]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mips/mips.h
Update copyright years.
[thirdparty/gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989-2016 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24
25 #include "config/vxworks-dummy.h"
26
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30 extern int target_flags_explicit;
31 #endif
32
33 /* MIPS external variables defined in mips.c. */
34
35 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
37 to work on a 64-bit machine. */
38
39 #define ABI_32 0
40 #define ABI_N32 1
41 #define ABI_64 2
42 #define ABI_EABI 3
43 #define ABI_O64 4
44
45 /* Masks that affect tuning.
46
47 PTF_AVOID_BRANCHLIKELY
48 Set if it is usually not profitable to use branch-likely instructions
49 for this target, typically because the branches are always predicted
50 taken and so incur a large overhead when not taken.
51
52 PTF_AVOID_IMADD
53 Set if it is usually not profitable to use the integer MADD or MSUB
54 instructions because of the overhead of getting the result out of
55 the HI/LO registers. */
56
57 #define PTF_AVOID_BRANCHLIKELY 0x1
58 #define PTF_AVOID_IMADD 0x2
59
60 /* Information about one recognized processor. Defined here for the
61 benefit of TARGET_CPU_CPP_BUILTINS. */
62 struct mips_cpu_info {
63 /* The 'canonical' name of the processor as far as GCC is concerned.
64 It's typically a manufacturer's prefix followed by a numerical
65 designation. It should be lowercase. */
66 const char *name;
67
68 /* The internal processor number that most closely matches this
69 entry. Several processors can have the same value, if there's no
70 difference between them from GCC's point of view. */
71 enum processor cpu;
72
73 /* The ISA level that the processor implements. */
74 int isa;
75
76 /* A mask of PTF_* values. */
77 unsigned int tune_flags;
78 };
79
80 #include "config/mips/mips-opts.h"
81
82 /* Macros to silence warnings about numbers being signed in traditional
83 C and unsigned in ISO C when compiled on 32-bit hosts. */
84
85 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
86 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
87 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
88
89 \f
90 /* Run-time compilation parameters selecting different hardware subsets. */
91
92 /* True if we are generating position-independent VxWorks RTP code. */
93 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
94
95 /* Compact branches must not be used if the user either selects the
96 'never' policy or the 'optimal' policy on a core that lacks
97 compact branch instructions. */
98 #define TARGET_CB_NEVER (mips_cb == MIPS_CB_NEVER \
99 || (mips_cb == MIPS_CB_OPTIMAL \
100 && !ISA_HAS_COMPACT_BRANCHES))
101
102 /* Compact branches may be used if the user either selects the
103 'always' policy or the 'optimal' policy on a core that supports
104 compact branch instructions. */
105 #define TARGET_CB_MAYBE (TARGET_CB_ALWAYS \
106 || (mips_cb == MIPS_CB_OPTIMAL \
107 && ISA_HAS_COMPACT_BRANCHES))
108
109 /* Compact branches must always be generated if the user selects
110 the 'always' policy or the 'optimal' policy om a core that
111 lacks delay slot branch instructions. */
112 #define TARGET_CB_ALWAYS (mips_cb == MIPS_CB_ALWAYS \
113 || (mips_cb == MIPS_CB_OPTIMAL \
114 && !ISA_HAS_DELAY_SLOTS))
115
116 /* Special handling for JRC that exists in microMIPSR3 as well as R6
117 ISAs with full compact branch support. */
118 #define ISA_HAS_JRC ((ISA_HAS_COMPACT_BRANCHES \
119 || TARGET_MICROMIPS) \
120 && mips_cb != MIPS_CB_NEVER)
121
122 /* True if the output file is marked as ".abicalls; .option pic0"
123 (-call_nonpic). */
124 #define TARGET_ABICALLS_PIC0 \
125 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
126
127 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
128 #define TARGET_ABICALLS_PIC2 \
129 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
130
131 /* True if the call patterns should be split into a jalr followed by
132 an instruction to restore $gp. It is only safe to split the load
133 from the call when every use of $gp is explicit.
134
135 See mips_must_initialize_gp_p for details about how we manage the
136 global pointer. */
137
138 #define TARGET_SPLIT_CALLS \
139 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
140
141 /* True if we're generating a form of -mabicalls in which we can use
142 operators like %hi and %lo to refer to locally-binding symbols.
143 We can only do this for -mno-shared, and only then if we can use
144 relocation operations instead of assembly macros. It isn't really
145 worth using absolute sequences for 64-bit symbols because GOT
146 accesses are so much shorter. */
147
148 #define TARGET_ABSOLUTE_ABICALLS \
149 (TARGET_ABICALLS \
150 && !TARGET_SHARED \
151 && TARGET_EXPLICIT_RELOCS \
152 && !ABI_HAS_64BIT_SYMBOLS)
153
154 /* True if we can optimize sibling calls. For simplicity, we only
155 handle cases in which call_insn_operand will reject invalid
156 sibcall addresses. There are two cases in which this isn't true:
157
158 - TARGET_MIPS16. call_insn_operand accepts constant addresses
159 but there is no direct jump instruction. It isn't worth
160 using sibling calls in this case anyway; they would usually
161 be longer than normal calls.
162
163 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
164 accepts global constants, but all sibcalls must be indirect. */
165 #define TARGET_SIBCALLS \
166 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
167
168 /* True if we need to use a global offset table to access some symbols. */
169 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
170
171 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
172 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
173
174 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
175 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
176
177 /* True if we should use .cprestore to store to the cprestore slot.
178
179 We continue to use .cprestore for explicit-reloc code so that JALs
180 inside inline asms will work correctly. */
181 #define TARGET_CPRESTORE_DIRECTIVE \
182 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
183
184 /* True if we can use the J and JAL instructions. */
185 #define TARGET_ABSOLUTE_JUMPS \
186 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
187
188 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
189 This is true for both the PIC and non-PIC VxWorks RTP modes. */
190 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
191
192 /* True if .gpword or .gpdword should be used for switch tables. */
193 #define TARGET_GPWORD \
194 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
195
196 /* True if the output must have a writable .eh_frame.
197 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
198 #ifdef HAVE_LD_PERSONALITY_RELAXATION
199 #define TARGET_WRITABLE_EH_FRAME 0
200 #else
201 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
202 #endif
203
204 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
205 #ifdef HAVE_AS_DSPR1_MULT
206 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
207 #else
208 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
209 #endif
210
211 /* ISA has LSA available. */
212 #define ISA_HAS_LSA (mips_isa_rev >= 6)
213
214 /* ISA has DLSA available. */
215 #define ISA_HAS_DLSA (TARGET_64BIT && mips_isa_rev >= 6)
216
217 /* The ISA compression flags that are currently in effect. */
218 #define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
219
220 /* Generate mips16 code */
221 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
222 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
223 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
224 /* Generate mips16e register save/restore sequences. */
225 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
226
227 /* True if we're generating a form of MIPS16 code in which general
228 text loads are allowed. */
229 #define TARGET_MIPS16_TEXT_LOADS \
230 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
231
232 /* True if we're generating a form of MIPS16 code in which PC-relative
233 loads are allowed. */
234 #define TARGET_MIPS16_PCREL_LOADS \
235 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
236
237 /* Generic ISA defines. */
238 #define ISA_MIPS1 (mips_isa == 1)
239 #define ISA_MIPS2 (mips_isa == 2)
240 #define ISA_MIPS3 (mips_isa == 3)
241 #define ISA_MIPS4 (mips_isa == 4)
242 #define ISA_MIPS32 (mips_isa == 32)
243 #define ISA_MIPS32R2 (mips_isa == 33)
244 #define ISA_MIPS32R3 (mips_isa == 34)
245 #define ISA_MIPS32R5 (mips_isa == 36)
246 #define ISA_MIPS32R6 (mips_isa == 37)
247 #define ISA_MIPS64 (mips_isa == 64)
248 #define ISA_MIPS64R2 (mips_isa == 65)
249 #define ISA_MIPS64R3 (mips_isa == 66)
250 #define ISA_MIPS64R5 (mips_isa == 68)
251 #define ISA_MIPS64R6 (mips_isa == 69)
252
253 /* Architecture target defines. */
254 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
255 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
256 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
257 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
258 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
259 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
260 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
261 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
262 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
263 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
264 #define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
265 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
266 #define TARGET_MIPS8000 (mips_arch == PROCESSOR_R8000)
267 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
268 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
269 || mips_arch == PROCESSOR_OCTEON2 \
270 || mips_arch == PROCESSOR_OCTEON3)
271 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2 \
272 || mips_arch == PROCESSOR_OCTEON3)
273 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
274 || mips_arch == PROCESSOR_SB1A)
275 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
276 #define TARGET_XLP (mips_arch == PROCESSOR_XLP)
277
278 /* Scheduling target defines. */
279 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
280 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
281 || mips_tune == PROCESSOR_24KF2_1 \
282 || mips_tune == PROCESSOR_24KF1_1)
283 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
284 || mips_tune == PROCESSOR_74KF2_1 \
285 || mips_tune == PROCESSOR_74KF1_1 \
286 || mips_tune == PROCESSOR_74KF3_2)
287 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
288 || mips_tune == PROCESSOR_LOONGSON_2F)
289 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
290 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
291 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
292 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
293 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
294 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
295 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
296 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
297 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
298 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
299 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
300 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
301 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
302 || mips_tune == PROCESSOR_OCTEON2 \
303 || mips_tune == PROCESSOR_OCTEON3)
304 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
305 || mips_tune == PROCESSOR_SB1A)
306 #define TUNE_P5600 (mips_tune == PROCESSOR_P5600)
307 #define TUNE_I6400 (mips_tune == PROCESSOR_I6400)
308
309 /* Whether vector modes and intrinsics for ST Microelectronics
310 Loongson-2E/2F processors should be enabled. In o32 pairs of
311 floating-point registers provide 64-bit values. */
312 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
313 && (TARGET_LOONGSON_2EF \
314 || TARGET_LOONGSON_3A))
315
316 /* True if the pre-reload scheduler should try to create chains of
317 multiply-add or multiply-subtract instructions. For example,
318 suppose we have:
319
320 t1 = a * b
321 t2 = t1 + c * d
322 t3 = e * f
323 t4 = t3 - g * h
324
325 t1 will have a higher priority than t2 and t3 will have a higher
326 priority than t4. However, before reload, there is no dependence
327 between t1 and t3, and they can often have similar priorities.
328 The scheduler will then tend to prefer:
329
330 t1 = a * b
331 t3 = e * f
332 t2 = t1 + c * d
333 t4 = t3 - g * h
334
335 which stops us from making full use of macc/madd-style instructions.
336 This sort of situation occurs frequently in Fourier transforms and
337 in unrolled loops.
338
339 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
340 queue so that chained multiply-add and multiply-subtract instructions
341 appear ahead of any other instruction that is likely to clobber lo.
342 In the example above, if t2 and t3 become ready at the same time,
343 the code ensures that t2 is scheduled first.
344
345 Multiply-accumulate instructions are a bigger win for some targets
346 than others, so this macro is defined on an opt-in basis. */
347 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
348 || TUNE_MIPS4120 \
349 || TUNE_MIPS4130 \
350 || TUNE_24K \
351 || TUNE_P5600)
352
353 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
354 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
355
356 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
357 directly accessible, while the command-line options select
358 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
359 in use. */
360 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
361 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
362
363 /* TARGET_FLOAT64 represents -mfp64 and TARGET_FLOATXX represents
364 -mfpxx, derive TARGET_FLOAT32 to represent -mfp32. */
365 #define TARGET_FLOAT32 (!TARGET_FLOAT64 && !TARGET_FLOATXX)
366
367 /* TARGET_O32_FP64A_ABI represents all the conditions that form the
368 o32 FP64A ABI extension (-mabi=32 -mfp64 -mno-odd-spreg). */
369 #define TARGET_O32_FP64A_ABI (mips_abi == ABI_32 && TARGET_FLOAT64 \
370 && !TARGET_ODD_SPREG)
371
372 /* False if SC acts as a memory barrier with respect to itself,
373 otherwise a SYNC will be emitted after SC for atomic operations
374 that require ordering between the SC and following loads and
375 stores. It does not tell anything about ordering of loads and
376 stores prior to and following the SC, only about the SC itself and
377 those loads and stores follow it. */
378 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
379
380 /* Define preprocessor macros for the -march and -mtune options.
381 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
382 processor. If INFO's canonical name is "foo", define PREFIX to
383 be "foo", and define an additional macro PREFIX_FOO. */
384 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
385 do \
386 { \
387 char *macro, *p; \
388 \
389 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
390 for (p = macro; *p != 0; p++) \
391 if (*p == '+') \
392 *p = 'P'; \
393 else \
394 *p = TOUPPER (*p); \
395 \
396 builtin_define (macro); \
397 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
398 free (macro); \
399 } \
400 while (0)
401
402 /* Target CPU builtins. */
403 #define TARGET_CPU_CPP_BUILTINS() \
404 do \
405 { \
406 builtin_assert ("machine=mips"); \
407 builtin_assert ("cpu=mips"); \
408 builtin_define ("__mips__"); \
409 builtin_define ("_mips"); \
410 \
411 /* We do this here because __mips is defined below and so we \
412 can't use builtin_define_std. We don't ever want to define \
413 "mips" for VxWorks because some of the VxWorks headers \
414 construct include filenames from a root directory macro, \
415 an architecture macro and a filename, where the architecture \
416 macro expands to 'mips'. If we define 'mips' to 1, the \
417 architecture macro expands to 1 as well. */ \
418 if (!flag_iso && !TARGET_VXWORKS) \
419 builtin_define ("mips"); \
420 \
421 if (TARGET_64BIT) \
422 builtin_define ("__mips64"); \
423 \
424 /* Treat _R3000 and _R4000 like register-size \
425 defines, which is how they've historically \
426 been used. */ \
427 if (TARGET_64BIT) \
428 { \
429 builtin_define_std ("R4000"); \
430 builtin_define ("_R4000"); \
431 } \
432 else \
433 { \
434 builtin_define_std ("R3000"); \
435 builtin_define ("_R3000"); \
436 } \
437 \
438 if (TARGET_FLOAT64) \
439 builtin_define ("__mips_fpr=64"); \
440 else if (TARGET_FLOATXX) \
441 builtin_define ("__mips_fpr=0"); \
442 else \
443 builtin_define ("__mips_fpr=32"); \
444 \
445 if (mips_base_compression_flags & MASK_MIPS16) \
446 builtin_define ("__mips16"); \
447 \
448 if (TARGET_MIPS3D) \
449 builtin_define ("__mips3d"); \
450 \
451 if (TARGET_SMARTMIPS) \
452 builtin_define ("__mips_smartmips"); \
453 \
454 if (mips_base_compression_flags & MASK_MICROMIPS) \
455 builtin_define ("__mips_micromips"); \
456 \
457 if (TARGET_MCU) \
458 builtin_define ("__mips_mcu"); \
459 \
460 if (TARGET_EVA) \
461 builtin_define ("__mips_eva"); \
462 \
463 if (TARGET_DSP) \
464 { \
465 builtin_define ("__mips_dsp"); \
466 if (TARGET_DSPR2) \
467 { \
468 builtin_define ("__mips_dspr2"); \
469 builtin_define ("__mips_dsp_rev=2"); \
470 } \
471 else \
472 builtin_define ("__mips_dsp_rev=1"); \
473 } \
474 \
475 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
476 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
477 \
478 if (ISA_MIPS1) \
479 { \
480 builtin_define ("__mips=1"); \
481 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
482 } \
483 else if (ISA_MIPS2) \
484 { \
485 builtin_define ("__mips=2"); \
486 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
487 } \
488 else if (ISA_MIPS3) \
489 { \
490 builtin_define ("__mips=3"); \
491 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
492 } \
493 else if (ISA_MIPS4) \
494 { \
495 builtin_define ("__mips=4"); \
496 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
497 } \
498 else if (mips_isa >= 32 && mips_isa < 64) \
499 { \
500 builtin_define ("__mips=32"); \
501 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
502 } \
503 else if (mips_isa >= 64) \
504 { \
505 builtin_define ("__mips=64"); \
506 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
507 } \
508 if (mips_isa_rev > 0) \
509 builtin_define_with_int_value ("__mips_isa_rev", \
510 mips_isa_rev); \
511 \
512 switch (mips_abi) \
513 { \
514 case ABI_32: \
515 builtin_define ("_ABIO32=1"); \
516 builtin_define ("_MIPS_SIM=_ABIO32"); \
517 break; \
518 \
519 case ABI_N32: \
520 builtin_define ("_ABIN32=2"); \
521 builtin_define ("_MIPS_SIM=_ABIN32"); \
522 break; \
523 \
524 case ABI_64: \
525 builtin_define ("_ABI64=3"); \
526 builtin_define ("_MIPS_SIM=_ABI64"); \
527 break; \
528 \
529 case ABI_O64: \
530 builtin_define ("_ABIO64=4"); \
531 builtin_define ("_MIPS_SIM=_ABIO64"); \
532 break; \
533 } \
534 \
535 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
536 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
537 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
538 builtin_define_with_int_value ("_MIPS_FPSET", \
539 32 / MAX_FPRS_PER_FMT); \
540 builtin_define_with_int_value ("_MIPS_SPFPSET", \
541 TARGET_ODD_SPREG ? 32 : 16); \
542 \
543 /* These defines reflect the ABI in use, not whether the \
544 FPU is directly accessible. */ \
545 if (TARGET_NO_FLOAT) \
546 builtin_define ("__mips_no_float"); \
547 else if (TARGET_HARD_FLOAT_ABI) \
548 builtin_define ("__mips_hard_float"); \
549 else \
550 builtin_define ("__mips_soft_float"); \
551 \
552 if (TARGET_SINGLE_FLOAT) \
553 builtin_define ("__mips_single_float"); \
554 \
555 if (TARGET_PAIRED_SINGLE_FLOAT) \
556 builtin_define ("__mips_paired_single_float"); \
557 \
558 if (mips_abs == MIPS_IEEE_754_2008) \
559 builtin_define ("__mips_abs2008"); \
560 \
561 if (mips_nan == MIPS_IEEE_754_2008) \
562 builtin_define ("__mips_nan2008"); \
563 \
564 if (TARGET_BIG_ENDIAN) \
565 { \
566 builtin_define_std ("MIPSEB"); \
567 builtin_define ("_MIPSEB"); \
568 } \
569 else \
570 { \
571 builtin_define_std ("MIPSEL"); \
572 builtin_define ("_MIPSEL"); \
573 } \
574 \
575 /* Whether calls should go through $25. The separate __PIC__ \
576 macro indicates whether abicalls code might use a GOT. */ \
577 if (TARGET_ABICALLS) \
578 builtin_define ("__mips_abicalls"); \
579 \
580 /* Whether Loongson vector modes are enabled. */ \
581 if (TARGET_LOONGSON_VECTORS) \
582 builtin_define ("__mips_loongson_vector_rev"); \
583 \
584 /* Historical Octeon macro. */ \
585 if (TARGET_OCTEON) \
586 builtin_define ("__OCTEON__"); \
587 \
588 if (TARGET_SYNCI) \
589 builtin_define ("__mips_synci"); \
590 \
591 /* Macros dependent on the C dialect. */ \
592 if (preprocessing_asm_p ()) \
593 { \
594 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
595 builtin_define ("_LANGUAGE_ASSEMBLY"); \
596 } \
597 else if (c_dialect_cxx ()) \
598 { \
599 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
600 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
601 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
602 } \
603 else \
604 { \
605 builtin_define_std ("LANGUAGE_C"); \
606 builtin_define ("_LANGUAGE_C"); \
607 } \
608 if (c_dialect_objc ()) \
609 { \
610 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
611 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
612 /* Bizarre, but retained for backwards compatibility. */ \
613 builtin_define_std ("LANGUAGE_C"); \
614 builtin_define ("_LANGUAGE_C"); \
615 } \
616 \
617 if (mips_abi == ABI_EABI) \
618 builtin_define ("__mips_eabi"); \
619 \
620 if (TARGET_CACHE_BUILTIN) \
621 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
622 } \
623 while (0)
624
625 /* Default target_flags if no switches are specified */
626
627 #ifndef TARGET_DEFAULT
628 #define TARGET_DEFAULT 0
629 #endif
630
631 #ifndef TARGET_CPU_DEFAULT
632 #define TARGET_CPU_DEFAULT 0
633 #endif
634
635 #ifndef TARGET_ENDIAN_DEFAULT
636 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
637 #endif
638
639 #ifdef IN_LIBGCC2
640 #undef TARGET_64BIT
641 /* Make this compile time constant for libgcc2 */
642 #ifdef __mips64
643 #define TARGET_64BIT 1
644 #else
645 #define TARGET_64BIT 0
646 #endif
647 #endif /* IN_LIBGCC2 */
648
649 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
650 when compiled with hardware floating point. This is because MIPS16
651 code cannot save and restore the floating-point registers, which is
652 important if in a mixed MIPS16/non-MIPS16 environment. */
653
654 #ifdef IN_LIBGCC2
655 #if __mips_hard_float
656 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
657 #endif
658 #endif /* IN_LIBGCC2 */
659
660 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
661
662 #ifndef MULTILIB_ENDIAN_DEFAULT
663 #if TARGET_ENDIAN_DEFAULT == 0
664 #define MULTILIB_ENDIAN_DEFAULT "EL"
665 #else
666 #define MULTILIB_ENDIAN_DEFAULT "EB"
667 #endif
668 #endif
669
670 #ifndef MULTILIB_ISA_DEFAULT
671 #if MIPS_ISA_DEFAULT == 1
672 #define MULTILIB_ISA_DEFAULT "mips1"
673 #elif MIPS_ISA_DEFAULT == 2
674 #define MULTILIB_ISA_DEFAULT "mips2"
675 #elif MIPS_ISA_DEFAULT == 3
676 #define MULTILIB_ISA_DEFAULT "mips3"
677 #elif MIPS_ISA_DEFAULT == 4
678 #define MULTILIB_ISA_DEFAULT "mips4"
679 #elif MIPS_ISA_DEFAULT == 32
680 #define MULTILIB_ISA_DEFAULT "mips32"
681 #elif MIPS_ISA_DEFAULT == 33
682 #define MULTILIB_ISA_DEFAULT "mips32r2"
683 #elif MIPS_ISA_DEFAULT == 37
684 #define MULTILIB_ISA_DEFAULT "mips32r6"
685 #elif MIPS_ISA_DEFAULT == 64
686 #define MULTILIB_ISA_DEFAULT "mips64"
687 #elif MIPS_ISA_DEFAULT == 65
688 #define MULTILIB_ISA_DEFAULT "mips64r2"
689 #elif MIPS_ISA_DEFAULT == 69
690 #define MULTILIB_ISA_DEFAULT "mips64r6"
691 #else
692 #define MULTILIB_ISA_DEFAULT "mips1"
693 #endif
694 #endif
695
696 #ifndef MIPS_ABI_DEFAULT
697 #define MIPS_ABI_DEFAULT ABI_32
698 #endif
699
700 /* Use the most portable ABI flag for the ASM specs. */
701
702 #if MIPS_ABI_DEFAULT == ABI_32
703 #define MULTILIB_ABI_DEFAULT "mabi=32"
704 #elif MIPS_ABI_DEFAULT == ABI_O64
705 #define MULTILIB_ABI_DEFAULT "mabi=o64"
706 #elif MIPS_ABI_DEFAULT == ABI_N32
707 #define MULTILIB_ABI_DEFAULT "mabi=n32"
708 #elif MIPS_ABI_DEFAULT == ABI_64
709 #define MULTILIB_ABI_DEFAULT "mabi=64"
710 #elif MIPS_ABI_DEFAULT == ABI_EABI
711 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
712 #endif
713
714 #ifndef MULTILIB_DEFAULTS
715 #define MULTILIB_DEFAULTS \
716 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
717 #endif
718
719 /* We must pass -EL to the linker by default for little endian embedded
720 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
721 linker will default to using big-endian output files. The OUTPUT_FORMAT
722 line must be in the linker script, otherwise -EB/-EL will not work. */
723
724 #ifndef ENDIAN_SPEC
725 #if TARGET_ENDIAN_DEFAULT == 0
726 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
727 #else
728 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
729 #endif
730 #endif
731
732 /* A spec condition that matches all non-mips16 -mips arguments. */
733
734 #define MIPS_ISA_LEVEL_OPTION_SPEC \
735 "mips1|mips2|mips3|mips4|mips32*|mips64*"
736
737 /* A spec condition that matches all non-mips16 architecture arguments. */
738
739 #define MIPS_ARCH_OPTION_SPEC \
740 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
741
742 /* A spec that infers a -mips argument from an -march argument. */
743
744 #define MIPS_ISA_LEVEL_SPEC \
745 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
746 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
747 %{march=mips2|march=r6000:-mips2} \
748 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
749 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
750 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
751 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
752 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
753 |march=34k*|march=74k*|march=m14k*|march=1004k* \
754 |march=interaptiv: -mips32r2} \
755 %{march=mips32r3: -mips32r3} \
756 %{march=mips32r5|march=p5600|march=m5100|march=m5101: -mips32r5} \
757 %{march=mips32r6: -mips32r6} \
758 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
759 |march=xlr: -mips64} \
760 %{march=mips64r2|march=loongson3a|march=octeon|march=xlp: -mips64r2} \
761 %{march=mips64r3: -mips64r3} \
762 %{march=mips64r5: -mips64r5} \
763 %{march=mips64r6|march=i6400: -mips64r6}}"
764
765 /* A spec that injects the default multilib ISA if no architecture is
766 specified. */
767
768 #define MIPS_DEFAULT_ISA_LEVEL_SPEC \
769 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
770 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
771
772 /* A spec that infers a -mhard-float or -msoft-float setting from an
773 -march argument. Note that soft-float and hard-float code are not
774 link-compatible. */
775
776 #define MIPS_ARCH_FLOAT_SPEC \
777 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
778 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
779 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
780 |march=m14k*|march=m5101|march=octeon|march=xlr: -msoft-float; \
781 march=*: -mhard-float}"
782
783 /* A spec condition that matches 32-bit options. It only works if
784 MIPS_ISA_LEVEL_SPEC has been applied. */
785
786 #define MIPS_32BIT_OPTION_SPEC \
787 "mips1|mips2|mips32*|mgp32"
788
789 /* A spec condition that matches architectures should be targeted with
790 o32 FPXX for compatibility reasons. */
791 #define MIPS_FPXX_OPTION_SPEC \
792 "mips2|mips3|mips4|mips5|mips32|mips32r2|mips32r3|mips32r5| \
793 mips64|mips64r2|mips64r3|mips64r5"
794
795 /* Infer a -msynci setting from a -mips argument, on the assumption that
796 -msynci is desired where possible. */
797 #define MIPS_ISA_SYNCI_SPEC \
798 "%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips32r6|mips64r2 \
799 |mips64r3|mips64r5|mips64r6:-msynci;:-mno-synci}}"
800
801 /* Infer a -mnan=2008 setting from a -mips argument. */
802 #define MIPS_ISA_NAN2008_SPEC \
803 "%{mnan*:;mips32r6|mips64r6:-mnan=2008;march=m51*: \
804 %{!msoft-float:-mnan=2008}}"
805
806 #if (MIPS_ABI_DEFAULT == ABI_O64 \
807 || MIPS_ABI_DEFAULT == ABI_N32 \
808 || MIPS_ABI_DEFAULT == ABI_64)
809 #define OPT_ARCH64 "mabi=32|mgp32:;"
810 #define OPT_ARCH32 "mabi=32|mgp32"
811 #else
812 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
813 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
814 #endif
815
816 /* Support for a compile-time default CPU, et cetera. The rules are:
817 --with-arch is ignored if -march is specified or a -mips is specified
818 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
819 --with-tune is ignored if -mtune is specified; likewise
820 --with-tune-32 and --with-tune-64.
821 --with-abi is ignored if -mabi is specified.
822 --with-float is ignored if -mhard-float or -msoft-float are
823 specified.
824 --with-fpu is ignored if -msoft-float, -msingle-float or -mdouble-float are
825 specified.
826 --with-nan is ignored if -mnan is specified.
827 --with-fp-32 is ignored if -msoft-float, -msingle-float or -mfp are specified.
828 --with-odd-spreg-32 is ignored if -msoft-float, -msingle-float, -modd-spreg
829 or -mno-odd-spreg are specified.
830 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
831 specified. */
832 #define OPTION_DEFAULT_SPECS \
833 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
834 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
835 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
836 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
837 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
838 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
839 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
840 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
841 {"fpu", "%{!msoft-float:%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}}" }, \
842 {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
843 {"fp_32", "%{" OPT_ARCH32 \
844 ":%{!msoft-float:%{!msingle-float:%{!mfp*:-mfp%(VALUE)}}}}" }, \
845 {"odd_spreg_32", "%{" OPT_ARCH32 ":%{!msoft-float:%{!msingle-float:" \
846 "%{!modd-spreg:%{!mno-odd-spreg:-m%(VALUE)}}}}}" }, \
847 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
848 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
849 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
850 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
851
852 /* A spec that infers the:
853 -mnan=2008 setting from a -mips argument,
854 -mdsp setting from a -march argument. */
855 #define BASE_DRIVER_SELF_SPECS \
856 MIPS_ISA_NAN2008_SPEC, \
857 "%{!mno-dsp: \
858 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k* \
859 |march=interaptiv: -mdsp} \
860 %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
861
862 #define DRIVER_SELF_SPECS \
863 MIPS_ISA_LEVEL_SPEC, \
864 BASE_DRIVER_SELF_SPECS
865
866 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
867 && ISA_HAS_COND_TRAP)
868
869 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
870
871 /* True if the ABI can only work with 64-bit integer registers. We
872 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
873 otherwise floating-point registers must also be 64-bit. */
874 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
875
876 /* Likewise for 32-bit regs. */
877 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
878
879 /* True if the file format uses 64-bit symbols. At present, this is
880 only true for n64, which uses 64-bit ELF. */
881 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
882
883 /* True if symbols are 64 bits wide. This is usually determined by
884 the ABI's file format, but it can be overridden by -msym32. Note that
885 overriding the size with -msym32 changes the ABI of relocatable objects,
886 although it doesn't change the ABI of a fully-linked object. */
887 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
888 && Pmode == DImode \
889 && !TARGET_SYM32)
890
891 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
892 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
893 || ISA_MIPS4 \
894 || ISA_MIPS64 \
895 || ISA_MIPS64R2 \
896 || ISA_MIPS64R3 \
897 || ISA_MIPS64R5 \
898 || ISA_MIPS64R6)
899
900 #define ISA_HAS_JR (mips_isa_rev <= 5)
901
902 #define ISA_HAS_DELAY_SLOTS 1
903
904 #define ISA_HAS_COMPACT_BRANCHES (mips_isa_rev >= 6)
905
906 /* ISA has branch likely instructions (e.g. mips2). */
907 /* Disable branchlikely for tx39 until compare rewrite. They haven't
908 been generated up to this point. */
909 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1 && mips_isa_rev <= 5)
910
911 /* ISA has 32 single-precision registers. */
912 #define ISA_HAS_ODD_SPREG ((mips_isa_rev >= 1 \
913 && !TARGET_LOONGSON_3A) \
914 || TARGET_FLOAT64 \
915 || TARGET_MIPS5900)
916
917 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
918 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
919 || TARGET_MIPS5400 \
920 || TARGET_MIPS5500 \
921 || TARGET_MIPS5900 \
922 || TARGET_MIPS7000 \
923 || TARGET_MIPS9000 \
924 || TARGET_MAD \
925 || (mips_isa_rev >= 1 \
926 && mips_isa_rev <= 5)) \
927 && !TARGET_MIPS16)
928
929 /* ISA has a three-operand multiplication instruction. */
930 #define ISA_HAS_DMUL3 (TARGET_64BIT \
931 && TARGET_OCTEON \
932 && !TARGET_MIPS16)
933
934 /* ISA has HI and LO registers. */
935 #define ISA_HAS_HILO (mips_isa_rev <= 5)
936
937 /* ISA supports instructions DMULT and DMULTU. */
938 #define ISA_HAS_DMULT (TARGET_64BIT \
939 && !TARGET_MIPS5900 \
940 && mips_isa_rev <= 5)
941
942 /* ISA supports instructions MULT and MULTU. */
943 #define ISA_HAS_MULT (mips_isa_rev <= 5)
944
945 /* ISA supports instructions MUL, MULU, MUH, MUHU. */
946 #define ISA_HAS_R6MUL (mips_isa_rev >= 6)
947
948 /* ISA supports instructions DMUL, DMULU, DMUH, DMUHU. */
949 #define ISA_HAS_R6DMUL (TARGET_64BIT && mips_isa_rev >= 6)
950
951 /* ISA supports instructions DDIV and DDIVU. */
952 #define ISA_HAS_DDIV (TARGET_64BIT \
953 && !TARGET_MIPS5900 \
954 && mips_isa_rev <= 5)
955
956 /* ISA supports instructions DIV and DIVU.
957 This is always true, but the macro is needed for ISA_HAS_<D>DIV
958 in mips.md. */
959 #define ISA_HAS_DIV (mips_isa_rev <= 5)
960
961 #define ISA_HAS_DIV3 ((TARGET_LOONGSON_2EF \
962 || TARGET_LOONGSON_3A) \
963 && !TARGET_MIPS16)
964
965 /* ISA supports instructions DIV, DIVU, MOD and MODU. */
966 #define ISA_HAS_R6DIV (mips_isa_rev >= 6)
967
968 /* ISA supports instructions DDIV, DDIVU, DMOD and DMODU. */
969 #define ISA_HAS_R6DDIV (TARGET_64BIT && mips_isa_rev >= 6)
970
971 /* ISA has the floating-point conditional move instructions introduced
972 in mips4. */
973 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
974 || (mips_isa_rev >= 1 \
975 && mips_isa_rev <= 5)) \
976 && !TARGET_MIPS5500 \
977 && !TARGET_MIPS16)
978
979 /* ISA has the integer conditional move instructions introduced in mips4 and
980 ST Loongson 2E/2F. */
981 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
982 || TARGET_MIPS5900 \
983 || TARGET_LOONGSON_2EF)
984
985 /* ISA has LDC1 and SDC1. */
986 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
987 && !TARGET_MIPS5900 \
988 && !TARGET_MIPS16)
989
990 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
991 branch on CC, and move (both FP and non-FP) on CC. */
992 #define ISA_HAS_8CC (ISA_MIPS4 \
993 || (mips_isa_rev >= 1 \
994 && mips_isa_rev <= 5))
995
996 /* ISA has the FP condition code instructions that store the flag in an
997 FP register. */
998 #define ISA_HAS_CCF (mips_isa_rev >= 6)
999
1000 #define ISA_HAS_SEL (mips_isa_rev >= 6)
1001
1002 /* This is a catch all for other mips4 instructions: indexed load, the
1003 FP madd and msub instructions, and the FP recip and recip sqrt
1004 instructions. Note that this macro should only be used by other
1005 ISA_HAS_* macros. */
1006 #define ISA_HAS_FP4 ((ISA_MIPS4 \
1007 || ISA_MIPS64 \
1008 || (mips_isa_rev >= 2 \
1009 && mips_isa_rev <= 5)) \
1010 && !TARGET_MIPS16)
1011
1012 /* ISA has floating-point indexed load and store instructions
1013 (LWXC1, LDXC1, SWXC1 and SDXC1). */
1014 #define ISA_HAS_LXC1_SXC1 ISA_HAS_FP4
1015
1016 /* ISA has paired-single instructions. */
1017 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS64 \
1018 || (mips_isa_rev >= 2 \
1019 && mips_isa_rev <= 5))
1020
1021 /* ISA has conditional trap instructions. */
1022 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
1023 && !TARGET_MIPS16)
1024
1025 /* ISA has conditional trap with immediate instructions. */
1026 #define ISA_HAS_COND_TRAPI (!ISA_MIPS1 \
1027 && mips_isa_rev <= 5 \
1028 && !TARGET_MIPS16)
1029
1030 /* ISA has integer multiply-accumulate instructions, madd and msub. */
1031 #define ISA_HAS_MADD_MSUB (mips_isa_rev >= 1 \
1032 && mips_isa_rev <= 5)
1033
1034 /* Integer multiply-accumulate instructions should be generated. */
1035 #define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
1036
1037 /* ISA has 4 operand fused madd instructions of the form
1038 'd = [+-] (a * b [+-] c)'. */
1039 #define ISA_HAS_FUSED_MADD4 TARGET_MIPS8000
1040
1041 /* ISA has 4 operand unfused madd instructions of the form
1042 'd = [+-] (a * b [+-] c)'. */
1043 #define ISA_HAS_UNFUSED_MADD4 (ISA_HAS_FP4 && !TARGET_MIPS8000)
1044
1045 /* ISA has 3 operand r6 fused madd instructions of the form
1046 'c = c [+-] (a * b)'. */
1047 #define ISA_HAS_FUSED_MADDF (mips_isa_rev >= 6)
1048
1049 /* ISA has 3 operand loongson fused madd instructions of the form
1050 'c = [+-] (a * b [+-] c)'. */
1051 #define ISA_HAS_FUSED_MADD3 TARGET_LOONGSON_2EF
1052
1053 /* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The
1054 MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
1055 doubles are stored in pairs of FPRs, so for safety's sake, we apply
1056 this restriction to the MIPS IV ISA too. */
1057 #define ISA_HAS_FP_RECIP_RSQRT(MODE) \
1058 (((ISA_HAS_FP4 \
1059 && ((MODE) == SFmode \
1060 || ((TARGET_FLOAT64 \
1061 || mips_isa_rev >= 2) \
1062 && (MODE) == DFmode))) \
1063 || (((MODE) == SFmode \
1064 || (MODE) == DFmode) \
1065 && (mips_isa_rev >= 6)) \
1066 || (TARGET_SB1 \
1067 && (MODE) == V2SFmode)) \
1068 && !TARGET_MIPS16)
1069
1070 #define ISA_HAS_LWL_LWR (mips_isa_rev <= 5 && !TARGET_MIPS16)
1071
1072 #define ISA_HAS_IEEE_754_LEGACY (mips_isa_rev <= 5)
1073
1074 #define ISA_HAS_IEEE_754_2008 (mips_isa_rev >= 2)
1075
1076 /* ISA has count leading zeroes/ones instruction (not implemented). */
1077 #define ISA_HAS_CLZ_CLO (mips_isa_rev >= 1 && !TARGET_MIPS16)
1078
1079 /* ISA has three operand multiply instructions that put
1080 the high part in an accumulator: mulhi or mulhiu. */
1081 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
1082 || TARGET_MIPS5500 \
1083 || TARGET_SR71K) \
1084 && !TARGET_MIPS16)
1085
1086 /* ISA has three operand multiply instructions that negate the
1087 result and put the result in an accumulator. */
1088 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
1089 || TARGET_MIPS5500 \
1090 || TARGET_SR71K) \
1091 && !TARGET_MIPS16)
1092
1093 /* ISA has three operand multiply instructions that subtract the
1094 result from a 4th operand and put the result in an accumulator. */
1095 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
1096 || TARGET_MIPS5500 \
1097 || TARGET_SR71K) \
1098 && !TARGET_MIPS16)
1099
1100 /* ISA has three operand multiply instructions that add the result
1101 to a 4th operand and put the result in an accumulator. */
1102 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
1103 || TARGET_MIPS4130 \
1104 || TARGET_MIPS5400 \
1105 || TARGET_MIPS5500 \
1106 || TARGET_SR71K) \
1107 && !TARGET_MIPS16)
1108
1109 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
1110 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
1111 || TARGET_MIPS4130) \
1112 && !TARGET_MIPS16)
1113
1114 /* ISA has the "ror" (rotate right) instructions. */
1115 #define ISA_HAS_ROR ((mips_isa_rev >= 2 \
1116 || TARGET_MIPS5400 \
1117 || TARGET_MIPS5500 \
1118 || TARGET_SR71K \
1119 || TARGET_SMARTMIPS) \
1120 && !TARGET_MIPS16)
1121
1122 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
1123 64-bit targets also provide DSBH and DSHD. */
1124 #define ISA_HAS_WSBH (mips_isa_rev >= 2 && !TARGET_MIPS16)
1125
1126 /* ISA has data prefetch instructions. This controls use of 'pref'. */
1127 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
1128 || TARGET_LOONGSON_2EF \
1129 || TARGET_MIPS5900 \
1130 || mips_isa_rev >= 1) \
1131 && !TARGET_MIPS16)
1132
1133 /* ISA has data prefetch, LL and SC with limited 9-bit displacement. */
1134 #define ISA_HAS_9BIT_DISPLACEMENT (mips_isa_rev >= 6)
1135
1136 /* ISA has data indexed prefetch instructions. This controls use of
1137 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1138 (prefx is a cop1x instruction, so can only be used if FP is
1139 enabled.) */
1140 #define ISA_HAS_PREFETCHX ISA_HAS_FP4
1141
1142 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
1143 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
1144 also requires TARGET_DOUBLE_FLOAT. */
1145 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
1146
1147 /* ISA includes the MIPS32r2 seb and seh instructions. */
1148 #define ISA_HAS_SEB_SEH (mips_isa_rev >= 2 && !TARGET_MIPS16)
1149
1150 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
1151 #define ISA_HAS_EXT_INS (mips_isa_rev >= 2 && !TARGET_MIPS16)
1152
1153 /* ISA has instructions for accessing top part of 64-bit fp regs. */
1154 #define ISA_HAS_MXHC1 (!TARGET_FLOAT32 \
1155 && mips_isa_rev >= 2)
1156
1157 /* ISA has lwxs instruction (load w/scaled index address. */
1158 #define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1159 && !TARGET_MIPS16)
1160
1161 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1162 #define ISA_HAS_LBX (TARGET_OCTEON2)
1163 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1164 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1165 #define ISA_HAS_LHUX (TARGET_OCTEON2)
1166 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1167 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1168 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1169 && TARGET_64BIT)
1170
1171 /* The DSP ASE is available. */
1172 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1173
1174 /* Revision 2 of the DSP ASE is available. */
1175 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1176
1177 /* True if the result of a load is not available to the next instruction.
1178 A nop will then be needed between instructions like "lw $4,..."
1179 and "addiu $4,$4,1". */
1180 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1181 && !TARGET_MIPS3900 \
1182 && !TARGET_MIPS5900 \
1183 && !TARGET_MIPS16 \
1184 && !TARGET_MICROMIPS)
1185
1186 /* Likewise mtc1 and mfc1. */
1187 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1188 && !TARGET_MIPS5900 \
1189 && !TARGET_LOONGSON_2EF)
1190
1191 /* Likewise floating-point comparisons. */
1192 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1193 && !TARGET_MIPS5900 \
1194 && !TARGET_LOONGSON_2EF)
1195
1196 /* True if mflo and mfhi can be immediately followed by instructions
1197 which write to the HI and LO registers.
1198
1199 According to MIPS specifications, MIPS ISAs I, II, and III need
1200 (at least) two instructions between the reads of HI/LO and
1201 instructions which write them, and later ISAs do not. Contradicting
1202 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1203 the UM for the NEC Vr5000) document needing the instructions between
1204 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1205 MIPS64 and later ISAs to have the interlocks, plus any specific
1206 earlier-ISA CPUs for which CPU documentation declares that the
1207 instructions are really interlocked. */
1208 #define ISA_HAS_HILO_INTERLOCKS (mips_isa_rev >= 1 \
1209 || TARGET_MIPS5500 \
1210 || TARGET_MIPS5900 \
1211 || TARGET_LOONGSON_2EF)
1212
1213 /* ISA includes synci, jr.hb and jalr.hb. */
1214 #define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
1215
1216 /* ISA includes sync. */
1217 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1218 #define GENERATE_SYNC \
1219 (target_flags_explicit & MASK_LLSC \
1220 ? TARGET_LLSC && !TARGET_MIPS16 \
1221 : ISA_HAS_SYNC)
1222
1223 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1224 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1225 instructions. */
1226 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
1227 #define GENERATE_LL_SC \
1228 (target_flags_explicit & MASK_LLSC \
1229 ? TARGET_LLSC && !TARGET_MIPS16 \
1230 : ISA_HAS_LL_SC)
1231
1232 #define ISA_HAS_SWAP (TARGET_XLP)
1233 #define ISA_HAS_LDADD (TARGET_XLP)
1234
1235 /* ISA includes the baddu instruction. */
1236 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1237
1238 /* ISA includes the bbit* instructions. */
1239 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1240
1241 /* ISA includes the cins instruction. */
1242 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1243
1244 /* ISA includes the exts instruction. */
1245 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1246
1247 /* ISA includes the seq and sne instructions. */
1248 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1249
1250 /* ISA includes the pop instruction. */
1251 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1252
1253 /* The CACHE instruction is available in non-MIPS16 code. */
1254 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1255
1256 /* The CACHE instruction is available. */
1257 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1258 \f
1259 /* Tell collect what flags to pass to nm. */
1260 #ifndef NM_FLAGS
1261 #define NM_FLAGS "-Bn"
1262 #endif
1263
1264 \f
1265 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1266 the assembler. It may be overridden by subtargets.
1267
1268 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1269 COFF debugging info. */
1270
1271 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1272 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1273 %{g} %{g0} %{g1} %{g2} %{g3} \
1274 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1275 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1276 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1277 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1278 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1279 #endif
1280
1281 /* FP_ASM_SPEC represents the floating-point options that must be passed
1282 to the assembler when FPXX support exists. Prior to that point the
1283 assembler could accept the options but were not required for
1284 correctness. We only add the options when absolutely necessary
1285 because passing -msoft-float to the assembler will cause it to reject
1286 all hard-float instructions which may require some user code to be
1287 updated. */
1288
1289 #ifdef HAVE_AS_DOT_MODULE
1290 #define FP_ASM_SPEC "\
1291 %{mhard-float} %{msoft-float} \
1292 %{msingle-float} %{mdouble-float}"
1293 #else
1294 #define FP_ASM_SPEC
1295 #endif
1296
1297 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1298 overridden by subtargets. */
1299
1300 #ifndef SUBTARGET_ASM_SPEC
1301 #define SUBTARGET_ASM_SPEC ""
1302 #endif
1303
1304 #undef ASM_SPEC
1305 #define ASM_SPEC "\
1306 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1307 %{mips32*} %{mips64*} \
1308 %{mips16} %{mno-mips16:-no-mips16} \
1309 %{mmicromips} %{mno-micromips} \
1310 %{mips3d} %{mno-mips3d:-no-mips3d} \
1311 %{mdmx} %{mno-mdmx:-no-mdmx} \
1312 %{mdsp} %{mno-dsp} \
1313 %{mdspr2} %{mno-dspr2} \
1314 %{mmcu} %{mno-mcu} \
1315 %{meva} %{mno-eva} \
1316 %{mvirt} %{mno-virt} \
1317 %{mxpa} %{mno-xpa} \
1318 %{msmartmips} %{mno-smartmips} \
1319 %{mmt} %{mno-mt} \
1320 %{mfix-rm7000} %{mno-fix-rm7000} \
1321 %{mfix-vr4120} %{mfix-vr4130} \
1322 %{mfix-24k} \
1323 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1324 %(subtarget_asm_debugging_spec) \
1325 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1326 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1327 %{mfp32} %{mfpxx} %{mfp64} %{mnan=*} \
1328 %{modd-spreg} %{mno-odd-spreg} \
1329 %{mshared} %{mno-shared} \
1330 %{msym32} %{mno-sym32} \
1331 %{mtune=*}" \
1332 FP_ASM_SPEC "\
1333 %(subtarget_asm_spec)"
1334
1335 /* Extra switches sometimes passed to the linker. */
1336
1337 #ifndef LINK_SPEC
1338 #define LINK_SPEC "\
1339 %(endian_spec) \
1340 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1341 %{shared}"
1342 #endif /* LINK_SPEC defined */
1343
1344
1345 /* Specs for the compiler proper */
1346
1347 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1348 overridden by subtargets. */
1349 #ifndef SUBTARGET_CC1_SPEC
1350 #define SUBTARGET_CC1_SPEC ""
1351 #endif
1352
1353 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1354
1355 #undef CC1_SPEC
1356 #define CC1_SPEC "\
1357 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1358 %(subtarget_cc1_spec)"
1359
1360 /* Preprocessor specs. */
1361
1362 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1363 overridden by subtargets. */
1364 #ifndef SUBTARGET_CPP_SPEC
1365 #define SUBTARGET_CPP_SPEC ""
1366 #endif
1367
1368 #define CPP_SPEC "%(subtarget_cpp_spec)"
1369
1370 /* This macro defines names of additional specifications to put in the specs
1371 that can be used in various specifications like CC1_SPEC. Its definition
1372 is an initializer with a subgrouping for each command option.
1373
1374 Each subgrouping contains a string constant, that defines the
1375 specification name, and a string constant that used by the GCC driver
1376 program.
1377
1378 Do not define this macro if it does not need to do anything. */
1379
1380 #define EXTRA_SPECS \
1381 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1382 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1383 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1384 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1385 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1386 { "endian_spec", ENDIAN_SPEC }, \
1387 SUBTARGET_EXTRA_SPECS
1388
1389 #ifndef SUBTARGET_EXTRA_SPECS
1390 #define SUBTARGET_EXTRA_SPECS
1391 #endif
1392 \f
1393 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1394 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1395
1396 #ifndef PREFERRED_DEBUGGING_TYPE
1397 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1398 #endif
1399
1400 /* The size of DWARF addresses should be the same as the size of symbols
1401 in the target file format. They shouldn't depend on things like -msym32,
1402 because many DWARF consumers do not allow the mixture of address sizes
1403 that one would then get from linking -msym32 code with -msym64 code.
1404
1405 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1406 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1407 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1408
1409 /* By default, turn on GDB extensions. */
1410 #define DEFAULT_GDB_EXTENSIONS 1
1411
1412 /* Registers may have a prefix which can be ignored when matching
1413 user asm and register definitions. */
1414 #ifndef REGISTER_PREFIX
1415 #define REGISTER_PREFIX "$"
1416 #endif
1417
1418 /* Local compiler-generated symbols must have a prefix that the assembler
1419 understands. By default, this is $, although some targets (e.g.,
1420 NetBSD-ELF) need to override this. */
1421
1422 #ifndef LOCAL_LABEL_PREFIX
1423 #define LOCAL_LABEL_PREFIX "$"
1424 #endif
1425
1426 /* By default on the mips, external symbols do not have an underscore
1427 prepended, but some targets (e.g., NetBSD) require this. */
1428
1429 #ifndef USER_LABEL_PREFIX
1430 #define USER_LABEL_PREFIX ""
1431 #endif
1432
1433 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1434 since the length can run past this up to a continuation point. */
1435 #undef DBX_CONTIN_LENGTH
1436 #define DBX_CONTIN_LENGTH 1500
1437
1438 /* How to renumber registers for dbx and gdb. */
1439 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1440
1441 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1442 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1443
1444 /* The DWARF 2 CFA column which tracks the return address. */
1445 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1446
1447 /* Before the prologue, RA lives in r31. */
1448 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1449
1450 /* Describe how we implement __builtin_eh_return. */
1451 #define EH_RETURN_DATA_REGNO(N) \
1452 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1453
1454 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1455
1456 #define EH_USES(N) mips_eh_uses (N)
1457
1458 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1459 The default for this in 64-bit mode is 8, which causes problems with
1460 SFmode register saves. */
1461 #define DWARF_CIE_DATA_ALIGNMENT -4
1462
1463 /* Correct the offset of automatic variables and arguments. Note that
1464 the MIPS debug format wants all automatic variables and arguments
1465 to be in terms of the virtual frame pointer (stack pointer before
1466 any adjustment in the function), while the MIPS 3.0 linker wants
1467 the frame pointer to be the stack pointer after the initial
1468 adjustment. */
1469
1470 #define DEBUGGER_AUTO_OFFSET(X) \
1471 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1472 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1473 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1474 \f
1475 /* Target machine storage layout */
1476
1477 #define BITS_BIG_ENDIAN 0
1478 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1479 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1480
1481 #define MAX_BITS_PER_WORD 64
1482
1483 /* Width of a word, in units (bytes). */
1484 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1485 #ifndef IN_LIBGCC2
1486 #define MIN_UNITS_PER_WORD 4
1487 #endif
1488
1489 /* For MIPS, width of a floating point register. */
1490 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1491
1492 /* The number of consecutive floating-point registers needed to store the
1493 largest format supported by the FPU. */
1494 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1495
1496 /* The number of consecutive floating-point registers needed to store the
1497 smallest format supported by the FPU. */
1498 #define MIN_FPRS_PER_FMT \
1499 (TARGET_ODD_SPREG ? 1 : MAX_FPRS_PER_FMT)
1500
1501 /* The largest size of value that can be held in floating-point
1502 registers and moved with a single instruction. */
1503 #define UNITS_PER_HWFPVALUE \
1504 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1505
1506 /* The largest size of value that can be held in floating-point
1507 registers. */
1508 #define UNITS_PER_FPVALUE \
1509 (TARGET_SOFT_FLOAT_ABI ? 0 \
1510 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1511 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1512
1513 /* The number of bytes in a double. */
1514 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1515
1516 /* Set the sizes of the core types. */
1517 #define SHORT_TYPE_SIZE 16
1518 #define INT_TYPE_SIZE 32
1519 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1520 #define LONG_LONG_TYPE_SIZE 64
1521
1522 #define FLOAT_TYPE_SIZE 32
1523 #define DOUBLE_TYPE_SIZE 64
1524 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1525
1526 /* Define the sizes of fixed-point types. */
1527 #define SHORT_FRACT_TYPE_SIZE 8
1528 #define FRACT_TYPE_SIZE 16
1529 #define LONG_FRACT_TYPE_SIZE 32
1530 #define LONG_LONG_FRACT_TYPE_SIZE 64
1531
1532 #define SHORT_ACCUM_TYPE_SIZE 16
1533 #define ACCUM_TYPE_SIZE 32
1534 #define LONG_ACCUM_TYPE_SIZE 64
1535 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1536 doesn't support 128-bit integers for MIPS32 currently. */
1537 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1538
1539 /* long double is not a fixed mode, but the idea is that, if we
1540 support long double, we also want a 128-bit integer type. */
1541 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1542
1543 /* Width in bits of a pointer. */
1544 #ifndef POINTER_SIZE
1545 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1546 #endif
1547
1548 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1549 #define PARM_BOUNDARY BITS_PER_WORD
1550
1551 /* Allocation boundary (in *bits*) for the code of a function. */
1552 #define FUNCTION_BOUNDARY 32
1553
1554 /* Alignment of field after `int : 0' in a structure. */
1555 #define EMPTY_FIELD_BOUNDARY 32
1556
1557 /* Every structure's size must be a multiple of this. */
1558 /* 8 is observed right on a DECstation and on riscos 4.02. */
1559 #define STRUCTURE_SIZE_BOUNDARY 8
1560
1561 /* There is no point aligning anything to a rounder boundary than this. */
1562 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1563
1564 /* All accesses must be aligned. */
1565 #define STRICT_ALIGNMENT 1
1566
1567 /* Define this if you wish to imitate the way many other C compilers
1568 handle alignment of bitfields and the structures that contain
1569 them.
1570
1571 The behavior is that the type written for a bit-field (`int',
1572 `short', or other integer type) imposes an alignment for the
1573 entire structure, as if the structure really did contain an
1574 ordinary field of that type. In addition, the bit-field is placed
1575 within the structure so that it would fit within such a field,
1576 not crossing a boundary for it.
1577
1578 Thus, on most machines, a bit-field whose type is written as `int'
1579 would not cross a four-byte boundary, and would force four-byte
1580 alignment for the whole structure. (The alignment used may not
1581 be four bytes; it is controlled by the other alignment
1582 parameters.)
1583
1584 If the macro is defined, its definition should be a C expression;
1585 a nonzero value for the expression enables this behavior. */
1586
1587 #define PCC_BITFIELD_TYPE_MATTERS 1
1588
1589 /* If defined, a C expression to compute the alignment given to a
1590 constant that is being placed in memory. CONSTANT is the constant
1591 and ALIGN is the alignment that the object would ordinarily have.
1592 The value of this macro is used instead of that alignment to align
1593 the object.
1594
1595 If this macro is not defined, then ALIGN is used.
1596
1597 The typical use of this macro is to increase alignment for string
1598 constants to be word aligned so that `strcpy' calls that copy
1599 constants can be done inline. */
1600
1601 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1602 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1603 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1604
1605 /* If defined, a C expression to compute the alignment for a static
1606 variable. TYPE is the data type, and ALIGN is the alignment that
1607 the object would ordinarily have. The value of this macro is used
1608 instead of that alignment to align the object.
1609
1610 If this macro is not defined, then ALIGN is used.
1611
1612 One use of this macro is to increase alignment of medium-size
1613 data to make it all fit in fewer cache lines. Another is to
1614 cause character arrays to be word-aligned so that `strcpy' calls
1615 that copy constants to character arrays can be done inline. */
1616
1617 #undef DATA_ALIGNMENT
1618 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1619 ((((ALIGN) < BITS_PER_WORD) \
1620 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1621 || TREE_CODE (TYPE) == UNION_TYPE \
1622 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1623
1624 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1625 character arrays to be word-aligned so that `strcpy' calls that copy
1626 constants to character arrays can be done inline, and 'strcmp' can be
1627 optimised to use word loads. */
1628 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1629 DATA_ALIGNMENT (TYPE, ALIGN)
1630
1631 #define PAD_VARARGS_DOWN \
1632 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1633
1634 /* Define if operations between registers always perform the operation
1635 on the full register even if a narrower mode is specified. */
1636 #define WORD_REGISTER_OPERATIONS 1
1637
1638 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1639 moves. All other references are zero extended. */
1640 #define LOAD_EXTEND_OP(MODE) \
1641 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1642 ? SIGN_EXTEND : ZERO_EXTEND)
1643
1644 /* Define this macro if it is advisable to hold scalars in registers
1645 in a wider mode than that declared by the program. In such cases,
1646 the value is constrained to be within the bounds of the declared
1647 type, but kept valid in the wider mode. The signedness of the
1648 extension may differ from that of the type. */
1649
1650 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1651 if (GET_MODE_CLASS (MODE) == MODE_INT \
1652 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1653 { \
1654 if ((MODE) == SImode) \
1655 (UNSIGNEDP) = 0; \
1656 (MODE) = Pmode; \
1657 }
1658
1659 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1660 Extensions of pointers to word_mode must be signed. */
1661 #define POINTERS_EXTEND_UNSIGNED false
1662
1663 /* Define if loading short immediate values into registers sign extends. */
1664 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1665
1666 /* The [d]clz instructions have the natural values at 0. */
1667
1668 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1669 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1670 \f
1671 /* Standard register usage. */
1672
1673 /* Number of hardware registers. We have:
1674
1675 - 32 integer registers
1676 - 32 floating point registers
1677 - 8 condition code registers
1678 - 2 accumulator registers (hi and lo)
1679 - 32 registers each for coprocessors 0, 2 and 3
1680 - 4 fake registers:
1681 - ARG_POINTER_REGNUM
1682 - FRAME_POINTER_REGNUM
1683 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1684 - CPRESTORE_SLOT_REGNUM
1685 - 2 dummy entries that were used at various times in the past.
1686 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1687 - 6 DSP control registers */
1688
1689 #define FIRST_PSEUDO_REGISTER 188
1690
1691 /* By default, fix the kernel registers ($26 and $27), the global
1692 pointer ($28) and the stack pointer ($29). This can change
1693 depending on the command-line options.
1694
1695 Regarding coprocessor registers: without evidence to the contrary,
1696 it's best to assume that each coprocessor register has a unique
1697 use. This can be overridden, in, e.g., mips_option_override or
1698 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1699 inappropriate for a particular target. */
1700
1701 #define FIXED_REGISTERS \
1702 { \
1703 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1704 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1705 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1706 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1707 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1708 /* COP0 registers */ \
1709 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1710 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1711 /* COP2 registers */ \
1712 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1713 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1714 /* COP3 registers */ \
1715 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1716 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1717 /* 6 DSP accumulator registers & 6 control registers */ \
1718 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1719 }
1720
1721
1722 /* Set up this array for o32 by default.
1723
1724 Note that we don't mark $31 as a call-clobbered register. The idea is
1725 that it's really the call instructions themselves which clobber $31.
1726 We don't care what the called function does with it afterwards.
1727
1728 This approach makes it easier to implement sibcalls. Unlike normal
1729 calls, sibcalls don't clobber $31, so the register reaches the
1730 called function in tact. EPILOGUE_USES says that $31 is useful
1731 to the called function. */
1732
1733 #define CALL_USED_REGISTERS \
1734 { \
1735 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1736 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1737 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1738 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1739 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1740 /* COP0 registers */ \
1741 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1742 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1743 /* COP2 registers */ \
1744 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1745 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1746 /* COP3 registers */ \
1747 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1748 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1749 /* 6 DSP accumulator registers & 6 control registers */ \
1750 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1751 }
1752
1753
1754 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1755
1756 #define CALL_REALLY_USED_REGISTERS \
1757 { /* General registers. */ \
1758 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1759 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1760 /* Floating-point registers. */ \
1761 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1762 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1763 /* Others. */ \
1764 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1765 /* COP0 registers */ \
1766 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1767 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1768 /* COP2 registers */ \
1769 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1770 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1771 /* COP3 registers */ \
1772 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1773 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1774 /* 6 DSP accumulator registers & 6 control registers */ \
1775 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1776 }
1777
1778 /* Internal macros to classify a register number as to whether it's a
1779 general purpose register, a floating point register, a
1780 multiply/divide register, or a status register. */
1781
1782 #define GP_REG_FIRST 0
1783 #define GP_REG_LAST 31
1784 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1785 #define GP_DBX_FIRST 0
1786 #define K0_REG_NUM (GP_REG_FIRST + 26)
1787 #define K1_REG_NUM (GP_REG_FIRST + 27)
1788 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1789
1790 #define FP_REG_FIRST 32
1791 #define FP_REG_LAST 63
1792 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1793 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1794
1795 #define MD_REG_FIRST 64
1796 #define MD_REG_LAST 65
1797 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1798 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1799
1800 /* The DWARF 2 CFA column which tracks the return address from a
1801 signal handler context. This means that to maintain backwards
1802 compatibility, no hard register can be assigned this column if it
1803 would need to be handled by the DWARF unwinder. */
1804 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1805
1806 #define ST_REG_FIRST 67
1807 #define ST_REG_LAST 74
1808 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1809
1810
1811 /* FIXME: renumber. */
1812 #define COP0_REG_FIRST 80
1813 #define COP0_REG_LAST 111
1814 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1815
1816 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1817 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1818 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1819
1820 #define COP2_REG_FIRST 112
1821 #define COP2_REG_LAST 143
1822 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1823
1824 #define COP3_REG_FIRST 144
1825 #define COP3_REG_LAST 175
1826 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1827
1828 /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1829 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1830 #define ALL_COP_REG_LAST COP3_REG_LAST
1831 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1832
1833 #define DSP_ACC_REG_FIRST 176
1834 #define DSP_ACC_REG_LAST 181
1835 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1836
1837 #define AT_REGNUM (GP_REG_FIRST + 1)
1838 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1839 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1840
1841 /* A few bitfield locations for the coprocessor registers. */
1842 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1843 the cause register for the EIC interrupt mode. */
1844 #define CAUSE_IPL 10
1845 /* COP1 Enable is at bit 29 of the status register. */
1846 #define SR_COP1 29
1847 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1848 #define SR_IPL 10
1849 /* Interrupt masks start with IM0 at bit 8 to IM7 at bit 15 of the status
1850 register. */
1851 #define SR_IM0 8
1852 /* Exception Level is at bit 1 of the status register. */
1853 #define SR_EXL 1
1854 /* Interrupt Enable is at bit 0 of the status register. */
1855 #define SR_IE 0
1856
1857 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1858 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1859 should be used instead. */
1860 #define FPSW_REGNUM ST_REG_FIRST
1861
1862 #define GP_REG_P(REGNO) \
1863 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1864 #define M16_REG_P(REGNO) \
1865 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1866 #define M16STORE_REG_P(REGNO) \
1867 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
1868 #define FP_REG_P(REGNO) \
1869 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1870 #define MD_REG_P(REGNO) \
1871 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1872 #define ST_REG_P(REGNO) \
1873 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1874 #define COP0_REG_P(REGNO) \
1875 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1876 #define COP2_REG_P(REGNO) \
1877 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1878 #define COP3_REG_P(REGNO) \
1879 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1880 #define ALL_COP_REG_P(REGNO) \
1881 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1882 /* Test if REGNO is one of the 6 new DSP accumulators. */
1883 #define DSP_ACC_REG_P(REGNO) \
1884 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1885 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1886 #define ACC_REG_P(REGNO) \
1887 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1888
1889 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1890
1891 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1892 to initialize the mips16 gp pseudo register. */
1893 #define CONST_GP_P(X) \
1894 (GET_CODE (X) == CONST \
1895 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1896 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1897
1898 /* Return coprocessor number from register number. */
1899
1900 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1901 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1902 : COP3_REG_P (REGNO) ? '3' : '?')
1903
1904
1905 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1906
1907 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1908 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1909
1910 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
1911 mips_hard_regno_rename_ok (OLD_REG, NEW_REG)
1912
1913 /* Select a register mode required for caller save of hard regno REGNO. */
1914 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1915 mips_hard_regno_caller_save_mode (REGNO, NREGS, MODE)
1916
1917 /* Odd-numbered single-precision registers are not considered callee-saved
1918 for o32 FPXX as they will be clobbered when run on an FR=1 FPU. */
1919 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1920 (TARGET_FLOATXX && hard_regno_nregs[REGNO][MODE] == 1 \
1921 && FP_REG_P (REGNO) && ((REGNO) & 1))
1922
1923 #define MODES_TIEABLE_P mips_modes_tieable_p
1924
1925 /* Register to use for pushing function arguments. */
1926 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1927
1928 /* These two registers don't really exist: they get eliminated to either
1929 the stack or hard frame pointer. */
1930 #define ARG_POINTER_REGNUM 77
1931 #define FRAME_POINTER_REGNUM 78
1932
1933 /* $30 is not available on the mips16, so we use $17 as the frame
1934 pointer. */
1935 #define HARD_FRAME_POINTER_REGNUM \
1936 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1937
1938 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1939 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1940
1941 /* Register in which static-chain is passed to a function. */
1942 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1943
1944 /* Registers used as temporaries in prologue/epilogue code:
1945
1946 - If a MIPS16 PIC function needs access to _gp, it first loads
1947 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1948
1949 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1950 register. The register must not conflict with MIPS16_PIC_TEMP.
1951
1952 - If we aren't generating MIPS16 code, the prologue can also use
1953 MIPS_PROLOGUE_TEMP2 as a general temporary register.
1954
1955 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1956 register.
1957
1958 If we're generating MIPS16 code, these registers must come from the
1959 core set of 8. The prologue registers mustn't conflict with any
1960 incoming arguments, the static chain pointer, or the frame pointer.
1961 The epilogue temporary mustn't conflict with the return registers,
1962 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1963 or the EH data registers.
1964
1965 If we're generating interrupt handlers, we use K0 as a temporary register
1966 in prologue/epilogue code. */
1967
1968 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1969 #define MIPS_PROLOGUE_TEMP_REGNUM \
1970 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1971 #define MIPS_PROLOGUE_TEMP2_REGNUM \
1972 (TARGET_MIPS16 \
1973 ? (gcc_unreachable (), INVALID_REGNUM) \
1974 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
1975 #define MIPS_EPILOGUE_TEMP_REGNUM \
1976 (cfun->machine->interrupt_handler_p \
1977 ? K0_REG_NUM \
1978 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1979
1980 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1981 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1982 #define MIPS_PROLOGUE_TEMP2(MODE) \
1983 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
1984 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1985
1986 /* Define this macro if it is as good or better to call a constant
1987 function address than to call an address kept in a register. */
1988 #define NO_FUNCTION_CSE 1
1989
1990 /* The ABI-defined global pointer. Sometimes we use a different
1991 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1992 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1993
1994 /* We normally use $28 as the global pointer. However, when generating
1995 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1996 register instead. They can then avoid saving and restoring $28
1997 and perhaps avoid using a frame at all.
1998
1999 When a leaf function uses something other than $28, mips_expand_prologue
2000 will modify pic_offset_table_rtx in place. Take the register number
2001 from there after reload. */
2002 #define PIC_OFFSET_TABLE_REGNUM \
2003 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
2004 \f
2005 /* Define the classes of registers for register constraints in the
2006 machine description. Also define ranges of constants.
2007
2008 One of the classes must always be named ALL_REGS and include all hard regs.
2009 If there is more than one class, another class must be named NO_REGS
2010 and contain no registers.
2011
2012 The name GENERAL_REGS must be the name of a class (or an alias for
2013 another name such as ALL_REGS). This is the class of registers
2014 that is allowed by "g" or "r" in a register constraint.
2015 Also, registers outside this class are allocated only when
2016 instructions express preferences for them.
2017
2018 The classes must be numbered in nondecreasing order; that is,
2019 a larger-numbered class must never be contained completely
2020 in a smaller-numbered class.
2021
2022 For any two classes, it is very desirable that there be another
2023 class that represents their union. */
2024
2025 enum reg_class
2026 {
2027 NO_REGS, /* no registers in set */
2028 M16_STORE_REGS, /* microMIPS store registers */
2029 M16_REGS, /* mips16 directly accessible registers */
2030 M16_SP_REGS, /* mips16 + $sp */
2031 T_REG, /* mips16 T register ($24) */
2032 M16_T_REGS, /* mips16 registers plus T register */
2033 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
2034 V1_REG, /* Register $v1 ($3) used for TLS access. */
2035 SPILL_REGS, /* All but $sp and call preserved regs are in here */
2036 LEA_REGS, /* Every GPR except $25 */
2037 GR_REGS, /* integer registers */
2038 FP_REGS, /* floating point registers */
2039 MD0_REG, /* first multiply/divide register */
2040 MD1_REG, /* second multiply/divide register */
2041 MD_REGS, /* multiply/divide registers (hi/lo) */
2042 COP0_REGS, /* generic coprocessor classes */
2043 COP2_REGS,
2044 COP3_REGS,
2045 ST_REGS, /* status registers (fp status) */
2046 DSP_ACC_REGS, /* DSP accumulator registers */
2047 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
2048 FRAME_REGS, /* $arg and $frame */
2049 GR_AND_MD0_REGS, /* union classes */
2050 GR_AND_MD1_REGS,
2051 GR_AND_MD_REGS,
2052 GR_AND_ACC_REGS,
2053 ALL_REGS, /* all registers */
2054 LIM_REG_CLASSES /* max value + 1 */
2055 };
2056
2057 #define N_REG_CLASSES (int) LIM_REG_CLASSES
2058
2059 #define GENERAL_REGS GR_REGS
2060
2061 /* An initializer containing the names of the register classes as C
2062 string constants. These names are used in writing some of the
2063 debugging dumps. */
2064
2065 #define REG_CLASS_NAMES \
2066 { \
2067 "NO_REGS", \
2068 "M16_STORE_REGS", \
2069 "M16_REGS", \
2070 "M16_SP_REGS", \
2071 "T_REG", \
2072 "M16_T_REGS", \
2073 "PIC_FN_ADDR_REG", \
2074 "V1_REG", \
2075 "SPILL_REGS", \
2076 "LEA_REGS", \
2077 "GR_REGS", \
2078 "FP_REGS", \
2079 "MD0_REG", \
2080 "MD1_REG", \
2081 "MD_REGS", \
2082 /* coprocessor registers */ \
2083 "COP0_REGS", \
2084 "COP2_REGS", \
2085 "COP3_REGS", \
2086 "ST_REGS", \
2087 "DSP_ACC_REGS", \
2088 "ACC_REGS", \
2089 "FRAME_REGS", \
2090 "GR_AND_MD0_REGS", \
2091 "GR_AND_MD1_REGS", \
2092 "GR_AND_MD_REGS", \
2093 "GR_AND_ACC_REGS", \
2094 "ALL_REGS" \
2095 }
2096
2097 /* An initializer containing the contents of the register classes,
2098 as integers which are bit masks. The Nth integer specifies the
2099 contents of class N. The way the integer MASK is interpreted is
2100 that register R is in the class if `MASK & (1 << R)' is 1.
2101
2102 When the machine has more than 32 registers, an integer does not
2103 suffice. Then the integers are replaced by sub-initializers,
2104 braced groupings containing several integers. Each
2105 sub-initializer must be suitable as an initializer for the type
2106 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
2107
2108 #define REG_CLASS_CONTENTS \
2109 { \
2110 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
2111 { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_STORE_REGS */ \
2112 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
2113 { 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_SP_REGS */ \
2114 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
2115 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
2116 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
2117 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
2118 { 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SPILL_REGS */ \
2119 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
2120 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
2121 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
2122 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
2123 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
2124 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
2125 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
2126 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
2127 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
2128 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
2129 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
2130 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
2131 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
2132 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
2133 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
2134 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
2135 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
2136 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
2137 }
2138
2139
2140 /* A C expression whose value is a register class containing hard
2141 register REGNO. In general there is more that one such class;
2142 choose a class which is "minimal", meaning that no smaller class
2143 also contains the register. */
2144
2145 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2146
2147 /* A macro whose definition is the name of the class to which a
2148 valid base register must belong. A base register is one used in
2149 an address which is the register value plus a displacement. */
2150
2151 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS)
2152
2153 /* A macro whose definition is the name of the class to which a
2154 valid index register must belong. An index register is one used
2155 in an address where its value is either multiplied by a scale
2156 factor or added to another register (as well as added to a
2157 displacement). */
2158
2159 #define INDEX_REG_CLASS NO_REGS
2160
2161 /* We generally want to put call-clobbered registers ahead of
2162 call-saved ones. (IRA expects this.) */
2163
2164 #define REG_ALLOC_ORDER \
2165 { /* Accumulator registers. When GPRs and accumulators have equal \
2166 cost, we generally prefer to use accumulators. For example, \
2167 a division of multiplication result is better allocated to LO, \
2168 so that we put the MFLO at the point of use instead of at the \
2169 point of definition. It's also needed if we're to take advantage \
2170 of the extra accumulators available with -mdspr2. In some cases, \
2171 it can also help to reduce register pressure. */ \
2172 64, 65,176,177,178,179,180,181, \
2173 /* Call-clobbered GPRs. */ \
2174 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
2175 24, 25, 31, \
2176 /* The global pointer. This is call-clobbered for o32 and o64 \
2177 abicalls, call-saved for n32 and n64 abicalls, and a program \
2178 invariant otherwise. Putting it between the call-clobbered \
2179 and call-saved registers should cope with all eventualities. */ \
2180 28, \
2181 /* Call-saved GPRs. */ \
2182 16, 17, 18, 19, 20, 21, 22, 23, 30, \
2183 /* GPRs that can never be exposed to the register allocator. */ \
2184 0, 26, 27, 29, \
2185 /* Call-clobbered FPRs. */ \
2186 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
2187 48, 49, 50, 51, \
2188 /* FPRs that are usually call-saved. The odd ones are actually \
2189 call-clobbered for n32, but listing them ahead of the even \
2190 registers might encourage the register allocator to fragment \
2191 the available FPR pairs. We need paired FPRs to store long \
2192 doubles, so it isn't clear that using a different order \
2193 for n32 would be a win. */ \
2194 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2195 /* None of the remaining classes have defined call-saved \
2196 registers. */ \
2197 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
2198 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2199 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2200 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2201 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2202 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
2203 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
2204 182,183,184,185,186,187 \
2205 }
2206
2207 /* True if VALUE is an unsigned 6-bit number. */
2208
2209 #define UIMM6_OPERAND(VALUE) \
2210 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2211
2212 /* True if VALUE is a signed 10-bit number. */
2213
2214 #define IMM10_OPERAND(VALUE) \
2215 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2216
2217 /* True if VALUE is a signed 16-bit number. */
2218
2219 #define SMALL_OPERAND(VALUE) \
2220 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2221
2222 /* True if VALUE is an unsigned 16-bit number. */
2223
2224 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2225 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2226
2227 /* True if VALUE can be loaded into a register using LUI. */
2228
2229 #define LUI_OPERAND(VALUE) \
2230 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2231 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2232
2233 /* Return a value X with the low 16 bits clear, and such that
2234 VALUE - X is a signed 16-bit value. */
2235
2236 #define CONST_HIGH_PART(VALUE) \
2237 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2238
2239 #define CONST_LOW_PART(VALUE) \
2240 ((VALUE) - CONST_HIGH_PART (VALUE))
2241
2242 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2243 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2244 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2245 #define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
2246 #define MIPS_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255))
2247
2248 /* The HI and LO registers can only be reloaded via the general
2249 registers. Condition code registers can only be loaded to the
2250 general registers, and from the floating point registers. */
2251
2252 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2253 mips_secondary_reload_class (CLASS, MODE, X, true)
2254 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2255 mips_secondary_reload_class (CLASS, MODE, X, false)
2256
2257 /* When targeting the o32 FPXX ABI, all moves with a length of doubleword
2258 or greater must be performed by FR-mode-aware instructions.
2259 This can be achieved using MFHC1/MTHC1 when these instructions are
2260 available but otherwise moves must go via memory.
2261 For the o32 FP64A ABI, all odd-numbered moves with a length of
2262 doubleword or greater are required to use memory. Using MTC1/MFC1
2263 to access the lower-half of these registers would require a forbidden
2264 single-precision access. We require all double-word moves to use
2265 memory because adding even and odd floating-point registers classes
2266 would have a significant impact on the backend. */
2267 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
2268 mips_secondary_memory_needed ((CLASS1), (CLASS2), (MODE))
2269
2270 /* Return the maximum number of consecutive registers
2271 needed to represent mode MODE in a register of class CLASS. */
2272
2273 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2274
2275 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2276 mips_cannot_change_mode_class (FROM, TO, CLASS)
2277 \f
2278 /* Stack layout; function entry, exit and calling. */
2279
2280 #define STACK_GROWS_DOWNWARD 1
2281
2282 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2283
2284 /* Size of the area allocated in the frame to save the GP. */
2285
2286 #define MIPS_GP_SAVE_AREA_SIZE \
2287 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2288
2289 /* The offset of the first local variable from the frame pointer. See
2290 mips_compute_frame_info for details about the frame layout. */
2291
2292 #define STARTING_FRAME_OFFSET \
2293 (FRAME_GROWS_DOWNWARD \
2294 ? 0 \
2295 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2296
2297 #define RETURN_ADDR_RTX mips_return_addr
2298
2299 /* Mask off the MIPS16 ISA bit in unwind addresses.
2300
2301 The reason for this is a little subtle. When unwinding a call,
2302 we are given the call's return address, which on most targets
2303 is the address of the following instruction. However, what we
2304 actually want to find is the EH region for the call itself.
2305 The target-independent unwind code therefore searches for "RA - 1".
2306
2307 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2308 RA - 1 is therefore the real (even-valued) start of the return
2309 instruction. EH region labels are usually odd-valued MIPS16 symbols
2310 too, so a search for an even address within a MIPS16 region would
2311 usually work.
2312
2313 However, there is an exception. If the end of an EH region is also
2314 the end of a function, the end label is allowed to be even. This is
2315 necessary because a following non-MIPS16 function may also need EH
2316 information for its first instruction.
2317
2318 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2319 non-ISA-encoded address. This probably isn't ideal, but it is
2320 the traditional (legacy) behavior. It is therefore only safe
2321 to search MIPS EH regions for an _odd-valued_ address.
2322
2323 Masking off the ISA bit means that the target-independent code
2324 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2325 #define MASK_RETURN_ADDR GEN_INT (-2)
2326
2327
2328 /* Similarly, don't use the least-significant bit to tell pointers to
2329 code from vtable index. */
2330
2331 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2332
2333 /* The eliminations to $17 are only used for mips16 code. See the
2334 definition of HARD_FRAME_POINTER_REGNUM. */
2335
2336 #define ELIMINABLE_REGS \
2337 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2338 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2339 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2340 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2341 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2342 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2343
2344 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2345 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2346
2347 /* Allocate stack space for arguments at the beginning of each function. */
2348 #define ACCUMULATE_OUTGOING_ARGS 1
2349
2350 /* The argument pointer always points to the first argument. */
2351 #define FIRST_PARM_OFFSET(FNDECL) 0
2352
2353 /* o32 and o64 reserve stack space for all argument registers. */
2354 #define REG_PARM_STACK_SPACE(FNDECL) \
2355 (TARGET_OLDABI \
2356 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2357 : 0)
2358
2359 /* Define this if it is the responsibility of the caller to
2360 allocate the area reserved for arguments passed in registers.
2361 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2362 of this macro is to determine whether the space is included in
2363 `crtl->outgoing_args_size'. */
2364 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2365
2366 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2367 \f
2368 /* Symbolic macros for the registers used to return integer and floating
2369 point values. */
2370
2371 #define GP_RETURN (GP_REG_FIRST + 2)
2372 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2373
2374 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2375
2376 /* Symbolic macros for the first/last argument registers. */
2377
2378 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2379 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2380 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2381 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2382
2383 /* Temporary register that is used when restoring $gp after a call. $4 and $5
2384 are used for returning complex double values in soft-float code, so $6 is the
2385 first suitable candidate for TARGET_MIPS16. For !TARGET_MIPS16 we can use
2386 $gp itself as the temporary. */
2387 #define POST_CALL_TMP_REG \
2388 (TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM)
2389
2390 /* 1 if N is a possible register number for function argument passing.
2391 We have no FP argument registers when soft-float. Special handling
2392 is required for O32 where only even numbered registers are used for
2393 O32-FPXX and O32-FP64. */
2394
2395 #define FUNCTION_ARG_REGNO_P(N) \
2396 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2397 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) \
2398 && (mips_abi != ABI_32 \
2399 || TARGET_FLOAT32 \
2400 || ((N) % 2 == 0)))) \
2401 && !fixed_regs[N])
2402 \f
2403 /* This structure has to cope with two different argument allocation
2404 schemes. Most MIPS ABIs view the arguments as a structure, of which
2405 the first N words go in registers and the rest go on the stack. If I
2406 < N, the Ith word might go in Ith integer argument register or in a
2407 floating-point register. For these ABIs, we only need to remember
2408 the offset of the current argument into the structure.
2409
2410 The EABI instead allocates the integer and floating-point arguments
2411 separately. The first N words of FP arguments go in FP registers,
2412 the rest go on the stack. Likewise, the first N words of the other
2413 arguments go in integer registers, and the rest go on the stack. We
2414 need to maintain three counts: the number of integer registers used,
2415 the number of floating-point registers used, and the number of words
2416 passed on the stack.
2417
2418 We could keep separate information for the two ABIs (a word count for
2419 the standard ABIs, and three separate counts for the EABI). But it
2420 seems simpler to view the standard ABIs as forms of EABI that do not
2421 allocate floating-point registers.
2422
2423 So for the standard ABIs, the first N words are allocated to integer
2424 registers, and mips_function_arg decides on an argument-by-argument
2425 basis whether that argument should really go in an integer register,
2426 or in a floating-point one. */
2427
2428 typedef struct mips_args {
2429 /* Always true for varargs functions. Otherwise true if at least
2430 one argument has been passed in an integer register. */
2431 int gp_reg_found;
2432
2433 /* The number of arguments seen so far. */
2434 unsigned int arg_number;
2435
2436 /* The number of integer registers used so far. For all ABIs except
2437 EABI, this is the number of words that have been added to the
2438 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2439 unsigned int num_gprs;
2440
2441 /* For EABI, the number of floating-point registers used so far. */
2442 unsigned int num_fprs;
2443
2444 /* The number of words passed on the stack. */
2445 unsigned int stack_words;
2446
2447 /* On the mips16, we need to keep track of which floating point
2448 arguments were passed in general registers, but would have been
2449 passed in the FP regs if this were a 32-bit function, so that we
2450 can move them to the FP regs if we wind up calling a 32-bit
2451 function. We record this information in fp_code, encoded in base
2452 four. A zero digit means no floating point argument, a one digit
2453 means an SFmode argument, and a two digit means a DFmode argument,
2454 and a three digit is not used. The low order digit is the first
2455 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2456 an SFmode argument. ??? A more sophisticated approach will be
2457 needed if MIPS_ABI != ABI_32. */
2458 int fp_code;
2459
2460 /* True if the function has a prototype. */
2461 int prototype;
2462 } CUMULATIVE_ARGS;
2463
2464 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2465 for a call to a function whose data type is FNTYPE.
2466 For a library call, FNTYPE is 0. */
2467
2468 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2469 mips_init_cumulative_args (&CUM, FNTYPE)
2470
2471 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2472 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2473
2474 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2475 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2476
2477 /* True if using EABI and varargs can be passed in floating-point
2478 registers. Under these conditions, we need a more complex form
2479 of va_list, which tracks GPR, FPR and stack arguments separately. */
2480 #define EABI_FLOAT_VARARGS_P \
2481 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2482
2483 \f
2484 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2485
2486 /* Treat LOC as a byte offset from the stack pointer and round it up
2487 to the next fully-aligned offset. */
2488 #define MIPS_STACK_ALIGN(LOC) \
2489 (TARGET_NEWABI ? ROUND_UP ((LOC), 16) : ROUND_UP ((LOC), 8))
2490
2491 \f
2492 /* Output assembler code to FILE to increment profiler label # LABELNO
2493 for profiling a function entry. */
2494
2495 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2496
2497 /* The profiler preserves all interesting registers, including $31. */
2498 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2499
2500 /* No mips port has ever used the profiler counter word, so don't emit it
2501 or the label for it. */
2502
2503 #define NO_PROFILE_COUNTERS 1
2504
2505 /* Define this macro if the code for function profiling should come
2506 before the function prologue. Normally, the profiling code comes
2507 after. */
2508
2509 /* #define PROFILE_BEFORE_PROLOGUE */
2510
2511 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2512 the stack pointer does not matter. The value is tested only in
2513 functions that have frame pointers.
2514 No definition is equivalent to always zero. */
2515
2516 #define EXIT_IGNORE_STACK 1
2517
2518 \f
2519 /* Trampolines are a block of code followed by two pointers. */
2520
2521 #define TRAMPOLINE_SIZE \
2522 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2523
2524 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2525 pointers from a single LUI base. */
2526
2527 #define TRAMPOLINE_ALIGNMENT 64
2528
2529 /* mips_trampoline_init calls this library function to flush
2530 program and data caches. */
2531
2532 #ifndef CACHE_FLUSH_FUNC
2533 #define CACHE_FLUSH_FUNC "_flush_cache"
2534 #endif
2535
2536 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2537 /* Flush both caches. We need to flush the data cache in case \
2538 the system has a write-back cache. */ \
2539 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2540 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2541 GEN_INT (3), TYPE_MODE (integer_type_node))
2542
2543 \f
2544 /* Addressing modes, and classification of registers for them. */
2545
2546 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2547 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2548 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2549 \f
2550 /* Maximum number of registers that can appear in a valid memory address. */
2551
2552 #define MAX_REGS_PER_ADDRESS 1
2553
2554 /* Check for constness inline but use mips_legitimate_address_p
2555 to check whether a constant really is an address. */
2556
2557 #define CONSTANT_ADDRESS_P(X) \
2558 (CONSTANT_P (X) && memory_address_p (SImode, X))
2559
2560 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2561 'the start of the function that this code is output in'. */
2562
2563 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2564 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2565 asm_fprintf ((FILE), "%U%s", \
2566 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2567 else \
2568 asm_fprintf ((FILE), "%U%s", (NAME))
2569 \f
2570 /* Flag to mark a function decl symbol that requires a long call. */
2571 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2572 #define SYMBOL_REF_LONG_CALL_P(X) \
2573 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2574
2575 /* This flag marks functions that cannot be lazily bound. */
2576 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2577 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2578 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2579
2580 /* True if we're generating a form of MIPS16 code in which jump tables
2581 are stored in the text section and encoded as 16-bit PC-relative
2582 offsets. This is only possible when general text loads are allowed,
2583 since the table access itself will be an "lh" instruction. If the
2584 PC-relative offsets grow too large, 32-bit offsets are used instead. */
2585 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2586
2587 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2588
2589 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2590
2591 /* Only use short offsets if their range will not overflow. */
2592 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2593 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2594 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2595 : SImode)
2596
2597 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2598
2599 /* Define this as 1 if `char' should by default be signed; else as 0. */
2600 #ifndef DEFAULT_SIGNED_CHAR
2601 #define DEFAULT_SIGNED_CHAR 1
2602 #endif
2603
2604 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2605 we generally don't want to use them for copying arbitrary data.
2606 A single N-word move is usually the same cost as N single-word moves. */
2607 #define MOVE_MAX UNITS_PER_WORD
2608 #define MAX_MOVE_MAX 8
2609
2610 /* Define this macro as a C expression which is nonzero if
2611 accessing less than a word of memory (i.e. a `char' or a
2612 `short') is no faster than accessing a word of memory, i.e., if
2613 such access require more than one instruction or if there is no
2614 difference in cost between byte and (aligned) word loads.
2615
2616 On RISC machines, it tends to generate better code to define
2617 this as 1, since it avoids making a QI or HI mode register.
2618
2619 But, generating word accesses for -mips16 is generally bad as shifts
2620 (often extended) would be needed for byte accesses. */
2621 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2622
2623 /* Standard MIPS integer shifts truncate the shift amount to the
2624 width of the shifted operand. However, Loongson vector shifts
2625 do not truncate the shift amount at all. */
2626 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2627
2628 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2629 is done just by pretending it is already truncated. */
2630 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2631 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2632
2633
2634 /* Specify the machine mode that pointers have.
2635 After generation of rtl, the compiler makes no further distinction
2636 between pointers and any other objects of this machine mode. */
2637
2638 #ifndef Pmode
2639 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2640 #endif
2641
2642 /* Give call MEMs SImode since it is the "most permissive" mode
2643 for both 32-bit and 64-bit targets. */
2644
2645 #define FUNCTION_MODE SImode
2646
2647 \f
2648 /* We allocate $fcc registers by hand and can't cope with moves of
2649 CCmode registers to and from pseudos (or memory). */
2650 #define AVOID_CCMODE_COPIES
2651
2652 /* A C expression for the cost of a branch instruction. A value of
2653 1 is the default; other values are interpreted relative to that. */
2654
2655 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2656 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2657
2658 /* The MIPS port has several functions that return an instruction count.
2659 Multiplying the count by this value gives the number of bytes that
2660 the instructions occupy. */
2661 #define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2662
2663 /* The length of a NOP in bytes. */
2664 #define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2665
2666 /* If defined, modifies the length assigned to instruction INSN as a
2667 function of the context in which it is used. LENGTH is an lvalue
2668 that contains the initially computed length of the insn and should
2669 be updated with the correct length of the insn. */
2670 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2671 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2672
2673 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2674 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2675 its operands. */
2676 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2677 "%*" OPCODE "%?\t" OPERANDS "%/"
2678
2679 #define MIPS_BRANCH_C(OPCODE, OPERANDS) \
2680 "%*" OPCODE "%:\t" OPERANDS
2681
2682 /* Return an asm string that forces INSN to be treated as an absolute
2683 J or JAL instruction instead of an assembler macro. */
2684 #define MIPS_ABSOLUTE_JUMP(INSN) \
2685 (TARGET_ABICALLS_PIC2 \
2686 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2687 : INSN)
2688
2689 \f
2690 /* Control the assembler format that we output. */
2691
2692 /* Output to assembler file text saying following lines
2693 may contain character constants, extra white space, comments, etc. */
2694
2695 #ifndef ASM_APP_ON
2696 #define ASM_APP_ON " #APP\n"
2697 #endif
2698
2699 /* Output to assembler file text saying following lines
2700 no longer contain unusual constructs. */
2701
2702 #ifndef ASM_APP_OFF
2703 #define ASM_APP_OFF " #NO_APP\n"
2704 #endif
2705
2706 #define REGISTER_NAMES \
2707 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2708 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2709 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2710 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2711 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2712 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2713 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2714 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2715 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2716 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2717 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2718 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2719 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2720 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2721 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2722 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2723 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2724 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2725 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2726 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2727 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2728 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2729 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2730 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2731
2732 /* List the "software" names for each register. Also list the numerical
2733 names for $fp and $sp. */
2734
2735 #define ADDITIONAL_REGISTER_NAMES \
2736 { \
2737 { "$29", 29 + GP_REG_FIRST }, \
2738 { "$30", 30 + GP_REG_FIRST }, \
2739 { "at", 1 + GP_REG_FIRST }, \
2740 { "v0", 2 + GP_REG_FIRST }, \
2741 { "v1", 3 + GP_REG_FIRST }, \
2742 { "a0", 4 + GP_REG_FIRST }, \
2743 { "a1", 5 + GP_REG_FIRST }, \
2744 { "a2", 6 + GP_REG_FIRST }, \
2745 { "a3", 7 + GP_REG_FIRST }, \
2746 { "t0", 8 + GP_REG_FIRST }, \
2747 { "t1", 9 + GP_REG_FIRST }, \
2748 { "t2", 10 + GP_REG_FIRST }, \
2749 { "t3", 11 + GP_REG_FIRST }, \
2750 { "t4", 12 + GP_REG_FIRST }, \
2751 { "t5", 13 + GP_REG_FIRST }, \
2752 { "t6", 14 + GP_REG_FIRST }, \
2753 { "t7", 15 + GP_REG_FIRST }, \
2754 { "s0", 16 + GP_REG_FIRST }, \
2755 { "s1", 17 + GP_REG_FIRST }, \
2756 { "s2", 18 + GP_REG_FIRST }, \
2757 { "s3", 19 + GP_REG_FIRST }, \
2758 { "s4", 20 + GP_REG_FIRST }, \
2759 { "s5", 21 + GP_REG_FIRST }, \
2760 { "s6", 22 + GP_REG_FIRST }, \
2761 { "s7", 23 + GP_REG_FIRST }, \
2762 { "t8", 24 + GP_REG_FIRST }, \
2763 { "t9", 25 + GP_REG_FIRST }, \
2764 { "k0", 26 + GP_REG_FIRST }, \
2765 { "k1", 27 + GP_REG_FIRST }, \
2766 { "gp", 28 + GP_REG_FIRST }, \
2767 { "sp", 29 + GP_REG_FIRST }, \
2768 { "fp", 30 + GP_REG_FIRST }, \
2769 { "ra", 31 + GP_REG_FIRST } \
2770 }
2771
2772 #define DBR_OUTPUT_SEQEND(STREAM) \
2773 do \
2774 { \
2775 /* Undo the effect of '%*'. */ \
2776 mips_pop_asm_switch (&mips_nomacro); \
2777 mips_pop_asm_switch (&mips_noreorder); \
2778 /* Emit a blank line after the delay slot for emphasis. */ \
2779 fputs ("\n", STREAM); \
2780 } \
2781 while (0)
2782
2783 /* The MIPS implementation uses some labels for its own purpose. The
2784 following lists what labels are created, and are all formed by the
2785 pattern $L[a-z].*. The machine independent portion of GCC creates
2786 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2787
2788 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2789 $Lb[0-9]+ Begin blocks for MIPS debug support
2790 $Lc[0-9]+ Label for use in s<xx> operation.
2791 $Le[0-9]+ End blocks for MIPS debug support */
2792
2793 #undef ASM_DECLARE_OBJECT_NAME
2794 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2795 mips_declare_object (STREAM, NAME, "", ":\n")
2796
2797 /* Globalizing directive for a label. */
2798 #define GLOBAL_ASM_OP "\t.globl\t"
2799
2800 /* This says how to define a global common symbol. */
2801
2802 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2803
2804 /* This says how to define a local common symbol (i.e., not visible to
2805 linker). */
2806
2807 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2808 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2809 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2810 #endif
2811
2812 /* This says how to output an external. It would be possible not to
2813 output anything and let undefined symbol become external. However
2814 the assembler uses length information on externals to allocate in
2815 data/sdata bss/sbss, thereby saving exec time. */
2816
2817 #undef ASM_OUTPUT_EXTERNAL
2818 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2819 mips_output_external(STREAM,DECL,NAME)
2820
2821 /* This is how to declare a function name. The actual work of
2822 emitting the label is moved to function_prologue, so that we can
2823 get the line number correctly emitted before the .ent directive,
2824 and after any .file directives. Define as empty so that the function
2825 is not declared before the .ent directive elsewhere. */
2826
2827 #undef ASM_DECLARE_FUNCTION_NAME
2828 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2829
2830 /* This is how to store into the string LABEL
2831 the symbol_ref name of an internal numbered label where
2832 PREFIX is the class of label and NUM is the number within the class.
2833 This is suitable for output with `assemble_name'. */
2834
2835 #undef ASM_GENERATE_INTERNAL_LABEL
2836 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2837 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2838
2839 /* Print debug labels as "foo = ." rather than "foo:" because they should
2840 represent a byte pointer rather than an ISA-encoded address. This is
2841 particularly important for code like:
2842
2843 $LFBxxx = .
2844 .cfi_startproc
2845 ...
2846 .section .gcc_except_table,...
2847 ...
2848 .uleb128 foo-$LFBxxx
2849
2850 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2851 likewise a byte pointer rather than an ISA-encoded address.
2852
2853 At the time of writing, this hook is not used for the function end
2854 label:
2855
2856 $LFExxx:
2857 .end foo
2858
2859 But this doesn't matter, because GAS doesn't treat a pre-.end label
2860 as a MIPS16 one anyway. */
2861
2862 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2863 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2864
2865 /* This is how to output an element of a case-vector that is absolute. */
2866
2867 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2868 fprintf (STREAM, "\t%s\t%sL%d\n", \
2869 ptr_mode == DImode ? ".dword" : ".word", \
2870 LOCAL_LABEL_PREFIX, \
2871 VALUE)
2872
2873 /* This is how to output an element of a case-vector. We can make the
2874 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2875 is supported. */
2876
2877 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2878 do { \
2879 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2880 { \
2881 if (GET_MODE (BODY) == HImode) \
2882 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2883 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2884 else \
2885 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2886 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2887 } \
2888 else if (TARGET_GPWORD) \
2889 fprintf (STREAM, "\t%s\t%sL%d\n", \
2890 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2891 LOCAL_LABEL_PREFIX, VALUE); \
2892 else if (TARGET_RTP_PIC) \
2893 { \
2894 /* Make the entry relative to the start of the function. */ \
2895 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2896 fprintf (STREAM, "\t%s\t%sL%d-", \
2897 Pmode == DImode ? ".dword" : ".word", \
2898 LOCAL_LABEL_PREFIX, VALUE); \
2899 assemble_name (STREAM, XSTR (fnsym, 0)); \
2900 fprintf (STREAM, "\n"); \
2901 } \
2902 else \
2903 fprintf (STREAM, "\t%s\t%sL%d\n", \
2904 ptr_mode == DImode ? ".dword" : ".word", \
2905 LOCAL_LABEL_PREFIX, VALUE); \
2906 } while (0)
2907
2908 /* This is how to output an assembler line
2909 that says to advance the location counter
2910 to a multiple of 2**LOG bytes. */
2911
2912 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2913 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2914
2915 /* This is how to output an assembler line to advance the location
2916 counter by SIZE bytes. */
2917
2918 #undef ASM_OUTPUT_SKIP
2919 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2920 fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2921
2922 /* This is how to output a string. */
2923 #undef ASM_OUTPUT_ASCII
2924 #define ASM_OUTPUT_ASCII mips_output_ascii
2925
2926 \f
2927 /* Default to -G 8 */
2928 #ifndef MIPS_DEFAULT_GVALUE
2929 #define MIPS_DEFAULT_GVALUE 8
2930 #endif
2931
2932 /* Define the strings to put out for each section in the object file. */
2933 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2934 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2935
2936 #undef READONLY_DATA_SECTION_ASM_OP
2937 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2938 \f
2939 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2940 do \
2941 { \
2942 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2943 TARGET_64BIT ? "daddiu" : "addiu", \
2944 reg_names[STACK_POINTER_REGNUM], \
2945 reg_names[STACK_POINTER_REGNUM], \
2946 TARGET_64BIT ? "sd" : "sw", \
2947 reg_names[REGNO], \
2948 reg_names[STACK_POINTER_REGNUM]); \
2949 } \
2950 while (0)
2951
2952 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2953 do \
2954 { \
2955 mips_push_asm_switch (&mips_noreorder); \
2956 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2957 TARGET_64BIT ? "ld" : "lw", \
2958 reg_names[REGNO], \
2959 reg_names[STACK_POINTER_REGNUM], \
2960 TARGET_64BIT ? "daddu" : "addu", \
2961 reg_names[STACK_POINTER_REGNUM], \
2962 reg_names[STACK_POINTER_REGNUM]); \
2963 mips_pop_asm_switch (&mips_noreorder); \
2964 } \
2965 while (0)
2966
2967 /* How to start an assembler comment.
2968 The leading space is important (the mips native assembler requires it). */
2969 #ifndef ASM_COMMENT_START
2970 #define ASM_COMMENT_START " #"
2971 #endif
2972 \f
2973 #undef SIZE_TYPE
2974 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2975
2976 #undef PTRDIFF_TYPE
2977 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2978
2979 /* The minimum alignment of any expanded block move. */
2980 #define MIPS_MIN_MOVE_MEM_ALIGN 16
2981
2982 /* The maximum number of bytes that can be copied by one iteration of
2983 a movmemsi loop; see mips_block_move_loop. */
2984 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2985 (UNITS_PER_WORD * 4)
2986
2987 /* The maximum number of bytes that can be copied by a straight-line
2988 implementation of movmemsi; see mips_block_move_straight. We want
2989 to make sure that any loop-based implementation will iterate at
2990 least twice. */
2991 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2992 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2993
2994 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2995 values were determined experimentally by benchmarking with CSiBE.
2996 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2997 for o32 where we have to restore $gp afterwards as well as make an
2998 indirect call), but in practice, bumping this up higher for
2999 TARGET_ABICALLS doesn't make much difference to code size. */
3000
3001 #define MIPS_CALL_RATIO 8
3002
3003 /* Any loop-based implementation of movmemsi will have at least
3004 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
3005 moves, so allow individual copies of fewer elements.
3006
3007 When movmemsi is not available, use a value approximating
3008 the length of a memcpy call sequence, so that move_by_pieces
3009 will generate inline code if it is shorter than a function call.
3010 Since move_by_pieces_ninsns counts memory-to-memory moves, but
3011 we'll have to generate a load/store pair for each, halve the
3012 value of MIPS_CALL_RATIO to take that into account. */
3013
3014 #define MOVE_RATIO(speed) \
3015 (HAVE_movmemsi \
3016 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
3017 : MIPS_CALL_RATIO / 2)
3018
3019 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
3020 of the length of a memset call, but use the default otherwise. */
3021
3022 #define CLEAR_RATIO(speed)\
3023 ((speed) ? 15 : MIPS_CALL_RATIO)
3024
3025 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
3026 optimizing for size adjust the ratio to account for the overhead of
3027 loading the constant and replicating it across the word. */
3028
3029 #define SET_RATIO(speed) \
3030 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
3031 \f
3032 /* Since the bits of the _init and _fini function is spread across
3033 many object files, each potentially with its own GP, we must assume
3034 we need to load our GP. We don't preserve $gp or $ra, since each
3035 init/fini chunk is supposed to initialize $gp, and crti/crtn
3036 already take care of preserving $ra and, when appropriate, $gp. */
3037 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
3038 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3039 asm (SECTION_OP "\n\
3040 .set push\n\
3041 .set nomips16\n\
3042 .set noreorder\n\
3043 bal 1f\n\
3044 nop\n\
3045 1: .cpload $31\n\
3046 .set reorder\n\
3047 la $25, " USER_LABEL_PREFIX #FUNC "\n\
3048 jalr $25\n\
3049 .set pop\n\
3050 " TEXT_SECTION_ASM_OP);
3051 #elif (defined _ABIN32 && _MIPS_SIM == _ABIN32)
3052 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3053 asm (SECTION_OP "\n\
3054 .set push\n\
3055 .set nomips16\n\
3056 .set noreorder\n\
3057 bal 1f\n\
3058 nop\n\
3059 1: .set reorder\n\
3060 .cpsetup $31, $2, 1b\n\
3061 la $25, " USER_LABEL_PREFIX #FUNC "\n\
3062 jalr $25\n\
3063 .set pop\n\
3064 " TEXT_SECTION_ASM_OP);
3065 #elif (defined _ABI64 && _MIPS_SIM == _ABI64)
3066 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3067 asm (SECTION_OP "\n\
3068 .set push\n\
3069 .set nomips16\n\
3070 .set noreorder\n\
3071 bal 1f\n\
3072 nop\n\
3073 1: .set reorder\n\
3074 .cpsetup $31, $2, 1b\n\
3075 dla $25, " USER_LABEL_PREFIX #FUNC "\n\
3076 jalr $25\n\
3077 .set pop\n\
3078 " TEXT_SECTION_ASM_OP);
3079 #endif
3080
3081 #ifndef HAVE_AS_TLS
3082 #define HAVE_AS_TLS 0
3083 #endif
3084
3085 #ifndef HAVE_AS_NAN
3086 #define HAVE_AS_NAN 0
3087 #endif
3088
3089 #ifndef USED_FOR_TARGET
3090 /* Information about ".set noFOO; ...; .set FOO" blocks. */
3091 struct mips_asm_switch {
3092 /* The FOO in the description above. */
3093 const char *name;
3094
3095 /* The current block nesting level, or 0 if we aren't in a block. */
3096 int nesting_level;
3097 };
3098
3099 extern const enum reg_class mips_regno_to_class[];
3100 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
3101 extern const char *current_function_file; /* filename current function is in */
3102 extern int num_source_filenames; /* current .file # */
3103 extern struct mips_asm_switch mips_noreorder;
3104 extern struct mips_asm_switch mips_nomacro;
3105 extern struct mips_asm_switch mips_noat;
3106 extern int mips_dbx_regno[];
3107 extern int mips_dwarf_regno[];
3108 extern bool mips_split_p[];
3109 extern bool mips_split_hi_p[];
3110 extern bool mips_use_pcrel_pool_p[];
3111 extern const char *mips_lo_relocs[];
3112 extern const char *mips_hi_relocs[];
3113 extern enum processor mips_arch; /* which cpu to codegen for */
3114 extern enum processor mips_tune; /* which cpu to schedule for */
3115 extern int mips_isa; /* architectural level */
3116 extern int mips_isa_rev;
3117 extern const struct mips_cpu_info *mips_arch_info;
3118 extern const struct mips_cpu_info *mips_tune_info;
3119 extern unsigned int mips_base_compression_flags;
3120 extern GTY(()) struct target_globals *mips16_globals;
3121 extern GTY(()) struct target_globals *micromips_globals;
3122
3123 /* Information about a function's frame layout. */
3124 struct GTY(()) mips_frame_info {
3125 /* The size of the frame in bytes. */
3126 HOST_WIDE_INT total_size;
3127
3128 /* The number of bytes allocated to variables. */
3129 HOST_WIDE_INT var_size;
3130
3131 /* The number of bytes allocated to outgoing function arguments. */
3132 HOST_WIDE_INT args_size;
3133
3134 /* The number of bytes allocated to the .cprestore slot, or 0 if there
3135 is no such slot. */
3136 HOST_WIDE_INT cprestore_size;
3137
3138 /* Bit X is set if the function saves or restores GPR X. */
3139 unsigned int mask;
3140
3141 /* Likewise FPR X. */
3142 unsigned int fmask;
3143
3144 /* Likewise doubleword accumulator X ($acX). */
3145 unsigned int acc_mask;
3146
3147 /* The number of GPRs, FPRs, doubleword accumulators and COP0
3148 registers saved. */
3149 unsigned int num_gp;
3150 unsigned int num_fp;
3151 unsigned int num_acc;
3152 unsigned int num_cop0_regs;
3153
3154 /* The offset of the topmost GPR, FPR, accumulator and COP0-register
3155 save slots from the top of the frame, or zero if no such slots are
3156 needed. */
3157 HOST_WIDE_INT gp_save_offset;
3158 HOST_WIDE_INT fp_save_offset;
3159 HOST_WIDE_INT acc_save_offset;
3160 HOST_WIDE_INT cop0_save_offset;
3161
3162 /* Likewise, but giving offsets from the bottom of the frame. */
3163 HOST_WIDE_INT gp_sp_offset;
3164 HOST_WIDE_INT fp_sp_offset;
3165 HOST_WIDE_INT acc_sp_offset;
3166 HOST_WIDE_INT cop0_sp_offset;
3167
3168 /* Similar, but the value passed to _mcount. */
3169 HOST_WIDE_INT ra_fp_offset;
3170
3171 /* The offset of arg_pointer_rtx from the bottom of the frame. */
3172 HOST_WIDE_INT arg_pointer_offset;
3173
3174 /* The offset of hard_frame_pointer_rtx from the bottom of the frame. */
3175 HOST_WIDE_INT hard_frame_pointer_offset;
3176 };
3177
3178 /* Enumeration for masked vectored (VI) and non-masked (EIC) interrupts. */
3179 enum mips_int_mask
3180 {
3181 INT_MASK_EIC = -1,
3182 INT_MASK_SW0 = 0,
3183 INT_MASK_SW1 = 1,
3184 INT_MASK_HW0 = 2,
3185 INT_MASK_HW1 = 3,
3186 INT_MASK_HW2 = 4,
3187 INT_MASK_HW3 = 5,
3188 INT_MASK_HW4 = 6,
3189 INT_MASK_HW5 = 7
3190 };
3191
3192 /* Enumeration to mark the existence of the shadow register set.
3193 SHADOW_SET_INTSTACK indicates a shadow register set with a valid stack
3194 pointer. */
3195 enum mips_shadow_set
3196 {
3197 SHADOW_SET_NO,
3198 SHADOW_SET_YES,
3199 SHADOW_SET_INTSTACK
3200 };
3201
3202 struct GTY(()) machine_function {
3203 /* The next floating-point condition-code register to allocate
3204 for ISA_HAS_8CC targets, relative to ST_REG_FIRST. */
3205 unsigned int next_fcc;
3206
3207 /* The register returned by mips16_gp_pseudo_reg; see there for details. */
3208 rtx mips16_gp_pseudo_rtx;
3209
3210 /* The number of extra stack bytes taken up by register varargs.
3211 This area is allocated by the callee at the very top of the frame. */
3212 int varargs_size;
3213
3214 /* The current frame information, calculated by mips_compute_frame_info. */
3215 struct mips_frame_info frame;
3216
3217 /* The register to use as the function's global pointer, or INVALID_REGNUM
3218 if the function doesn't need one. */
3219 unsigned int global_pointer;
3220
3221 /* How many instructions it takes to load a label into $AT, or 0 if
3222 this property hasn't yet been calculated. */
3223 unsigned int load_label_num_insns;
3224
3225 /* True if mips_adjust_insn_length should ignore an instruction's
3226 hazard attribute. */
3227 bool ignore_hazard_length_p;
3228
3229 /* True if the whole function is suitable for .set noreorder and
3230 .set nomacro. */
3231 bool all_noreorder_p;
3232
3233 /* True if the function has "inflexible" and "flexible" references
3234 to the global pointer. See mips_cfun_has_inflexible_gp_ref_p
3235 and mips_cfun_has_flexible_gp_ref_p for details. */
3236 bool has_inflexible_gp_insn_p;
3237 bool has_flexible_gp_insn_p;
3238
3239 /* True if the function's prologue must load the global pointer
3240 value into pic_offset_table_rtx and store the same value in
3241 the function's cprestore slot (if any). Even if this value
3242 is currently false, we may decide to set it to true later;
3243 see mips_must_initialize_gp_p () for details. */
3244 bool must_initialize_gp_p;
3245
3246 /* True if the current function must restore $gp after any potential
3247 clobber. This value is only meaningful during the first post-epilogue
3248 split_insns pass; see mips_must_initialize_gp_p () for details. */
3249 bool must_restore_gp_when_clobbered_p;
3250
3251 /* True if this is an interrupt handler. */
3252 bool interrupt_handler_p;
3253
3254 /* Records the way in which interrupts should be masked. Only used if
3255 interrupts are not kept masked. */
3256 enum mips_int_mask int_mask;
3257
3258 /* Records if this is an interrupt handler that uses shadow registers. */
3259 enum mips_shadow_set use_shadow_register_set;
3260
3261 /* True if this is an interrupt handler that should keep interrupts
3262 masked. */
3263 bool keep_interrupts_masked_p;
3264
3265 /* True if this is an interrupt handler that should use DERET
3266 instead of ERET. */
3267 bool use_debug_exception_return_p;
3268
3269 /* True if at least one of the formal parameters to a function must be
3270 written to the frame header (probably so its address can be taken). */
3271 bool does_not_use_frame_header;
3272
3273 /* True if none of the functions that are called by this function need
3274 stack space allocated for their arguments. */
3275 bool optimize_call_stack;
3276
3277 /* True if one of the functions calling this function may not allocate
3278 a frame header. */
3279 bool callers_may_not_allocate_frame;
3280
3281 /* True if GCC stored callee saved registers in the frame header. */
3282 bool use_frame_header_for_callee_saved_regs;
3283 };
3284 #endif
3285
3286 /* Enable querying of DFA units. */
3287 #define CPU_UNITS_QUERY 1
3288
3289 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3290 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
3291
3292 /* As on most targets, we want the .eh_frame section to be read-only where
3293 possible. And as on most targets, this means two things:
3294
3295 (a) Non-locally-binding pointers must have an indirect encoding,
3296 so that the addresses in the .eh_frame section itself become
3297 locally-binding.
3298
3299 (b) A shared library's .eh_frame section must encode locally-binding
3300 pointers in a relative (relocation-free) form.
3301
3302 However, MIPS has traditionally not allowed directives like:
3303
3304 .long x-.
3305
3306 in cases where "x" is in a different section, or is not defined in the
3307 same assembly file. We are therefore unable to emit the PC-relative
3308 form required by (b) at assembly time.
3309
3310 Fortunately, the linker is able to convert absolute addresses into
3311 PC-relative addresses on our behalf. Unfortunately, only certain
3312 versions of the linker know how to do this for indirect pointers,
3313 and for personality data. We must fall back on using writable
3314 .eh_frame sections for shared libraries if the linker does not
3315 support this feature. */
3316 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
3317 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
3318
3319 /* For switching between MIPS16 and non-MIPS16 modes. */
3320 #define SWITCHABLE_TARGET 1
3321
3322 /* Several named MIPS patterns depend on Pmode. These patterns have the
3323 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3324 Add the appropriate suffix to generator function NAME and invoke it
3325 with arguments ARGS. */
3326 #define PMODE_INSN(NAME, ARGS) \
3327 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
3328
3329 /* If we are *not* using multilibs and the default ABI is not ABI_32 we
3330 need to change these from /lib and /usr/lib. */
3331 #if MIPS_ABI_DEFAULT == ABI_N32
3332 #define STANDARD_STARTFILE_PREFIX_1 "/lib32/"
3333 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/"
3334 #elif MIPS_ABI_DEFAULT == ABI_64
3335 #define STANDARD_STARTFILE_PREFIX_1 "/lib64/"
3336 #define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/"
3337 #endif
3338
3339 /* Load store bonding is not supported by micromips and fix_24k. The
3340 performance can be degraded for those targets. Hence, do not bond for
3341 micromips or fix_24k. */
3342 #define ENABLE_LD_ST_PAIRS \
3343 (TARGET_LOAD_STORE_PAIRS && (TUNE_P5600 || TUNE_I6400) \
3344 && !TARGET_MICROMIPS && !TARGET_FIX_24K)