varying size must still be returned in memory, of
5960 course. */
5961
5962 static bool
5963 mips_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
5964 {
5965 return (TARGET_OLDABI
5966 ? TYPE_MODE (type) == BLKmode
5967 : !IN_RANGE (int_size_in_bytes (type), 0, 2 * UNITS_PER_WORD));
5968 }
5969 \f
5970 /* Implement TARGET_SETUP_INCOMING_VARARGS. */
5971
5972 static void
5973 mips_setup_incoming_varargs (cumulative_args_t cum, machine_mode mode,
5974 tree type, int *pretend_size ATTRIBUTE_UNUSED,
5975 int no_rtl)
5976 {
5977 CUMULATIVE_ARGS local_cum;
5978 int gp_saved, fp_saved;
5979
5980 /* The caller has advanced CUM up to, but not beyond, the last named
5981 argument. Advance a local copy of CUM past the last "real" named
5982 argument, to find out how many registers are left over. */
5983 local_cum = *get_cumulative_args (cum);
5984 mips_function_arg_advance (pack_cumulative_args (&local_cum), mode, type,
5985 true);
5986
5987 /* Found out how many registers we need to save. */
5988 gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
5989 fp_saved = (EABI_FLOAT_VARARGS_P
5990 ? MAX_ARGS_IN_REGISTERS - local_cum.num_fprs
5991 : 0);
5992
5993 if (!no_rtl)
5994 {
5995 if (gp_saved > 0)
5996 {
5997 rtx ptr, mem;
5998
5999 ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
6000 REG_PARM_STACK_SPACE (cfun->decl)
6001 - gp_saved * UNITS_PER_WORD);
6002 mem = gen_frame_mem (BLKmode, ptr);
6003 set_mem_alias_set (mem, get_varargs_alias_set ());
6004
6005 move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
6006 mem, gp_saved);
6007 }
6008 if (fp_saved > 0)
6009 {
6010 /* We can't use move_block_from_reg, because it will use
6011 the wrong mode. */
6012 machine_mode mode;
6013 int off, i;
6014
6015 /* Set OFF to the offset from virtual_incoming_args_rtx of
6016 the first float register. The FP save area lies below
6017 the integer one, and is aligned to UNITS_PER_FPVALUE bytes. */
6018 off = (-gp_saved * UNITS_PER_WORD) & -UNITS_PER_FPVALUE;
6019 off -= fp_saved * UNITS_PER_FPREG;
6020
6021 mode = TARGET_SINGLE_FLOAT ? SFmode : DFmode;
6022
6023 for (i = local_cum.num_fprs; i < MAX_ARGS_IN_REGISTERS;
6024 i += MAX_FPRS_PER_FMT)
6025 {
6026 rtx ptr, mem;
6027
6028 ptr = plus_constant (Pmode, virtual_incoming_args_rtx, off);
6029 mem = gen_frame_mem (mode, ptr);
6030 set_mem_alias_set (mem, get_varargs_alias_set ());
6031 mips_emit_move (mem, gen_rtx_REG (mode, FP_ARG_FIRST + i));
6032 off += UNITS_PER_HWFPVALUE;
6033 }
6034 }
6035 }
6036 if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
6037 cfun->machine->varargs_size = (gp_saved * UNITS_PER_WORD
6038 + fp_saved * UNITS_PER_FPREG);
6039 }
6040
6041 /* Implement TARGET_BUILTIN_VA_LIST. */
6042
6043 static tree
6044 mips_build_builtin_va_list (void)
6045 {
6046 if (EABI_FLOAT_VARARGS_P)
6047 {
6048 /* We keep 3 pointers, and two offsets.
6049
6050 Two pointers are to the overflow area, which starts at the CFA.
6051 One of these is constant, for addressing into the GPR save area
6052 below it. The other is advanced up the stack through the
6053 overflow region.
6054
6055 The third pointer is to the bottom of the GPR save area.
6056 Since the FPR save area is just below it, we can address
6057 FPR slots off this pointer.
6058
6059 We also keep two one-byte offsets, which are to be subtracted
6060 from the constant pointers to yield addresses in the GPR and
6061 FPR save areas. These are downcounted as float or non-float
6062 arguments are used, and when they get to zero, the argument
6063 must be obtained from the overflow region. */
6064 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff, f_res, record;
6065 tree array, index;
6066
6067 record = lang_hooks.types.make_type (RECORD_TYPE);
6068
6069 f_ovfl = build_decl (BUILTINS_LOCATION,
6070 FIELD_DECL, get_identifier ("__overflow_argptr"),
6071 ptr_type_node);
6072 f_gtop = build_decl (BUILTINS_LOCATION,
6073 FIELD_DECL, get_identifier ("__gpr_top"),
6074 ptr_type_node);
6075 f_ftop = build_decl (BUILTINS_LOCATION,
6076 FIELD_DECL, get_identifier ("__fpr_top"),
6077 ptr_type_node);
6078 f_goff = build_decl (BUILTINS_LOCATION,
6079 FIELD_DECL, get_identifier ("__gpr_offset"),
6080 unsigned_char_type_node);
6081 f_foff = build_decl (BUILTINS_LOCATION,
6082 FIELD_DECL, get_identifier ("__fpr_offset"),
6083 unsigned_char_type_node);
6084 /* Explicitly pad to the size of a pointer, so that -Wpadded won't
6085 warn on every user file. */
6086 index = build_int_cst (NULL_TREE, GET_MODE_SIZE (ptr_mode) - 2 - 1);
6087 array = build_array_type (unsigned_char_type_node,
6088 build_index_type (index));
6089 f_res = build_decl (BUILTINS_LOCATION,
6090 FIELD_DECL, get_identifier ("__reserved"), array);
6091
6092 DECL_FIELD_CONTEXT (f_ovfl) = record;
6093 DECL_FIELD_CONTEXT (f_gtop) = record;
6094 DECL_FIELD_CONTEXT (f_ftop) = record;
6095 DECL_FIELD_CONTEXT (f_goff) = record;
6096 DECL_FIELD_CONTEXT (f_foff) = record;
6097 DECL_FIELD_CONTEXT (f_res) = record;
6098
6099 TYPE_FIELDS (record) = f_ovfl;
6100 DECL_CHAIN (f_ovfl) = f_gtop;
6101 DECL_CHAIN (f_gtop) = f_ftop;
6102 DECL_CHAIN (f_ftop) = f_goff;
6103 DECL_CHAIN (f_goff) = f_foff;
6104 DECL_CHAIN (f_foff) = f_res;
6105
6106 layout_type (record);
6107 return record;
6108 }
6109 else
6110 /* Otherwise, we use 'void *'. */
6111 return ptr_type_node;
6112 }
6113
6114 /* Implement TARGET_EXPAND_BUILTIN_VA_START. */
6115
6116 static void
6117 mips_va_start (tree valist, rtx nextarg)
6118 {
6119 if (EABI_FLOAT_VARARGS_P)
6120 {
6121 const CUMULATIVE_ARGS *cum;
6122 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
6123 tree ovfl, gtop, ftop, goff, foff;
6124 tree t;
6125 int gpr_save_area_size;
6126 int fpr_save_area_size;
6127 int fpr_offset;
6128
6129 cum = &crtl->args.info;
6130 gpr_save_area_size
6131 = (MAX_ARGS_IN_REGISTERS - cum->num_gprs) * UNITS_PER_WORD;
6132 fpr_save_area_size
6133 = (MAX_ARGS_IN_REGISTERS - cum->num_fprs) * UNITS_PER_FPREG;
6134
6135 f_ovfl = TYPE_FIELDS (va_list_type_node);
6136 f_gtop = DECL_CHAIN (f_ovfl);
6137 f_ftop = DECL_CHAIN (f_gtop);
6138 f_goff = DECL_CHAIN (f_ftop);
6139 f_foff = DECL_CHAIN (f_goff);
6140
6141 ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
6142 NULL_TREE);
6143 gtop = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
6144 NULL_TREE);
6145 ftop = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
6146 NULL_TREE);
6147 goff = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
6148 NULL_TREE);
6149 foff = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
6150 NULL_TREE);
6151
6152 /* Emit code to initialize OVFL, which points to the next varargs
6153 stack argument. CUM->STACK_WORDS gives the number of stack
6154 words used by named arguments. */
6155 t = make_tree (TREE_TYPE (ovfl), virtual_incoming_args_rtx);
6156 if (cum->stack_words > 0)
6157 t = fold_build_pointer_plus_hwi (t, cum->stack_words * UNITS_PER_WORD);
6158 t = build2 (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
6159 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6160
6161 /* Emit code to initialize GTOP, the top of the GPR save area. */
6162 t = make_tree (TREE_TYPE (gtop), virtual_incoming_args_rtx);
6163 t = build2 (MODIFY_EXPR, TREE_TYPE (gtop), gtop, t);
6164 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6165
6166 /* Emit code to initialize FTOP, the top of the FPR save area.
6167 This address is gpr_save_area_bytes below GTOP, rounded
6168 down to the next fp-aligned boundary. */
6169 t = make_tree (TREE_TYPE (ftop), virtual_incoming_args_rtx);
6170 fpr_offset = gpr_save_area_size + UNITS_PER_FPVALUE - 1;
6171 fpr_offset &= -UNITS_PER_FPVALUE;
6172 if (fpr_offset)
6173 t = fold_build_pointer_plus_hwi (t, -fpr_offset);
6174 t = build2 (MODIFY_EXPR, TREE_TYPE (ftop), ftop, t);
6175 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6176
6177 /* Emit code to initialize GOFF, the offset from GTOP of the
6178 next GPR argument. */
6179 t = build2 (MODIFY_EXPR, TREE_TYPE (goff), goff,
6180 build_int_cst (TREE_TYPE (goff), gpr_save_area_size));
6181 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6182
6183 /* Likewise emit code to initialize FOFF, the offset from FTOP
6184 of the next FPR argument. */
6185 t = build2 (MODIFY_EXPR, TREE_TYPE (foff), foff,
6186 build_int_cst (TREE_TYPE (foff), fpr_save_area_size));
6187 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6188 }
6189 else
6190 {
6191 nextarg = plus_constant (Pmode, nextarg, -cfun->machine->varargs_size);
6192 std_expand_builtin_va_start (valist, nextarg);
6193 }
6194 }
6195
6196 /* Like std_gimplify_va_arg_expr, but apply alignment to zero-sized
6197 types as well. */
6198
6199 static tree
6200 mips_std_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
6201 gimple_seq *post_p)
6202 {
6203 tree addr, t, type_size, rounded_size, valist_tmp;
6204 unsigned HOST_WIDE_INT align, boundary;
6205 bool indirect;
6206
6207 indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
6208 if (indirect)
6209 type = build_pointer_type (type);
6210
6211 align = PARM_BOUNDARY / BITS_PER_UNIT;
6212 boundary = targetm.calls.function_arg_boundary (TYPE_MODE (type), type);
6213
6214 /* When we align parameter on stack for caller, if the parameter
6215 alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be
6216 aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee
6217 here with caller. */
6218 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
6219 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
6220
6221 boundary /= BITS_PER_UNIT;
6222
6223 /* Hoist the valist value into a temporary for the moment. */
6224 valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL);
6225
6226 /* va_list pointer is aligned to PARM_BOUNDARY. If argument actually
6227 requires greater alignment, we must perform dynamic alignment. */
6228 if (boundary > align)
6229 {
6230 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
6231 fold_build_pointer_plus_hwi (valist_tmp, boundary - 1));
6232 gimplify_and_add (t, pre_p);
6233
6234 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
6235 fold_build2 (BIT_AND_EXPR, TREE_TYPE (valist),
6236 valist_tmp,
6237 build_int_cst (TREE_TYPE (valist), -boundary)));
6238 gimplify_and_add (t, pre_p);
6239 }
6240 else
6241 boundary = align;
6242
6243 /* If the actual alignment is less than the alignment of the type,
6244 adjust the type accordingly so that we don't assume strict alignment
6245 when dereferencing the pointer. */
6246 boundary *= BITS_PER_UNIT;
6247 if (boundary < TYPE_ALIGN (type))
6248 {
6249 type = build_variant_type_copy (type);
6250 TYPE_ALIGN (type) = boundary;
6251 }
6252
6253 /* Compute the rounded size of the type. */
6254 type_size = size_in_bytes (type);
6255 rounded_size = round_up (type_size, align);
6256
6257 /* Reduce rounded_size so it's sharable with the postqueue. */
6258 gimplify_expr (&rounded_size, pre_p, post_p, is_gimple_val, fb_rvalue);
6259
6260 /* Get AP. */
6261 addr = valist_tmp;
6262 if (PAD_VARARGS_DOWN && !integer_zerop (rounded_size))
6263 {
6264 /* Small args are padded downward. */
6265 t = fold_build2_loc (input_location, GT_EXPR, sizetype,
6266 rounded_size, size_int (align));
6267 t = fold_build3 (COND_EXPR, sizetype, t, size_zero_node,
6268 size_binop (MINUS_EXPR, rounded_size, type_size));
6269 addr = fold_build_pointer_plus (addr, t);
6270 }
6271
6272 /* Compute new value for AP. */
6273 t = fold_build_pointer_plus (valist_tmp, rounded_size);
6274 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
6275 gimplify_and_add (t, pre_p);
6276
6277 addr = fold_convert (build_pointer_type (type), addr);
6278
6279 if (indirect)
6280 addr = build_va_arg_indirect_ref (addr);
6281
6282 return build_va_arg_indirect_ref (addr);
6283 }
6284
6285 /* Implement TARGET_GIMPLIFY_VA_ARG_EXPR. */
6286
6287 static tree
6288 mips_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
6289 gimple_seq *post_p)
6290 {
6291 tree addr;
6292 bool indirect_p;
6293
6294 indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, 0);
6295 if (indirect_p)
6296 type = build_pointer_type (type);
6297
6298 if (!EABI_FLOAT_VARARGS_P)
6299 addr = mips_std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
6300 else
6301 {
6302 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
6303 tree ovfl, top, off, align;
6304 HOST_WIDE_INT size, rsize, osize;
6305 tree t, u;
6306
6307 f_ovfl = TYPE_FIELDS (va_list_type_node);
6308 f_gtop = DECL_CHAIN (f_ovfl);
6309 f_ftop = DECL_CHAIN (f_gtop);
6310 f_goff = DECL_CHAIN (f_ftop);
6311 f_foff = DECL_CHAIN (f_goff);
6312
6313 /* Let:
6314
6315 TOP be the top of the GPR or FPR save area;
6316 OFF be the offset from TOP of the next register;
6317 ADDR_RTX be the address of the argument;
6318 SIZE be the number of bytes in the argument type;
6319 RSIZE be the number of bytes used to store the argument
6320 when it's in the register save area; and
6321 OSIZE be the number of bytes used to store it when it's
6322 in the stack overflow area.
6323
6324 The code we want is:
6325
6326 1: off &= -rsize; // round down
6327 2: if (off != 0)
6328 3: {
6329 4: addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0);
6330 5: off -= rsize;
6331 6: }
6332 7: else
6333 8: {
6334 9: ovfl = ((intptr_t) ovfl + osize - 1) & -osize;
6335 10: addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0);
6336 11: ovfl += osize;
6337 14: }
6338
6339 [1] and [9] can sometimes be optimized away. */
6340
6341 ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
6342 NULL_TREE);
6343 size = int_size_in_bytes (type);
6344
6345 if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT
6346 && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FPVALUE)
6347 {
6348 top = build3 (COMPONENT_REF, TREE_TYPE (f_ftop),
6349 unshare_expr (valist), f_ftop, NULL_TREE);
6350 off = build3 (COMPONENT_REF, TREE_TYPE (f_foff),
6351 unshare_expr (valist), f_foff, NULL_TREE);
6352
6353 /* When va_start saves FPR arguments to the stack, each slot
6354 takes up UNITS_PER_HWFPVALUE bytes, regardless of the
6355 argument's precision. */
6356 rsize = UNITS_PER_HWFPVALUE;
6357
6358 /* Overflow arguments are padded to UNITS_PER_WORD bytes
6359 (= PARM_BOUNDARY bits). This can be different from RSIZE
6360 in two cases:
6361
6362 (1) On 32-bit targets when TYPE is a structure such as:
6363
6364 struct s { float f; };
6365
6366 Such structures are passed in paired FPRs, so RSIZE
6367 will be 8 bytes. However, the structure only takes
6368 up 4 bytes of memory, so OSIZE will only be 4.
6369
6370 (2) In combinations such as -mgp64 -msingle-float
6371 -fshort-double. Doubles passed in registers will then take
6372 up 4 (UNITS_PER_HWFPVALUE) bytes, but those passed on the
6373 stack take up UNITS_PER_WORD bytes. */
6374 osize = MAX (GET_MODE_SIZE (TYPE_MODE (type)), UNITS_PER_WORD);
6375 }
6376 else
6377 {
6378 top = build3 (COMPONENT_REF, TREE_TYPE (f_gtop),
6379 unshare_expr (valist), f_gtop, NULL_TREE);
6380 off = build3 (COMPONENT_REF, TREE_TYPE (f_goff),
6381 unshare_expr (valist), f_goff, NULL_TREE);
6382 rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
6383 if (rsize > UNITS_PER_WORD)
6384 {
6385 /* [1] Emit code for: off &= -rsize. */
6386 t = build2 (BIT_AND_EXPR, TREE_TYPE (off), unshare_expr (off),
6387 build_int_cst (TREE_TYPE (off), -rsize));
6388 gimplify_assign (unshare_expr (off), t, pre_p);
6389 }
6390 osize = rsize;
6391 }
6392
6393 /* [2] Emit code to branch if off == 0. */
6394 t = build2 (NE_EXPR, boolean_type_node, unshare_expr (off),
6395 build_int_cst (TREE_TYPE (off), 0));
6396 addr = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE);
6397
6398 /* [5] Emit code for: off -= rsize. We do this as a form of
6399 post-decrement not available to C. */
6400 t = fold_convert (TREE_TYPE (off), build_int_cst (NULL_TREE, rsize));
6401 t = build2 (POSTDECREMENT_EXPR, TREE_TYPE (off), off, t);
6402
6403 /* [4] Emit code for:
6404 addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0). */
6405 t = fold_convert (sizetype, t);
6406 t = fold_build1 (NEGATE_EXPR, sizetype, t);
6407 t = fold_build_pointer_plus (top, t);
6408 if (BYTES_BIG_ENDIAN && rsize > size)
6409 t = fold_build_pointer_plus_hwi (t, rsize - size);
6410 COND_EXPR_THEN (addr) = t;
6411
6412 if (osize > UNITS_PER_WORD)
6413 {
6414 /* [9] Emit: ovfl = ((intptr_t) ovfl + osize - 1) & -osize. */
6415 t = fold_build_pointer_plus_hwi (unshare_expr (ovfl), osize - 1);
6416 u = build_int_cst (TREE_TYPE (t), -osize);
6417 t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, u);
6418 align = build2 (MODIFY_EXPR, TREE_TYPE (ovfl),
6419 unshare_expr (ovfl), t);
6420 }
6421 else
6422 align = NULL;
6423
6424 /* [10, 11] Emit code for:
6425 addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0)
6426 ovfl += osize. */
6427 u = fold_convert (TREE_TYPE (ovfl), build_int_cst (NULL_TREE, osize));
6428 t = build2 (POSTINCREMENT_EXPR, TREE_TYPE (ovfl), ovfl, u);
6429 if (BYTES_BIG_ENDIAN && osize > size)
6430 t = fold_build_pointer_plus_hwi (t, osize - size);
6431
6432 /* String [9] and [10, 11] together. */
6433 if (align)
6434 t = build2 (COMPOUND_EXPR, TREE_TYPE (t), align, t);
6435 COND_EXPR_ELSE (addr) = t;
6436
6437 addr = fold_convert (build_pointer_type (type), addr);
6438 addr = build_va_arg_indirect_ref (addr);
6439 }
6440
6441 if (indirect_p)
6442 addr = build_va_arg_indirect_ref (addr);
6443
6444 return addr;
6445 }
6446 \f
6447 /* Declare a unique, locally-binding function called NAME, then start
6448 its definition. */
6449
6450 static void
6451 mips_start_unique_function (const char *name)
6452 {
6453 tree decl;
6454
6455 decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
6456 get_identifier (name),
6457 build_function_type_list (void_type_node, NULL_TREE));
6458 DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
6459 NULL_TREE, void_type_node);
6460 TREE_PUBLIC (decl) = 1;
6461 TREE_STATIC (decl) = 1;
6462
6463 cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl));
6464
6465 targetm.asm_out.unique_section (decl, 0);
6466 switch_to_section (get_named_section (decl, NULL, 0));
6467
6468 targetm.asm_out.globalize_label (asm_out_file, name);
6469 fputs ("\t.hidden\t", asm_out_file);
6470 assemble_name (asm_out_file, name);
6471 putc ('\n', asm_out_file);
6472 }
6473
6474 /* Start a definition of function NAME. MIPS16_P indicates whether the
6475 function contains MIPS16 code. */
6476
6477 static void
6478 mips_start_function_definition (const char *name, bool mips16_p)
6479 {
6480 if (mips16_p)
6481 fprintf (asm_out_file, "\t.set\tmips16\n");
6482 else
6483 fprintf (asm_out_file, "\t.set\tnomips16\n");
6484
6485 if (TARGET_MICROMIPS)
6486 fprintf (asm_out_file, "\t.set\tmicromips\n");
6487 #ifdef HAVE_GAS_MICROMIPS
6488 else
6489 fprintf (asm_out_file, "\t.set\tnomicromips\n");
6490 #endif
6491
6492 if (!flag_inhibit_size_directive)
6493 {
6494 fputs ("\t.ent\t", asm_out_file);
6495 assemble_name (asm_out_file, name);
6496 fputs ("\n", asm_out_file);
6497 }
6498
6499 ASM_OUTPUT_TYPE_DIRECTIVE (asm_out_file, name, "function");
6500
6501 /* Start the definition proper. */
6502 assemble_name (asm_out_file, name);
6503 fputs (":\n", asm_out_file);
6504 }
6505
6506 /* End a function definition started by mips_start_function_definition. */
6507
6508 static void
6509 mips_end_function_definition (const char *name)
6510 {
6511 if (!flag_inhibit_size_directive)
6512 {
6513 fputs ("\t.end\t", asm_out_file);
6514 assemble_name (asm_out_file, name);
6515 fputs ("\n", asm_out_file);
6516 }
6517 }
6518
6519 /* If *STUB_PTR points to a stub, output a comdat-style definition for it,
6520 then free *STUB_PTR. */
6521
6522 static void
6523 mips_finish_stub (mips_one_only_stub **stub_ptr)
6524 {
6525 mips_one_only_stub *stub = *stub_ptr;
6526 if (!stub)
6527 return;
6528
6529 const char *name = stub->get_name ();
6530 mips_start_unique_function (name);
6531 mips_start_function_definition (name, false);
6532 stub->output_body ();
6533 mips_end_function_definition (name);
6534 delete stub;
6535 *stub_ptr = 0;
6536 }
6537 \f
6538 /* Return true if calls to X can use R_MIPS_CALL* relocations. */
6539
6540 static bool
6541 mips_ok_for_lazy_binding_p (rtx x)
6542 {
6543 return (TARGET_USE_GOT
6544 && GET_CODE (x) == SYMBOL_REF
6545 && !SYMBOL_REF_BIND_NOW_P (x)
6546 && !mips_symbol_binds_local_p (x));
6547 }
6548
6549 /* Load function address ADDR into register DEST. TYPE is as for
6550 mips_expand_call. Return true if we used an explicit lazy-binding
6551 sequence. */
6552
6553 static bool
6554 mips_load_call_address (enum mips_call_type type, rtx dest, rtx addr)
6555 {
6556 /* If we're generating PIC, and this call is to a global function,
6557 try to allow its address to be resolved lazily. This isn't
6558 possible for sibcalls when $gp is call-saved because the value
6559 of $gp on entry to the stub would be our caller's gp, not ours. */
6560 if (TARGET_EXPLICIT_RELOCS
6561 && !(type == MIPS_CALL_SIBCALL && TARGET_CALL_SAVED_GP)
6562 && mips_ok_for_lazy_binding_p (addr))
6563 {
6564 addr = mips_got_load (dest, addr, SYMBOL_GOTOFF_CALL);
6565 emit_insn (gen_rtx_SET (dest, addr));
6566 return true;
6567 }
6568 else
6569 {
6570 mips_emit_move (dest, addr);
6571 return false;
6572 }
6573 }
6574 \f
6575 /* Each locally-defined hard-float MIPS16 function has a local symbol
6576 associated with it. This hash table maps the function symbol (FUNC)
6577 to the local symbol (LOCAL). */
6578 static GTY (()) hash_map<nofree_string_hash, rtx> *mips16_local_aliases;
6579
6580 /* FUNC is the symbol for a locally-defined hard-float MIPS16 function.
6581 Return a local alias for it, creating a new one if necessary. */
6582
6583 static rtx
6584 mips16_local_alias (rtx func)
6585 {
6586 /* Create the hash table if this is the first call. */
6587 if (mips16_local_aliases == NULL)
6588 mips16_local_aliases = hash_map<nofree_string_hash, rtx>::create_ggc (37);
6589
6590 /* Look up the function symbol, creating a new entry if need be. */
6591 bool existed;
6592 const char *func_name = XSTR (func, 0);
6593 rtx *slot = &mips16_local_aliases->get_or_insert (func_name, &existed);
6594 gcc_assert (slot != NULL);
6595
6596 if (!existed)
6597 {
6598 rtx local;
6599
6600 /* Create a new SYMBOL_REF for the local symbol. The choice of
6601 __fn_local_* is based on the __fn_stub_* names that we've
6602 traditionally used for the non-MIPS16 stub. */
6603 func_name = targetm.strip_name_encoding (XSTR (func, 0));
6604 const char *local_name = ACONCAT (("__fn_local_", func_name, NULL));
6605 local = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (local_name));
6606 SYMBOL_REF_FLAGS (local) = SYMBOL_REF_FLAGS (func) | SYMBOL_FLAG_LOCAL;
6607
6608 /* Create a new structure to represent the mapping. */
6609 *slot = local;
6610 }
6611 return *slot;
6612 }
6613 \f
6614 /* A chained list of functions for which mips16_build_call_stub has already
6615 generated a stub. NAME is the name of the function and FP_RET_P is true
6616 if the function returns a value in floating-point registers. */
6617 struct mips16_stub {
6618 struct mips16_stub *next;
6619 char *name;
6620 bool fp_ret_p;
6621 };
6622 static struct mips16_stub *mips16_stubs;
6623
6624 /* Return the two-character string that identifies floating-point
6625 return mode MODE in the name of a MIPS16 function stub. */
6626
6627 static const char *
6628 mips16_call_stub_mode_suffix (machine_mode mode)
6629 {
6630 if (mode == SFmode)
6631 return "sf";
6632 else if (mode == DFmode)
6633 return "df";
6634 else if (mode == SCmode)
6635 return "sc";
6636 else if (mode == DCmode)
6637 return "dc";
6638 else if (mode == V2SFmode)
6639 {
6640 gcc_assert (TARGET_PAIRED_SINGLE_FLOAT);
6641 return "df";
6642 }
6643 else
6644 gcc_unreachable ();
6645 }
6646
6647 /* Write instructions to move a 32-bit value between general register
6648 GPREG and floating-point register FPREG. DIRECTION is 't' to move
6649 from GPREG to FPREG and 'f' to move in the opposite direction. */
6650
6651 static void
6652 mips_output_32bit_xfer (char direction, unsigned int gpreg, unsigned int fpreg)
6653 {
6654 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
6655 reg_names[gpreg], reg_names[fpreg]);
6656 }
6657
6658 /* Likewise for 64-bit values. */
6659
6660 static void
6661 mips_output_64bit_xfer (char direction, unsigned int gpreg, unsigned int fpreg)
6662 {
6663 if (TARGET_64BIT)
6664 fprintf (asm_out_file, "\tdm%cc1\t%s,%s\n", direction,
6665 reg_names[gpreg], reg_names[fpreg]);
6666 else if (ISA_HAS_MXHC1)
6667 {
6668 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
6669 reg_names[gpreg + TARGET_BIG_ENDIAN], reg_names[fpreg]);
6670 fprintf (asm_out_file, "\tm%chc1\t%s,%s\n", direction,
6671 reg_names[gpreg + TARGET_LITTLE_ENDIAN], reg_names[fpreg]);
6672 }
6673 else if (TARGET_FLOATXX && direction == 't')
6674 {
6675 /* Use the argument save area to move via memory. */
6676 fprintf (asm_out_file, "\tsw\t%s,0($sp)\n", reg_names[gpreg]);
6677 fprintf (asm_out_file, "\tsw\t%s,4($sp)\n", reg_names[gpreg + 1]);
6678 fprintf (asm_out_file, "\tldc1\t%s,0($sp)\n", reg_names[fpreg]);
6679 }
6680 else if (TARGET_FLOATXX && direction == 'f')
6681 {
6682 /* Use the argument save area to move via memory. */
6683 fprintf (asm_out_file, "\tsdc1\t%s,0($sp)\n", reg_names[fpreg]);
6684 fprintf (asm_out_file, "\tlw\t%s,0($sp)\n", reg_names[gpreg]);
6685 fprintf (asm_out_file, "\tlw\t%s,4($sp)\n", reg_names[gpreg + 1]);
6686 }
6687 else
6688 {
6689 /* Move the least-significant word. */
6690 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
6691 reg_names[gpreg + TARGET_BIG_ENDIAN], reg_names[fpreg]);
6692 /* ...then the most significant word. */
6693 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
6694 reg_names[gpreg + TARGET_LITTLE_ENDIAN], reg_names[fpreg + 1]);
6695 }
6696 }
6697
6698 /* Write out code to move floating-point arguments into or out of
6699 general registers. FP_CODE is the code describing which arguments
6700 are present (see the comment above the definition of CUMULATIVE_ARGS
6701 in mips.h). DIRECTION is as for mips_output_32bit_xfer. */
6702
6703 static void
6704 mips_output_args_xfer (int fp_code, char direction)
6705 {
6706 unsigned int gparg, fparg, f;
6707 CUMULATIVE_ARGS cum;
6708
6709 /* This code only works for o32 and o64. */
6710 gcc_assert (TARGET_OLDABI);
6711
6712 mips_init_cumulative_args (&cum, NULL);
6713
6714 for (f = (unsigned int) fp_code; f != 0; f >>= 2)
6715 {
6716 machine_mode mode;
6717 struct mips_arg_info info;
6718
6719 if ((f & 3) == 1)
6720 mode = SFmode;
6721 else if ((f & 3) == 2)
6722 mode = DFmode;
6723 else
6724 gcc_unreachable ();
6725
6726 mips_get_arg_info (&info, &cum, mode, NULL, true);
6727 gparg = mips_arg_regno (&info, false);
6728 fparg = mips_arg_regno (&info, true);
6729
6730 if (mode == SFmode)
6731 mips_output_32bit_xfer (direction, gparg, fparg);
6732 else
6733 mips_output_64bit_xfer (direction, gparg, fparg);
6734
6735 mips_function_arg_advance (pack_cumulative_args (&cum), mode, NULL, true);
6736 }
6737 }
6738
6739 /* Write a MIPS16 stub for the current function. This stub is used
6740 for functions which take arguments in the floating-point registers.
6741 It is normal-mode code that moves the floating-point arguments
6742 into the general registers and then jumps to the MIPS16 code. */
6743
6744 static void
6745 mips16_build_function_stub (void)
6746 {
6747 const char *fnname, *alias_name, *separator;
6748 char *secname, *stubname;
6749 tree stubdecl;
6750 unsigned int f;
6751 rtx symbol, alias;
6752
6753 /* Create the name of the stub, and its unique section. */
6754 symbol = XEXP (DECL_RTL (current_function_decl), 0);
6755 alias = mips16_local_alias (symbol);
6756
6757 fnname = targetm.strip_name_encoding (XSTR (symbol, 0));
6758 alias_name = targetm.strip_name_encoding (XSTR (alias, 0));
6759 secname = ACONCAT ((".mips16.fn.", fnname, NULL));
6760 stubname = ACONCAT (("__fn_stub_", fnname, NULL));
6761
6762 /* Build a decl for the stub. */
6763 stubdecl = build_decl (BUILTINS_LOCATION,
6764 FUNCTION_DECL, get_identifier (stubname),
6765 build_function_type_list (void_type_node, NULL_TREE));
6766 set_decl_section_name (stubdecl, secname);
6767 DECL_RESULT (stubdecl) = build_decl (BUILTINS_LOCATION,
6768 RESULT_DECL, NULL_TREE, void_type_node);
6769
6770 /* Output a comment. */
6771 fprintf (asm_out_file, "\t# Stub function for %s (",
6772 current_function_name ());
6773 separator = "";
6774 for (f = (unsigned int) crtl->args.info.fp_code; f != 0; f >>= 2)
6775 {
6776 fprintf (asm_out_file, "%s%s", separator,
6777 (f & 3) == 1 ? "float" : "double");
6778 separator = ", ";
6779 }
6780 fprintf (asm_out_file, ")\n");
6781
6782 /* Start the function definition. */
6783 assemble_start_function (stubdecl, stubname);
6784 mips_start_function_definition (stubname, false);
6785
6786 /* If generating pic2 code, either set up the global pointer or
6787 switch to pic0. */
6788 if (TARGET_ABICALLS_PIC2)
6789 {
6790 if (TARGET_ABSOLUTE_ABICALLS)
6791 fprintf (asm_out_file, "\t.option\tpic0\n");
6792 else
6793 {
6794 output_asm_insn ("%(.cpload\t%^%)", NULL);
6795 /* Emit an R_MIPS_NONE relocation to tell the linker what the
6796 target function is. Use a local GOT access when loading the
6797 symbol, to cut down on the number of unnecessary GOT entries
6798 for stubs that aren't needed. */
6799 output_asm_insn (".reloc\t0,R_MIPS_NONE,%0", &symbol);
6800 symbol = alias;
6801 }
6802 }
6803
6804 /* Load the address of the MIPS16 function into $25. Do this first so
6805 that targets with coprocessor interlocks can use an MFC1 to fill the
6806 delay slot. */
6807 output_asm_insn ("la\t%^,%0", &symbol);
6808
6809 /* Move the arguments from floating-point registers to general registers. */
6810 mips_output_args_xfer (crtl->args.info.fp_code, 'f');
6811
6812 /* Jump to the MIPS16 function. */
6813 output_asm_insn ("jr\t%^", NULL);
6814
6815 if (TARGET_ABICALLS_PIC2 && TARGET_ABSOLUTE_ABICALLS)
6816 fprintf (asm_out_file, "\t.option\tpic2\n");
6817
6818 mips_end_function_definition (stubname);
6819
6820 /* If the linker needs to create a dynamic symbol for the target
6821 function, it will associate the symbol with the stub (which,
6822 unlike the target function, follows the proper calling conventions).
6823 It is therefore useful to have a local alias for the target function,
6824 so that it can still be identified as MIPS16 code. As an optimization,
6825 this symbol can also be used for indirect MIPS16 references from
6826 within this file. */
6827 ASM_OUTPUT_DEF (asm_out_file, alias_name, fnname);
6828
6829 switch_to_section (function_section (current_function_decl));
6830 }
6831
6832 /* The current function is a MIPS16 function that returns a value in an FPR.
6833 Copy the return value from its soft-float to its hard-float location.
6834 libgcc2 has special non-MIPS16 helper functions for each case. */
6835
6836 static void
6837 mips16_copy_fpr_return_value (void)
6838 {
6839 rtx fn, insn, retval;
6840 tree return_type;
6841 machine_mode return_mode;
6842 const char *name;
6843
6844 return_type = DECL_RESULT (current_function_decl);
6845 return_mode = DECL_MODE (return_type);
6846
6847 name = ACONCAT (("__mips16_ret_",
6848 mips16_call_stub_mode_suffix (return_mode),
6849 NULL));
6850 fn = mips16_stub_function (name);
6851
6852 /* The function takes arguments in $2 (and possibly $3), so calls
6853 to it cannot be lazily bound. */
6854 SYMBOL_REF_FLAGS (fn) |= SYMBOL_FLAG_BIND_NOW;
6855
6856 /* Model the call as something that takes the GPR return value as
6857 argument and returns an "updated" value. */
6858 retval = gen_rtx_REG (return_mode, GP_RETURN);
6859 insn = mips_expand_call (MIPS_CALL_EPILOGUE, retval, fn,
6860 const0_rtx, NULL_RTX, false);
6861 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), retval);
6862 }
6863
6864 /* Consider building a stub for a MIPS16 call to function *FN_PTR.
6865 RETVAL is the location of the return value, or null if this is
6866 a "call" rather than a "call_value". ARGS_SIZE is the size of the
6867 arguments and FP_CODE is the code built by mips_function_arg;
6868 see the comment before the fp_code field in CUMULATIVE_ARGS for details.
6869
6870 There are three alternatives:
6871
6872 - If a stub was needed, emit the call and return the call insn itself.
6873
6874 - If we can avoid using a stub by redirecting the call, set *FN_PTR
6875 to the new target and return null.
6876
6877 - If *FN_PTR doesn't need a stub, return null and leave *FN_PTR
6878 unmodified.
6879
6880 A stub is needed for calls to functions that, in normal mode,
6881 receive arguments in FPRs or return values in FPRs. The stub
6882 copies the arguments from their soft-float positions to their
6883 hard-float positions, calls the real function, then copies the
6884 return value from its hard-float position to its soft-float
6885 position.
6886
6887 We can emit a JAL to *FN_PTR even when *FN_PTR might need a stub.
6888 If *FN_PTR turns out to be to a non-MIPS16 function, the linker
6889 automatically redirects the JAL to the stub, otherwise the JAL
6890 continues to call FN directly. */
6891
6892 static rtx_insn *
6893 mips16_build_call_stub (rtx retval, rtx *fn_ptr, rtx args_size, int fp_code)
6894 {
6895 const char *fnname;
6896 bool fp_ret_p;
6897 struct mips16_stub *l;
6898 rtx_insn *insn;
6899 rtx pattern, fn;
6900
6901 /* We don't need to do anything if we aren't in MIPS16 mode, or if
6902 we were invoked with the -msoft-float option. */
6903 if (!TARGET_MIPS16 || TARGET_SOFT_FLOAT_ABI)
6904 return NULL;
6905
6906 /* Figure out whether the value might come back in a floating-point
6907 register. */
6908 fp_ret_p = retval && mips_return_mode_in_fpr_p (GET_MODE (retval));
6909
6910 /* We don't need to do anything if there were no floating-point
6911 arguments and the value will not be returned in a floating-point
6912 register. */
6913 if (fp_code == 0 && !fp_ret_p)
6914 return NULL;
6915
6916 /* We don't need to do anything if this is a call to a special
6917 MIPS16 support function. */
6918 fn = *fn_ptr;
6919 if (mips16_stub_function_p (fn))
6920 return NULL;
6921
6922 /* If we're calling a locally-defined MIPS16 function, we know that
6923 it will return values in both the "soft-float" and "hard-float"
6924 registers. There is no need to use a stub to move the latter
6925 to the former. */
6926 if (fp_code == 0 && mips16_local_function_p (fn))
6927 return NULL;
6928
6929 /* This code will only work for o32 and o64 abis. The other ABI's
6930 require more sophisticated support. */
6931 gcc_assert (TARGET_OLDABI);
6932
6933 /* If we're calling via a function pointer, use one of the magic
6934 libgcc.a stubs provided for each (FP_CODE, FP_RET_P) combination.
6935 Each stub expects the function address to arrive in register $2. */
6936 if (GET_CODE (fn) != SYMBOL_REF
6937 || !call_insn_operand (fn, VOIDmode))
6938 {
6939 char buf[30];
6940 rtx stub_fn, addr;
6941 rtx_insn *insn;
6942 bool lazy_p;
6943
6944 /* If this is a locally-defined and locally-binding function,
6945 avoid the stub by calling the local alias directly. */
6946 if (mips16_local_function_p (fn))
6947 {
6948 *fn_ptr = mips16_local_alias (fn);
6949 return NULL;
6950 }
6951
6952 /* Create a SYMBOL_REF for the libgcc.a function. */
6953 if (fp_ret_p)
6954 sprintf (buf, "__mips16_call_stub_%s_%d",
6955 mips16_call_stub_mode_suffix (GET_MODE (retval)),
6956 fp_code);
6957 else
6958 sprintf (buf, "__mips16_call_stub_%d", fp_code);
6959 stub_fn = mips16_stub_function (buf);
6960
6961 /* The function uses $2 as an argument, so calls to it
6962 cannot be lazily bound. */
6963 SYMBOL_REF_FLAGS (stub_fn) |= SYMBOL_FLAG_BIND_NOW;
6964
6965 /* Load the target function into $2. */
6966 addr = gen_rtx_REG (Pmode, GP_REG_FIRST + 2);
6967 lazy_p = mips_load_call_address (MIPS_CALL_NORMAL, addr, fn);
6968
6969 /* Emit the call. */
6970 insn = mips_expand_call (MIPS_CALL_NORMAL, retval, stub_fn,
6971 args_size, NULL_RTX, lazy_p);
6972
6973 /* Tell GCC that this call does indeed use the value of $2. */
6974 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), addr);
6975
6976 /* If we are handling a floating-point return value, we need to
6977 save $18 in the function prologue. Putting a note on the
6978 call will mean that df_regs_ever_live_p ($18) will be true if the
6979 call is not eliminated, and we can check that in the prologue
6980 code. */
6981 if (fp_ret_p)
6982 CALL_INSN_FUNCTION_USAGE (insn) =
6983 gen_rtx_EXPR_LIST (VOIDmode,
6984 gen_rtx_CLOBBER (VOIDmode,
6985 gen_rtx_REG (word_mode, 18)),
6986 CALL_INSN_FUNCTION_USAGE (insn));
6987
6988 return insn;
6989 }
6990
6991 /* We know the function we are going to call. If we have already
6992 built a stub, we don't need to do anything further. */
6993 fnname = targetm.strip_name_encoding (XSTR (fn, 0));
6994 for (l = mips16_stubs; l != NULL; l = l->next)
6995 if (strcmp (l->name, fnname) == 0)
6996 break;
6997
6998 if (l == NULL)
6999 {
7000 const char *separator;
7001 char *secname, *stubname;
7002 tree stubid, stubdecl;
7003 unsigned int f;
7004
7005 /* If the function does not return in FPRs, the special stub
7006 section is named
7007 .mips16.call.FNNAME
7008
7009 If the function does return in FPRs, the stub section is named
7010 .mips16.call.fp.FNNAME
7011
7012 Build a decl for the stub. */
7013 secname = ACONCAT ((".mips16.call.", fp_ret_p ? "fp." : "",
7014 fnname, NULL));
7015 stubname = ACONCAT (("__call_stub_", fp_ret_p ? "fp_" : "",
7016 fnname, NULL));
7017 stubid = get_identifier (stubname);
7018 stubdecl = build_decl (BUILTINS_LOCATION,
7019 FUNCTION_DECL, stubid,
7020 build_function_type_list (void_type_node,
7021 NULL_TREE));
7022 set_decl_section_name (stubdecl, secname);
7023 DECL_RESULT (stubdecl) = build_decl (BUILTINS_LOCATION,
7024 RESULT_DECL, NULL_TREE,
7025 void_type_node);
7026
7027 /* Output a comment. */
7028 fprintf (asm_out_file, "\t# Stub function to call %s%s (",
7029 (fp_ret_p
7030 ? (GET_MODE (retval) == SFmode ? "float " : "double ")
7031 : ""),
7032 fnname);
7033 separator = "";
7034 for (f = (unsigned int) fp_code; f != 0; f >>= 2)
7035 {
7036 fprintf (asm_out_file, "%s%s", separator,
7037 (f & 3) == 1 ? "float" : "double");
7038 separator = ", ";
7039 }
7040 fprintf (asm_out_file, ")\n");
7041
7042 /* Start the function definition. */
7043 assemble_start_function (stubdecl, stubname);
7044 mips_start_function_definition (stubname, false);
7045
7046 if (fp_ret_p)
7047 {
7048 fprintf (asm_out_file, "\t.cfi_startproc\n");
7049
7050 /* Create a fake CFA 4 bytes below the stack pointer.
7051 This works around unwinders (like libgcc's) that expect
7052 the CFA for non-signal frames to be unique. */
7053 fprintf (asm_out_file, "\t.cfi_def_cfa 29,-4\n");
7054
7055 /* "Save" $sp in itself so we don't use the fake CFA.
7056 This is: DW_CFA_val_expression r29, { DW_OP_reg29 }. */
7057 fprintf (asm_out_file, "\t.cfi_escape 0x16,29,1,0x6d\n");
7058
7059 /* Save the return address in $18. The stub's caller knows
7060 that $18 might be clobbered, even though $18 is usually
7061 a call-saved register.
7062
7063 Do it early on in case the last move to a floating-point
7064 register can be scheduled into the delay slot of the
7065 call we are about to make. */
7066 fprintf (asm_out_file, "\tmove\t%s,%s\n",
7067 reg_names[GP_REG_FIRST + 18],
7068 reg_names[RETURN_ADDR_REGNUM]);
7069 }
7070 else
7071 {
7072 /* Load the address of the MIPS16 function into $25. Do this
7073 first so that targets with coprocessor interlocks can use
7074 an MFC1 to fill the delay slot. */
7075 if (TARGET_EXPLICIT_RELOCS)
7076 {
7077 output_asm_insn ("lui\t%^,%%hi(%0)", &fn);
7078 output_asm_insn ("addiu\t%^,%^,%%lo(%0)", &fn);
7079 }
7080 else
7081 output_asm_insn ("la\t%^,%0", &fn);
7082 }
7083
7084 /* Move the arguments from general registers to floating-point
7085 registers. */
7086 mips_output_args_xfer (fp_code, 't');
7087
7088 if (fp_ret_p)
7089 {
7090 /* Now call the non-MIPS16 function. */
7091 output_asm_insn (MIPS_CALL ("jal", &fn, 0, -1), &fn);
7092 fprintf (asm_out_file, "\t.cfi_register 31,18\n");
7093
7094 /* Move the result from floating-point registers to
7095 general registers. */
7096 switch (GET_MODE (retval))
7097 {
7098 case SCmode:
7099 mips_output_32bit_xfer ('f', GP_RETURN + TARGET_BIG_ENDIAN,
7100 TARGET_BIG_ENDIAN
7101 ? FP_REG_FIRST + 2
7102 : FP_REG_FIRST);
7103 mips_output_32bit_xfer ('f', GP_RETURN + TARGET_LITTLE_ENDIAN,
7104 TARGET_LITTLE_ENDIAN
7105 ? FP_REG_FIRST + 2
7106 : FP_REG_FIRST);
7107 if (GET_MODE (retval) == SCmode && TARGET_64BIT)
7108 {
7109 /* On 64-bit targets, complex floats are returned in
7110 a single GPR, such that "sd" on a suitably-aligned
7111 target would store the value correctly. */
7112 fprintf (asm_out_file, "\tdsll\t%s,%s,32\n",
7113 reg_names[GP_RETURN + TARGET_BIG_ENDIAN],
7114 reg_names[GP_RETURN + TARGET_BIG_ENDIAN]);
7115 fprintf (asm_out_file, "\tdsll\t%s,%s,32\n",
7116 reg_names[GP_RETURN + TARGET_LITTLE_ENDIAN],
7117 reg_names[GP_RETURN + TARGET_LITTLE_ENDIAN]);
7118 fprintf (asm_out_file, "\tdsrl\t%s,%s,32\n",
7119 reg_names[GP_RETURN + TARGET_BIG_ENDIAN],
7120 reg_names[GP_RETURN + TARGET_BIG_ENDIAN]);
7121 fprintf (asm_out_file, "\tor\t%s,%s,%s\n",
7122 reg_names[GP_RETURN],
7123 reg_names[GP_RETURN],
7124 reg_names[GP_RETURN + 1]);
7125 }
7126 break;
7127
7128 case SFmode:
7129 mips_output_32bit_xfer ('f', GP_RETURN, FP_REG_FIRST);
7130 break;
7131
7132 case DCmode:
7133 mips_output_64bit_xfer ('f', GP_RETURN + (8 / UNITS_PER_WORD),
7134 FP_REG_FIRST + 2);
7135 /* Fall though. */
7136 case DFmode:
7137 case V2SFmode:
7138 gcc_assert (TARGET_PAIRED_SINGLE_FLOAT
7139 || GET_MODE (retval) != V2SFmode);
7140 mips_output_64bit_xfer ('f', GP_RETURN, FP_REG_FIRST);
7141 break;
7142
7143 default:
7144 gcc_unreachable ();
7145 }
7146 fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 18]);
7147 fprintf (asm_out_file, "\t.cfi_endproc\n");
7148 }
7149 else
7150 {
7151 /* Jump to the previously-loaded address. */
7152 output_asm_insn ("jr\t%^", NULL);
7153 }
7154
7155 #ifdef ASM_DECLARE_FUNCTION_SIZE
7156 ASM_DECLARE_FUNCTION_SIZE (asm_out_file, stubname, stubdecl);
7157 #endif
7158
7159 mips_end_function_definition (stubname);
7160
7161 /* Record this stub. */
7162 l = XNEW (struct mips16_stub);
7163 l->name = xstrdup (fnname);
7164 l->fp_ret_p = fp_ret_p;
7165 l->next = mips16_stubs;
7166 mips16_stubs = l;
7167 }
7168
7169 /* If we expect a floating-point return value, but we've built a
7170 stub which does not expect one, then we're in trouble. We can't
7171 use the existing stub, because it won't handle the floating-point
7172 value. We can't build a new stub, because the linker won't know
7173 which stub to use for the various calls in this object file.
7174 Fortunately, this case is illegal, since it means that a function
7175 was declared in two different ways in a single compilation. */
7176 if (fp_ret_p && !l->fp_ret_p)
7177 error ("cannot handle inconsistent calls to %qs", fnname);
7178
7179 if (retval == NULL_RTX)
7180 pattern = gen_call_internal_direct (fn, args_size);
7181 else
7182 pattern = gen_call_value_internal_direct (retval, fn, args_size);
7183 insn = mips_emit_call_insn (pattern, fn, fn, false);
7184
7185 /* If we are calling a stub which handles a floating-point return
7186 value, we need to arrange to save $18 in the prologue. We do this
7187 by marking the function call as using the register. The prologue
7188 will later see that it is used, and emit code to save it. */
7189 if (fp_ret_p)
7190 CALL_INSN_FUNCTION_USAGE (insn) =
7191 gen_rtx_EXPR_LIST (VOIDmode,
7192 gen_rtx_CLOBBER (VOIDmode,
7193 gen_rtx_REG (word_mode, 18)),
7194 CALL_INSN_FUNCTION_USAGE (insn));
7195
7196 return insn;
7197 }
7198 \f
7199 /* Expand a call of type TYPE. RESULT is where the result will go (null
7200 for "call"s and "sibcall"s), ADDR is the address of the function,
7201 ARGS_SIZE is the size of the arguments and AUX is the value passed
7202 to us by mips_function_arg. LAZY_P is true if this call already
7203 involves a lazily-bound function address (such as when calling
7204 functions through a MIPS16 hard-float stub).
7205
7206 Return the call itself. */
7207
7208 rtx_insn *
7209 mips_expand_call (enum mips_call_type type, rtx result, rtx addr,
7210 rtx args_size, rtx aux, bool lazy_p)
7211 {
7212 rtx orig_addr, pattern;
7213 rtx_insn *insn;
7214 int fp_code;
7215
7216 fp_code = aux == 0 ? 0 : (int) GET_MODE (aux);
7217 insn = mips16_build_call_stub (result, &addr, args_size, fp_code);
7218 if (insn)
7219 {
7220 gcc_assert (!lazy_p && type == MIPS_CALL_NORMAL);
7221 return insn;
7222 }
7223
7224 orig_addr = addr;
7225 if (!call_insn_operand (addr, VOIDmode))
7226 {
7227 if (type == MIPS_CALL_EPILOGUE)
7228 addr = MIPS_EPILOGUE_TEMP (Pmode);
7229 else
7230 addr = gen_reg_rtx (Pmode);
7231 lazy_p |= mips_load_call_address (type, addr, orig_addr);
7232 }
7233
7234 if (result == 0)
7235 {
7236 rtx (*fn) (rtx, rtx);
7237
7238 if (type == MIPS_CALL_SIBCALL)
7239 fn = gen_sibcall_internal;
7240 else
7241 fn = gen_call_internal;
7242
7243 pattern = fn (addr, args_size);
7244 }
7245 else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2)
7246 {
7247 /* Handle return values created by mips_return_fpr_pair. */
7248 rtx (*fn) (rtx, rtx, rtx, rtx);
7249 rtx reg1, reg2;
7250
7251 if (type == MIPS_CALL_SIBCALL)
7252 fn = gen_sibcall_value_multiple_internal;
7253 else
7254 fn = gen_call_value_multiple_internal;
7255
7256 reg1 = XEXP (XVECEXP (result, 0, 0), 0);
7257 reg2 = XEXP (XVECEXP (result, 0, 1), 0);
7258 pattern = fn (reg1, addr, args_size, reg2);
7259 }
7260 else
7261 {
7262 rtx (*fn) (rtx, rtx, rtx);
7263
7264 if (type == MIPS_CALL_SIBCALL)
7265 fn = gen_sibcall_value_internal;
7266 else
7267 fn = gen_call_value_internal;
7268
7269 /* Handle return values created by mips_return_fpr_single. */
7270 if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 1)
7271 result = XEXP (XVECEXP (result, 0, 0), 0);
7272 pattern = fn (result, addr, args_size);
7273 }
7274
7275 return mips_emit_call_insn (pattern, orig_addr, addr, lazy_p);
7276 }
7277
7278 /* Split call instruction INSN into a $gp-clobbering call and
7279 (where necessary) an instruction to restore $gp from its save slot.
7280 CALL_PATTERN is the pattern of the new call. */
7281
7282 void
7283 mips_split_call (rtx insn, rtx call_pattern)
7284 {
7285 emit_call_insn (call_pattern);
7286 if (!find_reg_note (insn, REG_NORETURN, 0))
7287 mips_restore_gp_from_cprestore_slot (gen_rtx_REG (Pmode,
7288 POST_CALL_TMP_REG));
7289 }
7290
7291 /* Return true if a call to DECL may need to use JALX. */
7292
7293 static bool
7294 mips_call_may_need_jalx_p (tree decl)
7295 {
7296 /* If the current translation unit would use a different mode for DECL,
7297 assume that the call needs JALX. */
7298 if (mips_get_compress_mode (decl) != TARGET_COMPRESSION)
7299 return true;
7300
7301 /* mips_get_compress_mode is always accurate for locally-binding
7302 functions in the current translation unit. */
7303 if (!DECL_EXTERNAL (decl) && targetm.binds_local_p (decl))
7304 return false;
7305
7306 /* When -minterlink-compressed is in effect, assume that functions
7307 could use a different encoding mode unless an attribute explicitly
7308 tells us otherwise. */
7309 if (TARGET_INTERLINK_COMPRESSED)
7310 {
7311 if (!TARGET_COMPRESSION
7312 && mips_get_compress_off_flags (DECL_ATTRIBUTES (decl)) ==0)
7313 return true;
7314 if (TARGET_COMPRESSION
7315 && mips_get_compress_on_flags (DECL_ATTRIBUTES (decl)) == 0)
7316 return true;
7317 }
7318
7319 return false;
7320 }
7321
7322 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */
7323
7324 static bool
7325 mips_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
7326 {
7327 if (!TARGET_SIBCALLS)
7328 return false;
7329
7330 /* Interrupt handlers need special epilogue code and therefore can't
7331 use sibcalls. */
7332 if (mips_interrupt_type_p (TREE_TYPE (current_function_decl)))
7333 return false;
7334
7335 /* Direct Js are only possible to functions that use the same ISA encoding.
7336 There is no JX counterpoart of JALX. */
7337 if (decl
7338 && const_call_insn_operand (XEXP (DECL_RTL (decl), 0), VOIDmode)
7339 && mips_call_may_need_jalx_p (decl))
7340 return false;
7341
7342 /* Sibling calls should not prevent lazy binding. Lazy-binding stubs
7343 require $gp to be valid on entry, so sibcalls can only use stubs
7344 if $gp is call-clobbered. */
7345 if (decl
7346 && TARGET_CALL_SAVED_GP
7347 && !TARGET_ABICALLS_PIC0
7348 && !targetm.binds_local_p (decl))
7349 return false;
7350
7351 /* Otherwise OK. */
7352 return true;
7353 }
7354 \f
7355 /* Implement TARGET_USE_MOVE_BY_PIECES_INFRASTRUCTURE_P. */
7356
7357 bool
7358 mips_use_by_pieces_infrastructure_p (unsigned HOST_WIDE_INT size,
7359 unsigned int align,
7360 enum by_pieces_operation op,
7361 bool speed_p)
7362 {
7363 if (op == STORE_BY_PIECES)
7364 return mips_store_by_pieces_p (size, align);
7365 if (op == MOVE_BY_PIECES && HAVE_movmemsi)
7366 {
7367 /* movmemsi is meant to generate code that is at least as good as
7368 move_by_pieces. However, movmemsi effectively uses a by-pieces
7369 implementation both for moves smaller than a word and for
7370 word-aligned moves of no more than MIPS_MAX_MOVE_BYTES_STRAIGHT
7371 bytes. We should allow the tree-level optimisers to do such
7372 moves by pieces, as it often exposes other optimization
7373 opportunities. We might as well continue to use movmemsi at
7374 the rtl level though, as it produces better code when
7375 scheduling is disabled (such as at -O). */
7376 if (currently_expanding_to_rtl)
7377 return false;
7378 if (align < BITS_PER_WORD)
7379 return size < UNITS_PER_WORD;
7380 return size <= MIPS_MAX_MOVE_BYTES_STRAIGHT;
7381 }
7382
7383 return default_use_by_pieces_infrastructure_p (size, align, op, speed_p);
7384 }
7385
7386 /* Implement a handler for STORE_BY_PIECES operations
7387 for TARGET_USE_MOVE_BY_PIECES_INFRASTRUCTURE_P. */
7388
7389 bool
7390 mips_store_by_pieces_p (unsigned HOST_WIDE_INT size, unsigned int align)
7391 {
7392 /* Storing by pieces involves moving constants into registers
7393 of size MIN (ALIGN, BITS_PER_WORD), then storing them.
7394 We need to decide whether it is cheaper to load the address of
7395 constant data into a register and use a block move instead. */
7396
7397 /* If the data is only byte aligned, then:
7398
7399 (a1) A block move of less than 4 bytes would involve three 3 LBs and
7400 3 SBs. We might as well use 3 single-instruction LIs and 3 SBs
7401 instead.
7402
7403 (a2) A block move of 4 bytes from aligned source data can use an
7404 LW/SWL/SWR sequence. This is often better than the 4 LIs and
7405 4 SBs that we would generate when storing by pieces. */
7406 if (align <= BITS_PER_UNIT)
7407 return size < 4;
7408
7409 /* If the data is 2-byte aligned, then:
7410
7411 (b1) A block move of less than 4 bytes would use a combination of LBs,
7412 LHs, SBs and SHs. We get better code by using single-instruction
7413 LIs, SBs and SHs instead.
7414
7415 (b2) A block move of 4 bytes from aligned source data would again use
7416 an LW/SWL/SWR sequence. In most cases, loading the address of
7417 the source data would require at least one extra instruction.
7418 It is often more efficient to use 2 single-instruction LIs and
7419 2 SHs instead.
7420
7421 (b3) A block move of up to 3 additional bytes would be like (b1).
7422
7423 (b4) A block move of 8 bytes from aligned source data can use two
7424 LW/SWL/SWR sequences or a single LD/SDL/SDR sequence. Both
7425 sequences are better than the 4 LIs and 4 SHs that we'd generate
7426 when storing by pieces.
7427
7428 The reasoning for higher alignments is similar:
7429
7430 (c1) A block move of less than 4 bytes would be the same as (b1).
7431
7432 (c2) A block move of 4 bytes would use an LW/SW sequence. Again,
7433 loading the address of the source data would typically require
7434 at least one extra instruction. It is generally better to use
7435 LUI/ORI/SW instead.
7436
7437 (c3) A block move of up to 3 additional bytes would be like (b1).
7438
7439 (c4) A block move of 8 bytes can use two LW/SW sequences or a single
7440 LD/SD sequence, and in these cases we've traditionally preferred
7441 the memory copy over the more bulky constant moves. */
7442 return size < 8;
7443 }
7444
7445 /* Emit straight-line code to move LENGTH bytes from SRC to DEST.
7446 Assume that the areas do not overlap. */
7447
7448 static void
7449 mips_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
7450 {
7451 HOST_WIDE_INT offset, delta;
7452 unsigned HOST_WIDE_INT bits;
7453 int i;
7454 machine_mode mode;
7455 rtx *regs;
7456
7457 /* Work out how many bits to move at a time. If both operands have
7458 half-word alignment, it is usually better to move in half words.
7459 For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr
7460 and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr.
7461 Otherwise move word-sized chunks. */
7462 if (MEM_ALIGN (src) == BITS_PER_WORD / 2
7463 && MEM_ALIGN (dest) == BITS_PER_WORD / 2)
7464 bits = BITS_PER_WORD / 2;
7465 else
7466 bits = BITS_PER_WORD;
7467
7468 mode = mode_for_size (bits, MODE_INT, 0);
7469 delta = bits / BITS_PER_UNIT;
7470
7471 /* Allocate a buffer for the temporary registers. */
7472 regs = XALLOCAVEC (rtx, length / delta);
7473
7474 /* Load as many BITS-sized chunks as possible. Use a normal load if
7475 the source has enough alignment, otherwise use left/right pairs. */
7476 for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
7477 {
7478 regs[i] = gen_reg_rtx (mode);
7479 if (MEM_ALIGN (src) >= bits)
7480 mips_emit_move (regs[i], adjust_address (src, mode, offset));
7481 else
7482 {
7483 rtx part = adjust_address (src, BLKmode, offset);
7484 set_mem_size (part, delta);
7485 if (!mips_expand_ext_as_unaligned_load (regs[i], part, bits, 0, 0))
7486 gcc_unreachable ();
7487 }
7488 }
7489
7490 /* Copy the chunks to the destination. */
7491 for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
7492 if (MEM_ALIGN (dest) >= bits)
7493 mips_emit_move (adjust_address (dest, mode, offset), regs[i]);
7494 else
7495 {
7496 rtx part = adjust_address (dest, BLKmode, offset);
7497 set_mem_size (part, delta);
7498 if (!mips_expand_ins_as_unaligned_store (part, regs[i], bits, 0))
7499 gcc_unreachable ();
7500 }
7501
7502 /* Mop up any left-over bytes. */
7503 if (offset < length)
7504 {
7505 src = adjust_address (src, BLKmode, offset);
7506 dest = adjust_address (dest, BLKmode, offset);
7507 move_by_pieces (dest, src, length - offset,
7508 MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
7509 }
7510 }
7511
7512 /* Helper function for doing a loop-based block operation on memory
7513 reference MEM. Each iteration of the loop will operate on LENGTH
7514 bytes of MEM.
7515
7516 Create a new base register for use within the loop and point it to
7517 the start of MEM. Create a new memory reference that uses this
7518 register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
7519
7520 static void
7521 mips_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
7522 rtx *loop_reg, rtx *loop_mem)
7523 {
7524 *loop_reg = copy_addr_to_reg (XEXP (mem, 0));
7525
7526 /* Although the new mem does not refer to a known location,
7527 it does keep up to LENGTH bytes of alignment. */
7528 *loop_mem = change_address (mem, BLKmode, *loop_reg);
7529 set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
7530 }
7531
7532 /* Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER
7533 bytes at a time. LENGTH must be at least BYTES_PER_ITER. Assume that
7534 the memory regions do not overlap. */
7535
7536 static void
7537 mips_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length,
7538 HOST_WIDE_INT bytes_per_iter)
7539 {
7540 rtx_code_label *label;
7541 rtx src_reg, dest_reg, final_src, test;
7542 HOST_WIDE_INT leftover;
7543
7544 leftover = length % bytes_per_iter;
7545 length -= leftover;
7546
7547 /* Create registers and memory references for use within the loop. */
7548 mips_adjust_block_mem (src, bytes_per_iter, &src_reg, &src);
7549 mips_adjust_block_mem (dest, bytes_per_iter, &dest_reg, &dest);
7550
7551 /* Calculate the value that SRC_REG should have after the last iteration
7552 of the loop. */
7553 final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
7554 0, 0, OPTAB_WIDEN);
7555
7556 /* Emit the start of the loop. */
7557 label = gen_label_rtx ();
7558 emit_label (label);
7559
7560 /* Emit the loop body. */
7561 mips_block_move_straight (dest, src, bytes_per_iter);
7562
7563 /* Move on to the next block. */
7564 mips_emit_move (src_reg, plus_constant (Pmode, src_reg, bytes_per_iter));
7565 mips_emit_move (dest_reg, plus_constant (Pmode, dest_reg, bytes_per_iter));
7566
7567 /* Emit the loop condition. */
7568 test = gen_rtx_NE (VOIDmode, src_reg, final_src);
7569 if (Pmode == DImode)
7570 emit_jump_insn (gen_cbranchdi4 (test, src_reg, final_src, label));
7571 else
7572 emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label));
7573
7574 /* Mop up any left-over bytes. */
7575 if (leftover)
7576 mips_block_move_straight (dest, src, leftover);
7577 }
7578
7579 /* Expand a movmemsi instruction, which copies LENGTH bytes from
7580 memory reference SRC to memory reference DEST. */
7581
7582 bool
7583 mips_expand_block_move (rtx dest, rtx src, rtx length)
7584 {
7585 /* Disable entirely for R6 initially. */
7586 if (!ISA_HAS_LWL_LWR)
7587 return false;
7588
7589 if (CONST_INT_P (length))
7590 {
7591 if (INTVAL (length) <= MIPS_MAX_MOVE_BYTES_STRAIGHT)
7592 {
7593 mips_block_move_straight (dest, src, INTVAL (length));
7594 return true;
7595 }
7596 else if (optimize)
7597 {
7598 mips_block_move_loop (dest, src, INTVAL (length),
7599 MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER);
7600 return true;
7601 }
7602 }
7603 return false;
7604 }
7605 \f
7606 /* Expand a loop of synci insns for the address range [BEGIN, END). */
7607
7608 void
7609 mips_expand_synci_loop (rtx begin, rtx end)
7610 {
7611 rtx inc, cmp_result, mask, length;
7612 rtx_code_label *label, *end_label;
7613
7614 /* Create end_label. */
7615 end_label = gen_label_rtx ();
7616
7617 /* Check if begin equals end. */
7618 cmp_result = gen_rtx_EQ (VOIDmode, begin, end);
7619 emit_jump_insn (gen_condjump (cmp_result, end_label));
7620
7621 /* Load INC with the cache line size (rdhwr INC,$1). */
7622 inc = gen_reg_rtx (Pmode);
7623 emit_insn (PMODE_INSN (gen_rdhwr_synci_step, (inc)));
7624
7625 /* Check if inc is 0. */
7626 cmp_result = gen_rtx_EQ (VOIDmode, inc, const0_rtx);
7627 emit_jump_insn (gen_condjump (cmp_result, end_label));
7628
7629 /* Calculate mask. */
7630 mask = mips_force_unary (Pmode, NEG, inc);
7631
7632 /* Mask out begin by mask. */
7633 begin = mips_force_binary (Pmode, AND, begin, mask);
7634
7635 /* Calculate length. */
7636 length = mips_force_binary (Pmode, MINUS, end, begin);
7637
7638 /* Loop back to here. */
7639 label = gen_label_rtx ();
7640 emit_label (label);
7641
7642 emit_insn (gen_synci (begin));
7643
7644 /* Update length. */
7645 mips_emit_binary (MINUS, length, length, inc);
7646
7647 /* Update begin. */
7648 mips_emit_binary (PLUS, begin, begin, inc);
7649
7650 /* Check if length is greater than 0. */
7651 cmp_result = gen_rtx_GT (VOIDmode, length, const0_rtx);
7652 emit_jump_insn (gen_condjump (cmp_result, label));
7653
7654 emit_label (end_label);
7655 }
7656 \f
7657 /* Expand a QI or HI mode atomic memory operation.
7658
7659 GENERATOR contains a pointer to the gen_* function that generates
7660 the SI mode underlying atomic operation using masks that we
7661 calculate.
7662
7663 RESULT is the return register for the operation. Its value is NULL
7664 if unused.
7665
7666 MEM is the location of the atomic access.
7667
7668 OLDVAL is the first operand for the operation.
7669
7670 NEWVAL is the optional second operand for the operation. Its value
7671 is NULL if unused. */
7672
7673 void
7674 mips_expand_atomic_qihi (union mips_gen_fn_ptrs generator,
7675 rtx result, rtx mem, rtx oldval, rtx newval)
7676 {
7677 rtx orig_addr, memsi_addr, memsi, shift, shiftsi, unshifted_mask;
7678 rtx unshifted_mask_reg, mask, inverted_mask, si_op;
7679 rtx res = NULL;
7680 machine_mode mode;
7681
7682 mode = GET_MODE (mem);
7683
7684 /* Compute the address of the containing SImode value. */
7685 orig_addr = force_reg (Pmode, XEXP (mem, 0));
7686 memsi_addr = mips_force_binary (Pmode, AND, orig_addr,
7687 force_reg (Pmode, GEN_INT (-4)));
7688
7689 /* Create a memory reference for it. */
7690 memsi = gen_rtx_MEM (SImode, memsi_addr);
7691 set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER);
7692 MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem);
7693
7694 /* Work out the byte offset of the QImode or HImode value,
7695 counting from the least significant byte. */
7696 shift = mips_force_binary (Pmode, AND, orig_addr, GEN_INT (3));
7697 if (TARGET_BIG_ENDIAN)
7698 mips_emit_binary (XOR, shift, shift, GEN_INT (mode == QImode ? 3 : 2));
7699
7700 /* Multiply by eight to convert the shift value from bytes to bits. */
7701 mips_emit_binary (ASHIFT, shift, shift, GEN_INT (3));
7702
7703 /* Make the final shift an SImode value, so that it can be used in
7704 SImode operations. */
7705 shiftsi = force_reg (SImode, gen_lowpart (SImode, shift));
7706
7707 /* Set MASK to an inclusive mask of the QImode or HImode value. */
7708 unshifted_mask = GEN_INT (GET_MODE_MASK (mode));
7709 unshifted_mask_reg = force_reg (SImode, unshifted_mask);
7710 mask = mips_force_binary (SImode, ASHIFT, unshifted_mask_reg, shiftsi);
7711
7712 /* Compute the equivalent exclusive mask. */
7713 inverted_mask = gen_reg_rtx (SImode);
7714 emit_insn (gen_rtx_SET (inverted_mask, gen_rtx_NOT (SImode, mask)));
7715
7716 /* Shift the old value into place. */
7717 if (oldval != const0_rtx)
7718 {
7719 oldval = convert_modes (SImode, mode, oldval, true);
7720 oldval = force_reg (SImode, oldval);
7721 oldval = mips_force_binary (SImode, ASHIFT, oldval, shiftsi);
7722 }
7723
7724 /* Do the same for the new value. */
7725 if (newval && newval != const0_rtx)
7726 {
7727 newval = convert_modes (SImode, mode, newval, true);
7728 newval = force_reg (SImode, newval);
7729 newval = mips_force_binary (SImode, ASHIFT, newval, shiftsi);
7730 }
7731
7732 /* Do the SImode atomic access. */
7733 if (result)
7734 res = gen_reg_rtx (SImode);
7735 if (newval)
7736 si_op = generator.fn_6 (res, memsi, mask, inverted_mask, oldval, newval);
7737 else if (result)
7738 si_op = generator.fn_5 (res, memsi, mask, inverted_mask, oldval);
7739 else
7740 si_op = generator.fn_4 (memsi, mask, inverted_mask, oldval);
7741
7742 emit_insn (si_op);
7743
7744 if (result)
7745 {
7746 /* Shift and convert the result. */
7747 mips_emit_binary (AND, res, res, mask);
7748 mips_emit_binary (LSHIFTRT, res, res, shiftsi);
7749 mips_emit_move (result, gen_lowpart (GET_MODE (result), res));
7750 }
7751 }
7752
7753 /* Return true if it is possible to use left/right accesses for a
7754 bitfield of WIDTH bits starting BITPOS bits into BLKmode memory OP.
7755 When returning true, update *LEFT and *RIGHT as follows:
7756
7757 *LEFT is a QImode reference to the first byte if big endian or
7758 the last byte if little endian. This address can be used in the
7759 left-side instructions (LWL, SWL, LDL, SDL).
7760
7761 *RIGHT is a QImode reference to the opposite end of the field and
7762 can be used in the patterning right-side instruction. */
7763
7764 static bool
7765 mips_get_unaligned_mem (rtx op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos,
7766 rtx *left, rtx *right)
7767 {
7768 rtx first, last;
7769
7770 /* Check that the size is valid. */
7771 if (width != 32 && (!TARGET_64BIT || width != 64))
7772 return false;
7773
7774 /* We can only access byte-aligned values. Since we are always passed
7775 a reference to the first byte of the field, it is not necessary to
7776 do anything with BITPOS after this check. */
7777 if (bitpos % BITS_PER_UNIT != 0)
7778 return false;
7779
7780 /* Reject aligned bitfields: we want to use a normal load or store
7781 instead of a left/right pair. */
7782 if (MEM_ALIGN (op) >= width)
7783 return false;
7784
7785 /* Get references to both ends of the field. */
7786 first = adjust_address (op, QImode, 0);
7787 last = adjust_address (op, QImode, width / BITS_PER_UNIT - 1);
7788
7789 /* Allocate to LEFT and RIGHT according to endianness. LEFT should
7790 correspond to the MSB and RIGHT to the LSB. */
7791 if (TARGET_BIG_ENDIAN)
7792 *left = first, *right = last;
7793 else
7794 *left = last, *right = first;
7795
7796 return true;
7797 }
7798
7799 /* Try to use left/right loads to expand an "extv" or "extzv" pattern.
7800 DEST, SRC, WIDTH and BITPOS are the operands passed to the expander;
7801 the operation is the equivalent of:
7802
7803 (set DEST (*_extract SRC WIDTH BITPOS))
7804
7805 Return true on success. */
7806
7807 bool
7808 mips_expand_ext_as_unaligned_load (rtx dest, rtx src, HOST_WIDE_INT width,
7809 HOST_WIDE_INT bitpos, bool unsigned_p)
7810 {
7811 rtx left, right, temp;
7812 rtx dest1 = NULL_RTX;
7813
7814 /* If TARGET_64BIT, the destination of a 32-bit "extz" or "extzv" will
7815 be a DImode, create a new temp and emit a zero extend at the end. */
7816 if (GET_MODE (dest) == DImode
7817 && REG_P (dest)
7818 && GET_MODE_BITSIZE (SImode) == width)
7819 {
7820 dest1 = dest;
7821 dest = gen_reg_rtx (SImode);
7822 }
7823
7824 if (!mips_get_unaligned_mem (src, width, bitpos, &left, &right))
7825 return false;
7826
7827 temp = gen_reg_rtx (GET_MODE (dest));
7828 if (GET_MODE (dest) == DImode)
7829 {
7830 emit_insn (gen_mov_ldl (temp, src, left));
7831 emit_insn (gen_mov_ldr (dest, copy_rtx (src), right, temp));
7832 }
7833 else
7834 {
7835 emit_insn (gen_mov_lwl (temp, src, left));
7836 emit_insn (gen_mov_lwr (dest, copy_rtx (src), right, temp));
7837 }
7838
7839 /* If we were loading 32bits and the original register was DI then
7840 sign/zero extend into the orignal dest. */
7841 if (dest1)
7842 {
7843 if (unsigned_p)
7844 emit_insn (gen_zero_extendsidi2 (dest1, dest));
7845 else
7846 emit_insn (gen_extendsidi2 (dest1, dest));
7847 }
7848 return true;
7849 }
7850
7851 /* Try to use left/right stores to expand an "ins" pattern. DEST, WIDTH,
7852 BITPOS and SRC are the operands passed to the expander; the operation
7853 is the equivalent of:
7854
7855 (set (zero_extract DEST WIDTH BITPOS) SRC)
7856
7857 Return true on success. */
7858
7859 bool
7860 mips_expand_ins_as_unaligned_store (rtx dest, rtx src, HOST_WIDE_INT width,
7861 HOST_WIDE_INT bitpos)
7862 {
7863 rtx left, right;
7864 machine_mode mode;
7865
7866 if (!mips_get_unaligned_mem (dest, width, bitpos, &left, &right))
7867 return false;
7868
7869 mode = mode_for_size (width, MODE_INT, 0);
7870 src = gen_lowpart (mode, src);
7871 if (mode == DImode)
7872 {
7873 emit_insn (gen_mov_sdl (dest, src, left));
7874 emit_insn (gen_mov_sdr (copy_rtx (dest), copy_rtx (src), right));
7875 }
7876 else
7877 {
7878 emit_insn (gen_mov_swl (dest, src, left));
7879 emit_insn (gen_mov_swr (copy_rtx (dest), copy_rtx (src), right));
7880 }
7881 return true;
7882 }
7883
7884 /* Return true if X is a MEM with the same size as MODE. */
7885
7886 bool
7887 mips_mem_fits_mode_p (machine_mode mode, rtx x)
7888 {
7889 return (MEM_P (x)
7890 && MEM_SIZE_KNOWN_P (x)
7891 && MEM_SIZE (x) == GET_MODE_SIZE (mode));
7892 }
7893
7894 /* Return true if (zero_extract OP WIDTH BITPOS) can be used as the
7895 source of an "ext" instruction or the destination of an "ins"
7896 instruction. OP must be a register operand and the following
7897 conditions must hold:
7898
7899 0 <= BITPOS < GET_MODE_BITSIZE (GET_MODE (op))
7900 0 < WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
7901 0 < BITPOS + WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
7902
7903 Also reject lengths equal to a word as they are better handled
7904 by the move patterns. */
7905
7906 bool
7907 mips_use_ins_ext_p (rtx op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos)
7908 {
7909 if (!ISA_HAS_EXT_INS
7910 || !register_operand (op, VOIDmode)
7911 || GET_MODE_BITSIZE (GET_MODE (op)) > BITS_PER_WORD)
7912 return false;
7913
7914 if (!IN_RANGE (width, 1, GET_MODE_BITSIZE (GET_MODE (op)) - 1))
7915 return false;
7916
7917 if (bitpos < 0 || bitpos + width > GET_MODE_BITSIZE (GET_MODE (op)))
7918 return false;
7919
7920 return true;
7921 }
7922
7923 /* Check if MASK and SHIFT are valid in mask-low-and-shift-left
7924 operation if MAXLEN is the maxium length of consecutive bits that
7925 can make up MASK. MODE is the mode of the operation. See
7926 mask_low_and_shift_len for the actual definition. */
7927
7928 bool
7929 mask_low_and_shift_p (machine_mode mode, rtx mask, rtx shift, int maxlen)
7930 {
7931 return IN_RANGE (mask_low_and_shift_len (mode, mask, shift), 1, maxlen);
7932 }
7933
7934 /* Return true iff OP1 and OP2 are valid operands together for the
7935 *and<MODE>3 and *and<MODE>3_mips16 patterns. For the cases to consider,
7936 see the table in the comment before the pattern. */
7937
7938 bool
7939 and_operands_ok (machine_mode mode, rtx op1, rtx op2)
7940 {
7941 return (memory_operand (op1, mode)
7942 ? and_load_operand (op2, mode)
7943 : and_reg_operand (op2, mode));
7944 }
7945
7946 /* The canonical form of a mask-low-and-shift-left operation is
7947 (and (ashift X SHIFT) MASK) where MASK has the lower SHIFT number of bits
7948 cleared. Thus we need to shift MASK to the right before checking if it
7949 is a valid mask value. MODE is the mode of the operation. If true
7950 return the length of the mask, otherwise return -1. */
7951
7952 int
7953 mask_low_and_shift_len (machine_mode mode, rtx mask, rtx shift)
7954 {
7955 HOST_WIDE_INT shval;
7956
7957 shval = INTVAL (shift) & (GET_MODE_BITSIZE (mode) - 1);
7958 return exact_log2 ((UINTVAL (mask) >> shval) + 1);
7959 }
7960 \f
7961 /* Return true if -msplit-addresses is selected and should be honored.
7962
7963 -msplit-addresses is a half-way house between explicit relocations
7964 and the traditional assembler macros. It can split absolute 32-bit
7965 symbolic constants into a high/lo_sum pair but uses macros for other
7966 sorts of access.
7967
7968 Like explicit relocation support for REL targets, it relies
7969 on GNU extensions in the assembler and the linker.
7970
7971 Although this code should work for -O0, it has traditionally
7972 been treated as an optimization. */
7973
7974 static bool
7975 mips_split_addresses_p (void)
7976 {
7977 return (TARGET_SPLIT_ADDRESSES
7978 && optimize
7979 && !TARGET_MIPS16
7980 && !flag_pic
7981 && !ABI_HAS_64BIT_SYMBOLS);
7982 }
7983
7984 /* (Re-)Initialize mips_split_p, mips_lo_relocs and mips_hi_relocs. */
7985
7986 static void
7987 mips_init_relocs (void)
7988 {
7989 memset (mips_split_p, '\0', sizeof (mips_split_p));
7990 memset (mips_split_hi_p, '\0', sizeof (mips_split_hi_p));
7991 memset (mips_use_pcrel_pool_p, '\0', sizeof (mips_use_pcrel_pool_p));
7992 memset (mips_hi_relocs, '\0', sizeof (mips_hi_relocs));
7993 memset (mips_lo_relocs, '\0', sizeof (mips_lo_relocs));
7994
7995 if (TARGET_MIPS16_PCREL_LOADS)
7996 mips_use_pcrel_pool_p[SYMBOL_ABSOLUTE] = true;
7997 else
7998 {
7999 if (ABI_HAS_64BIT_SYMBOLS)
8000 {
8001 if (TARGET_EXPLICIT_RELOCS)
8002 {
8003 mips_split_p[SYMBOL_64_HIGH] = true;
8004 mips_hi_relocs[SYMBOL_64_HIGH] = "%highest(";
8005 mips_lo_relocs[SYMBOL_64_HIGH] = "%higher(";
8006
8007 mips_split_p[SYMBOL_64_MID] = true;
8008 mips_hi_relocs[SYMBOL_64_MID] = "%higher(";
8009 mips_lo_relocs[SYMBOL_64_MID] = "%hi(";
8010
8011 mips_split_p[SYMBOL_64_LOW] = true;
8012 mips_hi_relocs[SYMBOL_64_LOW] = "%hi(";
8013 mips_lo_relocs[SYMBOL_64_LOW] = "%lo(";
8014
8015 mips_split_p[SYMBOL_ABSOLUTE] = true;
8016 mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
8017 }
8018 }
8019 else
8020 {
8021 if (TARGET_EXPLICIT_RELOCS
8022 || mips_split_addresses_p ()
8023 || TARGET_MIPS16)
8024 {
8025 mips_split_p[SYMBOL_ABSOLUTE] = true;
8026 mips_hi_relocs[SYMBOL_ABSOLUTE] = "%hi(";
8027 mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
8028 }
8029 }
8030 }
8031
8032 if (TARGET_MIPS16)
8033 {
8034 /* The high part is provided by a pseudo copy of $gp. */
8035 mips_split_p[SYMBOL_GP_RELATIVE] = true;
8036 mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gprel(";
8037 }
8038 else if (TARGET_EXPLICIT_RELOCS)
8039 /* Small data constants are kept whole until after reload,
8040 then lowered by mips_rewrite_small_data. */
8041 mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gp_rel(";
8042
8043 if (TARGET_EXPLICIT_RELOCS)
8044 {
8045 mips_split_p[SYMBOL_GOT_PAGE_OFST] = true;
8046 if (TARGET_NEWABI)
8047 {
8048 mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got_page(";
8049 mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%got_ofst(";
8050 }
8051 else
8052 {
8053 mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got(";
8054 mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%lo(";
8055 }
8056 if (TARGET_MIPS16)
8057 /* Expose the use of $28 as soon as possible. */
8058 mips_split_hi_p[SYMBOL_GOT_PAGE_OFST] = true;
8059
8060 if (TARGET_XGOT)
8061 {
8062 /* The HIGH and LO_SUM are matched by special .md patterns. */
8063 mips_split_p[SYMBOL_GOT_DISP] = true;
8064
8065 mips_split_p[SYMBOL_GOTOFF_DISP] = true;
8066 mips_hi_relocs[SYMBOL_GOTOFF_DISP] = "%got_hi(";
8067 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_lo(";
8068
8069 mips_split_p[SYMBOL_GOTOFF_CALL] = true;
8070 mips_hi_relocs[SYMBOL_GOTOFF_CALL] = "%call_hi(";
8071 mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call_lo(";
8072 }
8073 else
8074 {
8075 if (TARGET_NEWABI)
8076 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_disp(";
8077 else
8078 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got(";
8079 mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call16(";
8080 if (TARGET_MIPS16)
8081 /* Expose the use of $28 as soon as possible. */
8082 mips_split_p[SYMBOL_GOT_DISP] = true;
8083 }
8084 }
8085
8086 if (TARGET_NEWABI)
8087 {
8088 mips_split_p[SYMBOL_GOTOFF_LOADGP] = true;
8089 mips_hi_relocs[SYMBOL_GOTOFF_LOADGP] = "%hi(%neg(%gp_rel(";
8090 mips_lo_relocs[SYMBOL_GOTOFF_LOADGP] = "%lo(%neg(%gp_rel(";
8091 }
8092
8093 mips_lo_relocs[SYMBOL_TLSGD] = "%tlsgd(";
8094 mips_lo_relocs[SYMBOL_TLSLDM] = "%tlsldm(";
8095
8096 if (TARGET_MIPS16_PCREL_LOADS)
8097 {
8098 mips_use_pcrel_pool_p[SYMBOL_DTPREL] = true;
8099 mips_use_pcrel_pool_p[SYMBOL_TPREL] = true;
8100 }
8101 else
8102 {
8103 mips_split_p[SYMBOL_DTPREL] = true;
8104 mips_hi_relocs[SYMBOL_DTPREL] = "%dtprel_hi(";
8105 mips_lo_relocs[SYMBOL_DTPREL] = "%dtprel_lo(";
8106
8107 mips_split_p[SYMBOL_TPREL] = true;
8108 mips_hi_relocs[SYMBOL_TPREL] = "%tprel_hi(";
8109 mips_lo_relocs[SYMBOL_TPREL] = "%tprel_lo(";
8110 }
8111
8112 mips_lo_relocs[SYMBOL_GOTTPREL] = "%gottprel(";
8113 mips_lo_relocs[SYMBOL_HALF] = "%half(";
8114 }
8115
8116 /* Print symbolic operand OP, which is part of a HIGH or LO_SUM
8117 in context CONTEXT. RELOCS is the array of relocations to use. */
8118
8119 static void
8120 mips_print_operand_reloc (FILE *file, rtx op, enum mips_symbol_context context,
8121 const char **relocs)
8122 {
8123 enum mips_symbol_type symbol_type;
8124 const char *p;
8125
8126 symbol_type = mips_classify_symbolic_expression (op, context);
8127 gcc_assert (relocs[symbol_type]);
8128
8129 fputs (relocs[symbol_type], file);
8130 output_addr_const (file, mips_strip_unspec_address (op));
8131 for (p = relocs[symbol_type]; *p != 0; p++)
8132 if (*p == '(')
8133 fputc (')', file);
8134 }
8135
8136 /* Start a new block with the given asm switch enabled. If we need
8137 to print a directive, emit PREFIX before it and SUFFIX after it. */
8138
8139 static void
8140 mips_push_asm_switch_1 (struct mips_asm_switch *asm_switch,
8141 const char *prefix, const char *suffix)
8142 {
8143 if (asm_switch->nesting_level == 0)
8144 fprintf (asm_out_file, "%s.set\tno%s%s", prefix, asm_switch->name, suffix);
8145 asm_switch->nesting_level++;
8146 }
8147
8148 /* Likewise, but end a block. */
8149
8150 static void
8151 mips_pop_asm_switch_1 (struct mips_asm_switch *asm_switch,
8152 const char *prefix, const char *suffix)
8153 {
8154 gcc_assert (asm_switch->nesting_level);
8155 asm_switch->nesting_level--;
8156 if (asm_switch->nesting_level == 0)
8157 fprintf (asm_out_file, "%s.set\t%s%s", prefix, asm_switch->name, suffix);
8158 }
8159
8160 /* Wrappers around mips_push_asm_switch_1 and mips_pop_asm_switch_1
8161 that either print a complete line or print nothing. */
8162
8163 void
8164 mips_push_asm_switch (struct mips_asm_switch *asm_switch)
8165 {
8166 mips_push_asm_switch_1 (asm_switch, "\t", "\n");
8167 }
8168
8169 void
8170 mips_pop_asm_switch (struct mips_asm_switch *asm_switch)
8171 {
8172 mips_pop_asm_switch_1 (asm_switch, "\t", "\n");
8173 }
8174
8175 /* Print the text for PRINT_OPERAND punctation character CH to FILE.
8176 The punctuation characters are:
8177
8178 '(' Start a nested ".set noreorder" block.
8179 ')' End a nested ".set noreorder" block.
8180 '[' Start a nested ".set noat" block.
8181 ']' End a nested ".set noat" block.
8182 '<' Start a nested ".set nomacro" block.
8183 '>' End a nested ".set nomacro" block.
8184 '*' Behave like %(%< if generating a delayed-branch sequence.
8185 '#' Print a nop if in a ".set noreorder" block.
8186 '/' Like '#', but do nothing within a delayed-branch sequence.
8187 '?' Print "l" if mips_branch_likely is true
8188 '~' Print a nop if mips_branch_likely is true
8189 '.' Print the name of the register with a hard-wired zero (zero or $0).
8190 '@' Print the name of the assembler temporary register (at or $1).
8191 '^' Print the name of the pic call-through register (t9 or $25).
8192 '+' Print the name of the gp register (usually gp or $28).
8193 '$' Print the name of the stack pointer register (sp or $29).
8194 ':' Print "c" to use the compact version if the delay slot is a nop.
8195 '!' Print "s" to use the short version if the delay slot contains a
8196 16-bit instruction.
8197
8198 See also mips_init_print_operand_pucnt. */
8199
8200 static void
8201 mips_print_operand_punctuation (FILE *file, int ch)
8202 {
8203 switch (ch)
8204 {
8205 case '(':
8206 mips_push_asm_switch_1 (&mips_noreorder, "", "\n\t");
8207 break;
8208
8209 case ')':
8210 mips_pop_asm_switch_1 (&mips_noreorder, "\n\t", "");
8211 break;
8212
8213 case '[':
8214 mips_push_asm_switch_1 (&mips_noat, "", "\n\t");
8215 break;
8216
8217 case ']':
8218 mips_pop_asm_switch_1 (&mips_noat, "\n\t", "");
8219 break;
8220
8221 case '<':
8222 mips_push_asm_switch_1 (&mips_nomacro, "", "\n\t");
8223 break;
8224
8225 case '>':
8226 mips_pop_asm_switch_1 (&mips_nomacro, "\n\t", "");
8227 break;
8228
8229 case '*':
8230 if (final_sequence != 0)
8231 {
8232 mips_print_operand_punctuation (file, '(');
8233 mips_print_operand_punctuation (file, '<');
8234 }
8235 break;
8236
8237 case '#':
8238 if (mips_noreorder.nesting_level > 0)
8239 fputs ("\n\tnop", file);
8240 break;
8241
8242 case '/':
8243 /* Print an extra newline so that the delayed insn is separated
8244 from the following ones. This looks neater and is consistent
8245 with non-nop delayed sequences. */
8246 if (mips_noreorder.nesting_level > 0 && final_sequence == 0)
8247 fputs ("\n\tnop\n", file);
8248 break;
8249
8250 case '?':
8251 if (mips_branch_likely)
8252 putc ('l', file);
8253 break;
8254
8255 case '~':
8256 if (mips_branch_likely)
8257 fputs ("\n\tnop", file);
8258 break;
8259
8260 case '.':
8261 fputs (reg_names[GP_REG_FIRST + 0], file);
8262 break;
8263
8264 case '@':
8265 fputs (reg_names[AT_REGNUM], file);
8266 break;
8267
8268 case '^':
8269 fputs (reg_names[PIC_FUNCTION_ADDR_REGNUM], file);
8270 break;
8271
8272 case '+':
8273 fputs (reg_names[PIC_OFFSET_TABLE_REGNUM], file);
8274 break;
8275
8276 case '$':
8277 fputs (reg_names[STACK_POINTER_REGNUM], file);
8278 break;
8279
8280 case ':':
8281 /* When final_sequence is 0, the delay slot will be a nop. We can
8282 use the compact version for microMIPS. */
8283 if (final_sequence == 0)
8284 putc ('c', file);
8285 break;
8286
8287 case '!':
8288 /* If the delay slot instruction is short, then use the
8289 compact version. */
8290 if (final_sequence == 0
8291 || get_attr_length (final_sequence->insn (1)) == 2)
8292 putc ('s', file);
8293 break;
8294
8295 default:
8296 gcc_unreachable ();
8297 break;
8298 }
8299 }
8300
8301 /* Initialize mips_print_operand_punct. */
8302
8303 static void
8304 mips_init_print_operand_punct (void)
8305 {
8306 const char *p;
8307
8308 for (p = "()[]<>*#/?~.@^+$:!"; *p; p++)
8309 mips_print_operand_punct[(unsigned char) *p] = true;
8310 }
8311
8312 /* PRINT_OPERAND prefix LETTER refers to the integer branch instruction
8313 associated with condition CODE. Print the condition part of the
8314 opcode to FILE. */
8315
8316 static void
8317 mips_print_int_branch_condition (FILE *file, enum rtx_code code, int letter)
8318 {
8319 switch (code)
8320 {
8321 case EQ:
8322 case NE:
8323 case GT:
8324 case GE:
8325 case LT:
8326 case LE:
8327 case GTU:
8328 case GEU:
8329 case LTU:
8330 case LEU:
8331 /* Conveniently, the MIPS names for these conditions are the same
8332 as their RTL equivalents. */
8333 fputs (GET_RTX_NAME (code), file);
8334 break;
8335
8336 default:
8337 output_operand_lossage ("'%%%c' is not a valid operand prefix", letter);
8338 break;
8339 }
8340 }
8341
8342 /* Likewise floating-point branches. */
8343
8344 static void
8345 mips_print_float_branch_condition (FILE *file, enum rtx_code code, int letter)
8346 {
8347 switch (code)
8348 {
8349 case EQ:
8350 if (ISA_HAS_CCF)
8351 fputs ("c1eqz", file);
8352 else
8353 fputs ("c1f", file);
8354 break;
8355
8356 case NE:
8357 if (ISA_HAS_CCF)
8358 fputs ("c1nez", file);
8359 else
8360 fputs ("c1t", file);
8361 break;
8362
8363 default:
8364 output_operand_lossage ("'%%%c' is not a valid operand prefix", letter);
8365 break;
8366 }
8367 }
8368
8369 /* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P. */
8370
8371 static bool
8372 mips_print_operand_punct_valid_p (unsigned char code)
8373 {
8374 return mips_print_operand_punct[code];
8375 }
8376
8377 /* Implement TARGET_PRINT_OPERAND. The MIPS-specific operand codes are:
8378
8379 'X' Print CONST_INT OP in hexadecimal format.
8380 'x' Print the low 16 bits of CONST_INT OP in hexadecimal format.
8381 'd' Print CONST_INT OP in decimal.
8382 'm' Print one less than CONST_INT OP in decimal.
8383 'h' Print the high-part relocation associated with OP, after stripping
8384 any outermost HIGH.
8385 'R' Print the low-part relocation associated with OP.
8386 'C' Print the integer branch condition for comparison OP.
8387 'N' Print the inverse of the integer branch condition for comparison OP.
8388 'F' Print the FPU branch condition for comparison OP.
8389 'W' Print the inverse of the FPU branch condition for comparison OP.
8390 'T' Print 'f' for (eq:CC ...), 't' for (ne:CC ...),
8391 'z' for (eq:?I ...), 'n' for (ne:?I ...).
8392 't' Like 'T', but with the EQ/NE cases reversed
8393 'Y' Print mips_fp_conditions[INTVAL (OP)]
8394 'Z' Print OP and a comma for ISA_HAS_8CC, otherwise print nothing.
8395 'q' Print a DSP accumulator register.
8396 'D' Print the second part of a double-word register or memory operand.
8397 'L' Print the low-order register in a double-word register operand.
8398 'M' Print high-order register in a double-word register operand.
8399 'z' Print $0 if OP is zero, otherwise print OP normally.
8400 'b' Print the address of a memory operand, without offset. */
8401
8402 static void
8403 mips_print_operand (FILE *file, rtx op, int letter)
8404 {
8405 enum rtx_code code;
8406
8407 if (mips_print_operand_punct_valid_p (letter))
8408 {
8409 mips_print_operand_punctuation (file, letter);
8410 return;
8411 }
8412
8413 gcc_assert (op);
8414 code = GET_CODE (op);
8415
8416 switch (letter)
8417 {
8418 case 'X':
8419 if (CONST_INT_P (op))
8420 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));
8421 else
8422 output_operand_lossage ("invalid use of '%%%c'", letter);
8423 break;
8424
8425 case 'x':
8426 if (CONST_INT_P (op))
8427 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op) & 0xffff);
8428 else
8429 output_operand_lossage ("invalid use of '%%%c'", letter);
8430 break;
8431
8432 case 'd':
8433 if (CONST_INT_P (op))
8434 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op));
8435 else
8436 output_operand_lossage ("invalid use of '%%%c'", letter);
8437 break;
8438
8439 case 'm':
8440 if (CONST_INT_P (op))
8441 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op) - 1);
8442 else
8443 output_operand_lossage ("invalid use of '%%%c'", letter);
8444 break;
8445
8446 case 'h':
8447 if (code == HIGH)
8448 op = XEXP (op, 0);
8449 mips_print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_hi_relocs);
8450 break;
8451
8452 case 'R':
8453 mips_print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_lo_relocs);
8454 break;
8455
8456 case 'C':
8457 mips_print_int_branch_condition (file, code, letter);
8458 break;
8459
8460 case 'N':
8461 mips_print_int_branch_condition (file, reverse_condition (code), letter);
8462 break;
8463
8464 case 'F':
8465 mips_print_float_branch_condition (file, code, letter);
8466 break;
8467
8468 case 'W':
8469 mips_print_float_branch_condition (file, reverse_condition (code),
8470 letter);
8471 break;
8472
8473 case 'T':
8474 case 't':
8475 {
8476 int truth = (code == NE) == (letter == 'T');
8477 fputc ("zfnt"[truth * 2 + ST_REG_P (REGNO (XEXP (op, 0)))], file);
8478 }
8479 break;
8480
8481 case 'Y':
8482 if (code == CONST_INT && UINTVAL (op) < ARRAY_SIZE (mips_fp_conditions))
8483 fputs (mips_fp_conditions[UINTVAL (op)], file);
8484 else
8485 output_operand_lossage ("'%%%c' is not a valid operand prefix",
8486 letter);
8487 break;
8488
8489 case 'Z':
8490 if (ISA_HAS_8CC || ISA_HAS_CCF)
8491 {
8492 mips_print_operand (file, op, 0);
8493 fputc (',', file);
8494 }
8495 break;
8496
8497 case 'q':
8498 if (code == REG && MD_REG_P (REGNO (op)))
8499 fprintf (file, "$ac0");
8500 else if (code == REG && DSP_ACC_REG_P (REGNO (op)))
8501 fprintf (file, "$ac%c", reg_names[REGNO (op)][3]);
8502 else
8503 output_operand_lossage ("invalid use of '%%%c'", letter);
8504 break;
8505
8506 default:
8507 switch (code)
8508 {
8509 case REG:
8510 {
8511 unsigned int regno = REGNO (op);
8512 if ((letter == 'M' && TARGET_LITTLE_ENDIAN)
8513 || (letter == 'L' && TARGET_BIG_ENDIAN)
8514 || letter == 'D')
8515 regno++;
8516 else if (letter && letter != 'z' && letter != 'M' && letter != 'L')
8517 output_operand_lossage ("invalid use of '%%%c'", letter);
8518 /* We need to print $0 .. $31 for COP0 registers. */
8519 if (COP0_REG_P (regno))
8520 fprintf (file, "$%s", &reg_names[regno][4]);
8521 else
8522 fprintf (file, "%s", reg_names[regno]);
8523 }
8524 break;
8525
8526 case MEM:
8527 if (letter == 'D')
8528 output_address (plus_constant (Pmode, XEXP (op, 0), 4));
8529 else if (letter == 'b')
8530 {
8531 gcc_assert (REG_P (XEXP (op, 0)));
8532 mips_print_operand (file, XEXP (op, 0), 0);
8533 }
8534 else if (letter && letter != 'z')
8535 output_operand_lossage ("invalid use of '%%%c'", letter);
8536 else
8537 output_address (XEXP (op, 0));
8538 break;
8539
8540 default:
8541 if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
8542 fputs (reg_names[GP_REG_FIRST], file);
8543 else if (letter && letter != 'z')
8544 output_operand_lossage ("invalid use of '%%%c'", letter);
8545 else if (CONST_GP_P (op))
8546 fputs (reg_names[GLOBAL_POINTER_REGNUM], file);
8547 else
8548 output_addr_const (file, mips_strip_unspec_address (op));
8549 break;
8550 }
8551 }
8552 }
8553
8554 /* Implement TARGET_PRINT_OPERAND_ADDRESS. */
8555
8556 static void
8557 mips_print_operand_address (FILE *file, rtx x)
8558 {
8559 struct mips_address_info addr;
8560
8561 if (mips_classify_address (&addr, x, word_mode, true))
8562 switch (addr.type)
8563 {
8564 case ADDRESS_REG:
8565 mips_print_operand (file, addr.offset, 0);
8566 fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
8567 return;
8568
8569 case ADDRESS_LO_SUM:
8570 mips_print_operand_reloc (file, addr.offset, SYMBOL_CONTEXT_MEM,
8571 mips_lo_relocs);
8572 fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
8573 return;
8574
8575 case ADDRESS_CONST_INT:
8576 output_addr_const (file, x);
8577 fprintf (file, "(%s)", reg_names[GP_REG_FIRST]);
8578 return;
8579
8580 case ADDRESS_SYMBOLIC:
8581 output_addr_const (file, mips_strip_unspec_address (x));
8582 return;
8583 }
8584 gcc_unreachable ();
8585 }
8586 \f
8587 /* Implement TARGET_ENCODE_SECTION_INFO. */
8588
8589 static void
8590 mips_encode_section_info (tree decl, rtx rtl, int first)
8591 {
8592 default_encode_section_info (decl, rtl, first);
8593
8594 if (TREE_CODE (decl) == FUNCTION_DECL)
8595 {
8596 rtx symbol = XEXP (rtl, 0);
8597 tree type = TREE_TYPE (decl);
8598
8599 /* Encode whether the symbol is short or long. */
8600 if ((TARGET_LONG_CALLS && !mips_near_type_p (type))
8601 || mips_far_type_p (type))
8602 SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LONG_CALL;
8603 }
8604 }
8605
8606 /* Implement TARGET_SELECT_RTX_SECTION. */
8607
8608 static section *
8609 mips_select_rtx_section (machine_mode mode, rtx x,
8610 unsigned HOST_WIDE_INT align)
8611 {
8612 /* ??? Consider using mergeable small data sections. */
8613 if (mips_rtx_constant_in_small_data_p (mode))
8614 return get_named_section (NULL, ".sdata", 0);
8615
8616 return default_elf_select_rtx_section (mode, x, align);
8617 }
8618
8619 /* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.
8620
8621 The complication here is that, with the combination TARGET_ABICALLS
8622 && !TARGET_ABSOLUTE_ABICALLS && !TARGET_GPWORD, jump tables will use
8623 absolute addresses, and should therefore not be included in the
8624 read-only part of a DSO. Handle such cases by selecting a normal
8625 data section instead of a read-only one. The logic apes that in
8626 default_function_rodata_section. */
8627
8628 static section *
8629 mips_function_rodata_section (tree decl)
8630 {
8631 if (!TARGET_ABICALLS || TARGET_ABSOLUTE_ABICALLS || TARGET_GPWORD)
8632 return default_function_rodata_section (decl);
8633
8634 if (decl && DECL_SECTION_NAME (decl))
8635 {
8636 const char *name = DECL_SECTION_NAME (decl);
8637 if (DECL_COMDAT_GROUP (decl) && strncmp (name, ".gnu.linkonce.t.", 16) == 0)
8638 {
8639 char *rname = ASTRDUP (name);
8640 rname[14] = 'd';
8641 return get_section (rname, SECTION_LINKONCE | SECTION_WRITE, decl);
8642 }
8643 else if (flag_function_sections
8644 && flag_data_sections
8645 && strncmp (name, ".text.", 6) == 0)
8646 {
8647 char *rname = ASTRDUP (name);
8648 memcpy (rname + 1, "data", 4);
8649 return get_section (rname, SECTION_WRITE, decl);
8650 }
8651 }
8652 return data_section;
8653 }
8654
8655 /* Implement TARGET_IN_SMALL_DATA_P. */
8656
8657 static bool
8658 mips_in_small_data_p (const_tree decl)
8659 {
8660 unsigned HOST_WIDE_INT size;
8661
8662 if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL)
8663 return false;
8664
8665 /* We don't yet generate small-data references for -mabicalls
8666 or VxWorks RTP code. See the related -G handling in
8667 mips_option_override. */
8668 if (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
8669 return false;
8670
8671 if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
8672 {
8673 const char *name;
8674
8675 /* Reject anything that isn't in a known small-data section. */
8676 name = DECL_SECTION_NAME (decl);
8677 if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0)
8678 return false;
8679
8680 /* If a symbol is defined externally, the assembler will use the
8681 usual -G rules when deciding how to implement macros. */
8682 if (mips_lo_relocs[SYMBOL_GP_RELATIVE] || !DECL_EXTERNAL (decl))
8683 return true;
8684 }
8685 else if (TARGET_EMBEDDED_DATA)
8686 {
8687 /* Don't put constants into the small data section: we want them
8688 to be in ROM rather than RAM. */
8689 if (TREE_CODE (decl) != VAR_DECL)
8690 return false;
8691
8692 if (TREE_READONLY (decl)
8693 && !TREE_SIDE_EFFECTS (decl)
8694 && (!DECL_INITIAL (decl) || TREE_CONSTANT (DECL_INITIAL (decl))))
8695 return false;
8696 }
8697
8698 /* Enforce -mlocal-sdata. */
8699 if (!TARGET_LOCAL_SDATA && !TREE_PUBLIC (decl))
8700 return false;
8701
8702 /* Enforce -mextern-sdata. */
8703 if (!TARGET_EXTERN_SDATA && DECL_P (decl))
8704 {
8705 if (DECL_EXTERNAL (decl))
8706 return false;
8707 if (DECL_COMMON (decl) && DECL_INITIAL (decl) == NULL)
8708 return false;
8709 }
8710
8711 /* We have traditionally not treated zero-sized objects as small data,
8712 so this is now effectively part of the ABI. */
8713 size = int_size_in_bytes (TREE_TYPE (decl));
8714 return size > 0 && size <= mips_small_data_threshold;
8715 }
8716
8717 /* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P. We don't want to use
8718 anchors for small data: the GP register acts as an anchor in that
8719 case. We also don't want to use them for PC-relative accesses,
8720 where the PC acts as an anchor. */
8721
8722 static bool
8723 mips_use_anchors_for_symbol_p (const_rtx symbol)
8724 {
8725 switch (mips_classify_symbol (symbol, SYMBOL_CONTEXT_MEM))
8726 {
8727 case SYMBOL_PC_RELATIVE:
8728 case SYMBOL_GP_RELATIVE:
8729 return false;
8730
8731 default:
8732 return default_use_anchors_for_symbol_p (symbol);
8733 }
8734 }
8735 \f
8736 /* The MIPS debug format wants all automatic variables and arguments
8737 to be in terms of the virtual frame pointer (stack pointer before
8738 any adjustment in the function), while the MIPS 3.0 linker wants
8739 the frame pointer to be the stack pointer after the initial
8740 adjustment. So, we do the adjustment here. The arg pointer (which
8741 is eliminated) points to the virtual frame pointer, while the frame
8742 pointer (which may be eliminated) points to the stack pointer after
8743 the initial adjustments. */
8744
8745 HOST_WIDE_INT
8746 mips_debugger_offset (rtx addr, HOST_WIDE_INT offset)
8747 {
8748 rtx offset2 = const0_rtx;
8749 rtx reg = eliminate_constant_term (addr, &offset2);
8750
8751 if (offset == 0)
8752 offset = INTVAL (offset2);
8753
8754 if (reg == stack_pointer_rtx
8755 || reg == frame_pointer_rtx
8756 || reg == hard_frame_pointer_rtx)
8757 {
8758 offset -= cfun->machine->frame.total_size;
8759 if (reg == hard_frame_pointer_rtx)
8760 offset += cfun->machine->frame.hard_frame_pointer_offset;
8761 }
8762
8763 return offset;
8764 }
8765 \f
8766 /* Implement ASM_OUTPUT_EXTERNAL. */
8767
8768 void
8769 mips_output_external (FILE *file, tree decl, const char *name)
8770 {
8771 default_elf_asm_output_external (file, decl, name);
8772
8773 /* We output the name if and only if TREE_SYMBOL_REFERENCED is
8774 set in order to avoid putting out names that are never really
8775 used. */
8776 if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
8777 {
8778 if (!TARGET_EXPLICIT_RELOCS && mips_in_small_data_p (decl))
8779 {
8780 /* When using assembler macros, emit .extern directives for
8781 all small-data externs so that the assembler knows how
8782 big they are.
8783
8784 In most cases it would be safe (though pointless) to emit
8785 .externs for other symbols too. One exception is when an
8786 object is within the -G limit but declared by the user to
8787 be in a section other than .sbss or .sdata. */
8788 fputs ("\t.extern\t", file);
8789 assemble_name (file, name);
8790 fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC "\n",
8791 int_size_in_bytes (TREE_TYPE (decl)));
8792 }
8793 }
8794 }
8795
8796 /* Implement TARGET_ASM_OUTPUT_SOURCE_FILENAME. */
8797
8798 static void
8799 mips_output_filename (FILE *stream, const char *name)
8800 {
8801 /* If we are emitting DWARF-2, let dwarf2out handle the ".file"
8802 directives. */
8803 if (write_symbols == DWARF2_DEBUG)
8804 return;
8805 else if (mips_output_filename_first_time)
8806 {
8807 mips_output_filename_first_time = 0;
8808 num_source_filenames += 1;
8809 current_function_file = name;
8810 fprintf (stream, "\t.file\t%d ", num_source_filenames);
8811 output_quoted_string (stream, name);
8812 putc ('\n', stream);
8813 }
8814 /* If we are emitting stabs, let dbxout.c handle this (except for
8815 the mips_output_filename_first_time case). */
8816 else if (write_symbols == DBX_DEBUG)
8817 return;
8818 else if (name != current_function_file
8819 && strcmp (name, current_function_file) != 0)
8820 {
8821 num_source_filenames += 1;
8822 current_function_file = name;
8823 fprintf (stream, "\t.file\t%d ", num_source_filenames);
8824 output_quoted_string (stream, name);
8825 putc ('\n', stream);
8826 }
8827 }
8828
8829 /* Implement TARGET_ASM_OUTPUT_DWARF_DTPREL. */
8830
8831 static void ATTRIBUTE_UNUSED
8832 mips_output_dwarf_dtprel (FILE *file, int size, rtx x)
8833 {
8834 switch (size)
8835 {
8836 case 4:
8837 fputs ("\t.dtprelword\t", file);
8838 break;
8839
8840 case 8:
8841 fputs ("\t.dtpreldword\t", file);
8842 break;
8843
8844 default:
8845 gcc_unreachable ();
8846 }
8847 output_addr_const (file, x);
8848 fputs ("+0x8000", file);
8849 }
8850
8851 /* Implement TARGET_DWARF_REGISTER_SPAN. */
8852
8853 static rtx
8854 mips_dwarf_register_span (rtx reg)
8855 {
8856 rtx high, low;
8857 machine_mode mode;
8858
8859 /* TARGET_FLOATXX is implemented as 32-bit floating-point registers but
8860 ensures that double-precision registers are treated as if they were
8861 64-bit physical registers. The code will run correctly with 32-bit or
8862 64-bit registers which means that dwarf information cannot be precise
8863 for all scenarios. We choose to state that the 64-bit values are stored
8864 in a single 64-bit 'piece'. This slightly unusual construct can then be
8865 interpreted as either a pair of registers if the registers are 32-bit or
8866 a single 64-bit register depending on hardware. */
8867 mode = GET_MODE (reg);
8868 if (FP_REG_P (REGNO (reg))
8869 && TARGET_FLOATXX
8870 && GET_MODE_SIZE (mode) > UNITS_PER_FPREG)
8871 {
8872 return gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, reg));
8873 }
8874 /* By default, GCC maps increasing register numbers to increasing
8875 memory locations, but paired FPRs are always little-endian,
8876 regardless of the prevailing endianness. */
8877 else if (FP_REG_P (REGNO (reg))
8878 && TARGET_BIG_ENDIAN
8879 && MAX_FPRS_PER_FMT > 1
8880 && GET_MODE_SIZE (mode) > UNITS_PER_FPREG)
8881 {
8882 gcc_assert (GET_MODE_SIZE (mode) == UNITS_PER_HWFPVALUE);
8883 high = mips_subword (reg, true);
8884 low = mips_subword (reg, false);
8885 return gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, high, low));
8886 }
8887
8888 return NULL_RTX;
8889 }
8890
8891 /* Implement TARGET_DWARF_FRAME_REG_MODE. */
8892
8893 static machine_mode
8894 mips_dwarf_frame_reg_mode (int regno)
8895 {
8896 machine_mode mode = default_dwarf_frame_reg_mode (regno);
8897
8898 if (FP_REG_P (regno) && mips_abi == ABI_32 && TARGET_FLOAT64)
8899 mode = SImode;
8900
8901 return mode;
8902 }
8903
8904 /* DSP ALU can bypass data with no delays for the following pairs. */
8905 enum insn_code dspalu_bypass_table[][2] =
8906 {
8907 {CODE_FOR_mips_addsc, CODE_FOR_mips_addwc},
8908 {CODE_FOR_mips_cmpu_eq_qb, CODE_FOR_mips_pick_qb},
8909 {CODE_FOR_mips_cmpu_lt_qb, CODE_FOR_mips_pick_qb},
8910 {CODE_FOR_mips_cmpu_le_qb, CODE_FOR_mips_pick_qb},
8911 {CODE_FOR_mips_cmp_eq_ph, CODE_FOR_mips_pick_ph},
8912 {CODE_FOR_mips_cmp_lt_ph, CODE_FOR_mips_pick_ph},
8913 {CODE_FOR_mips_cmp_le_ph, CODE_FOR_mips_pick_ph},
8914 {CODE_FOR_mips_wrdsp, CODE_FOR_mips_insv}
8915 };
8916
8917 int
8918 mips_dspalu_bypass_p (rtx out_insn, rtx in_insn)
8919 {
8920 int i;
8921 int num_bypass = ARRAY_SIZE (dspalu_bypass_table);
8922 enum insn_code out_icode = (enum insn_code) INSN_CODE (out_insn);
8923 enum insn_code in_icode = (enum insn_code) INSN_CODE (in_insn);
8924
8925 for (i = 0; i < num_bypass; i++)
8926 {
8927 if (out_icode == dspalu_bypass_table[i][0]
8928 && in_icode == dspalu_bypass_table[i][1])
8929 return true;
8930 }
8931
8932 return false;
8933 }
8934 /* Implement ASM_OUTPUT_ASCII. */
8935
8936 void
8937 mips_output_ascii (FILE *stream, const char *string, size_t len)
8938 {
8939 size_t i;
8940 int cur_pos;
8941
8942 cur_pos = 17;
8943 fprintf (stream, "\t.ascii\t\"");
8944 for (i = 0; i < len; i++)
8945 {
8946 int c;
8947
8948 c = (unsigned char) string[i];
8949 if (ISPRINT (c))
8950 {
8951 if (c == '\\' || c == '\"')
8952 {
8953 putc ('\\', stream);
8954 cur_pos++;
8955 }
8956 putc (c, stream);
8957 cur_pos++;
8958 }
8959 else
8960 {
8961 fprintf (stream, "\\%03o", c);
8962 cur_pos += 4;
8963 }
8964
8965 if (cur_pos > 72 && i+1 < len)
8966 {
8967 cur_pos = 17;
8968 fprintf (stream, "\"\n\t.ascii\t\"");
8969 }
8970 }
8971 fprintf (stream, "\"\n");
8972 }
8973
8974 /* Return the pseudo-op for full SYMBOL_(D)TPREL address *ADDR.
8975 Update *ADDR with the operand that should be printed. */
8976
8977 const char *
8978 mips_output_tls_reloc_directive (rtx *addr)
8979 {
8980 enum mips_symbol_type type;
8981
8982 type = mips_classify_symbolic_expression (*addr, SYMBOL_CONTEXT_LEA);
8983 *addr = mips_strip_unspec_address (*addr);
8984 switch (type)
8985 {
8986 case SYMBOL_DTPREL:
8987 return Pmode == SImode ? ".dtprelword\t%0" : ".dtpreldword\t%0";
8988
8989 case SYMBOL_TPREL:
8990 return Pmode == SImode ? ".tprelword\t%0" : ".tpreldword\t%0";
8991
8992 default:
8993 gcc_unreachable ();
8994 }
8995 }
8996
8997 /* Emit either a label, .comm, or .lcomm directive. When using assembler
8998 macros, mark the symbol as written so that mips_asm_output_external
8999 won't emit an .extern for it. STREAM is the output file, NAME is the
9000 name of the symbol, INIT_STRING is the string that should be written
9001 before the symbol and FINAL_STRING is the string that should be
9002 written after it. FINAL_STRING is a printf format that consumes the
9003 remaining arguments. */
9004
9005 void
9006 mips_declare_object (FILE *stream, const char *name, const char *init_string,
9007 const char *final_string, ...)
9008 {
9009 va_list ap;
9010
9011 fputs (init_string, stream);
9012 assemble_name (stream, name);
9013 va_start (ap, final_string);
9014 vfprintf (stream, final_string, ap);
9015 va_end (ap);
9016
9017 if (!TARGET_EXPLICIT_RELOCS)
9018 {
9019 tree name_tree = get_identifier (name);
9020 TREE_ASM_WRITTEN (name_tree) = 1;
9021 }
9022 }
9023
9024 /* Declare a common object of SIZE bytes using asm directive INIT_STRING.
9025 NAME is the name of the object and ALIGN is the required alignment
9026 in bytes. TAKES_ALIGNMENT_P is true if the directive takes a third
9027 alignment argument. */
9028
9029 void
9030 mips_declare_common_object (FILE *stream, const char *name,
9031 const char *init_string,
9032 unsigned HOST_WIDE_INT size,
9033 unsigned int align, bool takes_alignment_p)
9034 {
9035 if (!takes_alignment_p)
9036 {
9037 size += (align / BITS_PER_UNIT) - 1;
9038 size -= size % (align / BITS_PER_UNIT);
9039 mips_declare_object (stream, name, init_string,
9040 "," HOST_WIDE_INT_PRINT_UNSIGNED "\n", size);
9041 }
9042 else
9043 mips_declare_object (stream, name, init_string,
9044 "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n",
9045 size, align / BITS_PER_UNIT);
9046 }
9047
9048 /* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON. This is usually the same as the
9049 elfos.h version, but we also need to handle -muninit-const-in-rodata. */
9050
9051 void
9052 mips_output_aligned_decl_common (FILE *stream, tree decl, const char *name,
9053 unsigned HOST_WIDE_INT size,
9054 unsigned int align)
9055 {
9056 /* If the target wants uninitialized const declarations in
9057 .rdata then don't put them in .comm. */
9058 if (TARGET_EMBEDDED_DATA
9059 && TARGET_UNINIT_CONST_IN_RODATA
9060 && TREE_CODE (decl) == VAR_DECL
9061 && TREE_READONLY (decl)
9062 && (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node))
9063 {
9064 if (TREE_PUBLIC (decl) && DECL_NAME (decl))
9065 targetm.asm_out.globalize_label (stream, name);
9066
9067 switch_to_section (readonly_data_section);
9068 ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
9069 mips_declare_object (stream, name, "",
9070 ":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
9071 size);
9072 }
9073 else
9074 mips_declare_common_object (stream, name, "\n\t.comm\t",
9075 size, align, true);
9076 }
9077
9078 #ifdef ASM_OUTPUT_SIZE_DIRECTIVE
9079 extern int size_directive_output;
9080
9081 /* Implement ASM_DECLARE_OBJECT_NAME. This is like most of the standard ELF
9082 definitions except that it uses mips_declare_object to emit the label. */
9083
9084 void
9085 mips_declare_object_name (FILE *stream, const char *name,
9086 tree decl ATTRIBUTE_UNUSED)
9087 {
9088 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
9089 ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
9090 #endif
9091
9092 size_directive_output = 0;
9093 if (!flag_inhibit_size_directive && DECL_SIZE (decl))
9094 {
9095 HOST_WIDE_INT size;
9096
9097 size_directive_output = 1;
9098 size = int_size_in_bytes (TREE_TYPE (decl));
9099 ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
9100 }
9101
9102 mips_declare_object (stream, name, "", ":\n");
9103 }
9104
9105 /* Implement ASM_FINISH_DECLARE_OBJECT. This is generic ELF stuff. */
9106
9107 void
9108 mips_finish_declare_object (FILE *stream, tree decl, int top_level, int at_end)
9109 {
9110 const char *name;
9111
9112 name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
9113 if (!flag_inhibit_size_directive
9114 && DECL_SIZE (decl) != 0
9115 && !at_end
9116 && top_level
9117 && DECL_INITIAL (decl) == error_mark_node
9118 && !size_directive_output)
9119 {
9120 HOST_WIDE_INT size;
9121
9122 size_directive_output = 1;
9123 size = int_size_in_bytes (TREE_TYPE (decl));
9124 ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
9125 }
9126 }
9127 #endif
9128 \f
9129 /* Return the FOO in the name of the ".mdebug.FOO" section associated
9130 with the current ABI. */
9131
9132 static const char *
9133 mips_mdebug_abi_name (void)
9134 {
9135 switch (mips_abi)
9136 {
9137 case ABI_32:
9138 return "abi32";
9139 case ABI_O64:
9140 return "abiO64";
9141 case ABI_N32:
9142 return "abiN32";
9143 case ABI_64:
9144 return "abi64";
9145 case ABI_EABI:
9146 return TARGET_64BIT ? "eabi64" : "eabi32";
9147 default:
9148 gcc_unreachable ();
9149 }
9150 }
9151
9152 /* Implement TARGET_ASM_FILE_START. */
9153
9154 static void
9155 mips_file_start (void)
9156 {
9157 default_file_start ();
9158
9159 /* Generate a special section to describe the ABI switches used to
9160 produce the resultant binary. */
9161
9162 /* Record the ABI itself. Modern versions of binutils encode
9163 this information in the ELF header flags, but GDB needs the
9164 information in order to correctly debug binaries produced by
9165 older binutils. See the function mips_gdbarch_init in
9166 gdb/mips-tdep.c. */
9167 fprintf (asm_out_file, "\t.section .mdebug.%s\n\t.previous\n",
9168 mips_mdebug_abi_name ());
9169
9170 /* There is no ELF header flag to distinguish long32 forms of the
9171 EABI from long64 forms. Emit a special section to help tools
9172 such as GDB. Do the same for o64, which is sometimes used with
9173 -mlong64. */
9174 if (mips_abi == ABI_EABI || mips_abi == ABI_O64)
9175 fprintf (asm_out_file, "\t.section .gcc_compiled_long%d\n"
9176 "\t.previous\n", TARGET_LONG64 ? 64 : 32);
9177
9178 /* Record the NaN encoding. */
9179 if (HAVE_AS_NAN || mips_nan != MIPS_IEEE_754_DEFAULT)
9180 fprintf (asm_out_file, "\t.nan\t%s\n",
9181 mips_nan == MIPS_IEEE_754_2008 ? "2008" : "legacy");
9182
9183 #ifdef HAVE_AS_DOT_MODULE
9184 /* Record the FP ABI. See below for comments. */
9185 if (TARGET_NO_FLOAT)
9186 #ifdef HAVE_AS_GNU_ATTRIBUTE
9187 fputs ("\t.gnu_attribute 4, 0\n", asm_out_file);
9188 #else
9189 ;
9190 #endif
9191 else if (!TARGET_HARD_FLOAT_ABI)
9192 fputs ("\t.module\tsoftfloat\n", asm_out_file);
9193 else if (!TARGET_DOUBLE_FLOAT)
9194 fputs ("\t.module\tsinglefloat\n", asm_out_file);
9195 else if (TARGET_FLOATXX)
9196 fputs ("\t.module\tfp=xx\n", asm_out_file);
9197 else if (TARGET_FLOAT64)
9198 fputs ("\t.module\tfp=64\n", asm_out_file);
9199 else
9200 fputs ("\t.module\tfp=32\n", asm_out_file);
9201
9202 if (TARGET_ODD_SPREG)
9203 fputs ("\t.module\toddspreg\n", asm_out_file);
9204 else
9205 fputs ("\t.module\tnooddspreg\n", asm_out_file);
9206
9207 #else
9208 #ifdef HAVE_AS_GNU_ATTRIBUTE
9209 {
9210 int attr;
9211
9212 /* No floating-point operations, -mno-float. */
9213 if (TARGET_NO_FLOAT)
9214 attr = 0;
9215 /* Soft-float code, -msoft-float. */
9216 else if (!TARGET_HARD_FLOAT_ABI)
9217 attr = 3;
9218 /* Single-float code, -msingle-float. */
9219 else if (!TARGET_DOUBLE_FLOAT)
9220 attr = 2;
9221 /* 64-bit FP registers on a 32-bit target, -mips32r2 -mfp64.
9222 Reserved attr=4.
9223 This case used 12 callee-saved double-precision registers
9224 and is deprecated. */
9225 /* 64-bit or 32-bit FP registers on a 32-bit target, -mfpxx. */
9226 else if (TARGET_FLOATXX)
9227 attr = 5;
9228 /* 64-bit FP registers on a 32-bit target, -mfp64 -modd-spreg. */
9229 else if (mips_abi == ABI_32 && TARGET_FLOAT64 && TARGET_ODD_SPREG)
9230 attr = 6;
9231 /* 64-bit FP registers on a 32-bit target, -mfp64 -mno-odd-spreg. */
9232 else if (mips_abi == ABI_32 && TARGET_FLOAT64)
9233 attr = 7;
9234 /* Regular FP code, FP regs same size as GP regs, -mdouble-float. */
9235 else
9236 attr = 1;
9237
9238 fprintf (asm_out_file, "\t.gnu_attribute 4, %d\n", attr);
9239 }
9240 #endif
9241 #endif
9242
9243 /* If TARGET_ABICALLS, tell GAS to generate -KPIC code. */
9244 if (TARGET_ABICALLS)
9245 {
9246 fprintf (asm_out_file, "\t.abicalls\n");
9247 if (TARGET_ABICALLS_PIC0)
9248 fprintf (asm_out_file, "\t.option\tpic0\n");
9249 }
9250
9251 if (flag_verbose_asm)
9252 fprintf (asm_out_file, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
9253 ASM_COMMENT_START,
9254 mips_small_data_threshold, mips_arch_info->name, mips_isa);
9255 }
9256
9257 /* Implement TARGET_ASM_CODE_END. */
9258
9259 static void
9260 mips_code_end (void)
9261 {
9262 mips_finish_stub (&mips16_rdhwr_stub);
9263 mips_finish_stub (&mips16_get_fcsr_stub);
9264 mips_finish_stub (&mips16_set_fcsr_stub);
9265 }
9266 \f
9267 /* Make the last instruction frame-related and note that it performs
9268 the operation described by FRAME_PATTERN. */
9269
9270 static void
9271 mips_set_frame_expr (rtx frame_pattern)
9272 {
9273 rtx_insn *insn;
9274
9275 insn = get_last_insn ();
9276 RTX_FRAME_RELATED_P (insn) = 1;
9277 REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
9278 frame_pattern,
9279 REG_NOTES (insn));
9280 }
9281
9282 /* Return a frame-related rtx that stores REG at MEM.
9283 REG must be a single register. */
9284
9285 static rtx
9286 mips_frame_set (rtx mem, rtx reg)
9287 {
9288 rtx set;
9289
9290 set = gen_rtx_SET (mem, reg);
9291 RTX_FRAME_RELATED_P (set) = 1;
9292
9293 return set;
9294 }
9295
9296 /* Record that the epilogue has restored call-saved register REG. */
9297
9298 static void
9299 mips_add_cfa_restore (rtx reg)
9300 {
9301 mips_epilogue.cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
9302 mips_epilogue.cfa_restores);
9303 }
9304 \f
9305 /* If a MIPS16e SAVE or RESTORE instruction saves or restores register
9306 mips16e_s2_s8_regs[X], it must also save the registers in indexes
9307 X + 1 onwards. Likewise mips16e_a0_a3_regs. */
9308 static const unsigned char mips16e_s2_s8_regs[] = {
9309 30, 23, 22, 21, 20, 19, 18
9310 };
9311 static const unsigned char mips16e_a0_a3_regs[] = {
9312 4, 5, 6, 7
9313 };
9314
9315 /* A list of the registers that can be saved by the MIPS16e SAVE instruction,
9316 ordered from the uppermost in memory to the lowest in memory. */
9317 static const unsigned char mips16e_save_restore_regs[] = {
9318 31, 30, 23, 22, 21, 20, 19, 18, 17, 16, 7, 6, 5, 4
9319 };
9320
9321 /* Return the index of the lowest X in the range [0, SIZE) for which
9322 bit REGS[X] is set in MASK. Return SIZE if there is no such X. */
9323
9324 static unsigned int
9325 mips16e_find_first_register (unsigned int mask, const unsigned char *regs,
9326 unsigned int size)
9327 {
9328 unsigned int i;
9329
9330 for (i = 0; i < size; i++)
9331 if (BITSET_P (mask, regs[i]))
9332 break;
9333
9334 return i;
9335 }
9336
9337 /* *MASK_PTR is a mask of general-purpose registers and *NUM_REGS_PTR
9338 is the number of set bits. If *MASK_PTR contains REGS[X] for some X
9339 in [0, SIZE), adjust *MASK_PTR and *NUM_REGS_PTR so that the same
9340 is true for all indexes (X, SIZE). */
9341
9342 static void
9343 mips16e_mask_registers (unsigned int *mask_ptr, const unsigned char *regs,
9344 unsigned int size, unsigned int *num_regs_ptr)
9345 {
9346 unsigned int i;
9347
9348 i = mips16e_find_first_register (*mask_ptr, regs, size);
9349 for (i++; i < size; i++)
9350 if (!BITSET_P (*mask_ptr, regs[i]))
9351 {
9352 *num_regs_ptr += 1;
9353 *mask_ptr |= 1 << regs[i];
9354 }
9355 }
9356
9357 /* Return a simplified form of X using the register values in REG_VALUES.
9358 REG_VALUES[R] is the last value assigned to hard register R, or null
9359 if R has not been modified.
9360
9361 This function is rather limited, but is good enough for our purposes. */
9362
9363 static rtx
9364 mips16e_collect_propagate_value (rtx x, rtx *reg_values)
9365 {
9366 x = avoid_constant_pool_reference (x);
9367
9368 if (UNARY_P (x))
9369 {
9370 rtx x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values);
9371 return simplify_gen_unary (GET_CODE (x), GET_MODE (x),
9372 x0, GET_MODE (XEXP (x, 0)));
9373 }
9374
9375 if (ARITHMETIC_P (x))
9376 {
9377 rtx x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values);
9378 rtx x1 = mips16e_collect_propagate_value (XEXP (x, 1), reg_values);
9379 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), x0, x1);
9380 }
9381
9382 if (REG_P (x)
9383 && reg_values[REGNO (x)]
9384 && !rtx_unstable_p (reg_values[REGNO (x)]))
9385 return reg_values[REGNO (x)];
9386
9387 return x;
9388 }
9389
9390 /* Return true if (set DEST SRC) stores an argument register into its
9391 caller-allocated save slot, storing the number of that argument
9392 register in *REGNO_PTR if so. REG_VALUES is as for
9393 mips16e_collect_propagate_value. */
9394
9395 static bool
9396 mips16e_collect_argument_save_p (rtx dest, rtx src, rtx *reg_values,
9397 unsigned int *regno_ptr)
9398 {
9399 unsigned int argno, regno;
9400 HOST_WIDE_INT offset, required_offset;
9401 rtx addr, base;
9402
9403 /* Check that this is a word-mode store. */
9404 if (!MEM_P (dest) || !REG_P (src) || GET_MODE (dest) != word_mode)
9405 return false;
9406
9407 /* Check that the register being saved is an unmodified argument
9408 register. */
9409 regno = REGNO (src);
9410 if (!IN_RANGE (regno, GP_ARG_FIRST, GP_ARG_LAST) || reg_values[regno])
9411 return false;
9412 argno = regno - GP_ARG_FIRST;
9413
9414 /* Check whether the address is an appropriate stack-pointer or
9415 frame-pointer access. */
9416 addr = mips16e_collect_propagate_value (XEXP (dest, 0), reg_values);
9417 mips_split_plus (addr, &base, &offset);
9418 required_offset = cfun->machine->frame.total_size + argno * UNITS_PER_WORD;
9419 if (base == hard_frame_pointer_rtx)
9420 required_offset -= cfun->machine->frame.hard_frame_pointer_offset;
9421 else if (base != stack_pointer_rtx)
9422 return false;
9423 if (offset != required_offset)
9424 return false;
9425
9426 *regno_ptr = regno;
9427 return true;
9428 }
9429
9430 /* A subroutine of mips_expand_prologue, called only when generating
9431 MIPS16e SAVE instructions. Search the start of the function for any
9432 instructions that save argument registers into their caller-allocated
9433 save slots. Delete such instructions and return a value N such that
9434 saving [GP_ARG_FIRST, GP_ARG_FIRST + N) would make all the deleted
9435 instructions redundant. */
9436
9437 static unsigned int
9438 mips16e_collect_argument_saves (void)
9439 {
9440 rtx reg_values[FIRST_PSEUDO_REGISTER];
9441 rtx_insn *insn, *next;
9442 rtx set, dest, src;
9443 unsigned int nargs, regno;
9444
9445 push_topmost_sequence ();
9446 nargs = 0;
9447 memset (reg_values, 0, sizeof (reg_values));
9448 for (insn = get_insns (); insn; insn = next)
9449 {
9450 next = NEXT_INSN (insn);
9451 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
9452 continue;
9453
9454 if (!INSN_P (insn))
9455 break;
9456
9457 set = PATTERN (insn);
9458 if (GET_CODE (set) != SET)
9459 break;
9460
9461 dest = SET_DEST (set);
9462 src = SET_SRC (set);
9463 if (mips16e_collect_argument_save_p (dest, src, reg_values, &regno))
9464 {
9465 if (!BITSET_P (cfun->machine->frame.mask, regno))
9466 {
9467 delete_insn (insn);
9468 nargs = MAX (nargs, (regno - GP_ARG_FIRST) + 1);
9469 }
9470 }
9471 else if (REG_P (dest) && GET_MODE (dest) == word_mode)
9472 reg_values[REGNO (dest)]
9473 = mips16e_collect_propagate_value (src, reg_values);
9474 else
9475 break;
9476 }
9477 pop_topmost_sequence ();
9478
9479 return nargs;
9480 }
9481
9482 /* Return a move between register REGNO and memory location SP + OFFSET.
9483 REG_PARM_P is true if SP + OFFSET belongs to REG_PARM_STACK_SPACE.
9484 Make the move a load if RESTORE_P, otherwise make it a store. */
9485
9486 static rtx
9487 mips16e_save_restore_reg (bool restore_p, bool reg_parm_p,
9488 HOST_WIDE_INT offset, unsigned int regno)
9489 {
9490 rtx reg, mem;
9491
9492 mem = gen_frame_mem (SImode, plus_constant (Pmode, stack_pointer_rtx,
9493 offset));
9494 reg = gen_rtx_REG (SImode, regno);
9495 if (restore_p)
9496 {
9497 mips_add_cfa_restore (reg);
9498 return gen_rtx_SET (reg, mem);
9499 }
9500 if (reg_parm_p)
9501 return gen_rtx_SET (mem, reg);
9502 return mips_frame_set (mem, reg);
9503 }
9504
9505 /* Return RTL for a MIPS16e SAVE or RESTORE instruction; RESTORE_P says which.
9506 The instruction must:
9507
9508 - Allocate or deallocate SIZE bytes in total; SIZE is known
9509 to be nonzero.
9510
9511 - Save or restore as many registers in *MASK_PTR as possible.
9512 The instruction saves the first registers at the top of the
9513 allocated area, with the other registers below it.
9514
9515 - Save NARGS argument registers above the allocated area.
9516
9517 (NARGS is always zero if RESTORE_P.)
9518
9519 The SAVE and RESTORE instructions cannot save and restore all general
9520 registers, so there may be some registers left over for the caller to
9521 handle. Destructively modify *MASK_PTR so that it contains the registers
9522 that still need to be saved or restored. The caller can save these
9523 registers in the memory immediately below *OFFSET_PTR, which is a
9524 byte offset from the bottom of the allocated stack area. */
9525
9526 static rtx
9527 mips16e_build_save_restore (bool restore_p, unsigned int *mask_ptr,
9528 HOST_WIDE_INT *offset_ptr, unsigned int nargs,
9529 HOST_WIDE_INT size)
9530 {
9531 rtx pattern, set;
9532 HOST_WIDE_INT offset, top_offset;
9533 unsigned int i, regno;
9534 int n;
9535
9536 gcc_assert (cfun->machine->frame.num_fp == 0);
9537
9538 /* Calculate the number of elements in the PARALLEL. We need one element
9539 for the stack adjustment, one for each argument register save, and one
9540 for each additional register move. */
9541 n = 1 + nargs;
9542 for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++)
9543 if (BITSET_P (*mask_ptr, mips16e_save_restore_regs[i]))
9544 n++;
9545
9546 /* Create the final PARALLEL. */
9547 pattern = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (n));
9548 n = 0;
9549
9550 /* Add the stack pointer adjustment. */
9551 set = gen_rtx_SET (stack_pointer_rtx,
9552 plus_constant (Pmode, stack_pointer_rtx,
9553 restore_p ? size : -size));
9554 RTX_FRAME_RELATED_P (set) = 1;
9555 XVECEXP (pattern, 0, n++) = set;
9556
9557 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
9558 top_offset = restore_p ? size : 0;
9559
9560 /* Save the arguments. */
9561 for (i = 0; i < nargs; i++)
9562 {
9563 offset = top_offset + i * UNITS_PER_WORD;
9564 set = mips16e_save_restore_reg (restore_p, true, offset,
9565 GP_ARG_FIRST + i);
9566 XVECEXP (pattern, 0, n++) = set;
9567 }
9568
9569 /* Then fill in the other register moves. */
9570 offset = top_offset;
9571 for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++)
9572 {
9573 regno = mips16e_save_restore_regs[i];
9574 if (BITSET_P (*mask_ptr, regno))
9575 {
9576 offset -= UNITS_PER_WORD;
9577 set = mips16e_save_restore_reg (restore_p, false, offset, regno);
9578 XVECEXP (pattern, 0, n++) = set;
9579 *mask_ptr &= ~(1 << regno);
9580 }
9581 }
9582
9583 /* Tell the caller what offset it should use for the remaining registers. */
9584 *offset_ptr = size + (offset - top_offset);
9585
9586 gcc_assert (n == XVECLEN (pattern, 0));
9587
9588 return pattern;
9589 }
9590
9591 /* PATTERN is a PARALLEL whose first element adds ADJUST to the stack
9592 pointer. Return true if PATTERN matches the kind of instruction
9593 generated by mips16e_build_save_restore. If INFO is nonnull,
9594 initialize it when returning true. */
9595
9596 bool
9597 mips16e_save_restore_pattern_p (rtx pattern, HOST_WIDE_INT adjust,
9598 struct mips16e_save_restore_info *info)
9599 {
9600 unsigned int i, nargs, mask, extra;
9601 HOST_WIDE_INT top_offset, save_offset, offset;
9602 rtx set, reg, mem, base;
9603 int n;
9604
9605 if (!GENERATE_MIPS16E_SAVE_RESTORE)
9606 return false;
9607
9608 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
9609 top_offset = adjust > 0 ? adjust : 0;
9610
9611 /* Interpret all other members of the PARALLEL. */
9612 save_offset = top_offset - UNITS_PER_WORD;
9613 mask = 0;
9614 nargs = 0;
9615 i = 0;
9616 for (n = 1; n < XVECLEN (pattern, 0); n++)
9617 {
9618 /* Check that we have a SET. */
9619 set = XVECEXP (pattern, 0, n);
9620 if (GET_CODE (set) != SET)
9621 return false;
9622
9623 /* Check that the SET is a load (if restoring) or a store
9624 (if saving). */
9625 mem = adjust > 0 ? SET_SRC (set) : SET_DEST (set);
9626 if (!MEM_P (mem))
9627 return false;
9628
9629 /* Check that the address is the sum of the stack pointer and a
9630 possibly-zero constant offset. */
9631 mips_split_plus (XEXP (mem, 0), &base, &offset);
9632 if (base != stack_pointer_rtx)
9633 return false;
9634
9635 /* Check that SET's other operand is a register. */
9636 reg = adjust > 0 ? SET_DEST (set) : SET_SRC (set);
9637 if (!REG_P (reg))
9638 return false;
9639
9640 /* Check for argument saves. */
9641 if (offset == top_offset + nargs * UNITS_PER_WORD
9642 && REGNO (reg) == GP_ARG_FIRST + nargs)
9643 nargs++;
9644 else if (offset == save_offset)
9645 {
9646 while (mips16e_save_restore_regs[i++] != REGNO (reg))
9647 if (i == ARRAY_SIZE (mips16e_save_restore_regs))
9648 return false;
9649
9650 mask |= 1 << REGNO (reg);
9651 save_offset -= UNITS_PER_WORD;
9652 }
9653 else
9654 return false;
9655 }
9656
9657 /* Check that the restrictions on register ranges are met. */
9658 extra = 0;
9659 mips16e_mask_registers (&mask, mips16e_s2_s8_regs,
9660 ARRAY_SIZE (mips16e_s2_s8_regs), &extra);
9661 mips16e_mask_registers (&mask, mips16e_a0_a3_regs,
9662 ARRAY_SIZE (mips16e_a0_a3_regs), &extra);
9663 if (extra != 0)
9664 return false;
9665
9666 /* Make sure that the topmost argument register is not saved twice.
9667 The checks above ensure that the same is then true for the other
9668 argument registers. */
9669 if (nargs > 0 && BITSET_P (mask, GP_ARG_FIRST + nargs - 1))
9670 return false;
9671
9672 /* Pass back information, if requested. */
9673 if (info)
9674 {
9675 info->nargs = nargs;
9676 info->mask = mask;
9677 info->size = (adjust > 0 ? adjust : -adjust);
9678 }
9679
9680 return true;
9681 }
9682
9683 /* Add a MIPS16e SAVE or RESTORE register-range argument to string S
9684 for the register range [MIN_REG, MAX_REG]. Return a pointer to
9685 the null terminator. */
9686
9687 static char *
9688 mips16e_add_register_range (char *s, unsigned int min_reg,
9689 unsigned int max_reg)
9690 {
9691 if (min_reg != max_reg)
9692 s += sprintf (s, ",%s-%s", reg_names[min_reg], reg_names[max_reg]);
9693 else
9694 s += sprintf (s, ",%s", reg_names[min_reg]);
9695 return s;
9696 }
9697
9698 /* Return the assembly instruction for a MIPS16e SAVE or RESTORE instruction.
9699 PATTERN and ADJUST are as for mips16e_save_restore_pattern_p. */
9700
9701 const char *
9702 mips16e_output_save_restore (rtx pattern, HOST_WIDE_INT adjust)
9703 {
9704 static char buffer[300];
9705
9706 struct mips16e_save_restore_info info;
9707 unsigned int i, end;
9708 char *s;
9709
9710 /* Parse the pattern. */
9711 if (!mips16e_save_restore_pattern_p (pattern, adjust, &info))
9712 gcc_unreachable ();
9713
9714 /* Add the mnemonic. */
9715 s = strcpy (buffer, adjust > 0 ? "restore\t" : "save\t");
9716 s += strlen (s);
9717
9718 /* Save the arguments. */
9719 if (info.nargs > 1)
9720 s += sprintf (s, "%s-%s,", reg_names[GP_ARG_FIRST],
9721 reg_names[GP_ARG_FIRST + info.nargs - 1]);
9722 else if (info.nargs == 1)
9723 s += sprintf (s, "%s,", reg_names[GP_ARG_FIRST]);
9724
9725 /* Emit the amount of stack space to allocate or deallocate. */
9726 s += sprintf (s, "%d", (int) info.size);
9727
9728 /* Save or restore $16. */
9729 if (BITSET_P (info.mask, 16))
9730 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 16]);
9731
9732 /* Save or restore $17. */
9733 if (BITSET_P (info.mask, 17))
9734 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 17]);
9735
9736 /* Save or restore registers in the range $s2...$s8, which
9737 mips16e_s2_s8_regs lists in decreasing order. Note that this
9738 is a software register range; the hardware registers are not
9739 numbered consecutively. */
9740 end = ARRAY_SIZE (mips16e_s2_s8_regs);
9741 i = mips16e_find_first_register (info.mask, mips16e_s2_s8_regs, end);
9742 if (i < end)
9743 s = mips16e_add_register_range (s, mips16e_s2_s8_regs[end - 1],
9744 mips16e_s2_s8_regs[i]);
9745
9746 /* Save or restore registers in the range $a0...$a3. */
9747 end = ARRAY_SIZE (mips16e_a0_a3_regs);
9748 i = mips16e_find_first_register (info.mask, mips16e_a0_a3_regs, end);
9749 if (i < end)
9750 s = mips16e_add_register_range (s, mips16e_a0_a3_regs[i],
9751 mips16e_a0_a3_regs[end - 1]);
9752
9753 /* Save or restore $31. */
9754 if (BITSET_P (info.mask, RETURN_ADDR_REGNUM))
9755 s += sprintf (s, ",%s", reg_names[RETURN_ADDR_REGNUM]);
9756
9757 return buffer;
9758 }
9759 \f
9760 /* Return true if the current function returns its value in a floating-point
9761 register in MIPS16 mode. */
9762
9763 static bool
9764 mips16_cfun_returns_in_fpr_p (void)
9765 {
9766 tree return_type = DECL_RESULT (current_function_decl);
9767 return (TARGET_MIPS16
9768 && TARGET_HARD_FLOAT_ABI
9769 && !aggregate_value_p (return_type, current_function_decl)
9770 && mips_return_mode_in_fpr_p (DECL_MODE (return_type)));
9771 }
9772
9773 /* Return true if predicate PRED is true for at least one instruction.
9774 Cache the result in *CACHE, and assume that the result is true
9775 if *CACHE is already true. */
9776
9777 static bool
9778 mips_find_gp_ref (bool *cache, bool (*pred) (rtx_insn *))
9779 {
9780 rtx_insn *insn, *subinsn;
9781
9782 if (!*cache)
9783 {
9784 push_topmost_sequence ();
9785 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
9786 FOR_EACH_SUBINSN (subinsn, insn)
9787 if (USEFUL_INSN_P (subinsn) && pred (subinsn))
9788 {
9789 *cache = true;
9790 break;
9791 }
9792 pop_topmost_sequence ();
9793 }
9794 return *cache;
9795 }
9796
9797 /* Return true if INSN refers to the global pointer in an "inflexible" way.
9798 See mips_cfun_has_inflexible_gp_ref_p for details. */
9799
9800 static bool
9801 mips_insn_has_inflexible_gp_ref_p (rtx_insn *insn)
9802 {
9803 /* Uses of pic_offset_table_rtx in CALL_INSN_FUNCTION_USAGE
9804 indicate that the target could be a traditional MIPS
9805 lazily-binding stub. */
9806 return find_reg_fusage (insn, USE, pic_offset_table_rtx);
9807 }
9808
9809 /* Return true if the current function refers to the global pointer
9810 in a way that forces $28 to be valid. This means that we can't
9811 change the choice of global pointer, even for NewABI code.
9812
9813 One example of this (and one which needs several checks) is that
9814 $28 must be valid when calling traditional MIPS lazy-binding stubs.
9815 (This restriction does not apply to PLTs.) */
9816
9817 static bool
9818 mips_cfun_has_inflexible_gp_ref_p (void)
9819 {
9820 /* If the function has a nonlocal goto, $28 must hold the correct
9821 global pointer for the target function. That is, the target
9822 of the goto implicitly uses $28. */
9823 if (crtl->has_nonlocal_goto)
9824 return true;
9825
9826 if (TARGET_ABICALLS_PIC2)
9827 {
9828 /* Symbolic accesses implicitly use the global pointer unless
9829 -mexplicit-relocs is in effect. JAL macros to symbolic addresses
9830 might go to traditional MIPS lazy-binding stubs. */
9831 if (!TARGET_EXPLICIT_RELOCS)
9832 return true;
9833
9834 /* FUNCTION_PROFILER includes a JAL to _mcount, which again
9835 can be lazily-bound. */
9836 if (crtl->profile)
9837 return true;
9838
9839 /* MIPS16 functions that return in FPRs need to call an
9840 external libgcc routine. This call is only made explict
9841 during mips_expand_epilogue, and it too might be lazily bound. */
9842 if (mips16_cfun_returns_in_fpr_p ())
9843 return true;
9844 }
9845
9846 return mips_find_gp_ref (&cfun->machine->has_inflexible_gp_insn_p,
9847 mips_insn_has_inflexible_gp_ref_p);
9848 }
9849
9850 /* Return true if INSN refers to the global pointer in a "flexible" way.
9851 See mips_cfun_has_flexible_gp_ref_p for details. */
9852
9853 static bool
9854 mips_insn_has_flexible_gp_ref_p (rtx_insn *insn)
9855 {
9856 return (get_attr_got (insn) != GOT_UNSET
9857 || mips_small_data_pattern_p (PATTERN (insn))
9858 || reg_overlap_mentioned_p (pic_offset_table_rtx, PATTERN (insn)));
9859 }
9860
9861 /* Return true if the current function references the global pointer,
9862 but if those references do not inherently require the global pointer
9863 to be $28. Assume !mips_cfun_has_inflexible_gp_ref_p (). */
9864
9865 static bool
9866 mips_cfun_has_flexible_gp_ref_p (void)
9867 {
9868 /* Reload can sometimes introduce constant pool references
9869 into a function that otherwise didn't need them. For example,
9870 suppose we have an instruction like:
9871
9872 (set (reg:DF R1) (float:DF (reg:SI R2)))
9873
9874 If R2 turns out to be a constant such as 1, the instruction may
9875 have a REG_EQUAL note saying that R1 == 1.0. Reload then has
9876 the option of using this constant if R2 doesn't get allocated
9877 to a register.
9878
9879 In cases like these, reload will have added the constant to the
9880 pool but no instruction will yet refer to it. */
9881 if (TARGET_ABICALLS_PIC2 && !reload_completed && crtl->uses_const_pool)
9882 return true;
9883
9884 return mips_find_gp_ref (&cfun->machine->has_flexible_gp_insn_p,
9885 mips_insn_has_flexible_gp_ref_p);
9886 }
9887
9888 /* Return the register that should be used as the global pointer
9889 within this function. Return INVALID_REGNUM if the function
9890 doesn't need a global pointer. */
9891
9892 static unsigned int
9893 mips_global_pointer (void)
9894 {
9895 unsigned int regno;
9896
9897 /* $gp is always available unless we're using a GOT. */
9898 if (!TARGET_USE_GOT)
9899 return GLOBAL_POINTER_REGNUM;
9900
9901 /* If there are inflexible references to $gp, we must use the
9902 standard register. */
9903 if (mips_cfun_has_inflexible_gp_ref_p ())
9904 return GLOBAL_POINTER_REGNUM;
9905
9906 /* If there are no current references to $gp, then the only uses
9907 we can introduce later are those involved in long branches. */
9908 if (TARGET_ABSOLUTE_JUMPS && !mips_cfun_has_flexible_gp_ref_p ())
9909 return INVALID_REGNUM;
9910
9911 /* If the global pointer is call-saved, try to use a call-clobbered
9912 alternative. */
9913 if (TARGET_CALL_SAVED_GP && crtl->is_leaf)
9914 for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
9915 if (!df_regs_ever_live_p (regno)
9916 && call_really_used_regs[regno]
9917 && !fixed_regs[regno]
9918 && regno != PIC_FUNCTION_ADDR_REGNUM)
9919 return regno;
9920
9921 return GLOBAL_POINTER_REGNUM;
9922 }
9923
9924 /* Return true if the current function's prologue must load the global
9925 pointer value into pic_offset_table_rtx and store the same value in
9926 the function's cprestore slot (if any).
9927
9928 One problem we have to deal with is that, when emitting GOT-based
9929 position independent code, long-branch sequences will need to load
9930 the address of the branch target from the GOT. We don't know until
9931 the very end of compilation whether (and where) the function needs
9932 long branches, so we must ensure that _any_ branch can access the
9933 global pointer in some form. However, we do not want to pessimize
9934 the usual case in which all branches are short.
9935
9936 We handle this as follows:
9937
9938 (1) During reload, we set cfun->machine->global_pointer to
9939 INVALID_REGNUM if we _know_ that the current function
9940 doesn't need a global pointer. This is only valid if
9941 long branches don't need the GOT.
9942
9943 Otherwise, we assume that we might need a global pointer
9944 and pick an appropriate register.
9945
9946 (2) If cfun->machine->global_pointer != INVALID_REGNUM,
9947 we ensure that the global pointer is available at every
9948 block boundary bar entry and exit. We do this in one of two ways:
9949
9950 - If the function has a cprestore slot, we ensure that this
9951 slot is valid at every branch. However, as explained in
9952 point (6) below, there is no guarantee that pic_offset_table_rtx
9953 itself is valid if new uses of the global pointer are introduced
9954 after the first post-epilogue split.
9955
9956 We guarantee that the cprestore slot is valid by loading it
9957 into a fake register, CPRESTORE_SLOT_REGNUM. We then make
9958 this register live at every block boundary bar function entry
9959 and exit. It is then invalid to move the load (and thus the
9960 preceding store) across a block boundary.
9961
9962 - If the function has no cprestore slot, we guarantee that
9963 pic_offset_table_rtx itself is valid at every branch.
9964
9965 See mips_eh_uses for the handling of the register liveness.
9966
9967 (3) During prologue and epilogue generation, we emit "ghost"
9968 placeholder instructions to manipulate the global pointer.
9969
9970 (4) During prologue generation, we set cfun->machine->must_initialize_gp_p
9971 and cfun->machine->must_restore_gp_when_clobbered_p if we already know
9972 that the function needs a global pointer. (There is no need to set
9973 them earlier than this, and doing it as late as possible leads to
9974 fewer false positives.)
9975
9976 (5) If cfun->machine->must_initialize_gp_p is true during a
9977 split_insns pass, we split the ghost instructions into real
9978 instructions. These split instructions can then be optimized in
9979 the usual way. Otherwise, we keep the ghost instructions intact,
9980 and optimize for the case where they aren't needed. We still
9981 have the option of splitting them later, if we need to introduce
9982 new uses of the global pointer.
9983
9984 For example, the scheduler ignores a ghost instruction that
9985 stores $28 to the stack, but it handles the split form of
9986 the ghost instruction as an ordinary store.
9987
9988 (6) [OldABI only.] If cfun->machine->must_restore_gp_when_clobbered_p
9989 is true during the first post-epilogue split_insns pass, we split
9990 calls and restore_gp patterns into instructions that explicitly
9991 load pic_offset_table_rtx from the cprestore slot. Otherwise,
9992 we split these patterns into instructions that _don't_ load from
9993 the cprestore slot.
9994
9995 If cfun->machine->must_restore_gp_when_clobbered_p is true at the
9996 time of the split, then any instructions that exist at that time
9997 can make free use of pic_offset_table_rtx. However, if we want
9998 to introduce new uses of the global pointer after the split,
9999 we must explicitly load the value from the cprestore slot, since
10000 pic_offset_table_rtx itself might not be valid at a given point
10001 in the function.
10002
10003 The idea is that we want to be able to delete redundant
10004 loads from the cprestore slot in the usual case where no
10005 long branches are needed.
10006
10007 (7) If cfun->machine->must_initialize_gp_p is still false at the end
10008 of md_reorg, we decide whether the global pointer is needed for
10009 long branches. If so, we set cfun->machine->must_initialize_gp_p
10010 to true and split the ghost instructions into real instructions
10011 at that stage.
10012
10013 Note that the ghost instructions must have a zero length for three reasons:
10014
10015 - Giving the length of the underlying $gp sequence might cause
10016 us to use long branches in cases where they aren't really needed.
10017
10018 - They would perturb things like alignment calculations.
10019
10020 - More importantly, the hazard detection in md_reorg relies on
10021 empty instructions having a zero length.
10022
10023 If we find a long branch and split the ghost instructions at the
10024 end of md_reorg, the split could introduce more long branches.
10025 That isn't a problem though, because we still do the split before
10026 the final shorten_branches pass.
10027
10028 This is extremely ugly, but it seems like the best compromise between
10029 correctness and efficiency. */
10030
10031 bool
10032 mips_must_initialize_gp_p (void)
10033 {
10034 return cfun->machine->must_initialize_gp_p;
10035 }
10036
10037 /* Return true if REGNO is a register that is ordinarily call-clobbered
10038 but must nevertheless be preserved by an interrupt handler. */
10039
10040 static bool
10041 mips_interrupt_extra_call_saved_reg_p (unsigned int regno)
10042 {
10043 if ((ISA_HAS_HILO || TARGET_DSP)
10044 && MD_REG_P (regno))
10045 return true;
10046
10047 if (TARGET_DSP && DSP_ACC_REG_P (regno))
10048 return true;
10049
10050 if (GP_REG_P (regno) && !cfun->machine->use_shadow_register_set_p)
10051 {
10052 /* $0 is hard-wired. */
10053 if (regno == GP_REG_FIRST)
10054 return false;
10055
10056 /* The interrupt handler can treat kernel registers as
10057 scratch registers. */
10058 if (KERNEL_REG_P (regno))
10059 return false;
10060
10061 /* The function will return the stack pointer to its original value
10062 anyway. */
10063 if (regno == STACK_POINTER_REGNUM)
10064 return false;
10065
10066 /* Otherwise, return true for registers that aren't ordinarily
10067 call-clobbered. */
10068 return call_really_used_regs[regno];
10069 }
10070
10071 return false;
10072 }
10073
10074 /* Return true if the current function should treat register REGNO
10075 as call-saved. */
10076
10077 static bool
10078 mips_cfun_call_saved_reg_p (unsigned int regno)
10079 {
10080 /* If the user makes an ordinarily-call-saved register global,
10081 that register is no longer call-saved. */
10082 if (global_regs[regno])
10083 return false;
10084
10085 /* Interrupt handlers need to save extra registers. */
10086 if (cfun->machine->interrupt_handler_p
10087 && mips_interrupt_extra_call_saved_reg_p (regno))
10088 return true;
10089
10090 /* call_insns preserve $28 unless they explicitly say otherwise,
10091 so call_really_used_regs[] treats $28 as call-saved. However,
10092 we want the ABI property rather than the default call_insn
10093 property here. */
10094 return (regno == GLOBAL_POINTER_REGNUM
10095 ? TARGET_CALL_SAVED_GP
10096 : !call_really_used_regs[regno]);
10097 }
10098
10099 /* Return true if the function body might clobber register REGNO.
10100 We know that REGNO is call-saved. */
10101
10102 static bool
10103 mips_cfun_might_clobber_call_saved_reg_p (unsigned int regno)
10104 {
10105 /* Some functions should be treated as clobbering all call-saved
10106 registers. */
10107 if (crtl->saves_all_registers)
10108 return true;
10109
10110 /* DF handles cases where a register is explicitly referenced in
10111 the rtl. Incoming values are passed in call-clobbered registers,
10112 so we can assume that any live call-saved register is set within
10113 the function. */
10114 if (df_regs_ever_live_p (regno))
10115 return true;
10116
10117 /* Check for registers that are clobbered by FUNCTION_PROFILER.
10118 These clobbers are not explicit in the rtl. */
10119 if (crtl->profile && MIPS_SAVE_REG_FOR_PROFILING_P (regno))
10120 return true;
10121
10122 /* If we're using a call-saved global pointer, the function's
10123 prologue will need to set it up. */
10124 if (cfun->machine->global_pointer == regno)
10125 return true;
10126
10127 /* The function's prologue will need to set the frame pointer if
10128 frame_pointer_needed. */
10129 if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
10130 return true;
10131
10132 /* If a MIPS16 function returns a value in FPRs, its epilogue
10133 will need to call an external libgcc routine. This yet-to-be
10134 generated call_insn will clobber $31. */
10135 if (regno == RETURN_ADDR_REGNUM && mips16_cfun_returns_in_fpr_p ())
10136 return true;
10137
10138 /* If REGNO is ordinarily call-clobbered, we must assume that any
10139 called function could modify it. */
10140 if (cfun->machine->interrupt_handler_p
10141 && !crtl->is_leaf
10142 && mips_interrupt_extra_call_saved_reg_p (regno))
10143 return true;
10144
10145 return false;
10146 }
10147
10148 /* Return true if the current function must save register REGNO. */
10149
10150 static bool
10151 mips_save_reg_p (unsigned int regno)
10152 {
10153 if (mips_cfun_call_saved_reg_p (regno))
10154 {
10155 if (mips_cfun_might_clobber_call_saved_reg_p (regno))
10156 return true;
10157
10158 /* Save both registers in an FPR pair if either one is used. This is
10159 needed for the case when MIN_FPRS_PER_FMT == 1, which allows the odd
10160 register to be used without the even register. */
10161 if (FP_REG_P (regno)
10162 && MAX_FPRS_PER_FMT == 2
10163 && mips_cfun_might_clobber_call_saved_reg_p (regno + 1))
10164 return true;
10165 }
10166
10167 /* We need to save the incoming return address if __builtin_eh_return
10168 is being used to set a different return address. */
10169 if (regno == RETURN_ADDR_REGNUM && crtl->calls_eh_return)
10170 return true;
10171
10172 return false;
10173 }
10174
10175 /* Populate the current function's mips_frame_info structure.
10176
10177 MIPS stack frames look like:
10178
10179 +-------------------------------+
10180 | |
10181 | incoming stack arguments |
10182 | |
10183 +-------------------------------+
10184 | |
10185 | caller-allocated save area |
10186 A | for register arguments |
10187 | |
10188 +-------------------------------+ <-- incoming stack pointer
10189 | |
10190 | callee-allocated save area |
10191 B | for arguments that are |
10192 | split between registers and |
10193 | the stack |
10194 | |
10195 +-------------------------------+ <-- arg_pointer_rtx
10196 | |
10197 C | callee-allocated save area |
10198 | for register varargs |
10199 | |
10200 +-------------------------------+ <-- frame_pointer_rtx
10201 | | + cop0_sp_offset
10202 | COP0 reg save area | + UNITS_PER_WORD
10203 | |
10204 +-------------------------------+ <-- frame_pointer_rtx + acc_sp_offset
10205 | | + UNITS_PER_WORD
10206 | accumulator save area |
10207 | |
10208 +-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset
10209 | | + UNITS_PER_HWFPVALUE
10210 | FPR save area |
10211 | |
10212 +-------------------------------+ <-- stack_pointer_rtx + gp_sp_offset
10213 | | + UNITS_PER_WORD
10214 | GPR save area |
10215 | |
10216 +-------------------------------+ <-- frame_pointer_rtx with
10217 | | \ -fstack-protector
10218 | local variables | | var_size
10219 | | /
10220 +-------------------------------+
10221 | | \
10222 | $gp save area | | cprestore_size
10223 | | /
10224 P +-------------------------------+ <-- hard_frame_pointer_rtx for
10225 | | \ MIPS16 code
10226 | outgoing stack arguments | |
10227 | | |
10228 +-------------------------------+ | args_size
10229 | | |
10230 | caller-allocated save area | |
10231 | for register arguments | |
10232 | | /
10233 +-------------------------------+ <-- stack_pointer_rtx
10234 frame_pointer_rtx without
10235 -fstack-protector
10236 hard_frame_pointer_rtx for
10237 non-MIPS16 code.
10238
10239 At least two of A, B and C will be empty.
10240
10241 Dynamic stack allocations such as alloca insert data at point P.
10242 They decrease stack_pointer_rtx but leave frame_pointer_rtx and
10243 hard_frame_pointer_rtx unchanged. */
10244
10245 static void
10246 mips_compute_frame_info (void)
10247 {
10248 struct mips_frame_info *frame;
10249 HOST_WIDE_INT offset, size;
10250 unsigned int regno, i;
10251
10252 /* Set this function's interrupt properties. */
10253 if (mips_interrupt_type_p (TREE_TYPE (current_function_decl)))
10254 {
10255 if (mips_isa_rev < 2)
10256 error ("the %<interrupt%> attribute requires a MIPS32r2 processor or greater");
10257 else if (TARGET_HARD_FLOAT)
10258 error ("the %<interrupt%> attribute requires %<-msoft-float%>");
10259 else if (TARGET_MIPS16)
10260 error ("interrupt handlers cannot be MIPS16 functions");
10261 else
10262 {
10263 cfun->machine->interrupt_handler_p = true;
10264 cfun->machine->use_shadow_register_set_p =
10265 mips_use_shadow_register_set_p (TREE_TYPE (current_function_decl));
10266 cfun->machine->keep_interrupts_masked_p =
10267 mips_keep_interrupts_masked_p (TREE_TYPE (current_function_decl));
10268 cfun->machine->use_debug_exception_return_p =
10269 mips_use_debug_exception_return_p (TREE_TYPE
10270 (current_function_decl));
10271 }
10272 }
10273
10274 frame = &cfun->machine->frame;
10275 memset (frame, 0, sizeof (*frame));
10276 size = get_frame_size ();
10277
10278 cfun->machine->global_pointer = mips_global_pointer ();
10279
10280 /* The first two blocks contain the outgoing argument area and the $gp save
10281 slot. This area isn't needed in leaf functions, but if the
10282 target-independent frame size is nonzero, we have already committed to
10283 allocating these in STARTING_FRAME_OFFSET for !FRAME_GROWS_DOWNWARD. */
10284 if ((size == 0 || FRAME_GROWS_DOWNWARD) && crtl->is_leaf)
10285 {
10286 /* The MIPS 3.0 linker does not like functions that dynamically
10287 allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
10288 looks like we are trying to create a second frame pointer to the
10289 function, so allocate some stack space to make it happy. */
10290 if (cfun->calls_alloca)
10291 frame->args_size = REG_PARM_STACK_SPACE (cfun->decl);
10292 else
10293 frame->args_size = 0;
10294 frame->cprestore_size = 0;
10295 }
10296 else
10297 {
10298 frame->args_size = crtl->outgoing_args_size;
10299 frame->cprestore_size = MIPS_GP_SAVE_AREA_SIZE;
10300 }
10301 offset = frame->args_size + frame->cprestore_size;
10302
10303 /* Move above the local variables. */
10304 frame->var_size = MIPS_STACK_ALIGN (size);
10305 offset += frame->var_size;
10306
10307 /* Find out which GPRs we need to save. */
10308 for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
10309 if (mips_save_reg_p (regno))
10310 {
10311 frame->num_gp++;
10312 frame->mask |= 1 << (regno - GP_REG_FIRST);
10313 }
10314
10315 /* If this function calls eh_return, we must also save and restore the
10316 EH data registers. */
10317 if (crtl->calls_eh_return)
10318 for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; i++)
10319 {
10320 frame->num_gp++;
10321 frame->mask |= 1 << (EH_RETURN_DATA_REGNO (i) - GP_REG_FIRST);
10322 }
10323
10324 /* The MIPS16e SAVE and RESTORE instructions have two ranges of registers:
10325 $a3-$a0 and $s2-$s8. If we save one register in the range, we must
10326 save all later registers too. */
10327 if (GENERATE_MIPS16E_SAVE_RESTORE)
10328 {
10329 mips16e_mask_registers (&frame->mask, mips16e_s2_s8_regs,
10330 ARRAY_SIZE (mips16e_s2_s8_regs), &frame->num_gp);
10331 mips16e_mask_registers (&frame->mask, mips16e_a0_a3_regs,
10332 ARRAY_SIZE (mips16e_a0_a3_regs), &frame->num_gp);
10333 }
10334
10335 /* Move above the GPR save area. */
10336 if (frame->num_gp > 0)
10337 {
10338 offset += MIPS_STACK_ALIGN (frame->num_gp * UNITS_PER_WORD);
10339 frame->gp_sp_offset = offset - UNITS_PER_WORD;
10340 }
10341
10342 /* Find out which FPRs we need to save. This loop must iterate over
10343 the same space as its companion in mips_for_each_saved_gpr_and_fpr. */
10344 if (TARGET_HARD_FLOAT)
10345 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno += MAX_FPRS_PER_FMT)
10346 if (mips_save_reg_p (regno))
10347 {
10348 frame->num_fp += MAX_FPRS_PER_FMT;
10349 frame->fmask |= ~(~0 << MAX_FPRS_PER_FMT) << (regno - FP_REG_FIRST);
10350 }
10351
10352 /* Move above the FPR save area. */
10353 if (frame->num_fp > 0)
10354 {
10355 offset += MIPS_STACK_ALIGN (frame->num_fp * UNITS_PER_FPREG);
10356 frame->fp_sp_offset = offset - UNITS_PER_HWFPVALUE;
10357 }
10358
10359 /* Add in space for the interrupt context information. */
10360 if (cfun->machine->interrupt_handler_p)
10361 {
10362 /* Check HI/LO. */
10363 if (mips_save_reg_p (LO_REGNUM) || mips_save_reg_p (HI_REGNUM))
10364 {
10365 frame->num_acc++;
10366 frame->acc_mask |= (1 << 0);
10367 }
10368
10369 /* Check accumulators 1, 2, 3. */
10370 for (i = DSP_ACC_REG_FIRST; i <= DSP_ACC_REG_LAST; i += 2)
10371 if (mips_save_reg_p (i) || mips_save_reg_p (i + 1))
10372 {
10373 frame->num_acc++;
10374 frame->acc_mask |= 1 << (((i - DSP_ACC_REG_FIRST) / 2) + 1);
10375 }
10376
10377 /* All interrupt context functions need space to preserve STATUS. */
10378 frame->num_cop0_regs++;
10379
10380 /* If we don't keep interrupts masked, we need to save EPC. */
10381 if (!cfun->machine->keep_interrupts_masked_p)
10382 frame->num_cop0_regs++;
10383 }
10384
10385 /* Move above the accumulator save area. */
10386 if (frame->num_acc > 0)
10387 {
10388 /* Each accumulator needs 2 words. */
10389 offset += frame->num_acc * 2 * UNITS_PER_WORD;
10390 frame->acc_sp_offset = offset - UNITS_PER_WORD;
10391 }
10392
10393 /* Move above the COP0 register save area. */
10394 if (frame->num_cop0_regs > 0)
10395 {
10396 offset += frame->num_cop0_regs * UNITS_PER_WORD;
10397 frame->cop0_sp_offset = offset - UNITS_PER_WORD;
10398 }
10399
10400 /* Move above the callee-allocated varargs save area. */
10401 offset += MIPS_STACK_ALIGN (cfun->machine->varargs_size);
10402 frame->arg_pointer_offset = offset;
10403
10404 /* Move above the callee-allocated area for pretend stack arguments. */
10405 offset += crtl->args.pretend_args_size;
10406 frame->total_size = offset;
10407
10408 /* Work out the offsets of the save areas from the top of the frame. */
10409 if (frame->gp_sp_offset > 0)
10410 frame->gp_save_offset = frame->gp_sp_offset - offset;
10411 if (frame->fp_sp_offset > 0)
10412 frame->fp_save_offset = frame->fp_sp_offset - offset;
10413 if (frame->acc_sp_offset > 0)
10414 frame->acc_save_offset = frame->acc_sp_offset - offset;
10415 if (frame->num_cop0_regs > 0)
10416 frame->cop0_save_offset = frame->cop0_sp_offset - offset;
10417
10418 /* MIPS16 code offsets the frame pointer by the size of the outgoing
10419 arguments. This tends to increase the chances of using unextended
10420 instructions for local variables and incoming arguments. */
10421 if (TARGET_MIPS16)
10422 frame->hard_frame_pointer_offset = frame->args_size;
10423 }
10424
10425 /* Return the style of GP load sequence that is being used for the
10426 current function. */
10427
10428 enum mips_loadgp_style
10429 mips_current_loadgp_style (void)
10430 {
10431 if (!TARGET_USE_GOT || cfun->machine->global_pointer == INVALID_REGNUM)
10432 return LOADGP_NONE;
10433
10434 if (TARGET_RTP_PIC)
10435 return LOADGP_RTP;
10436
10437 if (TARGET_ABSOLUTE_ABICALLS)
10438 return LOADGP_ABSOLUTE;
10439
10440 return TARGET_NEWABI ? LOADGP_NEWABI : LOADGP_OLDABI;
10441 }
10442
10443 /* Implement TARGET_FRAME_POINTER_REQUIRED. */
10444
10445 static bool
10446 mips_frame_pointer_required (void)
10447 {
10448 /* If the function contains dynamic stack allocations, we need to
10449 use the frame pointer to access the static parts of the frame. */
10450 if (cfun->calls_alloca)
10451 return true;
10452
10453 /* In MIPS16 mode, we need a frame pointer for a large frame; otherwise,
10454 reload may be unable to compute the address of a local variable,
10455 since there is no way to add a large constant to the stack pointer
10456 without using a second temporary register. */
10457 if (TARGET_MIPS16)
10458 {
10459 mips_compute_frame_info ();
10460 if (!SMALL_OPERAND (cfun->machine->frame.total_size))
10461 return true;
10462 }
10463
10464 return false;
10465 }
10466
10467 /* Make sure that we're not trying to eliminate to the wrong hard frame
10468 pointer. */
10469
10470 static bool
10471 mips_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
10472 {
10473 return (to == HARD_FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM);
10474 }
10475
10476 /* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer
10477 or argument pointer. TO is either the stack pointer or hard frame
10478 pointer. */
10479
10480 HOST_WIDE_INT
10481 mips_initial_elimination_offset (int from, int to)
10482 {
10483 HOST_WIDE_INT offset;
10484
10485 mips_compute_frame_info ();
10486
10487 /* Set OFFSET to the offset from the end-of-prologue stack pointer. */
10488 switch (from)
10489 {
10490 case FRAME_POINTER_REGNUM:
10491 if (FRAME_GROWS_DOWNWARD)
10492 offset = (cfun->machine->frame.args_size
10493 + cfun->machine->frame.cprestore_size
10494 + cfun->machine->frame.var_size);
10495 else
10496 offset = 0;
10497 break;
10498
10499 case ARG_POINTER_REGNUM:
10500 offset = cfun->machine->frame.arg_pointer_offset;
10501 break;
10502
10503 default:
10504 gcc_unreachable ();
10505 }
10506
10507 if (to == HARD_FRAME_POINTER_REGNUM)
10508 offset -= cfun->machine->frame.hard_frame_pointer_offset;
10509
10510 return offset;
10511 }
10512 \f
10513 /* Implement TARGET_EXTRA_LIVE_ON_ENTRY. */
10514
10515 static void
10516 mips_extra_live_on_entry (bitmap regs)
10517 {
10518 if (TARGET_USE_GOT)
10519 {
10520 /* PIC_FUNCTION_ADDR_REGNUM is live if we need it to set up
10521 the global pointer. */
10522 if (!TARGET_ABSOLUTE_ABICALLS)
10523 bitmap_set_bit (regs, PIC_FUNCTION_ADDR_REGNUM);
10524
10525 /* The prologue may set MIPS16_PIC_TEMP_REGNUM to the value of
10526 the global pointer. */
10527 if (TARGET_MIPS16)
10528 bitmap_set_bit (regs, MIPS16_PIC_TEMP_REGNUM);
10529
10530 /* See the comment above load_call<mode> for details. */
10531 bitmap_set_bit (regs, GOT_VERSION_REGNUM);
10532 }
10533 }
10534
10535 /* Implement RETURN_ADDR_RTX. We do not support moving back to a
10536 previous frame. */
10537
10538 rtx
10539 mips_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
10540 {
10541 if (count != 0)
10542 return const0_rtx;
10543
10544 return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);
10545 }
10546
10547 /* Emit code to change the current function's return address to
10548 ADDRESS. SCRATCH is available as a scratch register, if needed.
10549 ADDRESS and SCRATCH are both word-mode GPRs. */
10550
10551 void
10552 mips_set_return_address (rtx address, rtx scratch)
10553 {
10554 rtx slot_address;
10555
10556 gcc_assert (BITSET_P (cfun->machine->frame.mask, RETURN_ADDR_REGNUM));
10557 slot_address = mips_add_offset (scratch, stack_pointer_rtx,
10558 cfun->machine->frame.gp_sp_offset);
10559 mips_emit_move (gen_frame_mem (GET_MODE (address), slot_address), address);
10560 }
10561
10562 /* Return true if the current function has a cprestore slot. */
10563
10564 bool
10565 mips_cfun_has_cprestore_slot_p (void)
10566 {
10567 return (cfun->machine->global_pointer != INVALID_REGNUM
10568 && cfun->machine->frame.cprestore_size > 0);
10569 }
10570
10571 /* Fill *BASE and *OFFSET such that *BASE + *OFFSET refers to the
10572 cprestore slot. LOAD_P is true if the caller wants to load from
10573 the cprestore slot; it is false if the caller wants to store to
10574 the slot. */
10575
10576 static void
10577 mips_get_cprestore_base_and_offset (rtx *base, HOST_WIDE_INT *offset,
10578 bool load_p)
10579 {
10580 const struct mips_frame_info *frame;
10581
10582 frame = &cfun->machine->frame;
10583 /* .cprestore always uses the stack pointer instead of the frame pointer.
10584 We have a free choice for direct stores for non-MIPS16 functions,
10585 and for MIPS16 functions whose cprestore slot is in range of the
10586 stack pointer. Using the stack pointer would sometimes give more
10587 (early) scheduling freedom, but using the frame pointer would
10588 sometimes give more (late) scheduling freedom. It's hard to
10589 predict which applies to a given function, so let's keep things
10590 simple.
10591
10592 Loads must always use the frame pointer in functions that call
10593 alloca, and there's little benefit to using the stack pointer
10594 otherwise. */
10595 if (frame_pointer_needed && !(TARGET_CPRESTORE_DIRECTIVE && !load_p))
10596 {
10597 *base = hard_frame_pointer_rtx;
10598 *offset = frame->args_size - frame->hard_frame_pointer_offset;
10599 }
10600 else
10601 {
10602 *base = stack_pointer_rtx;
10603 *offset = frame->args_size;
10604 }
10605 }
10606
10607 /* Return true if X is the load or store address of the cprestore slot;
10608 LOAD_P says which. */
10609
10610 bool
10611 mips_cprestore_address_p (rtx x, bool load_p)
10612 {
10613 rtx given_base, required_base;
10614 HOST_WIDE_INT given_offset, required_offset;
10615
10616 mips_split_plus (x, &given_base, &given_offset);
10617 mips_get_cprestore_base_and_offset (&required_base, &required_offset, load_p);
10618 return given_base == required_base && given_offset == required_offset;
10619 }
10620
10621 /* Return a MEM rtx for the cprestore slot. LOAD_P is true if we are
10622 going to load from it, false if we are going to store to it.
10623 Use TEMP as a temporary register if need be. */
10624
10625 static rtx
10626 mips_cprestore_slot (rtx temp, bool load_p)
10627 {
10628 rtx base;
10629 HOST_WIDE_INT offset;
10630
10631 mips_get_cprestore_base_and_offset (&base, &offset, load_p);
10632 return gen_frame_mem (Pmode, mips_add_offset (temp, base, offset));
10633 }
10634
10635 /* Emit instructions to save global pointer value GP into cprestore
10636 slot MEM. OFFSET is the offset that MEM applies to the base register.
10637
10638 MEM may not be a legitimate address. If it isn't, TEMP is a
10639 temporary register that can be used, otherwise it is a SCRATCH. */
10640
10641 void
10642 mips_save_gp_to_cprestore_slot (rtx mem, rtx offset, rtx gp, rtx temp)
10643 {
10644 if (TARGET_CPRESTORE_DIRECTIVE)
10645 {
10646 gcc_assert (gp == pic_offset_table_rtx);
10647 emit_insn (PMODE_INSN (gen_cprestore, (mem, offset)));
10648 }
10649 else
10650 mips_emit_move (mips_cprestore_slot (temp, false), gp);
10651 }
10652
10653 /* Restore $gp from its save slot, using TEMP as a temporary base register
10654 if need be. This function is for o32 and o64 abicalls only.
10655
10656 See mips_must_initialize_gp_p for details about how we manage the
10657 global pointer. */
10658
10659 void
10660 mips_restore_gp_from_cprestore_slot (rtx temp)
10661 {
10662 gcc_assert (TARGET_ABICALLS && TARGET_OLDABI && epilogue_completed);
10663
10664 if (!cfun->machine->must_restore_gp_when_clobbered_p)
10665 {
10666 emit_note (NOTE_INSN_DELETED);
10667 return;
10668 }
10669
10670 if (TARGET_MIPS16)
10671 {
10672 mips_emit_move (temp, mips_cprestore_slot (temp, true));
10673 mips_emit_move (pic_offset_table_rtx, temp);
10674 }
10675 else
10676 mips_emit_move (pic_offset_table_rtx, mips_cprestore_slot (temp, true));
10677 if (!TARGET_EXPLICIT_RELOCS)
10678 emit_insn (gen_blockage ());
10679 }
10680 \f
10681 /* A function to save or store a register. The first argument is the
10682 register and the second is the stack slot. */
10683 typedef void (*mips_save_restore_fn) (rtx, rtx);
10684
10685 /* Use FN to save or restore register REGNO. MODE is the register's
10686 mode and OFFSET is the offset of its save slot from the current
10687 stack pointer. */
10688
10689 static void
10690 mips_save_restore_reg (machine_mode mode, int regno,
10691 HOST_WIDE_INT offset, mips_save_restore_fn fn)
10692 {
10693 rtx mem;
10694
10695 mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx,
10696 offset));
10697 fn (gen_rtx_REG (mode, regno), mem);
10698 }
10699
10700 /* Call FN for each accumlator that is saved by the current function.
10701 SP_OFFSET is the offset of the current stack pointer from the start
10702 of the frame. */
10703
10704 static void
10705 mips_for_each_saved_acc (HOST_WIDE_INT sp_offset, mips_save_restore_fn fn)
10706 {
10707 HOST_WIDE_INT offset;
10708 int regno;
10709
10710 offset = cfun->machine->frame.acc_sp_offset - sp_offset;
10711 if (BITSET_P (cfun->machine->frame.acc_mask, 0))
10712 {
10713 mips_save_restore_reg (word_mode, LO_REGNUM, offset, fn);
10714 offset -= UNITS_PER_WORD;
10715 mips_save_restore_reg (word_mode, HI_REGNUM, offset, fn);
10716 offset -= UNITS_PER_WORD;
10717 }
10718
10719 for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno++)
10720 if (BITSET_P (cfun->machine->frame.acc_mask,
10721 ((regno - DSP_ACC_REG_FIRST) / 2) + 1))
10722 {
10723 mips_save_restore_reg (word_mode, regno, offset, fn);
10724 offset -= UNITS_PER_WORD;
10725 }
10726 }
10727
10728 /* Save register REG to MEM. Make the instruction frame-related. */
10729
10730 static void
10731 mips_save_reg (rtx reg, rtx mem)
10732 {
10733 if (GET_MODE (reg) == DFmode
10734 && (!TARGET_FLOAT64
10735 || mips_abi == ABI_32))
10736 {
10737 rtx x1, x2;
10738
10739 mips_emit_move_or_split (mem, reg, SPLIT_IF_NECESSARY);
10740
10741 x1 = mips_frame_set (mips_subword (mem, false),
10742 mips_subword (reg, false));
10743 x2 = mips_frame_set (mips_subword (mem, true),
10744 mips_subword (reg, true));
10745 mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x1, x2)));
10746 }
10747 else
10748 mips_emit_save_slot_move (mem, reg, MIPS_PROLOGUE_TEMP (GET_MODE (reg)));
10749 }
10750
10751 /* Capture the register combinations that are allowed in a SWM or LWM
10752 instruction. The entries are ordered by number of registers set in
10753 the mask. We also ignore the single register encodings because a
10754 normal SW/LW is preferred. */
10755
10756 static const unsigned int umips_swm_mask[17] = {
10757 0xc0ff0000, 0x80ff0000, 0x40ff0000, 0x807f0000,
10758 0x00ff0000, 0x803f0000, 0x007f0000, 0x801f0000,
10759 0x003f0000, 0x800f0000, 0x001f0000, 0x80070000,
10760 0x000f0000, 0x80030000, 0x00070000, 0x80010000,
10761 0x00030000
10762 };
10763
10764 static const unsigned int umips_swm_encoding[17] = {
10765 25, 24, 9, 23, 8, 22, 7, 21, 6, 20, 5, 19, 4, 18, 3, 17, 2
10766 };
10767
10768 /* Try to use a microMIPS LWM or SWM instruction to save or restore
10769 as many GPRs in *MASK as possible. *OFFSET is the offset from the
10770 stack pointer of the topmost save slot.
10771
10772 Remove from *MASK all registers that were handled using LWM and SWM.
10773 Update *OFFSET so that it points to the first unused save slot. */
10774
10775 static bool
10776 umips_build_save_restore (mips_save_restore_fn fn,
10777 unsigned *mask, HOST_WIDE_INT *offset)
10778 {
10779 int nregs;
10780 unsigned int i, j;
10781 rtx pattern, set, reg, mem;
10782 HOST_WIDE_INT this_offset;
10783 rtx this_base;
10784
10785 /* Try matching $16 to $31 (s0 to ra). */
10786 for (i = 0; i < ARRAY_SIZE (umips_swm_mask); i++)
10787 if ((*mask & 0xffff0000) == umips_swm_mask[i])
10788 break;
10789
10790 if (i == ARRAY_SIZE (umips_swm_mask))
10791 return false;
10792
10793 /* Get the offset of the lowest save slot. */
10794 nregs = (umips_swm_encoding[i] & 0xf) + (umips_swm_encoding[i] >> 4);
10795 this_offset = *offset - UNITS_PER_WORD * (nregs - 1);
10796
10797 /* LWM/SWM can only support offsets from -2048 to 2047. */
10798 if (!UMIPS_12BIT_OFFSET_P (this_offset))
10799 return false;
10800
10801 /* Create the final PARALLEL. */
10802 pattern = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs));
10803 this_base = stack_pointer_rtx;
10804
10805 /* For registers $16-$23 and $30. */
10806 for (j = 0; j < (umips_swm_encoding[i] & 0xf); j++)
10807 {
10808 HOST_WIDE_INT offset = this_offset + j * UNITS_PER_WORD;
10809 mem = gen_frame_mem (SImode, plus_constant (Pmode, this_base, offset));
10810 unsigned int regno = (j != 8) ? 16 + j : 30;
10811 *mask &= ~(1 << regno);
10812 reg = gen_rtx_REG (SImode, regno);
10813 if (fn == mips_save_reg)
10814 set = mips_frame_set (mem, reg);
10815 else
10816 {
10817 set = gen_rtx_SET (reg, mem);
10818 mips_add_cfa_restore (reg);
10819 }
10820 XVECEXP (pattern, 0, j) = set;
10821 }
10822
10823 /* For register $31. */
10824 if (umips_swm_encoding[i] >> 4)
10825 {
10826 HOST_WIDE_INT offset = this_offset + j * UNITS_PER_WORD;
10827 *mask &= ~(1 << 31);
10828 mem = gen_frame_mem (SImode, plus_constant (Pmode, this_base, offset));
10829 reg = gen_rtx_REG (SImode, 31);
10830 if (fn == mips_save_reg)
10831 set = mips_frame_set (mem, reg);
10832 else
10833 {
10834 set = gen_rtx_SET (reg, mem);
10835 mips_add_cfa_restore (reg);
10836 }
10837 XVECEXP (pattern, 0, j) = set;
10838 }
10839
10840 pattern = emit_insn (pattern);
10841 if (fn == mips_save_reg)
10842 RTX_FRAME_RELATED_P (pattern) = 1;
10843
10844 /* Adjust the last offset. */
10845 *offset -= UNITS_PER_WORD * nregs;
10846
10847 return true;
10848 }
10849
10850 /* Call FN for each register that is saved by the current function.
10851 SP_OFFSET is the offset of the current stack pointer from the start
10852 of the frame. */
10853
10854 static void
10855 mips_for_each_saved_gpr_and_fpr (HOST_WIDE_INT sp_offset,
10856 mips_save_restore_fn fn)
10857 {
10858 machine_mode fpr_mode;
10859 int regno;
10860 const struct mips_frame_info *frame = &cfun->machine->frame;
10861 HOST_WIDE_INT offset;
10862 unsigned int mask;
10863
10864 /* Save registers starting from high to low. The debuggers prefer at least
10865 the return register be stored at func+4, and also it allows us not to
10866 need a nop in the epilogue if at least one register is reloaded in
10867 addition to return address. */
10868 offset = frame->gp_sp_offset - sp_offset;
10869 mask = frame->mask;
10870
10871 if (TARGET_MICROMIPS)
10872 umips_build_save_restore (fn, &mask, &offset);
10873
10874 for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
10875 if (BITSET_P (mask, regno - GP_REG_FIRST))
10876 {
10877 /* Record the ra offset for use by mips_function_profiler. */
10878 if (regno == RETURN_ADDR_REGNUM)
10879 cfun->machine->frame.ra_fp_offset = offset + sp_offset;
10880 mips_save_restore_reg (word_mode, regno, offset, fn);
10881 offset -= UNITS_PER_WORD;
10882 }
10883
10884 /* This loop must iterate over the same space as its companion in
10885 mips_compute_frame_info. */
10886 offset = cfun->machine->frame.fp_sp_offset - sp_offset;
10887 fpr_mode = (TARGET_SINGLE_FLOAT ? SFmode : DFmode);
10888 for (regno = FP_REG_LAST - MAX_FPRS_PER_FMT + 1;
10889 regno >= FP_REG_FIRST;
10890 regno -= MAX_FPRS_PER_FMT)
10891 if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
10892 {
10893 if (!TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT
10894 && (fixed_regs[regno] || fixed_regs[regno + 1]))
10895 {
10896 if (fixed_regs[regno])
10897 mips_save_restore_reg (SFmode, regno + 1, offset, fn);
10898 else
10899 mips_save_restore_reg (SFmode, regno, offset, fn);
10900 }
10901 else
10902 mips_save_restore_reg (fpr_mode, regno, offset, fn);
10903 offset -= GET_MODE_SIZE (fpr_mode);
10904 }
10905 }
10906
10907 /* Return true if a move between register REGNO and its save slot (MEM)
10908 can be done in a single move. LOAD_P is true if we are loading
10909 from the slot, false if we are storing to it. */
10910
10911 static bool
10912 mips_direct_save_slot_move_p (unsigned int regno, rtx mem, bool load_p)
10913 {
10914 /* There is a specific MIPS16 instruction for saving $31 to the stack. */
10915 if (TARGET_MIPS16 && !load_p && regno == RETURN_ADDR_REGNUM)
10916 return false;
10917
10918 return mips_secondary_reload_class (REGNO_REG_CLASS (regno),
10919 GET_MODE (mem), mem, load_p) == NO_REGS;
10920 }
10921
10922 /* Emit a move from SRC to DEST, given that one of them is a register
10923 save slot and that the other is a register. TEMP is a temporary
10924 GPR of the same mode that is available if need be. */
10925
10926 void
10927 mips_emit_save_slot_move (rtx dest, rtx src, rtx temp)
10928 {
10929 unsigned int regno;
10930 rtx mem;
10931
10932 if (REG_P (src))
10933 {
10934 regno = REGNO (src);
10935 mem = dest;
10936 }
10937 else
10938 {
10939 regno = REGNO (dest);
10940 mem = src;
10941 }
10942
10943 if (regno == cfun->machine->global_pointer && !mips_must_initialize_gp_p ())
10944 {
10945 /* We don't yet know whether we'll need this instruction or not.
10946 Postpone the decision by emitting a ghost move. This move
10947 is specifically not frame-related; only the split version is. */
10948 if (TARGET_64BIT)
10949 emit_insn (gen_move_gpdi (dest, src));
10950 else
10951 emit_insn (gen_move_gpsi (dest, src));
10952 return;
10953 }
10954
10955 if (regno == HI_REGNUM)
10956 {
10957 if (REG_P (dest))
10958 {
10959 mips_emit_move (temp, src);
10960 if (TARGET_64BIT)
10961 emit_insn (gen_mthisi_di (gen_rtx_REG (TImode, MD_REG_FIRST),
10962 temp, gen_rtx_REG (DImode, LO_REGNUM)));
10963 else
10964 emit_insn (gen_mthisi_di (gen_rtx_REG (DImode, MD_REG_FIRST),
10965 temp, gen_rtx_REG (SImode, LO_REGNUM)));
10966 }
10967 else
10968 {
10969 if (TARGET_64BIT)
10970 emit_insn (gen_mfhidi_ti (temp,
10971 gen_rtx_REG (TImode, MD_REG_FIRST)));
10972 else
10973 emit_insn (gen_mfhisi_di (temp,
10974 gen_rtx_REG (DImode, MD_REG_FIRST)));
10975 mips_emit_move (dest, temp);
10976 }
10977 }
10978 else if (mips_direct_save_slot_move_p (regno, mem, mem == src))
10979 mips_emit_move (dest, src);
10980 else
10981 {
10982 gcc_assert (!reg_overlap_mentioned_p (dest, temp));
10983 mips_emit_move (temp, src);
10984 mips_emit_move (dest, temp);
10985 }
10986 if (MEM_P (dest))
10987 mips_set_frame_expr (mips_frame_set (dest, src));
10988 }
10989 \f
10990 /* If we're generating n32 or n64 abicalls, and the current function
10991 does not use $28 as its global pointer, emit a cplocal directive.
10992 Use pic_offset_table_rtx as the argument to the directive. */
10993
10994 static void
10995 mips_output_cplocal (void)
10996 {
10997 if (!TARGET_EXPLICIT_RELOCS
10998 && mips_must_initialize_gp_p ()
10999 && cfun->machine->global_pointer != GLOBAL_POINTER_REGNUM)
11000 output_asm_insn (".cplocal %+", 0);
11001 }
11002
11003 /* Implement TARGET_OUTPUT_FUNCTION_PROLOGUE. */
11004
11005 static void
11006 mips_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
11007 {
11008 const char *fnname;
11009
11010 /* In MIPS16 mode, we may need to generate a non-MIPS16 stub to handle
11011 floating-point arguments. */
11012 if (TARGET_MIPS16
11013 && TARGET_HARD_FLOAT_ABI
11014 && crtl->args.info.fp_code != 0)
11015 mips16_build_function_stub ();
11016
11017 /* Get the function name the same way that toplev.c does before calling
11018 assemble_start_function. This is needed so that the name used here
11019 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
11020 fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
11021 mips_start_function_definition (fnname, TARGET_MIPS16);
11022
11023 /* Output MIPS-specific frame information. */
11024 if (!flag_inhibit_size_directive)
11025 {
11026 const struct mips_frame_info *frame;
11027
11028 frame = &cfun->machine->frame;
11029
11030 /* .frame FRAMEREG, FRAMESIZE, RETREG. */
11031 fprintf (file,
11032 "\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s\t\t"
11033 "# vars= " HOST_WIDE_INT_PRINT_DEC
11034 ", regs= %d/%d"
11035 ", args= " HOST_WIDE_INT_PRINT_DEC
11036 ", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
11037 reg_names[frame_pointer_needed
11038 ? HARD_FRAME_POINTER_REGNUM
11039 : STACK_POINTER_REGNUM],
11040 (frame_pointer_needed
11041 ? frame->total_size - frame->hard_frame_pointer_offset
11042 : frame->total_size),
11043 reg_names[RETURN_ADDR_REGNUM],
11044 frame->var_size,
11045 frame->num_gp, frame->num_fp,
11046 frame->args_size,
11047 frame->cprestore_size);
11048
11049 /* .mask MASK, OFFSET. */
11050 fprintf (file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
11051 frame->mask, frame->gp_save_offset);
11052
11053 /* .fmask MASK, OFFSET. */
11054 fprintf (file, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
11055 frame->fmask, frame->fp_save_offset);
11056 }
11057
11058 /* Handle the initialization of $gp for SVR4 PIC, if applicable.
11059 Also emit the ".set noreorder; .set nomacro" sequence for functions
11060 that need it. */
11061 if (mips_must_initialize_gp_p ()
11062 && mips_current_loadgp_style () == LOADGP_OLDABI)
11063 {
11064 if (TARGET_MIPS16)
11065 {
11066 /* This is a fixed-form sequence. The position of the
11067 first two instructions is important because of the
11068 way _gp_disp is defined. */
11069 output_asm_insn ("li\t$2,%%hi(_gp_disp)", 0);
11070 output_asm_insn ("addiu\t$3,$pc,%%lo(_gp_disp)", 0);
11071 output_asm_insn ("sll\t$2,16", 0);
11072 output_asm_insn ("addu\t$2,$3", 0);
11073 }
11074 else
11075 {
11076 /* .cpload must be in a .set noreorder but not a
11077 .set nomacro block. */
11078 mips_push_asm_switch (&mips_noreorder);
11079 output_asm_insn (".cpload\t%^", 0);
11080 if (!cfun->machine->all_noreorder_p)
11081 mips_pop_asm_switch (&mips_noreorder);
11082 else
11083 mips_push_asm_switch (&mips_nomacro);
11084 }
11085 }
11086 else if (cfun->machine->all_noreorder_p)
11087 {
11088 mips_push_asm_switch (&mips_noreorder);
11089 mips_push_asm_switch (&mips_nomacro);
11090 }
11091
11092 /* Tell the assembler which register we're using as the global
11093 pointer. This is needed for thunks, since they can use either
11094 explicit relocs or assembler macros. */
11095 mips_output_cplocal ();
11096 }
11097
11098 /* Implement TARGET_OUTPUT_FUNCTION_EPILOGUE. */
11099
11100 static void
11101 mips_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
11102 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
11103 {
11104 const char *fnname;
11105
11106 /* Reinstate the normal $gp. */
11107 SET_REGNO (pic_offset_table_rtx, GLOBAL_POINTER_REGNUM);
11108 mips_output_cplocal ();
11109
11110 if (cfun->machine->all_noreorder_p)
11111 {
11112 mips_pop_asm_switch (&mips_nomacro);
11113 mips_pop_asm_switch (&mips_noreorder);
11114 }
11115
11116 /* Get the function name the same way that toplev.c does before calling
11117 assemble_start_function. This is needed so that the name used here
11118 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
11119 fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
11120 mips_end_function_definition (fnname);
11121 }
11122 \f
11123 /* Emit an optimisation barrier for accesses to the current frame. */
11124
11125 static void
11126 mips_frame_barrier (void)
11127 {
11128 emit_clobber (gen_frame_mem (BLKmode, stack_pointer_rtx));
11129 }
11130
11131
11132 /* The __gnu_local_gp symbol. */
11133
11134 static GTY(()) rtx mips_gnu_local_gp;
11135
11136 /* If we're generating n32 or n64 abicalls, emit instructions
11137 to set up the global pointer. */
11138
11139 static void
11140 mips_emit_loadgp (void)
11141 {
11142 rtx addr, offset, incoming_address, base, index, pic_reg;
11143
11144 pic_reg = TARGET_MIPS16 ? MIPS16_PIC_TEMP : pic_offset_table_rtx;
11145 switch (mips_current_loadgp_style ())
11146 {
11147 case LOADGP_ABSOLUTE:
11148 if (mips_gnu_local_gp == NULL)
11149 {
11150 mips_gnu_local_gp = gen_rtx_SYMBOL_REF (Pmode, "__gnu_local_gp");
11151 SYMBOL_REF_FLAGS (mips_gnu_local_gp) |= SYMBOL_FLAG_LOCAL;
11152 }
11153 emit_insn (PMODE_INSN (gen_loadgp_absolute,
11154 (pic_reg, mips_gnu_local_gp)));
11155 break;
11156
11157 case LOADGP_OLDABI:
11158 /* Added by mips_output_function_prologue. */
11159 break;
11160
11161 case LOADGP_NEWABI:
11162 addr = XEXP (DECL_RTL (current_function_decl), 0);
11163 offset = mips_unspec_address (addr, SYMBOL_GOTOFF_LOADGP);
11164 incoming_address = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
11165 emit_insn (PMODE_INSN (gen_loadgp_newabi,
11166 (pic_reg, offset, incoming_address)));
11167 break;
11168
11169 case LOADGP_RTP:
11170 base = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_BASE));
11171 index = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_INDEX));
11172 emit_insn (PMODE_INSN (gen_loadgp_rtp, (pic_reg, base, index)));
11173 break;
11174
11175 default:
11176 return;
11177 }
11178
11179 if (TARGET_MIPS16)
11180 emit_insn (PMODE_INSN (gen_copygp_mips16,
11181 (pic_offset_table_rtx, pic_reg)));
11182
11183 /* Emit a blockage if there are implicit uses of the GP register.
11184 This includes profiled functions, because FUNCTION_PROFILE uses
11185 a jal macro. */
11186 if (!TARGET_EXPLICIT_RELOCS || crtl->profile)
11187 emit_insn (gen_loadgp_blockage ());
11188 }
11189
11190 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
11191
11192 #if PROBE_INTERVAL > 32768
11193 #error Cannot use indexed addressing mode for stack probing
11194 #endif
11195
11196 /* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
11197 inclusive. These are offsets from the current stack pointer. */
11198
11199 static void
11200 mips_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size)
11201 {
11202 if (TARGET_MIPS16)
11203 sorry ("-fstack-check=specific not implemented for MIPS16");
11204
11205 /* See if we have a constant small number of probes to generate. If so,
11206 that's the easy case. */
11207 if (first + size <= 32768)
11208 {
11209 HOST_WIDE_INT i;
11210
11211 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
11212 it exceeds SIZE. If only one probe is needed, this will not
11213 generate any code. Then probe at FIRST + SIZE. */
11214 for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
11215 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
11216 -(first + i)));
11217
11218 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
11219 -(first + size)));
11220 }
11221
11222 /* Otherwise, do the same as above, but in a loop. Note that we must be
11223 extra careful with variables wrapping around because we might be at
11224 the very top (or the very bottom) of the address space and we have
11225 to be able to handle this case properly; in particular, we use an
11226 equality test for the loop condition. */
11227 else
11228 {
11229 HOST_WIDE_INT rounded_size;
11230 rtx r3 = MIPS_PROLOGUE_TEMP (Pmode);
11231 rtx r12 = MIPS_PROLOGUE_TEMP2 (Pmode);
11232
11233 /* Sanity check for the addressing mode we're going to use. */
11234 gcc_assert (first <= 32768);
11235
11236
11237 /* Step 1: round SIZE to the previous multiple of the interval. */
11238
11239 rounded_size = size & -PROBE_INTERVAL;
11240
11241
11242 /* Step 2: compute initial and final value of the loop counter. */
11243
11244 /* TEST_ADDR = SP + FIRST. */
11245 emit_insn (gen_rtx_SET (r3, plus_constant (Pmode, stack_pointer_rtx,
11246 -first)));
11247
11248 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
11249 if (rounded_size > 32768)
11250 {
11251 emit_move_insn (r12, GEN_INT (rounded_size));
11252 emit_insn (gen_rtx_SET (r12, gen_rtx_MINUS (Pmode, r3, r12)));
11253 }
11254 else
11255 emit_insn (gen_rtx_SET (r12, plus_constant (Pmode, r3,
11256 -rounded_size)));
11257
11258
11259 /* Step 3: the loop
11260
11261 while (TEST_ADDR != LAST_ADDR)
11262 {
11263 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
11264 probe at TEST_ADDR
11265 }
11266
11267 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
11268 until it is equal to ROUNDED_SIZE. */
11269
11270 emit_insn (PMODE_INSN (gen_probe_stack_range, (r3, r3, r12)));
11271
11272
11273 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
11274 that SIZE is equal to ROUNDED_SIZE. */
11275
11276 if (size != rounded_size)
11277 emit_stack_probe (plus_constant (Pmode, r12, rounded_size - size));
11278 }
11279
11280 /* Make sure nothing is scheduled before we are done. */
11281 emit_insn (gen_blockage ());
11282 }
11283
11284 /* Probe a range of stack addresses from REG1 to REG2 inclusive. These are
11285 absolute addresses. */
11286
11287 const char *
11288 mips_output_probe_stack_range (rtx reg1, rtx reg2)
11289 {
11290 static int labelno = 0;
11291 char loop_lab[32], end_lab[32], tmp[64];
11292 rtx xops[2];
11293
11294 ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno);
11295 ASM_GENERATE_INTERNAL_LABEL (end_lab, "LPSRE", labelno++);
11296
11297 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
11298
11299 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
11300 xops[0] = reg1;
11301 xops[1] = reg2;
11302 strcpy (tmp, "%(%<beq\t%0,%1,");
11303 output_asm_insn (strcat (tmp, &end_lab[1]), xops);
11304
11305 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
11306 xops[1] = GEN_INT (-PROBE_INTERVAL);
11307 if (TARGET_64BIT && TARGET_LONG64)
11308 output_asm_insn ("daddiu\t%0,%0,%1", xops);
11309 else
11310 output_asm_insn ("addiu\t%0,%0,%1", xops);
11311
11312 /* Probe at TEST_ADDR and branch. */
11313 fprintf (asm_out_file, "\tb\t");
11314 assemble_name_raw (asm_out_file, loop_lab);
11315 fputc ('\n', asm_out_file);
11316 if (TARGET_64BIT)
11317 output_asm_insn ("sd\t$0,0(%0)%)", xops);
11318 else
11319 output_asm_insn ("sw\t$0,0(%0)%)", xops);
11320
11321 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, end_lab);
11322
11323 return "";
11324 }
11325
11326 /* Return true if X contains a kernel register. */
11327
11328 static bool
11329 mips_refers_to_kernel_reg_p (const_rtx x)
11330 {
11331 subrtx_iterator::array_type array;
11332 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
11333 if (REG_P (*iter) && KERNEL_REG_P (REGNO (*iter)))
11334 return true;
11335 return false;
11336 }
11337
11338 /* Expand the "prologue" pattern. */
11339
11340 void
11341 mips_expand_prologue (void)
11342 {
11343 const struct mips_frame_info *frame;
11344 HOST_WIDE_INT size;
11345 unsigned int nargs;
11346
11347 if (cfun->machine->global_pointer != INVALID_REGNUM)
11348 {
11349 /* Check whether an insn uses pic_offset_table_rtx, either explicitly
11350 or implicitly. If so, we can commit to using a global pointer
11351 straight away, otherwise we need to defer the decision. */
11352 if (mips_cfun_has_inflexible_gp_ref_p ()
11353 || mips_cfun_has_flexible_gp_ref_p ())
11354 {
11355 cfun->machine->must_initialize_gp_p = true;
11356 cfun->machine->must_restore_gp_when_clobbered_p = true;
11357 }
11358
11359 SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer);
11360 }
11361
11362 frame = &cfun->machine->frame;
11363 size = frame->total_size;
11364
11365 if (flag_stack_usage_info)
11366 current_function_static_stack_size = size;
11367
11368 if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
11369 {
11370 if (crtl->is_leaf && !cfun->calls_alloca)
11371 {
11372 if (size > PROBE_INTERVAL && size > STACK_CHECK_PROTECT)
11373 mips_emit_probe_stack_range (STACK_CHECK_PROTECT,
11374 size - STACK_CHECK_PROTECT);
11375 }
11376 else if (size > 0)
11377 mips_emit_probe_stack_range (STACK_CHECK_PROTECT, size);
11378 }
11379
11380 /* Save the registers. Allocate up to MIPS_MAX_FIRST_STACK_STEP
11381 bytes beforehand; this is enough to cover the register save area
11382 without going out of range. */
11383 if (((frame->mask | frame->fmask | frame->acc_mask) != 0)
11384 || frame->num_cop0_regs > 0)
11385 {
11386 HOST_WIDE_INT step1;
11387
11388 step1 = MIN (size, MIPS_MAX_FIRST_STACK_STEP);
11389 if (GENERATE_MIPS16E_SAVE_RESTORE)
11390 {
11391 HOST_WIDE_INT offset;
11392 unsigned int mask, regno;
11393
11394 /* Try to merge argument stores into the save instruction. */
11395 nargs = mips16e_collect_argument_saves ();
11396
11397 /* Build the save instruction. */
11398 mask = frame->mask;
11399 rtx insn = mips16e_build_save_restore (false, &mask, &offset,
11400 nargs, step1);
11401 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
11402 mips_frame_barrier ();
11403 size -= step1;
11404
11405 /* Check if we need to save other registers. */
11406 for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++)
11407 if (BITSET_P (mask, regno - GP_REG_FIRST))
11408 {
11409 offset -= UNITS_PER_WORD;
11410 mips_save_restore_reg (word_mode, regno,
11411 offset, mips_save_reg);
11412 }
11413 }
11414 else
11415 {
11416 if (cfun->machine->interrupt_handler_p)
11417 {
11418 HOST_WIDE_INT offset;
11419 rtx mem;
11420
11421 /* If this interrupt is using a shadow register set, we need to
11422 get the stack pointer from the previous register set. */
11423 if (cfun->machine->use_shadow_register_set_p)
11424 emit_insn (gen_mips_rdpgpr (stack_pointer_rtx,
11425 stack_pointer_rtx));
11426
11427 if (!cfun->machine->keep_interrupts_masked_p)
11428 {
11429 /* Move from COP0 Cause to K0. */
11430 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K0_REG_NUM),
11431 gen_rtx_REG (SImode,
11432 COP0_CAUSE_REG_NUM)));
11433 /* Move from COP0 EPC to K1. */
11434 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K1_REG_NUM),
11435 gen_rtx_REG (SImode,
11436 COP0_EPC_REG_NUM)));
11437 }
11438
11439 /* Allocate the first part of the frame. */
11440 rtx insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
11441 GEN_INT (-step1));
11442 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
11443 mips_frame_barrier ();
11444 size -= step1;
11445
11446 /* Start at the uppermost location for saving. */
11447 offset = frame->cop0_sp_offset - size;
11448 if (!cfun->machine->keep_interrupts_masked_p)
11449 {
11450 /* Push EPC into its stack slot. */
11451 mem = gen_frame_mem (word_mode,
11452 plus_constant (Pmode, stack_pointer_rtx,
11453 offset));
11454 mips_emit_move (mem, gen_rtx_REG (word_mode, K1_REG_NUM));
11455 offset -= UNITS_PER_WORD;
11456 }
11457
11458 /* Move from COP0 Status to K1. */
11459 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K1_REG_NUM),
11460 gen_rtx_REG (SImode,
11461 COP0_STATUS_REG_NUM)));
11462
11463 /* Right justify the RIPL in k0. */
11464 if (!cfun->machine->keep_interrupts_masked_p)
11465 emit_insn (gen_lshrsi3 (gen_rtx_REG (SImode, K0_REG_NUM),
11466 gen_rtx_REG (SImode, K0_REG_NUM),
11467 GEN_INT (CAUSE_IPL)));
11468
11469 /* Push Status into its stack slot. */
11470 mem = gen_frame_mem (word_mode,
11471 plus_constant (Pmode, stack_pointer_rtx,
11472 offset));
11473 mips_emit_move (mem, gen_rtx_REG (word_mode, K1_REG_NUM));
11474 offset -= UNITS_PER_WORD;
11475
11476 /* Insert the RIPL into our copy of SR (k1) as the new IPL. */
11477 if (!cfun->machine->keep_interrupts_masked_p)
11478 emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
11479 GEN_INT (6),
11480 GEN_INT (SR_IPL),
11481 gen_rtx_REG (SImode, K0_REG_NUM)));
11482
11483 if (!cfun->machine->keep_interrupts_masked_p)
11484 /* Enable interrupts by clearing the KSU ERL and EXL bits.
11485 IE is already the correct value, so we don't have to do
11486 anything explicit. */
11487 emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
11488 GEN_INT (4),
11489 GEN_INT (SR_EXL),
11490 gen_rtx_REG (SImode, GP_REG_FIRST)));
11491 else
11492 /* Disable interrupts by clearing the KSU, ERL, EXL,
11493 and IE bits. */
11494 emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
11495 GEN_INT (5),
11496 GEN_INT (SR_IE),
11497 gen_rtx_REG (SImode, GP_REG_FIRST)));
11498 }
11499 else
11500 {
11501 rtx insn = gen_add3_insn (stack_pointer_rtx,
11502 stack_pointer_rtx,
11503 GEN_INT (-step1));
11504 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
11505 mips_frame_barrier ();
11506 size -= step1;
11507 }
11508 mips_for_each_saved_acc (size, mips_save_reg);
11509 mips_for_each_saved_gpr_and_fpr (size, mips_save_reg);
11510 }
11511 }
11512
11513 /* Allocate the rest of the frame. */
11514 if (size > 0)
11515 {
11516 if (SMALL_OPERAND (-size))
11517 RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
11518 stack_pointer_rtx,
11519 GEN_INT (-size)))) = 1;
11520 else
11521 {
11522 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (size));
11523 if (TARGET_MIPS16)
11524 {
11525 /* There are no instructions to add or subtract registers
11526 from the stack pointer, so use the frame pointer as a
11527 temporary. We should always be using a frame pointer
11528 in this case anyway. */
11529 gcc_assert (frame_pointer_needed);
11530 mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
11531 emit_insn (gen_sub3_insn (hard_frame_pointer_rtx,
11532 hard_frame_pointer_rtx,
11533 MIPS_PROLOGUE_TEMP (Pmode)));
11534 mips_emit_move (stack_pointer_rtx, hard_frame_pointer_rtx);
11535 }
11536 else
11537 emit_insn (gen_sub3_insn (stack_pointer_rtx,
11538 stack_pointer_rtx,
11539 MIPS_PROLOGUE_TEMP (Pmode)));
11540
11541 /* Describe the combined effect of the previous instructions. */
11542 mips_set_frame_expr
11543 (gen_rtx_SET (stack_pointer_rtx,
11544 plus_constant (Pmode, stack_pointer_rtx, -size)));
11545 }
11546 mips_frame_barrier ();
11547 }
11548
11549 /* Set up the frame pointer, if we're using one. */
11550 if (frame_pointer_needed)
11551 {
11552 HOST_WIDE_INT offset;
11553
11554 offset = frame->hard_frame_pointer_offset;
11555 if (offset == 0)
11556 {
11557 rtx insn = mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
11558 RTX_FRAME_RELATED_P (insn) = 1;
11559 }
11560 else if (SMALL_OPERAND (offset))
11561 {
11562 rtx insn = gen_add3_insn (hard_frame_pointer_rtx,
11563 stack_pointer_rtx, GEN_INT (offset));
11564 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
11565 }
11566 else
11567 {
11568 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (offset));
11569 mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
11570 emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
11571 hard_frame_pointer_rtx,
11572 MIPS_PROLOGUE_TEMP (Pmode)));
11573 mips_set_frame_expr
11574 (gen_rtx_SET (hard_frame_pointer_rtx,
11575 plus_constant (Pmode, stack_pointer_rtx, offset)));
11576 }
11577 }
11578
11579 mips_emit_loadgp ();
11580
11581 /* Initialize the $gp save slot. */
11582 if (mips_cfun_has_cprestore_slot_p ())
11583 {
11584 rtx base, mem, gp, temp;
11585 HOST_WIDE_INT offset;
11586
11587 mips_get_cprestore_base_and_offset (&base, &offset, false);
11588 mem = gen_frame_mem (Pmode, plus_constant (Pmode, base, offset));
11589 gp = TARGET_MIPS16 ? MIPS16_PIC_TEMP : pic_offset_table_rtx;
11590 temp = (SMALL_OPERAND (offset)
11591 ? gen_rtx_SCRATCH (Pmode)
11592 : MIPS_PROLOGUE_TEMP (Pmode));
11593 emit_insn (PMODE_INSN (gen_potential_cprestore,
11594 (mem, GEN_INT (offset), gp, temp)));
11595
11596 mips_get_cprestore_base_and_offset (&base, &offset, true);
11597 mem = gen_frame_mem (Pmode, plus_constant (Pmode, base, offset));
11598 emit_insn (PMODE_INSN (gen_use_cprestore, (mem)));
11599 }
11600
11601 /* We need to search back to the last use of K0 or K1. */
11602 if (cfun->machine->interrupt_handler_p)
11603 {
11604 rtx_insn *insn;
11605 for (insn = get_last_insn (); insn != NULL_RTX; insn = PREV_INSN (insn))
11606 if (INSN_P (insn)
11607 && mips_refers_to_kernel_reg_p (PATTERN (insn)))
11608 break;
11609 /* Emit a move from K1 to COP0 Status after insn. */
11610 gcc_assert (insn != NULL_RTX);
11611 emit_insn_after (gen_cop0_move (gen_rtx_REG (SImode, COP0_STATUS_REG_NUM),
11612 gen_rtx_REG (SImode, K1_REG_NUM)),
11613 insn);
11614 }
11615
11616 /* If we are profiling, make sure no instructions are scheduled before
11617 the call to mcount. */
11618 if (crtl->profile)
11619 emit_insn (gen_blockage ());
11620 }
11621 \f
11622 /* Attach all pending register saves to the previous instruction.
11623 Return that instruction. */
11624
11625 static rtx_insn *
11626 mips_epilogue_emit_cfa_restores (void)
11627 {
11628 rtx_insn *insn;
11629
11630 insn = get_last_insn ();
11631 gcc_assert (insn && !REG_NOTES (insn));
11632 if (mips_epilogue.cfa_restores)
11633 {
11634 RTX_FRAME_RELATED_P (insn) = 1;
11635 REG_NOTES (insn) = mips_epilogue.cfa_restores;
11636 mips_epilogue.cfa_restores = 0;
11637 }
11638 return insn;
11639 }
11640
11641 /* Like mips_epilogue_emit_cfa_restores, but also record that the CFA is
11642 now at REG + OFFSET. */
11643
11644 static void
11645 mips_epilogue_set_cfa (rtx reg, HOST_WIDE_INT offset)
11646 {
11647 rtx_insn *insn;
11648
11649 insn = mips_epilogue_emit_cfa_restores ();
11650 if (reg != mips_epilogue.cfa_reg || offset != mips_epilogue.cfa_offset)
11651 {
11652 RTX_FRAME_RELATED_P (insn) = 1;
11653 REG_NOTES (insn) = alloc_reg_note (REG_CFA_DEF_CFA,
11654 plus_constant (Pmode, reg, offset),
11655 REG_NOTES (insn));
11656 mips_epilogue.cfa_reg = reg;
11657 mips_epilogue.cfa_offset = offset;
11658 }
11659 }
11660
11661 /* Emit instructions to restore register REG from slot MEM. Also update
11662 the cfa_restores list. */
11663
11664 static void
11665 mips_restore_reg (rtx reg, rtx mem)
11666 {
11667 /* There's no MIPS16 instruction to load $31 directly. Load into
11668 $7 instead and adjust the return insn appropriately. */
11669 if (TARGET_MIPS16 && REGNO (reg) == RETURN_ADDR_REGNUM)
11670 reg = gen_rtx_REG (GET_MODE (reg), GP_REG_FIRST + 7);
11671 else if (GET_MODE (reg) == DFmode
11672 && (!TARGET_FLOAT64
11673 || mips_abi == ABI_32))
11674 {
11675 mips_add_cfa_restore (mips_subword (reg, true));
11676 mips_add_cfa_restore (mips_subword (reg, false));
11677 }
11678 else
11679 mips_add_cfa_restore (reg);
11680
11681 mips_emit_save_slot_move (reg, mem, MIPS_EPILOGUE_TEMP (GET_MODE (reg)));
11682 if (REGNO (reg) == REGNO (mips_epilogue.cfa_reg))
11683 /* The CFA is currently defined in terms of the register whose
11684 value we have just restored. Redefine the CFA in terms of
11685 the stack pointer. */
11686 mips_epilogue_set_cfa (stack_pointer_rtx,
11687 mips_epilogue.cfa_restore_sp_offset);
11688 }
11689
11690 /* Emit code to set the stack pointer to BASE + OFFSET, given that
11691 BASE + OFFSET is NEW_FRAME_SIZE bytes below the top of the frame.
11692 BASE, if not the stack pointer, is available as a temporary. */
11693
11694 static void
11695 mips_deallocate_stack (rtx base, rtx offset, HOST_WIDE_INT new_frame_size)
11696 {
11697 if (base == stack_pointer_rtx && offset == const0_rtx)
11698 return;
11699
11700 mips_frame_barrier ();
11701 if (offset == const0_rtx)
11702 {
11703 emit_move_insn (stack_pointer_rtx, base);
11704 mips_epilogue_set_cfa (stack_pointer_rtx, new_frame_size);
11705 }
11706 else if (TARGET_MIPS16 && base != stack_pointer_rtx)
11707 {
11708 emit_insn (gen_add3_insn (base, base, offset));
11709 mips_epilogue_set_cfa (base, new_frame_size);
11710 emit_move_insn (stack_pointer_rtx, base);
11711 }
11712 else
11713 {
11714 emit_insn (gen_add3_insn (stack_pointer_rtx, base, offset));
11715 mips_epilogue_set_cfa (stack_pointer_rtx, new_frame_size);
11716 }
11717 }
11718
11719 /* Emit any instructions needed before a return. */
11720
11721 void
11722 mips_expand_before_return (void)
11723 {
11724 /* When using a call-clobbered gp, we start out with unified call
11725 insns that include instructions to restore the gp. We then split
11726 these unified calls after reload. These split calls explicitly
11727 clobber gp, so there is no need to define
11728 PIC_OFFSET_TABLE_REG_CALL_CLOBBERED.
11729
11730 For consistency, we should also insert an explicit clobber of $28
11731 before return insns, so that the post-reload optimizers know that
11732 the register is not live on exit. */
11733 if (TARGET_CALL_CLOBBERED_GP)
11734 emit_clobber (pic_offset_table_rtx);
11735 }
11736
11737 /* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P
11738 says which. */
11739
11740 void
11741 mips_expand_epilogue (bool sibcall_p)
11742 {
11743 const struct mips_frame_info *frame;
11744 HOST_WIDE_INT step1, step2;
11745 rtx base, adjust;
11746 rtx_insn *insn;
11747 bool use_jraddiusp_p = false;
11748
11749 if (!sibcall_p && mips_can_use_return_insn ())
11750 {
11751 emit_jump_insn (gen_return ());
11752 return;
11753 }
11754
11755 /* In MIPS16 mode, if the return value should go into a floating-point
11756 register, we need to call a helper routine to copy it over. */
11757 if (mips16_cfun_returns_in_fpr_p ())
11758 mips16_copy_fpr_return_value ();
11759
11760 /* Split the frame into two. STEP1 is the amount of stack we should
11761 deallocate before restoring the registers. STEP2 is the amount we
11762 should deallocate afterwards.
11763
11764 Start off by assuming that no registers need to be restored. */
11765 frame = &cfun->machine->frame;
11766 step1 = frame->total_size;
11767 step2 = 0;
11768
11769 /* Work out which register holds the frame address. */
11770 if (!frame_pointer_needed)
11771 base = stack_pointer_rtx;
11772 else
11773 {
11774 base = hard_frame_pointer_rtx;
11775 step1 -= frame->hard_frame_pointer_offset;
11776 }
11777 mips_epilogue.cfa_reg = base;
11778 mips_epilogue.cfa_offset = step1;
11779 mips_epilogue.cfa_restores = NULL_RTX;
11780
11781 /* If we need to restore registers, deallocate as much stack as
11782 possible in the second step without going out of range. */
11783 if ((frame->mask | frame->fmask | frame->acc_mask) != 0
11784 || frame->num_cop0_regs > 0)
11785 {
11786 step2 = MIN (step1, MIPS_MAX_FIRST_STACK_STEP);
11787 step1 -= step2;
11788 }
11789
11790 /* Get an rtx for STEP1 that we can add to BASE. */
11791 adjust = GEN_INT (step1);
11792 if (!SMALL_OPERAND (step1))
11793 {
11794 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), adjust);
11795 adjust = MIPS_EPILOGUE_TEMP (Pmode);
11796 }
11797 mips_deallocate_stack (base, adjust, step2);
11798
11799 /* If we're using addressing macros, $gp is implicitly used by all
11800 SYMBOL_REFs. We must emit a blockage insn before restoring $gp
11801 from the stack. */
11802 if (TARGET_CALL_SAVED_GP && !TARGET_EXPLICIT_RELOCS)
11803 emit_insn (gen_blockage ());
11804
11805 mips_epilogue.cfa_restore_sp_offset = step2;
11806 if (GENERATE_MIPS16E_SAVE_RESTORE && frame->mask != 0)
11807 {
11808 unsigned int regno, mask;
11809 HOST_WIDE_INT offset;
11810 rtx restore;
11811
11812 /* Generate the restore instruction. */
11813 mask = frame->mask;
11814 restore = mips16e_build_save_restore (true, &mask, &offset, 0, step2);
11815
11816 /* Restore any other registers manually. */
11817 for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++)
11818 if (BITSET_P (mask, regno - GP_REG_FIRST))
11819 {
11820 offset -= UNITS_PER_WORD;
11821 mips_save_restore_reg (word_mode, regno, offset, mips_restore_reg);
11822 }
11823
11824 /* Restore the remaining registers and deallocate the final bit
11825 of the frame. */
11826 mips_frame_barrier ();
11827 emit_insn (restore);
11828 mips_epilogue_set_cfa (stack_pointer_rtx, 0);
11829 }
11830 else
11831 {
11832 /* Restore the registers. */
11833 mips_for_each_saved_acc (frame->total_size - step2, mips_restore_reg);
11834 mips_for_each_saved_gpr_and_fpr (frame->total_size - step2,
11835 mips_restore_reg);
11836
11837 if (cfun->machine->interrupt_handler_p)
11838 {
11839 HOST_WIDE_INT offset;
11840 rtx mem;
11841
11842 offset = frame->cop0_sp_offset - (frame->total_size - step2);
11843 if (!cfun->machine->keep_interrupts_masked_p)
11844 {
11845 /* Restore the original EPC. */
11846 mem = gen_frame_mem (word_mode,
11847 plus_constant (Pmode, stack_pointer_rtx,
11848 offset));
11849 mips_emit_move (gen_rtx_REG (word_mode, K0_REG_NUM), mem);
11850 offset -= UNITS_PER_WORD;
11851
11852 /* Move to COP0 EPC. */
11853 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, COP0_EPC_REG_NUM),
11854 gen_rtx_REG (SImode, K0_REG_NUM)));
11855 }
11856
11857 /* Restore the original Status. */
11858 mem = gen_frame_mem (word_mode,
11859 plus_constant (Pmode, stack_pointer_rtx,
11860 offset));
11861 mips_emit_move (gen_rtx_REG (word_mode, K0_REG_NUM), mem);
11862 offset -= UNITS_PER_WORD;
11863
11864 /* If we don't use shadow register set, we need to update SP. */
11865 if (!cfun->machine->use_shadow_register_set_p)
11866 mips_deallocate_stack (stack_pointer_rtx, GEN_INT (step2), 0);
11867 else
11868 /* The choice of position is somewhat arbitrary in this case. */
11869 mips_epilogue_emit_cfa_restores ();
11870
11871 /* Move to COP0 Status. */
11872 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, COP0_STATUS_REG_NUM),
11873 gen_rtx_REG (SImode, K0_REG_NUM)));
11874 }
11875 else if (TARGET_MICROMIPS
11876 && !crtl->calls_eh_return
11877 && !sibcall_p
11878 && step2 > 0
11879 && mips_unsigned_immediate_p (step2, 5, 2))
11880 use_jraddiusp_p = true;
11881 else
11882 /* Deallocate the final bit of the frame. */
11883 mips_deallocate_stack (stack_pointer_rtx, GEN_INT (step2), 0);
11884 }
11885
11886 if (!use_jraddiusp_p)
11887 gcc_assert (!mips_epilogue.cfa_restores);
11888
11889 /* Add in the __builtin_eh_return stack adjustment. We need to
11890 use a temporary in MIPS16 code. */
11891 if (crtl->calls_eh_return)
11892 {
11893 if (TARGET_MIPS16)
11894 {
11895 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), stack_pointer_rtx);
11896 emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode),
11897 MIPS_EPILOGUE_TEMP (Pmode),
11898 EH_RETURN_STACKADJ_RTX));
11899 mips_emit_move (stack_pointer_rtx, MIPS_EPILOGUE_TEMP (Pmode));
11900 }
11901 else
11902 emit_insn (gen_add3_insn (stack_pointer_rtx,
11903 stack_pointer_rtx,
11904 EH_RETURN_STACKADJ_RTX));
11905 }
11906
11907 if (!sibcall_p)
11908 {
11909 mips_expand_before_return ();
11910 if (cfun->machine->interrupt_handler_p)
11911 {
11912 /* Interrupt handlers generate eret or deret. */
11913 if (cfun->machine->use_debug_exception_return_p)
11914 emit_jump_insn (gen_mips_deret ());
11915 else
11916 emit_jump_insn (gen_mips_eret ());
11917 }
11918 else
11919 {
11920 rtx pat;
11921
11922 /* When generating MIPS16 code, the normal
11923 mips_for_each_saved_gpr_and_fpr path will restore the return
11924 address into $7 rather than $31. */
11925 if (TARGET_MIPS16
11926 && !GENERATE_MIPS16E_SAVE_RESTORE
11927 && BITSET_P (frame->mask, RETURN_ADDR_REGNUM))
11928 {
11929 /* simple_returns cannot rely on values that are only available
11930 on paths through the epilogue (because return paths that do
11931 not pass through the epilogue may nevertheless reuse a
11932 simple_return that occurs at the end of the epilogue).
11933 Use a normal return here instead. */
11934 rtx reg = gen_rtx_REG (Pmode, GP_REG_FIRST + 7);
11935 pat = gen_return_internal (reg);
11936 }
11937 else if (use_jraddiusp_p)
11938 pat = gen_jraddiusp (GEN_INT (step2));
11939 else
11940 {
11941 rtx reg = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
11942 pat = gen_simple_return_internal (reg);
11943 }
11944 emit_jump_insn (pat);
11945 if (use_jraddiusp_p)
11946 mips_epilogue_set_cfa (stack_pointer_rtx, step2);
11947 }
11948 }
11949
11950 /* Search from the beginning to the first use of K0 or K1. */
11951 if (cfun->machine->interrupt_handler_p
11952 && !cfun->machine->keep_interrupts_masked_p)
11953 {
11954 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
11955 if (INSN_P (insn)
11956 && mips_refers_to_kernel_reg_p (PATTERN (insn)))
11957 break;
11958 gcc_assert (insn != NULL_RTX);
11959 /* Insert disable interrupts before the first use of K0 or K1. */
11960 emit_insn_before (gen_mips_di (), insn);
11961 emit_insn_before (gen_mips_ehb (), insn);
11962 }
11963 }
11964 \f
11965 /* Return nonzero if this function is known to have a null epilogue.
11966 This allows the optimizer to omit jumps to jumps if no stack
11967 was created. */
11968
11969 bool
11970 mips_can_use_return_insn (void)
11971 {
11972 /* Interrupt handlers need to go through the epilogue. */
11973 if (cfun->machine->interrupt_handler_p)
11974 return false;
11975
11976 if (!reload_completed)
11977 return false;
11978
11979 if (crtl->profile)
11980 return false;
11981
11982 /* In MIPS16 mode, a function that returns a floating-point value
11983 needs to arrange to copy the return value into the floating-point
11984 registers. */
11985 if (mips16_cfun_returns_in_fpr_p ())
11986 return false;
11987
11988 return cfun->machine->frame.total_size == 0;
11989 }
11990 \f
11991 /* Return true if register REGNO can store a value of mode MODE.
11992 The result of this function is cached in mips_hard_regno_mode_ok. */
11993
11994 static bool
11995 mips_hard_regno_mode_ok_p (unsigned int regno, machine_mode mode)
11996 {
11997 unsigned int size;
11998 enum mode_class mclass;
11999
12000 if (mode == CCV2mode)
12001 return (ISA_HAS_8CC
12002 && ST_REG_P (regno)
12003 && (regno - ST_REG_FIRST) % 2 == 0);
12004
12005 if (mode == CCV4mode)
12006 return (ISA_HAS_8CC
12007 && ST_REG_P (regno)
12008 && (regno - ST_REG_FIRST) % 4 == 0);
12009
12010 if (mode == CCmode)
12011 return ISA_HAS_8CC ? ST_REG_P (regno) : regno == FPSW_REGNUM;
12012
12013 size = GET_MODE_SIZE (mode);
12014 mclass = GET_MODE_CLASS (mode);
12015
12016 if (GP_REG_P (regno) && mode != CCFmode)
12017 return ((regno - GP_REG_FIRST) & 1) == 0 || size <= UNITS_PER_WORD;
12018
12019 if (FP_REG_P (regno)
12020 && (((regno - FP_REG_FIRST) % MAX_FPRS_PER_FMT) == 0
12021 || (MIN_FPRS_PER_FMT == 1 && size <= UNITS_PER_FPREG)))
12022 {
12023 /* Deny use of odd-numbered registers for 32-bit data for
12024 the o32 FP64A ABI. */
12025 if (TARGET_O32_FP64A_ABI && size <= 4 && (regno & 1) != 0)
12026 return false;
12027
12028 /* The FPXX ABI requires double-precision values to be placed in
12029 even-numbered registers. Disallow odd-numbered registers with
12030 CCFmode because CCFmode double-precision compares will write a
12031 64-bit value to a register. */
12032 if (mode == CCFmode)
12033 return !(TARGET_FLOATXX && (regno & 1) != 0);
12034
12035 /* Allow 64-bit vector modes for Loongson-2E/2F. */
12036 if (TARGET_LOONGSON_VECTORS
12037 && (mode == V2SImode
12038 || mode == V4HImode
12039 || mode == V8QImode
12040 || mode == DImode))
12041 return true;
12042
12043 if (mclass == MODE_FLOAT
12044 || mclass == MODE_COMPLEX_FLOAT
12045 || mclass == MODE_VECTOR_FLOAT)
12046 return size <= UNITS_PER_FPVALUE;
12047
12048 /* Allow integer modes that fit into a single register. We need
12049 to put integers into FPRs when using instructions like CVT
12050 and TRUNC. There's no point allowing sizes smaller than a word,
12051 because the FPU has no appropriate load/store instructions. */
12052 if (mclass == MODE_INT)
12053 return size >= MIN_UNITS_PER_WORD && size <= UNITS_PER_FPREG;
12054 }
12055
12056 /* Don't allow vector modes in accumulators. */
12057 if (ACC_REG_P (regno)
12058 && !VECTOR_MODE_P (mode)
12059 && (INTEGRAL_MODE_P (mode) || ALL_FIXED_POINT_MODE_P (mode)))
12060 {
12061 if (MD_REG_P (regno))
12062 {
12063 /* After a multiplication or division, clobbering HI makes
12064 the value of LO unpredictable, and vice versa. This means
12065 that, for all interesting cases, HI and LO are effectively
12066 a single register.
12067
12068 We model this by requiring that any value that uses HI
12069 also uses LO. */
12070 if (size <= UNITS_PER_WORD * 2)
12071 return regno == (size <= UNITS_PER_WORD ? LO_REGNUM : MD_REG_FIRST);
12072 }
12073 else
12074 {
12075 /* DSP accumulators do not have the same restrictions as
12076 HI and LO, so we can treat them as normal doubleword
12077 registers. */
12078 if (size <= UNITS_PER_WORD)
12079 return true;
12080
12081 if (size <= UNITS_PER_WORD * 2
12082 && ((regno - DSP_ACC_REG_FIRST) & 1) == 0)
12083 return true;
12084 }
12085 }
12086
12087 if (ALL_COP_REG_P (regno))
12088 return mclass == MODE_INT && size <= UNITS_PER_WORD;
12089
12090 if (regno == GOT_VERSION_REGNUM)
12091 return mode == SImode;
12092
12093 return false;
12094 }
12095
12096 /* Implement HARD_REGNO_NREGS. */
12097
12098 unsigned int
12099 mips_hard_regno_nregs (int regno, machine_mode mode)
12100 {
12101 if (ST_REG_P (regno))
12102 /* The size of FP status registers is always 4, because they only hold
12103 CCmode values, and CCmode is always considered to be 4 bytes wide. */
12104 return (GET_MODE_SIZE (mode) + 3) / 4;
12105
12106 if (FP_REG_P (regno))
12107 return (GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG;
12108
12109 /* All other registers are word-sized. */
12110 return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
12111 }
12112
12113 /* Implement CLASS_MAX_NREGS, taking the maximum of the cases
12114 in mips_hard_regno_nregs. */
12115
12116 int
12117 mips_class_max_nregs (enum reg_class rclass, machine_mode mode)
12118 {
12119 int size;
12120 HARD_REG_SET left;
12121
12122 size = 0x8000;
12123 COPY_HARD_REG_SET (left, reg_class_contents[(int) rclass]);
12124 if (hard_reg_set_intersect_p (left, reg_class_contents[(int) ST_REGS]))
12125 {
12126 if (HARD_REGNO_MODE_OK (ST_REG_FIRST, mode))
12127 size = MIN (size, 4);
12128 AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) ST_REGS]);
12129 }
12130 if (hard_reg_set_intersect_p (left, reg_class_contents[(int) FP_REGS]))
12131 {
12132 if (HARD_REGNO_MODE_OK (FP_REG_FIRST, mode))
12133 size = MIN (size, UNITS_PER_FPREG);
12134 AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) FP_REGS]);
12135 }
12136 if (!hard_reg_set_empty_p (left))
12137 size = MIN (size, UNITS_PER_WORD);
12138 return (GET_MODE_SIZE (mode) + size - 1) / size;
12139 }
12140
12141 /* Implement CANNOT_CHANGE_MODE_CLASS. */
12142
12143 bool
12144 mips_cannot_change_mode_class (machine_mode from,
12145 machine_mode to,
12146 enum reg_class rclass)
12147 {
12148 /* Allow conversions between different Loongson integer vectors,
12149 and between those vectors and DImode. */
12150 if (GET_MODE_SIZE (from) == 8 && GET_MODE_SIZE (to) == 8
12151 && INTEGRAL_MODE_P (from) && INTEGRAL_MODE_P (to))
12152 return false;
12153
12154 /* Otherwise, there are several problems with changing the modes of
12155 values in floating-point registers:
12156
12157 - When a multi-word value is stored in paired floating-point
12158 registers, the first register always holds the low word. We
12159 therefore can't allow FPRs to change between single-word and
12160 multi-word modes on big-endian targets.
12161
12162 - GCC assumes that each word of a multiword register can be
12163 accessed individually using SUBREGs. This is not true for
12164 floating-point registers if they are bigger than a word.
12165
12166 - Loading a 32-bit value into a 64-bit floating-point register
12167 will not sign-extend the value, despite what LOAD_EXTEND_OP
12168 says. We can't allow FPRs to change from SImode to a wider
12169 mode on 64-bit targets.
12170
12171 - If the FPU has already interpreted a value in one format, we
12172 must not ask it to treat the value as having a different
12173 format.
12174
12175 We therefore disallow all mode changes involving FPRs. */
12176
12177 return reg_classes_intersect_p (FP_REGS, rclass);
12178 }
12179
12180 /* Implement target hook small_register_classes_for_mode_p. */
12181
12182 static bool
12183 mips_small_register_classes_for_mode_p (machine_mode mode
12184 ATTRIBUTE_UNUSED)
12185 {
12186 return TARGET_MIPS16;
12187 }
12188
12189 /* Return true if moves in mode MODE can use the FPU's mov.fmt instruction. */
12190
12191 static bool
12192 mips_mode_ok_for_mov_fmt_p (machine_mode mode)
12193 {
12194 switch (mode)
12195 {
12196 case CCFmode:
12197 case SFmode:
12198 return TARGET_HARD_FLOAT;
12199
12200 case DFmode:
12201 return TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT;
12202
12203 case V2SFmode:
12204 return TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT;
12205
12206 default:
12207 return false;
12208 }
12209 }
12210
12211 /* Implement MODES_TIEABLE_P. */
12212
12213 bool
12214 mips_modes_tieable_p (machine_mode mode1, machine_mode mode2)
12215 {
12216 /* FPRs allow no mode punning, so it's not worth tying modes if we'd
12217 prefer to put one of them in FPRs. */
12218 return (mode1 == mode2
12219 || (!mips_mode_ok_for_mov_fmt_p (mode1)
12220 && !mips_mode_ok_for_mov_fmt_p (mode2)));
12221 }
12222
12223 /* Implement TARGET_PREFERRED_RELOAD_CLASS. */
12224
12225 static reg_class_t
12226 mips_preferred_reload_class (rtx x, reg_class_t rclass)
12227 {
12228 if (mips_dangerous_for_la25_p (x) && reg_class_subset_p (LEA_REGS, rclass))
12229 return LEA_REGS;
12230
12231 if (reg_class_subset_p (FP_REGS, rclass)
12232 && mips_mode_ok_for_mov_fmt_p (GET_MODE (x)))
12233 return FP_REGS;
12234
12235 if (reg_class_subset_p (GR_REGS, rclass))
12236 rclass = GR_REGS;
12237
12238 if (TARGET_MIPS16 && reg_class_subset_p (M16_REGS, rclass))
12239 rclass = M16_REGS;
12240
12241 return rclass;
12242 }
12243
12244 /* RCLASS is a class involved in a REGISTER_MOVE_COST calculation.
12245 Return a "canonical" class to represent it in later calculations. */
12246
12247 static reg_class_t
12248 mips_canonicalize_move_class (reg_class_t rclass)
12249 {
12250 /* All moves involving accumulator registers have the same cost. */
12251 if (reg_class_subset_p (rclass, ACC_REGS))
12252 rclass = ACC_REGS;
12253
12254 /* Likewise promote subclasses of general registers to the most
12255 interesting containing class. */
12256 if (TARGET_MIPS16 && reg_class_subset_p (rclass, M16_REGS))
12257 rclass = M16_REGS;
12258 else if (reg_class_subset_p (rclass, GENERAL_REGS))
12259 rclass = GENERAL_REGS;
12260
12261 return rclass;
12262 }
12263
12264 /* Return the cost of moving a value from a register of class FROM to a GPR.
12265 Return 0 for classes that are unions of other classes handled by this
12266 function. */
12267
12268 static int
12269 mips_move_to_gpr_cost (reg_class_t from)
12270 {
12271 switch (from)
12272 {
12273 case M16_REGS:
12274 case GENERAL_REGS:
12275 /* A MIPS16 MOVE instruction, or a non-MIPS16 MOVE macro. */
12276 return 2;
12277
12278 case ACC_REGS:
12279 /* MFLO and MFHI. */
12280 return 6;
12281
12282 case FP_REGS:
12283 /* MFC1, etc. */
12284 return 4;
12285
12286 case COP0_REGS:
12287 case COP2_REGS:
12288 case COP3_REGS:
12289 /* This choice of value is historical. */
12290 return 5;
12291
12292 default:
12293 return 0;
12294 }
12295 }
12296
12297 /* Return the cost of moving a value from a GPR to a register of class TO.
12298 Return 0 for classes that are unions of other classes handled by this
12299 function. */
12300
12301 static int
12302 mips_move_from_gpr_cost (reg_class_t to)
12303 {
12304 switch (to)
12305 {
12306 case M16_REGS:
12307 case GENERAL_REGS:
12308 /* A MIPS16 MOVE instruction, or a non-MIPS16 MOVE macro. */
12309 return 2;
12310
12311 case ACC_REGS:
12312 /* MTLO and MTHI. */
12313 return 6;
12314
12315 case FP_REGS:
12316 /* MTC1, etc. */
12317 return 4;
12318
12319 case COP0_REGS:
12320 case COP2_REGS:
12321 case COP3_REGS:
12322 /* This choice of value is historical. */
12323 return 5;
12324
12325 default:
12326 return 0;
12327 }
12328 }
12329
12330 /* Implement TARGET_REGISTER_MOVE_COST. Return 0 for classes that are the
12331 maximum of the move costs for subclasses; regclass will work out
12332 the maximum for us. */
12333
12334 static int
12335 mips_register_move_cost (machine_mode mode,
12336 reg_class_t from, reg_class_t to)
12337 {
12338 reg_class_t dregs;
12339 int cost1, cost2;
12340
12341 from = mips_canonicalize_move_class (from);
12342 to = mips_canonicalize_move_class (to);
12343
12344 /* Handle moves that can be done without using general-purpose registers. */
12345 if (from == FP_REGS)
12346 {
12347 if (to == FP_REGS && mips_mode_ok_for_mov_fmt_p (mode))
12348 /* MOV.FMT. */
12349 return 4;
12350 }
12351
12352 /* Handle cases in which only one class deviates from the ideal. */
12353 dregs = TARGET_MIPS16 ? M16_REGS : GENERAL_REGS;
12354 if (from == dregs)
12355 return mips_move_from_gpr_cost (to);
12356 if (to == dregs)
12357 return mips_move_to_gpr_cost (from);
12358
12359 /* Handles cases that require a GPR temporary. */
12360 cost1 = mips_move_to_gpr_cost (from);
12361 if (cost1 != 0)
12362 {
12363 cost2 = mips_move_from_gpr_cost (to);
12364 if (cost2 != 0)
12365 return cost1 + cost2;
12366 }
12367
12368 return 0;
12369 }
12370
12371 /* Implement TARGET_REGISTER_PRIORITY. */
12372
12373 static int
12374 mips_register_priority (int hard_regno)
12375 {
12376 /* Treat MIPS16 registers with higher priority than other regs. */
12377 if (TARGET_MIPS16
12378 && TEST_HARD_REG_BIT (reg_class_contents[M16_REGS], hard_regno))
12379 return 1;
12380 return 0;
12381 }
12382
12383 /* Implement TARGET_MEMORY_MOVE_COST. */
12384
12385 static int
12386 mips_memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
12387 {
12388 return (mips_cost->memory_latency
12389 + memory_move_secondary_cost (mode, rclass, in));
12390 }
12391
12392 /* Implement SECONDARY_MEMORY_NEEDED. */
12393
12394 bool
12395 mips_secondary_memory_needed (enum reg_class class1, enum reg_class class2,
12396 machine_mode mode)
12397 {
12398 /* Ignore spilled pseudos. */
12399 if (lra_in_progress && (class1 == NO_REGS || class2 == NO_REGS))
12400 return false;
12401
12402 if (((class1 == FP_REGS) != (class2 == FP_REGS))
12403 && ((TARGET_FLOATXX && !ISA_HAS_MXHC1)
12404 || TARGET_O32_FP64A_ABI)
12405 && GET_MODE_SIZE (mode) >= 8)
12406 return true;
12407
12408 return false;
12409 }
12410
12411 /* Return the register class required for a secondary register when
12412 copying between one of the registers in RCLASS and value X, which
12413 has mode MODE. X is the source of the move if IN_P, otherwise it
12414 is the destination. Return NO_REGS if no secondary register is
12415 needed. */
12416
12417 enum reg_class
12418 mips_secondary_reload_class (enum reg_class rclass,
12419 machine_mode mode, rtx x, bool)
12420 {
12421 int regno;
12422
12423 /* If X is a constant that cannot be loaded into $25, it must be loaded
12424 into some other GPR. No other register class allows a direct move. */
12425 if (mips_dangerous_for_la25_p (x))
12426 return reg_class_subset_p (rclass, LEA_REGS) ? NO_REGS : LEA_REGS;
12427
12428 regno = true_regnum (x);
12429 if (TARGET_MIPS16)
12430 {
12431 /* In MIPS16 mode, every move must involve a member of M16_REGS. */
12432 if (!reg_class_subset_p (rclass, M16_REGS) && !M16_REG_P (regno))
12433 return M16_REGS;
12434
12435 return NO_REGS;
12436 }
12437
12438 /* Copying from accumulator registers to anywhere other than a general
12439 register requires a temporary general register. */
12440 if (reg_class_subset_p (rclass, ACC_REGS))
12441 return GP_REG_P (regno) ? NO_REGS : GR_REGS;
12442 if (ACC_REG_P (regno))
12443 return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS;
12444
12445 if (reg_class_subset_p (rclass, FP_REGS))
12446 {
12447 if (regno < 0
12448 || (MEM_P (x)
12449 && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8)))
12450 /* In this case we can use lwc1, swc1, ldc1 or sdc1. We'll use
12451 pairs of lwc1s and swc1s if ldc1 and sdc1 are not supported. */
12452 return NO_REGS;
12453
12454 if (GP_REG_P (regno) || x == CONST0_RTX (mode))
12455 /* In this case we can use mtc1, mfc1, dmtc1 or dmfc1. */
12456 return NO_REGS;
12457
12458 if (CONSTANT_P (x) && !targetm.cannot_force_const_mem (mode, x))
12459 /* We can force the constant to memory and use lwc1
12460 and ldc1. As above, we will use pairs of lwc1s if
12461 ldc1 is not supported. */
12462 return NO_REGS;
12463
12464 if (FP_REG_P (regno) && mips_mode_ok_for_mov_fmt_p (mode))
12465 /* In this case we can use mov.fmt. */
12466 return NO_REGS;
12467
12468 /* Otherwise, we need to reload through an integer register. */
12469 return GR_REGS;
12470 }
12471 if (FP_REG_P (regno))
12472 return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS;
12473
12474 return NO_REGS;
12475 }
12476
12477 /* Implement TARGET_MODE_REP_EXTENDED. */
12478
12479 static int
12480 mips_mode_rep_extended (machine_mode mode, machine_mode mode_rep)
12481 {
12482 /* On 64-bit targets, SImode register values are sign-extended to DImode. */
12483 if (TARGET_64BIT && mode == SImode && mode_rep == DImode)
12484 return SIGN_EXTEND;
12485
12486 return UNKNOWN;
12487 }
12488 \f
12489 /* Implement TARGET_VALID_POINTER_MODE. */
12490
12491 static bool
12492 mips_valid_pointer_mode (machine_mode mode)
12493 {
12494 return mode == SImode || (TARGET_64BIT && mode == DImode);
12495 }
12496
12497 /* Implement TARGET_VECTOR_MODE_SUPPORTED_P. */
12498
12499 static bool
12500 mips_vector_mode_supported_p (machine_mode mode)
12501 {
12502 switch (mode)
12503 {
12504 case V2SFmode:
12505 return TARGET_PAIRED_SINGLE_FLOAT;
12506
12507 case V2HImode:
12508 case V4QImode:
12509 case V2HQmode:
12510 case V2UHQmode:
12511 case V2HAmode:
12512 case V2UHAmode:
12513 case V4QQmode:
12514 case V4UQQmode:
12515 return TARGET_DSP;
12516
12517 case V2SImode:
12518 case V4HImode:
12519 case V8QImode:
12520 return TARGET_LOONGSON_VECTORS;
12521
12522 default:
12523 return false;
12524 }
12525 }
12526
12527 /* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
12528
12529 static bool
12530 mips_scalar_mode_supported_p (machine_mode mode)
12531 {
12532 if (ALL_FIXED_POINT_MODE_P (mode)
12533 && GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD)
12534 return true;
12535
12536 return default_scalar_mode_supported_p (mode);
12537 }
12538 \f
12539 /* Implement TARGET_VECTORIZE_PREFERRED_SIMD_MODE. */
12540
12541 static machine_mode
12542 mips_preferred_simd_mode (machine_mode mode ATTRIBUTE_UNUSED)
12543 {
12544 if (TARGET_PAIRED_SINGLE_FLOAT
12545 && mode == SFmode)
12546 return V2SFmode;
12547 return word_mode;
12548 }
12549
12550 /* Implement TARGET_INIT_LIBFUNCS. */
12551
12552 static void
12553 mips_init_libfuncs (void)
12554 {
12555 if (TARGET_FIX_VR4120)
12556 {
12557 /* Register the special divsi3 and modsi3 functions needed to work
12558 around VR4120 division errata. */
12559 set_optab_libfunc (sdiv_optab, SImode, "__vr4120_divsi3");
12560 set_optab_libfunc (smod_optab, SImode, "__vr4120_modsi3");
12561 }
12562
12563 if (TARGET_MIPS16 && TARGET_HARD_FLOAT_ABI)
12564 {
12565 /* Register the MIPS16 -mhard-float stubs. */
12566 set_optab_libfunc (add_optab, SFmode, "__mips16_addsf3");
12567 set_optab_libfunc (sub_optab, SFmode, "__mips16_subsf3");
12568 set_optab_libfunc (smul_optab, SFmode, "__mips16_mulsf3");
12569 set_optab_libfunc (sdiv_optab, SFmode, "__mips16_divsf3");
12570
12571 set_optab_libfunc (eq_optab, SFmode, "__mips16_eqsf2");
12572 set_optab_libfunc (ne_optab, SFmode, "__mips16_nesf2");
12573 set_optab_libfunc (gt_optab, SFmode, "__mips16_gtsf2");
12574 set_optab_libfunc (ge_optab, SFmode, "__mips16_gesf2");
12575 set_optab_libfunc (lt_optab, SFmode, "__mips16_ltsf2");
12576 set_optab_libfunc (le_optab, SFmode, "__mips16_lesf2");
12577 set_optab_libfunc (unord_optab, SFmode, "__mips16_unordsf2");
12578
12579 set_conv_libfunc (sfix_optab, SImode, SFmode, "__mips16_fix_truncsfsi");
12580 set_conv_libfunc (sfloat_optab, SFmode, SImode, "__mips16_floatsisf");
12581 set_conv_libfunc (ufloat_optab, SFmode, SImode, "__mips16_floatunsisf");
12582
12583 if (TARGET_DOUBLE_FLOAT)
12584 {
12585 set_optab_libfunc (add_optab, DFmode, "__mips16_adddf3");
12586 set_optab_libfunc (sub_optab, DFmode, "__mips16_subdf3");
12587 set_optab_libfunc (smul_optab, DFmode, "__mips16_muldf3");
12588 set_optab_libfunc (sdiv_optab, DFmode, "__mips16_divdf3");
12589
12590 set_optab_libfunc (eq_optab, DFmode, "__mips16_eqdf2");
12591 set_optab_libfunc (ne_optab, DFmode, "__mips16_nedf2");
12592 set_optab_libfunc (gt_optab, DFmode, "__mips16_gtdf2");
12593 set_optab_libfunc (ge_optab, DFmode, "__mips16_gedf2");
12594 set_optab_libfunc (lt_optab, DFmode, "__mips16_ltdf2");
12595 set_optab_libfunc (le_optab, DFmode, "__mips16_ledf2");
12596 set_optab_libfunc (unord_optab, DFmode, "__mips16_unorddf2");
12597
12598 set_conv_libfunc (sext_optab, DFmode, SFmode,
12599 "__mips16_extendsfdf2");
12600 set_conv_libfunc (trunc_optab, SFmode, DFmode,
12601 "__mips16_truncdfsf2");
12602 set_conv_libfunc (sfix_optab, SImode, DFmode,
12603 "__mips16_fix_truncdfsi");
12604 set_conv_libfunc (sfloat_optab, DFmode, SImode,
12605 "__mips16_floatsidf");
12606 set_conv_libfunc (ufloat_optab, DFmode, SImode,
12607 "__mips16_floatunsidf");
12608 }
12609 }
12610
12611 /* The MIPS16 ISA does not have an encoding for "sync", so we rely
12612 on an external non-MIPS16 routine to implement __sync_synchronize.
12613 Similarly for the rest of the ll/sc libfuncs. */
12614 if (TARGET_MIPS16)
12615 {
12616 synchronize_libfunc = init_one_libfunc ("__sync_synchronize");
12617 init_sync_libfuncs (UNITS_PER_WORD);
12618 }
12619 }
12620
12621 /* Build up a multi-insn sequence that loads label TARGET into $AT. */
12622
12623 static void
12624 mips_process_load_label (rtx target)
12625 {
12626 rtx base, gp, intop;
12627 HOST_WIDE_INT offset;
12628
12629 mips_multi_start ();
12630 switch (mips_abi)
12631 {
12632 case ABI_N32:
12633 mips_multi_add_insn ("lw\t%@,%%got_page(%0)(%+)", target, 0);
12634 mips_multi_add_insn ("addiu\t%@,%@,%%got_ofst(%0)", target, 0);
12635 break;
12636
12637 case ABI_64:
12638 mips_multi_add_insn ("ld\t%@,%%got_page(%0)(%+)", target, 0);
12639 mips_multi_add_insn ("daddiu\t%@,%@,%%got_ofst(%0)", target, 0);
12640 break;
12641
12642 default:
12643 gp = pic_offset_table_rtx;
12644 if (mips_cfun_has_cprestore_slot_p ())
12645 {
12646 gp = gen_rtx_REG (Pmode, AT_REGNUM);
12647 mips_get_cprestore_base_and_offset (&base, &offset, true);
12648 if (!SMALL_OPERAND (offset))
12649 {
12650 intop = GEN_INT (CONST_HIGH_PART (offset));
12651 mips_multi_add_insn ("lui\t%0,%1", gp, intop, 0);
12652 mips_multi_add_insn ("addu\t%0,%0,%1", gp, base, 0);
12653
12654 base = gp;
12655 offset = CONST_LOW_PART (offset);
12656 }
12657 intop = GEN_INT (offset);
12658 if (ISA_HAS_LOAD_DELAY)
12659 mips_multi_add_insn ("lw\t%0,%1(%2)%#", gp, intop, base, 0);
12660 else
12661 mips_multi_add_insn ("lw\t%0,%1(%2)", gp, intop, base, 0);
12662 }
12663 if (ISA_HAS_LOAD_DELAY)
12664 mips_multi_add_insn ("lw\t%@,%%got(%0)(%1)%#", target, gp, 0);
12665 else
12666 mips_multi_add_insn ("lw\t%@,%%got(%0)(%1)", target, gp, 0);
12667 mips_multi_add_insn ("addiu\t%@,%@,%%lo(%0)", target, 0);
12668 break;
12669 }
12670 }
12671
12672 /* Return the number of instructions needed to load a label into $AT. */
12673
12674 static unsigned int
12675 mips_load_label_num_insns (void)
12676 {
12677 if (cfun->machine->load_label_num_insns == 0)
12678 {
12679 mips_process_load_label (pc_rtx);
12680 cfun->machine->load_label_num_insns = mips_multi_num_insns;
12681 }
12682 return cfun->machine->load_label_num_insns;
12683 }
12684
12685 /* Emit an asm sequence to start a noat block and load the address
12686 of a label into $1. */
12687
12688 void
12689 mips_output_load_label (rtx target)
12690 {
12691 mips_push_asm_switch (&mips_noat);
12692 if (TARGET_EXPLICIT_RELOCS)
12693 {
12694 mips_process_load_label (target);
12695 mips_multi_write ();
12696 }
12697 else
12698 {
12699 if (Pmode == DImode)
12700 output_asm_insn ("dla\t%@,%0", &target);
12701 else
12702 output_asm_insn ("la\t%@,%0", &target);
12703 }
12704 }
12705
12706 /* Return the length of INSN. LENGTH is the initial length computed by
12707 attributes in the machine-description file. */
12708
12709 int
12710 mips_adjust_insn_length (rtx_insn *insn, int length)
12711 {
12712 /* mips.md uses MAX_PIC_BRANCH_LENGTH as a placeholder for the length
12713 of a PIC long-branch sequence. Substitute the correct value. */
12714 if (length == MAX_PIC_BRANCH_LENGTH
12715 && JUMP_P (insn)
12716 && INSN_CODE (insn) >= 0
12717 && get_attr_type (insn) == TYPE_BRANCH)
12718 {
12719 /* Add the branch-over instruction and its delay slot, if this
12720 is a conditional branch. */
12721 length = simplejump_p (insn) ? 0 : 8;
12722
12723 /* Add the size of a load into $AT. */
12724 length += BASE_INSN_LENGTH * mips_load_label_num_insns ();
12725
12726 /* Add the length of an indirect jump, ignoring the delay slot. */
12727 length += TARGET_COMPRESSION ? 2 : 4;
12728 }
12729
12730 /* A unconditional jump has an unfilled delay slot if it is not part
12731 of a sequence. A conditional jump normally has a delay slot, but
12732 does not on MIPS16. */
12733 if (CALL_P (insn) || (TARGET_MIPS16 ? simplejump_p (insn) : JUMP_P (insn)))
12734 length += TARGET_MIPS16 ? 2 : 4;
12735
12736 /* See how many nops might be needed to avoid hardware hazards. */
12737 if (!cfun->machine->ignore_hazard_length_p
12738 && INSN_P (insn)
12739 && INSN_CODE (insn) >= 0)
12740 switch (get_attr_hazard (insn))
12741 {
12742 case HAZARD_NONE:
12743 break;
12744
12745 case HAZARD_DELAY:
12746 length += NOP_INSN_LENGTH;
12747 break;
12748
12749 case HAZARD_HILO:
12750 length += NOP_INSN_LENGTH * 2;
12751 break;
12752 }
12753
12754 return length;
12755 }
12756
12757 /* Return the assembly code for INSN, which has the operands given by
12758 OPERANDS, and which branches to OPERANDS[0] if some condition is true.
12759 BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[0]
12760 is in range of a direct branch. BRANCH_IF_FALSE is an inverted
12761 version of BRANCH_IF_TRUE. */
12762
12763 const char *
12764 mips_output_conditional_branch (rtx_insn *insn, rtx *operands,
12765 const char *branch_if_true,
12766 const char *branch_if_false)
12767 {
12768 unsigned int length;
12769 rtx taken;
12770
12771 gcc_assert (LABEL_P (operands[0]));
12772
12773 length = get_attr_length (insn);
12774 if (length <= 8)
12775 {
12776 /* Just a simple conditional branch. */
12777 mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
12778 return branch_if_true;
12779 }
12780
12781 /* Generate a reversed branch around a direct jump. This fallback does
12782 not use branch-likely instructions. */
12783 mips_branch_likely = false;
12784 rtx_code_label *not_taken = gen_label_rtx ();
12785 taken = operands[0];
12786
12787 /* Generate the reversed branch to NOT_TAKEN. */
12788 operands[0] = not_taken;
12789 output_asm_insn (branch_if_false, operands);
12790
12791 /* If INSN has a delay slot, we must provide delay slots for both the
12792 branch to NOT_TAKEN and the conditional jump. We must also ensure
12793 that INSN's delay slot is executed in the appropriate cases. */
12794 if (final_sequence)
12795 {
12796 /* This first delay slot will always be executed, so use INSN's
12797 delay slot if is not annulled. */
12798 if (!INSN_ANNULLED_BRANCH_P (insn))
12799 {
12800 final_scan_insn (final_sequence->insn (1),
12801 asm_out_file, optimize, 1, NULL);
12802 final_sequence->insn (1)->set_deleted ();
12803 }
12804 else
12805 output_asm_insn ("nop", 0);
12806 fprintf (asm_out_file, "\n");
12807 }
12808
12809 /* Output the unconditional branch to TAKEN. */
12810 if (TARGET_ABSOLUTE_JUMPS)
12811 output_asm_insn (MIPS_ABSOLUTE_JUMP ("j\t%0%/"), &taken);
12812 else
12813 {
12814 mips_output_load_label (taken);
12815 output_asm_insn ("jr\t%@%]%/", 0);
12816 }
12817
12818 /* Now deal with its delay slot; see above. */
12819 if (final_sequence)
12820 {
12821 /* This delay slot will only be executed if the branch is taken.
12822 Use INSN's delay slot if is annulled. */
12823 if (INSN_ANNULLED_BRANCH_P (insn))
12824 {
12825 final_scan_insn (final_sequence->insn (1),
12826 asm_out_file, optimize, 1, NULL);
12827 final_sequence->insn (1)->set_deleted ();
12828 }
12829 else
12830 output_asm_insn ("nop", 0);
12831 fprintf (asm_out_file, "\n");
12832 }
12833
12834 /* Output NOT_TAKEN. */
12835 targetm.asm_out.internal_label (asm_out_file, "L",
12836 CODE_LABEL_NUMBER (not_taken));
12837 return "";
12838 }
12839
12840 /* Return the assembly code for INSN, which branches to OPERANDS[0]
12841 if some ordering condition is true. The condition is given by
12842 OPERANDS[1] if !INVERTED_P, otherwise it is the inverse of
12843 OPERANDS[1]. OPERANDS[2] is the comparison's first operand;
12844 its second is always zero. */
12845
12846 const char *
12847 mips_output_order_conditional_branch (rtx_insn *insn, rtx *operands, bool inverted_p)
12848 {
12849 const char *branch[2];
12850
12851 /* Make BRANCH[1] branch to OPERANDS[0] when the condition is true.
12852 Make BRANCH[0] branch on the inverse condition. */
12853 switch (GET_CODE (operands[1]))
12854 {
12855 /* These cases are equivalent to comparisons against zero. */
12856 case LEU:
12857 inverted_p = !inverted_p;
12858 /* Fall through. */
12859 case GTU:
12860 branch[!inverted_p] = MIPS_BRANCH ("bne", "%2,%.,%0");
12861 branch[inverted_p] = MIPS_BRANCH ("beq", "%2,%.,%0");
12862 break;
12863
12864 /* These cases are always true or always false. */
12865 case LTU:
12866 inverted_p = !inverted_p;
12867 /* Fall through. */
12868 case GEU:
12869 branch[!inverted_p] = MIPS_BRANCH ("beq", "%.,%.,%0");
12870 branch[inverted_p] = MIPS_BRANCH ("bne", "%.,%.,%0");
12871 break;
12872
12873 default:
12874 branch[!inverted_p] = MIPS_BRANCH ("b%C1z", "%2,%0");
12875 branch[inverted_p] = MIPS_BRANCH ("b%N1z", "%2,%0");
12876 break;
12877 }
12878 return mips_output_conditional_branch (insn, operands, branch[1], branch[0]);
12879 }
12880 \f
12881 /* Start a block of code that needs access to the LL, SC and SYNC
12882 instructions. */
12883
12884 static void
12885 mips_start_ll_sc_sync_block (void)
12886 {
12887 if (!ISA_HAS_LL_SC)
12888 {
12889 output_asm_insn (".set\tpush", 0);
12890 if (TARGET_64BIT)
12891 output_asm_insn (".set\tmips3", 0);
12892 else
12893 output_asm_insn (".set\tmips2", 0);
12894 }
12895 }
12896
12897 /* End a block started by mips_start_ll_sc_sync_block. */
12898
12899 static void
12900 mips_end_ll_sc_sync_block (void)
12901 {
12902 if (!ISA_HAS_LL_SC)
12903 output_asm_insn (".set\tpop", 0);
12904 }
12905
12906 /* Output and/or return the asm template for a sync instruction. */
12907
12908 const char *
12909 mips_output_sync (void)
12910 {
12911 mips_start_ll_sc_sync_block ();
12912 output_asm_insn ("sync", 0);
12913 mips_end_ll_sc_sync_block ();
12914 return "";
12915 }
12916
12917 /* Return the asm template associated with sync_insn1 value TYPE.
12918 IS_64BIT_P is true if we want a 64-bit rather than 32-bit operation. */
12919
12920 static const char *
12921 mips_sync_insn1_template (enum attr_sync_insn1 type, bool is_64bit_p)
12922 {
12923 switch (type)
12924 {
12925 case SYNC_INSN1_MOVE:
12926 return "move\t%0,%z2";
12927 case SYNC_INSN1_LI:
12928 return "li\t%0,%2";
12929 case SYNC_INSN1_ADDU:
12930 return is_64bit_p ? "daddu\t%0,%1,%z2" : "addu\t%0,%1,%z2";
12931 case SYNC_INSN1_ADDIU:
12932 return is_64bit_p ? "daddiu\t%0,%1,%2" : "addiu\t%0,%1,%2";
12933 case SYNC_INSN1_SUBU:
12934 return is_64bit_p ? "dsubu\t%0,%1,%z2" : "subu\t%0,%1,%z2";
12935 case SYNC_INSN1_AND:
12936 return "and\t%0,%1,%z2";
12937 case SYNC_INSN1_ANDI:
12938 return "andi\t%0,%1,%2";
12939 case SYNC_INSN1_OR:
12940 return "or\t%0,%1,%z2";
12941 case SYNC_INSN1_ORI:
12942 return "ori\t%0,%1,%2";
12943 case SYNC_INSN1_XOR:
12944 return "xor\t%0,%1,%z2";
12945 case SYNC_INSN1_XORI:
12946 return "xori\t%0,%1,%2";
12947 }
12948 gcc_unreachable ();
12949 }
12950
12951 /* Return the asm template associated with sync_insn2 value TYPE. */
12952
12953 static const char *
12954 mips_sync_insn2_template (enum attr_sync_insn2 type)
12955 {
12956 switch (type)
12957 {
12958 case SYNC_INSN2_NOP:
12959 gcc_unreachable ();
12960 case SYNC_INSN2_AND:
12961 return "and\t%0,%1,%z2";
12962 case SYNC_INSN2_XOR:
12963 return "xor\t%0,%1,%z2";
12964 case SYNC_INSN2_NOT:
12965 return "nor\t%0,%1,%.";
12966 }
12967 gcc_unreachable ();
12968 }
12969
12970 /* OPERANDS are the operands to a sync loop instruction and INDEX is
12971 the value of the one of the sync_* attributes. Return the operand
12972 referred to by the attribute, or DEFAULT_VALUE if the insn doesn't
12973 have the associated attribute. */
12974
12975 static rtx
12976 mips_get_sync_operand (rtx *operands, int index, rtx default_value)
12977 {
12978 if (index > 0)
12979 default_value = operands[index - 1];
12980 return default_value;
12981 }
12982
12983 /* INSN is a sync loop with operands OPERANDS. Build up a multi-insn
12984 sequence for it. */
12985
12986 static void
12987 mips_process_sync_loop (rtx_insn *insn, rtx *operands)
12988 {
12989 rtx at, mem, oldval, newval, inclusive_mask, exclusive_mask;
12990 rtx required_oldval, insn1_op2, tmp1, tmp2, tmp3, cmp;
12991 unsigned int tmp3_insn;
12992 enum attr_sync_insn1 insn1;
12993 enum attr_sync_insn2 insn2;
12994 bool is_64bit_p;
12995 int memmodel_attr;
12996 enum memmodel model;
12997
12998 /* Read an operand from the sync_WHAT attribute and store it in
12999 variable WHAT. DEFAULT is the default value if no attribute
13000 is specified. */
13001 #define READ_OPERAND(WHAT, DEFAULT) \
13002 WHAT = mips_get_sync_operand (operands, (int) get_attr_sync_##WHAT (insn), \
13003 DEFAULT)
13004
13005 /* Read the memory. */
13006 READ_OPERAND (mem, 0);
13007 gcc_assert (mem);
13008 is_64bit_p = (GET_MODE_BITSIZE (GET_MODE (mem)) == 64);
13009
13010 /* Read the other attributes. */
13011 at = gen_rtx_REG (GET_MODE (mem), AT_REGNUM);
13012 READ_OPERAND (oldval, at);
13013 READ_OPERAND (cmp, 0);
13014 READ_OPERAND (newval, at);
13015 READ_OPERAND (inclusive_mask, 0);
13016 READ_OPERAND (exclusive_mask, 0);
13017 READ_OPERAND (required_oldval, 0);
13018 READ_OPERAND (insn1_op2, 0);
13019 insn1 = get_attr_sync_insn1 (insn);
13020 insn2 = get_attr_sync_insn2 (insn);
13021
13022 /* Don't bother setting CMP result that is never used. */
13023 if (cmp && find_reg_note (insn, REG_UNUSED, cmp))
13024 cmp = 0;
13025
13026 memmodel_attr = get_attr_sync_memmodel (insn);
13027 switch (memmodel_attr)
13028 {
13029 case 10:
13030 model = MEMMODEL_ACQ_REL;
13031 break;
13032 case 11:
13033 model = MEMMODEL_ACQUIRE;
13034 break;
13035 default:
13036 model = memmodel_from_int (INTVAL (operands[memmodel_attr]));
13037 }
13038
13039 mips_multi_start ();
13040
13041 /* Output the release side of the memory barrier. */
13042 if (need_atomic_barrier_p (model, true))
13043 {
13044 if (required_oldval == 0 && TARGET_OCTEON)
13045 {
13046 /* Octeon doesn't reorder reads, so a full barrier can be
13047 created by using SYNCW to order writes combined with the
13048 write from the following SC. When the SC successfully
13049 completes, we know that all preceding writes are also
13050 committed to the coherent memory system. It is possible
13051 for a single SYNCW to fail, but a pair of them will never
13052 fail, so we use two. */
13053 mips_multi_add_insn ("syncw", NULL);
13054 mips_multi_add_insn ("syncw", NULL);
13055 }
13056 else
13057 mips_multi_add_insn ("sync", NULL);
13058 }
13059
13060 /* Output the branch-back label. */
13061 mips_multi_add_label ("1:");
13062
13063 /* OLDVAL = *MEM. */
13064 mips_multi_add_insn (is_64bit_p ? "lld\t%0,%1" : "ll\t%0,%1",
13065 oldval, mem, NULL);
13066
13067 /* if ((OLDVAL & INCLUSIVE_MASK) != REQUIRED_OLDVAL) goto 2. */
13068 if (required_oldval)
13069 {
13070 if (inclusive_mask == 0)
13071 tmp1 = oldval;
13072 else
13073 {
13074 gcc_assert (oldval != at);
13075 mips_multi_add_insn ("and\t%0,%1,%2",
13076 at, oldval, inclusive_mask, NULL);
13077 tmp1 = at;
13078 }
13079 mips_multi_add_insn ("bne\t%0,%z1,2f", tmp1, required_oldval, NULL);
13080
13081 /* CMP = 0 [delay slot]. */
13082 if (cmp)
13083 mips_multi_add_insn ("li\t%0,0", cmp, NULL);
13084 }
13085
13086 /* $TMP1 = OLDVAL & EXCLUSIVE_MASK. */
13087 if (exclusive_mask == 0)
13088 tmp1 = const0_rtx;
13089 else
13090 {
13091 gcc_assert (oldval != at);
13092 mips_multi_add_insn ("and\t%0,%1,%z2",
13093 at, oldval, exclusive_mask, NULL);
13094 tmp1 = at;
13095 }
13096
13097 /* $TMP2 = INSN1 (OLDVAL, INSN1_OP2).
13098
13099 We can ignore moves if $TMP4 != INSN1_OP2, since we'll still emit
13100 at least one instruction in that case. */
13101 if (insn1 == SYNC_INSN1_MOVE
13102 && (tmp1 != const0_rtx || insn2 != SYNC_INSN2_NOP))
13103 tmp2 = insn1_op2;
13104 else
13105 {
13106 mips_multi_add_insn (mips_sync_insn1_template (insn1, is_64bit_p),
13107 newval, oldval, insn1_op2, NULL);
13108 tmp2 = newval;
13109 }
13110
13111 /* $TMP3 = INSN2 ($TMP2, INCLUSIVE_MASK). */
13112 if (insn2 == SYNC_INSN2_NOP)
13113 tmp3 = tmp2;
13114 else
13115 {
13116 mips_multi_add_insn (mips_sync_insn2_template (insn2),
13117 newval, tmp2, inclusive_mask, NULL);
13118 tmp3 = newval;
13119 }
13120 tmp3_insn = mips_multi_last_index ();
13121
13122 /* $AT = $TMP1 | $TMP3. */
13123 if (tmp1 == const0_rtx || tmp3 == const0_rtx)
13124 {
13125 mips_multi_set_operand (tmp3_insn, 0, at);
13126 tmp3 = at;
13127 }
13128 else
13129 {
13130 gcc_assert (tmp1 != tmp3);
13131 mips_multi_add_insn ("or\t%0,%1,%2", at, tmp1, tmp3, NULL);
13132 }
13133
13134 /* if (!commit (*MEM = $AT)) goto 1.
13135
13136 This will sometimes be a delayed branch; see the write code below
13137 for details. */
13138 mips_multi_add_insn (is_64bit_p ? "scd\t%0,%1" : "sc\t%0,%1", at, mem, NULL);
13139
13140 /* When using branch likely (-mfix-r10000), the delay slot instruction
13141 will be annulled on false. The normal delay slot instructions
13142 calculate the overall result of the atomic operation and must not
13143 be annulled. To ensure this behaviour unconditionally use a NOP
13144 in the delay slot for the branch likely case. */
13145
13146 mips_multi_add_insn ("beq%?\t%0,%.,1b%~", at, NULL);
13147
13148 /* if (INSN1 != MOVE && INSN1 != LI) NEWVAL = $TMP3 [delay slot]. */
13149 if (insn1 != SYNC_INSN1_MOVE && insn1 != SYNC_INSN1_LI && tmp3 != newval)
13150 {
13151 mips_multi_copy_insn (tmp3_insn);
13152 mips_multi_set_operand (mips_multi_last_index (), 0, newval);
13153 }
13154 else if (!(required_oldval && cmp) && !mips_branch_likely)
13155 mips_multi_add_insn ("nop", NULL);
13156
13157 /* CMP = 1 -- either standalone or in a delay slot. */
13158 if (required_oldval && cmp)
13159 mips_multi_add_insn ("li\t%0,1", cmp, NULL);
13160
13161 /* Output the acquire side of the memory barrier. */
13162 if (TARGET_SYNC_AFTER_SC && need_atomic_barrier_p (model, false))
13163 mips_multi_add_insn ("sync", NULL);
13164
13165 /* Output the exit label, if needed. */
13166 if (required_oldval)
13167 mips_multi_add_label ("2:");
13168
13169 #undef READ_OPERAND
13170 }
13171
13172 /* Output and/or return the asm template for sync loop INSN, which has
13173 the operands given by OPERANDS. */
13174
13175 const char *
13176 mips_output_sync_loop (rtx_insn *insn, rtx *operands)
13177 {
13178 /* Use branch-likely instructions to work around the LL/SC R10000
13179 errata. */
13180 mips_branch_likely = TARGET_FIX_R10000;
13181
13182 mips_process_sync_loop (insn, operands);
13183
13184 mips_push_asm_switch (&mips_noreorder);
13185 mips_push_asm_switch (&mips_nomacro);
13186 mips_push_asm_switch (&mips_noat);
13187 mips_start_ll_sc_sync_block ();
13188
13189 mips_multi_write ();
13190
13191 mips_end_ll_sc_sync_block ();
13192 mips_pop_asm_switch (&mips_noat);
13193 mips_pop_asm_switch (&mips_nomacro);
13194 mips_pop_asm_switch (&mips_noreorder);
13195
13196 return "";
13197 }
13198
13199 /* Return the number of individual instructions in sync loop INSN,
13200 which has the operands given by OPERANDS. */
13201
13202 unsigned int
13203 mips_sync_loop_insns (rtx_insn *insn, rtx *operands)
13204 {
13205 /* Use branch-likely instructions to work around the LL/SC R10000
13206 errata. */
13207 mips_branch_likely = TARGET_FIX_R10000;
13208 mips_process_sync_loop (insn, operands);
13209 return mips_multi_num_insns;
13210 }
13211 \f
13212 /* Return the assembly code for DIV or DDIV instruction DIVISION, which has
13213 the operands given by OPERANDS. Add in a divide-by-zero check if needed.
13214
13215 When working around R4000 and R4400 errata, we need to make sure that
13216 the division is not immediately followed by a shift[1][2]. We also
13217 need to stop the division from being put into a branch delay slot[3].
13218 The easiest way to avoid both problems is to add a nop after the
13219 division. When a divide-by-zero check is needed, this nop can be
13220 used to fill the branch delay slot.
13221
13222 [1] If a double-word or a variable shift executes immediately
13223 after starting an integer division, the shift may give an
13224 incorrect result. See quotations of errata #16 and #28 from
13225 "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
13226 in mips.md for details.
13227
13228 [2] A similar bug to [1] exists for all revisions of the
13229 R4000 and the R4400 when run in an MC configuration.
13230 From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0":
13231
13232 "19. In this following sequence:
13233
13234 ddiv (or ddivu or div or divu)
13235 dsll32 (or dsrl32, dsra32)
13236
13237 if an MPT stall occurs, while the divide is slipping the cpu
13238 pipeline, then the following double shift would end up with an
13239 incorrect result.
13240
13241 Workaround: The compiler needs to avoid generating any
13242 sequence with divide followed by extended double shift."
13243
13244 This erratum is also present in "MIPS R4400MC Errata, Processor
13245 Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0
13246 & 3.0" as errata #10 and #4, respectively.
13247
13248 [3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
13249 (also valid for MIPS R4000MC processors):
13250
13251 "52. R4000SC: This bug does not apply for the R4000PC.
13252
13253 There are two flavors of this bug:
13254
13255 1) If the instruction just after divide takes an RF exception
13256 (tlb-refill, tlb-invalid) and gets an instruction cache
13257 miss (both primary and secondary) and the line which is
13258 currently in secondary cache at this index had the first
13259 data word, where the bits 5..2 are set, then R4000 would
13260 get a wrong result for the div.
13261
13262 ##1
13263 nop
13264 div r8, r9
13265 ------------------- # end-of page. -tlb-refill
13266 nop
13267 ##2
13268 nop
13269 div r8, r9
13270 ------------------- # end-of page. -tlb-invalid
13271 nop
13272
13273 2) If the divide is in the taken branch delay slot, where the
13274 target takes RF exception and gets an I-cache miss for the
13275 exception vector or where I-cache miss occurs for the
13276 target address, under the above mentioned scenarios, the
13277 div would get wrong results.
13278
13279 ##1
13280 j r2 # to next page mapped or unmapped
13281 div r8,r9 # this bug would be there as long
13282 # as there is an ICache miss and
13283 nop # the "data pattern" is present
13284
13285 ##2
13286 beq r0, r0, NextPage # to Next page
13287 div r8,r9
13288 nop
13289
13290 This bug is present for div, divu, ddiv, and ddivu
13291 instructions.
13292
13293 Workaround: For item 1), OS could make sure that the next page
13294 after the divide instruction is also mapped. For item 2), the
13295 compiler could make sure that the divide instruction is not in
13296 the branch delay slot."
13297
13298 These processors have PRId values of 0x00004220 and 0x00004300 for
13299 the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400. */
13300
13301 const char *
13302 mips_output_division (const char *division, rtx *operands)
13303 {
13304 const char *s;
13305
13306 s = division;
13307 if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
13308 {
13309 output_asm_insn (s, operands);
13310 s = "nop";
13311 }
13312 if (TARGET_CHECK_ZERO_DIV)
13313 {
13314 if (TARGET_MIPS16)
13315 {
13316 output_asm_insn (s, operands);
13317 s = "bnez\t%2,1f\n\tbreak\t7\n1:";
13318 }
13319 else if (GENERATE_DIVIDE_TRAPS)
13320 {
13321 /* Avoid long replay penalty on load miss by putting the trap before
13322 the divide. */
13323 if (TUNE_74K)
13324 output_asm_insn ("teq\t%2,%.,7", operands);
13325 else
13326 {
13327 output_asm_insn (s, operands);
13328 s = "teq\t%2,%.,7";
13329 }
13330 }
13331 else
13332 {
13333 output_asm_insn ("%(bne\t%2,%.,1f", operands);
13334 output_asm_insn (s, operands);
13335 s = "break\t7%)\n1:";
13336 }
13337 }
13338 return s;
13339 }
13340 \f
13341 /* Return true if destination of IN_INSN is used as add source in
13342 OUT_INSN. Both IN_INSN and OUT_INSN are of type fmadd. Example:
13343 madd.s dst, x, y, z
13344 madd.s a, dst, b, c */
13345
13346 bool
13347 mips_fmadd_bypass (rtx_insn *out_insn, rtx_insn *in_insn)
13348 {
13349 int dst_reg, src_reg;
13350
13351 gcc_assert (get_attr_type (in_insn) == TYPE_FMADD);
13352 gcc_assert (get_attr_type (out_insn) == TYPE_FMADD);
13353
13354 extract_insn (in_insn);
13355 dst_reg = REG_P (recog_data.operand[0]);
13356
13357 extract_insn (out_insn);
13358 src_reg = REG_P (recog_data.operand[1]);
13359
13360 if (dst_reg == src_reg)
13361 return true;
13362
13363 return false;
13364 }
13365
13366 /* Return true if IN_INSN is a multiply-add or multiply-subtract
13367 instruction and if OUT_INSN assigns to the accumulator operand. */
13368
13369 bool
13370 mips_linked_madd_p (rtx_insn *out_insn, rtx_insn *in_insn)
13371 {
13372 enum attr_accum_in accum_in;
13373 int accum_in_opnum;
13374 rtx accum_in_op;
13375
13376 if (recog_memoized (in_insn) < 0)
13377 return false;
13378
13379 accum_in = get_attr_accum_in (in_insn);
13380 if (accum_in == ACCUM_IN_NONE)
13381 return false;
13382
13383 accum_in_opnum = accum_in - ACCUM_IN_0;
13384
13385 extract_insn (in_insn);
13386 gcc_assert (accum_in_opnum < recog_data.n_operands);
13387 accum_in_op = recog_data.operand[accum_in_opnum];
13388
13389 return reg_set_p (accum_in_op, out_insn);
13390 }
13391
13392 /* True if the dependency between OUT_INSN and IN_INSN is on the store
13393 data rather than the address. We need this because the cprestore
13394 pattern is type "store", but is defined using an UNSPEC_VOLATILE,
13395 which causes the default routine to abort. We just return false
13396 for that case. */
13397
13398 bool
13399 mips_store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
13400 {
13401 if (GET_CODE (PATTERN (in_insn)) == UNSPEC_VOLATILE)
13402 return false;
13403
13404 return !store_data_bypass_p (out_insn, in_insn);
13405 }
13406 \f
13407
13408 /* Variables and flags used in scheduler hooks when tuning for
13409 Loongson 2E/2F. */
13410 static struct
13411 {
13412 /* Variables to support Loongson 2E/2F round-robin [F]ALU1/2 dispatch
13413 strategy. */
13414
13415 /* If true, then next ALU1/2 instruction will go to ALU1. */
13416 bool alu1_turn_p;
13417
13418 /* If true, then next FALU1/2 unstruction will go to FALU1. */
13419 bool falu1_turn_p;
13420
13421 /* Codes to query if [f]alu{1,2}_core units are subscribed or not. */
13422 int alu1_core_unit_code;
13423 int alu2_core_unit_code;
13424 int falu1_core_unit_code;
13425 int falu2_core_unit_code;
13426
13427 /* True if current cycle has a multi instruction.
13428 This flag is used in mips_ls2_dfa_post_advance_cycle. */
13429 bool cycle_has_multi_p;
13430
13431 /* Instructions to subscribe ls2_[f]alu{1,2}_turn_enabled units.
13432 These are used in mips_ls2_dfa_post_advance_cycle to initialize
13433 DFA state.
13434 E.g., when alu1_turn_enabled_insn is issued it makes next ALU1/2
13435 instruction to go ALU1. */
13436 rtx_insn *alu1_turn_enabled_insn;
13437 rtx_insn *alu2_turn_enabled_insn;
13438 rtx_insn *falu1_turn_enabled_insn;
13439 rtx_insn *falu2_turn_enabled_insn;
13440 } mips_ls2;
13441
13442 /* Implement TARGET_SCHED_ADJUST_COST. We assume that anti and output
13443 dependencies have no cost, except on the 20Kc where output-dependence
13444 is treated like input-dependence. */
13445
13446 static int
13447 mips_adjust_cost (rtx_insn *insn ATTRIBUTE_UNUSED, rtx link,
13448 rtx_insn *dep ATTRIBUTE_UNUSED, int cost)
13449 {
13450 if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT
13451 && TUNE_20KC)
13452 return cost;
13453 if (REG_NOTE_KIND (link) != 0)
13454 return 0;
13455 return cost;
13456 }
13457
13458 /* Return the number of instructions that can be issued per cycle. */
13459
13460 static int
13461 mips_issue_rate (void)
13462 {
13463 switch (mips_tune)
13464 {
13465 case PROCESSOR_74KC:
13466 case PROCESSOR_74KF2_1:
13467 case PROCESSOR_74KF1_1:
13468 case PROCESSOR_74KF3_2:
13469 /* The 74k is not strictly quad-issue cpu, but can be seen as one
13470 by the scheduler. It can issue 1 ALU, 1 AGEN and 2 FPU insns,
13471 but in reality only a maximum of 3 insns can be issued as
13472 floating-point loads and stores also require a slot in the
13473 AGEN pipe. */
13474 case PROCESSOR_R10000:
13475 /* All R10K Processors are quad-issue (being the first MIPS
13476 processors to support this feature). */
13477 return 4;
13478
13479 case PROCESSOR_20KC:
13480 case PROCESSOR_R4130:
13481 case PROCESSOR_R5400:
13482 case PROCESSOR_R5500:
13483 case PROCESSOR_R5900:
13484 case PROCESSOR_R7000:
13485 case PROCESSOR_R9000:
13486 case PROCESSOR_OCTEON:
13487 case PROCESSOR_OCTEON2:
13488 case PROCESSOR_OCTEON3:
13489 return 2;
13490
13491 case PROCESSOR_SB1:
13492 case PROCESSOR_SB1A:
13493 /* This is actually 4, but we get better performance if we claim 3.
13494 This is partly because of unwanted speculative code motion with the
13495 larger number, and partly because in most common cases we can't
13496 reach the theoretical max of 4. */
13497 return 3;
13498
13499 case PROCESSOR_LOONGSON_2E:
13500 case PROCESSOR_LOONGSON_2F:
13501 case PROCESSOR_LOONGSON_3A:
13502 case PROCESSOR_P5600:
13503 return 4;
13504
13505 case PROCESSOR_XLP:
13506 return (reload_completed ? 4 : 3);
13507
13508 default:
13509 return 1;
13510 }
13511 }
13512
13513 /* Implement TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN hook for Loongson2. */
13514
13515 static void
13516 mips_ls2_init_dfa_post_cycle_insn (void)
13517 {
13518 start_sequence ();
13519 emit_insn (gen_ls2_alu1_turn_enabled_insn ());
13520 mips_ls2.alu1_turn_enabled_insn = get_insns ();
13521 end_sequence ();
13522
13523 start_sequence ();
13524 emit_insn (gen_ls2_alu2_turn_enabled_insn ());
13525 mips_ls2.alu2_turn_enabled_insn = get_insns ();
13526 end_sequence ();
13527
13528 start_sequence ();
13529 emit_insn (gen_ls2_falu1_turn_enabled_insn ());
13530 mips_ls2.falu1_turn_enabled_insn = get_insns ();
13531 end_sequence ();
13532
13533 start_sequence ();
13534 emit_insn (gen_ls2_falu2_turn_enabled_insn ());
13535 mips_ls2.falu2_turn_enabled_insn = get_insns ();
13536 end_sequence ();
13537
13538 mips_ls2.alu1_core_unit_code = get_cpu_unit_code ("ls2_alu1_core");
13539 mips_ls2.alu2_core_unit_code = get_cpu_unit_code ("ls2_alu2_core");
13540 mips_ls2.falu1_core_unit_code = get_cpu_unit_code ("ls2_falu1_core");
13541 mips_ls2.falu2_core_unit_code = get_cpu_unit_code ("ls2_falu2_core");
13542 }
13543
13544 /* Implement TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN hook.
13545 Init data used in mips_dfa_post_advance_cycle. */
13546
13547 static void
13548 mips_init_dfa_post_cycle_insn (void)
13549 {
13550 if (TUNE_LOONGSON_2EF)
13551 mips_ls2_init_dfa_post_cycle_insn ();
13552 }
13553
13554 /* Initialize STATE when scheduling for Loongson 2E/2F.
13555 Support round-robin dispatch scheme by enabling only one of
13556 ALU1/ALU2 and one of FALU1/FALU2 units for ALU1/2 and FALU1/2 instructions
13557 respectively. */
13558
13559 static void
13560 mips_ls2_dfa_post_advance_cycle (state_t state)
13561 {
13562 if (cpu_unit_reservation_p (state, mips_ls2.alu1_core_unit_code))
13563 {
13564 /* Though there are no non-pipelined ALU1 insns,
13565 we can get an instruction of type 'multi' before reload. */
13566 gcc_assert (mips_ls2.cycle_has_multi_p);
13567 mips_ls2.alu1_turn_p = false;
13568 }
13569
13570 mips_ls2.cycle_has_multi_p = false;
13571
13572 if (cpu_unit_reservation_p (state, mips_ls2.alu2_core_unit_code))
13573 /* We have a non-pipelined alu instruction in the core,
13574 adjust round-robin counter. */
13575 mips_ls2.alu1_turn_p = true;
13576
13577 if (mips_ls2.alu1_turn_p)
13578 {
13579 if (state_transition (state, mips_ls2.alu1_turn_enabled_insn) >= 0)
13580 gcc_unreachable ();
13581 }
13582 else
13583 {
13584 if (state_transition (state, mips_ls2.alu2_turn_enabled_insn) >= 0)
13585 gcc_unreachable ();
13586 }
13587
13588 if (cpu_unit_reservation_p (state, mips_ls2.falu1_core_unit_code))
13589 {
13590 /* There are no non-pipelined FALU1 insns. */
13591 gcc_unreachable ();
13592 mips_ls2.falu1_turn_p = false;
13593 }
13594
13595 if (cpu_unit_reservation_p (state, mips_ls2.falu2_core_unit_code))
13596 /* We have a non-pipelined falu instruction in the core,
13597 adjust round-robin counter. */
13598 mips_ls2.falu1_turn_p = true;
13599
13600 if (mips_ls2.falu1_turn_p)
13601 {
13602 if (state_transition (state, mips_ls2.falu1_turn_enabled_insn) >= 0)
13603 gcc_unreachable ();
13604 }
13605 else
13606 {
13607 if (state_transition (state, mips_ls2.falu2_turn_enabled_insn) >= 0)
13608 gcc_unreachable ();
13609 }
13610 }
13611
13612 /* Implement TARGET_SCHED_DFA_POST_ADVANCE_CYCLE.
13613 This hook is being called at the start of each cycle. */
13614
13615 static void
13616 mips_dfa_post_advance_cycle (void)
13617 {
13618 if (TUNE_LOONGSON_2EF)
13619 mips_ls2_dfa_post_advance_cycle (curr_state);
13620 }
13621
13622 /* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD. This should
13623 be as wide as the scheduling freedom in the DFA. */
13624
13625 static int
13626 mips_multipass_dfa_lookahead (void)
13627 {
13628 /* Can schedule up to 4 of the 6 function units in any one cycle. */
13629 if (TUNE_SB1)
13630 return 4;
13631
13632 if (TUNE_LOONGSON_2EF || TUNE_LOONGSON_3A)
13633 return 4;
13634
13635 if (TUNE_OCTEON)
13636 return 2;
13637
13638 if (TUNE_P5600)
13639 return 4;
13640
13641 return 0;
13642 }
13643 \f
13644 /* Remove the instruction at index LOWER from ready queue READY and
13645 reinsert it in front of the instruction at index HIGHER. LOWER must
13646 be <= HIGHER. */
13647
13648 static void
13649 mips_promote_ready (rtx_insn **ready, int lower, int higher)
13650 {
13651 rtx_insn *new_head;
13652 int i;
13653
13654 new_head = ready[lower];
13655 for (i = lower; i < higher; i++)
13656 ready[i] = ready[i + 1];
13657 ready[i] = new_head;
13658 }
13659
13660 /* If the priority of the instruction at POS2 in the ready queue READY
13661 is within LIMIT units of that of the instruction at POS1, swap the
13662 instructions if POS2 is not already less than POS1. */
13663
13664 static void
13665 mips_maybe_swap_ready (rtx_insn **ready, int pos1, int pos2, int limit)
13666 {
13667 if (pos1 < pos2
13668 && INSN_PRIORITY (ready[pos1]) + limit >= INSN_PRIORITY (ready[pos2]))
13669 {
13670 rtx_insn *temp;
13671
13672 temp = ready[pos1];
13673 ready[pos1] = ready[pos2];
13674 ready[pos2] = temp;
13675 }
13676 }
13677 \f
13678 /* Used by TUNE_MACC_CHAINS to record the last scheduled instruction
13679 that may clobber hi or lo. */
13680 static rtx_insn *mips_macc_chains_last_hilo;
13681
13682 /* A TUNE_MACC_CHAINS helper function. Record that instruction INSN has
13683 been scheduled, updating mips_macc_chains_last_hilo appropriately. */
13684
13685 static void
13686 mips_macc_chains_record (rtx_insn *insn)
13687 {
13688 if (get_attr_may_clobber_hilo (insn))
13689 mips_macc_chains_last_hilo = insn;
13690 }
13691
13692 /* A TUNE_MACC_CHAINS helper function. Search ready queue READY, which
13693 has NREADY elements, looking for a multiply-add or multiply-subtract
13694 instruction that is cumulative with mips_macc_chains_last_hilo.
13695 If there is one, promote it ahead of anything else that might
13696 clobber hi or lo. */
13697
13698 static void
13699 mips_macc_chains_reorder (rtx_insn **ready, int nready)
13700 {
13701 int i, j;
13702
13703 if (mips_macc_chains_last_hilo != 0)
13704 for (i = nready - 1; i >= 0; i--)
13705 if (mips_linked_madd_p (mips_macc_chains_last_hilo, ready[i]))
13706 {
13707 for (j = nready - 1; j > i; j--)
13708 if (recog_memoized (ready[j]) >= 0
13709 && get_attr_may_clobber_hilo (ready[j]))
13710 {
13711 mips_promote_ready (ready, i, j);
13712 break;
13713 }
13714 break;
13715 }
13716 }
13717 \f
13718 /* The last instruction to be scheduled. */
13719 static rtx_insn *vr4130_last_insn;
13720
13721 /* A note_stores callback used by vr4130_true_reg_dependence_p. DATA
13722 points to an rtx that is initially an instruction. Nullify the rtx
13723 if the instruction uses the value of register X. */
13724
13725 static void
13726 vr4130_true_reg_dependence_p_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED,
13727 void *data)
13728 {
13729 rtx *insn_ptr;
13730
13731 insn_ptr = (rtx *) data;
13732 if (REG_P (x)
13733 && *insn_ptr != 0
13734 && reg_referenced_p (x, PATTERN (*insn_ptr)))
13735 *insn_ptr = 0;
13736 }
13737
13738 /* Return true if there is true register dependence between vr4130_last_insn
13739 and INSN. */
13740
13741 static bool
13742 vr4130_true_reg_dependence_p (rtx insn)
13743 {
13744 note_stores (PATTERN (vr4130_last_insn),
13745 vr4130_true_reg_dependence_p_1, &insn);
13746 return insn == 0;
13747 }
13748
13749 /* A TUNE_MIPS4130 helper function. Given that INSN1 is at the head of
13750 the ready queue and that INSN2 is the instruction after it, return
13751 true if it is worth promoting INSN2 ahead of INSN1. Look for cases
13752 in which INSN1 and INSN2 can probably issue in parallel, but for
13753 which (INSN2, INSN1) should be less sensitive to instruction
13754 alignment than (INSN1, INSN2). See 4130.md for more details. */
13755
13756 static bool
13757 vr4130_swap_insns_p (rtx_insn *insn1, rtx_insn *insn2)
13758 {
13759 sd_iterator_def sd_it;
13760 dep_t dep;
13761
13762 /* Check for the following case:
13763
13764 1) there is some other instruction X with an anti dependence on INSN1;
13765 2) X has a higher priority than INSN2; and
13766 3) X is an arithmetic instruction (and thus has no unit restrictions).
13767
13768 If INSN1 is the last instruction blocking X, it would better to
13769 choose (INSN1, X) over (INSN2, INSN1). */
13770 FOR_EACH_DEP (insn1, SD_LIST_FORW, sd_it, dep)
13771 if (DEP_TYPE (dep) == REG_DEP_ANTI
13772 && INSN_PRIORITY (DEP_CON (dep)) > INSN_PRIORITY (insn2)
13773 && recog_memoized (DEP_CON (dep)) >= 0
13774 && get_attr_vr4130_class (DEP_CON (dep)) == VR4130_CLASS_ALU)
13775 return false;
13776
13777 if (vr4130_last_insn != 0
13778 && recog_memoized (insn1) >= 0
13779 && recog_memoized (insn2) >= 0)
13780 {
13781 /* See whether INSN1 and INSN2 use different execution units,
13782 or if they are both ALU-type instructions. If so, they can
13783 probably execute in parallel. */
13784 enum attr_vr4130_class class1 = get_attr_vr4130_class (insn1);
13785 enum attr_vr4130_class class2 = get_attr_vr4130_class (insn2);
13786 if (class1 != class2 || class1 == VR4130_CLASS_ALU)
13787 {
13788 /* If only one of the instructions has a dependence on
13789 vr4130_last_insn, prefer to schedule the other one first. */
13790 bool dep1_p = vr4130_true_reg_dependence_p (insn1);
13791 bool dep2_p = vr4130_true_reg_dependence_p (insn2);
13792 if (dep1_p != dep2_p)
13793 return dep1_p;
13794
13795 /* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn
13796 is not an ALU-type instruction and if INSN1 uses the same
13797 execution unit. (Note that if this condition holds, we already
13798 know that INSN2 uses a different execution unit.) */
13799 if (class1 != VR4130_CLASS_ALU
13800 && recog_memoized (vr4130_last_insn) >= 0
13801 && class1 == get_attr_vr4130_class (vr4130_last_insn))
13802 return true;
13803 }
13804 }
13805 return false;
13806 }
13807
13808 /* A TUNE_MIPS4130 helper function. (READY, NREADY) describes a ready
13809 queue with at least two instructions. Swap the first two if
13810 vr4130_swap_insns_p says that it could be worthwhile. */
13811
13812 static void
13813 vr4130_reorder (rtx_insn **ready, int nready)
13814 {
13815 if (vr4130_swap_insns_p (ready[nready - 1], ready[nready - 2]))
13816 mips_promote_ready (ready, nready - 2, nready - 1);
13817 }
13818 \f
13819 /* Record whether last 74k AGEN instruction was a load or store. */
13820 static enum attr_type mips_last_74k_agen_insn = TYPE_UNKNOWN;
13821
13822 /* Initialize mips_last_74k_agen_insn from INSN. A null argument
13823 resets to TYPE_UNKNOWN state. */
13824
13825 static void
13826 mips_74k_agen_init (rtx_insn *insn)
13827 {
13828 if (!insn || CALL_P (insn) || JUMP_P (insn))
13829 mips_last_74k_agen_insn = TYPE_UNKNOWN;
13830 else
13831 {
13832 enum attr_type type = get_attr_type (insn);
13833 if (type == TYPE_LOAD || type == TYPE_STORE)
13834 mips_last_74k_agen_insn = type;
13835 }
13836 }
13837
13838 /* A TUNE_74K helper function. The 74K AGEN pipeline likes multiple
13839 loads to be grouped together, and multiple stores to be grouped
13840 together. Swap things around in the ready queue to make this happen. */
13841
13842 static void
13843 mips_74k_agen_reorder (rtx_insn **ready, int nready)
13844 {
13845 int i;
13846 int store_pos, load_pos;
13847
13848 store_pos = -1;
13849 load_pos = -1;
13850
13851 for (i = nready - 1; i >= 0; i--)
13852 {
13853 rtx_insn *insn = ready[i];
13854 if (USEFUL_INSN_P (insn))
13855 switch (get_attr_type (insn))
13856 {
13857 case TYPE_STORE:
13858 if (store_pos == -1)
13859 store_pos = i;
13860 break;
13861
13862 case TYPE_LOAD:
13863 if (load_pos == -1)
13864 load_pos = i;
13865 break;
13866
13867 default:
13868 break;
13869 }
13870 }
13871
13872 if (load_pos == -1 || store_pos == -1)
13873 return;
13874
13875 switch (mips_last_74k_agen_insn)
13876 {
13877 case TYPE_UNKNOWN:
13878 /* Prefer to schedule loads since they have a higher latency. */
13879 case TYPE_LOAD:
13880 /* Swap loads to the front of the queue. */
13881 mips_maybe_swap_ready (ready, load_pos, store_pos, 4);
13882 break;
13883 case TYPE_STORE:
13884 /* Swap stores to the front of the queue. */
13885 mips_maybe_swap_ready (ready, store_pos, load_pos, 4);
13886 break;
13887 default:
13888 break;
13889 }
13890 }
13891 \f
13892 /* Implement TARGET_SCHED_INIT. */
13893
13894 static void
13895 mips_sched_init (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
13896 int max_ready ATTRIBUTE_UNUSED)
13897 {
13898 mips_macc_chains_last_hilo = 0;
13899 vr4130_last_insn = 0;
13900 mips_74k_agen_init (NULL);
13901
13902 /* When scheduling for Loongson2, branch instructions go to ALU1,
13903 therefore basic block is most likely to start with round-robin counter
13904 pointed to ALU2. */
13905 mips_ls2.alu1_turn_p = false;
13906 mips_ls2.falu1_turn_p = true;
13907 }
13908
13909 /* Subroutine used by TARGET_SCHED_REORDER and TARGET_SCHED_REORDER2. */
13910
13911 static void
13912 mips_sched_reorder_1 (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
13913 rtx_insn **ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED)
13914 {
13915 if (!reload_completed
13916 && TUNE_MACC_CHAINS
13917 && *nreadyp > 0)
13918 mips_macc_chains_reorder (ready, *nreadyp);
13919
13920 if (reload_completed
13921 && TUNE_MIPS4130
13922 && !TARGET_VR4130_ALIGN
13923 && *nreadyp > 1)
13924 vr4130_reorder (ready, *nreadyp);
13925
13926 if (TUNE_74K)
13927 mips_74k_agen_reorder (ready, *nreadyp);
13928 }
13929
13930 /* Implement TARGET_SCHED_REORDER. */
13931
13932 static int
13933 mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
13934 rtx_insn **ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED)
13935 {
13936 mips_sched_reorder_1 (file, verbose, ready, nreadyp, cycle);
13937 return mips_issue_rate ();
13938 }
13939
13940 /* Implement TARGET_SCHED_REORDER2. */
13941
13942 static int
13943 mips_sched_reorder2 (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
13944 rtx_insn **ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED)
13945 {
13946 mips_sched_reorder_1 (file, verbose, ready, nreadyp, cycle);
13947 return cached_can_issue_more;
13948 }
13949
13950 /* Update round-robin counters for ALU1/2 and FALU1/2. */
13951
13952 static void
13953 mips_ls2_variable_issue (rtx_insn *insn)
13954 {
13955 if (mips_ls2.alu1_turn_p)
13956 {
13957 if (cpu_unit_reservation_p (curr_state, mips_ls2.alu1_core_unit_code))
13958 mips_ls2.alu1_turn_p = false;
13959 }
13960 else
13961 {
13962 if (cpu_unit_reservation_p (curr_state, mips_ls2.alu2_core_unit_code))
13963 mips_ls2.alu1_turn_p = true;
13964 }
13965
13966 if (mips_ls2.falu1_turn_p)
13967 {
13968 if (cpu_unit_reservation_p (curr_state, mips_ls2.falu1_core_unit_code))
13969 mips_ls2.falu1_turn_p = false;
13970 }
13971 else
13972 {
13973 if (cpu_unit_reservation_p (curr_state, mips_ls2.falu2_core_unit_code))
13974 mips_ls2.falu1_turn_p = true;
13975 }
13976
13977 if (recog_memoized (insn) >= 0)
13978 mips_ls2.cycle_has_multi_p |= (get_attr_type (insn) == TYPE_MULTI);
13979 }
13980
13981 /* Implement TARGET_SCHED_VARIABLE_ISSUE. */
13982
13983 static int
13984 mips_variable_issue (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
13985 rtx_insn *insn, int more)
13986 {
13987 /* Ignore USEs and CLOBBERs; don't count them against the issue rate. */
13988 if (USEFUL_INSN_P (insn))
13989 {
13990 if (get_attr_type (insn) != TYPE_GHOST)
13991 more--;
13992 if (!reload_completed && TUNE_MACC_CHAINS)
13993 mips_macc_chains_record (insn);
13994 vr4130_last_insn = insn;
13995 if (TUNE_74K)
13996 mips_74k_agen_init (insn);
13997 else if (TUNE_LOONGSON_2EF)
13998 mips_ls2_variable_issue (insn);
13999 }
14000
14001 /* Instructions of type 'multi' should all be split before
14002 the second scheduling pass. */
14003 gcc_assert (!reload_completed
14004 || recog_memoized (insn) < 0
14005 || get_attr_type (insn) != TYPE_MULTI);
14006
14007 cached_can_issue_more = more;
14008 return more;
14009 }
14010 \f
14011 /* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
14012 return the first operand of the associated PREF or PREFX insn. */
14013
14014 rtx
14015 mips_prefetch_cookie (rtx write, rtx locality)
14016 {
14017 /* store_streamed / load_streamed. */
14018 if (INTVAL (locality) <= 0)
14019 return GEN_INT (INTVAL (write) + 4);
14020
14021 /* store / load. */
14022 if (INTVAL (locality) <= 2)
14023 return write;
14024
14025 /* store_retained / load_retained. */
14026 return GEN_INT (INTVAL (write) + 6);
14027 }
14028 \f
14029 /* Flags that indicate when a built-in function is available.
14030
14031 BUILTIN_AVAIL_NON_MIPS16
14032 The function is available on the current target if !TARGET_MIPS16.
14033
14034 BUILTIN_AVAIL_MIPS16
14035 The function is available on the current target if TARGET_MIPS16. */
14036 #define BUILTIN_AVAIL_NON_MIPS16 1
14037 #define BUILTIN_AVAIL_MIPS16 2
14038
14039 /* Declare an availability predicate for built-in functions that
14040 require non-MIPS16 mode and also require COND to be true.
14041 NAME is the main part of the predicate's name. */
14042 #define AVAIL_NON_MIPS16(NAME, COND) \
14043 static unsigned int \
14044 mips_builtin_avail_##NAME (void) \
14045 { \
14046 return (COND) ? BUILTIN_AVAIL_NON_MIPS16 : 0; \
14047 }
14048
14049 /* Declare an availability predicate for built-in functions that
14050 support both MIPS16 and non-MIPS16 code and also require COND
14051 to be true. NAME is the main part of the predicate's name. */
14052 #define AVAIL_ALL(NAME, COND) \
14053 static unsigned int \
14054 mips_builtin_avail_##NAME (void) \
14055 { \
14056 return (COND) ? BUILTIN_AVAIL_NON_MIPS16 | BUILTIN_AVAIL_MIPS16 : 0; \
14057 }
14058
14059 /* This structure describes a single built-in function. */
14060 struct mips_builtin_description {
14061 /* The code of the main .md file instruction. See mips_builtin_type
14062 for more information. */
14063 enum insn_code icode;
14064
14065 /* The floating-point comparison code to use with ICODE, if any. */
14066 enum mips_fp_condition cond;
14067
14068 /* The name of the built-in function. */
14069 const char *name;
14070
14071 /* Specifies how the function should be expanded. */
14072 enum mips_builtin_type builtin_type;
14073
14074 /* The function's prototype. */
14075 enum mips_function_type function_type;
14076
14077 /* Whether the function is available. */
14078 unsigned int (*avail) (void);
14079 };
14080
14081 AVAIL_ALL (hard_float, TARGET_HARD_FLOAT_ABI)
14082 AVAIL_NON_MIPS16 (paired_single, TARGET_PAIRED_SINGLE_FLOAT)
14083 AVAIL_NON_MIPS16 (sb1_paired_single, TARGET_SB1 && TARGET_PAIRED_SINGLE_FLOAT)
14084 AVAIL_NON_MIPS16 (mips3d, TARGET_MIPS3D)
14085 AVAIL_NON_MIPS16 (dsp, TARGET_DSP)
14086 AVAIL_NON_MIPS16 (dspr2, TARGET_DSPR2)
14087 AVAIL_NON_MIPS16 (dsp_32, !TARGET_64BIT && TARGET_DSP)
14088 AVAIL_NON_MIPS16 (dsp_64, TARGET_64BIT && TARGET_DSP)
14089 AVAIL_NON_MIPS16 (dspr2_32, !TARGET_64BIT && TARGET_DSPR2)
14090 AVAIL_NON_MIPS16 (loongson, TARGET_LOONGSON_VECTORS)
14091 AVAIL_NON_MIPS16 (cache, TARGET_CACHE_BUILTIN)
14092
14093 /* Construct a mips_builtin_description from the given arguments.
14094
14095 INSN is the name of the associated instruction pattern, without the
14096 leading CODE_FOR_mips_.
14097
14098 CODE is the floating-point condition code associated with the
14099 function. It can be 'f' if the field is not applicable.
14100
14101 NAME is the name of the function itself, without the leading
14102 "__builtin_mips_".
14103
14104 BUILTIN_TYPE and FUNCTION_TYPE are mips_builtin_description fields.
14105
14106 AVAIL is the name of the availability predicate, without the leading
14107 mips_builtin_avail_. */
14108 #define MIPS_BUILTIN(INSN, COND, NAME, BUILTIN_TYPE, \
14109 FUNCTION_TYPE, AVAIL) \
14110 { CODE_FOR_mips_ ## INSN, MIPS_FP_COND_ ## COND, \
14111 "__builtin_mips_" NAME, BUILTIN_TYPE, FUNCTION_TYPE, \
14112 mips_builtin_avail_ ## AVAIL }
14113
14114 /* Define __builtin_mips_<INSN>, which is a MIPS_BUILTIN_DIRECT function
14115 mapped to instruction CODE_FOR_mips_<INSN>, FUNCTION_TYPE and AVAIL
14116 are as for MIPS_BUILTIN. */
14117 #define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
14118 MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, AVAIL)
14119
14120 /* Define __builtin_mips_<INSN>_<COND>_{s,d} functions, both of which
14121 are subject to mips_builtin_avail_<AVAIL>. */
14122 #define CMP_SCALAR_BUILTINS(INSN, COND, AVAIL) \
14123 MIPS_BUILTIN (INSN ## _cond_s, COND, #INSN "_" #COND "_s", \
14124 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, AVAIL), \
14125 MIPS_BUILTIN (INSN ## _cond_d, COND, #INSN "_" #COND "_d", \
14126 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, AVAIL)
14127
14128 /* Define __builtin_mips_{any,all,upper,lower}_<INSN>_<COND>_ps.
14129 The lower and upper forms are subject to mips_builtin_avail_<AVAIL>
14130 while the any and all forms are subject to mips_builtin_avail_mips3d. */
14131 #define CMP_PS_BUILTINS(INSN, COND, AVAIL) \
14132 MIPS_BUILTIN (INSN ## _cond_ps, COND, "any_" #INSN "_" #COND "_ps", \
14133 MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, \
14134 mips3d), \
14135 MIPS_BUILTIN (INSN ## _cond_ps, COND, "all_" #INSN "_" #COND "_ps", \
14136 MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, \
14137 mips3d), \
14138 MIPS_BUILTIN (INSN ## _cond_ps, COND, "lower_" #INSN "_" #COND "_ps", \
14139 MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, \
14140 AVAIL), \
14141 MIPS_BUILTIN (INSN ## _cond_ps, COND, "upper_" #INSN "_" #COND "_ps", \
14142 MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, \
14143 AVAIL)
14144
14145 /* Define __builtin_mips_{any,all}_<INSN>_<COND>_4s. The functions
14146 are subject to mips_builtin_avail_mips3d. */
14147 #define CMP_4S_BUILTINS(INSN, COND) \
14148 MIPS_BUILTIN (INSN ## _cond_4s, COND, "any_" #INSN "_" #COND "_4s", \
14149 MIPS_BUILTIN_CMP_ANY, \
14150 MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, mips3d), \
14151 MIPS_BUILTIN (INSN ## _cond_4s, COND, "all_" #INSN "_" #COND "_4s", \
14152 MIPS_BUILTIN_CMP_ALL, \
14153 MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, mips3d)
14154
14155 /* Define __builtin_mips_mov{t,f}_<INSN>_<COND>_ps. The comparison
14156 instruction requires mips_builtin_avail_<AVAIL>. */
14157 #define MOVTF_BUILTINS(INSN, COND, AVAIL) \
14158 MIPS_BUILTIN (INSN ## _cond_ps, COND, "movt_" #INSN "_" #COND "_ps", \
14159 MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
14160 AVAIL), \
14161 MIPS_BUILTIN (INSN ## _cond_ps, COND, "movf_" #INSN "_" #COND "_ps", \
14162 MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
14163 AVAIL)
14164
14165 /* Define all the built-in functions related to C.cond.fmt condition COND. */
14166 #define CMP_BUILTINS(COND) \
14167 MOVTF_BUILTINS (c, COND, paired_single), \
14168 MOVTF_BUILTINS (cabs, COND, mips3d), \
14169 CMP_SCALAR_BUILTINS (cabs, COND, mips3d), \
14170 CMP_PS_BUILTINS (c, COND, paired_single), \
14171 CMP_PS_BUILTINS (cabs, COND, mips3d), \
14172 CMP_4S_BUILTINS (c, COND), \
14173 CMP_4S_BUILTINS (cabs, COND)
14174
14175 /* Define __builtin_mips_<INSN>, which is a MIPS_BUILTIN_DIRECT_NO_TARGET
14176 function mapped to instruction CODE_FOR_mips_<INSN>, FUNCTION_TYPE
14177 and AVAIL are as for MIPS_BUILTIN. */
14178 #define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
14179 MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT_NO_TARGET, \
14180 FUNCTION_TYPE, AVAIL)
14181
14182 /* Define __builtin_mips_bposge<VALUE>. <VALUE> is 32 for the MIPS32 DSP
14183 branch instruction. AVAIL is as for MIPS_BUILTIN. */
14184 #define BPOSGE_BUILTIN(VALUE, AVAIL) \
14185 MIPS_BUILTIN (bposge, f, "bposge" #VALUE, \
14186 MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, AVAIL)
14187
14188 /* Define a Loongson MIPS_BUILTIN_DIRECT function __builtin_loongson_<FN_NAME>
14189 for instruction CODE_FOR_loongson_<INSN>. FUNCTION_TYPE is a
14190 builtin_description field. */
14191 #define LOONGSON_BUILTIN_ALIAS(INSN, FN_NAME, FUNCTION_TYPE) \
14192 { CODE_FOR_loongson_ ## INSN, MIPS_FP_COND_f, \
14193 "__builtin_loongson_" #FN_NAME, MIPS_BUILTIN_DIRECT, \
14194 FUNCTION_TYPE, mips_builtin_avail_loongson }
14195
14196 /* Define a Loongson MIPS_BUILTIN_DIRECT function __builtin_loongson_<INSN>
14197 for instruction CODE_FOR_loongson_<INSN>. FUNCTION_TYPE is a
14198 builtin_description field. */
14199 #define LOONGSON_BUILTIN(INSN, FUNCTION_TYPE) \
14200 LOONGSON_BUILTIN_ALIAS (INSN, INSN, FUNCTION_TYPE)
14201
14202 /* Like LOONGSON_BUILTIN, but add _<SUFFIX> to the end of the function name.
14203 We use functions of this form when the same insn can be usefully applied
14204 to more than one datatype. */
14205 #define LOONGSON_BUILTIN_SUFFIX(INSN, SUFFIX, FUNCTION_TYPE) \
14206 LOONGSON_BUILTIN_ALIAS (INSN, INSN ## _ ## SUFFIX, FUNCTION_TYPE)
14207
14208 #define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2
14209 #define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3
14210 #define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3
14211 #define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3
14212 #define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3
14213 #define CODE_FOR_mips_mul_ph CODE_FOR_mulv2hi3
14214 #define CODE_FOR_mips_mult CODE_FOR_mulsidi3_32bit
14215 #define CODE_FOR_mips_multu CODE_FOR_umulsidi3_32bit
14216
14217 #define CODE_FOR_loongson_packsswh CODE_FOR_vec_pack_ssat_v2si
14218 #define CODE_FOR_loongson_packsshb CODE_FOR_vec_pack_ssat_v4hi
14219 #define CODE_FOR_loongson_packushb CODE_FOR_vec_pack_usat_v4hi
14220 #define CODE_FOR_loongson_paddw CODE_FOR_addv2si3
14221 #define CODE_FOR_loongson_paddh CODE_FOR_addv4hi3
14222 #define CODE_FOR_loongson_paddb CODE_FOR_addv8qi3
14223 #define CODE_FOR_loongson_paddsh CODE_FOR_ssaddv4hi3
14224 #define CODE_FOR_loongson_paddsb CODE_FOR_ssaddv8qi3
14225 #define CODE_FOR_loongson_paddush CODE_FOR_usaddv4hi3
14226 #define CODE_FOR_loongson_paddusb CODE_FOR_usaddv8qi3
14227 #define CODE_FOR_loongson_pmaxsh CODE_FOR_smaxv4hi3
14228 #define CODE_FOR_loongson_pmaxub CODE_FOR_umaxv8qi3
14229 #define CODE_FOR_loongson_pminsh CODE_FOR_sminv4hi3
14230 #define CODE_FOR_loongson_pminub CODE_FOR_uminv8qi3
14231 #define CODE_FOR_loongson_pmulhuh CODE_FOR_umulv4hi3_highpart
14232 #define CODE_FOR_loongson_pmulhh CODE_FOR_smulv4hi3_highpart
14233 #define CODE_FOR_loongson_pmullh CODE_FOR_mulv4hi3
14234 #define CODE_FOR_loongson_psllh CODE_FOR_ashlv4hi3
14235 #define CODE_FOR_loongson_psllw CODE_FOR_ashlv2si3
14236 #define CODE_FOR_loongson_psrlh CODE_FOR_lshrv4hi3
14237 #define CODE_FOR_loongson_psrlw CODE_FOR_lshrv2si3
14238 #define CODE_FOR_loongson_psrah CODE_FOR_ashrv4hi3
14239 #define CODE_FOR_loongson_psraw CODE_FOR_ashrv2si3
14240 #define CODE_FOR_loongson_psubw CODE_FOR_subv2si3
14241 #define CODE_FOR_loongson_psubh CODE_FOR_subv4hi3
14242 #define CODE_FOR_loongson_psubb CODE_FOR_subv8qi3
14243 #define CODE_FOR_loongson_psubsh CODE_FOR_sssubv4hi3
14244 #define CODE_FOR_loongson_psubsb CODE_FOR_sssubv8qi3
14245 #define CODE_FOR_loongson_psubush CODE_FOR_ussubv4hi3
14246 #define CODE_FOR_loongson_psubusb CODE_FOR_ussubv8qi3
14247
14248 static const struct mips_builtin_description mips_builtins[] = {
14249 #define MIPS_GET_FCSR 0
14250 DIRECT_BUILTIN (get_fcsr, MIPS_USI_FTYPE_VOID, hard_float),
14251 #define MIPS_SET_FCSR 1
14252 DIRECT_NO_TARGET_BUILTIN (set_fcsr, MIPS_VOID_FTYPE_USI, hard_float),
14253
14254 DIRECT_BUILTIN (pll_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
14255 DIRECT_BUILTIN (pul_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
14256 DIRECT_BUILTIN (plu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
14257 DIRECT_BUILTIN (puu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
14258 DIRECT_BUILTIN (cvt_ps_s, MIPS_V2SF_FTYPE_SF_SF, paired_single),
14259 DIRECT_BUILTIN (cvt_s_pl, MIPS_SF_FTYPE_V2SF, paired_single),
14260 DIRECT_BUILTIN (cvt_s_pu, MIPS_SF_FTYPE_V2SF, paired_single),
14261 DIRECT_BUILTIN (abs_ps, MIPS_V2SF_FTYPE_V2SF, paired_single),
14262
14263 DIRECT_BUILTIN (alnv_ps, MIPS_V2SF_FTYPE_V2SF_V2SF_INT, paired_single),
14264 DIRECT_BUILTIN (addr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
14265 DIRECT_BUILTIN (mulr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
14266 DIRECT_BUILTIN (cvt_pw_ps, MIPS_V2SF_FTYPE_V2SF, mips3d),
14267 DIRECT_BUILTIN (cvt_ps_pw, MIPS_V2SF_FTYPE_V2SF, mips3d),
14268
14269 DIRECT_BUILTIN (recip1_s, MIPS_SF_FTYPE_SF, mips3d),
14270 DIRECT_BUILTIN (recip1_d, MIPS_DF_FTYPE_DF, mips3d),
14271 DIRECT_BUILTIN (recip1_ps, MIPS_V2SF_FTYPE_V2SF, mips3d),
14272 DIRECT_BUILTIN (recip2_s, MIPS_SF_FTYPE_SF_SF, mips3d),
14273 DIRECT_BUILTIN (recip2_d, MIPS_DF_FTYPE_DF_DF, mips3d),
14274 DIRECT_BUILTIN (recip2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
14275
14276 DIRECT_BUILTIN (rsqrt1_s, MIPS_SF_FTYPE_SF, mips3d),
14277 DIRECT_BUILTIN (rsqrt1_d, MIPS_DF_FTYPE_DF, mips3d),
14278 DIRECT_BUILTIN (rsqrt1_ps, MIPS_V2SF_FTYPE_V2SF, mips3d),
14279 DIRECT_BUILTIN (rsqrt2_s, MIPS_SF_FTYPE_SF_SF, mips3d),
14280 DIRECT_BUILTIN (rsqrt2_d, MIPS_DF_FTYPE_DF_DF, mips3d),
14281 DIRECT_BUILTIN (rsqrt2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
14282
14283 MIPS_FP_CONDITIONS (CMP_BUILTINS),
14284
14285 /* Built-in functions for the SB-1 processor. */
14286 DIRECT_BUILTIN (sqrt_ps, MIPS_V2SF_FTYPE_V2SF, sb1_paired_single),
14287
14288 /* Built-in functions for the DSP ASE (32-bit and 64-bit). */
14289 DIRECT_BUILTIN (addq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14290 DIRECT_BUILTIN (addq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14291 DIRECT_BUILTIN (addq_s_w, MIPS_SI_FTYPE_SI_SI, dsp),
14292 DIRECT_BUILTIN (addu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
14293 DIRECT_BUILTIN (addu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
14294 DIRECT_BUILTIN (subq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14295 DIRECT_BUILTIN (subq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14296 DIRECT_BUILTIN (subq_s_w, MIPS_SI_FTYPE_SI_SI, dsp),
14297 DIRECT_BUILTIN (subu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
14298 DIRECT_BUILTIN (subu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
14299 DIRECT_BUILTIN (addsc, MIPS_SI_FTYPE_SI_SI, dsp),
14300 DIRECT_BUILTIN (addwc, MIPS_SI_FTYPE_SI_SI, dsp),
14301 DIRECT_BUILTIN (modsub, MIPS_SI_FTYPE_SI_SI, dsp),
14302 DIRECT_BUILTIN (raddu_w_qb, MIPS_SI_FTYPE_V4QI, dsp),
14303 DIRECT_BUILTIN (absq_s_ph, MIPS_V2HI_FTYPE_V2HI, dsp),
14304 DIRECT_BUILTIN (absq_s_w, MIPS_SI_FTYPE_SI, dsp),
14305 DIRECT_BUILTIN (precrq_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dsp),
14306 DIRECT_BUILTIN (precrq_ph_w, MIPS_V2HI_FTYPE_SI_SI, dsp),
14307 DIRECT_BUILTIN (precrq_rs_ph_w, MIPS_V2HI_FTYPE_SI_SI, dsp),
14308 DIRECT_BUILTIN (precrqu_s_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dsp),
14309 DIRECT_BUILTIN (preceq_w_phl, MIPS_SI_FTYPE_V2HI, dsp),
14310 DIRECT_BUILTIN (preceq_w_phr, MIPS_SI_FTYPE_V2HI, dsp),
14311 DIRECT_BUILTIN (precequ_ph_qbl, MIPS_V2HI_FTYPE_V4QI, dsp),
14312 DIRECT_BUILTIN (precequ_ph_qbr, MIPS_V2HI_FTYPE_V4QI, dsp),
14313 DIRECT_BUILTIN (precequ_ph_qbla, MIPS_V2HI_FTYPE_V4QI, dsp),
14314 DIRECT_BUILTIN (precequ_ph_qbra, MIPS_V2HI_FTYPE_V4QI, dsp),
14315 DIRECT_BUILTIN (preceu_ph_qbl, MIPS_V2HI_FTYPE_V4QI, dsp),
14316 DIRECT_BUILTIN (preceu_ph_qbr, MIPS_V2HI_FTYPE_V4QI, dsp),
14317 DIRECT_BUILTIN (preceu_ph_qbla, MIPS_V2HI_FTYPE_V4QI, dsp),
14318 DIRECT_BUILTIN (preceu_ph_qbra, MIPS_V2HI_FTYPE_V4QI, dsp),
14319 DIRECT_BUILTIN (shll_qb, MIPS_V4QI_FTYPE_V4QI_SI, dsp),
14320 DIRECT_BUILTIN (shll_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
14321 DIRECT_BUILTIN (shll_s_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
14322 DIRECT_BUILTIN (shll_s_w, MIPS_SI_FTYPE_SI_SI, dsp),
14323 DIRECT_BUILTIN (shrl_qb, MIPS_V4QI_FTYPE_V4QI_SI, dsp),
14324 DIRECT_BUILTIN (shra_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
14325 DIRECT_BUILTIN (shra_r_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
14326 DIRECT_BUILTIN (shra_r_w, MIPS_SI_FTYPE_SI_SI, dsp),
14327 DIRECT_BUILTIN (muleu_s_ph_qbl, MIPS_V2HI_FTYPE_V4QI_V2HI, dsp),
14328 DIRECT_BUILTIN (muleu_s_ph_qbr, MIPS_V2HI_FTYPE_V4QI_V2HI, dsp),
14329 DIRECT_BUILTIN (mulq_rs_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14330 DIRECT_BUILTIN (muleq_s_w_phl, MIPS_SI_FTYPE_V2HI_V2HI, dsp),
14331 DIRECT_BUILTIN (muleq_s_w_phr, MIPS_SI_FTYPE_V2HI_V2HI, dsp),
14332 DIRECT_BUILTIN (bitrev, MIPS_SI_FTYPE_SI, dsp),
14333 DIRECT_BUILTIN (insv, MIPS_SI_FTYPE_SI_SI, dsp),
14334 DIRECT_BUILTIN (repl_qb, MIPS_V4QI_FTYPE_SI, dsp),
14335 DIRECT_BUILTIN (repl_ph, MIPS_V2HI_FTYPE_SI, dsp),
14336 DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp),
14337 DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp),
14338 DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp),
14339 DIRECT_BUILTIN (cmpgu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp),
14340 DIRECT_BUILTIN (cmpgu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp),
14341 DIRECT_BUILTIN (cmpgu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp),
14342 DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp),
14343 DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp),
14344 DIRECT_NO_TARGET_BUILTIN (cmp_le_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp),
14345 DIRECT_BUILTIN (pick_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
14346 DIRECT_BUILTIN (pick_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14347 DIRECT_BUILTIN (packrl_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
14348 DIRECT_NO_TARGET_BUILTIN (wrdsp, MIPS_VOID_FTYPE_SI_SI, dsp),
14349 DIRECT_BUILTIN (rddsp, MIPS_SI_FTYPE_SI, dsp),
14350 DIRECT_BUILTIN (lbux, MIPS_SI_FTYPE_POINTER_SI, dsp),
14351 DIRECT_BUILTIN (lhx, MIPS_SI_FTYPE_POINTER_SI, dsp),
14352 DIRECT_BUILTIN (lwx, MIPS_SI_FTYPE_POINTER_SI, dsp),
14353 BPOSGE_BUILTIN (32, dsp),
14354
14355 /* The following are for the MIPS DSP ASE REV 2 (32-bit and 64-bit). */
14356 DIRECT_BUILTIN (absq_s_qb, MIPS_V4QI_FTYPE_V4QI, dspr2),
14357 DIRECT_BUILTIN (addu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14358 DIRECT_BUILTIN (addu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14359 DIRECT_BUILTIN (adduh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
14360 DIRECT_BUILTIN (adduh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
14361 DIRECT_BUILTIN (append, MIPS_SI_FTYPE_SI_SI_SI, dspr2),
14362 DIRECT_BUILTIN (balign, MIPS_SI_FTYPE_SI_SI_SI, dspr2),
14363 DIRECT_BUILTIN (cmpgdu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2),
14364 DIRECT_BUILTIN (cmpgdu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2),
14365 DIRECT_BUILTIN (cmpgdu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2),
14366 DIRECT_BUILTIN (mul_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14367 DIRECT_BUILTIN (mul_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14368 DIRECT_BUILTIN (mulq_rs_w, MIPS_SI_FTYPE_SI_SI, dspr2),
14369 DIRECT_BUILTIN (mulq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14370 DIRECT_BUILTIN (mulq_s_w, MIPS_SI_FTYPE_SI_SI, dspr2),
14371 DIRECT_BUILTIN (precr_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dspr2),
14372 DIRECT_BUILTIN (precr_sra_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, dspr2),
14373 DIRECT_BUILTIN (precr_sra_r_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, dspr2),
14374 DIRECT_BUILTIN (prepend, MIPS_SI_FTYPE_SI_SI_SI, dspr2),
14375 DIRECT_BUILTIN (shra_qb, MIPS_V4QI_FTYPE_V4QI_SI, dspr2),
14376 DIRECT_BUILTIN (shra_r_qb, MIPS_V4QI_FTYPE_V4QI_SI, dspr2),
14377 DIRECT_BUILTIN (shrl_ph, MIPS_V2HI_FTYPE_V2HI_SI, dspr2),
14378 DIRECT_BUILTIN (subu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14379 DIRECT_BUILTIN (subu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14380 DIRECT_BUILTIN (subuh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
14381 DIRECT_BUILTIN (subuh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
14382 DIRECT_BUILTIN (addqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14383 DIRECT_BUILTIN (addqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14384 DIRECT_BUILTIN (addqh_w, MIPS_SI_FTYPE_SI_SI, dspr2),
14385 DIRECT_BUILTIN (addqh_r_w, MIPS_SI_FTYPE_SI_SI, dspr2),
14386 DIRECT_BUILTIN (subqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14387 DIRECT_BUILTIN (subqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
14388 DIRECT_BUILTIN (subqh_w, MIPS_SI_FTYPE_SI_SI, dspr2),
14389 DIRECT_BUILTIN (subqh_r_w, MIPS_SI_FTYPE_SI_SI, dspr2),
14390
14391 /* Built-in functions for the DSP ASE (32-bit only). */
14392 DIRECT_BUILTIN (dpau_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
14393 DIRECT_BUILTIN (dpau_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
14394 DIRECT_BUILTIN (dpsu_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
14395 DIRECT_BUILTIN (dpsu_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
14396 DIRECT_BUILTIN (dpaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14397 DIRECT_BUILTIN (dpsq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14398 DIRECT_BUILTIN (mulsaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14399 DIRECT_BUILTIN (dpaq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
14400 DIRECT_BUILTIN (dpsq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
14401 DIRECT_BUILTIN (maq_s_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14402 DIRECT_BUILTIN (maq_s_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14403 DIRECT_BUILTIN (maq_sa_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14404 DIRECT_BUILTIN (maq_sa_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
14405 DIRECT_BUILTIN (extr_w, MIPS_SI_FTYPE_DI_SI, dsp_32),
14406 DIRECT_BUILTIN (extr_r_w, MIPS_SI_FTYPE_DI_SI, dsp_32),
14407 DIRECT_BUILTIN (extr_rs_w, MIPS_SI_FTYPE_DI_SI, dsp_32),
14408 DIRECT_BUILTIN (extr_s_h, MIPS_SI_FTYPE_DI_SI, dsp_32),
14409 DIRECT_BUILTIN (extp, MIPS_SI_FTYPE_DI_SI, dsp_32),
14410 DIRECT_BUILTIN (extpdp, MIPS_SI_FTYPE_DI_SI, dsp_32),
14411 DIRECT_BUILTIN (shilo, MIPS_DI_FTYPE_DI_SI, dsp_32),
14412 DIRECT_BUILTIN (mthlip, MIPS_DI_FTYPE_DI_SI, dsp_32),
14413 DIRECT_BUILTIN (madd, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
14414 DIRECT_BUILTIN (maddu, MIPS_DI_FTYPE_DI_USI_USI, dsp_32),
14415 DIRECT_BUILTIN (msub, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
14416 DIRECT_BUILTIN (msubu, MIPS_DI_FTYPE_DI_USI_USI, dsp_32),
14417 DIRECT_BUILTIN (mult, MIPS_DI_FTYPE_SI_SI, dsp_32),
14418 DIRECT_BUILTIN (multu, MIPS_DI_FTYPE_USI_USI, dsp_32),
14419
14420 /* Built-in functions for the DSP ASE (64-bit only). */
14421 DIRECT_BUILTIN (ldx, MIPS_DI_FTYPE_POINTER_SI, dsp_64),
14422
14423 /* The following are for the MIPS DSP ASE REV 2 (32-bit only). */
14424 DIRECT_BUILTIN (dpa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14425 DIRECT_BUILTIN (dps_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14426 DIRECT_BUILTIN (mulsa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14427 DIRECT_BUILTIN (dpax_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14428 DIRECT_BUILTIN (dpsx_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14429 DIRECT_BUILTIN (dpaqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14430 DIRECT_BUILTIN (dpaqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14431 DIRECT_BUILTIN (dpsqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14432 DIRECT_BUILTIN (dpsqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
14433
14434 /* Builtin functions for ST Microelectronics Loongson-2E/2F cores. */
14435 LOONGSON_BUILTIN (packsswh, MIPS_V4HI_FTYPE_V2SI_V2SI),
14436 LOONGSON_BUILTIN (packsshb, MIPS_V8QI_FTYPE_V4HI_V4HI),
14437 LOONGSON_BUILTIN (packushb, MIPS_UV8QI_FTYPE_UV4HI_UV4HI),
14438 LOONGSON_BUILTIN_SUFFIX (paddw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14439 LOONGSON_BUILTIN_SUFFIX (paddh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14440 LOONGSON_BUILTIN_SUFFIX (paddb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14441 LOONGSON_BUILTIN_SUFFIX (paddw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
14442 LOONGSON_BUILTIN_SUFFIX (paddh, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14443 LOONGSON_BUILTIN_SUFFIX (paddb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
14444 LOONGSON_BUILTIN_SUFFIX (paddd, u, MIPS_UDI_FTYPE_UDI_UDI),
14445 LOONGSON_BUILTIN_SUFFIX (paddd, s, MIPS_DI_FTYPE_DI_DI),
14446 LOONGSON_BUILTIN (paddsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14447 LOONGSON_BUILTIN (paddsb, MIPS_V8QI_FTYPE_V8QI_V8QI),
14448 LOONGSON_BUILTIN (paddush, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14449 LOONGSON_BUILTIN (paddusb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14450 LOONGSON_BUILTIN_ALIAS (pandn_d, pandn_ud, MIPS_UDI_FTYPE_UDI_UDI),
14451 LOONGSON_BUILTIN_ALIAS (pandn_w, pandn_uw, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14452 LOONGSON_BUILTIN_ALIAS (pandn_h, pandn_uh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14453 LOONGSON_BUILTIN_ALIAS (pandn_b, pandn_ub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14454 LOONGSON_BUILTIN_ALIAS (pandn_d, pandn_sd, MIPS_DI_FTYPE_DI_DI),
14455 LOONGSON_BUILTIN_ALIAS (pandn_w, pandn_sw, MIPS_V2SI_FTYPE_V2SI_V2SI),
14456 LOONGSON_BUILTIN_ALIAS (pandn_h, pandn_sh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14457 LOONGSON_BUILTIN_ALIAS (pandn_b, pandn_sb, MIPS_V8QI_FTYPE_V8QI_V8QI),
14458 LOONGSON_BUILTIN (pavgh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14459 LOONGSON_BUILTIN (pavgb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14460 LOONGSON_BUILTIN_SUFFIX (pcmpeqw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14461 LOONGSON_BUILTIN_SUFFIX (pcmpeqh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14462 LOONGSON_BUILTIN_SUFFIX (pcmpeqb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14463 LOONGSON_BUILTIN_SUFFIX (pcmpeqw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
14464 LOONGSON_BUILTIN_SUFFIX (pcmpeqh, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14465 LOONGSON_BUILTIN_SUFFIX (pcmpeqb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
14466 LOONGSON_BUILTIN_SUFFIX (pcmpgtw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14467 LOONGSON_BUILTIN_SUFFIX (pcmpgth, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14468 LOONGSON_BUILTIN_SUFFIX (pcmpgtb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14469 LOONGSON_BUILTIN_SUFFIX (pcmpgtw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
14470 LOONGSON_BUILTIN_SUFFIX (pcmpgth, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14471 LOONGSON_BUILTIN_SUFFIX (pcmpgtb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
14472 LOONGSON_BUILTIN_SUFFIX (pextrh, u, MIPS_UV4HI_FTYPE_UV4HI_USI),
14473 LOONGSON_BUILTIN_SUFFIX (pextrh, s, MIPS_V4HI_FTYPE_V4HI_USI),
14474 LOONGSON_BUILTIN_SUFFIX (pinsrh_0, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14475 LOONGSON_BUILTIN_SUFFIX (pinsrh_1, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14476 LOONGSON_BUILTIN_SUFFIX (pinsrh_2, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14477 LOONGSON_BUILTIN_SUFFIX (pinsrh_3, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14478 LOONGSON_BUILTIN_SUFFIX (pinsrh_0, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14479 LOONGSON_BUILTIN_SUFFIX (pinsrh_1, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14480 LOONGSON_BUILTIN_SUFFIX (pinsrh_2, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14481 LOONGSON_BUILTIN_SUFFIX (pinsrh_3, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14482 LOONGSON_BUILTIN (pmaddhw, MIPS_V2SI_FTYPE_V4HI_V4HI),
14483 LOONGSON_BUILTIN (pmaxsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14484 LOONGSON_BUILTIN (pmaxub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14485 LOONGSON_BUILTIN (pminsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14486 LOONGSON_BUILTIN (pminub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14487 LOONGSON_BUILTIN_SUFFIX (pmovmskb, u, MIPS_UV8QI_FTYPE_UV8QI),
14488 LOONGSON_BUILTIN_SUFFIX (pmovmskb, s, MIPS_V8QI_FTYPE_V8QI),
14489 LOONGSON_BUILTIN (pmulhuh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14490 LOONGSON_BUILTIN (pmulhh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14491 LOONGSON_BUILTIN (pmullh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14492 LOONGSON_BUILTIN (pmuluw, MIPS_UDI_FTYPE_UV2SI_UV2SI),
14493 LOONGSON_BUILTIN (pasubub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14494 LOONGSON_BUILTIN (biadd, MIPS_UV4HI_FTYPE_UV8QI),
14495 LOONGSON_BUILTIN (psadbh, MIPS_UV4HI_FTYPE_UV8QI_UV8QI),
14496 LOONGSON_BUILTIN_SUFFIX (pshufh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
14497 LOONGSON_BUILTIN_SUFFIX (pshufh, s, MIPS_V4HI_FTYPE_V4HI_UQI),
14498 LOONGSON_BUILTIN_SUFFIX (psllh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
14499 LOONGSON_BUILTIN_SUFFIX (psllh, s, MIPS_V4HI_FTYPE_V4HI_UQI),
14500 LOONGSON_BUILTIN_SUFFIX (psllw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI),
14501 LOONGSON_BUILTIN_SUFFIX (psllw, s, MIPS_V2SI_FTYPE_V2SI_UQI),
14502 LOONGSON_BUILTIN_SUFFIX (psrah, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
14503 LOONGSON_BUILTIN_SUFFIX (psrah, s, MIPS_V4HI_FTYPE_V4HI_UQI),
14504 LOONGSON_BUILTIN_SUFFIX (psraw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI),
14505 LOONGSON_BUILTIN_SUFFIX (psraw, s, MIPS_V2SI_FTYPE_V2SI_UQI),
14506 LOONGSON_BUILTIN_SUFFIX (psrlh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
14507 LOONGSON_BUILTIN_SUFFIX (psrlh, s, MIPS_V4HI_FTYPE_V4HI_UQI),
14508 LOONGSON_BUILTIN_SUFFIX (psrlw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI),
14509 LOONGSON_BUILTIN_SUFFIX (psrlw, s, MIPS_V2SI_FTYPE_V2SI_UQI),
14510 LOONGSON_BUILTIN_SUFFIX (psubw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14511 LOONGSON_BUILTIN_SUFFIX (psubh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14512 LOONGSON_BUILTIN_SUFFIX (psubb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14513 LOONGSON_BUILTIN_SUFFIX (psubw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
14514 LOONGSON_BUILTIN_SUFFIX (psubh, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14515 LOONGSON_BUILTIN_SUFFIX (psubb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
14516 LOONGSON_BUILTIN_SUFFIX (psubd, u, MIPS_UDI_FTYPE_UDI_UDI),
14517 LOONGSON_BUILTIN_SUFFIX (psubd, s, MIPS_DI_FTYPE_DI_DI),
14518 LOONGSON_BUILTIN (psubsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
14519 LOONGSON_BUILTIN (psubsb, MIPS_V8QI_FTYPE_V8QI_V8QI),
14520 LOONGSON_BUILTIN (psubush, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14521 LOONGSON_BUILTIN (psubusb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14522 LOONGSON_BUILTIN_SUFFIX (punpckhbh, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14523 LOONGSON_BUILTIN_SUFFIX (punpckhhw, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14524 LOONGSON_BUILTIN_SUFFIX (punpckhwd, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14525 LOONGSON_BUILTIN_SUFFIX (punpckhbh, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
14526 LOONGSON_BUILTIN_SUFFIX (punpckhhw, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14527 LOONGSON_BUILTIN_SUFFIX (punpckhwd, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
14528 LOONGSON_BUILTIN_SUFFIX (punpcklbh, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
14529 LOONGSON_BUILTIN_SUFFIX (punpcklhw, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
14530 LOONGSON_BUILTIN_SUFFIX (punpcklwd, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
14531 LOONGSON_BUILTIN_SUFFIX (punpcklbh, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
14532 LOONGSON_BUILTIN_SUFFIX (punpcklhw, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
14533 LOONGSON_BUILTIN_SUFFIX (punpcklwd, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
14534
14535 /* Sundry other built-in functions. */
14536 DIRECT_NO_TARGET_BUILTIN (cache, MIPS_VOID_FTYPE_SI_CVPOINTER, cache)
14537 };
14538
14539 /* Index I is the function declaration for mips_builtins[I], or null if the
14540 function isn't defined on this target. */
14541 static GTY(()) tree mips_builtin_decls[ARRAY_SIZE (mips_builtins)];
14542
14543 /* MODE is a vector mode whose elements have type TYPE. Return the type
14544 of the vector itself. */
14545
14546 static tree
14547 mips_builtin_vector_type (tree type, machine_mode mode)
14548 {
14549 static tree types[2 * (int) MAX_MACHINE_MODE];
14550 int mode_index;
14551
14552 mode_index = (int) mode;
14553
14554 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type))
14555 mode_index += MAX_MACHINE_MODE;
14556
14557 if (types[mode_index] == NULL_TREE)
14558 types[mode_index] = build_vector_type_for_mode (type, mode);
14559 return types[mode_index];
14560 }
14561
14562 /* Return a type for 'const volatile void *'. */
14563
14564 static tree
14565 mips_build_cvpointer_type (void)
14566 {
14567 static tree cache;
14568
14569 if (cache == NULL_TREE)
14570 cache = build_pointer_type (build_qualified_type
14571 (void_type_node,
14572 TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE));
14573 return cache;
14574 }
14575
14576 /* Source-level argument types. */
14577 #define MIPS_ATYPE_VOID void_type_node
14578 #define MIPS_ATYPE_INT integer_type_node
14579 #define MIPS_ATYPE_POINTER ptr_type_node
14580 #define MIPS_ATYPE_CVPOINTER mips_build_cvpointer_type ()
14581
14582 /* Standard mode-based argument types. */
14583 #define MIPS_ATYPE_UQI unsigned_intQI_type_node
14584 #define MIPS_ATYPE_SI intSI_type_node
14585 #define MIPS_ATYPE_USI unsigned_intSI_type_node
14586 #define MIPS_ATYPE_DI intDI_type_node
14587 #define MIPS_ATYPE_UDI unsigned_intDI_type_node
14588 #define MIPS_ATYPE_SF float_type_node
14589 #define MIPS_ATYPE_DF double_type_node
14590
14591 /* Vector argument types. */
14592 #define MIPS_ATYPE_V2SF mips_builtin_vector_type (float_type_node, V2SFmode)
14593 #define MIPS_ATYPE_V2HI mips_builtin_vector_type (intHI_type_node, V2HImode)
14594 #define MIPS_ATYPE_V2SI mips_builtin_vector_type (intSI_type_node, V2SImode)
14595 #define MIPS_ATYPE_V4QI mips_builtin_vector_type (intQI_type_node, V4QImode)
14596 #define MIPS_ATYPE_V4HI mips_builtin_vector_type (intHI_type_node, V4HImode)
14597 #define MIPS_ATYPE_V8QI mips_builtin_vector_type (intQI_type_node, V8QImode)
14598 #define MIPS_ATYPE_UV2SI \
14599 mips_builtin_vector_type (unsigned_intSI_type_node, V2SImode)
14600 #define MIPS_ATYPE_UV4HI \
14601 mips_builtin_vector_type (unsigned_intHI_type_node, V4HImode)
14602 #define MIPS_ATYPE_UV8QI \
14603 mips_builtin_vector_type (unsigned_intQI_type_node, V8QImode)
14604
14605 /* MIPS_FTYPE_ATYPESN takes N MIPS_FTYPES-like type codes and lists
14606 their associated MIPS_ATYPEs. */
14607 #define MIPS_FTYPE_ATYPES1(A, B) \
14608 MIPS_ATYPE_##A, MIPS_ATYPE_##B
14609
14610 #define MIPS_FTYPE_ATYPES2(A, B, C) \
14611 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C
14612
14613 #define MIPS_FTYPE_ATYPES3(A, B, C, D) \
14614 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D
14615
14616 #define MIPS_FTYPE_ATYPES4(A, B, C, D, E) \
14617 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D, \
14618 MIPS_ATYPE_##E
14619
14620 /* Return the function type associated with function prototype TYPE. */
14621
14622 static tree
14623 mips_build_function_type (enum mips_function_type type)
14624 {
14625 static tree types[(int) MIPS_MAX_FTYPE_MAX];
14626
14627 if (types[(int) type] == NULL_TREE)
14628 switch (type)
14629 {
14630 #define DEF_MIPS_FTYPE(NUM, ARGS) \
14631 case MIPS_FTYPE_NAME##NUM ARGS: \
14632 types[(int) type] \
14633 = build_function_type_list (MIPS_FTYPE_ATYPES##NUM ARGS, \
14634 NULL_TREE); \
14635 break;
14636 #include "config/mips/mips-ftypes.def"
14637 #undef DEF_MIPS_FTYPE
14638 default:
14639 gcc_unreachable ();
14640 }
14641
14642 return types[(int) type];
14643 }
14644
14645 /* Implement TARGET_INIT_BUILTINS. */
14646
14647 static void
14648 mips_init_builtins (void)
14649 {
14650 const struct mips_builtin_description *d;
14651 unsigned int i;
14652
14653 /* Iterate through all of the bdesc arrays, initializing all of the
14654 builtin functions. */
14655 for (i = 0; i < ARRAY_SIZE (mips_builtins); i++)
14656 {
14657 d = &mips_builtins[i];
14658 if (d->avail ())
14659 mips_builtin_decls[i]
14660 = add_builtin_function (d->name,
14661 mips_build_function_type (d->function_type),
14662 i, BUILT_IN_MD, NULL, NULL);
14663 }
14664 }
14665
14666 /* Implement TARGET_BUILTIN_DECL. */
14667
14668 static tree
14669 mips_builtin_decl (unsigned int code, bool initialize_p ATTRIBUTE_UNUSED)
14670 {
14671 if (code >= ARRAY_SIZE (mips_builtins))
14672 return error_mark_node;
14673 return mips_builtin_decls[code];
14674 }
14675
14676 /* Take argument ARGNO from EXP's argument list and convert it into
14677 an expand operand. Store the operand in *OP. */
14678
14679 static void
14680 mips_prepare_builtin_arg (struct expand_operand *op, tree exp,
14681 unsigned int argno)
14682 {
14683 tree arg;
14684 rtx value;
14685
14686 arg = CALL_EXPR_ARG (exp, argno);
14687 value = expand_normal (arg);
14688 create_input_operand (op, value, TYPE_MODE (TREE_TYPE (arg)));
14689 }
14690
14691 /* Expand instruction ICODE as part of a built-in function sequence.
14692 Use the first NOPS elements of OPS as the instruction's operands.
14693 HAS_TARGET_P is true if operand 0 is a target; it is false if the
14694 instruction has no target.
14695
14696 Return the target rtx if HAS_TARGET_P, otherwise return const0_rtx. */
14697
14698 static rtx
14699 mips_expand_builtin_insn (enum insn_code icode, unsigned int nops,
14700 struct expand_operand *ops, bool has_target_p)
14701 {
14702 if (!maybe_expand_insn (icode, nops, ops))
14703 {
14704 error ("invalid argument to built-in function");
14705 return has_target_p ? gen_reg_rtx (ops[0].mode) : const0_rtx;
14706 }
14707 return has_target_p ? ops[0].value : const0_rtx;
14708 }
14709
14710 /* Expand a floating-point comparison for built-in function call EXP.
14711 The first NARGS arguments are the values to be compared. ICODE is
14712 the .md pattern that does the comparison and COND is the condition
14713 that is being tested. Return an rtx for the result. */
14714
14715 static rtx
14716 mips_expand_builtin_compare_1 (enum insn_code icode,
14717 enum mips_fp_condition cond,
14718 tree exp, int nargs)
14719 {
14720 struct expand_operand ops[MAX_RECOG_OPERANDS];
14721 rtx output;
14722 int opno, argno;
14723
14724 /* The instruction should have a target operand, an operand for each
14725 argument, and an operand for COND. */
14726 gcc_assert (nargs + 2 == insn_data[(int) icode].n_generator_args);
14727
14728 output = mips_allocate_fcc (insn_data[(int) icode].operand[0].mode);
14729 opno = 0;
14730 create_fixed_operand (&ops[opno++], output);
14731 for (argno = 0; argno < nargs; argno++)
14732 mips_prepare_builtin_arg (&ops[opno++], exp, argno);
14733 create_integer_operand (&ops[opno++], (int) cond);
14734 return mips_expand_builtin_insn (icode, opno, ops, true);
14735 }
14736
14737 /* Expand a MIPS_BUILTIN_DIRECT or MIPS_BUILTIN_DIRECT_NO_TARGET function;
14738 HAS_TARGET_P says which. EXP is the CALL_EXPR that calls the function
14739 and ICODE is the code of the associated .md pattern. TARGET, if nonnull,
14740 suggests a good place to put the result. */
14741
14742 static rtx
14743 mips_expand_builtin_direct (enum insn_code icode, rtx target, tree exp,
14744 bool has_target_p)
14745 {
14746 struct expand_operand ops[MAX_RECOG_OPERANDS];
14747 int opno, argno;
14748
14749 /* Map any target to operand 0. */
14750 opno = 0;
14751 if (has_target_p)
14752 create_output_operand (&ops[opno++], target, TYPE_MODE (TREE_TYPE (exp)));
14753
14754 /* Map the arguments to the other operands. */
14755 gcc_assert (opno + call_expr_nargs (exp)
14756 == insn_data[icode].n_generator_args);
14757 for (argno = 0; argno < call_expr_nargs (exp); argno++)
14758 mips_prepare_builtin_arg (&ops[opno++], exp, argno);
14759
14760 return mips_expand_builtin_insn (icode, opno, ops, has_target_p);
14761 }
14762
14763 /* Expand a __builtin_mips_movt_*_ps or __builtin_mips_movf_*_ps
14764 function; TYPE says which. EXP is the CALL_EXPR that calls the
14765 function, ICODE is the instruction that should be used to compare
14766 the first two arguments, and COND is the condition it should test.
14767 TARGET, if nonnull, suggests a good place to put the result. */
14768
14769 static rtx
14770 mips_expand_builtin_movtf (enum mips_builtin_type type,
14771 enum insn_code icode, enum mips_fp_condition cond,
14772 rtx target, tree exp)
14773 {
14774 struct expand_operand ops[4];
14775 rtx cmp_result;
14776
14777 cmp_result = mips_expand_builtin_compare_1 (icode, cond, exp, 2);
14778 create_output_operand (&ops[0], target, TYPE_MODE (TREE_TYPE (exp)));
14779 if (type == MIPS_BUILTIN_MOVT)
14780 {
14781 mips_prepare_builtin_arg (&ops[2], exp, 2);
14782 mips_prepare_builtin_arg (&ops[1], exp, 3);
14783 }
14784 else
14785 {
14786 mips_prepare_builtin_arg (&ops[1], exp, 2);
14787 mips_prepare_builtin_arg (&ops[2], exp, 3);
14788 }
14789 create_fixed_operand (&ops[3], cmp_result);
14790 return mips_expand_builtin_insn (CODE_FOR_mips_cond_move_tf_ps,
14791 4, ops, true);
14792 }
14793
14794 /* Move VALUE_IF_TRUE into TARGET if CONDITION is true; move VALUE_IF_FALSE
14795 into TARGET otherwise. Return TARGET. */
14796
14797 static rtx
14798 mips_builtin_branch_and_move (rtx condition, rtx target,
14799 rtx value_if_true, rtx value_if_false)
14800 {
14801 rtx_code_label *true_label, *done_label;
14802
14803 true_label = gen_label_rtx ();
14804 done_label = gen_label_rtx ();
14805
14806 /* First assume that CONDITION is false. */
14807 mips_emit_move (target, value_if_false);
14808
14809 /* Branch to TRUE_LABEL if CONDITION is true and DONE_LABEL otherwise. */
14810 emit_jump_insn (gen_condjump (condition, true_label));
14811 emit_jump_insn (gen_jump (done_label));
14812 emit_barrier ();
14813
14814 /* Fix TARGET if CONDITION is true. */
14815 emit_label (true_label);
14816 mips_emit_move (target, value_if_true);
14817
14818 emit_label (done_label);
14819 return target;
14820 }
14821
14822 /* Expand a comparison built-in function of type BUILTIN_TYPE. EXP is
14823 the CALL_EXPR that calls the function, ICODE is the code of the
14824 comparison instruction, and COND is the condition it should test.
14825 TARGET, if nonnull, suggests a good place to put the boolean result. */
14826
14827 static rtx
14828 mips_expand_builtin_compare (enum mips_builtin_type builtin_type,
14829 enum insn_code icode, enum mips_fp_condition cond,
14830 rtx target, tree exp)
14831 {
14832 rtx offset, condition, cmp_result;
14833
14834 if (target == 0 || GET_MODE (target) != SImode)
14835 target = gen_reg_rtx (SImode);
14836 cmp_result = mips_expand_builtin_compare_1 (icode, cond, exp,
14837 call_expr_nargs (exp));
14838
14839 /* If the comparison sets more than one register, we define the result
14840 to be 0 if all registers are false and -1 if all registers are true.
14841 The value of the complete result is indeterminate otherwise. */
14842 switch (builtin_type)
14843 {
14844 case MIPS_BUILTIN_CMP_ALL:
14845 condition = gen_rtx_NE (VOIDmode, cmp_result, constm1_rtx);
14846 return mips_builtin_branch_and_move (condition, target,
14847 const0_rtx, const1_rtx);
14848
14849 case MIPS_BUILTIN_CMP_UPPER:
14850 case MIPS_BUILTIN_CMP_LOWER:
14851 offset = GEN_INT (builtin_type == MIPS_BUILTIN_CMP_UPPER);
14852 condition = gen_single_cc (cmp_result, offset);
14853 return mips_builtin_branch_and_move (condition, target,
14854 const1_rtx, const0_rtx);
14855
14856 default:
14857 condition = gen_rtx_NE (VOIDmode, cmp_result, const0_rtx);
14858 return mips_builtin_branch_and_move (condition, target,
14859 const1_rtx, const0_rtx);
14860 }
14861 }
14862
14863 /* Expand a bposge built-in function of type BUILTIN_TYPE. TARGET,
14864 if nonnull, suggests a good place to put the boolean result. */
14865
14866 static rtx
14867 mips_expand_builtin_bposge (enum mips_builtin_type builtin_type, rtx target)
14868 {
14869 rtx condition, cmp_result;
14870 int cmp_value;
14871
14872 if (target == 0 || GET_MODE (target) != SImode)
14873 target = gen_reg_rtx (SImode);
14874
14875 cmp_result = gen_rtx_REG (CCDSPmode, CCDSP_PO_REGNUM);
14876
14877 if (builtin_type == MIPS_BUILTIN_BPOSGE32)
14878 cmp_value = 32;
14879 else
14880 gcc_assert (0);
14881
14882 condition = gen_rtx_GE (VOIDmode, cmp_result, GEN_INT (cmp_value));
14883 return mips_builtin_branch_and_move (condition, target,
14884 const1_rtx, const0_rtx);
14885 }
14886
14887 /* Implement TARGET_EXPAND_BUILTIN. */
14888
14889 static rtx
14890 mips_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
14891 machine_mode mode, int ignore)
14892 {
14893 tree fndecl;
14894 unsigned int fcode, avail;
14895 const struct mips_builtin_description *d;
14896
14897 fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
14898 fcode = DECL_FUNCTION_CODE (fndecl);
14899 gcc_assert (fcode < ARRAY_SIZE (mips_builtins));
14900 d = &mips_builtins[fcode];
14901 avail = d->avail ();
14902 gcc_assert (avail != 0);
14903 if (TARGET_MIPS16 && !(avail & BUILTIN_AVAIL_MIPS16))
14904 {
14905 error ("built-in function %qE not supported for MIPS16",
14906 DECL_NAME (fndecl));
14907 return ignore ? const0_rtx : CONST0_RTX (mode);
14908 }
14909 switch (d->builtin_type)
14910 {
14911 case MIPS_BUILTIN_DIRECT:
14912 return mips_expand_builtin_direct (d->icode, target, exp, true);
14913
14914 case MIPS_BUILTIN_DIRECT_NO_TARGET:
14915 return mips_expand_builtin_direct (d->icode, target, exp, false);
14916
14917 case MIPS_BUILTIN_MOVT:
14918 case MIPS_BUILTIN_MOVF:
14919 return mips_expand_builtin_movtf (d->builtin_type, d->icode,
14920 d->cond, target, exp);
14921
14922 case MIPS_BUILTIN_CMP_ANY:
14923 case MIPS_BUILTIN_CMP_ALL:
14924 case MIPS_BUILTIN_CMP_UPPER:
14925 case MIPS_BUILTIN_CMP_LOWER:
14926 case MIPS_BUILTIN_CMP_SINGLE:
14927 return mips_expand_builtin_compare (d->builtin_type, d->icode,
14928 d->cond, target, exp);
14929
14930 case MIPS_BUILTIN_BPOSGE32:
14931 return mips_expand_builtin_bposge (d->builtin_type, target);
14932 }
14933 gcc_unreachable ();
14934 }
14935 \f
14936 /* An entry in the MIPS16 constant pool. VALUE is the pool constant,
14937 MODE is its mode, and LABEL is the CODE_LABEL associated with it. */
14938 struct mips16_constant {
14939 struct mips16_constant *next;
14940 rtx value;
14941 rtx_code_label *label;
14942 machine_mode mode;
14943 };
14944
14945 /* Information about an incomplete MIPS16 constant pool. FIRST is the
14946 first constant, HIGHEST_ADDRESS is the highest address that the first
14947 byte of the pool can have, and INSN_ADDRESS is the current instruction
14948 address. */
14949 struct mips16_constant_pool {
14950 struct mips16_constant *first;
14951 int highest_address;
14952 int insn_address;
14953 };
14954
14955 /* Add constant VALUE to POOL and return its label. MODE is the
14956 value's mode (used for CONST_INTs, etc.). */
14957
14958 static rtx_code_label *
14959 mips16_add_constant (struct mips16_constant_pool *pool,
14960 rtx value, machine_mode mode)
14961 {
14962 struct mips16_constant **p, *c;
14963 bool first_of_size_p;
14964
14965 /* See whether the constant is already in the pool. If so, return the
14966 existing label, otherwise leave P pointing to the place where the
14967 constant should be added.
14968
14969 Keep the pool sorted in increasing order of mode size so that we can
14970 reduce the number of alignments needed. */
14971 first_of_size_p = true;
14972 for (p = &pool->first; *p != 0; p = &(*p)->next)
14973 {
14974 if (mode == (*p)->mode && rtx_equal_p (value, (*p)->value))
14975 return (*p)->label;
14976 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE ((*p)->mode))
14977 break;
14978 if (GET_MODE_SIZE (mode) == GET_MODE_SIZE ((*p)->mode))
14979 first_of_size_p = false;
14980 }
14981
14982 /* In the worst case, the constant needed by the earliest instruction
14983 will end up at the end of the pool. The entire pool must then be
14984 accessible from that instruction.
14985
14986 When adding the first constant, set the pool's highest address to
14987 the address of the first out-of-range byte. Adjust this address
14988 downwards each time a new constant is added. */
14989 if (pool->first == 0)
14990 /* For LWPC, ADDIUPC and DADDIUPC, the base PC value is the address
14991 of the instruction with the lowest two bits clear. The base PC
14992 value for LDPC has the lowest three bits clear. Assume the worst
14993 case here; namely that the PC-relative instruction occupies the
14994 last 2 bytes in an aligned word. */
14995 pool->highest_address = pool->insn_address - (UNITS_PER_WORD - 2) + 0x8000;
14996 pool->highest_address -= GET_MODE_SIZE (mode);
14997 if (first_of_size_p)
14998 /* Take into account the worst possible padding due to alignment. */
14999 pool->highest_address -= GET_MODE_SIZE (mode) - 1;
15000
15001 /* Create a new entry. */
15002 c = XNEW (struct mips16_constant);
15003 c->value = value;
15004 c->mode = mode;
15005 c->label = gen_label_rtx ();
15006 c->next = *p;
15007 *p = c;
15008
15009 return c->label;
15010 }
15011
15012 /* Output constant VALUE after instruction INSN and return the last
15013 instruction emitted. MODE is the mode of the constant. */
15014
15015 static rtx_insn *
15016 mips16_emit_constants_1 (machine_mode mode, rtx value, rtx_insn *insn)
15017 {
15018 if (SCALAR_INT_MODE_P (mode) || ALL_SCALAR_FIXED_POINT_MODE_P (mode))
15019 {
15020 rtx size = GEN_INT (GET_MODE_SIZE (mode));
15021 return emit_insn_after (gen_consttable_int (value, size), insn);
15022 }
15023
15024 if (SCALAR_FLOAT_MODE_P (mode))
15025 return emit_insn_after (gen_consttable_float (value), insn);
15026
15027 if (VECTOR_MODE_P (mode))
15028 {
15029 int i;
15030
15031 for (i = 0; i < CONST_VECTOR_NUNITS (value); i++)
15032 insn = mips16_emit_constants_1 (GET_MODE_INNER (mode),
15033 CONST_VECTOR_ELT (value, i), insn);
15034 return insn;
15035 }
15036
15037 gcc_unreachable ();
15038 }
15039
15040 /* Dump out the constants in CONSTANTS after INSN. */
15041
15042 static void
15043 mips16_emit_constants (struct mips16_constant *constants, rtx_insn *insn)
15044 {
15045 struct mips16_constant *c, *next;
15046 int align;
15047
15048 align = 0;
15049 for (c = constants; c != NULL; c = next)
15050 {
15051 /* If necessary, increase the alignment of PC. */
15052 if (align < GET_MODE_SIZE (c->mode))
15053 {
15054 int align_log = floor_log2 (GET_MODE_SIZE (c->mode));
15055 insn = emit_insn_after (gen_align (GEN_INT (align_log)), insn);
15056 }
15057 align = GET_MODE_SIZE (c->mode);
15058
15059 insn = emit_label_after (c->label, insn);
15060 insn = mips16_emit_constants_1 (c->mode, c->value, insn);
15061
15062 next = c->next;
15063 free (c);
15064 }
15065
15066 emit_barrier_after (insn);
15067 }
15068
15069 /* Return the length of instruction INSN. */
15070
15071 static int
15072 mips16_insn_length (rtx_insn *insn)
15073 {
15074 if (JUMP_TABLE_DATA_P (insn))
15075 {
15076 rtx body = PATTERN (insn);
15077 if (GET_CODE (body) == ADDR_VEC)
15078 return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 0);
15079 else if (GET_CODE (body) == ADDR_DIFF_VEC)
15080 return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 1);
15081 else
15082 gcc_unreachable ();
15083 }
15084 return get_attr_length (insn);
15085 }
15086
15087 /* If *X is a symbolic constant that refers to the constant pool, add
15088 the constant to POOL and rewrite *X to use the constant's label. */
15089
15090 static void
15091 mips16_rewrite_pool_constant (struct mips16_constant_pool *pool, rtx *x)
15092 {
15093 rtx base, offset;
15094 rtx_code_label *label;
15095
15096 split_const (*x, &base, &offset);
15097 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
15098 {
15099 label = mips16_add_constant (pool, copy_rtx (get_pool_constant (base)),
15100 get_pool_mode (base));
15101 base = gen_rtx_LABEL_REF (Pmode, label);
15102 *x = mips_unspec_address_offset (base, offset, SYMBOL_PC_RELATIVE);
15103 }
15104 }
15105
15106 /* Rewrite INSN so that constant pool references refer to the constant's
15107 label instead. */
15108
15109 static void
15110 mips16_rewrite_pool_refs (rtx_insn *insn, struct mips16_constant_pool *pool)
15111 {
15112 subrtx_ptr_iterator::array_type array;
15113 FOR_EACH_SUBRTX_PTR (iter, array, &PATTERN (insn), ALL)
15114 {
15115 rtx *loc = *iter;
15116
15117 if (force_to_mem_operand (*loc, Pmode))
15118 {
15119 rtx mem = force_const_mem (GET_MODE (*loc), *loc);
15120 validate_change (insn, loc, mem, false);
15121 }
15122
15123 if (MEM_P (*loc))
15124 {
15125 mips16_rewrite_pool_constant (pool, &XEXP (*loc, 0));
15126 iter.skip_subrtxes ();
15127 }
15128 else
15129 {
15130 if (TARGET_MIPS16_TEXT_LOADS)
15131 mips16_rewrite_pool_constant (pool, loc);
15132 if (GET_CODE (*loc) == CONST
15133 /* Don't rewrite the __mips16_rdwr symbol. */
15134 || (GET_CODE (*loc) == UNSPEC
15135 && XINT (*loc, 1) == UNSPEC_TLS_GET_TP))
15136 iter.skip_subrtxes ();
15137 }
15138 }
15139 }
15140
15141 /* Return whether CFG is used in mips_reorg. */
15142
15143 static bool
15144 mips_cfg_in_reorg (void)
15145 {
15146 return (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE
15147 || TARGET_RELAX_PIC_CALLS);
15148 }
15149
15150 /* Build MIPS16 constant pools. Split the instructions if SPLIT_P,
15151 otherwise assume that they are already split. */
15152
15153 static void
15154 mips16_lay_out_constants (bool split_p)
15155 {
15156 struct mips16_constant_pool pool;
15157 rtx_insn *insn, *barrier;
15158
15159 if (!TARGET_MIPS16_PCREL_LOADS)
15160 return;
15161
15162 if (split_p)
15163 {
15164 if (mips_cfg_in_reorg ())
15165 split_all_insns ();
15166 else
15167 split_all_insns_noflow ();
15168 }
15169 barrier = 0;
15170 memset (&pool, 0, sizeof (pool));
15171 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
15172 {
15173 /* Rewrite constant pool references in INSN. */
15174 if (USEFUL_INSN_P (insn))
15175 mips16_rewrite_pool_refs (insn, &pool);
15176
15177 pool.insn_address += mips16_insn_length (insn);
15178
15179 if (pool.first != NULL)
15180 {
15181 /* If there are no natural barriers between the first user of
15182 the pool and the highest acceptable address, we'll need to
15183 create a new instruction to jump around the constant pool.
15184 In the worst case, this instruction will be 4 bytes long.
15185
15186 If it's too late to do this transformation after INSN,
15187 do it immediately before INSN. */
15188 if (barrier == 0 && pool.insn_address + 4 > pool.highest_address)
15189 {
15190 rtx_code_label *label;
15191 rtx_insn *jump;
15192
15193 label = gen_label_rtx ();
15194
15195 jump = emit_jump_insn_before (gen_jump (label), insn);
15196 JUMP_LABEL (jump) = label;
15197 LABEL_NUSES (label) = 1;
15198 barrier = emit_barrier_after (jump);
15199
15200 emit_label_after (label, barrier);
15201 pool.insn_address += 4;
15202 }
15203
15204 /* See whether the constant pool is now out of range of the first
15205 user. If so, output the constants after the previous barrier.
15206 Note that any instructions between BARRIER and INSN (inclusive)
15207 will use negative offsets to refer to the pool. */
15208 if (pool.insn_address > pool.highest_address)
15209 {
15210 mips16_emit_constants (pool.first, barrier);
15211 pool.first = NULL;
15212 barrier = 0;
15213 }
15214 else if (BARRIER_P (insn))
15215 barrier = insn;
15216 }
15217 }
15218 mips16_emit_constants (pool.first, get_last_insn ());
15219 }
15220 \f
15221 /* Return true if it is worth r10k_simplify_address's while replacing
15222 an address with X. We are looking for constants, and for addresses
15223 at a known offset from the incoming stack pointer. */
15224
15225 static bool
15226 r10k_simplified_address_p (rtx x)
15227 {
15228 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
15229 x = XEXP (x, 0);
15230 return x == virtual_incoming_args_rtx || CONSTANT_P (x);
15231 }
15232
15233 /* X is an expression that appears in INSN. Try to use the UD chains
15234 to simplify it, returning the simplified form on success and the
15235 original form otherwise. Replace the incoming value of $sp with
15236 virtual_incoming_args_rtx (which should never occur in X otherwise). */
15237
15238 static rtx
15239 r10k_simplify_address (rtx x, rtx_insn *insn)
15240 {
15241 rtx newx, op0, op1, set, note;
15242 rtx_insn *def_insn;
15243 df_ref use, def;
15244 struct df_link *defs;
15245
15246 newx = NULL_RTX;
15247 if (UNARY_P (x))
15248 {
15249 op0 = r10k_simplify_address (XEXP (x, 0), insn);
15250 if (op0 != XEXP (x, 0))
15251 newx = simplify_gen_unary (GET_CODE (x), GET_MODE (x),
15252 op0, GET_MODE (XEXP (x, 0)));
15253 }
15254 else if (BINARY_P (x))
15255 {
15256 op0 = r10k_simplify_address (XEXP (x, 0), insn);
15257 op1 = r10k_simplify_address (XEXP (x, 1), insn);
15258 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
15259 newx = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
15260 }
15261 else if (GET_CODE (x) == LO_SUM)
15262 {
15263 /* LO_SUMs can be offset from HIGHs, if we know they won't
15264 overflow. See mips_classify_address for the rationale behind
15265 the lax check. */
15266 op0 = r10k_simplify_address (XEXP (x, 0), insn);
15267 if (GET_CODE (op0) == HIGH)
15268 newx = XEXP (x, 1);
15269 }
15270 else if (REG_P (x))
15271 {
15272 /* Uses are recorded by regno_reg_rtx, not X itself. */
15273 use = df_find_use (insn, regno_reg_rtx[REGNO (x)]);
15274 gcc_assert (use);
15275 defs = DF_REF_CHAIN (use);
15276
15277 /* Require a single definition. */
15278 if (defs && defs->next == NULL)
15279 {
15280 def = defs->ref;
15281 if (DF_REF_IS_ARTIFICIAL (def))
15282 {
15283 /* Replace the incoming value of $sp with
15284 virtual_incoming_args_rtx. */
15285 if (x == stack_pointer_rtx
15286 && DF_REF_BB (def) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
15287 newx = virtual_incoming_args_rtx;
15288 }
15289 else if (dominated_by_p (CDI_DOMINATORS, DF_REF_BB (use),
15290 DF_REF_BB (def)))
15291 {
15292 /* Make sure that DEF_INSN is a single set of REG. */
15293 def_insn = DF_REF_INSN (def);
15294 if (NONJUMP_INSN_P (def_insn))
15295 {
15296 set = single_set (def_insn);
15297 if (set && rtx_equal_p (SET_DEST (set), x))
15298 {
15299 /* Prefer to use notes, since the def-use chains
15300 are often shorter. */
15301 note = find_reg_equal_equiv_note (def_insn);
15302 if (note)
15303 newx = XEXP (note, 0);
15304 else
15305 newx = SET_SRC (set);
15306 newx = r10k_simplify_address (newx, def_insn);
15307 }
15308 }
15309 }
15310 }
15311 }
15312 if (newx && r10k_simplified_address_p (newx))
15313 return newx;
15314 return x;
15315 }
15316
15317 /* Return true if ADDRESS is known to be an uncached address
15318 on R10K systems. */
15319
15320 static bool
15321 r10k_uncached_address_p (unsigned HOST_WIDE_INT address)
15322 {
15323 unsigned HOST_WIDE_INT upper;
15324
15325 /* Check for KSEG1. */
15326 if (address + 0x60000000 < 0x20000000)
15327 return true;
15328
15329 /* Check for uncached XKPHYS addresses. */
15330 if (Pmode == DImode)
15331 {
15332 upper = (address >> 40) & 0xf9ffff;
15333 if (upper == 0x900000 || upper == 0xb80000)
15334 return true;
15335 }
15336 return false;
15337 }
15338
15339 /* Return true if we can prove that an access to address X in instruction
15340 INSN would be safe from R10K speculation. This X is a general
15341 expression; it might not be a legitimate address. */
15342
15343 static bool
15344 r10k_safe_address_p (rtx x, rtx_insn *insn)
15345 {
15346 rtx base, offset;
15347 HOST_WIDE_INT offset_val;
15348
15349 x = r10k_simplify_address (x, insn);
15350
15351 /* Check for references to the stack frame. It doesn't really matter
15352 how much of the frame has been allocated at INSN; -mr10k-cache-barrier
15353 allows us to assume that accesses to any part of the eventual frame
15354 is safe from speculation at any point in the function. */
15355 mips_split_plus (x, &base, &offset_val);
15356 if (base == virtual_incoming_args_rtx
15357 && offset_val >= -cfun->machine->frame.total_size
15358 && offset_val < cfun->machine->frame.args_size)
15359 return true;
15360
15361 /* Check for uncached addresses. */
15362 if (CONST_INT_P (x))
15363 return r10k_uncached_address_p (INTVAL (x));
15364
15365 /* Check for accesses to a static object. */
15366 split_const (x, &base, &offset);
15367 return offset_within_block_p (base, INTVAL (offset));
15368 }
15369
15370 /* Return true if a MEM with MEM_EXPR EXPR and MEM_OFFSET OFFSET is
15371 an in-range access to an automatic variable, or to an object with
15372 a link-time-constant address. */
15373
15374 static bool
15375 r10k_safe_mem_expr_p (tree expr, unsigned HOST_WIDE_INT offset)
15376 {
15377 HOST_WIDE_INT bitoffset, bitsize;
15378 tree inner, var_offset;
15379 machine_mode mode;
15380 int unsigned_p, volatile_p;
15381
15382 inner = get_inner_reference (expr, &bitsize, &bitoffset, &var_offset, &mode,
15383 &unsigned_p, &volatile_p, false);
15384 if (!DECL_P (inner) || !DECL_SIZE_UNIT (inner) || var_offset)
15385 return false;
15386
15387 offset += bitoffset / BITS_PER_UNIT;
15388 return offset < tree_to_uhwi (DECL_SIZE_UNIT (inner));
15389 }
15390
15391 /* Return true if X contains a MEM that is not safe from R10K speculation.
15392 INSN is the instruction that contains X. */
15393
15394 static bool
15395 r10k_needs_protection_p_1 (rtx x, rtx_insn *insn)
15396 {
15397 subrtx_var_iterator::array_type array;
15398 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
15399 {
15400 rtx mem = *iter;
15401 if (MEM_P (mem))
15402 {
15403 if ((MEM_EXPR (mem)
15404 && MEM_OFFSET_KNOWN_P (mem)
15405 && r10k_safe_mem_expr_p (MEM_EXPR (mem), MEM_OFFSET (mem)))
15406 || r10k_safe_address_p (XEXP (mem, 0), insn))
15407 iter.skip_subrtxes ();
15408 else
15409 return true;
15410 }
15411 }
15412 return false;
15413 }
15414
15415 /* A note_stores callback for which DATA points to an instruction pointer.
15416 If *DATA is nonnull, make it null if it X contains a MEM that is not
15417 safe from R10K speculation. */
15418
15419 static void
15420 r10k_needs_protection_p_store (rtx x, const_rtx pat ATTRIBUTE_UNUSED,
15421 void *data)
15422 {
15423 rtx_insn **insn_ptr;
15424
15425 insn_ptr = (rtx_insn **) data;
15426 if (*insn_ptr && r10k_needs_protection_p_1 (x, *insn_ptr))
15427 *insn_ptr = NULL;
15428 }
15429
15430 /* X is the pattern of a call instruction. Return true if the call is
15431 not to a declared function. */
15432
15433 static bool
15434 r10k_needs_protection_p_call (const_rtx x)
15435 {
15436 subrtx_iterator::array_type array;
15437 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
15438 {
15439 const_rtx mem = *iter;
15440 if (MEM_P (mem))
15441 {
15442 const_rtx addr = XEXP (mem, 0);
15443 if (GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_DECL (addr))
15444 iter.skip_subrtxes ();
15445 else
15446 return true;
15447 }
15448 }
15449 return false;
15450 }
15451
15452 /* Return true if instruction INSN needs to be protected by an R10K
15453 cache barrier. */
15454
15455 static bool
15456 r10k_needs_protection_p (rtx_insn *insn)
15457 {
15458 if (CALL_P (insn))
15459 return r10k_needs_protection_p_call (PATTERN (insn));
15460
15461 if (mips_r10k_cache_barrier == R10K_CACHE_BARRIER_STORE)
15462 {
15463 note_stores (PATTERN (insn), r10k_needs_protection_p_store, &insn);
15464 return insn == NULL_RTX;
15465 }
15466
15467 return r10k_needs_protection_p_1 (PATTERN (insn), insn);
15468 }
15469
15470 /* Return true if BB is only reached by blocks in PROTECTED_BBS and if every
15471 edge is unconditional. */
15472
15473 static bool
15474 r10k_protected_bb_p (basic_block bb, sbitmap protected_bbs)
15475 {
15476 edge_iterator ei;
15477 edge e;
15478
15479 FOR_EACH_EDGE (e, ei, bb->preds)
15480 if (!single_succ_p (e->src)
15481 || !bitmap_bit_p (protected_bbs, e->src->index)
15482 || (e->flags & EDGE_COMPLEX) != 0)
15483 return false;
15484 return true;
15485 }
15486
15487 /* Implement -mr10k-cache-barrier= for the current function. */
15488
15489 static void
15490 r10k_insert_cache_barriers (void)
15491 {
15492 int *rev_post_order;
15493 unsigned int i, n;
15494 basic_block bb;
15495 sbitmap protected_bbs;
15496 rtx_insn *insn, *end;
15497 rtx unprotected_region;
15498
15499 if (TARGET_MIPS16)
15500 {
15501 sorry ("%qs does not support MIPS16 code", "-mr10k-cache-barrier");
15502 return;
15503 }
15504
15505 /* Calculate dominators. */
15506 calculate_dominance_info (CDI_DOMINATORS);
15507
15508 /* Bit X of PROTECTED_BBS is set if the last operation in basic block
15509 X is protected by a cache barrier. */
15510 protected_bbs = sbitmap_alloc (last_basic_block_for_fn (cfun));
15511 bitmap_clear (protected_bbs);
15512
15513 /* Iterate over the basic blocks in reverse post-order. */
15514 rev_post_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
15515 n = pre_and_rev_post_order_compute (NULL, rev_post_order, false);
15516 for (i = 0; i < n; i++)
15517 {
15518 bb = BASIC_BLOCK_FOR_FN (cfun, rev_post_order[i]);
15519
15520 /* If this block is only reached by unconditional edges, and if the
15521 source of every edge is protected, the beginning of the block is
15522 also protected. */
15523 if (r10k_protected_bb_p (bb, protected_bbs))
15524 unprotected_region = NULL_RTX;
15525 else
15526 unprotected_region = pc_rtx;
15527 end = NEXT_INSN (BB_END (bb));
15528
15529 /* UNPROTECTED_REGION is:
15530
15531 - null if we are processing a protected region,
15532 - pc_rtx if we are processing an unprotected region but have
15533 not yet found the first instruction in it
15534 - the first instruction in an unprotected region otherwise. */
15535 for (insn = BB_HEAD (bb); insn != end; insn = NEXT_INSN (insn))
15536 {
15537 if (unprotected_region && USEFUL_INSN_P (insn))
15538 {
15539 if (recog_memoized (insn) == CODE_FOR_mips_cache)
15540 /* This CACHE instruction protects the following code. */
15541 unprotected_region = NULL_RTX;
15542 else
15543 {
15544 /* See if INSN is the first instruction in this
15545 unprotected region. */
15546 if (unprotected_region == pc_rtx)
15547 unprotected_region = insn;
15548
15549 /* See if INSN needs to be protected. If so,
15550 we must insert a cache barrier somewhere between
15551 PREV_INSN (UNPROTECTED_REGION) and INSN. It isn't
15552 clear which position is better performance-wise,
15553 but as a tie-breaker, we assume that it is better
15554 to allow delay slots to be back-filled where
15555 possible, and that it is better not to insert
15556 barriers in the middle of already-scheduled code.
15557 We therefore insert the barrier at the beginning
15558 of the region. */
15559 if (r10k_needs_protection_p (insn))
15560 {
15561 emit_insn_before (gen_r10k_cache_barrier (),
15562 unprotected_region);
15563 unprotected_region = NULL_RTX;
15564 }
15565 }
15566 }
15567
15568 if (CALL_P (insn))
15569 /* The called function is not required to protect the exit path.
15570 The code that follows a call is therefore unprotected. */
15571 unprotected_region = pc_rtx;
15572 }
15573
15574 /* Record whether the end of this block is protected. */
15575 if (unprotected_region == NULL_RTX)
15576 bitmap_set_bit (protected_bbs, bb->index);
15577 }
15578 XDELETEVEC (rev_post_order);
15579
15580 sbitmap_free (protected_bbs);
15581
15582 free_dominance_info (CDI_DOMINATORS);
15583 }
15584 \f
15585 /* If INSN is a call, return the underlying CALL expr. Return NULL_RTX
15586 otherwise. If INSN has two call rtx, then store the second one in
15587 SECOND_CALL. */
15588
15589 static rtx
15590 mips_call_expr_from_insn (rtx_insn *insn, rtx *second_call)
15591 {
15592 rtx x;
15593 rtx x2;
15594
15595 if (!CALL_P (insn))
15596 return NULL_RTX;
15597
15598 x = PATTERN (insn);
15599 if (GET_CODE (x) == PARALLEL)
15600 {
15601 /* Calls returning complex values have two CALL rtx. Look for the second
15602 one here, and return it via the SECOND_CALL arg. */
15603 x2 = XVECEXP (x, 0, 1);
15604 if (GET_CODE (x2) == SET)
15605 x2 = XEXP (x2, 1);
15606 if (GET_CODE (x2) == CALL)
15607 *second_call = x2;
15608
15609 x = XVECEXP (x, 0, 0);
15610 }
15611 if (GET_CODE (x) == SET)
15612 x = XEXP (x, 1);
15613 gcc_assert (GET_CODE (x) == CALL);
15614
15615 return x;
15616 }
15617
15618 /* REG is set in DEF. See if the definition is one of the ways we load a
15619 register with a symbol address for a mips_use_pic_fn_addr_reg_p call.
15620 If it is, return the symbol reference of the function, otherwise return
15621 NULL_RTX.
15622
15623 If RECURSE_P is true, use mips_find_pic_call_symbol to interpret
15624 the values of source registers, otherwise treat such registers as
15625 having an unknown value. */
15626
15627 static rtx
15628 mips_pic_call_symbol_from_set (df_ref def, rtx reg, bool recurse_p)
15629 {
15630 rtx_insn *def_insn;
15631 rtx set;
15632
15633 if (DF_REF_IS_ARTIFICIAL (def))
15634 return NULL_RTX;
15635
15636 def_insn = DF_REF_INSN (def);
15637 set = single_set (def_insn);
15638 if (set && rtx_equal_p (SET_DEST (set), reg))
15639 {
15640 rtx note, src, symbol;
15641
15642 /* First see whether the source is a plain symbol. This is used
15643 when calling symbols that are not lazily bound. */
15644 src = SET_SRC (set);
15645 if (GET_CODE (src) == SYMBOL_REF)
15646 return src;
15647
15648 /* Handle %call16 references. */
15649 symbol = mips_strip_unspec_call (src);
15650 if (symbol)
15651 {
15652 gcc_assert (GET_CODE (symbol) == SYMBOL_REF);
15653 return symbol;
15654 }
15655
15656 /* If we have something more complicated, look for a
15657 REG_EQUAL or REG_EQUIV note. */
15658 note = find_reg_equal_equiv_note (def_insn);
15659 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
15660 return XEXP (note, 0);
15661
15662 /* Follow at most one simple register copy. Such copies are
15663 interesting in cases like:
15664
15665 for (...)
15666 {
15667 locally_binding_fn (...);
15668 }
15669
15670 and:
15671
15672 locally_binding_fn (...);
15673 ...
15674 locally_binding_fn (...);
15675
15676 where the load of locally_binding_fn can legitimately be
15677 hoisted or shared. However, we do not expect to see complex
15678 chains of copies, so a full worklist solution to the problem
15679 would probably be overkill. */
15680 if (recurse_p && REG_P (src))
15681 return mips_find_pic_call_symbol (def_insn, src, false);
15682 }
15683
15684 return NULL_RTX;
15685 }
15686
15687 /* Find the definition of the use of REG in INSN. See if the definition
15688 is one of the ways we load a register with a symbol address for a
15689 mips_use_pic_fn_addr_reg_p call. If it is return the symbol reference
15690 of the function, otherwise return NULL_RTX. RECURSE_P is as for
15691 mips_pic_call_symbol_from_set. */
15692
15693 static rtx
15694 mips_find_pic_call_symbol (rtx_insn *insn, rtx reg, bool recurse_p)
15695 {
15696 df_ref use;
15697 struct df_link *defs;
15698 rtx symbol;
15699
15700 use = df_find_use (insn, regno_reg_rtx[REGNO (reg)]);
15701 if (!use)
15702 return NULL_RTX;
15703 defs = DF_REF_CHAIN (use);
15704 if (!defs)
15705 return NULL_RTX;
15706 symbol = mips_pic_call_symbol_from_set (defs->ref, reg, recurse_p);
15707 if (!symbol)
15708 return NULL_RTX;
15709
15710 /* If we have more than one definition, they need to be identical. */
15711 for (defs = defs->next; defs; defs = defs->next)
15712 {
15713 rtx other;
15714
15715 other = mips_pic_call_symbol_from_set (defs->ref, reg, recurse_p);
15716 if (!rtx_equal_p (symbol, other))
15717 return NULL_RTX;
15718 }
15719
15720 return symbol;
15721 }
15722
15723 /* Replace the args_size operand of the call expression CALL with the
15724 call-attribute UNSPEC and fill in SYMBOL as the function symbol. */
15725
15726 static void
15727 mips_annotate_pic_call_expr (rtx call, rtx symbol)
15728 {
15729 rtx args_size;
15730
15731 args_size = XEXP (call, 1);
15732 XEXP (call, 1) = gen_rtx_UNSPEC (GET_MODE (args_size),
15733 gen_rtvec (2, args_size, symbol),
15734 UNSPEC_CALL_ATTR);
15735 }
15736
15737 /* OPERANDS[ARGS_SIZE_OPNO] is the arg_size operand of a CALL expression. See
15738 if instead of the arg_size argument it contains the call attributes. If
15739 yes return true along with setting OPERANDS[ARGS_SIZE_OPNO] to the function
15740 symbol from the call attributes. Also return false if ARGS_SIZE_OPNO is
15741 -1. */
15742
15743 bool
15744 mips_get_pic_call_symbol (rtx *operands, int args_size_opno)
15745 {
15746 rtx args_size, symbol;
15747
15748 if (!TARGET_RELAX_PIC_CALLS || args_size_opno == -1)
15749 return false;
15750
15751 args_size = operands[args_size_opno];
15752 if (GET_CODE (args_size) != UNSPEC)
15753 return false;
15754 gcc_assert (XINT (args_size, 1) == UNSPEC_CALL_ATTR);
15755
15756 symbol = XVECEXP (args_size, 0, 1);
15757 gcc_assert (GET_CODE (symbol) == SYMBOL_REF);
15758
15759 operands[args_size_opno] = symbol;
15760 return true;
15761 }
15762
15763 /* Use DF to annotate PIC indirect calls with the function symbol they
15764 dispatch to. */
15765
15766 static void
15767 mips_annotate_pic_calls (void)
15768 {
15769 basic_block bb;
15770 rtx_insn *insn;
15771
15772 FOR_EACH_BB_FN (bb, cfun)
15773 FOR_BB_INSNS (bb, insn)
15774 {
15775 rtx call, reg, symbol, second_call;
15776
15777 second_call = 0;
15778 call = mips_call_expr_from_insn (insn, &second_call);
15779 if (!call)
15780 continue;
15781 gcc_assert (MEM_P (XEXP (call, 0)));
15782 reg = XEXP (XEXP (call, 0), 0);
15783 if (!REG_P (reg))
15784 continue;
15785
15786 symbol = mips_find_pic_call_symbol (insn, reg, true);
15787 if (symbol)
15788 {
15789 mips_annotate_pic_call_expr (call, symbol);
15790 if (second_call)
15791 mips_annotate_pic_call_expr (second_call, symbol);
15792 }
15793 }
15794 }
15795 \f
15796 /* A temporary variable used by note_uses callbacks, etc. */
15797 static rtx_insn *mips_sim_insn;
15798
15799 /* A structure representing the state of the processor pipeline.
15800 Used by the mips_sim_* family of functions. */
15801 struct mips_sim {
15802 /* The maximum number of instructions that can be issued in a cycle.
15803 (Caches mips_issue_rate.) */
15804 unsigned int issue_rate;
15805
15806 /* The current simulation time. */
15807 unsigned int time;
15808
15809 /* How many more instructions can be issued in the current cycle. */
15810 unsigned int insns_left;
15811
15812 /* LAST_SET[X].INSN is the last instruction to set register X.
15813 LAST_SET[X].TIME is the time at which that instruction was issued.
15814 INSN is null if no instruction has yet set register X. */
15815 struct {
15816 rtx_insn *insn;
15817 unsigned int time;
15818 } last_set[FIRST_PSEUDO_REGISTER];
15819
15820 /* The pipeline's current DFA state. */
15821 state_t dfa_state;
15822 };
15823
15824 /* Reset STATE to the initial simulation state. */
15825
15826 static void
15827 mips_sim_reset (struct mips_sim *state)
15828 {
15829 curr_state = state->dfa_state;
15830
15831 state->time = 0;
15832 state->insns_left = state->issue_rate;
15833 memset (&state->last_set, 0, sizeof (state->last_set));
15834 state_reset (curr_state);
15835
15836 targetm.sched.init (0, false, 0);
15837 advance_state (curr_state);
15838 }
15839
15840 /* Initialize STATE before its first use. DFA_STATE points to an
15841 allocated but uninitialized DFA state. */
15842
15843 static void
15844 mips_sim_init (struct mips_sim *state, state_t dfa_state)
15845 {
15846 if (targetm.sched.init_dfa_pre_cycle_insn)
15847 targetm.sched.init_dfa_pre_cycle_insn ();
15848
15849 if (targetm.sched.init_dfa_post_cycle_insn)
15850 targetm.sched.init_dfa_post_cycle_insn ();
15851
15852 state->issue_rate = mips_issue_rate ();
15853 state->dfa_state = dfa_state;
15854 mips_sim_reset (state);
15855 }
15856
15857 /* Advance STATE by one clock cycle. */
15858
15859 static void
15860 mips_sim_next_cycle (struct mips_sim *state)
15861 {
15862 curr_state = state->dfa_state;
15863
15864 state->time++;
15865 state->insns_left = state->issue_rate;
15866 advance_state (curr_state);
15867 }
15868
15869 /* Advance simulation state STATE until instruction INSN can read
15870 register REG. */
15871
15872 static void
15873 mips_sim_wait_reg (struct mips_sim *state, rtx_insn *insn, rtx reg)
15874 {
15875 unsigned int regno, end_regno;
15876
15877 end_regno = END_REGNO (reg);
15878 for (regno = REGNO (reg); regno < end_regno; regno++)
15879 if (state->last_set[regno].insn != 0)
15880 {
15881 unsigned int t;
15882
15883 t = (state->last_set[regno].time
15884 + insn_latency (state->last_set[regno].insn, insn));
15885 while (state->time < t)
15886 mips_sim_next_cycle (state);
15887 }
15888 }
15889
15890 /* A note_uses callback. For each register in *X, advance simulation
15891 state DATA until mips_sim_insn can read the register's value. */
15892
15893 static void
15894 mips_sim_wait_regs_1 (rtx *x, void *data)
15895 {
15896 subrtx_var_iterator::array_type array;
15897 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
15898 if (REG_P (*iter))
15899 mips_sim_wait_reg ((struct mips_sim *) data, mips_sim_insn, *iter);
15900 }
15901
15902 /* Advance simulation state STATE until all of INSN's register
15903 dependencies are satisfied. */
15904
15905 static void
15906 mips_sim_wait_regs (struct mips_sim *state, rtx_insn *insn)
15907 {
15908 mips_sim_insn = insn;
15909 note_uses (&PATTERN (insn), mips_sim_wait_regs_1, state);
15910 }
15911
15912 /* Advance simulation state STATE until the units required by
15913 instruction INSN are available. */
15914
15915 static void
15916 mips_sim_wait_units (struct mips_sim *state, rtx_insn *insn)
15917 {
15918 state_t tmp_state;
15919
15920 tmp_state = alloca (state_size ());
15921 while (state->insns_left == 0
15922 || (memcpy (tmp_state, state->dfa_state, state_size ()),
15923 state_transition (tmp_state, insn) >= 0))
15924 mips_sim_next_cycle (state);
15925 }
15926
15927 /* Advance simulation state STATE until INSN is ready to issue. */
15928
15929 static void
15930 mips_sim_wait_insn (struct mips_sim *state, rtx_insn *insn)
15931 {
15932 mips_sim_wait_regs (state, insn);
15933 mips_sim_wait_units (state, insn);
15934 }
15935
15936 /* mips_sim_insn has just set X. Update the LAST_SET array
15937 in simulation state DATA. */
15938
15939 static void
15940 mips_sim_record_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
15941 {
15942 struct mips_sim *state;
15943
15944 state = (struct mips_sim *) data;
15945 if (REG_P (x))
15946 {
15947 unsigned int regno, end_regno;
15948
15949 end_regno = END_REGNO (x);
15950 for (regno = REGNO (x); regno < end_regno; regno++)
15951 {
15952 state->last_set[regno].insn = mips_sim_insn;
15953 state->last_set[regno].time = state->time;
15954 }
15955 }
15956 }
15957
15958 /* Issue instruction INSN in scheduler state STATE. Assume that INSN
15959 can issue immediately (i.e., that mips_sim_wait_insn has already
15960 been called). */
15961
15962 static void
15963 mips_sim_issue_insn (struct mips_sim *state, rtx_insn *insn)
15964 {
15965 curr_state = state->dfa_state;
15966
15967 state_transition (curr_state, insn);
15968 state->insns_left = targetm.sched.variable_issue (0, false, insn,
15969 state->insns_left);
15970
15971 mips_sim_insn = insn;
15972 note_stores (PATTERN (insn), mips_sim_record_set, state);
15973 }
15974
15975 /* Simulate issuing a NOP in state STATE. */
15976
15977 static void
15978 mips_sim_issue_nop (struct mips_sim *state)
15979 {
15980 if (state->insns_left == 0)
15981 mips_sim_next_cycle (state);
15982 state->insns_left--;
15983 }
15984
15985 /* Update simulation state STATE so that it's ready to accept the instruction
15986 after INSN. INSN should be part of the main rtl chain, not a member of a
15987 SEQUENCE. */
15988
15989 static void
15990 mips_sim_finish_insn (struct mips_sim *state, rtx_insn *insn)
15991 {
15992 /* If INSN is a jump with an implicit delay slot, simulate a nop. */
15993 if (JUMP_P (insn))
15994 mips_sim_issue_nop (state);
15995
15996 switch (GET_CODE (SEQ_BEGIN (insn)))
15997 {
15998 case CODE_LABEL:
15999 case CALL_INSN:
16000 /* We can't predict the processor state after a call or label. */
16001 mips_sim_reset (state);
16002 break;
16003
16004 case JUMP_INSN:
16005 /* The delay slots of branch likely instructions are only executed
16006 when the branch is taken. Therefore, if the caller has simulated
16007 the delay slot instruction, STATE does not really reflect the state
16008 of the pipeline for the instruction after the delay slot. Also,
16009 branch likely instructions tend to incur a penalty when not taken,
16010 so there will probably be an extra delay between the branch and
16011 the instruction after the delay slot. */
16012 if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn)))
16013 mips_sim_reset (state);
16014 break;
16015
16016 default:
16017 break;
16018 }
16019 }
16020
16021 /* Use simulator state STATE to calculate the execution time of
16022 instruction sequence SEQ. */
16023
16024 static unsigned int
16025 mips_seq_time (struct mips_sim *state, rtx_insn *seq)
16026 {
16027 mips_sim_reset (state);
16028 for (rtx_insn *insn = seq; insn; insn = NEXT_INSN (insn))
16029 {
16030 mips_sim_wait_insn (state, insn);
16031 mips_sim_issue_insn (state, insn);
16032 }
16033 return state->time;
16034 }
16035 \f
16036 /* Return the execution-time cost of mips_tuning_info.fast_mult_zero_zero_p
16037 setting SETTING, using STATE to simulate instruction sequences. */
16038
16039 static unsigned int
16040 mips_mult_zero_zero_cost (struct mips_sim *state, bool setting)
16041 {
16042 mips_tuning_info.fast_mult_zero_zero_p = setting;
16043 start_sequence ();
16044
16045 machine_mode dword_mode = TARGET_64BIT ? TImode : DImode;
16046 rtx hilo = gen_rtx_REG (dword_mode, MD_REG_FIRST);
16047 mips_emit_move_or_split (hilo, const0_rtx, SPLIT_FOR_SPEED);
16048
16049 /* If the target provides mulsidi3_32bit then that's the most likely
16050 consumer of the result. Test for bypasses. */
16051 if (dword_mode == DImode && HAVE_maddsidi4)
16052 {
16053 rtx gpr = gen_rtx_REG (SImode, GP_REG_FIRST + 4);
16054 emit_insn (gen_maddsidi4 (hilo, gpr, gpr, hilo));
16055 }
16056
16057 unsigned int time = mips_seq_time (state, get_insns ());
16058 end_sequence ();
16059 return time;
16060 }
16061
16062 /* Check the relative speeds of "MULT $0,$0" and "MTLO $0; MTHI $0"
16063 and set up mips_tuning_info.fast_mult_zero_zero_p accordingly.
16064 Prefer MULT -- which is shorter -- in the event of a tie. */
16065
16066 static void
16067 mips_set_fast_mult_zero_zero_p (struct mips_sim *state)
16068 {
16069 if (TARGET_MIPS16 || !ISA_HAS_HILO)
16070 /* No MTLO or MTHI available for MIPS16. Also, when there are no HI or LO
16071 registers then there is no reason to zero them, arbitrarily choose to
16072 say that "MULT $0,$0" would be faster. */
16073 mips_tuning_info.fast_mult_zero_zero_p = true;
16074 else
16075 {
16076 unsigned int true_time = mips_mult_zero_zero_cost (state, true);
16077 unsigned int false_time = mips_mult_zero_zero_cost (state, false);
16078 mips_tuning_info.fast_mult_zero_zero_p = (true_time <= false_time);
16079 }
16080 }
16081
16082 /* Set up costs based on the current architecture and tuning settings. */
16083
16084 static void
16085 mips_set_tuning_info (void)
16086 {
16087 if (mips_tuning_info.initialized_p
16088 && mips_tuning_info.arch == mips_arch
16089 && mips_tuning_info.tune == mips_tune
16090 && mips_tuning_info.mips16_p == TARGET_MIPS16)
16091 return;
16092
16093 mips_tuning_info.arch = mips_arch;
16094 mips_tuning_info.tune = mips_tune;
16095 mips_tuning_info.mips16_p = TARGET_MIPS16;
16096 mips_tuning_info.initialized_p = true;
16097
16098 dfa_start ();
16099
16100 struct mips_sim state;
16101 mips_sim_init (&state, alloca (state_size ()));
16102
16103 mips_set_fast_mult_zero_zero_p (&state);
16104
16105 dfa_finish ();
16106 }
16107
16108 /* Implement TARGET_EXPAND_TO_RTL_HOOK. */
16109
16110 static void
16111 mips_expand_to_rtl_hook (void)
16112 {
16113 /* We need to call this at a point where we can safely create sequences
16114 of instructions, so TARGET_OVERRIDE_OPTIONS is too early. We also
16115 need to call it at a point where the DFA infrastructure is not
16116 already in use, so we can't just call it lazily on demand.
16117
16118 At present, mips_tuning_info is only needed during post-expand
16119 RTL passes such as split_insns, so this hook should be early enough.
16120 We may need to move the call elsewhere if mips_tuning_info starts
16121 to be used for other things (such as rtx_costs, or expanders that
16122 could be called during gimple optimization). */
16123 mips_set_tuning_info ();
16124 }
16125 \f
16126 /* The VR4130 pipeline issues aligned pairs of instructions together,
16127 but it stalls the second instruction if it depends on the first.
16128 In order to cut down the amount of logic required, this dependence
16129 check is not based on a full instruction decode. Instead, any non-SPECIAL
16130 instruction is assumed to modify the register specified by bits 20-16
16131 (which is usually the "rt" field).
16132
16133 In BEQ, BEQL, BNE and BNEL instructions, the rt field is actually an
16134 input, so we can end up with a false dependence between the branch
16135 and its delay slot. If this situation occurs in instruction INSN,
16136 try to avoid it by swapping rs and rt. */
16137
16138 static void
16139 vr4130_avoid_branch_rt_conflict (rtx_insn *insn)
16140 {
16141 rtx_insn *first, *second;
16142
16143 first = SEQ_BEGIN (insn);
16144 second = SEQ_END (insn);
16145 if (JUMP_P (first)
16146 && NONJUMP_INSN_P (second)
16147 && GET_CODE (PATTERN (first)) == SET
16148 && GET_CODE (SET_DEST (PATTERN (first))) == PC
16149 && GET_CODE (SET_SRC (PATTERN (first))) == IF_THEN_ELSE)
16150 {
16151 /* Check for the right kind of condition. */
16152 rtx cond = XEXP (SET_SRC (PATTERN (first)), 0);
16153 if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
16154 && REG_P (XEXP (cond, 0))
16155 && REG_P (XEXP (cond, 1))
16156 && reg_referenced_p (XEXP (cond, 1), PATTERN (second))
16157 && !reg_referenced_p (XEXP (cond, 0), PATTERN (second)))
16158 {
16159 /* SECOND mentions the rt register but not the rs register. */
16160 rtx tmp = XEXP (cond, 0);
16161 XEXP (cond, 0) = XEXP (cond, 1);
16162 XEXP (cond, 1) = tmp;
16163 }
16164 }
16165 }
16166
16167 /* Implement -mvr4130-align. Go through each basic block and simulate the
16168 processor pipeline. If we find that a pair of instructions could execute
16169 in parallel, and the first of those instructions is not 8-byte aligned,
16170 insert a nop to make it aligned. */
16171
16172 static void
16173 vr4130_align_insns (void)
16174 {
16175 struct mips_sim state;
16176 rtx_insn *insn, *subinsn, *last, *last2, *next;
16177 bool aligned_p;
16178
16179 dfa_start ();
16180
16181 /* LAST is the last instruction before INSN to have a nonzero length.
16182 LAST2 is the last such instruction before LAST. */
16183 last = 0;
16184 last2 = 0;
16185
16186 /* ALIGNED_P is true if INSN is known to be at an aligned address. */
16187 aligned_p = true;
16188
16189 mips_sim_init (&state, alloca (state_size ()));
16190 for (insn = get_insns (); insn != 0; insn = next)
16191 {
16192 unsigned int length;
16193
16194 next = NEXT_INSN (insn);
16195
16196 /* See the comment above vr4130_avoid_branch_rt_conflict for details.
16197 This isn't really related to the alignment pass, but we do it on
16198 the fly to avoid a separate instruction walk. */
16199 vr4130_avoid_branch_rt_conflict (insn);
16200
16201 length = get_attr_length (insn);
16202 if (length > 0 && USEFUL_INSN_P (insn))
16203 FOR_EACH_SUBINSN (subinsn, insn)
16204 {
16205 mips_sim_wait_insn (&state, subinsn);
16206
16207 /* If we want this instruction to issue in parallel with the
16208 previous one, make sure that the previous instruction is
16209 aligned. There are several reasons why this isn't worthwhile
16210 when the second instruction is a call:
16211
16212 - Calls are less likely to be performance critical,
16213 - There's a good chance that the delay slot can execute
16214 in parallel with the call.
16215 - The return address would then be unaligned.
16216
16217 In general, if we're going to insert a nop between instructions
16218 X and Y, it's better to insert it immediately after X. That
16219 way, if the nop makes Y aligned, it will also align any labels
16220 between X and Y. */
16221 if (state.insns_left != state.issue_rate
16222 && !CALL_P (subinsn))
16223 {
16224 if (subinsn == SEQ_BEGIN (insn) && aligned_p)
16225 {
16226 /* SUBINSN is the first instruction in INSN and INSN is
16227 aligned. We want to align the previous instruction
16228 instead, so insert a nop between LAST2 and LAST.
16229
16230 Note that LAST could be either a single instruction
16231 or a branch with a delay slot. In the latter case,
16232 LAST, like INSN, is already aligned, but the delay
16233 slot must have some extra delay that stops it from
16234 issuing at the same time as the branch. We therefore
16235 insert a nop before the branch in order to align its
16236 delay slot. */
16237 gcc_assert (last2);
16238 emit_insn_after (gen_nop (), last2);
16239 aligned_p = false;
16240 }
16241 else if (subinsn != SEQ_BEGIN (insn) && !aligned_p)
16242 {
16243 /* SUBINSN is the delay slot of INSN, but INSN is
16244 currently unaligned. Insert a nop between
16245 LAST and INSN to align it. */
16246 gcc_assert (last);
16247 emit_insn_after (gen_nop (), last);
16248 aligned_p = true;
16249 }
16250 }
16251 mips_sim_issue_insn (&state, subinsn);
16252 }
16253 mips_sim_finish_insn (&state, insn);
16254
16255 /* Update LAST, LAST2 and ALIGNED_P for the next instruction. */
16256 length = get_attr_length (insn);
16257 if (length > 0)
16258 {
16259 /* If the instruction is an asm statement or multi-instruction
16260 mips.md patern, the length is only an estimate. Insert an
16261 8 byte alignment after it so that the following instructions
16262 can be handled correctly. */
16263 if (NONJUMP_INSN_P (SEQ_BEGIN (insn))
16264 && (recog_memoized (insn) < 0 || length >= 8))
16265 {
16266 next = emit_insn_after (gen_align (GEN_INT (3)), insn);
16267 next = NEXT_INSN (next);
16268 mips_sim_next_cycle (&state);
16269 aligned_p = true;
16270 }
16271 else if (length & 4)
16272 aligned_p = !aligned_p;
16273 last2 = last;
16274 last = insn;
16275 }
16276
16277 /* See whether INSN is an aligned label. */
16278 if (LABEL_P (insn) && label_to_alignment (insn) >= 3)
16279 aligned_p = true;
16280 }
16281 dfa_finish ();
16282 }
16283 \f
16284 /* This structure records that the current function has a LO_SUM
16285 involving SYMBOL_REF or LABEL_REF BASE and that MAX_OFFSET is
16286 the largest offset applied to BASE by all such LO_SUMs. */
16287 struct mips_lo_sum_offset {
16288 rtx base;
16289 HOST_WIDE_INT offset;
16290 };
16291
16292 /* Return a hash value for SYMBOL_REF or LABEL_REF BASE. */
16293
16294 static hashval_t
16295 mips_hash_base (rtx base)
16296 {
16297 int do_not_record_p;
16298
16299 return hash_rtx (base, GET_MODE (base), &do_not_record_p, NULL, false);
16300 }
16301
16302 /* Hashtable helpers. */
16303
16304 struct mips_lo_sum_offset_hasher : free_ptr_hash <mips_lo_sum_offset>
16305 {
16306 typedef rtx_def *compare_type;
16307 static inline hashval_t hash (const mips_lo_sum_offset *);
16308 static inline bool equal (const mips_lo_sum_offset *, const rtx_def *);
16309 };
16310
16311 /* Hash-table callbacks for mips_lo_sum_offsets. */
16312
16313 inline hashval_t
16314 mips_lo_sum_offset_hasher::hash (const mips_lo_sum_offset *entry)
16315 {
16316 return mips_hash_base (entry->base);
16317 }
16318
16319 inline bool
16320 mips_lo_sum_offset_hasher::equal (const mips_lo_sum_offset *entry,
16321 const rtx_def *value)
16322 {
16323 return rtx_equal_p (entry->base, value);
16324 }
16325
16326 typedef hash_table<mips_lo_sum_offset_hasher> mips_offset_table;
16327
16328 /* Look up symbolic constant X in HTAB, which is a hash table of
16329 mips_lo_sum_offsets. If OPTION is NO_INSERT, return true if X can be
16330 paired with a recorded LO_SUM, otherwise record X in the table. */
16331
16332 static bool
16333 mips_lo_sum_offset_lookup (mips_offset_table *htab, rtx x,
16334 enum insert_option option)
16335 {
16336 rtx base, offset;
16337 mips_lo_sum_offset **slot;
16338 struct mips_lo_sum_offset *entry;
16339
16340 /* Split X into a base and offset. */
16341 split_const (x, &base, &offset);
16342 if (UNSPEC_ADDRESS_P (base))
16343 base = UNSPEC_ADDRESS (base);
16344
16345 /* Look up the base in the hash table. */
16346 slot = htab->find_slot_with_hash (base, mips_hash_base (base), option);
16347 if (slot == NULL)
16348 return false;
16349
16350 entry = (struct mips_lo_sum_offset *) *slot;
16351 if (option == INSERT)
16352 {
16353 if (entry == NULL)
16354 {
16355 entry = XNEW (struct mips_lo_sum_offset);
16356 entry->base = base;
16357 entry->offset = INTVAL (offset);
16358 *slot = entry;
16359 }
16360 else
16361 {
16362 if (INTVAL (offset) > entry->offset)
16363 entry->offset = INTVAL (offset);
16364 }
16365 }
16366 return INTVAL (offset) <= entry->offset;
16367 }
16368
16369 /* Search X for LO_SUMs and record them in HTAB. */
16370
16371 static void
16372 mips_record_lo_sums (const_rtx x, mips_offset_table *htab)
16373 {
16374 subrtx_iterator::array_type array;
16375 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
16376 if (GET_CODE (*iter) == LO_SUM)
16377 mips_lo_sum_offset_lookup (htab, XEXP (*iter, 1), INSERT);
16378 }
16379
16380 /* Return true if INSN is a SET of an orphaned high-part relocation.
16381 HTAB is a hash table of mips_lo_sum_offsets that describes all the
16382 LO_SUMs in the current function. */
16383
16384 static bool
16385 mips_orphaned_high_part_p (mips_offset_table *htab, rtx_insn *insn)
16386 {
16387 enum mips_symbol_type type;
16388 rtx x, set;
16389
16390 set = single_set (insn);
16391 if (set)
16392 {
16393 /* Check for %his. */
16394 x = SET_SRC (set);
16395 if (GET_CODE (x) == HIGH
16396 && absolute_symbolic_operand (XEXP (x, 0), VOIDmode))
16397 return !mips_lo_sum_offset_lookup (htab, XEXP (x, 0), NO_INSERT);
16398
16399 /* Check for local %gots (and %got_pages, which is redundant but OK). */
16400 if (GET_CODE (x) == UNSPEC
16401 && XINT (x, 1) == UNSPEC_LOAD_GOT
16402 && mips_symbolic_constant_p (XVECEXP (x, 0, 1),
16403 SYMBOL_CONTEXT_LEA, &type)
16404 && type == SYMBOL_GOTOFF_PAGE)
16405 return !mips_lo_sum_offset_lookup (htab, XVECEXP (x, 0, 1), NO_INSERT);
16406 }
16407 return false;
16408 }
16409
16410 /* Subroutine of mips_reorg_process_insns. If there is a hazard between
16411 INSN and a previous instruction, avoid it by inserting nops after
16412 instruction AFTER.
16413
16414 *DELAYED_REG and *HILO_DELAY describe the hazards that apply at
16415 this point. If *DELAYED_REG is non-null, INSN must wait a cycle
16416 before using the value of that register. *HILO_DELAY counts the
16417 number of instructions since the last hilo hazard (that is,
16418 the number of instructions since the last MFLO or MFHI).
16419
16420 After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY
16421 for the next instruction.
16422
16423 LO_REG is an rtx for the LO register, used in dependence checking. */
16424
16425 static void
16426 mips_avoid_hazard (rtx_insn *after, rtx_insn *insn, int *hilo_delay,
16427 rtx *delayed_reg, rtx lo_reg)
16428 {
16429 rtx pattern, set;
16430 int nops, ninsns;
16431
16432 pattern = PATTERN (insn);
16433
16434 /* Do not put the whole function in .set noreorder if it contains
16435 an asm statement. We don't know whether there will be hazards
16436 between the asm statement and the gcc-generated code. */
16437 if (GET_CODE (pattern) == ASM_INPUT || asm_noperands (pattern) >= 0)
16438 cfun->machine->all_noreorder_p = false;
16439
16440 /* Ignore zero-length instructions (barriers and the like). */
16441 ninsns = get_attr_length (insn) / 4;
16442 if (ninsns == 0)
16443 return;
16444
16445 /* Work out how many nops are needed. Note that we only care about
16446 registers that are explicitly mentioned in the instruction's pattern.
16447 It doesn't matter that calls use the argument registers or that they
16448 clobber hi and lo. */
16449 if (*hilo_delay < 2 && reg_set_p (lo_reg, pattern))
16450 nops = 2 - *hilo_delay;
16451 else if (*delayed_reg != 0 && reg_referenced_p (*delayed_reg, pattern))
16452 nops = 1;
16453 else
16454 nops = 0;
16455
16456 /* Insert the nops between this instruction and the previous one.
16457 Each new nop takes us further from the last hilo hazard. */
16458 *hilo_delay += nops;
16459 while (nops-- > 0)
16460 emit_insn_after (gen_hazard_nop (), after);
16461
16462 /* Set up the state for the next instruction. */
16463 *hilo_delay += ninsns;
16464 *delayed_reg = 0;
16465 if (INSN_CODE (insn) >= 0)
16466 switch (get_attr_hazard (insn))
16467 {
16468 case HAZARD_NONE:
16469 break;
16470
16471 case HAZARD_HILO:
16472 *hilo_delay = 0;
16473 break;
16474
16475 case HAZARD_DELAY:
16476 set = single_set (insn);
16477 gcc_assert (set);
16478 *delayed_reg = SET_DEST (set);
16479 break;
16480 }
16481 }
16482
16483 /* Go through the instruction stream and insert nops where necessary.
16484 Also delete any high-part relocations whose partnering low parts
16485 are now all dead. See if the whole function can then be put into
16486 .set noreorder and .set nomacro. */
16487
16488 static void
16489 mips_reorg_process_insns (void)
16490 {
16491 rtx_insn *insn, *last_insn, *subinsn, *next_insn;
16492 rtx lo_reg, delayed_reg;
16493 int hilo_delay;
16494
16495 /* Force all instructions to be split into their final form. */
16496 split_all_insns_noflow ();
16497
16498 /* Recalculate instruction lengths without taking nops into account. */
16499 cfun->machine->ignore_hazard_length_p = true;
16500 shorten_branches (get_insns ());
16501
16502 cfun->machine->all_noreorder_p = true;
16503
16504 /* We don't track MIPS16 PC-relative offsets closely enough to make
16505 a good job of "set .noreorder" code in MIPS16 mode. */
16506 if (TARGET_MIPS16)
16507 cfun->machine->all_noreorder_p = false;
16508
16509 /* Code that doesn't use explicit relocs can't be ".set nomacro". */
16510 if (!TARGET_EXPLICIT_RELOCS)
16511 cfun->machine->all_noreorder_p = false;
16512
16513 /* Profiled functions can't be all noreorder because the profiler
16514 support uses assembler macros. */
16515 if (crtl->profile)
16516 cfun->machine->all_noreorder_p = false;
16517
16518 /* Code compiled with -mfix-vr4120, -mfix-rm7000 or -mfix-24k can't be
16519 all noreorder because we rely on the assembler to work around some
16520 errata. The R5900 too has several bugs. */
16521 if (TARGET_FIX_VR4120
16522 || TARGET_FIX_RM7000
16523 || TARGET_FIX_24K
16524 || TARGET_MIPS5900)
16525 cfun->machine->all_noreorder_p = false;
16526
16527 /* The same is true for -mfix-vr4130 if we might generate MFLO or
16528 MFHI instructions. Note that we avoid using MFLO and MFHI if
16529 the VR4130 MACC and DMACC instructions are available instead;
16530 see the *mfhilo_{si,di}_macc patterns. */
16531 if (TARGET_FIX_VR4130 && !ISA_HAS_MACCHI)
16532 cfun->machine->all_noreorder_p = false;
16533
16534 mips_offset_table htab (37);
16535
16536 /* Make a first pass over the instructions, recording all the LO_SUMs. */
16537 for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
16538 FOR_EACH_SUBINSN (subinsn, insn)
16539 if (USEFUL_INSN_P (subinsn))
16540 {
16541 rtx body = PATTERN (insn);
16542 int noperands = asm_noperands (body);
16543 if (noperands >= 0)
16544 {
16545 rtx *ops = XALLOCAVEC (rtx, noperands);
16546 bool *used = XALLOCAVEC (bool, noperands);
16547 const char *string = decode_asm_operands (body, ops, NULL, NULL,
16548 NULL, NULL);
16549 get_referenced_operands (string, used, noperands);
16550 for (int i = 0; i < noperands; ++i)
16551 if (used[i])
16552 mips_record_lo_sums (ops[i], &htab);
16553 }
16554 else
16555 mips_record_lo_sums (PATTERN (subinsn), &htab);
16556 }
16557
16558 last_insn = 0;
16559 hilo_delay = 2;
16560 delayed_reg = 0;
16561 lo_reg = gen_rtx_REG (SImode, LO_REGNUM);
16562
16563 /* Make a second pass over the instructions. Delete orphaned
16564 high-part relocations or turn them into NOPs. Avoid hazards
16565 by inserting NOPs. */
16566 for (insn = get_insns (); insn != 0; insn = next_insn)
16567 {
16568 next_insn = NEXT_INSN (insn);
16569 if (USEFUL_INSN_P (insn))
16570 {
16571 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
16572 {
16573 /* If we find an orphaned high-part relocation in a delay
16574 slot, it's easier to turn that instruction into a NOP than
16575 to delete it. The delay slot will be a NOP either way. */
16576 FOR_EACH_SUBINSN (subinsn, insn)
16577 if (INSN_P (subinsn))
16578 {
16579 if (mips_orphaned_high_part_p (&htab, subinsn))
16580 {
16581 PATTERN (subinsn) = gen_nop ();
16582 INSN_CODE (subinsn) = CODE_FOR_nop;
16583 }
16584 mips_avoid_hazard (last_insn, subinsn, &hilo_delay,
16585 &delayed_reg, lo_reg);
16586 }
16587 last_insn = insn;
16588 }
16589 else
16590 {
16591 /* INSN is a single instruction. Delete it if it's an
16592 orphaned high-part relocation. */
16593 if (mips_orphaned_high_part_p (&htab, insn))
16594 delete_insn (insn);
16595 /* Also delete cache barriers if the last instruction
16596 was an annulled branch. INSN will not be speculatively
16597 executed. */
16598 else if (recog_memoized (insn) == CODE_FOR_r10k_cache_barrier
16599 && last_insn
16600 && JUMP_P (SEQ_BEGIN (last_insn))
16601 && INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (last_insn)))
16602 delete_insn (insn);
16603 else
16604 {
16605 mips_avoid_hazard (last_insn, insn, &hilo_delay,
16606 &delayed_reg, lo_reg);
16607 last_insn = insn;
16608 }
16609 }
16610 }
16611 }
16612 }
16613
16614 /* Return true if the function has a long branch instruction. */
16615
16616 static bool
16617 mips_has_long_branch_p (void)
16618 {
16619 rtx_insn *insn, *subinsn;
16620 int normal_length;
16621
16622 /* We need up-to-date instruction lengths. */
16623 shorten_branches (get_insns ());
16624
16625 /* Look for a branch that is longer than normal. The normal length for
16626 non-MIPS16 branches is 8, because the length includes the delay slot.
16627 It is 4 for MIPS16, because MIPS16 branches are extended instructions,
16628 but they have no delay slot. */
16629 normal_length = (TARGET_MIPS16 ? 4 : 8);
16630 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
16631 FOR_EACH_SUBINSN (subinsn, insn)
16632 if (JUMP_P (subinsn)
16633 && get_attr_length (subinsn) > normal_length
16634 && (any_condjump_p (subinsn) || any_uncondjump_p (subinsn)))
16635 return true;
16636
16637 return false;
16638 }
16639
16640 /* If we are using a GOT, but have not decided to use a global pointer yet,
16641 see whether we need one to implement long branches. Convert the ghost
16642 global-pointer instructions into real ones if so. */
16643
16644 static bool
16645 mips_expand_ghost_gp_insns (void)
16646 {
16647 /* Quick exit if we already know that we will or won't need a
16648 global pointer. */
16649 if (!TARGET_USE_GOT
16650 || cfun->machine->global_pointer == INVALID_REGNUM
16651 || mips_must_initialize_gp_p ())
16652 return false;
16653
16654 /* Run a full check for long branches. */
16655 if (!mips_has_long_branch_p ())
16656 return false;
16657
16658 /* We've now established that we need $gp. */
16659 cfun->machine->must_initialize_gp_p = true;
16660 split_all_insns_noflow ();
16661
16662 return true;
16663 }
16664
16665 /* Subroutine of mips_reorg to manage passes that require DF. */
16666
16667 static void
16668 mips_df_reorg (void)
16669 {
16670 /* Create def-use chains. */
16671 df_set_flags (DF_EQ_NOTES);
16672 df_chain_add_problem (DF_UD_CHAIN);
16673 df_analyze ();
16674
16675 if (TARGET_RELAX_PIC_CALLS)
16676 mips_annotate_pic_calls ();
16677
16678 if (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE)
16679 r10k_insert_cache_barriers ();
16680
16681 df_finish_pass (false);
16682 }
16683
16684 /* Emit code to load LABEL_REF SRC into MIPS16 register DEST. This is
16685 called very late in mips_reorg, but the caller is required to run
16686 mips16_lay_out_constants on the result. */
16687
16688 static void
16689 mips16_load_branch_target (rtx dest, rtx src)
16690 {
16691 if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
16692 {
16693 rtx page, low;
16694
16695 if (mips_cfun_has_cprestore_slot_p ())
16696 mips_emit_move (dest, mips_cprestore_slot (dest, true));
16697 else
16698 mips_emit_move (dest, pic_offset_table_rtx);
16699 page = mips_unspec_address (src, SYMBOL_GOTOFF_PAGE);
16700 low = mips_unspec_address (src, SYMBOL_GOT_PAGE_OFST);
16701 emit_insn (gen_rtx_SET (dest,
16702 PMODE_INSN (gen_unspec_got, (dest, page))));
16703 emit_insn (gen_rtx_SET (dest, gen_rtx_LO_SUM (Pmode, dest, low)));
16704 }
16705 else
16706 {
16707 src = mips_unspec_address (src, SYMBOL_ABSOLUTE);
16708 mips_emit_move (dest, src);
16709 }
16710 }
16711
16712 /* If we're compiling a MIPS16 function, look for and split any long branches.
16713 This must be called after all other instruction modifications in
16714 mips_reorg. */
16715
16716 static void
16717 mips16_split_long_branches (void)
16718 {
16719 bool something_changed;
16720
16721 if (!TARGET_MIPS16)
16722 return;
16723
16724 /* Loop until the alignments for all targets are sufficient. */
16725 do
16726 {
16727 rtx_insn *insn;
16728 rtx_jump_insn *jump_insn;
16729
16730 shorten_branches (get_insns ());
16731 something_changed = false;
16732 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
16733 if ((jump_insn = dyn_cast <rtx_jump_insn *> (insn))
16734 && get_attr_length (jump_insn) > 4
16735 && (any_condjump_p (jump_insn) || any_uncondjump_p (jump_insn)))
16736 {
16737 rtx old_label, temp, saved_temp;
16738 rtx_code_label *new_label;
16739 rtx target;
16740 rtx_insn *jump, *jump_sequence;
16741
16742 start_sequence ();
16743
16744 /* Free up a MIPS16 register by saving it in $1. */
16745 saved_temp = gen_rtx_REG (Pmode, AT_REGNUM);
16746 temp = gen_rtx_REG (Pmode, GP_REG_FIRST + 2);
16747 emit_move_insn (saved_temp, temp);
16748
16749 /* Load the branch target into TEMP. */
16750 old_label = JUMP_LABEL (jump_insn);
16751 target = gen_rtx_LABEL_REF (Pmode, old_label);
16752 mips16_load_branch_target (temp, target);
16753
16754 /* Jump to the target and restore the register's
16755 original value. */
16756 jump = emit_jump_insn (PMODE_INSN (gen_indirect_jump_and_restore,
16757 (temp, temp, saved_temp)));
16758 JUMP_LABEL (jump) = old_label;
16759 LABEL_NUSES (old_label)++;
16760
16761 /* Rewrite any symbolic references that are supposed to use
16762 a PC-relative constant pool. */
16763 mips16_lay_out_constants (false);
16764
16765 if (simplejump_p (jump_insn))
16766 /* We're going to replace INSN with a longer form. */
16767 new_label = NULL;
16768 else
16769 {
16770 /* Create a branch-around label for the original
16771 instruction. */
16772 new_label = gen_label_rtx ();
16773 emit_label (new_label);
16774 }
16775
16776 jump_sequence = get_insns ();
16777 end_sequence ();
16778
16779 emit_insn_after (jump_sequence, jump_insn);
16780 if (new_label)
16781 invert_jump (jump_insn, new_label, false);
16782 else
16783 delete_insn (jump_insn);
16784 something_changed = true;
16785 }
16786 }
16787 while (something_changed);
16788 }
16789
16790 /* Implement TARGET_MACHINE_DEPENDENT_REORG. */
16791
16792 static void
16793 mips_reorg (void)
16794 {
16795 /* Restore the BLOCK_FOR_INSN pointers, which are needed by DF. Also during
16796 insn splitting in mips16_lay_out_constants, DF insn info is only kept up
16797 to date if the CFG is available. */
16798 if (mips_cfg_in_reorg ())
16799 compute_bb_for_insn ();
16800 mips16_lay_out_constants (true);
16801 if (mips_cfg_in_reorg ())
16802 {
16803 mips_df_reorg ();
16804 free_bb_for_insn ();
16805 }
16806 }
16807
16808 /* We use a machine specific pass to do a second machine dependent reorg
16809 pass after delay branch scheduling. */
16810
16811 static unsigned int
16812 mips_machine_reorg2 (void)
16813 {
16814 mips_reorg_process_insns ();
16815 if (!TARGET_MIPS16
16816 && TARGET_EXPLICIT_RELOCS
16817 && TUNE_MIPS4130
16818 && TARGET_VR4130_ALIGN)
16819 vr4130_align_insns ();
16820 if (mips_expand_ghost_gp_insns ())
16821 /* The expansion could invalidate some of the VR4130 alignment
16822 optimizations, but this should be an extremely rare case anyhow. */
16823 mips_reorg_process_insns ();
16824 mips16_split_long_branches ();
16825 return 0;
16826 }
16827
16828 namespace {
16829
16830 const pass_data pass_data_mips_machine_reorg2 =
16831 {
16832 RTL_PASS, /* type */
16833 "mach2", /* name */
16834 OPTGROUP_NONE, /* optinfo_flags */
16835 TV_MACH_DEP, /* tv_id */
16836 0, /* properties_required */
16837 0, /* properties_provided */
16838 0, /* properties_destroyed */
16839 0, /* todo_flags_start */
16840 0, /* todo_flags_finish */
16841 };
16842
16843 class pass_mips_machine_reorg2 : public rtl_opt_pass
16844 {
16845 public:
16846 pass_mips_machine_reorg2(gcc::context *ctxt)
16847 : rtl_opt_pass(pass_data_mips_machine_reorg2, ctxt)
16848 {}
16849
16850 /* opt_pass methods: */
16851 virtual unsigned int execute (function *) { return mips_machine_reorg2 (); }
16852
16853 }; // class pass_mips_machine_reorg2
16854
16855 } // anon namespace
16856
16857 rtl_opt_pass *
16858 make_pass_mips_machine_reorg2 (gcc::context *ctxt)
16859 {
16860 return new pass_mips_machine_reorg2 (ctxt);
16861 }
16862
16863 \f
16864 /* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
16865 in order to avoid duplicating too much logic from elsewhere. */
16866
16867 static void
16868 mips_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
16869 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
16870 tree function)
16871 {
16872 rtx this_rtx, temp1, temp2, fnaddr;
16873 rtx_insn *insn;
16874 bool use_sibcall_p;
16875
16876 /* Pretend to be a post-reload pass while generating rtl. */
16877 reload_completed = 1;
16878
16879 /* Mark the end of the (empty) prologue. */
16880 emit_note (NOTE_INSN_PROLOGUE_END);
16881
16882 /* Determine if we can use a sibcall to call FUNCTION directly. */
16883 fnaddr = XEXP (DECL_RTL (function), 0);
16884 use_sibcall_p = (mips_function_ok_for_sibcall (function, NULL)
16885 && const_call_insn_operand (fnaddr, Pmode));
16886
16887 /* Determine if we need to load FNADDR from the GOT. */
16888 if (!use_sibcall_p
16889 && (mips_got_symbol_type_p
16890 (mips_classify_symbol (fnaddr, SYMBOL_CONTEXT_LEA))))
16891 {
16892 /* Pick a global pointer. Use a call-clobbered register if
16893 TARGET_CALL_SAVED_GP. */
16894 cfun->machine->global_pointer
16895 = TARGET_CALL_SAVED_GP ? 15 : GLOBAL_POINTER_REGNUM;
16896 cfun->machine->must_initialize_gp_p = true;
16897 SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer);
16898
16899 /* Set up the global pointer for n32 or n64 abicalls. */
16900 mips_emit_loadgp ();
16901 }
16902
16903 /* We need two temporary registers in some cases. */
16904 temp1 = gen_rtx_REG (Pmode, 2);
16905 temp2 = gen_rtx_REG (Pmode, 3);
16906
16907 /* Find out which register contains the "this" pointer. */
16908 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
16909 this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
16910 else
16911 this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST);
16912
16913 /* Add DELTA to THIS_RTX. */
16914 if (delta != 0)
16915 {
16916 rtx offset = GEN_INT (delta);
16917 if (!SMALL_OPERAND (delta))
16918 {
16919 mips_emit_move (temp1, offset);
16920 offset = temp1;
16921 }
16922 emit_insn (gen_add3_insn (this_rtx, this_rtx, offset));
16923 }
16924
16925 /* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */
16926 if (vcall_offset != 0)
16927 {
16928 rtx addr;
16929
16930 /* Set TEMP1 to *THIS_RTX. */
16931 mips_emit_move (temp1, gen_rtx_MEM (Pmode, this_rtx));
16932
16933 /* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */
16934 addr = mips_add_offset (temp2, temp1, vcall_offset);
16935
16936 /* Load the offset and add it to THIS_RTX. */
16937 mips_emit_move (temp1, gen_rtx_MEM (Pmode, addr));
16938 emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1));
16939 }
16940
16941 /* Jump to the target function. Use a sibcall if direct jumps are
16942 allowed, otherwise load the address into a register first. */
16943 if (use_sibcall_p)
16944 {
16945 insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
16946 SIBLING_CALL_P (insn) = 1;
16947 }
16948 else
16949 {
16950 /* This is messy. GAS treats "la $25,foo" as part of a call
16951 sequence and may allow a global "foo" to be lazily bound.
16952 The general move patterns therefore reject this combination.
16953
16954 In this context, lazy binding would actually be OK
16955 for TARGET_CALL_CLOBBERED_GP, but it's still wrong for
16956 TARGET_CALL_SAVED_GP; see mips_load_call_address.
16957 We must therefore load the address via a temporary
16958 register if mips_dangerous_for_la25_p.
16959
16960 If we jump to the temporary register rather than $25,
16961 the assembler can use the move insn to fill the jump's
16962 delay slot.
16963
16964 We can use the same technique for MIPS16 code, where $25
16965 is not a valid JR register. */
16966 if (TARGET_USE_PIC_FN_ADDR_REG
16967 && !TARGET_MIPS16
16968 && !mips_dangerous_for_la25_p (fnaddr))
16969 temp1 = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
16970 mips_load_call_address (MIPS_CALL_SIBCALL, temp1, fnaddr);
16971
16972 if (TARGET_USE_PIC_FN_ADDR_REG
16973 && REGNO (temp1) != PIC_FUNCTION_ADDR_REGNUM)
16974 mips_emit_move (gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM), temp1);
16975 emit_jump_insn (gen_indirect_jump (temp1));
16976 }
16977
16978 /* Run just enough of rest_of_compilation. This sequence was
16979 "borrowed" from alpha.c. */
16980 insn = get_insns ();
16981 split_all_insns_noflow ();
16982 mips16_lay_out_constants (true);
16983 shorten_branches (insn);
16984 final_start_function (insn, file, 1);
16985 final (insn, file, 1);
16986 final_end_function ();
16987
16988 /* Clean up the vars set above. Note that final_end_function resets
16989 the global pointer for us. */
16990 reload_completed = 0;
16991 }
16992 \f
16993
16994 /* The last argument passed to mips_set_compression_mode,
16995 or negative if the function hasn't been called yet. */
16996 static unsigned int old_compression_mode = -1;
16997
16998 /* Set up the target-dependent global state for ISA mode COMPRESSION_MODE,
16999 which is either MASK_MIPS16 or MASK_MICROMIPS. */
17000
17001 static void
17002 mips_set_compression_mode (unsigned int compression_mode)
17003 {
17004
17005 if (compression_mode == old_compression_mode)
17006 return;
17007
17008 /* Restore base settings of various flags. */
17009 target_flags = mips_base_target_flags;
17010 flag_schedule_insns = mips_base_schedule_insns;
17011 flag_reorder_blocks_and_partition = mips_base_reorder_blocks_and_partition;
17012 flag_move_loop_invariants = mips_base_move_loop_invariants;
17013 align_loops = mips_base_align_loops;
17014 align_jumps = mips_base_align_jumps;
17015 align_functions = mips_base_align_functions;
17016 target_flags &= ~(MASK_MIPS16 | MASK_MICROMIPS);
17017 target_flags |= compression_mode;
17018
17019 if (compression_mode & MASK_MIPS16)
17020 {
17021 /* Switch to MIPS16 mode. */
17022 target_flags |= MASK_MIPS16;
17023
17024 /* Turn off SYNCI if it was on, MIPS16 doesn't support it. */
17025 target_flags &= ~MASK_SYNCI;
17026
17027 /* Don't run the scheduler before reload, since it tends to
17028 increase register pressure. */
17029 flag_schedule_insns = 0;
17030
17031 /* Don't do hot/cold partitioning. mips16_lay_out_constants expects
17032 the whole function to be in a single section. */
17033 flag_reorder_blocks_and_partition = 0;
17034
17035 /* Don't move loop invariants, because it tends to increase
17036 register pressure. It also introduces an extra move in cases
17037 where the constant is the first operand in a two-operand binary
17038 instruction, or when it forms a register argument to a functon
17039 call. */
17040 flag_move_loop_invariants = 0;
17041
17042 target_flags |= MASK_EXPLICIT_RELOCS;
17043
17044 /* Experiments suggest we get the best overall section-anchor
17045 results from using the range of an unextended LW or SW. Code
17046 that makes heavy use of byte or short accesses can do better
17047 with ranges of 0...31 and 0...63 respectively, but most code is
17048 sensitive to the range of LW and SW instead. */
17049 targetm.min_anchor_offset = 0;
17050 targetm.max_anchor_offset = 127;
17051
17052 targetm.const_anchor = 0;
17053
17054 /* MIPS16 has no BAL instruction. */
17055 target_flags &= ~MASK_RELAX_PIC_CALLS;
17056
17057 /* The R4000 errata don't apply to any known MIPS16 cores.
17058 It's simpler to make the R4000 fixes and MIPS16 mode
17059 mutually exclusive. */
17060 target_flags &= ~MASK_FIX_R4000;
17061
17062 if (flag_pic && !TARGET_OLDABI)
17063 sorry ("MIPS16 PIC for ABIs other than o32 and o64");
17064
17065 if (TARGET_XGOT)
17066 sorry ("MIPS16 -mxgot code");
17067
17068 if (TARGET_HARD_FLOAT_ABI && !TARGET_OLDABI)
17069 sorry ("hard-float MIPS16 code for ABIs other than o32 and o64");
17070 }
17071 else
17072 {
17073 /* Switch to microMIPS or the standard encoding. */
17074
17075 if (TARGET_MICROMIPS)
17076 /* Avoid branch likely. */
17077 target_flags &= ~MASK_BRANCHLIKELY;
17078
17079 /* Provide default values for align_* for 64-bit targets. */
17080 if (TARGET_64BIT)
17081 {
17082 if (align_loops == 0)
17083 align_loops = 8;
17084 if (align_jumps == 0)
17085 align_jumps = 8;
17086 if (align_functions == 0)
17087 align_functions = 8;
17088 }
17089
17090 targetm.min_anchor_offset = -32768;
17091 targetm.max_anchor_offset = 32767;
17092
17093 targetm.const_anchor = 0x8000;
17094 }
17095
17096 /* (Re)initialize MIPS target internals for new ISA. */
17097 mips_init_relocs ();
17098
17099 if (compression_mode & MASK_MIPS16)
17100 {
17101 if (!mips16_globals)
17102 mips16_globals = save_target_globals_default_opts ();
17103 else
17104 restore_target_globals (mips16_globals);
17105 }
17106 else if (compression_mode & MASK_MICROMIPS)
17107 {
17108 if (!micromips_globals)
17109 micromips_globals = save_target_globals_default_opts ();
17110 else
17111 restore_target_globals (micromips_globals);
17112 }
17113 else
17114 restore_target_globals (&default_target_globals);
17115
17116 old_compression_mode = compression_mode;
17117 }
17118
17119 /* Implement TARGET_SET_CURRENT_FUNCTION. Decide whether the current
17120 function should use the MIPS16 or microMIPS ISA and switch modes
17121 accordingly. */
17122
17123 static void
17124 mips_set_current_function (tree fndecl)
17125 {
17126 mips_set_compression_mode (mips_get_compress_mode (fndecl));
17127 }
17128 \f
17129 /* Allocate a chunk of memory for per-function machine-dependent data. */
17130
17131 static struct machine_function *
17132 mips_init_machine_status (void)
17133 {
17134 return ggc_cleared_alloc<machine_function> ();
17135 }
17136
17137 /* Return the processor associated with the given ISA level, or null
17138 if the ISA isn't valid. */
17139
17140 static const struct mips_cpu_info *
17141 mips_cpu_info_from_isa (int isa)
17142 {
17143 unsigned int i;
17144
17145 for (i = 0; i < ARRAY_SIZE (mips_cpu_info_table); i++)
17146 if (mips_cpu_info_table[i].isa == isa)
17147 return mips_cpu_info_table + i;
17148
17149 return NULL;
17150 }
17151
17152 /* Return a mips_cpu_info entry determined by an option valued
17153 OPT. */
17154
17155 static const struct mips_cpu_info *
17156 mips_cpu_info_from_opt (int opt)
17157 {
17158 switch (opt)
17159 {
17160 case MIPS_ARCH_OPTION_FROM_ABI:
17161 /* 'from-abi' selects the most compatible architecture for the
17162 given ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit
17163 ABIs. For the EABIs, we have to decide whether we're using
17164 the 32-bit or 64-bit version. */
17165 return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS ? 1
17166 : ABI_NEEDS_64BIT_REGS ? 3
17167 : (TARGET_64BIT ? 3 : 1));
17168
17169 case MIPS_ARCH_OPTION_NATIVE:
17170 gcc_unreachable ();
17171
17172 default:
17173 return &mips_cpu_info_table[opt];
17174 }
17175 }
17176
17177 /* Return a default mips_cpu_info entry, given that no -march= option
17178 was explicitly specified. */
17179
17180 static const struct mips_cpu_info *
17181 mips_default_arch (void)
17182 {
17183 #if defined (MIPS_CPU_STRING_DEFAULT)
17184 unsigned int i;
17185 for (i = 0; i < ARRAY_SIZE (mips_cpu_info_table); i++)
17186 if (strcmp (mips_cpu_info_table[i].name, MIPS_CPU_STRING_DEFAULT) == 0)
17187 return mips_cpu_info_table + i;
17188 gcc_unreachable ();
17189 #elif defined (MIPS_ISA_DEFAULT)
17190 return mips_cpu_info_from_isa (MIPS_ISA_DEFAULT);
17191 #else
17192 /* 'from-abi' makes a good default: you get whatever the ABI
17193 requires. */
17194 return mips_cpu_info_from_opt (MIPS_ARCH_OPTION_FROM_ABI);
17195 #endif
17196 }
17197
17198 /* Set up globals to generate code for the ISA or processor
17199 described by INFO. */
17200
17201 static void
17202 mips_set_architecture (const struct mips_cpu_info *info)
17203 {
17204 if (info != 0)
17205 {
17206 mips_arch_info = info;
17207 mips_arch = info->cpu;
17208 mips_isa = info->isa;
17209 if (mips_isa < 32)
17210 mips_isa_rev = 0;
17211 else
17212 mips_isa_rev = (mips_isa & 31) + 1;
17213 }
17214 }
17215
17216 /* Likewise for tuning. */
17217
17218 static void
17219 mips_set_tune (const struct mips_cpu_info *info)
17220 {
17221 if (info != 0)
17222 {
17223 mips_tune_info = info;
17224 mips_tune = info->cpu;
17225 }
17226 }
17227
17228 /* Implement TARGET_OPTION_OVERRIDE. */
17229
17230 static void
17231 mips_option_override (void)
17232 {
17233 int i, start, regno, mode;
17234
17235 if (global_options_set.x_mips_isa_option)
17236 mips_isa_option_info = &mips_cpu_info_table[mips_isa_option];
17237
17238 #ifdef SUBTARGET_OVERRIDE_OPTIONS
17239 SUBTARGET_OVERRIDE_OPTIONS;
17240 #endif
17241
17242 /* MIPS16 and microMIPS cannot coexist. */
17243 if (TARGET_MICROMIPS && TARGET_MIPS16)
17244 error ("unsupported combination: %s", "-mips16 -mmicromips");
17245
17246 /* Save the base compression state and process flags as though we
17247 were generating uncompressed code. */
17248 mips_base_compression_flags = TARGET_COMPRESSION;
17249 target_flags &= ~TARGET_COMPRESSION;
17250
17251 /* -mno-float overrides -mhard-float and -msoft-float. */
17252 if (TARGET_NO_FLOAT)
17253 {
17254 target_flags |= MASK_SOFT_FLOAT_ABI;
17255 target_flags_explicit |= MASK_SOFT_FLOAT_ABI;
17256 }
17257
17258 if (TARGET_FLIP_MIPS16)
17259 TARGET_INTERLINK_COMPRESSED = 1;
17260
17261 /* Set the small data limit. */
17262 mips_small_data_threshold = (global_options_set.x_g_switch_value
17263 ? g_switch_value
17264 : MIPS_DEFAULT_GVALUE);
17265
17266 /* The following code determines the architecture and register size.
17267 Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
17268 The GAS and GCC code should be kept in sync as much as possible. */
17269
17270 if (global_options_set.x_mips_arch_option)
17271 mips_set_architecture (mips_cpu_info_from_opt (mips_arch_option));
17272
17273 if (mips_isa_option_info != 0)
17274 {
17275 if (mips_arch_info == 0)
17276 mips_set_architecture (mips_isa_option_info);
17277 else if (mips_arch_info->isa != mips_isa_option_info->isa)
17278 error ("%<-%s%> conflicts with the other architecture options, "
17279 "which specify a %s processor",
17280 mips_isa_option_info->name,
17281 mips_cpu_info_from_isa (mips_arch_info->isa)->name);
17282 }
17283
17284 if (mips_arch_info == 0)
17285 mips_set_architecture (mips_default_arch ());
17286
17287 if (ABI_NEEDS_64BIT_REGS && !ISA_HAS_64BIT_REGS)
17288 error ("%<-march=%s%> is not compatible with the selected ABI",
17289 mips_arch_info->name);
17290
17291 /* Optimize for mips_arch, unless -mtune selects a different processor. */
17292 if (global_options_set.x_mips_tune_option)
17293 mips_set_tune (mips_cpu_info_from_opt (mips_tune_option));
17294
17295 if (mips_tune_info == 0)
17296 mips_set_tune (mips_arch_info);
17297
17298 if ((target_flags_explicit & MASK_64BIT) != 0)
17299 {
17300 /* The user specified the size of the integer registers. Make sure
17301 it agrees with the ABI and ISA. */
17302 if (TARGET_64BIT && !ISA_HAS_64BIT_REGS)
17303 error ("%<-mgp64%> used with a 32-bit processor");
17304 else if (!TARGET_64BIT && ABI_NEEDS_64BIT_REGS)
17305 error ("%<-mgp32%> used with a 64-bit ABI");
17306 else if (TARGET_64BIT && ABI_NEEDS_32BIT_REGS)
17307 error ("%<-mgp64%> used with a 32-bit ABI");
17308 }
17309 else
17310 {
17311 /* Infer the integer register size from the ABI and processor.
17312 Restrict ourselves to 32-bit registers if that's all the
17313 processor has, or if the ABI cannot handle 64-bit registers. */
17314 if (ABI_NEEDS_32BIT_REGS || !ISA_HAS_64BIT_REGS)
17315 target_flags &= ~MASK_64BIT;
17316 else
17317 target_flags |= MASK_64BIT;
17318 }
17319
17320 if ((target_flags_explicit & MASK_FLOAT64) != 0)
17321 {
17322 if (mips_isa_rev >= 6 && !TARGET_FLOAT64)
17323 error ("the %qs architecture does not support %<-mfp32%>",
17324 mips_arch_info->name);
17325 else if (TARGET_SINGLE_FLOAT && TARGET_FLOAT64)
17326 error ("unsupported combination: %s", "-mfp64 -msingle-float");
17327 else if (TARGET_64BIT && TARGET_DOUBLE_FLOAT && !TARGET_FLOAT64)
17328 error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
17329 else if (!TARGET_64BIT && TARGET_FLOAT64)
17330 {
17331 if (!ISA_HAS_MXHC1)
17332 error ("%<-mgp32%> and %<-mfp64%> can only be combined if"
17333 " the target supports the mfhc1 and mthc1 instructions");
17334 else if (mips_abi != ABI_32)
17335 error ("%<-mgp32%> and %<-mfp64%> can only be combined when using"
17336 " the o32 ABI");
17337 }
17338 }
17339 else
17340 {
17341 /* -msingle-float selects 32-bit float registers. On r6 and later,
17342 -mdouble-float selects 64-bit float registers, since the old paired
17343 register model is not supported. In other cases the float registers
17344 should be the same size as the integer ones. */
17345 if (mips_isa_rev >= 6 && TARGET_DOUBLE_FLOAT && !TARGET_FLOATXX)
17346 target_flags |= MASK_FLOAT64;
17347 else if (TARGET_64BIT && TARGET_DOUBLE_FLOAT)
17348 target_flags |= MASK_FLOAT64;
17349 else
17350 target_flags &= ~MASK_FLOAT64;
17351 }
17352
17353 if (mips_abi != ABI_32 && TARGET_FLOATXX)
17354 error ("%<-mfpxx%> can only be used with the o32 ABI");
17355 else if (TARGET_FLOAT64 && TARGET_FLOATXX)
17356 error ("unsupported combination: %s", "-mfp64 -mfpxx");
17357 else if (ISA_MIPS1 && !TARGET_FLOAT32)
17358 error ("%<-march=%s%> requires %<-mfp32%>", mips_arch_info->name);
17359 else if (TARGET_FLOATXX && !mips_lra_flag)
17360 error ("%<-mfpxx%> requires %<-mlra%>");
17361
17362 /* End of code shared with GAS. */
17363
17364 /* The R5900 FPU only supports single precision. */
17365 if (TARGET_MIPS5900 && TARGET_HARD_FLOAT_ABI && TARGET_DOUBLE_FLOAT)
17366 error ("unsupported combination: %s",
17367 "-march=r5900 -mhard-float -mdouble-float");
17368
17369 /* If a -mlong* option was given, check that it matches the ABI,
17370 otherwise infer the -mlong* setting from the other options. */
17371 if ((target_flags_explicit & MASK_LONG64) != 0)
17372 {
17373 if (TARGET_LONG64)
17374 {
17375 if (mips_abi == ABI_N32)
17376 error ("%qs is incompatible with %qs", "-mabi=n32", "-mlong64");
17377 else if (mips_abi == ABI_32)
17378 error ("%qs is incompatible with %qs", "-mabi=32", "-mlong64");
17379 else if (mips_abi == ABI_O64 && TARGET_ABICALLS)
17380 /* We have traditionally allowed non-abicalls code to use
17381 an LP64 form of o64. However, it would take a bit more
17382 effort to support the combination of 32-bit GOT entries
17383 and 64-bit pointers, so we treat the abicalls case as
17384 an error. */
17385 error ("the combination of %qs and %qs is incompatible with %qs",
17386 "-mabi=o64", "-mabicalls", "-mlong64");
17387 }
17388 else
17389 {
17390 if (mips_abi == ABI_64)
17391 error ("%qs is incompatible with %qs", "-mabi=64", "-mlong32");
17392 }
17393 }
17394 else
17395 {
17396 if ((mips_abi == ABI_EABI && TARGET_64BIT) || mips_abi == ABI_64)
17397 target_flags |= MASK_LONG64;
17398 else
17399 target_flags &= ~MASK_LONG64;
17400 }
17401
17402 if (!TARGET_OLDABI)
17403 flag_pcc_struct_return = 0;
17404
17405 /* Decide which rtx_costs structure to use. */
17406 if (optimize_size)
17407 mips_cost = &mips_rtx_cost_optimize_size;
17408 else
17409 mips_cost = &mips_rtx_cost_data[mips_tune];
17410
17411 /* If the user hasn't specified a branch cost, use the processor's
17412 default. */
17413 if (mips_branch_cost == 0)
17414 mips_branch_cost = mips_cost->branch_cost;
17415
17416 /* If neither -mbranch-likely nor -mno-branch-likely was given
17417 on the command line, set MASK_BRANCHLIKELY based on the target
17418 architecture and tuning flags. Annulled delay slots are a
17419 size win, so we only consider the processor-specific tuning
17420 for !optimize_size. */
17421 if ((target_flags_explicit & MASK_BRANCHLIKELY) == 0)
17422 {
17423 if (ISA_HAS_BRANCHLIKELY
17424 && (optimize_size
17425 || (mips_tune_info->tune_flags & PTF_AVOID_BRANCHLIKELY) == 0))
17426 target_flags |= MASK_BRANCHLIKELY;
17427 else
17428 target_flags &= ~MASK_BRANCHLIKELY;
17429 }
17430 else if (TARGET_BRANCHLIKELY && !ISA_HAS_BRANCHLIKELY)
17431 warning (0, "the %qs architecture does not support branch-likely"
17432 " instructions", mips_arch_info->name);
17433
17434 /* If the user hasn't specified -mimadd or -mno-imadd set
17435 MASK_IMADD based on the target architecture and tuning
17436 flags. */
17437 if ((target_flags_explicit & MASK_IMADD) == 0)
17438 {
17439 if (ISA_HAS_MADD_MSUB &&
17440 (mips_tune_info->tune_flags & PTF_AVOID_IMADD) == 0)
17441 target_flags |= MASK_IMADD;
17442 else
17443 target_flags &= ~MASK_IMADD;
17444 }
17445 else if (TARGET_IMADD && !ISA_HAS_MADD_MSUB)
17446 warning (0, "the %qs architecture does not support madd or msub"
17447 " instructions", mips_arch_info->name);
17448
17449 /* If neither -modd-spreg nor -mno-odd-spreg was given on the command
17450 line, set MASK_ODD_SPREG based on the ISA and ABI. */
17451 if ((target_flags_explicit & MASK_ODD_SPREG) == 0)
17452 {
17453 /* Disable TARGET_ODD_SPREG when using the o32 FPXX ABI. */
17454 if (!ISA_HAS_ODD_SPREG || TARGET_FLOATXX)
17455 target_flags &= ~MASK_ODD_SPREG;
17456 else
17457 target_flags |= MASK_ODD_SPREG;
17458 }
17459 else if (TARGET_ODD_SPREG && !ISA_HAS_ODD_SPREG)
17460 warning (0, "the %qs architecture does not support odd single-precision"
17461 " registers", mips_arch_info->name);
17462
17463 if (!TARGET_ODD_SPREG && TARGET_64BIT)
17464 {
17465 error ("unsupported combination: %s", "-mgp64 -mno-odd-spreg");
17466 /* Allow compilation to continue further even though invalid output
17467 will be produced. */
17468 target_flags |= MASK_ODD_SPREG;
17469 }
17470
17471 /* The effect of -mabicalls isn't defined for the EABI. */
17472 if (mips_abi == ABI_EABI && TARGET_ABICALLS)
17473 {
17474 error ("unsupported combination: %s", "-mabicalls -mabi=eabi");
17475 target_flags &= ~MASK_ABICALLS;
17476 }
17477
17478 /* PIC requires -mabicalls. */
17479 if (flag_pic)
17480 {
17481 if (mips_abi == ABI_EABI)
17482 error ("cannot generate position-independent code for %qs",
17483 "-mabi=eabi");
17484 else if (!TARGET_ABICALLS)
17485 error ("position-independent code requires %qs", "-mabicalls");
17486 }
17487
17488 if (TARGET_ABICALLS_PIC2)
17489 /* We need to set flag_pic for executables as well as DSOs
17490 because we may reference symbols that are not defined in
17491 the final executable. (MIPS does not use things like
17492 copy relocs, for example.)
17493
17494 There is a body of code that uses __PIC__ to distinguish
17495 between -mabicalls and -mno-abicalls code. The non-__PIC__
17496 variant is usually appropriate for TARGET_ABICALLS_PIC0, as
17497 long as any indirect jumps use $25. */
17498 flag_pic = 1;
17499
17500 /* -mvr4130-align is a "speed over size" optimization: it usually produces
17501 faster code, but at the expense of more nops. Enable it at -O3 and
17502 above. */
17503 if (optimize > 2 && (target_flags_explicit & MASK_VR4130_ALIGN) == 0)
17504 target_flags |= MASK_VR4130_ALIGN;
17505
17506 /* Prefer a call to memcpy over inline code when optimizing for size,
17507 though see MOVE_RATIO in mips.h. */
17508 if (optimize_size && (target_flags_explicit & MASK_MEMCPY) == 0)
17509 target_flags |= MASK_MEMCPY;
17510
17511 /* If we have a nonzero small-data limit, check that the -mgpopt
17512 setting is consistent with the other target flags. */
17513 if (mips_small_data_threshold > 0)
17514 {
17515 if (!TARGET_GPOPT)
17516 {
17517 if (!TARGET_EXPLICIT_RELOCS)
17518 error ("%<-mno-gpopt%> needs %<-mexplicit-relocs%>");
17519
17520 TARGET_LOCAL_SDATA = false;
17521 TARGET_EXTERN_SDATA = false;
17522 }
17523 else
17524 {
17525 if (TARGET_VXWORKS_RTP)
17526 warning (0, "cannot use small-data accesses for %qs", "-mrtp");
17527
17528 if (TARGET_ABICALLS)
17529 warning (0, "cannot use small-data accesses for %qs",
17530 "-mabicalls");
17531 }
17532 }
17533
17534 /* Set NaN and ABS defaults. */
17535 if (mips_nan == MIPS_IEEE_754_DEFAULT && !ISA_HAS_IEEE_754_LEGACY)
17536 mips_nan = MIPS_IEEE_754_2008;
17537 if (mips_abs == MIPS_IEEE_754_DEFAULT && !ISA_HAS_IEEE_754_LEGACY)
17538 mips_abs = MIPS_IEEE_754_2008;
17539
17540 /* Check for IEEE 754 legacy/2008 support. */
17541 if ((mips_nan == MIPS_IEEE_754_LEGACY
17542 || mips_abs == MIPS_IEEE_754_LEGACY)
17543 && !ISA_HAS_IEEE_754_LEGACY)
17544 warning (0, "the %qs architecture does not support %<-m%s=legacy%>",
17545 mips_arch_info->name,
17546 mips_nan == MIPS_IEEE_754_LEGACY ? "nan" : "abs");
17547
17548 if ((mips_nan == MIPS_IEEE_754_2008
17549 || mips_abs == MIPS_IEEE_754_2008)
17550 && !ISA_HAS_IEEE_754_2008)
17551 warning (0, "the %qs architecture does not support %<-m%s=2008%>",
17552 mips_arch_info->name,
17553 mips_nan == MIPS_IEEE_754_2008 ? "nan" : "abs");
17554
17555 /* Pre-IEEE 754-2008 MIPS hardware has a quirky almost-IEEE format
17556 for all its floating point. */
17557 if (mips_nan != MIPS_IEEE_754_2008)
17558 {
17559 REAL_MODE_FORMAT (SFmode) = &mips_single_format;
17560 REAL_MODE_FORMAT (DFmode) = &mips_double_format;
17561 REAL_MODE_FORMAT (TFmode) = &mips_quad_format;
17562 }
17563
17564 /* Make sure that the user didn't turn off paired single support when
17565 MIPS-3D support is requested. */
17566 if (TARGET_MIPS3D
17567 && (target_flags_explicit & MASK_PAIRED_SINGLE_FLOAT)
17568 && !TARGET_PAIRED_SINGLE_FLOAT)
17569 error ("%<-mips3d%> requires %<-mpaired-single%>");
17570
17571 /* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT. */
17572 if (TARGET_MIPS3D)
17573 target_flags |= MASK_PAIRED_SINGLE_FLOAT;
17574
17575 /* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64
17576 and TARGET_HARD_FLOAT_ABI are both true. */
17577 if (TARGET_PAIRED_SINGLE_FLOAT && !(TARGET_FLOAT64 && TARGET_HARD_FLOAT_ABI))
17578 {
17579 error ("%qs must be used with %qs",
17580 TARGET_MIPS3D ? "-mips3d" : "-mpaired-single",
17581 TARGET_HARD_FLOAT_ABI ? "-mfp64" : "-mhard-float");
17582 target_flags &= ~MASK_PAIRED_SINGLE_FLOAT;
17583 TARGET_MIPS3D = 0;
17584 }
17585
17586 /* Make sure that -mpaired-single is only used on ISAs that support it.
17587 We must disable it otherwise since it relies on other ISA properties
17588 like ISA_HAS_8CC having their normal values. */
17589 if (TARGET_PAIRED_SINGLE_FLOAT && !ISA_HAS_PAIRED_SINGLE)
17590 {
17591 error ("the %qs architecture does not support paired-single"
17592 " instructions", mips_arch_info->name);
17593 target_flags &= ~MASK_PAIRED_SINGLE_FLOAT;
17594 TARGET_MIPS3D = 0;
17595 }
17596
17597 if (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE
17598 && !TARGET_CACHE_BUILTIN)
17599 {
17600 error ("%qs requires a target that provides the %qs instruction",
17601 "-mr10k-cache-barrier", "cache");
17602 mips_r10k_cache_barrier = R10K_CACHE_BARRIER_NONE;
17603 }
17604
17605 /* If TARGET_DSPR2, enable TARGET_DSP. */
17606 if (TARGET_DSPR2)
17607 TARGET_DSP = true;
17608
17609 if (TARGET_DSP && mips_isa_rev >= 6)
17610 {
17611 error ("the %qs architecture does not support DSP instructions",
17612 mips_arch_info->name);
17613 TARGET_DSP = false;
17614 TARGET_DSPR2 = false;
17615 }
17616
17617 /* .eh_frame addresses should be the same width as a C pointer.
17618 Most MIPS ABIs support only one pointer size, so the assembler
17619 will usually know exactly how big an .eh_frame address is.
17620
17621 Unfortunately, this is not true of the 64-bit EABI. The ABI was
17622 originally defined to use 64-bit pointers (i.e. it is LP64), and
17623 this is still the default mode. However, we also support an n32-like
17624 ILP32 mode, which is selected by -mlong32. The problem is that the
17625 assembler has traditionally not had an -mlong option, so it has
17626 traditionally not known whether we're using the ILP32 or LP64 form.
17627
17628 As it happens, gas versions up to and including 2.19 use _32-bit_
17629 addresses for EABI64 .cfi_* directives. This is wrong for the
17630 default LP64 mode, so we can't use the directives by default.
17631 Moreover, since gas's current behavior is at odds with gcc's
17632 default behavior, it seems unwise to rely on future versions
17633 of gas behaving the same way. We therefore avoid using .cfi
17634 directives for -mlong32 as well. */
17635 if (mips_abi == ABI_EABI && TARGET_64BIT)
17636 flag_dwarf2_cfi_asm = 0;
17637
17638 /* .cfi_* directives generate a read-only section, so fall back on
17639 manual .eh_frame creation if we need the section to be writable. */
17640 if (TARGET_WRITABLE_EH_FRAME)
17641 flag_dwarf2_cfi_asm = 0;
17642
17643 mips_init_print_operand_punct ();
17644
17645 /* Set up array to map GCC register number to debug register number.
17646 Ignore the special purpose register numbers. */
17647
17648 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
17649 {
17650 mips_dbx_regno[i] = IGNORED_DWARF_REGNUM;
17651 if (GP_REG_P (i) || FP_REG_P (i) || ALL_COP_REG_P (i))
17652 mips_dwarf_regno[i] = i;
17653 else
17654 mips_dwarf_regno[i] = INVALID_REGNUM;
17655 }
17656
17657 start = GP_DBX_FIRST - GP_REG_FIRST;
17658 for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
17659 mips_dbx_regno[i] = i + start;
17660
17661 start = FP_DBX_FIRST - FP_REG_FIRST;
17662 for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
17663 mips_dbx_regno[i] = i + start;
17664
17665 /* Accumulator debug registers use big-endian ordering. */
17666 mips_dbx_regno[HI_REGNUM] = MD_DBX_FIRST + 0;
17667 mips_dbx_regno[LO_REGNUM] = MD_DBX_FIRST + 1;
17668 mips_dwarf_regno[HI_REGNUM] = MD_REG_FIRST + 0;
17669 mips_dwarf_regno[LO_REGNUM] = MD_REG_FIRST + 1;
17670 for (i = DSP_ACC_REG_FIRST; i <= DSP_ACC_REG_LAST; i += 2)
17671 {
17672 mips_dwarf_regno[i + TARGET_LITTLE_ENDIAN] = i;
17673 mips_dwarf_regno[i + TARGET_BIG_ENDIAN] = i + 1;
17674 }
17675
17676 /* Set up mips_hard_regno_mode_ok. */
17677 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
17678 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
17679 mips_hard_regno_mode_ok[mode][regno]
17680 = mips_hard_regno_mode_ok_p (regno, (machine_mode) mode);
17681
17682 /* Function to allocate machine-dependent function status. */
17683 init_machine_status = &mips_init_machine_status;
17684
17685 /* Default to working around R4000 errata only if the processor
17686 was selected explicitly. */
17687 if ((target_flags_explicit & MASK_FIX_R4000) == 0
17688 && strcmp (mips_arch_info->name, "r4000") == 0)
17689 target_flags |= MASK_FIX_R4000;
17690
17691 /* Default to working around R4400 errata only if the processor
17692 was selected explicitly. */
17693 if ((target_flags_explicit & MASK_FIX_R4400) == 0
17694 && strcmp (mips_arch_info->name, "r4400") == 0)
17695 target_flags |= MASK_FIX_R4400;
17696
17697 /* Default to working around R10000 errata only if the processor
17698 was selected explicitly. */
17699 if ((target_flags_explicit & MASK_FIX_R10000) == 0
17700 && strcmp (mips_arch_info->name, "r10000") == 0)
17701 target_flags |= MASK_FIX_R10000;
17702
17703 /* Make sure that branch-likely instructions available when using
17704 -mfix-r10000. The instructions are not available if either:
17705
17706 1. -mno-branch-likely was passed.
17707 2. The selected ISA does not support branch-likely and
17708 the command line does not include -mbranch-likely. */
17709 if (TARGET_FIX_R10000
17710 && ((target_flags_explicit & MASK_BRANCHLIKELY) == 0
17711 ? !ISA_HAS_BRANCHLIKELY
17712 : !TARGET_BRANCHLIKELY))
17713 sorry ("%qs requires branch-likely instructions", "-mfix-r10000");
17714
17715 if (TARGET_SYNCI && !ISA_HAS_SYNCI)
17716 {
17717 warning (0, "the %qs architecture does not support the synci "
17718 "instruction", mips_arch_info->name);
17719 target_flags &= ~MASK_SYNCI;
17720 }
17721
17722 /* Only optimize PIC indirect calls if they are actually required. */
17723 if (!TARGET_USE_GOT || !TARGET_EXPLICIT_RELOCS)
17724 target_flags &= ~MASK_RELAX_PIC_CALLS;
17725
17726 /* Save base state of options. */
17727 mips_base_target_flags = target_flags;
17728 mips_base_schedule_insns = flag_schedule_insns;
17729 mips_base_reorder_blocks_and_partition = flag_reorder_blocks_and_partition;
17730 mips_base_move_loop_invariants = flag_move_loop_invariants;
17731 mips_base_align_loops = align_loops;
17732 mips_base_align_jumps = align_jumps;
17733 mips_base_align_functions = align_functions;
17734
17735 /* Now select the ISA mode.
17736
17737 Do all CPP-sensitive stuff in uncompressed mode; we'll switch modes
17738 later if required. */
17739 mips_set_compression_mode (0);
17740
17741 /* We register a second machine specific reorg pass after delay slot
17742 filling. Registering the pass must be done at start up. It's
17743 convenient to do it here. */
17744 opt_pass *new_pass = make_pass_mips_machine_reorg2 (g);
17745 struct register_pass_info insert_pass_mips_machine_reorg2 =
17746 {
17747 new_pass, /* pass */
17748 "dbr", /* reference_pass_name */
17749 1, /* ref_pass_instance_number */
17750 PASS_POS_INSERT_AFTER /* po_op */
17751 };
17752 register_pass (&insert_pass_mips_machine_reorg2);
17753
17754 if (TARGET_HARD_FLOAT_ABI && TARGET_MIPS5900)
17755 REAL_MODE_FORMAT (SFmode) = &spu_single_format;
17756 }
17757
17758 /* Swap the register information for registers I and I + 1, which
17759 currently have the wrong endianness. Note that the registers'
17760 fixedness and call-clobberedness might have been set on the
17761 command line. */
17762
17763 static void
17764 mips_swap_registers (unsigned int i)
17765 {
17766 int tmpi;
17767 const char *tmps;
17768
17769 #define SWAP_INT(X, Y) (tmpi = (X), (X) = (Y), (Y) = tmpi)
17770 #define SWAP_STRING(X, Y) (tmps = (X), (X) = (Y), (Y) = tmps)
17771
17772 SWAP_INT (fixed_regs[i], fixed_regs[i + 1]);
17773 SWAP_INT (call_used_regs[i], call_used_regs[i + 1]);
17774 SWAP_INT (call_really_used_regs[i], call_really_used_regs[i + 1]);
17775 SWAP_STRING (reg_names[i], reg_names[i + 1]);
17776
17777 #undef SWAP_STRING
17778 #undef SWAP_INT
17779 }
17780
17781 /* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
17782
17783 static void
17784 mips_conditional_register_usage (void)
17785 {
17786
17787 if (ISA_HAS_DSP)
17788 {
17789 /* These DSP control register fields are global. */
17790 global_regs[CCDSP_PO_REGNUM] = 1;
17791 global_regs[CCDSP_SC_REGNUM] = 1;
17792 }
17793 else
17794 AND_COMPL_HARD_REG_SET (accessible_reg_set,
17795 reg_class_contents[(int) DSP_ACC_REGS]);
17796
17797 if (!ISA_HAS_HILO)
17798 AND_COMPL_HARD_REG_SET (accessible_reg_set,
17799 reg_class_contents[(int) MD_REGS]);
17800
17801 if (!TARGET_HARD_FLOAT)
17802 {
17803 AND_COMPL_HARD_REG_SET (accessible_reg_set,
17804 reg_class_contents[(int) FP_REGS]);
17805 AND_COMPL_HARD_REG_SET (accessible_reg_set,
17806 reg_class_contents[(int) ST_REGS]);
17807 }
17808 else if (!ISA_HAS_8CC)
17809 {
17810 /* We only have a single condition-code register. We implement
17811 this by fixing all the condition-code registers and generating
17812 RTL that refers directly to ST_REG_FIRST. */
17813 AND_COMPL_HARD_REG_SET (accessible_reg_set,
17814 reg_class_contents[(int) ST_REGS]);
17815 if (!ISA_HAS_CCF)
17816 SET_HARD_REG_BIT (accessible_reg_set, FPSW_REGNUM);
17817 fixed_regs[FPSW_REGNUM] = call_used_regs[FPSW_REGNUM] = 1;
17818 }
17819 if (TARGET_MIPS16)
17820 {
17821 /* In MIPS16 mode, we prohibit the unused $s registers, since they
17822 are call-saved, and saving them via a MIPS16 register would
17823 probably waste more time than just reloading the value.
17824
17825 We permit the $t temporary registers when optimizing for speed
17826 but not when optimizing for space because using them results in
17827 code that is larger (but faster) then not using them. We do
17828 allow $24 (t8) because it is used in CMP and CMPI instructions
17829 and $25 (t9) because it is used as the function call address in
17830 SVR4 PIC code. */
17831
17832 fixed_regs[18] = call_used_regs[18] = 1;
17833 fixed_regs[19] = call_used_regs[19] = 1;
17834 fixed_regs[20] = call_used_regs[20] = 1;
17835 fixed_regs[21] = call_used_regs[21] = 1;
17836 fixed_regs[22] = call_used_regs[22] = 1;
17837 fixed_regs[23] = call_used_regs[23] = 1;
17838 fixed_regs[26] = call_used_regs[26] = 1;
17839 fixed_regs[27] = call_used_regs[27] = 1;
17840 fixed_regs[30] = call_used_regs[30] = 1;
17841 if (optimize_size)
17842 {
17843 fixed_regs[8] = call_used_regs[8] = 1;
17844 fixed_regs[9] = call_used_regs[9] = 1;
17845 fixed_regs[10] = call_used_regs[10] = 1;
17846 fixed_regs[11] = call_used_regs[11] = 1;
17847 fixed_regs[12] = call_used_regs[12] = 1;
17848 fixed_regs[13] = call_used_regs[13] = 1;
17849 fixed_regs[14] = call_used_regs[14] = 1;
17850 fixed_regs[15] = call_used_regs[15] = 1;
17851 }
17852
17853 /* Do not allow HI and LO to be treated as register operands.
17854 There are no MTHI or MTLO instructions (or any real need
17855 for them) and one-way registers cannot easily be reloaded. */
17856 AND_COMPL_HARD_REG_SET (operand_reg_set,
17857 reg_class_contents[(int) MD_REGS]);
17858 }
17859 /* $f20-$f23 are call-clobbered for n64. */
17860 if (mips_abi == ABI_64)
17861 {
17862 int regno;
17863 for (regno = FP_REG_FIRST + 20; regno < FP_REG_FIRST + 24; regno++)
17864 call_really_used_regs[regno] = call_used_regs[regno] = 1;
17865 }
17866 /* Odd registers in the range $f21-$f31 (inclusive) are call-clobbered
17867 for n32 and o32 FP64. */
17868 if (mips_abi == ABI_N32
17869 || (mips_abi == ABI_32
17870 && TARGET_FLOAT64))
17871 {
17872 int regno;
17873 for (regno = FP_REG_FIRST + 21; regno <= FP_REG_FIRST + 31; regno+=2)
17874 call_really_used_regs[regno] = call_used_regs[regno] = 1;
17875 }
17876 /* Make sure that double-register accumulator values are correctly
17877 ordered for the current endianness. */
17878 if (TARGET_LITTLE_ENDIAN)
17879 {
17880 unsigned int regno;
17881
17882 mips_swap_registers (MD_REG_FIRST);
17883 for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno += 2)
17884 mips_swap_registers (regno);
17885 }
17886 }
17887
17888 /* Implement EH_USES. */
17889
17890 bool
17891 mips_eh_uses (unsigned int regno)
17892 {
17893 if (reload_completed && !TARGET_ABSOLUTE_JUMPS)
17894 {
17895 /* We need to force certain registers to be live in order to handle
17896 PIC long branches correctly. See mips_must_initialize_gp_p for
17897 details. */
17898 if (mips_cfun_has_cprestore_slot_p ())
17899 {
17900 if (regno == CPRESTORE_SLOT_REGNUM)
17901 return true;
17902 }
17903 else
17904 {
17905 if (cfun->machine->global_pointer == regno)
17906 return true;
17907 }
17908 }
17909
17910 return false;
17911 }
17912
17913 /* Implement EPILOGUE_USES. */
17914
17915 bool
17916 mips_epilogue_uses (unsigned int regno)
17917 {
17918 /* Say that the epilogue uses the return address register. Note that
17919 in the case of sibcalls, the values "used by the epilogue" are
17920 considered live at the start of the called function. */
17921 if (regno == RETURN_ADDR_REGNUM)
17922 return true;
17923
17924 /* If using a GOT, say that the epilogue also uses GOT_VERSION_REGNUM.
17925 See the comment above load_call<mode> for details. */
17926 if (TARGET_USE_GOT && (regno) == GOT_VERSION_REGNUM)
17927 return true;
17928
17929 /* An interrupt handler must preserve some registers that are
17930 ordinarily call-clobbered. */
17931 if (cfun->machine->interrupt_handler_p
17932 && mips_interrupt_extra_call_saved_reg_p (regno))
17933 return true;
17934
17935 return false;
17936 }
17937
17938 /* Return true if INSN needs to be wrapped in ".set noat".
17939 INSN has NOPERANDS operands, stored in OPVEC. */
17940
17941 static bool
17942 mips_need_noat_wrapper_p (rtx_insn *insn, rtx *opvec, int noperands)
17943 {
17944 if (recog_memoized (insn) >= 0)
17945 {
17946 subrtx_iterator::array_type array;
17947 for (int i = 0; i < noperands; i++)
17948 FOR_EACH_SUBRTX (iter, array, opvec[i], NONCONST)
17949 if (REG_P (*iter) && REGNO (*iter) == AT_REGNUM)
17950 return true;
17951 }
17952 return false;
17953 }
17954
17955 /* Implement FINAL_PRESCAN_INSN. */
17956
17957 void
17958 mips_final_prescan_insn (rtx_insn *insn, rtx *opvec, int noperands)
17959 {
17960 if (mips_need_noat_wrapper_p (insn, opvec, noperands))
17961 mips_push_asm_switch (&mips_noat);
17962 }
17963
17964 /* Implement TARGET_ASM_FINAL_POSTSCAN_INSN. */
17965
17966 static void
17967 mips_final_postscan_insn (FILE *file ATTRIBUTE_UNUSED, rtx_insn *insn,
17968 rtx *opvec, int noperands)
17969 {
17970 if (mips_need_noat_wrapper_p (insn, opvec, noperands))
17971 mips_pop_asm_switch (&mips_noat);
17972 }
17973
17974 /* Return the function that is used to expand the <u>mulsidi3 pattern.
17975 EXT_CODE is the code of the extension used. Return NULL if widening
17976 multiplication shouldn't be used. */
17977
17978 mulsidi3_gen_fn
17979 mips_mulsidi3_gen_fn (enum rtx_code ext_code)
17980 {
17981 bool signed_p;
17982
17983 signed_p = ext_code == SIGN_EXTEND;
17984 if (TARGET_64BIT)
17985 {
17986 /* Don't use widening multiplication with MULT when we have DMUL. Even
17987 with the extension of its input operands DMUL is faster. Note that
17988 the extension is not needed for signed multiplication. In order to
17989 ensure that we always remove the redundant sign-extension in this
17990 case we still expand mulsidi3 for DMUL. */
17991 if (ISA_HAS_R6DMUL)
17992 return signed_p ? gen_mulsidi3_64bit_r6dmul : NULL;
17993 if (ISA_HAS_DMUL3)
17994 return signed_p ? gen_mulsidi3_64bit_dmul : NULL;
17995 if (TARGET_MIPS16)
17996 return (signed_p
17997 ? gen_mulsidi3_64bit_mips16
17998 : gen_umulsidi3_64bit_mips16);
17999 if (TARGET_FIX_R4000)
18000 return NULL;
18001 return signed_p ? gen_mulsidi3_64bit : gen_umulsidi3_64bit;
18002 }
18003 else
18004 {
18005 if (ISA_HAS_R6MUL)
18006 return (signed_p ? gen_mulsidi3_32bit_r6 : gen_umulsidi3_32bit_r6);
18007 if (TARGET_MIPS16)
18008 return (signed_p
18009 ? gen_mulsidi3_32bit_mips16
18010 : gen_umulsidi3_32bit_mips16);
18011 if (TARGET_FIX_R4000 && !ISA_HAS_DSP)
18012 return signed_p ? gen_mulsidi3_32bit_r4000 : gen_umulsidi3_32bit_r4000;
18013 return signed_p ? gen_mulsidi3_32bit : gen_umulsidi3_32bit;
18014 }
18015 }
18016
18017 /* Return true if PATTERN matches the kind of instruction generated by
18018 umips_build_save_restore. SAVE_P is true for store. */
18019
18020 bool
18021 umips_save_restore_pattern_p (bool save_p, rtx pattern)
18022 {
18023 int n;
18024 unsigned int i;
18025 HOST_WIDE_INT first_offset = 0;
18026 rtx first_base = 0;
18027 unsigned int regmask = 0;
18028
18029 for (n = 0; n < XVECLEN (pattern, 0); n++)
18030 {
18031 rtx set, reg, mem, this_base;
18032 HOST_WIDE_INT this_offset;
18033
18034 /* Check that we have a SET. */
18035 set = XVECEXP (pattern, 0, n);
18036 if (GET_CODE (set) != SET)
18037 return false;
18038
18039 /* Check that the SET is a load (if restoring) or a store
18040 (if saving). */
18041 mem = save_p ? SET_DEST (set) : SET_SRC (set);
18042 if (!MEM_P (mem) || MEM_VOLATILE_P (mem))
18043 return false;
18044
18045 /* Check that the address is the sum of base and a possibly-zero
18046 constant offset. Determine if the offset is in range. */
18047 mips_split_plus (XEXP (mem, 0), &this_base, &this_offset);
18048 if (!REG_P (this_base))
18049 return false;
18050
18051 if (n == 0)
18052 {
18053 if (!UMIPS_12BIT_OFFSET_P (this_offset))
18054 return false;
18055 first_base = this_base;
18056 first_offset = this_offset;
18057 }
18058 else
18059 {
18060 /* Check that the save slots are consecutive. */
18061 if (REGNO (this_base) != REGNO (first_base)
18062 || this_offset != first_offset + UNITS_PER_WORD * n)
18063 return false;
18064 }
18065
18066 /* Check that SET's other operand is a register. */
18067 reg = save_p ? SET_SRC (set) : SET_DEST (set);
18068 if (!REG_P (reg))
18069 return false;
18070
18071 regmask |= 1 << REGNO (reg);
18072 }
18073
18074 for (i = 0; i < ARRAY_SIZE (umips_swm_mask); i++)
18075 if (regmask == umips_swm_mask[i])
18076 return true;
18077
18078 return false;
18079 }
18080
18081 /* Return the assembly instruction for microMIPS LWM or SWM.
18082 SAVE_P and PATTERN are as for umips_save_restore_pattern_p. */
18083
18084 const char *
18085 umips_output_save_restore (bool save_p, rtx pattern)
18086 {
18087 static char buffer[300];
18088 char *s;
18089 int n;
18090 HOST_WIDE_INT offset;
18091 rtx base, mem, set, last_set, last_reg;
18092
18093 /* Parse the pattern. */
18094 gcc_assert (umips_save_restore_pattern_p (save_p, pattern));
18095
18096 s = strcpy (buffer, save_p ? "swm\t" : "lwm\t");
18097 s += strlen (s);
18098 n = XVECLEN (pattern, 0);
18099
18100 set = XVECEXP (pattern, 0, 0);
18101 mem = save_p ? SET_DEST (set) : SET_SRC (set);
18102 mips_split_plus (XEXP (mem, 0), &base, &offset);
18103
18104 last_set = XVECEXP (pattern, 0, n - 1);
18105 last_reg = save_p ? SET_SRC (last_set) : SET_DEST (last_set);
18106
18107 if (REGNO (last_reg) == 31)
18108 n--;
18109
18110 gcc_assert (n <= 9);
18111 if (n == 0)
18112 ;
18113 else if (n == 1)
18114 s += sprintf (s, "%s,", reg_names[16]);
18115 else if (n < 9)
18116 s += sprintf (s, "%s-%s,", reg_names[16], reg_names[15 + n]);
18117 else if (n == 9)
18118 s += sprintf (s, "%s-%s,%s,", reg_names[16], reg_names[23],
18119 reg_names[30]);
18120
18121 if (REGNO (last_reg) == 31)
18122 s += sprintf (s, "%s,", reg_names[31]);
18123
18124 s += sprintf (s, "%d(%s)", (int)offset, reg_names[REGNO (base)]);
18125 return buffer;
18126 }
18127
18128 /* Return true if MEM1 and MEM2 use the same base register, and the
18129 offset of MEM2 equals the offset of MEM1 plus 4. FIRST_REG is the
18130 register into (from) which the contents of MEM1 will be loaded
18131 (stored), depending on the value of LOAD_P.
18132 SWAP_P is true when the 1st and 2nd instructions are swapped. */
18133
18134 static bool
18135 umips_load_store_pair_p_1 (bool load_p, bool swap_p,
18136 rtx first_reg, rtx mem1, rtx mem2)
18137 {
18138 rtx base1, base2;
18139 HOST_WIDE_INT offset1, offset2;
18140
18141 if (!MEM_P (mem1) || !MEM_P (mem2))
18142 return false;
18143
18144 mips_split_plus (XEXP (mem1, 0), &base1, &offset1);
18145 mips_split_plus (XEXP (mem2, 0), &base2, &offset2);
18146
18147 if (!REG_P (base1) || !rtx_equal_p (base1, base2))
18148 return false;
18149
18150 /* Avoid invalid load pair instructions. */
18151 if (load_p && REGNO (first_reg) == REGNO (base1))
18152 return false;
18153
18154 /* We must avoid this case for anti-dependence.
18155 Ex: lw $3, 4($3)
18156 lw $2, 0($3)
18157 first_reg is $2, but the base is $3. */
18158 if (load_p
18159 && swap_p
18160 && REGNO (first_reg) + 1 == REGNO (base1))
18161 return false;
18162
18163 if (offset2 != offset1 + 4)
18164 return false;
18165
18166 if (!UMIPS_12BIT_OFFSET_P (offset1))
18167 return false;
18168
18169 return true;
18170 }
18171
18172 bool
18173 mips_load_store_bonding_p (rtx *operands, machine_mode mode, bool load_p)
18174 {
18175 rtx reg1, reg2, mem1, mem2, base1, base2;
18176 enum reg_class rc1, rc2;
18177 HOST_WIDE_INT offset1, offset2;
18178
18179 if (load_p)
18180 {
18181 reg1 = operands[0];
18182 reg2 = operands[2];
18183 mem1 = operands[1];
18184 mem2 = operands[3];
18185 }
18186 else
18187 {
18188 reg1 = operands[1];
18189 reg2 = operands[3];
18190 mem1 = operands[0];
18191 mem2 = operands[2];
18192 }
18193
18194 if (mips_address_insns (XEXP (mem1, 0), mode, false) == 0
18195 || mips_address_insns (XEXP (mem2, 0), mode, false) == 0)
18196 return false;
18197
18198 mips_split_plus (XEXP (mem1, 0), &base1, &offset1);
18199 mips_split_plus (XEXP (mem2, 0), &base2, &offset2);
18200
18201 /* Base regs do not match. */
18202 if (!REG_P (base1) || !rtx_equal_p (base1, base2))
18203 return false;
18204
18205 /* Either of the loads is clobbering base register. It is legitimate to bond
18206 loads if second load clobbers base register. However, hardware does not
18207 support such bonding. */
18208 if (load_p
18209 && (REGNO (reg1) == REGNO (base1)
18210 || (REGNO (reg2) == REGNO (base1))))
18211 return false;
18212
18213 /* Loading in same registers. */
18214 if (load_p
18215 && REGNO (reg1) == REGNO (reg2))
18216 return false;
18217
18218 /* The loads/stores are not of same type. */
18219 rc1 = REGNO_REG_CLASS (REGNO (reg1));
18220 rc2 = REGNO_REG_CLASS (REGNO (reg2));
18221 if (rc1 != rc2
18222 && !reg_class_subset_p (rc1, rc2)
18223 && !reg_class_subset_p (rc2, rc1))
18224 return false;
18225
18226 if (abs (offset1 - offset2) != GET_MODE_SIZE (mode))
18227 return false;
18228
18229 return true;
18230 }
18231
18232 /* OPERANDS describes the operands to a pair of SETs, in the order
18233 dest1, src1, dest2, src2. Return true if the operands can be used
18234 in an LWP or SWP instruction; LOAD_P says which. */
18235
18236 bool
18237 umips_load_store_pair_p (bool load_p, rtx *operands)
18238 {
18239 rtx reg1, reg2, mem1, mem2;
18240
18241 if (load_p)
18242 {
18243 reg1 = operands[0];
18244 reg2 = operands[2];
18245 mem1 = operands[1];
18246 mem2 = operands[3];
18247 }
18248 else
18249 {
18250 reg1 = operands[1];
18251 reg2 = operands[3];
18252 mem1 = operands[0];
18253 mem2 = operands[2];
18254 }
18255
18256 if (REGNO (reg2) == REGNO (reg1) + 1)
18257 return umips_load_store_pair_p_1 (load_p, false, reg1, mem1, mem2);
18258
18259 if (REGNO (reg1) == REGNO (reg2) + 1)
18260 return umips_load_store_pair_p_1 (load_p, true, reg2, mem2, mem1);
18261
18262 return false;
18263 }
18264
18265 /* Return the assembly instruction for a microMIPS LWP or SWP in which
18266 the first register is REG and the first memory slot is MEM.
18267 LOAD_P is true for LWP. */
18268
18269 static void
18270 umips_output_load_store_pair_1 (bool load_p, rtx reg, rtx mem)
18271 {
18272 rtx ops[] = {reg, mem};
18273
18274 if (load_p)
18275 output_asm_insn ("lwp\t%0,%1", ops);
18276 else
18277 output_asm_insn ("swp\t%0,%1", ops);
18278 }
18279
18280 /* Output the assembly instruction for a microMIPS LWP or SWP instruction.
18281 LOAD_P and OPERANDS are as for umips_load_store_pair_p. */
18282
18283 void
18284 umips_output_load_store_pair (bool load_p, rtx *operands)
18285 {
18286 rtx reg1, reg2, mem1, mem2;
18287 if (load_p)
18288 {
18289 reg1 = operands[0];
18290 reg2 = operands[2];
18291 mem1 = operands[1];
18292 mem2 = operands[3];
18293 }
18294 else
18295 {
18296 reg1 = operands[1];
18297 reg2 = operands[3];
18298 mem1 = operands[0];
18299 mem2 = operands[2];
18300 }
18301
18302 if (REGNO (reg2) == REGNO (reg1) + 1)
18303 {
18304 umips_output_load_store_pair_1 (load_p, reg1, mem1);
18305 return;
18306 }
18307
18308 gcc_assert (REGNO (reg1) == REGNO (reg2) + 1);
18309 umips_output_load_store_pair_1 (load_p, reg2, mem2);
18310 }
18311
18312 /* Return true if REG1 and REG2 match the criteria for a movep insn. */
18313
18314 bool
18315 umips_movep_target_p (rtx reg1, rtx reg2)
18316 {
18317 int regno1, regno2, pair;
18318 unsigned int i;
18319 static const int match[8] = {
18320 0x00000060, /* 5, 6 */
18321 0x000000a0, /* 5, 7 */
18322 0x000000c0, /* 6, 7 */
18323 0x00200010, /* 4, 21 */
18324 0x00400010, /* 4, 22 */
18325 0x00000030, /* 4, 5 */
18326 0x00000050, /* 4, 6 */
18327 0x00000090 /* 4, 7 */
18328 };
18329
18330 if (!REG_P (reg1) || !REG_P (reg2))
18331 return false;
18332
18333 regno1 = REGNO (reg1);
18334 regno2 = REGNO (reg2);
18335
18336 if (!GP_REG_P (regno1) || !GP_REG_P (regno2))
18337 return false;
18338
18339 pair = (1 << regno1) | (1 << regno2);
18340
18341 for (i = 0; i < ARRAY_SIZE (match); i++)
18342 if (pair == match[i])
18343 return true;
18344
18345 return false;
18346 }
18347 \f
18348 /* Return the size in bytes of the trampoline code, padded to
18349 TRAMPOLINE_ALIGNMENT bits. The static chain pointer and target
18350 function address immediately follow. */
18351
18352 int
18353 mips_trampoline_code_size (void)
18354 {
18355 if (TARGET_USE_PIC_FN_ADDR_REG)
18356 return 4 * 4;
18357 else if (ptr_mode == DImode)
18358 return 8 * 4;
18359 else if (ISA_HAS_LOAD_DELAY)
18360 return 6 * 4;
18361 else
18362 return 4 * 4;
18363 }
18364
18365 /* Implement TARGET_TRAMPOLINE_INIT. */
18366
18367 static void
18368 mips_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
18369 {
18370 rtx addr, end_addr, high, low, opcode, mem;
18371 rtx trampoline[8];
18372 unsigned int i, j;
18373 HOST_WIDE_INT end_addr_offset, static_chain_offset, target_function_offset;
18374
18375 /* Work out the offsets of the pointers from the start of the
18376 trampoline code. */
18377 end_addr_offset = mips_trampoline_code_size ();
18378 static_chain_offset = end_addr_offset;
18379 target_function_offset = static_chain_offset + GET_MODE_SIZE (ptr_mode);
18380
18381 /* Get pointers to the beginning and end of the code block. */
18382 addr = force_reg (Pmode, XEXP (m_tramp, 0));
18383 end_addr = mips_force_binary (Pmode, PLUS, addr, GEN_INT (end_addr_offset));
18384
18385 #define OP(X) gen_int_mode (X, SImode)
18386
18387 /* Build up the code in TRAMPOLINE. */
18388 i = 0;
18389 if (TARGET_USE_PIC_FN_ADDR_REG)
18390 {
18391 /* $25 contains the address of the trampoline. Emit code of the form:
18392
18393 l[wd] $1, target_function_offset($25)
18394 l[wd] $static_chain, static_chain_offset($25)
18395 jr $1
18396 move $25,$1. */
18397 trampoline[i++] = OP (MIPS_LOAD_PTR (AT_REGNUM,
18398 target_function_offset,
18399 PIC_FUNCTION_ADDR_REGNUM));
18400 trampoline[i++] = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM,
18401 static_chain_offset,
18402 PIC_FUNCTION_ADDR_REGNUM));
18403 trampoline[i++] = OP (MIPS_JR (AT_REGNUM));
18404 trampoline[i++] = OP (MIPS_MOVE (PIC_FUNCTION_ADDR_REGNUM, AT_REGNUM));
18405 }
18406 else if (ptr_mode == DImode)
18407 {
18408 /* It's too cumbersome to create the full 64-bit address, so let's
18409 instead use:
18410
18411 move $1, $31
18412 bal 1f
18413 nop
18414 1: l[wd] $25, target_function_offset - 12($31)
18415 l[wd] $static_chain, static_chain_offset - 12($31)
18416 jr $25
18417 move $31, $1
18418
18419 where 12 is the offset of "1:" from the start of the code block. */
18420 trampoline[i++] = OP (MIPS_MOVE (AT_REGNUM, RETURN_ADDR_REGNUM));
18421 trampoline[i++] = OP (MIPS_BAL (1));
18422 trampoline[i++] = OP (MIPS_NOP);
18423 trampoline[i++] = OP (MIPS_LOAD_PTR (PIC_FUNCTION_ADDR_REGNUM,
18424 target_function_offset - 12,
18425 RETURN_ADDR_REGNUM));
18426 trampoline[i++] = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM,
18427 static_chain_offset - 12,
18428 RETURN_ADDR_REGNUM));
18429 trampoline[i++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM));
18430 trampoline[i++] = OP (MIPS_MOVE (RETURN_ADDR_REGNUM, AT_REGNUM));
18431 }
18432 else
18433 {
18434 /* If the target has load delays, emit:
18435
18436 lui $1, %hi(end_addr)
18437 lw $25, %lo(end_addr + ...)($1)
18438 lw $static_chain, %lo(end_addr + ...)($1)
18439 jr $25
18440 nop
18441
18442 Otherwise emit:
18443
18444 lui $1, %hi(end_addr)
18445 lw $25, %lo(end_addr + ...)($1)
18446 jr $25
18447 lw $static_chain, %lo(end_addr + ...)($1). */
18448
18449 /* Split END_ADDR into %hi and %lo values. Trampolines are aligned
18450 to 64 bits, so the %lo value will have the bottom 3 bits clear. */
18451 high = expand_simple_binop (SImode, PLUS, end_addr, GEN_INT (0x8000),
18452 NULL, false, OPTAB_WIDEN);
18453 high = expand_simple_binop (SImode, LSHIFTRT, high, GEN_INT (16),
18454 NULL, false, OPTAB_WIDEN);
18455 low = convert_to_mode (SImode, gen_lowpart (HImode, end_addr), true);
18456
18457 /* Emit the LUI. */
18458 opcode = OP (MIPS_LUI (AT_REGNUM, 0));
18459 trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, high,
18460 NULL, false, OPTAB_WIDEN);
18461
18462 /* Emit the load of the target function. */
18463 opcode = OP (MIPS_LOAD_PTR (PIC_FUNCTION_ADDR_REGNUM,
18464 target_function_offset - end_addr_offset,
18465 AT_REGNUM));
18466 trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, low,
18467 NULL, false, OPTAB_WIDEN);
18468
18469 /* Emit the JR here, if we can. */
18470 if (!ISA_HAS_LOAD_DELAY)
18471 trampoline[i++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM));
18472
18473 /* Emit the load of the static chain register. */
18474 opcode = OP (MIPS_LOAD_PTR (STATIC_CHAIN_REGNUM,
18475 static_chain_offset - end_addr_offset,
18476 AT_REGNUM));
18477 trampoline[i++] = expand_simple_binop (SImode, IOR, opcode, low,
18478 NULL, false, OPTAB_WIDEN);
18479
18480 /* Emit the JR, if we couldn't above. */
18481 if (ISA_HAS_LOAD_DELAY)
18482 {
18483 trampoline[i++] = OP (MIPS_JR (PIC_FUNCTION_ADDR_REGNUM));
18484 trampoline[i++] = OP (MIPS_NOP);
18485 }
18486 }
18487
18488 #undef OP
18489
18490 /* Copy the trampoline code. Leave any padding uninitialized. */
18491 for (j = 0; j < i; j++)
18492 {
18493 mem = adjust_address (m_tramp, SImode, j * GET_MODE_SIZE (SImode));
18494 mips_emit_move (mem, trampoline[j]);
18495 }
18496
18497 /* Set up the static chain pointer field. */
18498 mem = adjust_address (m_tramp, ptr_mode, static_chain_offset);
18499 mips_emit_move (mem, chain_value);
18500
18501 /* Set up the target function field. */
18502 mem = adjust_address (m_tramp, ptr_mode, target_function_offset);
18503 mips_emit_move (mem, XEXP (DECL_RTL (fndecl), 0));
18504
18505 /* Flush the code part of the trampoline. */
18506 emit_insn (gen_add3_insn (end_addr, addr, GEN_INT (TRAMPOLINE_SIZE)));
18507 emit_insn (gen_clear_cache (addr, end_addr));
18508 }
18509
18510 /* Implement FUNCTION_PROFILER. */
18511
18512 void mips_function_profiler (FILE *file)
18513 {
18514 if (TARGET_MIPS16)
18515 sorry ("mips16 function profiling");
18516 if (TARGET_LONG_CALLS)
18517 {
18518 /* For TARGET_LONG_CALLS use $3 for the address of _mcount. */
18519 if (Pmode == DImode)
18520 fprintf (file, "\tdla\t%s,_mcount\n", reg_names[3]);
18521 else
18522 fprintf (file, "\tla\t%s,_mcount\n", reg_names[3]);
18523 }
18524 mips_push_asm_switch (&mips_noat);
18525 fprintf (file, "\tmove\t%s,%s\t\t# save current return address\n",
18526 reg_names[AT_REGNUM], reg_names[RETURN_ADDR_REGNUM]);
18527 /* _mcount treats $2 as the static chain register. */
18528 if (cfun->static_chain_decl != NULL)
18529 fprintf (file, "\tmove\t%s,%s\n", reg_names[2],
18530 reg_names[STATIC_CHAIN_REGNUM]);
18531 if (TARGET_MCOUNT_RA_ADDRESS)
18532 {
18533 /* If TARGET_MCOUNT_RA_ADDRESS load $12 with the address of the
18534 ra save location. */
18535 if (cfun->machine->frame.ra_fp_offset == 0)
18536 /* ra not saved, pass zero. */
18537 fprintf (file, "\tmove\t%s,%s\n", reg_names[12], reg_names[0]);
18538 else
18539 fprintf (file, "\t%s\t%s," HOST_WIDE_INT_PRINT_DEC "(%s)\n",
18540 Pmode == DImode ? "dla" : "la", reg_names[12],
18541 cfun->machine->frame.ra_fp_offset,
18542 reg_names[STACK_POINTER_REGNUM]);
18543 }
18544 if (!TARGET_NEWABI)
18545 fprintf (file,
18546 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n",
18547 TARGET_64BIT ? "dsubu" : "subu",
18548 reg_names[STACK_POINTER_REGNUM],
18549 reg_names[STACK_POINTER_REGNUM],
18550 Pmode == DImode ? 16 : 8);
18551
18552 if (TARGET_LONG_CALLS)
18553 fprintf (file, "\tjalr\t%s\n", reg_names[3]);
18554 else
18555 fprintf (file, "\tjal\t_mcount\n");
18556 mips_pop_asm_switch (&mips_noat);
18557 /* _mcount treats $2 as the static chain register. */
18558 if (cfun->static_chain_decl != NULL)
18559 fprintf (file, "\tmove\t%s,%s\n", reg_names[STATIC_CHAIN_REGNUM],
18560 reg_names[2]);
18561 }
18562
18563 /* Implement TARGET_SHIFT_TRUNCATION_MASK. We want to keep the default
18564 behaviour of TARGET_SHIFT_TRUNCATION_MASK for non-vector modes even
18565 when TARGET_LOONGSON_VECTORS is true. */
18566
18567 static unsigned HOST_WIDE_INT
18568 mips_shift_truncation_mask (machine_mode mode)
18569 {
18570 if (TARGET_LOONGSON_VECTORS && VECTOR_MODE_P (mode))
18571 return 0;
18572
18573 return GET_MODE_BITSIZE (mode) - 1;
18574 }
18575
18576 /* Implement TARGET_PREPARE_PCH_SAVE. */
18577
18578 static void
18579 mips_prepare_pch_save (void)
18580 {
18581 /* We are called in a context where the current MIPS16 vs. non-MIPS16
18582 setting should be irrelevant. The question then is: which setting
18583 makes most sense at load time?
18584
18585 The PCH is loaded before the first token is read. We should never
18586 have switched into MIPS16 mode by that point, and thus should not
18587 have populated mips16_globals. Nor can we load the entire contents
18588 of mips16_globals from the PCH file, because mips16_globals contains
18589 a combination of GGC and non-GGC data.
18590
18591 There is therefore no point in trying save the GGC part of
18592 mips16_globals to the PCH file, or to preserve MIPS16ness across
18593 the PCH save and load. The loading compiler would not have access
18594 to the non-GGC parts of mips16_globals (either from the PCH file,
18595 or from a copy that the loading compiler generated itself) and would
18596 have to call target_reinit anyway.
18597
18598 It therefore seems best to switch back to non-MIPS16 mode at
18599 save time, and to ensure that mips16_globals remains null after
18600 a PCH load. */
18601 mips_set_compression_mode (0);
18602 mips16_globals = 0;
18603 }
18604 \f
18605 /* Generate or test for an insn that supports a constant permutation. */
18606
18607 #define MAX_VECT_LEN 8
18608
18609 struct expand_vec_perm_d
18610 {
18611 rtx target, op0, op1;
18612 unsigned char perm[MAX_VECT_LEN];
18613 machine_mode vmode;
18614 unsigned char nelt;
18615 bool one_vector_p;
18616 bool testing_p;
18617 };
18618
18619 /* Construct (set target (vec_select op0 (parallel perm))) and
18620 return true if that's a valid instruction in the active ISA. */
18621
18622 static bool
18623 mips_expand_vselect (rtx target, rtx op0,
18624 const unsigned char *perm, unsigned nelt)
18625 {
18626 rtx rperm[MAX_VECT_LEN], x;
18627 rtx_insn *insn;
18628 unsigned i;
18629
18630 for (i = 0; i < nelt; ++i)
18631 rperm[i] = GEN_INT (perm[i]);
18632
18633 x = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelt, rperm));
18634 x = gen_rtx_VEC_SELECT (GET_MODE (target), op0, x);
18635 x = gen_rtx_SET (target, x);
18636
18637 insn = emit_insn (x);
18638 if (recog_memoized (insn) < 0)
18639 {
18640 remove_insn (insn);
18641 return false;
18642 }
18643 return true;
18644 }
18645
18646 /* Similar, but generate a vec_concat from op0 and op1 as well. */
18647
18648 static bool
18649 mips_expand_vselect_vconcat (rtx target, rtx op0, rtx op1,
18650 const unsigned char *perm, unsigned nelt)
18651 {
18652 machine_mode v2mode;
18653 rtx x;
18654
18655 v2mode = GET_MODE_2XWIDER_MODE (GET_MODE (op0));
18656 x = gen_rtx_VEC_CONCAT (v2mode, op0, op1);
18657 return mips_expand_vselect (target, x, perm, nelt);
18658 }
18659
18660 /* Recognize patterns for even-odd extraction. */
18661
18662 static bool
18663 mips_expand_vpc_loongson_even_odd (struct expand_vec_perm_d *d)
18664 {
18665 unsigned i, odd, nelt = d->nelt;
18666 rtx t0, t1, t2, t3;
18667
18668 if (!(TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS))
18669 return false;
18670 /* Even-odd for V2SI/V2SFmode is matched by interleave directly. */
18671 if (nelt < 4)
18672 return false;
18673
18674 odd = d->perm[0];
18675 if (odd > 1)
18676 return false;
18677 for (i = 1; i < nelt; ++i)
18678 if (d->perm[i] != i * 2 + odd)
18679 return false;
18680
18681 if (d->testing_p)
18682 return true;
18683
18684 /* We need 2*log2(N)-1 operations to achieve odd/even with interleave. */
18685 t0 = gen_reg_rtx (d->vmode);
18686 t1 = gen_reg_rtx (d->vmode);
18687 switch (d->vmode)
18688 {
18689 case V4HImode:
18690 emit_insn (gen_loongson_punpckhhw (t0, d->op0, d->op1));
18691 emit_insn (gen_loongson_punpcklhw (t1, d->op0, d->op1));
18692 if (odd)
18693 emit_insn (gen_loongson_punpckhhw (d->target, t1, t0));
18694 else
18695 emit_insn (gen_loongson_punpcklhw (d->target, t1, t0));
18696 break;
18697
18698 case V8QImode:
18699 t2 = gen_reg_rtx (d->vmode);
18700 t3 = gen_reg_rtx (d->vmode);
18701 emit_insn (gen_loongson_punpckhbh (t0, d->op0, d->op1));
18702 emit_insn (gen_loongson_punpcklbh (t1, d->op0, d->op1));
18703 emit_insn (gen_loongson_punpckhbh (t2, t1, t0));
18704 emit_insn (gen_loongson_punpcklbh (t3, t1, t0));
18705 if (odd)
18706 emit_insn (gen_loongson_punpckhbh (d->target, t3, t2));
18707 else
18708 emit_insn (gen_loongson_punpcklbh (d->target, t3, t2));
18709 break;
18710
18711 default:
18712 gcc_unreachable ();
18713 }
18714 return true;
18715 }
18716
18717 /* Recognize patterns for the Loongson PSHUFH instruction. */
18718
18719 static bool
18720 mips_expand_vpc_loongson_pshufh (struct expand_vec_perm_d *d)
18721 {
18722 unsigned i, mask;
18723 rtx rmask;
18724
18725 if (!(TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS))
18726 return false;
18727 if (d->vmode != V4HImode)
18728 return false;
18729 if (d->testing_p)
18730 return true;
18731
18732 /* Convert the selector into the packed 8-bit form for pshufh. */
18733 /* Recall that loongson is little-endian only. No big-endian
18734 adjustment required. */
18735 for (i = mask = 0; i < 4; i++)
18736 mask |= (d->perm[i] & 3) << (i * 2);
18737 rmask = force_reg (SImode, GEN_INT (mask));
18738
18739 if (d->one_vector_p)
18740 emit_insn (gen_loongson_pshufh (d->target, d->op0, rmask));
18741 else
18742 {
18743 rtx t0, t1, x, merge, rmerge[4];
18744
18745 t0 = gen_reg_rtx (V4HImode);
18746 t1 = gen_reg_rtx (V4HImode);
18747 emit_insn (gen_loongson_pshufh (t1, d->op1, rmask));
18748 emit_insn (gen_loongson_pshufh (t0, d->op0, rmask));
18749
18750 for (i = 0; i < 4; ++i)
18751 rmerge[i] = (d->perm[i] & 4 ? constm1_rtx : const0_rtx);
18752 merge = gen_rtx_CONST_VECTOR (V4HImode, gen_rtvec_v (4, rmerge));
18753 merge = force_reg (V4HImode, merge);
18754
18755 x = gen_rtx_AND (V4HImode, merge, t1);
18756 emit_insn (gen_rtx_SET (t1, x));
18757
18758 x = gen_rtx_NOT (V4HImode, merge);
18759 x = gen_rtx_AND (V4HImode, x, t0);
18760 emit_insn (gen_rtx_SET (t0, x));
18761
18762 x = gen_rtx_IOR (V4HImode, t0, t1);
18763 emit_insn (gen_rtx_SET (d->target, x));
18764 }
18765
18766 return true;
18767 }
18768
18769 /* Recognize broadcast patterns for the Loongson. */
18770
18771 static bool
18772 mips_expand_vpc_loongson_bcast (struct expand_vec_perm_d *d)
18773 {
18774 unsigned i, elt;
18775 rtx t0, t1;
18776
18777 if (!(TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS))
18778 return false;
18779 /* Note that we've already matched V2SI via punpck and V4HI via pshufh. */
18780 if (d->vmode != V8QImode)
18781 return false;
18782 if (!d->one_vector_p)
18783 return false;
18784
18785 elt = d->perm[0];
18786 for (i = 1; i < 8; ++i)
18787 if (d->perm[i] != elt)
18788 return false;
18789
18790 if (d->testing_p)
18791 return true;
18792
18793 /* With one interleave we put two of the desired element adjacent. */
18794 t0 = gen_reg_rtx (V8QImode);
18795 if (elt < 4)
18796 emit_insn (gen_loongson_punpcklbh (t0, d->op0, d->op0));
18797 else
18798 emit_insn (gen_loongson_punpckhbh (t0, d->op0, d->op0));
18799
18800 /* Shuffle that one HImode element into all locations. */
18801 elt &= 3;
18802 elt *= 0x55;
18803 t1 = gen_reg_rtx (V4HImode);
18804 emit_insn (gen_loongson_pshufh (t1, gen_lowpart (V4HImode, t0),
18805 force_reg (SImode, GEN_INT (elt))));
18806
18807 emit_move_insn (d->target, gen_lowpart (V8QImode, t1));
18808 return true;
18809 }
18810
18811 static bool
18812 mips_expand_vec_perm_const_1 (struct expand_vec_perm_d *d)
18813 {
18814 unsigned int i, nelt = d->nelt;
18815 unsigned char perm2[MAX_VECT_LEN];
18816
18817 if (d->one_vector_p)
18818 {
18819 /* Try interleave with alternating operands. */
18820 memcpy (perm2, d->perm, sizeof(perm2));
18821 for (i = 1; i < nelt; i += 2)
18822 perm2[i] += nelt;
18823 if (mips_expand_vselect_vconcat (d->target, d->op0, d->op1, perm2, nelt))
18824 return true;
18825 }
18826 else
18827 {
18828 if (mips_expand_vselect_vconcat (d->target, d->op0, d->op1,
18829 d->perm, nelt))
18830 return true;
18831
18832 /* Try again with swapped operands. */
18833 for (i = 0; i < nelt; ++i)
18834 perm2[i] = (d->perm[i] + nelt) & (2 * nelt - 1);
18835 if (mips_expand_vselect_vconcat (d->target, d->op1, d->op0, perm2, nelt))
18836 return true;
18837 }
18838
18839 if (mips_expand_vpc_loongson_even_odd (d))
18840 return true;
18841 if (mips_expand_vpc_loongson_pshufh (d))
18842 return true;
18843 if (mips_expand_vpc_loongson_bcast (d))
18844 return true;
18845 return false;
18846 }
18847
18848 /* Expand a vec_perm_const pattern. */
18849
18850 bool
18851 mips_expand_vec_perm_const (rtx operands[4])
18852 {
18853 struct expand_vec_perm_d d;
18854 int i, nelt, which;
18855 unsigned char orig_perm[MAX_VECT_LEN];
18856 rtx sel;
18857 bool ok;
18858
18859 d.target = operands[0];
18860 d.op0 = operands[1];
18861 d.op1 = operands[2];
18862 sel = operands[3];
18863
18864 d.vmode = GET_MODE (d.target);
18865 gcc_assert (VECTOR_MODE_P (d.vmode));
18866 d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
18867 d.testing_p = false;
18868
18869 for (i = which = 0; i < nelt; ++i)
18870 {
18871 rtx e = XVECEXP (sel, 0, i);
18872 int ei = INTVAL (e) & (2 * nelt - 1);
18873 which |= (ei < nelt ? 1 : 2);
18874 orig_perm[i] = ei;
18875 }
18876 memcpy (d.perm, orig_perm, MAX_VECT_LEN);
18877
18878 switch (which)
18879 {
18880 default:
18881 gcc_unreachable();
18882
18883 case 3:
18884 d.one_vector_p = false;
18885 if (!rtx_equal_p (d.op0, d.op1))
18886 break;
18887 /* FALLTHRU */
18888
18889 case 2:
18890 for (i = 0; i < nelt; ++i)
18891 d.perm[i] &= nelt - 1;
18892 d.op0 = d.op1;
18893 d.one_vector_p = true;
18894 break;
18895
18896 case 1:
18897 d.op1 = d.op0;
18898 d.one_vector_p = true;
18899 break;
18900 }
18901
18902 ok = mips_expand_vec_perm_const_1 (&d);
18903
18904 /* If we were given a two-vector permutation which just happened to
18905 have both input vectors equal, we folded this into a one-vector
18906 permutation. There are several loongson patterns that are matched
18907 via direct vec_select+vec_concat expansion, but we do not have
18908 support in mips_expand_vec_perm_const_1 to guess the adjustment
18909 that should be made for a single operand. Just try again with
18910 the original permutation. */
18911 if (!ok && which == 3)
18912 {
18913 d.op0 = operands[1];
18914 d.op1 = operands[2];
18915 d.one_vector_p = false;
18916 memcpy (d.perm, orig_perm, MAX_VECT_LEN);
18917 ok = mips_expand_vec_perm_const_1 (&d);
18918 }
18919
18920 return ok;
18921 }
18922
18923 /* Implement TARGET_VECTORIZE_VEC_PERM_CONST_OK. */
18924
18925 static bool
18926 mips_vectorize_vec_perm_const_ok (machine_mode vmode,
18927 const unsigned char *sel)
18928 {
18929 struct expand_vec_perm_d d;
18930 unsigned int i, nelt, which;
18931 bool ret;
18932
18933 d.vmode = vmode;
18934 d.nelt = nelt = GET_MODE_NUNITS (d.vmode);
18935 d.testing_p = true;
18936 memcpy (d.perm, sel, nelt);
18937
18938 /* Categorize the set of elements in the selector. */
18939 for (i = which = 0; i < nelt; ++i)
18940 {
18941 unsigned char e = d.perm[i];
18942 gcc_assert (e < 2 * nelt);
18943 which |= (e < nelt ? 1 : 2);
18944 }
18945
18946 /* For all elements from second vector, fold the elements to first. */
18947 if (which == 2)
18948 for (i = 0; i < nelt; ++i)
18949 d.perm[i] -= nelt;
18950
18951 /* Check whether the mask can be applied to the vector type. */
18952 d.one_vector_p = (which != 3);
18953
18954 d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1);
18955 d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2);
18956 if (!d.one_vector_p)
18957 d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3);
18958
18959 start_sequence ();
18960 ret = mips_expand_vec_perm_const_1 (&d);
18961 end_sequence ();
18962
18963 return ret;
18964 }
18965
18966 /* Expand an integral vector unpack operation. */
18967
18968 void
18969 mips_expand_vec_unpack (rtx operands[2], bool unsigned_p, bool high_p)
18970 {
18971 machine_mode imode = GET_MODE (operands[1]);
18972 rtx (*unpack) (rtx, rtx, rtx);
18973 rtx (*cmpgt) (rtx, rtx, rtx);
18974 rtx tmp, dest, zero;
18975
18976 switch (imode)
18977 {
18978 case V8QImode:
18979 if (high_p)
18980 unpack = gen_loongson_punpckhbh;
18981 else
18982 unpack = gen_loongson_punpcklbh;
18983 cmpgt = gen_loongson_pcmpgtb;
18984 break;
18985 case V4HImode:
18986 if (high_p)
18987 unpack = gen_loongson_punpckhhw;
18988 else
18989 unpack = gen_loongson_punpcklhw;
18990 cmpgt = gen_loongson_pcmpgth;
18991 break;
18992 default:
18993 gcc_unreachable ();
18994 }
18995
18996 zero = force_reg (imode, CONST0_RTX (imode));
18997 if (unsigned_p)
18998 tmp = zero;
18999 else
19000 {
19001 tmp = gen_reg_rtx (imode);
19002 emit_insn (cmpgt (tmp, zero, operands[1]));
19003 }
19004
19005 dest = gen_reg_rtx (imode);
19006 emit_insn (unpack (dest, operands[1], tmp));
19007
19008 emit_move_insn (operands[0], gen_lowpart (GET_MODE (operands[0]), dest));
19009 }
19010
19011 /* A subroutine of mips_expand_vec_init, match constant vector elements. */
19012
19013 static inline bool
19014 mips_constant_elt_p (rtx x)
19015 {
19016 return CONST_INT_P (x) || GET_CODE (x) == CONST_DOUBLE;
19017 }
19018
19019 /* A subroutine of mips_expand_vec_init, expand via broadcast. */
19020
19021 static void
19022 mips_expand_vi_broadcast (machine_mode vmode, rtx target, rtx elt)
19023 {
19024 struct expand_vec_perm_d d;
19025 rtx t1;
19026 bool ok;
19027
19028 if (elt != const0_rtx)
19029 elt = force_reg (GET_MODE_INNER (vmode), elt);
19030 if (REG_P (elt))
19031 elt = gen_lowpart (DImode, elt);
19032
19033 t1 = gen_reg_rtx (vmode);
19034 switch (vmode)
19035 {
19036 case V8QImode:
19037 emit_insn (gen_loongson_vec_init1_v8qi (t1, elt));
19038 break;
19039 case V4HImode:
19040 emit_insn (gen_loongson_vec_init1_v4hi (t1, elt));
19041 break;
19042 default:
19043 gcc_unreachable ();
19044 }
19045
19046 memset (&d, 0, sizeof (d));
19047 d.target = target;
19048 d.op0 = t1;
19049 d.op1 = t1;
19050 d.vmode = vmode;
19051 d.nelt = GET_MODE_NUNITS (vmode);
19052 d.one_vector_p = true;
19053
19054 ok = mips_expand_vec_perm_const_1 (&d);
19055 gcc_assert (ok);
19056 }
19057
19058 /* A subroutine of mips_expand_vec_init, replacing all of the non-constant
19059 elements of VALS with zeros, copy the constant vector to TARGET. */
19060
19061 static void
19062 mips_expand_vi_constant (machine_mode vmode, unsigned nelt,
19063 rtx target, rtx vals)
19064 {
19065 rtvec vec = shallow_copy_rtvec (XVEC (vals, 0));
19066 unsigned i;
19067
19068 for (i = 0; i < nelt; ++i)
19069 {
19070 if (!mips_constant_elt_p (RTVEC_ELT (vec, i)))
19071 RTVEC_ELT (vec, i) = const0_rtx;
19072 }
19073
19074 emit_move_insn (target, gen_rtx_CONST_VECTOR (vmode, vec));
19075 }
19076
19077
19078 /* A subroutine of mips_expand_vec_init, expand via pinsrh. */
19079
19080 static void
19081 mips_expand_vi_loongson_one_pinsrh (rtx target, rtx vals, unsigned one_var)
19082 {
19083 mips_expand_vi_constant (V4HImode, 4, target, vals);
19084
19085 emit_insn (gen_vec_setv4hi (target, target, XVECEXP (vals, 0, one_var),
19086 GEN_INT (one_var)));
19087 }
19088
19089 /* A subroutine of mips_expand_vec_init, expand anything via memory. */
19090
19091 static void
19092 mips_expand_vi_general (machine_mode vmode, machine_mode imode,
19093 unsigned nelt, unsigned nvar, rtx target, rtx vals)
19094 {
19095 rtx mem = assign_stack_temp (vmode, GET_MODE_SIZE (vmode));
19096 unsigned int i, isize = GET_MODE_SIZE (imode);
19097
19098 if (nvar < nelt)
19099 mips_expand_vi_constant (vmode, nelt, mem, vals);
19100
19101 for (i = 0; i < nelt; ++i)
19102 {
19103 rtx x = XVECEXP (vals, 0, i);
19104 if (!mips_constant_elt_p (x))
19105 emit_move_insn (adjust_address (mem, imode, i * isize), x);
19106 }
19107
19108 emit_move_insn (target, mem);
19109 }
19110
19111 /* Expand a vector initialization. */
19112
19113 void
19114 mips_expand_vector_init (rtx target, rtx vals)
19115 {
19116 machine_mode vmode = GET_MODE (target);
19117 machine_mode imode = GET_MODE_INNER (vmode);
19118 unsigned i, nelt = GET_MODE_NUNITS (vmode);
19119 unsigned nvar = 0, one_var = -1u;
19120 bool all_same = true;
19121 rtx x;
19122
19123 for (i = 0; i < nelt; ++i)
19124 {
19125 x = XVECEXP (vals, 0, i);
19126 if (!mips_constant_elt_p (x))
19127 nvar++, one_var = i;
19128 if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
19129 all_same = false;
19130 }
19131
19132 /* Load constants from the pool, or whatever's handy. */
19133 if (nvar == 0)
19134 {
19135 emit_move_insn (target, gen_rtx_CONST_VECTOR (vmode, XVEC (vals, 0)));
19136 return;
19137 }
19138
19139 /* For two-part initialization, always use CONCAT. */
19140 if (nelt == 2)
19141 {
19142 rtx op0 = force_reg (imode, XVECEXP (vals, 0, 0));
19143 rtx op1 = force_reg (imode, XVECEXP (vals, 0, 1));
19144 x = gen_rtx_VEC_CONCAT (vmode, op0, op1);
19145 emit_insn (gen_rtx_SET (target, x));
19146 return;
19147 }
19148
19149 /* Loongson is the only cpu with vectors with more elements. */
19150 gcc_assert (TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS);
19151
19152 /* If all values are identical, broadcast the value. */
19153 if (all_same)
19154 {
19155 mips_expand_vi_broadcast (vmode, target, XVECEXP (vals, 0, 0));
19156 return;
19157 }
19158
19159 /* If we've only got one non-variable V4HImode, use PINSRH. */
19160 if (nvar == 1 && vmode == V4HImode)
19161 {
19162 mips_expand_vi_loongson_one_pinsrh (target, vals, one_var);
19163 return;
19164 }
19165
19166 mips_expand_vi_general (vmode, imode, nelt, nvar, target, vals);
19167 }
19168
19169 /* Expand a vector reduction. */
19170
19171 void
19172 mips_expand_vec_reduc (rtx target, rtx in, rtx (*gen)(rtx, rtx, rtx))
19173 {
19174 machine_mode vmode = GET_MODE (in);
19175 unsigned char perm2[2];
19176 rtx last, next, fold, x;
19177 bool ok;
19178
19179 last = in;
19180 fold = gen_reg_rtx (vmode);
19181 switch (vmode)
19182 {
19183 case V2SFmode:
19184 /* Use PUL/PLU to produce { L, H } op { H, L }.
19185 By reversing the pair order, rather than a pure interleave high,
19186 we avoid erroneous exceptional conditions that we might otherwise
19187 produce from the computation of H op H. */
19188 perm2[0] = 1;
19189 perm2[1] = 2;
19190 ok = mips_expand_vselect_vconcat (fold, last, last, perm2, 2);
19191 gcc_assert (ok);
19192 break;
19193
19194 case V2SImode:
19195 /* Use interleave to produce { H, L } op { H, H }. */
19196 emit_insn (gen_loongson_punpckhwd (fold, last, last));
19197 break;
19198
19199 case V4HImode:
19200 /* Perform the first reduction with interleave,
19201 and subsequent reductions with shifts. */
19202 emit_insn (gen_loongson_punpckhwd_hi (fold, last, last));
19203
19204 next = gen_reg_rtx (vmode);
19205 emit_insn (gen (next, last, fold));
19206 last = next;
19207
19208 fold = gen_reg_rtx (vmode);
19209 x = force_reg (SImode, GEN_INT (16));
19210 emit_insn (gen_vec_shr_v4hi (fold, last, x));
19211 break;
19212
19213 case V8QImode:
19214 emit_insn (gen_loongson_punpckhwd_qi (fold, last, last));
19215
19216 next = gen_reg_rtx (vmode);
19217 emit_insn (gen (next, last, fold));
19218 last = next;
19219
19220 fold = gen_reg_rtx (vmode);
19221 x = force_reg (SImode, GEN_INT (16));
19222 emit_insn (gen_vec_shr_v8qi (fold, last, x));
19223
19224 next = gen_reg_rtx (vmode);
19225 emit_insn (gen (next, last, fold));
19226 last = next;
19227
19228 fold = gen_reg_rtx (vmode);
19229 x = force_reg (SImode, GEN_INT (8));
19230 emit_insn (gen_vec_shr_v8qi (fold, last, x));
19231 break;
19232
19233 default:
19234 gcc_unreachable ();
19235 }
19236
19237 emit_insn (gen (target, last, fold));
19238 }
19239
19240 /* Expand a vector minimum/maximum. */
19241
19242 void
19243 mips_expand_vec_minmax (rtx target, rtx op0, rtx op1,
19244 rtx (*cmp) (rtx, rtx, rtx), bool min_p)
19245 {
19246 machine_mode vmode = GET_MODE (target);
19247 rtx tc, t0, t1, x;
19248
19249 tc = gen_reg_rtx (vmode);
19250 t0 = gen_reg_rtx (vmode);
19251 t1 = gen_reg_rtx (vmode);
19252
19253 /* op0 > op1 */
19254 emit_insn (cmp (tc, op0, op1));
19255
19256 x = gen_rtx_AND (vmode, tc, (min_p ? op1 : op0));
19257 emit_insn (gen_rtx_SET (t0, x));
19258
19259 x = gen_rtx_NOT (vmode, tc);
19260 x = gen_rtx_AND (vmode, x, (min_p ? op0 : op1));
19261 emit_insn (gen_rtx_SET (t1, x));
19262
19263 x = gen_rtx_IOR (vmode, t0, t1);
19264 emit_insn (gen_rtx_SET (target, x));
19265 }
19266
19267 /* Implement HARD_REGNO_CALLER_SAVE_MODE. */
19268
19269 machine_mode
19270 mips_hard_regno_caller_save_mode (unsigned int regno,
19271 unsigned int nregs,
19272 machine_mode mode)
19273 {
19274 /* For performance, avoid saving/restoring upper parts of a register
19275 by returning MODE as save mode when the mode is known. */
19276 if (mode == VOIDmode)
19277 return choose_hard_reg_mode (regno, nregs, false);
19278 else
19279 return mode;
19280 }
19281
19282 /* Implement TARGET_CASE_VALUES_THRESHOLD. */
19283
19284 unsigned int
19285 mips_case_values_threshold (void)
19286 {
19287 /* In MIPS16 mode using a larger case threshold generates smaller code. */
19288 if (TARGET_MIPS16 && optimize_size)
19289 return 10;
19290 else
19291 return default_case_values_threshold ();
19292 }
19293
19294 /* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV. */
19295
19296 static void
19297 mips_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
19298 {
19299 if (!TARGET_HARD_FLOAT_ABI)
19300 return;
19301 tree exceptions_var = create_tmp_var (MIPS_ATYPE_USI);
19302 tree fcsr_orig_var = create_tmp_var (MIPS_ATYPE_USI);
19303 tree fcsr_mod_var = create_tmp_var (MIPS_ATYPE_USI);
19304 tree get_fcsr = mips_builtin_decls[MIPS_GET_FCSR];
19305 tree set_fcsr = mips_builtin_decls[MIPS_SET_FCSR];
19306 tree get_fcsr_hold_call = build_call_expr (get_fcsr, 0);
19307 tree hold_assign_orig = build2 (MODIFY_EXPR, MIPS_ATYPE_USI,
19308 fcsr_orig_var, get_fcsr_hold_call);
19309 tree hold_mod_val = build2 (BIT_AND_EXPR, MIPS_ATYPE_USI, fcsr_orig_var,
19310 build_int_cst (MIPS_ATYPE_USI, 0xfffff003));
19311 tree hold_assign_mod = build2 (MODIFY_EXPR, MIPS_ATYPE_USI,
19312 fcsr_mod_var, hold_mod_val);
19313 tree set_fcsr_hold_call = build_call_expr (set_fcsr, 1, fcsr_mod_var);
19314 tree hold_all = build2 (COMPOUND_EXPR, MIPS_ATYPE_USI,
19315 hold_assign_orig, hold_assign_mod);
19316 *hold = build2 (COMPOUND_EXPR, void_type_node, hold_all,
19317 set_fcsr_hold_call);
19318
19319 *clear = build_call_expr (set_fcsr, 1, fcsr_mod_var);
19320
19321 tree get_fcsr_update_call = build_call_expr (get_fcsr, 0);
19322 *update = build2 (MODIFY_EXPR, MIPS_ATYPE_USI,
19323 exceptions_var, get_fcsr_update_call);
19324 tree set_fcsr_update_call = build_call_expr (set_fcsr, 1, fcsr_orig_var);
19325 *update = build2 (COMPOUND_EXPR, void_type_node, *update,
19326 set_fcsr_update_call);
19327 tree atomic_feraiseexcept
19328 = builtin_decl_implicit (BUILT_IN_ATOMIC_FERAISEEXCEPT);
19329 tree int_exceptions_var = fold_convert (integer_type_node,
19330 exceptions_var);
19331 tree atomic_feraiseexcept_call = build_call_expr (atomic_feraiseexcept,
19332 1, int_exceptions_var);
19333 *update = build2 (COMPOUND_EXPR, void_type_node, *update,
19334 atomic_feraiseexcept_call);
19335 }
19336
19337 /* Implement TARGET_SPILL_CLASS. */
19338
19339 static reg_class_t
19340 mips_spill_class (reg_class_t rclass ATTRIBUTE_UNUSED,
19341 machine_mode mode ATTRIBUTE_UNUSED)
19342 {
19343 if (TARGET_MIPS16)
19344 return SPILL_REGS;
19345 return NO_REGS;
19346 }
19347
19348 /* Implement TARGET_LRA_P. */
19349
19350 static bool
19351 mips_lra_p (void)
19352 {
19353 return mips_lra_flag;
19354 }
19355
19356 /* Implement TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS. */
19357
19358 static reg_class_t
19359 mips_ira_change_pseudo_allocno_class (int regno, reg_class_t allocno_class)
19360 {
19361 /* LRA will allocate an FPR for an integer mode pseudo instead of spilling
19362 to memory if an FPR is present in the allocno class. It is rare that
19363 we actually need to place an integer mode value in an FPR so where
19364 possible limit the allocation to GR_REGS. This will slightly pessimize
19365 code that involves integer to/from float conversions as these will have
19366 to reload into FPRs in LRA. Such reloads are sometimes eliminated and
19367 sometimes only partially eliminated. We choose to take this penalty
19368 in order to eliminate usage of FPRs in code that does not use floating
19369 point data.
19370
19371 This change has a similar effect to increasing the cost of FPR->GPR
19372 register moves for integer modes so that they are higher than the cost
19373 of memory but changing the allocno class is more reliable.
19374
19375 This is also similar to forbidding integer mode values in FPRs entirely
19376 but this would lead to an inconsistency in the integer to/from float
19377 instructions that say integer mode values must be placed in FPRs. */
19378 if (INTEGRAL_MODE_P (PSEUDO_REGNO_MODE (regno)) && allocno_class == ALL_REGS)
19379 return GR_REGS;
19380 return allocno_class;
19381 }
19382 \f
19383 /* Initialize the GCC target structure. */
19384 #undef TARGET_ASM_ALIGNED_HI_OP
19385 #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
19386 #undef TARGET_ASM_ALIGNED_SI_OP
19387 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
19388 #undef TARGET_ASM_ALIGNED_DI_OP
19389 #define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
19390
19391 #undef TARGET_OPTION_OVERRIDE
19392 #define TARGET_OPTION_OVERRIDE mips_option_override
19393
19394 #undef TARGET_LEGITIMIZE_ADDRESS
19395 #define TARGET_LEGITIMIZE_ADDRESS mips_legitimize_address
19396
19397 #undef TARGET_ASM_FUNCTION_PROLOGUE
19398 #define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
19399 #undef TARGET_ASM_FUNCTION_EPILOGUE
19400 #define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
19401 #undef TARGET_ASM_SELECT_RTX_SECTION
19402 #define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
19403 #undef TARGET_ASM_FUNCTION_RODATA_SECTION
19404 #define TARGET_ASM_FUNCTION_RODATA_SECTION mips_function_rodata_section
19405
19406 #undef TARGET_SCHED_INIT
19407 #define TARGET_SCHED_INIT mips_sched_init
19408 #undef TARGET_SCHED_REORDER
19409 #define TARGET_SCHED_REORDER mips_sched_reorder
19410 #undef TARGET_SCHED_REORDER2
19411 #define TARGET_SCHED_REORDER2 mips_sched_reorder2
19412 #undef TARGET_SCHED_VARIABLE_ISSUE
19413 #define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue
19414 #undef TARGET_SCHED_ADJUST_COST
19415 #define TARGET_SCHED_ADJUST_COST mips_adjust_cost
19416 #undef TARGET_SCHED_ISSUE_RATE
19417 #define TARGET_SCHED_ISSUE_RATE mips_issue_rate
19418 #undef TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN
19419 #define TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN mips_init_dfa_post_cycle_insn
19420 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
19421 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE mips_dfa_post_advance_cycle
19422 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
19423 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
19424 mips_multipass_dfa_lookahead
19425 #undef TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P
19426 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
19427 mips_small_register_classes_for_mode_p
19428
19429 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
19430 #define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall
19431
19432 #undef TARGET_INSERT_ATTRIBUTES
19433 #define TARGET_INSERT_ATTRIBUTES mips_insert_attributes
19434 #undef TARGET_MERGE_DECL_ATTRIBUTES
19435 #define TARGET_MERGE_DECL_ATTRIBUTES mips_merge_decl_attributes
19436 #undef TARGET_CAN_INLINE_P
19437 #define TARGET_CAN_INLINE_P mips_can_inline_p
19438 #undef TARGET_SET_CURRENT_FUNCTION
19439 #define TARGET_SET_CURRENT_FUNCTION mips_set_current_function
19440
19441 #undef TARGET_VALID_POINTER_MODE
19442 #define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode
19443 #undef TARGET_REGISTER_MOVE_COST
19444 #define TARGET_REGISTER_MOVE_COST mips_register_move_cost
19445 #undef TARGET_REGISTER_PRIORITY
19446 #define TARGET_REGISTER_PRIORITY mips_register_priority
19447 #undef TARGET_MEMORY_MOVE_COST
19448 #define TARGET_MEMORY_MOVE_COST mips_memory_move_cost
19449 #undef TARGET_RTX_COSTS
19450 #define TARGET_RTX_COSTS mips_rtx_costs
19451 #undef TARGET_ADDRESS_COST
19452 #define TARGET_ADDRESS_COST mips_address_cost
19453
19454 #undef TARGET_IN_SMALL_DATA_P
19455 #define TARGET_IN_SMALL_DATA_P mips_in_small_data_p
19456
19457 #undef TARGET_MACHINE_DEPENDENT_REORG
19458 #define TARGET_MACHINE_DEPENDENT_REORG mips_reorg
19459
19460 #undef TARGET_PREFERRED_RELOAD_CLASS
19461 #define TARGET_PREFERRED_RELOAD_CLASS mips_preferred_reload_class
19462
19463 #undef TARGET_EXPAND_TO_RTL_HOOK
19464 #define TARGET_EXPAND_TO_RTL_HOOK mips_expand_to_rtl_hook
19465 #undef TARGET_ASM_FILE_START
19466 #define TARGET_ASM_FILE_START mips_file_start
19467 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
19468 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
19469 #undef TARGET_ASM_CODE_END
19470 #define TARGET_ASM_CODE_END mips_code_end
19471
19472 #undef TARGET_INIT_LIBFUNCS
19473 #define TARGET_INIT_LIBFUNCS mips_init_libfuncs
19474
19475 #undef TARGET_BUILD_BUILTIN_VA_LIST
19476 #define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list
19477 #undef TARGET_EXPAND_BUILTIN_VA_START
19478 #define TARGET_EXPAND_BUILTIN_VA_START mips_va_start
19479 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
19480 #define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr
19481
19482 #undef TARGET_PROMOTE_FUNCTION_MODE
19483 #define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
19484 #undef TARGET_PROMOTE_PROTOTYPES
19485 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
19486
19487 #undef TARGET_FUNCTION_VALUE
19488 #define TARGET_FUNCTION_VALUE mips_function_value
19489 #undef TARGET_LIBCALL_VALUE
19490 #define TARGET_LIBCALL_VALUE mips_libcall_value
19491 #undef TARGET_FUNCTION_VALUE_REGNO_P
19492 #define TARGET_FUNCTION_VALUE_REGNO_P mips_function_value_regno_p
19493 #undef TARGET_RETURN_IN_MEMORY
19494 #define TARGET_RETURN_IN_MEMORY mips_return_in_memory
19495 #undef TARGET_RETURN_IN_MSB
19496 #define TARGET_RETURN_IN_MSB mips_return_in_msb
19497
19498 #undef TARGET_ASM_OUTPUT_MI_THUNK
19499 #define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk
19500 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
19501 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
19502
19503 #undef TARGET_PRINT_OPERAND
19504 #define TARGET_PRINT_OPERAND mips_print_operand
19505 #undef TARGET_PRINT_OPERAND_ADDRESS
19506 #define TARGET_PRINT_OPERAND_ADDRESS mips_print_operand_address
19507 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
19508 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P mips_print_operand_punct_valid_p
19509
19510 #undef TARGET_SETUP_INCOMING_VARARGS
19511 #define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs
19512 #undef TARGET_STRICT_ARGUMENT_NAMING
19513 #define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming
19514 #undef TARGET_MUST_PASS_IN_STACK
19515 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
19516 #undef TARGET_PASS_BY_REFERENCE
19517 #define TARGET_PASS_BY_REFERENCE mips_pass_by_reference
19518 #undef TARGET_CALLEE_COPIES
19519 #define TARGET_CALLEE_COPIES mips_callee_copies
19520 #undef TARGET_ARG_PARTIAL_BYTES
19521 #define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes
19522 #undef TARGET_FUNCTION_ARG
19523 #define TARGET_FUNCTION_ARG mips_function_arg
19524 #undef TARGET_FUNCTION_ARG_ADVANCE
19525 #define TARGET_FUNCTION_ARG_ADVANCE mips_function_arg_advance
19526 #undef TARGET_FUNCTION_ARG_BOUNDARY
19527 #define TARGET_FUNCTION_ARG_BOUNDARY mips_function_arg_boundary
19528 #undef TARGET_GET_RAW_RESULT_MODE
19529 #define TARGET_GET_RAW_RESULT_MODE mips_get_reg_raw_mode
19530 #undef TARGET_GET_RAW_ARG_MODE
19531 #define TARGET_GET_RAW_ARG_MODE mips_get_reg_raw_mode
19532
19533 #undef TARGET_MODE_REP_EXTENDED
19534 #define TARGET_MODE_REP_EXTENDED mips_mode_rep_extended
19535
19536 #undef TARGET_VECTOR_MODE_SUPPORTED_P
19537 #define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p
19538
19539 #undef TARGET_SCALAR_MODE_SUPPORTED_P
19540 #define TARGET_SCALAR_MODE_SUPPORTED_P mips_scalar_mode_supported_p
19541
19542 #undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
19543 #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE mips_preferred_simd_mode
19544
19545 #undef TARGET_INIT_BUILTINS
19546 #define TARGET_INIT_BUILTINS mips_init_builtins
19547 #undef TARGET_BUILTIN_DECL
19548 #define TARGET_BUILTIN_DECL mips_builtin_decl
19549 #undef TARGET_EXPAND_BUILTIN
19550 #define TARGET_EXPAND_BUILTIN mips_expand_builtin
19551
19552 #undef TARGET_HAVE_TLS
19553 #define TARGET_HAVE_TLS HAVE_AS_TLS
19554
19555 #undef TARGET_CANNOT_FORCE_CONST_MEM
19556 #define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem
19557
19558 #undef TARGET_LEGITIMATE_CONSTANT_P
19559 #define TARGET_LEGITIMATE_CONSTANT_P mips_legitimate_constant_p
19560
19561 #undef TARGET_ENCODE_SECTION_INFO
19562 #define TARGET_ENCODE_SECTION_INFO mips_encode_section_info
19563
19564 #undef TARGET_ATTRIBUTE_TABLE
19565 #define TARGET_ATTRIBUTE_TABLE mips_attribute_table
19566 /* All our function attributes are related to how out-of-line copies should
19567 be compiled or called. They don't in themselves prevent inlining. */
19568 #undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
19569 #define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true
19570
19571 #undef TARGET_EXTRA_LIVE_ON_ENTRY
19572 #define TARGET_EXTRA_LIVE_ON_ENTRY mips_extra_live_on_entry
19573
19574 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
19575 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P mips_use_blocks_for_constant_p
19576 #undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
19577 #define TARGET_USE_ANCHORS_FOR_SYMBOL_P mips_use_anchors_for_symbol_p
19578
19579 #undef TARGET_COMP_TYPE_ATTRIBUTES
19580 #define TARGET_COMP_TYPE_ATTRIBUTES mips_comp_type_attributes
19581
19582 #ifdef HAVE_AS_DTPRELWORD
19583 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
19584 #define TARGET_ASM_OUTPUT_DWARF_DTPREL mips_output_dwarf_dtprel
19585 #endif
19586 #undef TARGET_DWARF_REGISTER_SPAN
19587 #define TARGET_DWARF_REGISTER_SPAN mips_dwarf_register_span
19588 #undef TARGET_DWARF_FRAME_REG_MODE
19589 #define TARGET_DWARF_FRAME_REG_MODE mips_dwarf_frame_reg_mode
19590
19591 #undef TARGET_ASM_FINAL_POSTSCAN_INSN
19592 #define TARGET_ASM_FINAL_POSTSCAN_INSN mips_final_postscan_insn
19593
19594 #undef TARGET_LEGITIMATE_ADDRESS_P
19595 #define TARGET_LEGITIMATE_ADDRESS_P mips_legitimate_address_p
19596
19597 #undef TARGET_FRAME_POINTER_REQUIRED
19598 #define TARGET_FRAME_POINTER_REQUIRED mips_frame_pointer_required
19599
19600 #undef TARGET_CAN_ELIMINATE
19601 #define TARGET_CAN_ELIMINATE mips_can_eliminate
19602
19603 #undef TARGET_CONDITIONAL_REGISTER_USAGE
19604 #define TARGET_CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage
19605
19606 #undef TARGET_TRAMPOLINE_INIT
19607 #define TARGET_TRAMPOLINE_INIT mips_trampoline_init
19608
19609 #undef TARGET_ASM_OUTPUT_SOURCE_FILENAME
19610 #define TARGET_ASM_OUTPUT_SOURCE_FILENAME mips_output_filename
19611
19612 #undef TARGET_SHIFT_TRUNCATION_MASK
19613 #define TARGET_SHIFT_TRUNCATION_MASK mips_shift_truncation_mask
19614
19615 #undef TARGET_PREPARE_PCH_SAVE
19616 #define TARGET_PREPARE_PCH_SAVE mips_prepare_pch_save
19617
19618 #undef TARGET_VECTORIZE_VEC_PERM_CONST_OK
19619 #define TARGET_VECTORIZE_VEC_PERM_CONST_OK mips_vectorize_vec_perm_const_ok
19620
19621 #undef TARGET_CASE_VALUES_THRESHOLD
19622 #define TARGET_CASE_VALUES_THRESHOLD mips_case_values_threshold
19623
19624 #undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
19625 #define TARGET_ATOMIC_ASSIGN_EXPAND_FENV mips_atomic_assign_expand_fenv
19626
19627 #undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS
19628 #define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true
19629
19630 #undef TARGET_USE_BY_PIECES_INFRASTRUCTURE_P
19631 #define TARGET_USE_BY_PIECES_INFRASTRUCTURE_P \
19632 mips_use_by_pieces_infrastructure_p
19633
19634 #undef TARGET_SPILL_CLASS
19635 #define TARGET_SPILL_CLASS mips_spill_class
19636 #undef TARGET_LRA_P
19637 #define TARGET_LRA_P mips_lra_p
19638 #undef TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS
19639 #define TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS mips_ira_change_pseudo_allocno_class
19640
19641 struct gcc_target targetm = TARGET_INITIALIZER;
19642 \f
19643 #include "gt-mips.h"