]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mips/mips.h
Merge from gcc-2.8
[thirdparty/gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 90-6, 1997 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25
26 /* Standard GCC variables that we reference. */
27
28 extern char *asm_file_name;
29 extern char call_used_regs[];
30 extern int current_function_calls_alloca;
31 extern char *language_string;
32 extern int may_call_alloca;
33 extern char **save_argv;
34 extern int target_flags;
35 extern char *version_string;
36
37 /* MIPS external variables defined in mips.c. */
38
39 /* comparison type */
40 enum cmp_type {
41 CMP_SI, /* compare four byte integers */
42 CMP_DI, /* compare eight byte integers */
43 CMP_SF, /* compare single precision floats */
44 CMP_DF, /* compare double precision floats */
45 CMP_MAX /* max comparison type */
46 };
47
48 /* types of delay slot */
49 enum delay_type {
50 DELAY_NONE, /* no delay slot */
51 DELAY_LOAD, /* load from memory delay */
52 DELAY_HILO, /* move from/to hi/lo registers */
53 DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
54 };
55
56 /* Which processor to schedule for. Since there is no difference between
57 a R2000 and R3000 in terms of the scheduler, we collapse them into
58 just an R3000. The elements of the enumeration must match exactly
59 the cpu attribute in the mips.md machine description. */
60
61 enum processor_type {
62 PROCESSOR_DEFAULT,
63 PROCESSOR_R3000,
64 PROCESSOR_R3900,
65 PROCESSOR_R6000,
66 PROCESSOR_R4000,
67 PROCESSOR_R4100,
68 PROCESSOR_R4300,
69 PROCESSOR_R4600,
70 PROCESSOR_R4650,
71 PROCESSOR_R5000,
72 PROCESSOR_R8000
73 };
74
75 /* Recast the cpu class to be the cpu attribute. */
76 #define mips_cpu_attr ((enum attr_cpu)mips_cpu)
77
78 /* Which ABI to use. This is only used by the Irix 6 port currently. */
79
80 enum mips_abi_type {
81 ABI_32,
82 ABI_N32,
83 ABI_64,
84 ABI_EABI
85 };
86
87 #ifndef MIPS_ABI_DEFAULT
88 /* We define this away so that there is no extra runtime cost if the target
89 doesn't support multiple ABIs. */
90 #define mips_abi ABI_32
91 #else
92 extern enum mips_abi_type mips_abi;
93 #endif
94
95 /* Whether to emit abicalls code sequences or not. */
96
97 enum mips_abicalls_type {
98 MIPS_ABICALLS_NO,
99 MIPS_ABICALLS_YES
100 };
101
102 /* Recast the abicalls class to be the abicalls attribute. */
103 #define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
104
105 /* Which type of block move to do (whether or not the last store is
106 split out so it can fill a branch delay slot). */
107
108 enum block_move_type {
109 BLOCK_MOVE_NORMAL, /* generate complete block move */
110 BLOCK_MOVE_NOT_LAST, /* generate all but last store */
111 BLOCK_MOVE_LAST /* generate just the last store */
112 };
113
114 extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
115 extern char mips_print_operand_punct[]; /* print_operand punctuation chars */
116 extern char *current_function_file; /* filename current function is in */
117 extern int num_source_filenames; /* current .file # */
118 extern int inside_function; /* != 0 if inside of a function */
119 extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
120 extern int file_in_function_warning; /* warning given about .file in func */
121 extern int sdb_label_count; /* block start/end next label # */
122 extern int sdb_begin_function_line; /* Starting Line of current function */
123 extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
124 extern int g_switch_value; /* value of the -G xx switch */
125 extern int g_switch_set; /* whether -G xx was passed. */
126 extern int sym_lineno; /* sgi next label # for each stmt */
127 extern int set_noreorder; /* # of nested .set noreorder's */
128 extern int set_nomacro; /* # of nested .set nomacro's */
129 extern int set_noat; /* # of nested .set noat's */
130 extern int set_volatile; /* # of nested .set volatile's */
131 extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
132 extern int mips_dbx_regno[]; /* Map register # to debug register # */
133 extern struct rtx_def *branch_cmp[2]; /* operands for compare */
134 extern enum cmp_type branch_type; /* what type of branch to use */
135 extern enum processor_type mips_cpu; /* which cpu are we scheduling for */
136 extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
137 extern int mips_isa; /* architectural level */
138 extern char *mips_cpu_string; /* for -mcpu=<xxx> */
139 extern char *mips_isa_string; /* for -mips{1,2,3,4} */
140 extern char *mips_abi_string; /* for -misa={32,n32,64} */
141 extern int mips_split_addresses; /* perform high/lo_sum support */
142 extern int dslots_load_total; /* total # load related delay slots */
143 extern int dslots_load_filled; /* # filled load delay slots */
144 extern int dslots_jump_total; /* total # jump related delay slots */
145 extern int dslots_jump_filled; /* # filled jump delay slots */
146 extern int dslots_number_nops; /* # of nops needed by previous insn */
147 extern int num_refs[3]; /* # 1/2/3 word references */
148 extern struct rtx_def *mips_load_reg; /* register to check for load delay */
149 extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
150 extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
151 extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
152 extern struct rtx_def *embedded_pic_fnaddr_rtx; /* function address */
153
154 /* Functions within mips.c that we reference. */
155
156 extern void abort_with_insn ();
157 extern int arith32_operand ();
158 extern int arith_operand ();
159 extern int cmp_op ();
160 extern long compute_frame_size ();
161 extern int epilogue_reg_mentioned_p ();
162 extern void expand_block_move ();
163 extern int equality_op ();
164 extern void final_prescan_insn ();
165 extern struct rtx_def * function_arg ();
166 extern void function_arg_advance ();
167 extern int function_arg_partial_nregs ();
168 extern int function_arg_pass_by_reference ();
169 extern void function_epilogue ();
170 extern void function_prologue ();
171 extern void gen_conditional_branch ();
172 extern void gen_conditional_move ();
173 extern struct rtx_def * gen_int_relational ();
174 extern void init_cumulative_args ();
175 extern int large_int ();
176 extern int mips_address_cost ();
177 extern void mips_asm_file_end ();
178 extern void mips_asm_file_start ();
179 extern int mips_const_double_ok ();
180 extern void mips_count_memory_refs ();
181 extern int mips_debugger_offset ();
182 extern void mips_declare_object ();
183 extern int mips_epilogue_delay_slots ();
184 extern void mips_expand_epilogue ();
185 extern void mips_expand_prologue ();
186 extern int mips_check_split ();
187 extern char *mips_fill_delay_slot ();
188 extern char *mips_move_1word ();
189 extern char *mips_move_2words ();
190 extern void mips_output_double ();
191 extern int mips_output_external ();
192 extern void mips_output_float ();
193 extern void mips_output_filename ();
194 extern void mips_output_lineno ();
195 extern char *output_block_move ();
196 extern void override_options ();
197 extern int pc_or_label_operand ();
198 extern void print_operand_address ();
199 extern void print_operand ();
200 extern void print_options ();
201 extern int reg_or_0_operand ();
202 extern int simple_epilogue_p ();
203 extern int simple_memory_operand ();
204 extern int small_int ();
205 extern void trace();
206 extern int uns_arith_operand ();
207 extern struct rtx_def * embedded_pic_offset ();
208
209 /* Recognition functions that return if a condition is true. */
210 extern int address_operand ();
211 extern int const_double_operand ();
212 extern int const_int_operand ();
213 extern int general_operand ();
214 extern int immediate_operand ();
215 extern int memory_address_p ();
216 extern int memory_operand ();
217 extern int nonimmediate_operand ();
218 extern int nonmemory_operand ();
219 extern int register_operand ();
220 extern int scratch_operand ();
221 extern int move_operand ();
222 extern int movdi_operand ();
223 extern int se_register_operand ();
224 extern int se_reg_or_0_operand ();
225 extern int se_uns_arith_operand ();
226 extern int se_arith_operand ();
227 extern int se_nonmemory_operand ();
228 extern int se_nonimmediate_operand ();
229
230 /* Functions to change what output section we are using. */
231 extern void data_section ();
232 extern void rdata_section ();
233 extern void readonly_data_section ();
234 extern void sdata_section ();
235 extern void text_section ();
236
237 /* Stubs for half-pic support if not OSF/1 reference platform. */
238
239 #ifndef HALF_PIC_P
240 #define HALF_PIC_P() 0
241 #define HALF_PIC_NUMBER_PTRS 0
242 #define HALF_PIC_NUMBER_REFS 0
243 #define HALF_PIC_ENCODE(DECL)
244 #define HALF_PIC_DECLARE(NAME)
245 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
246 #define HALF_PIC_ADDRESS_P(X) 0
247 #define HALF_PIC_PTR(X) X
248 #define HALF_PIC_FINISH(STREAM)
249 #endif
250
251 \f
252 /* Run-time compilation parameters selecting different hardware subsets. */
253
254 /* Macros used in the machine description to test the flags. */
255
256 /* Bits for real switches */
257 #define MASK_INT64 0x00000001 /* ints are 64 bits */
258 #define MASK_LONG64 0x00000002 /* longs and pointers are 64 bits */
259 #define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
260 #define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
261 #define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
262 #define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
263 #define MASK_STATS 0x00000040 /* print statistics to stderr */
264 #define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
265 #define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
266 #define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
267 #define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
268 #define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
269 #define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
270 #define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
271 #define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
272 #define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
273 #define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
274 #define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
275 #define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
276 #define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
277 #define MASK_MIPS3900 0x00100000 /* like -mips1 only 3900 */
278
279 /* Dummy switches used only in spec's*/
280 #define MASK_MIPS_TFILE 0x00000000 /* flag for mips-tfile usage */
281
282 /* Debug switches, not documented */
283 #define MASK_DEBUG 0x40000000 /* Eliminate version # in .s file */
284 #define MASK_DEBUG_A 0x20000000 /* don't allow <label>($reg) addrs */
285 #define MASK_DEBUG_B 0x10000000 /* GO_IF_LEGITIMATE_ADDRESS debug */
286 #define MASK_DEBUG_C 0x08000000 /* don't expand seq, etc. */
287 #define MASK_DEBUG_D 0x04000000 /* don't do define_split's */
288 #define MASK_DEBUG_E 0x02000000 /* function_arg debug */
289 #define MASK_DEBUG_F 0x01000000 /* don't try to suppress load nop's */
290 #define MASK_DEBUG_G 0x00800000 /* don't support 64 bit arithmetic */
291 #define MASK_DEBUG_H 0 /* allow ints in FP registers */
292 #define MASK_DEBUG_I 0x00200000 /* unused */
293
294 /* r4000 64 bit sizes */
295 #define TARGET_INT64 (target_flags & MASK_INT64)
296 #define TARGET_LONG64 (target_flags & MASK_LONG64)
297 #define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
298 #define TARGET_64BIT (target_flags & MASK_64BIT)
299
300 /* Mips vs. GNU linker */
301 #define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
302
303 /* generate mips 3900 insns */
304 #define TARGET_MIPS3900 (target_flags & MASK_MIPS3900)
305
306 /* Mips vs. GNU assembler */
307 #define TARGET_GAS (target_flags & MASK_GAS)
308 #define TARGET_UNIX_ASM (!TARGET_GAS)
309 #define TARGET_MIPS_AS TARGET_UNIX_ASM
310
311 /* Debug Mode */
312 #define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
313 #define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
314 #define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
315 #define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
316 #define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
317 #define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
318 #define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
319 #define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
320 #define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
321 #define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
322
323 /* Reg. Naming in .s ($21 vs. $a0) */
324 #define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
325
326 /* Optimize for Sdata/Sbss */
327 #define TARGET_GP_OPT (target_flags & MASK_GPOPT)
328
329 /* print program statistics */
330 #define TARGET_STATS (target_flags & MASK_STATS)
331
332 /* call memcpy instead of inline code */
333 #define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
334
335 /* .abicalls, etc from Pyramid V.4 */
336 #define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
337
338 /* OSF pic references to externs */
339 #define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
340
341 /* software floating point */
342 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
343 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
344
345 /* always call through a register */
346 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
347
348 /* generate embedded PIC code;
349 requires gas. */
350 #define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
351
352 /* for embedded systems, optimize for
353 reduced RAM space instead of for
354 fastest code. */
355 #define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
356
357 /* generate big endian code. */
358 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
359
360 #define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
361 #define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
362
363 #define TARGET_MAD (target_flags & MASK_MAD)
364
365 #define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
366
367 /* This is true if we must enable the assembly language file switching
368 code. */
369
370 #define TARGET_FILE_SWITCHING (TARGET_GP_OPT && ! TARGET_GAS)
371
372 /* We must disable the function end stabs when doing the file switching trick,
373 because the Lscope stabs end up in the wrong place, making it impossible
374 to debug the resulting code. */
375 #define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
376
377 /* Macro to define tables used to set the flags.
378 This is a list in braces of pairs in braces,
379 each pair being { "NAME", VALUE }
380 where VALUE is the bits to set or minus the bits to clear.
381 An empty string NAME is used to identify the default VALUE. */
382
383 #define TARGET_SWITCHES \
384 { \
385 {"int64", MASK_INT64 | MASK_LONG64}, \
386 {"long64", MASK_LONG64}, \
387 {"split-addresses", MASK_SPLIT_ADDR}, \
388 {"no-split-addresses", -MASK_SPLIT_ADDR}, \
389 {"mips-as", -MASK_GAS}, \
390 {"gas", MASK_GAS}, \
391 {"rnames", MASK_NAME_REGS}, \
392 {"no-rnames", -MASK_NAME_REGS}, \
393 {"gpOPT", MASK_GPOPT}, \
394 {"gpopt", MASK_GPOPT}, \
395 {"no-gpOPT", -MASK_GPOPT}, \
396 {"no-gpopt", -MASK_GPOPT}, \
397 {"stats", MASK_STATS}, \
398 {"no-stats", -MASK_STATS}, \
399 {"memcpy", MASK_MEMCPY}, \
400 {"no-memcpy", -MASK_MEMCPY}, \
401 {"mips-tfile", MASK_MIPS_TFILE}, \
402 {"no-mips-tfile", -MASK_MIPS_TFILE}, \
403 {"soft-float", MASK_SOFT_FLOAT}, \
404 {"hard-float", -MASK_SOFT_FLOAT}, \
405 {"fp64", MASK_FLOAT64}, \
406 {"fp32", -MASK_FLOAT64}, \
407 {"gp64", MASK_64BIT}, \
408 {"gp32", -MASK_64BIT}, \
409 {"abicalls", MASK_ABICALLS}, \
410 {"no-abicalls", -MASK_ABICALLS}, \
411 {"half-pic", MASK_HALF_PIC}, \
412 {"no-half-pic", -MASK_HALF_PIC}, \
413 {"long-calls", MASK_LONG_CALLS}, \
414 {"no-long-calls", -MASK_LONG_CALLS}, \
415 {"embedded-pic", MASK_EMBEDDED_PIC}, \
416 {"no-embedded-pic", -MASK_EMBEDDED_PIC}, \
417 {"embedded-data", MASK_EMBEDDED_DATA}, \
418 {"no-embedded-data", -MASK_EMBEDDED_DATA}, \
419 {"eb", MASK_BIG_ENDIAN}, \
420 {"el", -MASK_BIG_ENDIAN}, \
421 {"single-float", MASK_SINGLE_FLOAT}, \
422 {"double-float", -MASK_SINGLE_FLOAT}, \
423 {"mad", MASK_MAD}, \
424 {"no-mad", -MASK_MAD}, \
425 {"fix4300", MASK_4300_MUL_FIX}, \
426 {"no-fix4300", -MASK_4300_MUL_FIX}, \
427 {"4650", MASK_MAD | MASK_SINGLE_FLOAT}, \
428 {"3900", MASK_MIPS3900}, \
429 {"debug", MASK_DEBUG}, \
430 {"debuga", MASK_DEBUG_A}, \
431 {"debugb", MASK_DEBUG_B}, \
432 {"debugc", MASK_DEBUG_C}, \
433 {"debugd", MASK_DEBUG_D}, \
434 {"debuge", MASK_DEBUG_E}, \
435 {"debugf", MASK_DEBUG_F}, \
436 {"debugg", MASK_DEBUG_G}, \
437 {"debugh", MASK_DEBUG_H}, \
438 {"debugi", MASK_DEBUG_I}, \
439 {"", (TARGET_DEFAULT \
440 | TARGET_CPU_DEFAULT \
441 | TARGET_ENDIAN_DEFAULT)} \
442 }
443
444 /* Default target_flags if no switches are specified */
445
446 #ifndef TARGET_DEFAULT
447 #define TARGET_DEFAULT 0
448 #endif
449
450 #ifndef TARGET_CPU_DEFAULT
451 #define TARGET_CPU_DEFAULT 0
452 #endif
453
454 #ifndef TARGET_ENDIAN_DEFAULT
455 #ifndef DECSTATION
456 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
457 #else
458 #define TARGET_ENDIAN_DEFAULT 0
459 #endif
460 #endif
461
462 #ifndef MULTILIB_DEFAULTS
463 #if TARGET_ENDIAN_DEFAULT == 0
464 #define MULTILIB_DEFAULTS { "EL", "mips1" }
465 #else
466 #define MULTILIB_DEFAULTS { "EB", "mips1" }
467 #endif
468 #endif
469
470 /* We must pass -EL to the linker by default for little endian embedded
471 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
472 linker will default to using big-endian output files. The OUTPUT_FORMAT
473 line must be in the linker script, otherwise -EB/-EL will not work. */
474
475 #ifndef LINKER_ENDIAN_SPEC
476 #if TARGET_ENDIAN_DEFAULT == 0
477 #define LINKER_ENDIAN_SPEC "%{!EB:%{!meb:-EL}}"
478 #else
479 #define LINKER_ENDIAN_SPEC ""
480 #endif
481 #endif
482
483 /* This macro is similar to `TARGET_SWITCHES' but defines names of
484 command options that have values. Its definition is an
485 initializer with a subgrouping for each command option.
486
487 Each subgrouping contains a string constant, that defines the
488 fixed part of the option name, and the address of a variable.
489 The variable, type `char *', is set to the variable part of the
490 given option if the fixed part matches. The actual option name
491 is made by appending `-m' to the specified name.
492
493 Here is an example which defines `-mshort-data-NUMBER'. If the
494 given option is `-mshort-data-512', the variable `m88k_short_data'
495 will be set to the string `"512"'.
496
497 extern char *m88k_short_data;
498 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
499
500 #define TARGET_OPTIONS \
501 { \
502 SUBTARGET_TARGET_OPTIONS \
503 { "cpu=", &mips_cpu_string }, \
504 { "ips", &mips_isa_string } \
505 }
506
507 /* This is meant to be redefined in the host dependent files. */
508 #define SUBTARGET_TARGET_OPTIONS
509
510 #define GENERATE_BRANCHLIKELY (TARGET_MIPS3900 || (mips_isa >= 2))
511 #define GENERATE_MULT3 (TARGET_MIPS3900)
512 #define GENERATE_MADD (TARGET_MIPS3900)
513
514
515
516 /* Macros to decide whether certain features are available or not,
517 depending on the instruction set architecture level. */
518
519 #define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
520 #define HAVE_SQRT_P() (mips_isa >= 2)
521
522 /* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
523 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
524 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
525 target_flags, and -mgp64 sets MASK_64BIT.
526
527 Setting MASK_64BIT in target_flags will cause gcc to assume that
528 registers are 64 bits wide. int, long and void * will be 32 bit;
529 this may be changed with -mint64 or -mlong64.
530
531 The gen* programs link code that refers to MASK_64BIT. They don't
532 actually use the information in target_flags; they just refer to
533 it. */
534 \f
535 /* Switch Recognition by gcc.c. Add -G xx support */
536
537 #ifdef SWITCH_TAKES_ARG
538 #undef SWITCH_TAKES_ARG
539 #endif
540
541 #define SWITCH_TAKES_ARG(CHAR) \
542 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
543
544 /* Sometimes certain combinations of command options do not make sense
545 on a particular target machine. You can define a macro
546 `OVERRIDE_OPTIONS' to take account of this. This macro, if
547 defined, is executed once just after all the command options have
548 been parsed.
549
550 On the MIPS, it is used to handle -G. We also use it to set up all
551 of the tables referenced in the other macros. */
552
553 #define OVERRIDE_OPTIONS override_options ()
554
555 /* Zero or more C statements that may conditionally modify two
556 variables `fixed_regs' and `call_used_regs' (both of type `char
557 []') after they have been initialized from the two preceding
558 macros.
559
560 This is necessary in case the fixed or call-clobbered registers
561 depend on target flags.
562
563 You need not define this macro if it has no work to do.
564
565 If the usage of an entire class of registers depends on the target
566 flags, you may indicate this to GCC by using this macro to modify
567 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
568 the classes which should not be used by GCC. Also define the macro
569 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
570 letter for a class that shouldn't be used.
571
572 (However, if this class is not included in `GENERAL_REGS' and all
573 of the insn patterns whose constraints permit this class are
574 controlled by target switches, then GCC will automatically avoid
575 using these registers when the target switches are opposed to
576 them.) */
577
578 #define CONDITIONAL_REGISTER_USAGE \
579 do \
580 { \
581 if (!TARGET_HARD_FLOAT) \
582 { \
583 int regno; \
584 \
585 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
586 fixed_regs[regno] = call_used_regs[regno] = 1; \
587 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
588 fixed_regs[regno] = call_used_regs[regno] = 1; \
589 } \
590 else if (mips_isa < 4) \
591 { \
592 int regno; \
593 \
594 /* We only have a single condition code register. We \
595 implement this by hiding all the condition code registers, \
596 and generating RTL that refers directly to ST_REG_FIRST. */ \
597 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
598 fixed_regs[regno] = call_used_regs[regno] = 1; \
599 } \
600 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
601 } \
602 while (0)
603
604 /* This is meant to be redefined in the host dependent files. */
605 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
606
607 /* Show we can debug even without a frame pointer. */
608 #define CAN_DEBUG_WITHOUT_FP
609 \f
610 /* Complain about missing specs and predefines that should be defined in each
611 of the target tm files to override the defaults. This is mostly a place-
612 holder until I can get each of the files updated [mm]. */
613
614 #if defined(OSF_OS) \
615 || defined(DECSTATION) \
616 || defined(SGI_TARGET) \
617 || defined(MIPS_NEWS) \
618 || defined(MIPS_SYSV) \
619 || defined(MIPS_SVR4) \
620 || defined(MIPS_BSD43)
621
622 #ifndef CPP_PREDEFINES
623 #error "Define CPP_PREDEFINES in the appropriate tm.h file"
624 #endif
625
626 #ifndef LIB_SPEC
627 #error "Define LIB_SPEC in the appropriate tm.h file"
628 #endif
629
630 #ifndef STARTFILE_SPEC
631 #error "Define STARTFILE_SPEC in the appropriate tm.h file"
632 #endif
633
634 #ifndef MACHINE_TYPE
635 #error "Define MACHINE_TYPE in the appropriate tm.h file"
636 #endif
637 #endif
638
639 /* Tell collect what flags to pass to nm. */
640 #ifndef NM_FLAGS
641 #define NM_FLAGS "-Bp"
642 #endif
643
644 \f
645 /* Names to predefine in the preprocessor for this target machine. */
646
647 #ifndef CPP_PREDEFINES
648 #define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
649 -D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43 \
650 -Asystem(unix) -Asystem(bsd) -Acpu(mips) -Amachine(mips)"
651 #endif
652
653 /* Assembler specs. */
654
655 /* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
656 than gas. */
657
658 #define MIPS_AS_ASM_SPEC "\
659 %{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
660 %{pipe: %e-pipe is not supported.} \
661 %{K} %(subtarget_mips_as_asm_spec)"
662
663 /* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
664 rather than gas. It may be overridden by subtargets. */
665
666 #ifndef SUBTARGET_MIPS_AS_ASM_SPEC
667 #define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
668 #endif
669
670 /* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
671 assembler. */
672
673 #define GAS_ASM_SPEC "%{mcpu=*} %{m4650} %{mmad:-m4650} %{m3900} %{v}"
674
675 /* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
676 GAS_ASM_SPEC as the default, depending upon the value of
677 TARGET_DEFAULT. */
678
679 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
680 /* GAS */
681
682 #define TARGET_ASM_SPEC "\
683 %{mmips-as: %(mips_as_asm_spec)} \
684 %{!mmips-as: %(gas_asm_spec)}"
685
686 #else /* not GAS */
687
688 #define TARGET_ASM_SPEC "\
689 %{!mgas: %(mips_as_asm_spec)} \
690 %{mgas: %(gas_asm_spec)}"
691
692 #endif /* not GAS */
693
694 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
695 to the assembler. It may be overridden by subtargets. */
696 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
697 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
698 %{noasmopt:-O0} \
699 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
700 #endif
701
702 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
703 the assembler. It may be overridden by subtargets. */
704 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
705 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
706 %{g} %{g0} %{g1} %{g2} %{g3} \
707 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
708 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
709 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
710 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3}"
711 #endif
712
713 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
714 overridden by subtargets. */
715
716 #ifndef SUBTARGET_ASM_SPEC
717 #define SUBTARGET_ASM_SPEC ""
718 #endif
719
720 /* ASM_SPEC is the set of arguments to pass to the assembler. */
721
722 #define ASM_SPEC "\
723 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} \
724 %(subtarget_asm_optimizing_spec) \
725 %(subtarget_asm_debugging_spec) \
726 %{membedded-pic} \
727 %{mabi=32:-32}%{mabi=o32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
728 %(target_asm_spec) \
729 %(subtarget_asm_spec)"
730
731 /* Specify to run a post-processor, mips-tfile after the assembler
732 has run to stuff the mips debug information into the object file.
733 This is needed because the $#!%^ MIPS assembler provides no way
734 of specifying such information in the assembly file. If we are
735 cross compiling, disable mips-tfile unless the user specifies
736 -mmips-tfile. */
737
738 #ifndef ASM_FINAL_SPEC
739 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
740 /* GAS */
741 #define ASM_FINAL_SPEC "\
742 %{mmips-as: %{!mno-mips-tfile: \
743 \n mips-tfile %{v*: -v} \
744 %{K: -I %b.o~} \
745 %{!K: %{save-temps: -I %b.o~}} \
746 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
747 %{.s:%i} %{!.s:%g.s}}}"
748
749 #else
750 /* not GAS */
751 #define ASM_FINAL_SPEC "\
752 %{!mgas: %{!mno-mips-tfile: \
753 \n mips-tfile %{v*: -v} \
754 %{K: -I %b.o~} \
755 %{!K: %{save-temps: -I %b.o~}} \
756 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
757 %{.s:%i} %{!.s:%g.s}}}"
758
759 #endif
760 #endif /* ASM_FINAL_SPEC */
761
762 /* Redefinition of libraries used. Mips doesn't support normal
763 UNIX style profiling via calling _mcount. It does offer
764 profiling that samples the PC, so do what we can... */
765
766 #ifndef LIB_SPEC
767 #define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
768 #endif
769
770 /* Extra switches sometimes passed to the linker. */
771 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
772 will interpret it as a -b option. */
773
774 #ifndef LINK_SPEC
775 #define LINK_SPEC "\
776 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} \
777 %{bestGnum} %{shared} %{non_shared} \
778 %(linker_endian_spec)"
779 #endif /* LINK_SPEC defined */
780
781 /* Specs for the compiler proper */
782
783 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
784 overridden by subtargets. */
785 #ifndef SUBTARGET_CC1_SPEC
786 #define SUBTARGET_CC1_SPEC ""
787 #endif
788
789 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
790
791 #ifndef CC1_SPEC
792 #define CC1_SPEC "\
793 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
794 %{mips1:-mfp32 -mgp32} %{mips2:-mfp32 -mgp32}\
795 %{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
796 %{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
797 %{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
798 %{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
799 %{m4650:-mcpu=r4650} \
800 %{m3900:-mips1 -mcpu=r3900 -mfp32 -mgp32} \
801 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
802 %{pic-none: -mno-half-pic} \
803 %{pic-lib: -mhalf-pic} \
804 %{pic-extern: -mhalf-pic} \
805 %{pic-calls: -mhalf-pic} \
806 %{save-temps: } \
807 %(subtarget_cc1_spec) "
808 #endif
809
810 /* Preprocessor specs. */
811
812 /* SUBTARGET_CPP_SIZE_SPEC defines SIZE_TYPE and PTRDIFF_TYPE. It may
813 be overridden by subtargets. */
814
815 #ifndef SUBTARGET_CPP_SIZE_SPEC
816 #define SUBTARGET_CPP_SIZE_SPEC "\
817 %{mlong64:-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int} \
818 %{!mlong64:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int}"
819 #endif
820
821 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
822 overridden by subtargets. */
823 #ifndef SUBTARGET_CPP_SPEC
824 #define SUBTARGET_CPP_SPEC ""
825 #endif
826
827 /* If we're using 64bit longs, then we have to define __LONG_MAX__
828 correctly. Similarly for 64bit ints and __INT_MAX__. */
829 #ifndef LONG_MAX_SPEC
830 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_LONG64)
831 #define LONG_MAX_SPEC "%{!mno-long64:-D__LONG_MAX__=9223372036854775807L}"
832 #else
833 #define LONG_MAX_SPEC "%{mlong64:-D__LONG_MAX__=9223372036854775807L}"
834 #endif
835 #endif
836
837 /* CPP_SPEC is the set of arguments to pass to the preprocessor. */
838
839 #ifndef CPP_SPEC
840 #define CPP_SPEC "\
841 %{.cc: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
842 %{.cxx: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
843 %{.C: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
844 %{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C -D__LANGUAGE_C -D_LANGUAGE_C} \
845 %{.S: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
846 %{.s: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
847 %{!.S: %{!.s: %{!.cc: %{!.cxx: %{!.C: %{!.m: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}}}}}} \
848 %(subtarget_cpp_size_spec) \
849 %{mips3:-U__mips -D__mips=3 -D__mips64} \
850 %{mips4:-U__mips -D__mips=4 -D__mips64} \
851 %{mgp32:-U__mips64} %{mgp64:-D__mips64} \
852 %{msingle-float:%{!msoft-float:-D__mips_single_float}} \
853 %{m4650:%{!msoft-float:-D__mips_single_float}} \
854 %{msoft-float:-D__mips_soft_float} \
855 %{mabi=eabi:-D__mips_eabi} \
856 %{EB:-UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__ -D_MIPSEB -D__MIPSEB -D__MIPSEB__ %{!ansi:-DMIPSEB}} \
857 %{EL:-UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__ -D_MIPSEL -D__MIPSEL -D__MIPSEL__ %{!ansi:-DMIPSEL}} \
858 %(long_max_spec) \
859 %(subtarget_cpp_spec) "
860 #endif
861
862 /* This macro defines names of additional specifications to put in the specs
863 that can be used in various specifications like CC1_SPEC. Its definition
864 is an initializer with a subgrouping for each command option.
865
866 Each subgrouping contains a string constant, that defines the
867 specification name, and a string constant that used by the GNU CC driver
868 program.
869
870 Do not define this macro if it does not need to do anything. */
871
872 #define EXTRA_SPECS \
873 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
874 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
875 { "subtarget_cpp_size_spec", SUBTARGET_CPP_SIZE_SPEC }, \
876 { "long_max_spec", LONG_MAX_SPEC }, \
877 { "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
878 { "gas_asm_spec", GAS_ASM_SPEC }, \
879 { "target_asm_spec", TARGET_ASM_SPEC }, \
880 { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
881 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
882 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
883 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
884 { "linker_endian_spec", LINKER_ENDIAN_SPEC }, \
885 SUBTARGET_EXTRA_SPECS
886
887 #ifndef SUBTARGET_EXTRA_SPECS
888 #define SUBTARGET_EXTRA_SPECS
889 #endif
890
891 /* If defined, this macro is an additional prefix to try after
892 `STANDARD_EXEC_PREFIX'. */
893
894 #ifndef MD_EXEC_PREFIX
895 #define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
896 #endif
897
898 #ifndef MD_STARTFILE_PREFIX
899 #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
900 #endif
901
902 \f
903 /* Print subsidiary information on the compiler version in use. */
904
905 #define MIPS_VERSION "[AL 1.1, MM 40]"
906
907 #ifndef MACHINE_TYPE
908 #define MACHINE_TYPE "BSD Mips"
909 #endif
910
911 #ifndef TARGET_VERSION_INTERNAL
912 #define TARGET_VERSION_INTERNAL(STREAM) \
913 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
914 #endif
915
916 #ifndef TARGET_VERSION
917 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
918 #endif
919
920 \f
921 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
922 #define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
923 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
924
925 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
926 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
927 #endif
928
929 /* By default, turn on GDB extensions. */
930 #define DEFAULT_GDB_EXTENSIONS 1
931
932 /* If we are passing smuggling stabs through the MIPS ECOFF object
933 format, put a comment in front of the .stab<x> operation so
934 that the MIPS assembler does not choke. The mips-tfile program
935 will correctly put the stab into the object file. */
936
937 #define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
938 #define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
939 #define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
940
941 /* Local compiler-generated symbols must have a prefix that the assembler
942 understands. By default, this is $, although some targets (e.g.,
943 NetBSD-ELF) need to override this. */
944
945 #ifndef LOCAL_LABEL_PREFIX
946 #define LOCAL_LABEL_PREFIX "$"
947 #endif
948
949 /* By default on the mips, external symbols do not have an underscore
950 prepended, but some targets (e.g., NetBSD) require this. */
951
952 #ifndef USER_LABEL_PREFIX
953 #define USER_LABEL_PREFIX ""
954 #endif
955
956 /* Forward references to tags are allowed. */
957 #define SDB_ALLOW_FORWARD_REFERENCES
958
959 /* Unknown tags are also allowed. */
960 #define SDB_ALLOW_UNKNOWN_REFERENCES
961
962 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
963 since the length can run past this up to a continuation point. */
964 #define DBX_CONTIN_LENGTH 1500
965
966 /* How to renumber registers for dbx and gdb. */
967 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
968
969 /* The mapping from gcc register number to DWARF 2 CFA column number.
970 This mapping does not allow for tracking register 0, since SGI's broken
971 dwarf reader thinks column 0 is used for the frame address, but since
972 register 0 is fixed this is not a problem. */
973 #define DWARF_FRAME_REGNUM(REG) \
974 (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
975
976 /* The DWARF 2 CFA column which tracks the return address. */
977 #define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
978
979 /* Before the prologue, RA lives in r31. */
980 #define INCOMING_RETURN_ADDR_RTX gen_rtx (REG, VOIDmode, GP_REG_FIRST + 31)
981
982 /* Overrides for the COFF debug format. */
983 #define PUT_SDB_SCL(a) \
984 do { \
985 extern FILE *asm_out_text_file; \
986 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
987 } while (0)
988
989 #define PUT_SDB_INT_VAL(a) \
990 do { \
991 extern FILE *asm_out_text_file; \
992 fprintf (asm_out_text_file, "\t.val\t%d;", (a)); \
993 } while (0)
994
995 #define PUT_SDB_VAL(a) \
996 do { \
997 extern FILE *asm_out_text_file; \
998 fputs ("\t.val\t", asm_out_text_file); \
999 output_addr_const (asm_out_text_file, (a)); \
1000 fputc (';', asm_out_text_file); \
1001 } while (0)
1002
1003 #define PUT_SDB_DEF(a) \
1004 do { \
1005 extern FILE *asm_out_text_file; \
1006 fprintf (asm_out_text_file, "\t%s.def\t", \
1007 (TARGET_GAS) ? "" : "#"); \
1008 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1009 fputc (';', asm_out_text_file); \
1010 } while (0)
1011
1012 #define PUT_SDB_PLAIN_DEF(a) \
1013 do { \
1014 extern FILE *asm_out_text_file; \
1015 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
1016 (TARGET_GAS) ? "" : "#", (a)); \
1017 } while (0)
1018
1019 #define PUT_SDB_ENDEF \
1020 do { \
1021 extern FILE *asm_out_text_file; \
1022 fprintf (asm_out_text_file, "\t.endef\n"); \
1023 } while (0)
1024
1025 #define PUT_SDB_TYPE(a) \
1026 do { \
1027 extern FILE *asm_out_text_file; \
1028 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
1029 } while (0)
1030
1031 #define PUT_SDB_SIZE(a) \
1032 do { \
1033 extern FILE *asm_out_text_file; \
1034 fprintf (asm_out_text_file, "\t.size\t%d;", (a)); \
1035 } while (0)
1036
1037 #define PUT_SDB_DIM(a) \
1038 do { \
1039 extern FILE *asm_out_text_file; \
1040 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
1041 } while (0)
1042
1043 #ifndef PUT_SDB_START_DIM
1044 #define PUT_SDB_START_DIM \
1045 do { \
1046 extern FILE *asm_out_text_file; \
1047 fprintf (asm_out_text_file, "\t.dim\t"); \
1048 } while (0)
1049 #endif
1050
1051 #ifndef PUT_SDB_NEXT_DIM
1052 #define PUT_SDB_NEXT_DIM(a) \
1053 do { \
1054 extern FILE *asm_out_text_file; \
1055 fprintf (asm_out_text_file, "%d,", a); \
1056 } while (0)
1057 #endif
1058
1059 #ifndef PUT_SDB_LAST_DIM
1060 #define PUT_SDB_LAST_DIM(a) \
1061 do { \
1062 extern FILE *asm_out_text_file; \
1063 fprintf (asm_out_text_file, "%d;", a); \
1064 } while (0)
1065 #endif
1066
1067 #define PUT_SDB_TAG(a) \
1068 do { \
1069 extern FILE *asm_out_text_file; \
1070 fprintf (asm_out_text_file, "\t.tag\t"); \
1071 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1072 fputc (';', asm_out_text_file); \
1073 } while (0)
1074
1075 /* For block start and end, we create labels, so that
1076 later we can figure out where the correct offset is.
1077 The normal .ent/.end serve well enough for functions,
1078 so those are just commented out. */
1079
1080 #define PUT_SDB_BLOCK_START(LINE) \
1081 do { \
1082 extern FILE *asm_out_text_file; \
1083 fprintf (asm_out_text_file, \
1084 "%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
1085 LOCAL_LABEL_PREFIX, \
1086 sdb_label_count, \
1087 (TARGET_GAS) ? "" : "#", \
1088 LOCAL_LABEL_PREFIX, \
1089 sdb_label_count, \
1090 (LINE)); \
1091 sdb_label_count++; \
1092 } while (0)
1093
1094 #define PUT_SDB_BLOCK_END(LINE) \
1095 do { \
1096 extern FILE *asm_out_text_file; \
1097 fprintf (asm_out_text_file, \
1098 "%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
1099 LOCAL_LABEL_PREFIX, \
1100 sdb_label_count, \
1101 (TARGET_GAS) ? "" : "#", \
1102 LOCAL_LABEL_PREFIX, \
1103 sdb_label_count, \
1104 (LINE)); \
1105 sdb_label_count++; \
1106 } while (0)
1107
1108 #define PUT_SDB_FUNCTION_START(LINE)
1109
1110 #define PUT_SDB_FUNCTION_END(LINE) \
1111 do { \
1112 extern FILE *asm_out_text_file; \
1113 ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
1114 } while (0)
1115
1116 #define PUT_SDB_EPILOGUE_END(NAME)
1117
1118 #define PUT_SDB_SRC_FILE(FILENAME) \
1119 do { \
1120 extern FILE *asm_out_text_file; \
1121 output_file_directive (asm_out_text_file, (FILENAME)); \
1122 } while (0)
1123
1124 #define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
1125 sprintf ((BUFFER), ".%dfake", (NUMBER));
1126
1127 /* Correct the offset of automatic variables and arguments. Note that
1128 the MIPS debug format wants all automatic variables and arguments
1129 to be in terms of the virtual frame pointer (stack pointer before
1130 any adjustment in the function), while the MIPS 3.0 linker wants
1131 the frame pointer to be the stack pointer after the initial
1132 adjustment. */
1133
1134 #define DEBUGGER_AUTO_OFFSET(X) mips_debugger_offset (X, 0)
1135 #define DEBUGGER_ARG_OFFSET(OFFSET, X) mips_debugger_offset (X, OFFSET)
1136
1137
1138 /* Tell collect that the object format is ECOFF */
1139 #ifndef OBJECT_FORMAT_ROSE
1140 #define OBJECT_FORMAT_COFF /* Object file looks like COFF */
1141 #define EXTENDED_COFF /* ECOFF, not normal coff */
1142 #endif
1143
1144 #if 0 /* These definitions normally have no effect because
1145 MIPS systems define USE_COLLECT2, so
1146 assemble_constructor does nothing anyway. */
1147
1148 /* Don't use the default definitions, because we don't have gld.
1149 Also, we don't want stabs when generating ECOFF output.
1150 Instead we depend on collect to handle these. */
1151
1152 #define ASM_OUTPUT_CONSTRUCTOR(file, name)
1153 #define ASM_OUTPUT_DESTRUCTOR(file, name)
1154
1155 #endif /* 0 */
1156 \f
1157 /* Target machine storage layout */
1158
1159 /* Define in order to support both big and little endian float formats
1160 in the same gcc binary. */
1161 #define REAL_ARITHMETIC
1162
1163 /* Define this if most significant bit is lowest numbered
1164 in instructions that operate on numbered bit-fields.
1165 */
1166 #define BITS_BIG_ENDIAN 0
1167
1168 /* Define this if most significant byte of a word is the lowest numbered. */
1169 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1170
1171 /* Define this if most significant word of a multiword number is the lowest. */
1172 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1173
1174 /* Define this to set the endianness to use in libgcc2.c, which can
1175 not depend on target_flags. */
1176 #if !defined(MIPSEL) && !defined(__MIPSEL__)
1177 #define LIBGCC2_WORDS_BIG_ENDIAN 1
1178 #else
1179 #define LIBGCC2_WORDS_BIG_ENDIAN 0
1180 #endif
1181
1182 /* Number of bits in an addressable storage unit */
1183 #define BITS_PER_UNIT 8
1184
1185 /* Width in bits of a "word", which is the contents of a machine register.
1186 Note that this is not necessarily the width of data type `int';
1187 if using 16-bit ints on a 68000, this would still be 32.
1188 But on a machine with 16-bit registers, this would be 16. */
1189 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
1190 #define MAX_BITS_PER_WORD 64
1191
1192 /* Width of a word, in units (bytes). */
1193 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1194 #define MIN_UNITS_PER_WORD 4
1195
1196 /* For MIPS, width of a floating point register. */
1197 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1198
1199 /* A C expression for the size in bits of the type `int' on the
1200 target machine. If you don't define this, the default is one
1201 word. */
1202 #define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
1203 #define MAX_INT_TYPE_SIZE 64
1204
1205 /* Tell the preprocessor the maximum size of wchar_t. */
1206 #ifndef MAX_WCHAR_TYPE_SIZE
1207 #ifndef WCHAR_TYPE_SIZE
1208 #define MAX_WCHAR_TYPE_SIZE MAX_INT_TYPE_SIZE
1209 #endif
1210 #endif
1211
1212 /* A C expression for the size in bits of the type `short' on the
1213 target machine. If you don't define this, the default is half a
1214 word. (If this would be less than one storage unit, it is
1215 rounded up to one unit.) */
1216 #define SHORT_TYPE_SIZE 16
1217
1218 /* A C expression for the size in bits of the type `long' on the
1219 target machine. If you don't define this, the default is one
1220 word. */
1221 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1222 #define MAX_LONG_TYPE_SIZE 64
1223
1224 /* A C expression for the size in bits of the type `long long' on the
1225 target machine. If you don't define this, the default is two
1226 words. */
1227 #define LONG_LONG_TYPE_SIZE 64
1228
1229 /* A C expression for the size in bits of the type `char' on the
1230 target machine. If you don't define this, the default is one
1231 quarter of a word. (If this would be less than one storage unit,
1232 it is rounded up to one unit.) */
1233 #define CHAR_TYPE_SIZE BITS_PER_UNIT
1234
1235 /* A C expression for the size in bits of the type `float' on the
1236 target machine. If you don't define this, the default is one
1237 word. */
1238 #define FLOAT_TYPE_SIZE 32
1239
1240 /* A C expression for the size in bits of the type `double' on the
1241 target machine. If you don't define this, the default is two
1242 words. */
1243 #define DOUBLE_TYPE_SIZE 64
1244
1245 /* A C expression for the size in bits of the type `long double' on
1246 the target machine. If you don't define this, the default is two
1247 words. */
1248 #define LONG_DOUBLE_TYPE_SIZE 64
1249
1250 /* Width in bits of a pointer.
1251 See also the macro `Pmode' defined below. */
1252 #define POINTER_SIZE (TARGET_LONG64 ? 64 : 32)
1253
1254 /* Allocation boundary (in *bits*) for storing pointers in memory. */
1255 #define POINTER_BOUNDARY (TARGET_LONG64 ? 64 : 32)
1256
1257 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1258 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
1259
1260 /* Allocation boundary (in *bits*) for the code of a function. */
1261 #define FUNCTION_BOUNDARY 32
1262
1263 /* Alignment of field after `int : 0' in a structure. */
1264 #define EMPTY_FIELD_BOUNDARY 32
1265
1266 /* Every structure's size must be a multiple of this. */
1267 /* 8 is observed right on a DECstation and on riscos 4.02. */
1268 #define STRUCTURE_SIZE_BOUNDARY 8
1269
1270 /* There is no point aligning anything to a rounder boundary than this. */
1271 #define BIGGEST_ALIGNMENT 64
1272
1273 /* Set this nonzero if move instructions will actually fail to work
1274 when given unaligned data. */
1275 #define STRICT_ALIGNMENT 1
1276
1277 /* Define this if you wish to imitate the way many other C compilers
1278 handle alignment of bitfields and the structures that contain
1279 them.
1280
1281 The behavior is that the type written for a bitfield (`int',
1282 `short', or other integer type) imposes an alignment for the
1283 entire structure, as if the structure really did contain an
1284 ordinary field of that type. In addition, the bitfield is placed
1285 within the structure so that it would fit within such a field,
1286 not crossing a boundary for it.
1287
1288 Thus, on most machines, a bitfield whose type is written as `int'
1289 would not cross a four-byte boundary, and would force four-byte
1290 alignment for the whole structure. (The alignment used may not
1291 be four bytes; it is controlled by the other alignment
1292 parameters.)
1293
1294 If the macro is defined, its definition should be a C expression;
1295 a nonzero value for the expression enables this behavior. */
1296
1297 #define PCC_BITFIELD_TYPE_MATTERS 1
1298
1299 /* If defined, a C expression to compute the alignment given to a
1300 constant that is being placed in memory. CONSTANT is the constant
1301 and ALIGN is the alignment that the object would ordinarily have.
1302 The value of this macro is used instead of that alignment to align
1303 the object.
1304
1305 If this macro is not defined, then ALIGN is used.
1306
1307 The typical use of this macro is to increase alignment for string
1308 constants to be word aligned so that `strcpy' calls that copy
1309 constants can be done inline. */
1310
1311 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1312 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1313 && (ALIGN) < BITS_PER_WORD \
1314 ? BITS_PER_WORD \
1315 : (ALIGN))
1316
1317 /* If defined, a C expression to compute the alignment for a static
1318 variable. TYPE is the data type, and ALIGN is the alignment that
1319 the object would ordinarily have. The value of this macro is used
1320 instead of that alignment to align the object.
1321
1322 If this macro is not defined, then ALIGN is used.
1323
1324 One use of this macro is to increase alignment of medium-size
1325 data to make it all fit in fewer cache lines. Another is to
1326 cause character arrays to be word-aligned so that `strcpy' calls
1327 that copy constants to character arrays can be done inline. */
1328
1329 #undef DATA_ALIGNMENT
1330 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1331 ((((ALIGN) < BITS_PER_WORD) \
1332 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1333 || TREE_CODE (TYPE) == UNION_TYPE \
1334 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1335
1336 /* Define this macro if an argument declared as `char' or `short' in a
1337 prototype should actually be passed as an `int'. In addition to
1338 avoiding errors in certain cases of mismatch, it also makes for
1339 better code on certain machines. */
1340
1341 #define PROMOTE_PROTOTYPES
1342
1343 /* Define if operations between registers always perform the operation
1344 on the full register even if a narrower mode is specified. */
1345 #define WORD_REGISTER_OPERATIONS
1346
1347 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1348 will either zero-extend or sign-extend. The value of this macro should
1349 be the code that says which one of the two operations is implicitly
1350 done, NIL if none. */
1351 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1352 \f
1353 /* Standard register usage. */
1354
1355 /* Number of actual hardware registers.
1356 The hardware registers are assigned numbers for the compiler
1357 from 0 to just below FIRST_PSEUDO_REGISTER.
1358 All registers that the compiler knows about must be given numbers,
1359 even those that are not normally considered general registers.
1360
1361 On the Mips, we have 32 integer registers, 32 floating point
1362 registers, 8 condition code registers, and the special registers
1363 hi, lo, hilo, and rap. The 8 condition code registers are only
1364 used if mips_isa >= 4. The hilo register is only used in 64 bit
1365 mode. It represents a 64 bit value stored as two 32 bit values in
1366 the hi and lo registers; this is the result of the mult
1367 instruction. rap is a pointer to the stack where the return
1368 address reg ($31) was stored. This is needed for C++ exception
1369 handling. */
1370
1371 #define FIRST_PSEUDO_REGISTER 76
1372
1373 /* 1 for registers that have pervasive standard uses
1374 and are not available for the register allocator.
1375
1376 On the MIPS, see conventions, page D-2 */
1377
1378 #define FIXED_REGISTERS \
1379 { \
1380 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1381 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1382 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1383 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1384 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 \
1385 }
1386
1387
1388 /* 1 for registers not available across function calls.
1389 These must include the FIXED_REGISTERS and also any
1390 registers that can be used without being saved.
1391 The latter must include the registers where values are returned
1392 and the register where structure-value addresses are passed.
1393 Aside from that, you can include as many other registers as you like. */
1394
1395 #define CALL_USED_REGISTERS \
1396 { \
1397 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1398 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1399 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1400 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1401 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1402 }
1403
1404
1405 /* Internal macros to classify a register number as to whether it's a
1406 general purpose register, a floating point register, a
1407 multiply/divide register, or a status register. */
1408
1409 #define GP_REG_FIRST 0
1410 #define GP_REG_LAST 31
1411 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1412 #define GP_DBX_FIRST 0
1413
1414 #define FP_REG_FIRST 32
1415 #define FP_REG_LAST 63
1416 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1417 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1418
1419 #define MD_REG_FIRST 64
1420 #define MD_REG_LAST 66
1421 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1422
1423 #define ST_REG_FIRST 67
1424 #define ST_REG_LAST 74
1425 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1426
1427 #define RAP_REG_NUM 75
1428
1429 #define AT_REGNUM (GP_REG_FIRST + 1)
1430 #define HI_REGNUM (MD_REG_FIRST + 0)
1431 #define LO_REGNUM (MD_REG_FIRST + 1)
1432 #define HILO_REGNUM (MD_REG_FIRST + 2)
1433
1434 /* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
1435 mips_isa >= 4, it should not be used, and an arbitrary ST_REG
1436 should be used instead. */
1437 #define FPSW_REGNUM ST_REG_FIRST
1438
1439 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1440 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1441 #define MD_REG_P(REGNO) ((unsigned) ((REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1442 #define ST_REG_P(REGNO) ((unsigned) ((REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1443
1444 /* Return number of consecutive hard regs needed starting at reg REGNO
1445 to hold something of mode MODE.
1446 This is ordinarily the length in words of a value of mode MODE
1447 but can be less for certain modes in special long registers.
1448
1449 On the MIPS, all general registers are one word long. Except on
1450 the R4000 with the FR bit set, the floating point uses register
1451 pairs, with the second register not being allocable. */
1452
1453 #define HARD_REGNO_NREGS(REGNO, MODE) \
1454 (! FP_REG_P (REGNO) \
1455 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
1456 : ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG))
1457
1458 /* Value is 1 if hard register REGNO can hold a value of machine-mode
1459 MODE. In 32 bit mode, require that DImode and DFmode be in even
1460 registers. For DImode, this makes some of the insns easier to
1461 write, since you don't have to worry about a DImode value in
1462 registers 3 & 4, producing a result in 4 & 5.
1463
1464 To make the code simpler HARD_REGNO_MODE_OK now just references an
1465 array built in override_options. Because machmodes.h is not yet
1466 included before this file is processed, the MODE bound can't be
1467 expressed here. */
1468
1469 extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1470
1471 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1472 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1473
1474 /* Value is 1 if it is a good idea to tie two pseudo registers
1475 when one has mode MODE1 and one has mode MODE2.
1476 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1477 for any hard reg, then this must be 0 for correct output. */
1478 #define MODES_TIEABLE_P(MODE1, MODE2) \
1479 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1480 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1481 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1482 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1483
1484 /* MIPS pc is not overloaded on a register. */
1485 /* #define PC_REGNUM xx */
1486
1487 /* Register to use for pushing function arguments. */
1488 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1489
1490 /* Offset from the stack pointer to the first available location. Use
1491 the default value zero. */
1492 /* #define STACK_POINTER_OFFSET 0 */
1493
1494 /* Base register for access to local variables of the function. */
1495 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 30)
1496
1497 /* Value should be nonzero if functions must have frame pointers.
1498 Zero means the frame pointer need not be set up (and parms
1499 may be accessed via the stack pointer) in functions that seem suitable.
1500 This is computed in `reload', in reload1.c. */
1501 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1502
1503 /* Base register for access to arguments of the function. */
1504 #define ARG_POINTER_REGNUM GP_REG_FIRST
1505
1506 /* Fake register that holds the address on the stack of the
1507 current function's return address. */
1508 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
1509
1510 /* Register in which static-chain is passed to a function. */
1511 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1512
1513 /* If the structure value address is passed in a register, then
1514 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1515 /* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1516
1517 /* If the structure value address is not passed in a register, define
1518 `STRUCT_VALUE' as an expression returning an RTX for the place
1519 where the address is passed. If it returns 0, the address is
1520 passed as an "invisible" first argument. */
1521 #define STRUCT_VALUE 0
1522
1523 /* Mips registers used in prologue/epilogue code when the stack frame
1524 is larger than 32K bytes. These registers must come from the
1525 scratch register set, and not used for passing and returning
1526 arguments and any other information used in the calling sequence
1527 (such as pic). Must start at 12, since t0/t3 are parameter passing
1528 registers in the 64 bit ABI. */
1529
1530 #define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1531 #define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
1532
1533 /* Define this macro if it is as good or better to call a constant
1534 function address than to call an address kept in a register. */
1535 #define NO_FUNCTION_CSE 1
1536
1537 /* Define this macro if it is as good or better for a function to
1538 call itself with an explicit address than to call an address
1539 kept in a register. */
1540 #define NO_RECURSIVE_FUNCTION_CSE 1
1541
1542 /* The register number of the register used to address a table of
1543 static data addresses in memory. In some cases this register is
1544 defined by a processor's "application binary interface" (ABI).
1545 When this macro is defined, RTL is generated for this register
1546 once, as with the stack pointer and frame pointer registers. If
1547 this macro is not defined, it is up to the machine-dependent
1548 files to allocate such a register (if necessary). */
1549 #define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
1550
1551 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1552
1553 /* Initialize embedded_pic_fnaddr_rtx before RTL generation for
1554 each function. We used to do this in FINALIZE_PIC, but FINALIZE_PIC
1555 isn't always called for static inline functions. */
1556 #define INIT_EXPANDERS embedded_pic_fnaddr_rtx = NULL;
1557 \f
1558 /* Define the classes of registers for register constraints in the
1559 machine description. Also define ranges of constants.
1560
1561 One of the classes must always be named ALL_REGS and include all hard regs.
1562 If there is more than one class, another class must be named NO_REGS
1563 and contain no registers.
1564
1565 The name GENERAL_REGS must be the name of a class (or an alias for
1566 another name such as ALL_REGS). This is the class of registers
1567 that is allowed by "g" or "r" in a register constraint.
1568 Also, registers outside this class are allocated only when
1569 instructions express preferences for them.
1570
1571 The classes must be numbered in nondecreasing order; that is,
1572 a larger-numbered class must never be contained completely
1573 in a smaller-numbered class.
1574
1575 For any two classes, it is very desirable that there be another
1576 class that represents their union. */
1577
1578 enum reg_class
1579 {
1580 NO_REGS, /* no registers in set */
1581 GR_REGS, /* integer registers */
1582 FP_REGS, /* floating point registers */
1583 HI_REG, /* hi register */
1584 LO_REG, /* lo register */
1585 HILO_REG, /* hilo register pair for 64 bit mode mult */
1586 MD_REGS, /* multiply/divide registers (hi/lo) */
1587 ST_REGS, /* status registers (fp status) */
1588 ALL_REGS, /* all registers */
1589 LIM_REG_CLASSES /* max value + 1 */
1590 };
1591
1592 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1593
1594 #define GENERAL_REGS GR_REGS
1595
1596 /* An initializer containing the names of the register classes as C
1597 string constants. These names are used in writing some of the
1598 debugging dumps. */
1599
1600 #define REG_CLASS_NAMES \
1601 { \
1602 "NO_REGS", \
1603 "GR_REGS", \
1604 "FP_REGS", \
1605 "HI_REG", \
1606 "LO_REG", \
1607 "HILO_REG", \
1608 "MD_REGS", \
1609 "ST_REGS", \
1610 "ALL_REGS" \
1611 }
1612
1613 /* An initializer containing the contents of the register classes,
1614 as integers which are bit masks. The Nth integer specifies the
1615 contents of class N. The way the integer MASK is interpreted is
1616 that register R is in the class if `MASK & (1 << R)' is 1.
1617
1618 When the machine has more than 32 registers, an integer does not
1619 suffice. Then the integers are replaced by sub-initializers,
1620 braced groupings containing several integers. Each
1621 sub-initializer must be suitable as an initializer for the type
1622 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1623
1624 #define REG_CLASS_CONTENTS \
1625 { \
1626 { 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1627 { 0xffffffff, 0x00000000, 0x00000000 }, /* integer registers */ \
1628 { 0x00000000, 0xffffffff, 0x00000000 }, /* floating registers*/ \
1629 { 0x00000000, 0x00000000, 0x00000001 }, /* hi register */ \
1630 { 0x00000000, 0x00000000, 0x00000002 }, /* lo register */ \
1631 { 0x00000000, 0x00000000, 0x00000004 }, /* hilo register */ \
1632 { 0x00000000, 0x00000000, 0x00000003 }, /* mul/div registers */ \
1633 { 0x00000000, 0x00000000, 0x000007f8 }, /* status registers */ \
1634 { 0xffffffff, 0xffffffff, 0x000007ff } /* all registers */ \
1635 }
1636
1637
1638 /* A C expression whose value is a register class containing hard
1639 register REGNO. In general there is more that one such class;
1640 choose a class which is "minimal", meaning that no smaller class
1641 also contains the register. */
1642
1643 extern enum reg_class mips_regno_to_class[];
1644
1645 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1646
1647 /* A macro whose definition is the name of the class to which a
1648 valid base register must belong. A base register is one used in
1649 an address which is the register value plus a displacement. */
1650
1651 #define BASE_REG_CLASS GR_REGS
1652
1653 /* A macro whose definition is the name of the class to which a
1654 valid index register must belong. An index register is one used
1655 in an address where its value is either multiplied by a scale
1656 factor or added to another register (as well as added to a
1657 displacement). */
1658
1659 #define INDEX_REG_CLASS NO_REGS
1660
1661
1662 /* REGISTER AND CONSTANT CLASSES */
1663
1664 /* Get reg_class from a letter such as appears in the machine
1665 description.
1666
1667 DEFINED REGISTER CLASSES:
1668
1669 'd' General (aka integer) registers
1670 'f' Floating point registers
1671 'h' Hi register
1672 'l' Lo register
1673 'x' Multiply/divide registers
1674 'a' HILO_REG
1675 'z' FP Status register
1676 'b' All registers */
1677
1678 extern enum reg_class mips_char_to_class[];
1679
1680 #define REG_CLASS_FROM_LETTER(C) mips_char_to_class[ (C) ]
1681
1682 /* The letters I, J, K, L, M, N, O, and P in a register constraint
1683 string can be used to stand for particular ranges of immediate
1684 operands. This macro defines what the ranges are. C is the
1685 letter, and VALUE is a constant value. Return 1 if VALUE is
1686 in the range specified by C. */
1687
1688 /* For MIPS:
1689
1690 `I' is used for the range of constants an arithmetic insn can
1691 actually contain (16 bits signed integers).
1692
1693 `J' is used for the range which is just zero (ie, $r0).
1694
1695 `K' is used for the range of constants a logical insn can actually
1696 contain (16 bit zero-extended integers).
1697
1698 `L' is used for the range of constants that be loaded with lui
1699 (ie, the bottom 16 bits are zero).
1700
1701 `M' is used for the range of constants that take two words to load
1702 (ie, not matched by `I', `K', and `L').
1703
1704 `N' is used for negative 16 bit constants.
1705
1706 `O' is an exact power of 2 (not yet used in the md file).
1707
1708 `P' is used for positive 16 bit constants. */
1709
1710 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1711 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
1712
1713 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1714 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
1715 : (C) == 'J' ? ((VALUE) == 0) \
1716 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
1717 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
1718 && (((VALUE) & ~2147483647) == 0 \
1719 || ((VALUE) & ~2147483647) == ~2147483647)) \
1720 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
1721 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
1722 && (((VALUE) & 0x0000ffff) != 0 \
1723 || (((VALUE) & ~2147483647) != 0 \
1724 && ((VALUE) & ~2147483647) != ~2147483647))) \
1725 : (C) == 'N' ? (((VALUE) & ~0x0000ffff) == ~0x0000ffff) \
1726 : (C) == 'O' ? (exact_log2 (VALUE) >= 0) \
1727 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
1728 : 0)
1729
1730 /* Similar, but for floating constants, and defining letters G and H.
1731 Here VALUE is the CONST_DOUBLE rtx itself. */
1732
1733 /* For Mips
1734
1735 'G' : Floating point 0 */
1736
1737 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1738 ((C) == 'G' \
1739 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
1740
1741 /* Letters in the range `Q' through `U' may be defined in a
1742 machine-dependent fashion to stand for arbitrary operand types.
1743 The machine description macro `EXTRA_CONSTRAINT' is passed the
1744 operand as its first argument and the constraint letter as its
1745 second operand.
1746
1747 `Q' is for memory references which take more than 1 instruction.
1748 `R' is for memory references which take 1 word for the instruction.
1749 `S' is for references to extern items which are PIC for OSF/rose. */
1750
1751 #define EXTRA_CONSTRAINT(OP,CODE) \
1752 ((GET_CODE (OP) != MEM) ? FALSE \
1753 : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
1754 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
1755 : ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
1756 && HALF_PIC_ADDRESS_P (OP)) \
1757 : FALSE)
1758
1759 /* Given an rtx X being reloaded into a reg required to be
1760 in class CLASS, return the class of reg to actually use.
1761 In general this is just CLASS; but on some machines
1762 in some cases it is preferable to use a more restrictive class. */
1763
1764 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1765 ((CLASS) != ALL_REGS \
1766 ? (CLASS) \
1767 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1768 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
1769 ? (TARGET_SOFT_FLOAT ? GR_REGS : FP_REGS) \
1770 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1771 || GET_MODE (X) == VOIDmode) \
1772 ? GR_REGS \
1773 : (CLASS))))
1774
1775 /* Certain machines have the property that some registers cannot be
1776 copied to some other registers without using memory. Define this
1777 macro on those machines to be a C expression that is non-zero if
1778 objects of mode MODE in registers of CLASS1 can only be copied to
1779 registers of class CLASS2 by storing a register of CLASS1 into
1780 memory and loading that memory location into a register of CLASS2.
1781
1782 Do not define this macro if its value would always be zero. */
1783
1784 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1785 ((!TARGET_DEBUG_H_MODE \
1786 && GET_MODE_CLASS (MODE) == MODE_INT \
1787 && ((CLASS1 == FP_REGS && CLASS2 == GR_REGS) \
1788 || (CLASS1 == GR_REGS && CLASS2 == FP_REGS))) \
1789 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
1790 && ((CLASS1 == GR_REGS && CLASS2 == FP_REGS) \
1791 || (CLASS2 == GR_REGS && CLASS1 == FP_REGS))))
1792
1793 /* The HI and LO registers can only be reloaded via the general
1794 registers. Condition code registers can only be loaded to the
1795 general registers, and from the floating point registers. */
1796
1797 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1798 mips_secondary_reload_class (CLASS, MODE, X, 1)
1799 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1800 mips_secondary_reload_class (CLASS, MODE, X, 0)
1801
1802 /* Not declared above, with the other functions, because enum
1803 reg_class is not declared yet. */
1804 extern enum reg_class mips_secondary_reload_class ();
1805
1806 /* Return the maximum number of consecutive registers
1807 needed to represent mode MODE in a register of class CLASS. */
1808
1809 #define CLASS_UNITS(mode, size) \
1810 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
1811
1812 #define CLASS_MAX_NREGS(CLASS, MODE) \
1813 ((CLASS) == FP_REGS \
1814 ? (TARGET_FLOAT64 \
1815 ? CLASS_UNITS (MODE, 8) \
1816 : 2 * CLASS_UNITS (MODE, 8)) \
1817 : CLASS_UNITS (MODE, UNITS_PER_WORD))
1818
1819 /* If defined, this is a C expression whose value should be
1820 nonzero if the insn INSN has the effect of mysteriously
1821 clobbering the contents of hard register number REGNO. By
1822 "mysterious" we mean that the insn's RTL expression doesn't
1823 describe such an effect.
1824
1825 If this macro is not defined, it means that no insn clobbers
1826 registers mysteriously. This is the usual situation; all else
1827 being equal, it is best for the RTL expression to show all the
1828 activity. */
1829
1830 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) */
1831
1832 \f
1833 /* Stack layout; function entry, exit and calling. */
1834
1835 /* Define this if pushing a word on the stack
1836 makes the stack pointer a smaller address. */
1837 #define STACK_GROWS_DOWNWARD
1838
1839 /* Define this if the nominal address of the stack frame
1840 is at the high-address end of the local variables;
1841 that is, each additional local variable allocated
1842 goes at a more negative offset in the frame. */
1843 /* #define FRAME_GROWS_DOWNWARD */
1844
1845 /* Offset within stack frame to start allocating local variables at.
1846 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1847 first local allocated. Otherwise, it is the offset to the BEGINNING
1848 of the first local allocated. */
1849 #define STARTING_FRAME_OFFSET \
1850 (current_function_outgoing_args_size \
1851 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1852
1853 /* Offset from the stack pointer register to an item dynamically
1854 allocated on the stack, e.g., by `alloca'.
1855
1856 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1857 length of the outgoing arguments. The default is correct for most
1858 machines. See `function.c' for details.
1859
1860 The MIPS ABI states that functions which dynamically allocate the
1861 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
1862 we are trying to create a second frame pointer to the function, so
1863 allocate some stack space to make it happy.
1864
1865 However, the linker currently complains about linking any code that
1866 dynamically allocates stack space, and there seems to be a bug in
1867 STACK_DYNAMIC_OFFSET, so don't define this right now. */
1868
1869 #if 0
1870 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1871 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
1872 ? 4*UNITS_PER_WORD \
1873 : current_function_outgoing_args_size)
1874 #endif
1875
1876 /* The return address for the current frame is in r31 is this is a leaf
1877 function. Otherwise, it is on the stack. It is at a variable offset
1878 from sp/fp/ap, so we define a fake hard register rap which is a
1879 poiner to the return address on the stack. This always gets eliminated
1880 during reload to be either the frame pointer or the stack pointer plus
1881 an offset. */
1882
1883 /* ??? This definition fails for leaf functions. There is currently no
1884 general solution for this problem. */
1885
1886 /* ??? There appears to be no way to get the return address of any previous
1887 frame except by disassembling instructions in the prologue/epilogue.
1888 So currently we support only the current frame. */
1889
1890 #define RETURN_ADDR_RTX(count, frame) \
1891 ((count == 0) \
1892 ? gen_rtx (MEM, Pmode, gen_rtx (REG, Pmode, RETURN_ADDRESS_POINTER_REGNUM))\
1893 : (rtx) 0)
1894
1895 /* Structure to be filled in by compute_frame_size with register
1896 save masks, and offsets for the current function. */
1897
1898 struct mips_frame_info
1899 {
1900 long total_size; /* # bytes that the entire frame takes up */
1901 long var_size; /* # bytes that variables take up */
1902 long args_size; /* # bytes that outgoing arguments take up */
1903 long extra_size; /* # bytes of extra gunk */
1904 int gp_reg_size; /* # bytes needed to store gp regs */
1905 int fp_reg_size; /* # bytes needed to store fp regs */
1906 long mask; /* mask of saved gp registers */
1907 long fmask; /* mask of saved fp registers */
1908 long gp_save_offset; /* offset from vfp to store gp registers */
1909 long fp_save_offset; /* offset from vfp to store fp registers */
1910 long gp_sp_offset; /* offset from new sp to store gp registers */
1911 long fp_sp_offset; /* offset from new sp to store fp registers */
1912 int initialized; /* != 0 if frame size already calculated */
1913 int num_gp; /* number of gp registers saved */
1914 int num_fp; /* number of fp registers saved */
1915 };
1916
1917 extern struct mips_frame_info current_frame_info;
1918
1919 /* If defined, this macro specifies a table of register pairs used to
1920 eliminate unneeded registers that point into the stack frame. If
1921 it is not defined, the only elimination attempted by the compiler
1922 is to replace references to the frame pointer with references to
1923 the stack pointer.
1924
1925 The definition of this macro is a list of structure
1926 initializations, each of which specifies an original and
1927 replacement register.
1928
1929 On some machines, the position of the argument pointer is not
1930 known until the compilation is completed. In such a case, a
1931 separate hard register must be used for the argument pointer.
1932 This register can be eliminated by replacing it with either the
1933 frame pointer or the argument pointer, depending on whether or not
1934 the frame pointer has been eliminated.
1935
1936 In this case, you might specify:
1937 #define ELIMINABLE_REGS \
1938 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1939 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1940 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1941
1942 Note that the elimination of the argument pointer with the stack
1943 pointer is specified first since that is the preferred elimination. */
1944
1945 #define ELIMINABLE_REGS \
1946 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1947 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1948 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1949 { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1950 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1951
1952 /* A C expression that returns non-zero if the compiler is allowed to
1953 try to replace register number FROM-REG with register number
1954 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
1955 defined, and will usually be the constant 1, since most of the
1956 cases preventing register elimination are things that the compiler
1957 already knows about. */
1958
1959 #define CAN_ELIMINATE(FROM, TO) \
1960 (!frame_pointer_needed \
1961 || ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1962 || ((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
1963 && (TO) == FRAME_POINTER_REGNUM))
1964
1965 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1966 specifies the initial difference between the specified pair of
1967 registers. This macro must be defined if `ELIMINABLE_REGS' is
1968 defined. */
1969
1970 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1971 { compute_frame_size (get_frame_size ()); \
1972 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1973 (OFFSET) = 0; \
1974 else if ((FROM) == ARG_POINTER_REGNUM \
1975 && ((TO) == FRAME_POINTER_REGNUM \
1976 || (TO) == STACK_POINTER_REGNUM)) \
1977 (OFFSET) = (current_frame_info.total_size \
1978 - ((mips_abi != ABI_32 && mips_abi != ABI_EABI) \
1979 ? current_function_pretend_args_size \
1980 : 0)); \
1981 else if ((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
1982 && ((TO) == FRAME_POINTER_REGNUM \
1983 || (TO) == STACK_POINTER_REGNUM)) \
1984 (OFFSET) = current_frame_info.gp_sp_offset \
1985 + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT)) \
1986 * (BYTES_BIG_ENDIAN != 0)); \
1987 else \
1988 abort (); \
1989 }
1990
1991 /* If we generate an insn to push BYTES bytes,
1992 this says how many the stack pointer really advances by.
1993 On the vax, sp@- in a byte insn really pushes a word. */
1994
1995 /* #define PUSH_ROUNDING(BYTES) 0 */
1996
1997 /* If defined, the maximum amount of space required for outgoing
1998 arguments will be computed and placed into the variable
1999 `current_function_outgoing_args_size'. No space will be pushed
2000 onto the stack for each call; instead, the function prologue
2001 should increase the stack frame size by this amount.
2002
2003 It is not proper to define both `PUSH_ROUNDING' and
2004 `ACCUMULATE_OUTGOING_ARGS'. */
2005 #define ACCUMULATE_OUTGOING_ARGS
2006
2007 /* Offset from the argument pointer register to the first argument's
2008 address. On some machines it may depend on the data type of the
2009 function.
2010
2011 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
2012 the first argument's address.
2013
2014 On the MIPS, we must skip the first argument position if we are
2015 returning a structure or a union, to account for its address being
2016 passed in $4. However, at the current time, this produces a compiler
2017 that can't bootstrap, so comment it out for now. */
2018
2019 #if 0
2020 #define FIRST_PARM_OFFSET(FNDECL) \
2021 (FNDECL != 0 \
2022 && TREE_TYPE (FNDECL) != 0 \
2023 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
2024 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
2025 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
2026 ? UNITS_PER_WORD \
2027 : 0)
2028 #else
2029 #define FIRST_PARM_OFFSET(FNDECL) 0
2030 #endif
2031
2032 /* When a parameter is passed in a register, stack space is still
2033 allocated for it. For the MIPS, stack space must be allocated, cf
2034 Asm Lang Prog Guide page 7-8.
2035
2036 BEWARE that some space is also allocated for non existing arguments
2037 in register. In case an argument list is of form GF used registers
2038 are a0 (a2,a3), but we should push over a1... */
2039
2040 #define REG_PARM_STACK_SPACE(FNDECL) \
2041 ((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
2042
2043 /* Define this if it is the responsibility of the caller to
2044 allocate the area reserved for arguments passed in registers.
2045 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2046 of this macro is to determine whether the space is included in
2047 `current_function_outgoing_args_size'. */
2048 #define OUTGOING_REG_PARM_STACK_SPACE
2049
2050 /* Align stack frames on 64 bits (Double Word ). */
2051 #define STACK_BOUNDARY 64
2052
2053 /* Make sure 4 words are always allocated on the stack. */
2054
2055 #ifndef STACK_ARGS_ADJUST
2056 #define STACK_ARGS_ADJUST(SIZE) \
2057 { \
2058 if (SIZE.constant < 4 * UNITS_PER_WORD) \
2059 SIZE.constant = 4 * UNITS_PER_WORD; \
2060 }
2061 #endif
2062
2063 \f
2064 /* A C expression that should indicate the number of bytes of its
2065 own arguments that a function function pops on returning, or 0
2066 if the function pops no arguments and the caller must therefore
2067 pop them all after the function returns.
2068
2069 FUNDECL is the declaration node of the function (as a tree).
2070
2071 FUNTYPE is a C variable whose value is a tree node that
2072 describes the function in question. Normally it is a node of
2073 type `FUNCTION_TYPE' that describes the data type of the function.
2074 From this it is possible to obtain the data types of the value
2075 and arguments (if known).
2076
2077 When a call to a library function is being considered, FUNTYPE
2078 will contain an identifier node for the library function. Thus,
2079 if you need to distinguish among various library functions, you
2080 can do so by their names. Note that "library function" in this
2081 context means a function used to perform arithmetic, whose name
2082 is known specially in the compiler and was not mentioned in the
2083 C code being compiled.
2084
2085 STACK-SIZE is the number of bytes of arguments passed on the
2086 stack. If a variable number of bytes is passed, it is zero, and
2087 argument popping will always be the responsibility of the
2088 calling function. */
2089
2090 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
2091
2092
2093 /* Symbolic macros for the registers used to return integer and floating
2094 point values. */
2095
2096 #define GP_RETURN (GP_REG_FIRST + 2)
2097 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2098
2099 /* Symbolic macros for the first/last argument registers. */
2100
2101 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2102 #define GP_ARG_LAST (GP_REG_FIRST + 7)
2103 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2104 #define FP_ARG_LAST (FP_REG_FIRST + 15)
2105
2106 #define MAX_ARGS_IN_REGISTERS 4
2107
2108 /* Define how to find the value returned by a library function
2109 assuming the value has mode MODE. */
2110
2111 #define LIBCALL_VALUE(MODE) \
2112 gen_rtx (REG, MODE, \
2113 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
2114 && (! TARGET_SINGLE_FLOAT \
2115 || GET_MODE_SIZE (MODE) <= 4)) \
2116 ? FP_RETURN \
2117 : GP_RETURN))
2118
2119 /* Define how to find the value returned by a function.
2120 VALTYPE is the data type of the value (as a tree).
2121 If the precise function being called is known, FUNC is its FUNCTION_DECL;
2122 otherwise, FUNC is 0. */
2123
2124 #define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
2125
2126
2127 /* 1 if N is a possible register number for a function value.
2128 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2129 Currently, R2 and F0 are only implemented here (C has no complex type) */
2130
2131 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
2132
2133 /* 1 if N is a possible register number for function argument passing.
2134 We have no FP argument registers when soft-float. When FP registers
2135 are 32 bits, we can't directly reference the odd numbered ones. */
2136
2137 #define FUNCTION_ARG_REGNO_P(N) \
2138 (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
2139 || (! TARGET_SOFT_FLOAT \
2140 && ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST) \
2141 && (TARGET_FLOAT64 || (0 == (N) % 2))))
2142
2143 /* A C expression which can inhibit the returning of certain function
2144 values in registers, based on the type of value. A nonzero value says
2145 to return the function value in memory, just as large structures are
2146 always returned. Here TYPE will be a C expression of type
2147 `tree', representing the data type of the value.
2148
2149 Note that values of mode `BLKmode' must be explicitly
2150 handled by this macro. Also, the option `-fpcc-struct-return'
2151 takes effect regardless of this macro. On most systems, it is
2152 possible to leave the macro undefined; this causes a default
2153 definition to be used, whose value is the constant 1 for BLKmode
2154 values, and 0 otherwise.
2155
2156 GCC normally converts 1 byte structures into chars, 2 byte
2157 structs into shorts, and 4 byte structs into ints, and returns
2158 them this way. Defining the following macro overrides this,
2159 to give us MIPS cc compatibility. */
2160
2161 #define RETURN_IN_MEMORY(TYPE) \
2162 (TYPE_MODE (TYPE) == BLKmode)
2163 \f
2164 /* A code distinguishing the floating point format of the target
2165 machine. There are three defined values: IEEE_FLOAT_FORMAT,
2166 VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT. */
2167
2168 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
2169
2170 \f
2171 /* Define a data type for recording info about an argument list
2172 during the scan of that argument list. This data type should
2173 hold all necessary information about the function itself
2174 and about the args processed so far, enough to enable macros
2175 such as FUNCTION_ARG to determine where the next arg should go.
2176 */
2177
2178 typedef struct mips_args {
2179 int gp_reg_found; /* whether a gp register was found yet */
2180 int arg_number; /* argument number */
2181 int arg_words; /* # total words the arguments take */
2182 int fp_arg_words; /* # words for FP args (MIPS_EABI only) */
2183 int last_arg_fp; /* nonzero if last arg was FP (EABI only) */
2184 int num_adjusts; /* number of adjustments made */
2185 /* Adjustments made to args pass in regs. */
2186 /* ??? The size is doubled to work around a
2187 bug in the code that sets the adjustments
2188 in function_arg. */
2189 struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS*2];
2190 } CUMULATIVE_ARGS;
2191
2192 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2193 for a call to a function whose data type is FNTYPE.
2194 For a library call, FNTYPE is 0.
2195
2196 */
2197
2198 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
2199 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2200
2201 /* Update the data in CUM to advance over an argument
2202 of mode MODE and data type TYPE.
2203 (TYPE is null for libcalls where that information may not be available.) */
2204
2205 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2206 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2207
2208 /* Determine where to put an argument to a function.
2209 Value is zero to push the argument on the stack,
2210 or a hard register in which to store the argument.
2211
2212 MODE is the argument's machine mode.
2213 TYPE is the data type of the argument (as a tree).
2214 This is null for libcalls where that information may
2215 not be available.
2216 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2217 the preceding args and about the function being called.
2218 NAMED is nonzero if this argument is a named parameter
2219 (otherwise it is an extra parameter matching an ellipsis). */
2220
2221 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2222 function_arg( &CUM, MODE, TYPE, NAMED)
2223
2224 /* For an arg passed partly in registers and partly in memory,
2225 this is the number of registers used.
2226 For args passed entirely in registers or entirely in memory, zero. */
2227
2228 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2229 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
2230
2231 /* If defined, a C expression that gives the alignment boundary, in
2232 bits, of an argument with the specified mode and type. If it is
2233 not defined, `PARM_BOUNDARY' is used for all arguments. */
2234
2235 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
2236 (((TYPE) != 0) \
2237 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
2238 ? PARM_BOUNDARY \
2239 : TYPE_ALIGN(TYPE)) \
2240 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
2241 ? PARM_BOUNDARY \
2242 : GET_MODE_ALIGNMENT(MODE)))
2243
2244 \f
2245 /* This macro generates the assembly code for function entry.
2246 FILE is a stdio stream to output the code to.
2247 SIZE is an int: how many units of temporary storage to allocate.
2248 Refer to the array `regs_ever_live' to determine which registers
2249 to save; `regs_ever_live[I]' is nonzero if register number I
2250 is ever used in the function. This macro is responsible for
2251 knowing which registers should not be saved even if used. */
2252
2253 #define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue(FILE, SIZE)
2254
2255 /* This macro generates the assembly code for function exit,
2256 on machines that need it. If FUNCTION_EPILOGUE is not defined
2257 then individual return instructions are generated for each
2258 return statement. Args are same as for FUNCTION_PROLOGUE. */
2259
2260 #define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue(FILE, SIZE)
2261
2262 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
2263
2264 #define MUST_SAVE_REGISTER(regno) \
2265 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2266 || (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \
2267 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
2268
2269 /* ALIGN FRAMES on double word boundaries */
2270
2271 #define MIPS_STACK_ALIGN(LOC) (((LOC)+7) & ~7)
2272
2273 \f
2274 /* Output assembler code to FILE to increment profiler label # LABELNO
2275 for profiling a function entry. */
2276
2277 #define FUNCTION_PROFILER(FILE, LABELNO) \
2278 { \
2279 fprintf (FILE, "\t.set\tnoreorder\n"); \
2280 fprintf (FILE, "\t.set\tnoat\n"); \
2281 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2282 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2283 fprintf (FILE, "\tjal\t_mcount\n"); \
2284 fprintf (FILE, \
2285 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2286 TARGET_64BIT ? "dsubu" : "subu", \
2287 reg_names[STACK_POINTER_REGNUM], \
2288 reg_names[STACK_POINTER_REGNUM], \
2289 TARGET_LONG64 ? 16 : 8); \
2290 fprintf (FILE, "\t.set\treorder\n"); \
2291 fprintf (FILE, "\t.set\tat\n"); \
2292 }
2293
2294 /* Define this macro if the code for function profiling should come
2295 before the function prologue. Normally, the profiling code comes
2296 after. */
2297
2298 /* #define PROFILE_BEFORE_PROLOGUE */
2299
2300 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2301 the stack pointer does not matter. The value is tested only in
2302 functions that have frame pointers.
2303 No definition is equivalent to always zero. */
2304
2305 #define EXIT_IGNORE_STACK 1
2306
2307 \f
2308 /* A C statement to output, on the stream FILE, assembler code for a
2309 block of data that contains the constant parts of a trampoline.
2310 This code should not include a label--the label is taken care of
2311 automatically. */
2312
2313 #define TRAMPOLINE_TEMPLATE(STREAM) \
2314 { \
2315 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2316 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2317 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2318 if (TARGET_LONG64) \
2319 { \
2320 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2321 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2322 } \
2323 else \
2324 { \
2325 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2326 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2327 } \
2328 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
2329 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2330 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2331 if (TARGET_LONG64) \
2332 { \
2333 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2334 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2335 } \
2336 else \
2337 { \
2338 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2339 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2340 } \
2341 }
2342
2343 /* A C expression for the size in bytes of the trampoline, as an
2344 integer. */
2345
2346 #define TRAMPOLINE_SIZE (32 + (TARGET_LONG64 ? 16 : 8))
2347
2348 /* Alignment required for trampolines, in bits. */
2349
2350 #define TRAMPOLINE_ALIGNMENT (TARGET_LONG64 ? 64 : 32)
2351
2352 /* A C statement to initialize the variable parts of a trampoline.
2353 ADDR is an RTX for the address of the trampoline; FNADDR is an
2354 RTX for the address of the nested function; STATIC_CHAIN is an
2355 RTX for the static chain value that should be passed to the
2356 function when it is called. */
2357
2358 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2359 { \
2360 rtx addr = ADDR; \
2361 if (TARGET_LONG64) \
2362 { \
2363 emit_move_insn (gen_rtx (MEM, DImode, plus_constant (addr, 32)), FUNC); \
2364 emit_move_insn (gen_rtx (MEM, DImode, plus_constant (addr, 40)), CHAIN);\
2365 } \
2366 else \
2367 { \
2368 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 32)), FUNC); \
2369 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 36)), CHAIN);\
2370 } \
2371 \
2372 /* Flush both caches. We need to flush the data cache in case \
2373 the system has a write-back cache. */ \
2374 /* ??? Should check the return value for errors. */ \
2375 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "_flush_cache"), \
2376 0, VOIDmode, 3, addr, Pmode, \
2377 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2378 GEN_INT (3), TYPE_MODE (integer_type_node)); \
2379 }
2380 \f
2381 /* Addressing modes, and classification of registers for them. */
2382
2383 /* #define HAVE_POST_INCREMENT */
2384 /* #define HAVE_POST_DECREMENT */
2385
2386 /* #define HAVE_PRE_DECREMENT */
2387 /* #define HAVE_PRE_INCREMENT */
2388
2389 /* These assume that REGNO is a hard or pseudo reg number.
2390 They give nonzero only if REGNO is a hard reg of the suitable class
2391 or a pseudo reg currently allocated to a suitable hard reg.
2392 These definitions are NOT overridden anywhere. */
2393
2394 #define GP_REG_OR_PSEUDO_STRICT_P(regno) \
2395 GP_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno])
2396
2397 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno) \
2398 (((regno) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (regno)))
2399
2400 #define REGNO_OK_FOR_INDEX_P(regno) 0
2401 #define REGNO_OK_FOR_BASE_P(regno) GP_REG_OR_PSEUDO_STRICT_P (regno)
2402
2403 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2404 and check its validity for a certain class.
2405 We have two alternate definitions for each of them.
2406 The usual definition accepts all pseudo regs; the other rejects them all.
2407 The symbol REG_OK_STRICT causes the latter definition to be used.
2408
2409 Most source files want to accept pseudo regs in the hope that
2410 they will get allocated to the class that the insn wants them to be in.
2411 Some source files that are used after register allocation
2412 need to be strict. */
2413
2414 #ifndef REG_OK_STRICT
2415
2416 #define REG_OK_STRICT_P 0
2417 #define REG_OK_FOR_INDEX_P(X) 0
2418 #define REG_OK_FOR_BASE_P(X) GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (X))
2419
2420 #else
2421
2422 #define REG_OK_STRICT_P 1
2423 #define REG_OK_FOR_INDEX_P(X) 0
2424 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2425
2426 #endif
2427
2428 \f
2429 /* Maximum number of registers that can appear in a valid memory address. */
2430
2431 #define MAX_REGS_PER_ADDRESS 1
2432
2433 /* A C compound statement with a conditional `goto LABEL;' executed
2434 if X (an RTX) is a legitimate memory address on the target
2435 machine for a memory operand of mode MODE.
2436
2437 It usually pays to define several simpler macros to serve as
2438 subroutines for this one. Otherwise it may be too complicated
2439 to understand.
2440
2441 This macro must exist in two variants: a strict variant and a
2442 non-strict one. The strict variant is used in the reload pass.
2443 It must be defined so that any pseudo-register that has not been
2444 allocated a hard register is considered a memory reference. In
2445 contexts where some kind of register is required, a
2446 pseudo-register with no hard register must be rejected.
2447
2448 The non-strict variant is used in other passes. It must be
2449 defined to accept all pseudo-registers in every context where
2450 some kind of register is required.
2451
2452 Compiler source files that want to use the strict variant of
2453 this macro define the macro `REG_OK_STRICT'. You should use an
2454 `#ifdef REG_OK_STRICT' conditional to define the strict variant
2455 in that case and the non-strict variant otherwise.
2456
2457 Typically among the subroutines used to define
2458 `GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for
2459 acceptable registers for various purposes (one for base
2460 registers, one for index registers, and so on). Then only these
2461 subroutine macros need have two variants; the higher levels of
2462 macros may be the same whether strict or not.
2463
2464 Normally, constant addresses which are the sum of a `symbol_ref'
2465 and an integer are stored inside a `const' RTX to mark them as
2466 constant. Therefore, there is no need to recognize such sums
2467 specifically as legitimate addresses. Normally you would simply
2468 recognize any `const' as legitimate.
2469
2470 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle
2471 constant sums that are not marked with `const'. It assumes
2472 that a naked `plus' indicates indexing. If so, then you *must*
2473 reject such naked constant sums as illegitimate addresses, so
2474 that none of them will be given to `PRINT_OPERAND_ADDRESS'.
2475
2476 On some machines, whether a symbolic address is legitimate
2477 depends on the section that the address refers to. On these
2478 machines, define the macro `ENCODE_SECTION_INFO' to store the
2479 information into the `symbol_ref', and then check for it here.
2480 When you see a `const', you will have to look inside it to find
2481 the `symbol_ref' in order to determine the section. */
2482
2483 #if 1
2484 #define GO_PRINTF(x) trace(x)
2485 #define GO_PRINTF2(x,y) trace(x,y)
2486 #define GO_DEBUG_RTX(x) debug_rtx(x)
2487
2488 #else
2489 #define GO_PRINTF(x)
2490 #define GO_PRINTF2(x,y)
2491 #define GO_DEBUG_RTX(x)
2492 #endif
2493
2494 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2495 { \
2496 register rtx xinsn = (X); \
2497 \
2498 if (TARGET_DEBUG_B_MODE) \
2499 { \
2500 GO_PRINTF2 ("\n========== GO_IF_LEGITIMATE_ADDRESS, %sstrict\n", \
2501 (REG_OK_STRICT_P) ? "" : "not "); \
2502 GO_DEBUG_RTX (xinsn); \
2503 } \
2504 \
2505 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
2506 goto ADDR; \
2507 \
2508 if (CONSTANT_ADDRESS_P (xinsn) \
2509 && ! (mips_split_addresses && mips_check_split (xinsn, MODE))) \
2510 goto ADDR; \
2511 \
2512 if (GET_CODE (xinsn) == LO_SUM && mips_split_addresses) \
2513 { \
2514 register rtx xlow0 = XEXP (xinsn, 0); \
2515 register rtx xlow1 = XEXP (xinsn, 1); \
2516 \
2517 if (GET_CODE (xlow0) == REG && REG_OK_FOR_BASE_P (xlow0) \
2518 && mips_check_split (xlow1, MODE)) \
2519 goto ADDR; \
2520 } \
2521 \
2522 if (GET_CODE (xinsn) == PLUS) \
2523 { \
2524 register rtx xplus0 = XEXP (xinsn, 0); \
2525 register rtx xplus1 = XEXP (xinsn, 1); \
2526 register enum rtx_code code0 = GET_CODE (xplus0); \
2527 register enum rtx_code code1 = GET_CODE (xplus1); \
2528 \
2529 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0)) \
2530 { \
2531 if (code1 == CONST_INT \
2532 && INTVAL (xplus1) >= -32768 \
2533 && INTVAL (xplus1) + GET_MODE_SIZE (MODE) - 1 <= 32767) \
2534 goto ADDR; \
2535 \
2536 /* For some code sequences, you actually get better code by \
2537 pretending that the MIPS supports an address mode of a \
2538 constant address + a register, even though the real \
2539 machine doesn't support it. This is because the \
2540 assembler can use $r1 to load just the high 16 bits, add \
2541 in the register, and fold the low 16 bits into the memory \
2542 reference, whereas the compiler generates a 4 instruction \
2543 sequence. On the other hand, CSE is not as effective. \
2544 It would be a win to generate the lui directly, but the \
2545 MIPS assembler does not have syntax to generate the \
2546 appropriate relocation. */ \
2547 \
2548 /* Also accept CONST_INT addresses here, so no else. */ \
2549 /* Reject combining an embedded PIC text segment reference \
2550 with a register. That requires an additional \
2551 instruction. */ \
2552 /* ??? Reject combining an address with a register for the MIPS \
2553 64 bit ABI, because the SGI assembler can not handle this. */ \
2554 if (!TARGET_DEBUG_A_MODE \
2555 && (mips_abi == ABI_32 || mips_abi == ABI_EABI) \
2556 && CONSTANT_ADDRESS_P (xplus1) \
2557 && ! mips_split_addresses \
2558 && (!TARGET_EMBEDDED_PIC \
2559 || code1 != CONST \
2560 || GET_CODE (XEXP (xplus1, 0)) != MINUS)) \
2561 goto ADDR; \
2562 } \
2563 } \
2564 \
2565 if (TARGET_DEBUG_B_MODE) \
2566 GO_PRINTF ("Not a legitimate address\n"); \
2567 }
2568
2569
2570 /* A C expression that is 1 if the RTX X is a constant which is a
2571 valid address. This is defined to be the same as `CONSTANT_P (X)',
2572 but rejecting CONST_DOUBLE. */
2573 /* When pic, we must reject addresses of the form symbol+large int.
2574 This is because an instruction `sw $4,s+70000' needs to be converted
2575 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
2576 assembler would use $at as a temp to load in the large offset. In this
2577 case $at is already in use. We convert such problem addresses to
2578 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
2579 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2580 #define CONSTANT_ADDRESS_P(X) \
2581 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2582 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2583 || (GET_CODE (X) == CONST \
2584 && ! (flag_pic && pic_address_needs_scratch (X)) \
2585 && (mips_abi == ABI_32 || mips_abi == ABI_EABI))) \
2586 && (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
2587
2588 /* Define this, so that when PIC, reload won't try to reload invalid
2589 addresses which require two reload registers. */
2590
2591 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2592
2593 /* Nonzero if the constant value X is a legitimate general operand.
2594 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2595
2596 At present, GAS doesn't understand li.[sd], so don't allow it
2597 to be generated at present. Also, the MIPS assembler does not
2598 grok li.d Infinity. */
2599
2600 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2601 #define LEGITIMATE_CONSTANT_P(X) \
2602 ((GET_CODE (X) != CONST_DOUBLE \
2603 || mips_const_double_ok (X, GET_MODE (X))) \
2604 && ! (GET_CODE (X) == CONST \
2605 && mips_abi != ABI_32 && mips_abi != ABI_EABI))
2606
2607 /* A C compound statement that attempts to replace X with a valid
2608 memory address for an operand of mode MODE. WIN will be a C
2609 statement label elsewhere in the code; the macro definition may
2610 use
2611
2612 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
2613
2614 to avoid further processing if the address has become legitimate.
2615
2616 X will always be the result of a call to `break_out_memory_refs',
2617 and OLDX will be the operand that was given to that function to
2618 produce X.
2619
2620 The code generated by this macro should not alter the
2621 substructure of X. If it transforms X into a more legitimate
2622 form, it should assign X (which will always be a C variable) a
2623 new value.
2624
2625 It is not necessary for this macro to come up with a legitimate
2626 address. The compiler has standard ways of doing so in all
2627 cases. In fact, it is safe for this macro to do nothing. But
2628 often a machine-dependent strategy can generate better code.
2629
2630 For the MIPS, transform:
2631
2632 memory(X + <large int>)
2633
2634 into:
2635
2636 Y = <large int> & ~0x7fff;
2637 Z = X + Y
2638 memory (Z + (<large int> & 0x7fff));
2639
2640 This is for CSE to find several similar references, and only use one Z.
2641
2642 When PIC, convert addresses of the form memory (symbol+large int) to
2643 memory (reg+large int). */
2644
2645
2646 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2647 { \
2648 register rtx xinsn = (X); \
2649 \
2650 if (TARGET_DEBUG_B_MODE) \
2651 { \
2652 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
2653 GO_DEBUG_RTX (xinsn); \
2654 } \
2655 \
2656 if (mips_split_addresses && mips_check_split (X, MODE)) \
2657 { \
2658 /* ??? Is this ever executed? */ \
2659 X = gen_rtx (LO_SUM, Pmode, \
2660 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
2661 goto WIN; \
2662 } \
2663 \
2664 if (GET_CODE (xinsn) == CONST \
2665 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
2666 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
2667 || (mips_abi != ABI_32 && mips_abi != ABI_EABI))) \
2668 { \
2669 rtx ptr_reg = gen_reg_rtx (Pmode); \
2670 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
2671 \
2672 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
2673 \
2674 X = gen_rtx (PLUS, Pmode, ptr_reg, constant); \
2675 if (SMALL_INT (constant)) \
2676 goto WIN; \
2677 /* Otherwise we fall through so the code below will fix the \
2678 constant. */ \
2679 xinsn = X; \
2680 } \
2681 \
2682 if (GET_CODE (xinsn) == PLUS) \
2683 { \
2684 register rtx xplus0 = XEXP (xinsn, 0); \
2685 register rtx xplus1 = XEXP (xinsn, 1); \
2686 register enum rtx_code code0 = GET_CODE (xplus0); \
2687 register enum rtx_code code1 = GET_CODE (xplus1); \
2688 \
2689 if (code0 != REG && code1 == REG) \
2690 { \
2691 xplus0 = XEXP (xinsn, 1); \
2692 xplus1 = XEXP (xinsn, 0); \
2693 code0 = GET_CODE (xplus0); \
2694 code1 = GET_CODE (xplus1); \
2695 } \
2696 \
2697 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
2698 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
2699 { \
2700 rtx int_reg = gen_reg_rtx (Pmode); \
2701 rtx ptr_reg = gen_reg_rtx (Pmode); \
2702 \
2703 emit_move_insn (int_reg, \
2704 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
2705 \
2706 emit_insn (gen_rtx (SET, VOIDmode, \
2707 ptr_reg, \
2708 gen_rtx (PLUS, Pmode, xplus0, int_reg))); \
2709 \
2710 X = gen_rtx (PLUS, Pmode, ptr_reg, \
2711 GEN_INT (INTVAL (xplus1) & 0x7fff)); \
2712 goto WIN; \
2713 } \
2714 } \
2715 \
2716 if (TARGET_DEBUG_B_MODE) \
2717 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
2718 }
2719
2720
2721 /* A C statement or compound statement with a conditional `goto
2722 LABEL;' executed if memory address X (an RTX) can have different
2723 meanings depending on the machine mode of the memory reference it
2724 is used for.
2725
2726 Autoincrement and autodecrement addresses typically have
2727 mode-dependent effects because the amount of the increment or
2728 decrement is the size of the operand being addressed. Some
2729 machines have other mode-dependent addresses. Many RISC machines
2730 have no mode-dependent addresses.
2731
2732 You may assume that ADDR is a valid address for the machine. */
2733
2734 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2735
2736
2737 /* Define this macro if references to a symbol must be treated
2738 differently depending on something about the variable or
2739 function named by the symbol (such as what section it is in).
2740
2741 The macro definition, if any, is executed immediately after the
2742 rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
2743 The value of the rtl will be a `mem' whose address is a
2744 `symbol_ref'.
2745
2746 The usual thing for this macro to do is to a flag in the
2747 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
2748 name string in the `symbol_ref' (if one bit is not enough
2749 information).
2750
2751 The best way to modify the name string is by adding text to the
2752 beginning, with suitable punctuation to prevent any ambiguity.
2753 Allocate the new name in `saveable_obstack'. You will have to
2754 modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
2755 and output the name accordingly.
2756
2757 You can also check the information stored in the `symbol_ref' in
2758 the definition of `GO_IF_LEGITIMATE_ADDRESS' or
2759 `PRINT_OPERAND_ADDRESS'. */
2760
2761 #define ENCODE_SECTION_INFO(DECL) \
2762 do \
2763 { \
2764 if (TARGET_EMBEDDED_PIC) \
2765 { \
2766 if (TREE_CODE (DECL) == VAR_DECL) \
2767 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2768 else if (TREE_CODE (DECL) == FUNCTION_DECL) \
2769 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
2770 else if (TREE_CODE (DECL) == STRING_CST \
2771 && ! flag_writable_strings) \
2772 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 0; \
2773 else \
2774 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
2775 } \
2776 \
2777 else if (TARGET_GP_OPT && TREE_CODE (DECL) == VAR_DECL) \
2778 { \
2779 int size = int_size_in_bytes (TREE_TYPE (DECL)); \
2780 \
2781 if (size > 0 && size <= mips_section_threshold) \
2782 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2783 } \
2784 \
2785 else if (HALF_PIC_P ()) \
2786 HALF_PIC_ENCODE (DECL); \
2787 } \
2788 while (0)
2789
2790 \f
2791 /* Specify the machine mode that this machine uses
2792 for the index in the tablejump instruction. */
2793 #define CASE_VECTOR_MODE (TARGET_LONG64 ? DImode : SImode)
2794
2795 /* Define this if the tablejump instruction expects the table
2796 to contain offsets from the address of the table.
2797 Do not define this if the table should contain absolute addresses. */
2798 /* #define CASE_VECTOR_PC_RELATIVE */
2799
2800 /* Specify the tree operation to be used to convert reals to integers. */
2801 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2802
2803 /* This is the kind of divide that is easiest to do in the general case. */
2804 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2805
2806 /* Define this as 1 if `char' should by default be signed; else as 0. */
2807 #ifndef DEFAULT_SIGNED_CHAR
2808 #define DEFAULT_SIGNED_CHAR 1
2809 #endif
2810
2811 /* Max number of bytes we can move from memory to memory
2812 in one reasonably fast instruction. */
2813 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2814 #define MAX_MOVE_MAX 8
2815
2816 /* Define this macro as a C expression which is nonzero if
2817 accessing less than a word of memory (i.e. a `char' or a
2818 `short') is no faster than accessing a word of memory, i.e., if
2819 such access require more than one instruction or if there is no
2820 difference in cost between byte and (aligned) word loads.
2821
2822 On RISC machines, it tends to generate better code to define
2823 this as 1, since it avoids making a QI or HI mode register. */
2824 #define SLOW_BYTE_ACCESS 1
2825
2826 /* We assume that the store-condition-codes instructions store 0 for false
2827 and some other value for true. This is the value stored for true. */
2828
2829 #define STORE_FLAG_VALUE 1
2830
2831 /* Define this if zero-extension is slow (more than one real instruction). */
2832 #define SLOW_ZERO_EXTEND
2833
2834 /* Define this to be nonzero if shift instructions ignore all but the low-order
2835 few bits. */
2836 #define SHIFT_COUNT_TRUNCATED 1
2837
2838 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2839 is done just by pretending it is already truncated. */
2840 /* In 64 bit mode, 32 bit instructions require that register values be properly
2841 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
2842 converts a value >32 bits to a value <32 bits. */
2843 /* ??? This results in inefficient code for 64 bit to 32 conversions.
2844 Something needs to be done about this. Perhaps not use any 32 bit
2845 instructions? Perhaps use PROMOTE_MODE? */
2846 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2847 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2848
2849 /* Specify the machine mode that pointers have.
2850 After generation of rtl, the compiler makes no further distinction
2851 between pointers and any other objects of this machine mode. */
2852
2853 #define Pmode (TARGET_LONG64 ? DImode : SImode)
2854
2855 /* A function address in a call instruction
2856 is a word address (for indexing purposes)
2857 so give the MEM rtx a words's mode. */
2858
2859 #define FUNCTION_MODE (TARGET_LONG64 ? DImode : SImode)
2860
2861 /* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
2862 memset, instead of the BSD functions bcopy and bzero. */
2863
2864 #if defined(MIPS_SYSV) || defined(OSF_OS)
2865 #define TARGET_MEM_FUNCTIONS
2866 #endif
2867
2868 \f
2869 /* A part of a C `switch' statement that describes the relative
2870 costs of constant RTL expressions. It must contain `case'
2871 labels for expression codes `const_int', `const', `symbol_ref',
2872 `label_ref' and `const_double'. Each case must ultimately reach
2873 a `return' statement to return the relative cost of the use of
2874 that kind of constant value in an expression. The cost may
2875 depend on the precise value of the constant, which is available
2876 for examination in X.
2877
2878 CODE is the expression code--redundant, since it can be obtained
2879 with `GET_CODE (X)'. */
2880
2881 #define CONST_COSTS(X,CODE,OUTER_CODE) \
2882 case CONST_INT: \
2883 /* Always return 0, since we don't have different sized \
2884 instructions, hence different costs according to Richard \
2885 Kenner */ \
2886 return 0; \
2887 \
2888 case LABEL_REF: \
2889 return COSTS_N_INSNS (2); \
2890 \
2891 case CONST: \
2892 { \
2893 rtx offset = const0_rtx; \
2894 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
2895 \
2896 if (GET_CODE (symref) == LABEL_REF) \
2897 return COSTS_N_INSNS (2); \
2898 \
2899 if (GET_CODE (symref) != SYMBOL_REF) \
2900 return COSTS_N_INSNS (4); \
2901 \
2902 /* let's be paranoid.... */ \
2903 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
2904 return COSTS_N_INSNS (2); \
2905 \
2906 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
2907 } \
2908 \
2909 case SYMBOL_REF: \
2910 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
2911 \
2912 case CONST_DOUBLE: \
2913 { \
2914 rtx high, low; \
2915 split_double (X, &high, &low); \
2916 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
2917 || low == CONST0_RTX (GET_MODE (low))) \
2918 ? 2 : 4); \
2919 }
2920
2921 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2922 This can be used, for example, to indicate how costly a multiply
2923 instruction is. In writing this macro, you can use the construct
2924 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
2925
2926 This macro is optional; do not define it if the default cost
2927 assumptions are adequate for the target machine.
2928
2929 If -mdebugd is used, change the multiply cost to 2, so multiply by
2930 a constant isn't converted to a series of shifts. This helps
2931 strength reduction, and also makes it easier to identify what the
2932 compiler is doing. */
2933
2934 /* ??? Fix this to be right for the R8000. */
2935 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2936 case MEM: \
2937 { \
2938 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
2939 if (simple_memory_operand (X, GET_MODE (X))) \
2940 return COSTS_N_INSNS (num_words); \
2941 \
2942 return COSTS_N_INSNS (2*num_words); \
2943 } \
2944 \
2945 case FFS: \
2946 return COSTS_N_INSNS (6); \
2947 \
2948 case NOT: \
2949 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
2950 \
2951 case AND: \
2952 case IOR: \
2953 case XOR: \
2954 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
2955 return COSTS_N_INSNS (2); \
2956 \
2957 return COSTS_N_INSNS (1); \
2958 \
2959 case ASHIFT: \
2960 case ASHIFTRT: \
2961 case LSHIFTRT: \
2962 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
2963 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
2964 \
2965 return COSTS_N_INSNS (1); \
2966 \
2967 case ABS: \
2968 { \
2969 enum machine_mode xmode = GET_MODE (X); \
2970 if (xmode == SFmode || xmode == DFmode) \
2971 return COSTS_N_INSNS (1); \
2972 \
2973 return COSTS_N_INSNS (4); \
2974 } \
2975 \
2976 case PLUS: \
2977 case MINUS: \
2978 { \
2979 enum machine_mode xmode = GET_MODE (X); \
2980 if (xmode == SFmode || xmode == DFmode) \
2981 { \
2982 if (mips_cpu == PROCESSOR_R3000 \
2983 || mips_cpu == PROCESSOR_R3900) \
2984 return COSTS_N_INSNS (2); \
2985 else if (mips_cpu == PROCESSOR_R6000) \
2986 return COSTS_N_INSNS (3); \
2987 else \
2988 return COSTS_N_INSNS (6); \
2989 } \
2990 \
2991 if (xmode == DImode && !TARGET_64BIT) \
2992 return COSTS_N_INSNS (4); \
2993 \
2994 return COSTS_N_INSNS (1); \
2995 } \
2996 \
2997 case NEG: \
2998 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 4 : 1); \
2999 \
3000 case MULT: \
3001 { \
3002 enum machine_mode xmode = GET_MODE (X); \
3003 if (xmode == SFmode) \
3004 { \
3005 if (mips_cpu == PROCESSOR_R3000 \
3006 || mips_cpu == PROCESSOR_R3900 \
3007 || mips_cpu == PROCESSOR_R5000) \
3008 return COSTS_N_INSNS (4); \
3009 else if (mips_cpu == PROCESSOR_R6000) \
3010 return COSTS_N_INSNS (5); \
3011 else \
3012 return COSTS_N_INSNS (7); \
3013 } \
3014 \
3015 if (xmode == DFmode) \
3016 { \
3017 if (mips_cpu == PROCESSOR_R3000 \
3018 || mips_cpu == PROCESSOR_R3900 \
3019 || mips_cpu == PROCESSOR_R5000) \
3020 return COSTS_N_INSNS (5); \
3021 else if (mips_cpu == PROCESSOR_R6000) \
3022 return COSTS_N_INSNS (6); \
3023 else \
3024 return COSTS_N_INSNS (8); \
3025 } \
3026 \
3027 if (mips_cpu == PROCESSOR_R3000) \
3028 return COSTS_N_INSNS (12); \
3029 else if (mips_cpu == PROCESSOR_R3900) \
3030 return COSTS_N_INSNS (2); \
3031 else if (mips_cpu == PROCESSOR_R6000) \
3032 return COSTS_N_INSNS (17); \
3033 else if (mips_cpu == PROCESSOR_R5000) \
3034 return COSTS_N_INSNS (5); \
3035 else \
3036 return COSTS_N_INSNS (10); \
3037 } \
3038 \
3039 case DIV: \
3040 case MOD: \
3041 { \
3042 enum machine_mode xmode = GET_MODE (X); \
3043 if (xmode == SFmode) \
3044 { \
3045 if (mips_cpu == PROCESSOR_R3000 \
3046 || mips_cpu == PROCESSOR_R3900) \
3047 return COSTS_N_INSNS (12); \
3048 else if (mips_cpu == PROCESSOR_R6000) \
3049 return COSTS_N_INSNS (15); \
3050 else \
3051 return COSTS_N_INSNS (23); \
3052 } \
3053 \
3054 if (xmode == DFmode) \
3055 { \
3056 if (mips_cpu == PROCESSOR_R3000 \
3057 || mips_cpu == PROCESSOR_R3900) \
3058 return COSTS_N_INSNS (19); \
3059 else if (mips_cpu == PROCESSOR_R6000) \
3060 return COSTS_N_INSNS (16); \
3061 else \
3062 return COSTS_N_INSNS (36); \
3063 } \
3064 } \
3065 /* fall through */ \
3066 \
3067 case UDIV: \
3068 case UMOD: \
3069 if (mips_cpu == PROCESSOR_R3000 \
3070 || mips_cpu == PROCESSOR_R3900) \
3071 return COSTS_N_INSNS (35); \
3072 else if (mips_cpu == PROCESSOR_R6000) \
3073 return COSTS_N_INSNS (38); \
3074 else if (mips_cpu == PROCESSOR_R5000) \
3075 return COSTS_N_INSNS (36); \
3076 else \
3077 return COSTS_N_INSNS (69); \
3078 \
3079 case SIGN_EXTEND: \
3080 /* A sign extend from SImode to DImode in 64 bit mode is often \
3081 zero instructions, because the result can often be used \
3082 directly by another instruction; we'll call it one. */ \
3083 if (TARGET_64BIT && GET_MODE (X) == DImode \
3084 && GET_MODE (XEXP (X, 0)) == SImode) \
3085 return COSTS_N_INSNS (1); \
3086 else \
3087 return COSTS_N_INSNS (2); \
3088 \
3089 case ZERO_EXTEND: \
3090 if (TARGET_64BIT && GET_MODE (X) == DImode \
3091 && GET_MODE (XEXP (X, 0)) == SImode) \
3092 return COSTS_N_INSNS (2); \
3093 else \
3094 return COSTS_N_INSNS (1);
3095
3096 /* An expression giving the cost of an addressing mode that
3097 contains ADDRESS. If not defined, the cost is computed from the
3098 form of the ADDRESS expression and the `CONST_COSTS' values.
3099
3100 For most CISC machines, the default cost is a good approximation
3101 of the true cost of the addressing mode. However, on RISC
3102 machines, all instructions normally have the same length and
3103 execution time. Hence all addresses will have equal costs.
3104
3105 In cases where more than one form of an address is known, the
3106 form with the lowest cost will be used. If multiple forms have
3107 the same, lowest, cost, the one that is the most complex will be
3108 used.
3109
3110 For example, suppose an address that is equal to the sum of a
3111 register and a constant is used twice in the same basic block.
3112 When this macro is not defined, the address will be computed in
3113 a register and memory references will be indirect through that
3114 register. On machines where the cost of the addressing mode
3115 containing the sum is no higher than that of a simple indirect
3116 reference, this will produce an additional instruction and
3117 possibly require an additional register. Proper specification
3118 of this macro eliminates this overhead for such machines.
3119
3120 Similar use of this macro is made in strength reduction of loops.
3121
3122 ADDRESS need not be valid as an address. In such a case, the
3123 cost is not relevant and can be any value; invalid addresses
3124 need not be assigned a different cost.
3125
3126 On machines where an address involving more than one register is
3127 as cheap as an address computation involving only one register,
3128 defining `ADDRESS_COST' to reflect this can cause two registers
3129 to be live over a region of code where only one would have been
3130 if `ADDRESS_COST' were not defined in that manner. This effect
3131 should be considered in the definition of this macro.
3132 Equivalent costs should probably only be given to addresses with
3133 different numbers of registers on machines with lots of registers.
3134
3135 This macro will normally either not be defined or be defined as
3136 a constant. */
3137
3138 #define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
3139
3140 /* A C expression for the cost of moving data from a register in
3141 class FROM to one in class TO. The classes are expressed using
3142 the enumeration values such as `GENERAL_REGS'. A value of 2 is
3143 the default; other values are interpreted relative to that.
3144
3145 It is not required that the cost always equal 2 when FROM is the
3146 same as TO; on some machines it is expensive to move between
3147 registers if they are not general registers.
3148
3149 If reload sees an insn consisting of a single `set' between two
3150 hard registers, and if `REGISTER_MOVE_COST' applied to their
3151 classes returns a value of 2, reload does not check to ensure
3152 that the constraints of the insn are met. Setting a cost of
3153 other than 2 will allow reload to verify that the constraints are
3154 met. You should do this if the `movM' pattern's constraints do
3155 not allow such copying. */
3156
3157 #define REGISTER_MOVE_COST(FROM, TO) \
3158 ((FROM) == GR_REGS && (TO) == GR_REGS ? 2 \
3159 : (FROM) == FP_REGS && (TO) == FP_REGS ? 2 \
3160 : (FROM) == GR_REGS && (TO) == FP_REGS ? 4 \
3161 : (FROM) == FP_REGS && (TO) == GR_REGS ? 4 \
3162 : (((FROM) == HI_REG || (FROM) == LO_REG \
3163 || (FROM) == MD_REGS || (FROM) == HILO_REG) \
3164 && (TO) == GR_REGS) ? 6 \
3165 : (((TO) == HI_REG || (TO) == LO_REG \
3166 || (TO) == MD_REGS || (FROM) == HILO_REG) \
3167 && (FROM) == GR_REGS) ? 6 \
3168 : (FROM) == ST_REGS && (TO) == GR_REGS ? 4 \
3169 : (FROM) == FP_REGS && (TO) == ST_REGS ? 8 \
3170 : 12)
3171
3172 /* ??? Fix this to be right for the R8000. */
3173 #define MEMORY_MOVE_COST(MODE) \
3174 ((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 6 : 4)
3175
3176 /* A C expression for the cost of a branch instruction. A value of
3177 1 is the default; other values are interpreted relative to that. */
3178
3179 /* ??? Fix this to be right for the R8000. */
3180 #define BRANCH_COST \
3181 ((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 2 : 1)
3182
3183 /* A C statement (sans semicolon) to update the integer variable COST
3184 based on the relationship between INSN that is dependent on
3185 DEP_INSN through the dependence LINK. The default is to make no
3186 adjustment to COST. On the MIPS, ignore the cost of anti- and
3187 output-dependencies. */
3188
3189 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
3190 if (REG_NOTE_KIND (LINK) != 0) \
3191 (COST) = 0; /* Anti or output dependence. */
3192 \f
3193 /* Optionally define this if you have added predicates to
3194 `MACHINE.c'. This macro is called within an initializer of an
3195 array of structures. The first field in the structure is the
3196 name of a predicate and the second field is an array of rtl
3197 codes. For each predicate, list all rtl codes that can be in
3198 expressions matched by the predicate. The list should have a
3199 trailing comma. Here is an example of two entries in the list
3200 for a typical RISC machine:
3201
3202 #define PREDICATE_CODES \
3203 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
3204 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3205
3206 Defining this macro does not affect the generated code (however,
3207 incorrect definitions that omit an rtl code that may be matched
3208 by the predicate can cause the compiler to malfunction).
3209 Instead, it allows the table built by `genrecog' to be more
3210 compact and efficient, thus speeding up the compiler. The most
3211 important predicates to include in the list specified by this
3212 macro are thoses used in the most insn patterns. */
3213
3214 #define PREDICATE_CODES \
3215 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
3216 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
3217 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
3218 {"reg_or_0_operand", { REG, CONST_INT, SUBREG }}, \
3219 {"small_int", { CONST_INT }}, \
3220 {"large_int", { CONST_INT }}, \
3221 {"mips_const_double_ok", { CONST_DOUBLE }}, \
3222 {"const_float_1_operand", { CONST_DOUBLE }}, \
3223 {"simple_memory_operand", { MEM, SUBREG }}, \
3224 {"equality_op", { EQ, NE }}, \
3225 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
3226 LTU, LEU }}, \
3227 {"pc_or_label_operand", { PC, LABEL_REF }}, \
3228 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
3229 {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3230 SYMBOL_REF, LABEL_REF, SUBREG, \
3231 REG, MEM}}, \
3232 {"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3233 SYMBOL_REF, LABEL_REF, SUBREG, REG, \
3234 MEM, SIGN_EXTEND }}, \
3235 {"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
3236 {"se_reg_or_0_operand", { REG, CONST_INT, SUBREG, \
3237 SIGN_EXTEND }}, \
3238 {"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
3239 SIGN_EXTEND }}, \
3240 {"se_arith_operand", { REG, CONST_INT, SUBREG, \
3241 SIGN_EXTEND }}, \
3242 {"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3243 SYMBOL_REF, LABEL_REF, SUBREG, \
3244 REG, SIGN_EXTEND }}, \
3245 {"se_nonimmediate_operand", { SUBREG, REG, MEM, SIGN_EXTEND }},
3246
3247 \f
3248 /* If defined, a C statement to be executed just prior to the
3249 output of assembler code for INSN, to modify the extracted
3250 operands so they will be output differently.
3251
3252 Here the argument OPVEC is the vector containing the operands
3253 extracted from INSN, and NOPERANDS is the number of elements of
3254 the vector which contain meaningful data for this insn. The
3255 contents of this vector are what will be used to convert the
3256 insn template into assembler code, so you can change the
3257 assembler output by changing the contents of the vector.
3258
3259 We use it to check if the current insn needs a nop in front of it
3260 because of load delays, and also to update the delay slot
3261 statistics. */
3262
3263 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3264 final_prescan_insn (INSN, OPVEC, NOPERANDS)
3265
3266 \f
3267 /* Control the assembler format that we output. */
3268
3269 /* Output at beginning of assembler file.
3270 If we are optimizing to use the global pointer, create a temporary
3271 file to hold all of the text stuff, and write it out to the end.
3272 This is needed because the MIPS assembler is evidently one pass,
3273 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
3274 declaration when the code is processed, it generates a two
3275 instruction sequence. */
3276
3277 #define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
3278
3279 /* Output to assembler file text saying following lines
3280 may contain character constants, extra white space, comments, etc. */
3281
3282 #define ASM_APP_ON " #APP\n"
3283
3284 /* Output to assembler file text saying following lines
3285 no longer contain unusual constructs. */
3286
3287 #define ASM_APP_OFF " #NO_APP\n"
3288
3289 /* How to refer to registers in assembler output.
3290 This sequence is indexed by compiler's hard-register-number (see above).
3291
3292 In order to support the two different conventions for register names,
3293 we use the name of a table set up in mips.c, which is overwritten
3294 if -mrnames is used. */
3295
3296 #define REGISTER_NAMES \
3297 { \
3298 &mips_reg_names[ 0][0], \
3299 &mips_reg_names[ 1][0], \
3300 &mips_reg_names[ 2][0], \
3301 &mips_reg_names[ 3][0], \
3302 &mips_reg_names[ 4][0], \
3303 &mips_reg_names[ 5][0], \
3304 &mips_reg_names[ 6][0], \
3305 &mips_reg_names[ 7][0], \
3306 &mips_reg_names[ 8][0], \
3307 &mips_reg_names[ 9][0], \
3308 &mips_reg_names[10][0], \
3309 &mips_reg_names[11][0], \
3310 &mips_reg_names[12][0], \
3311 &mips_reg_names[13][0], \
3312 &mips_reg_names[14][0], \
3313 &mips_reg_names[15][0], \
3314 &mips_reg_names[16][0], \
3315 &mips_reg_names[17][0], \
3316 &mips_reg_names[18][0], \
3317 &mips_reg_names[19][0], \
3318 &mips_reg_names[20][0], \
3319 &mips_reg_names[21][0], \
3320 &mips_reg_names[22][0], \
3321 &mips_reg_names[23][0], \
3322 &mips_reg_names[24][0], \
3323 &mips_reg_names[25][0], \
3324 &mips_reg_names[26][0], \
3325 &mips_reg_names[27][0], \
3326 &mips_reg_names[28][0], \
3327 &mips_reg_names[29][0], \
3328 &mips_reg_names[30][0], \
3329 &mips_reg_names[31][0], \
3330 &mips_reg_names[32][0], \
3331 &mips_reg_names[33][0], \
3332 &mips_reg_names[34][0], \
3333 &mips_reg_names[35][0], \
3334 &mips_reg_names[36][0], \
3335 &mips_reg_names[37][0], \
3336 &mips_reg_names[38][0], \
3337 &mips_reg_names[39][0], \
3338 &mips_reg_names[40][0], \
3339 &mips_reg_names[41][0], \
3340 &mips_reg_names[42][0], \
3341 &mips_reg_names[43][0], \
3342 &mips_reg_names[44][0], \
3343 &mips_reg_names[45][0], \
3344 &mips_reg_names[46][0], \
3345 &mips_reg_names[47][0], \
3346 &mips_reg_names[48][0], \
3347 &mips_reg_names[49][0], \
3348 &mips_reg_names[50][0], \
3349 &mips_reg_names[51][0], \
3350 &mips_reg_names[52][0], \
3351 &mips_reg_names[53][0], \
3352 &mips_reg_names[54][0], \
3353 &mips_reg_names[55][0], \
3354 &mips_reg_names[56][0], \
3355 &mips_reg_names[57][0], \
3356 &mips_reg_names[58][0], \
3357 &mips_reg_names[59][0], \
3358 &mips_reg_names[60][0], \
3359 &mips_reg_names[61][0], \
3360 &mips_reg_names[62][0], \
3361 &mips_reg_names[63][0], \
3362 &mips_reg_names[64][0], \
3363 &mips_reg_names[65][0], \
3364 &mips_reg_names[66][0], \
3365 &mips_reg_names[67][0], \
3366 &mips_reg_names[68][0], \
3367 &mips_reg_names[69][0], \
3368 &mips_reg_names[70][0], \
3369 &mips_reg_names[71][0], \
3370 &mips_reg_names[72][0], \
3371 &mips_reg_names[73][0], \
3372 &mips_reg_names[74][0], \
3373 &mips_reg_names[75][0], \
3374 }
3375
3376 /* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
3377 So define this for it. */
3378 #define DEBUG_REGISTER_NAMES \
3379 { \
3380 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
3381 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
3382 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
3383 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
3384 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
3385 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
3386 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
3387 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
3388 "hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
3389 "$fcc5","$fcc6","$fcc7","$rap" \
3390 }
3391
3392 /* If defined, a C initializer for an array of structures
3393 containing a name and a register number. This macro defines
3394 additional names for hard registers, thus allowing the `asm'
3395 option in declarations to refer to registers using alternate
3396 names.
3397
3398 We define both names for the integer registers here. */
3399
3400 #define ADDITIONAL_REGISTER_NAMES \
3401 { \
3402 { "$0", 0 + GP_REG_FIRST }, \
3403 { "$1", 1 + GP_REG_FIRST }, \
3404 { "$2", 2 + GP_REG_FIRST }, \
3405 { "$3", 3 + GP_REG_FIRST }, \
3406 { "$4", 4 + GP_REG_FIRST }, \
3407 { "$5", 5 + GP_REG_FIRST }, \
3408 { "$6", 6 + GP_REG_FIRST }, \
3409 { "$7", 7 + GP_REG_FIRST }, \
3410 { "$8", 8 + GP_REG_FIRST }, \
3411 { "$9", 9 + GP_REG_FIRST }, \
3412 { "$10", 10 + GP_REG_FIRST }, \
3413 { "$11", 11 + GP_REG_FIRST }, \
3414 { "$12", 12 + GP_REG_FIRST }, \
3415 { "$13", 13 + GP_REG_FIRST }, \
3416 { "$14", 14 + GP_REG_FIRST }, \
3417 { "$15", 15 + GP_REG_FIRST }, \
3418 { "$16", 16 + GP_REG_FIRST }, \
3419 { "$17", 17 + GP_REG_FIRST }, \
3420 { "$18", 18 + GP_REG_FIRST }, \
3421 { "$19", 19 + GP_REG_FIRST }, \
3422 { "$20", 20 + GP_REG_FIRST }, \
3423 { "$21", 21 + GP_REG_FIRST }, \
3424 { "$22", 22 + GP_REG_FIRST }, \
3425 { "$23", 23 + GP_REG_FIRST }, \
3426 { "$24", 24 + GP_REG_FIRST }, \
3427 { "$25", 25 + GP_REG_FIRST }, \
3428 { "$26", 26 + GP_REG_FIRST }, \
3429 { "$27", 27 + GP_REG_FIRST }, \
3430 { "$28", 28 + GP_REG_FIRST }, \
3431 { "$29", 29 + GP_REG_FIRST }, \
3432 { "$30", 30 + GP_REG_FIRST }, \
3433 { "$31", 31 + GP_REG_FIRST }, \
3434 { "$sp", 29 + GP_REG_FIRST }, \
3435 { "$fp", 30 + GP_REG_FIRST }, \
3436 { "at", 1 + GP_REG_FIRST }, \
3437 { "v0", 2 + GP_REG_FIRST }, \
3438 { "v1", 3 + GP_REG_FIRST }, \
3439 { "a0", 4 + GP_REG_FIRST }, \
3440 { "a1", 5 + GP_REG_FIRST }, \
3441 { "a2", 6 + GP_REG_FIRST }, \
3442 { "a3", 7 + GP_REG_FIRST }, \
3443 { "t0", 8 + GP_REG_FIRST }, \
3444 { "t1", 9 + GP_REG_FIRST }, \
3445 { "t2", 10 + GP_REG_FIRST }, \
3446 { "t3", 11 + GP_REG_FIRST }, \
3447 { "t4", 12 + GP_REG_FIRST }, \
3448 { "t5", 13 + GP_REG_FIRST }, \
3449 { "t6", 14 + GP_REG_FIRST }, \
3450 { "t7", 15 + GP_REG_FIRST }, \
3451 { "s0", 16 + GP_REG_FIRST }, \
3452 { "s1", 17 + GP_REG_FIRST }, \
3453 { "s2", 18 + GP_REG_FIRST }, \
3454 { "s3", 19 + GP_REG_FIRST }, \
3455 { "s4", 20 + GP_REG_FIRST }, \
3456 { "s5", 21 + GP_REG_FIRST }, \
3457 { "s6", 22 + GP_REG_FIRST }, \
3458 { "s7", 23 + GP_REG_FIRST }, \
3459 { "t8", 24 + GP_REG_FIRST }, \
3460 { "t9", 25 + GP_REG_FIRST }, \
3461 { "k0", 26 + GP_REG_FIRST }, \
3462 { "k1", 27 + GP_REG_FIRST }, \
3463 { "gp", 28 + GP_REG_FIRST }, \
3464 { "sp", 29 + GP_REG_FIRST }, \
3465 { "fp", 30 + GP_REG_FIRST }, \
3466 { "ra", 31 + GP_REG_FIRST }, \
3467 { "$sp", 29 + GP_REG_FIRST }, \
3468 { "$fp", 30 + GP_REG_FIRST } \
3469 }
3470
3471 /* Define results of standard character escape sequences. */
3472 #define TARGET_BELL 007
3473 #define TARGET_BS 010
3474 #define TARGET_TAB 011
3475 #define TARGET_NEWLINE 012
3476 #define TARGET_VT 013
3477 #define TARGET_FF 014
3478 #define TARGET_CR 015
3479
3480 /* A C compound statement to output to stdio stream STREAM the
3481 assembler syntax for an instruction operand X. X is an RTL
3482 expression.
3483
3484 CODE is a value that can be used to specify one of several ways
3485 of printing the operand. It is used when identical operands
3486 must be printed differently depending on the context. CODE
3487 comes from the `%' specification that was used to request
3488 printing of the operand. If the specification was just `%DIGIT'
3489 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
3490 is the ASCII code for LTR.
3491
3492 If X is a register, this macro should print the register's name.
3493 The names can be found in an array `reg_names' whose type is
3494 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
3495
3496 When the machine description has a specification `%PUNCT' (a `%'
3497 followed by a punctuation character), this macro is called with
3498 a null pointer for X and the punctuation character for CODE.
3499
3500 See mips.c for the MIPS specific codes. */
3501
3502 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3503
3504 /* A C expression which evaluates to true if CODE is a valid
3505 punctuation character for use in the `PRINT_OPERAND' macro. If
3506 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
3507 punctuation characters (except for the standard one, `%') are
3508 used in this way. */
3509
3510 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
3511
3512 /* A C compound statement to output to stdio stream STREAM the
3513 assembler syntax for an instruction operand that is a memory
3514 reference whose address is ADDR. ADDR is an RTL expression.
3515
3516 On some machines, the syntax for a symbolic address depends on
3517 the section that the address refers to. On these machines,
3518 define the macro `ENCODE_SECTION_INFO' to store the information
3519 into the `symbol_ref', and then check for it here. */
3520
3521 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3522
3523
3524 /* A C statement, to be executed after all slot-filler instructions
3525 have been output. If necessary, call `dbr_sequence_length' to
3526 determine the number of slots filled in a sequence (zero if not
3527 currently outputting a sequence), to decide how many no-ops to
3528 output, or whatever.
3529
3530 Don't define this macro if it has nothing to do, but it is
3531 helpful in reading assembly output if the extent of the delay
3532 sequence is made explicit (e.g. with white space).
3533
3534 Note that output routines for instructions with delay slots must
3535 be prepared to deal with not being output as part of a sequence
3536 (i.e. when the scheduling pass is not run, or when no slot
3537 fillers could be found.) The variable `final_sequence' is null
3538 when not processing a sequence, otherwise it contains the
3539 `sequence' rtx being output. */
3540
3541 #define DBR_OUTPUT_SEQEND(STREAM) \
3542 do \
3543 { \
3544 if (set_nomacro > 0 && --set_nomacro == 0) \
3545 fputs ("\t.set\tmacro\n", STREAM); \
3546 \
3547 if (set_noreorder > 0 && --set_noreorder == 0) \
3548 fputs ("\t.set\treorder\n", STREAM); \
3549 \
3550 dslots_jump_filled++; \
3551 fputs ("\n", STREAM); \
3552 } \
3553 while (0)
3554
3555
3556 /* How to tell the debugger about changes of source files. Note, the
3557 mips ECOFF format cannot deal with changes of files inside of
3558 functions, which means the output of parser generators like bison
3559 is generally not debuggable without using the -l switch. Lose,
3560 lose, lose. Silicon graphics seems to want all .file's hardwired
3561 to 1. */
3562
3563 #ifndef SET_FILE_NUMBER
3564 #define SET_FILE_NUMBER() ++num_source_filenames
3565 #endif
3566
3567 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
3568 mips_output_filename (STREAM, NAME)
3569
3570 /* This is defined so that it can be overridden in iris6.h. */
3571 #define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
3572 do \
3573 { \
3574 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
3575 output_quoted_string (STREAM, NAME); \
3576 fputs ("\n", STREAM); \
3577 } \
3578 while (0)
3579
3580 /* This is how to output a note the debugger telling it the line number
3581 to which the following sequence of instructions corresponds.
3582 Silicon graphics puts a label after each .loc. */
3583
3584 #ifndef LABEL_AFTER_LOC
3585 #define LABEL_AFTER_LOC(STREAM)
3586 #endif
3587
3588 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
3589 mips_output_lineno (STREAM, LINE)
3590
3591 /* The MIPS implementation uses some labels for it's own purpose. The
3592 following lists what labels are created, and are all formed by the
3593 pattern $L[a-z].*. The machine independent portion of GCC creates
3594 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
3595
3596 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
3597 $Lb[0-9]+ Begin blocks for MIPS debug support
3598 $Lc[0-9]+ Label for use in s<xx> operation.
3599 $Le[0-9]+ End blocks for MIPS debug support
3600 $Lp\..+ Half-pic labels. */
3601
3602 /* This is how to output the definition of a user-level label named NAME,
3603 such as the label on a static function or variable NAME.
3604
3605 If we are optimizing the gp, remember that this label has been put
3606 out, so we know not to emit an .extern for it in mips_asm_file_end.
3607 We use one of the common bits in the IDENTIFIER tree node for this,
3608 since those bits seem to be unused, and we don't have any method
3609 of getting the decl nodes from the name. */
3610
3611 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
3612 do { \
3613 assemble_name (STREAM, NAME); \
3614 fputs (":\n", STREAM); \
3615 } while (0)
3616
3617
3618 /* A C statement (sans semicolon) to output to the stdio stream
3619 STREAM any text necessary for declaring the name NAME of an
3620 initialized variable which is being defined. This macro must
3621 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
3622 The argument DECL is the `VAR_DECL' tree node representing the
3623 variable.
3624
3625 If this macro is not defined, then the variable name is defined
3626 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
3627
3628 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
3629 do \
3630 { \
3631 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
3632 HALF_PIC_DECLARE (NAME); \
3633 } \
3634 while (0)
3635
3636
3637 /* This is how to output a command to make the user-level label named NAME
3638 defined for reference from other files. */
3639
3640 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
3641 do { \
3642 fputs ("\t.globl\t", STREAM); \
3643 assemble_name (STREAM, NAME); \
3644 fputs ("\n", STREAM); \
3645 } while (0)
3646
3647 /* This says how to define a global common symbol. */
3648
3649 #define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
3650 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", (SIZE))
3651
3652 /* This says how to define a local common symbol (ie, not visible to
3653 linker). */
3654
3655 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
3656 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
3657
3658
3659 /* This says how to output an external. It would be possible not to
3660 output anything and let undefined symbol become external. However
3661 the assembler uses length information on externals to allocate in
3662 data/sdata bss/sbss, thereby saving exec time. */
3663
3664 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
3665 mips_output_external(STREAM,DECL,NAME)
3666
3667 /* This says what to print at the end of the assembly file */
3668 #define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
3669
3670
3671 /* This is how to declare a function name. The actual work of
3672 emitting the label is moved to function_prologue, so that we can
3673 get the line number correctly emitted before the .ent directive,
3674 and after any .file directives.
3675
3676 Also, switch files if we are optimizing the global pointer. */
3677
3678 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
3679 { \
3680 extern FILE *asm_out_text_file; \
3681 if (TARGET_GP_OPT) \
3682 { \
3683 STREAM = asm_out_text_file; \
3684 /* ??? text_section gets called too soon. If the previous \
3685 function is in a special section and we're not, we have \
3686 to switch back to the text section. We can't call \
3687 text_section again as gcc thinks we're already there. */ \
3688 /* ??? See varasm.c. There are other things that get output \
3689 too early, like alignment (before we've switched STREAM). */ \
3690 if (DECL_SECTION_NAME (DECL) == NULL_TREE) \
3691 fprintf (STREAM, "%s\n", TEXT_SECTION_ASM_OP); \
3692 } \
3693 \
3694 HALF_PIC_DECLARE (NAME); \
3695 }
3696
3697 /* This is how to output an internal numbered label where
3698 PREFIX is the class of label and NUM is the number within the class. */
3699
3700 #define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
3701 fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
3702
3703 /* This is how to store into the string LABEL
3704 the symbol_ref name of an internal numbered label where
3705 PREFIX is the class of label and NUM is the number within the class.
3706 This is suitable for output with `assemble_name'. */
3707
3708 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3709 sprintf (LABEL, "*%s%s%d", LOCAL_LABEL_PREFIX, PREFIX, NUM)
3710
3711 /* This is how to output an assembler line defining a `double' constant. */
3712
3713 #define ASM_OUTPUT_DOUBLE(STREAM,VALUE) \
3714 mips_output_double (STREAM, VALUE)
3715
3716
3717 /* This is how to output an assembler line defining a `float' constant. */
3718
3719 #define ASM_OUTPUT_FLOAT(STREAM,VALUE) \
3720 mips_output_float (STREAM, VALUE)
3721
3722
3723 /* This is how to output an assembler line defining an `int' constant. */
3724
3725 #define ASM_OUTPUT_INT(STREAM,VALUE) \
3726 do { \
3727 fprintf (STREAM, "\t.word\t"); \
3728 output_addr_const (STREAM, (VALUE)); \
3729 fprintf (STREAM, "\n"); \
3730 } while (0)
3731
3732 /* Likewise for 64 bit, `char' and `short' constants. */
3733
3734 #define ASM_OUTPUT_DOUBLE_INT(STREAM,VALUE) \
3735 do { \
3736 if (TARGET_64BIT) \
3737 { \
3738 fprintf (STREAM, "\t.dword\t"); \
3739 if (HOST_BITS_PER_WIDE_INT < 64 || GET_CODE (VALUE) != CONST_INT) \
3740 /* We can't use 'X' for negative numbers, because then we won't \
3741 get the right value for the upper 32 bits. */ \
3742 output_addr_const (STREAM, VALUE); \
3743 else \
3744 /* We must use 'X', because otherwise LONG_MIN will print as \
3745 a number that the Irix 6 assembler won't accept. */ \
3746 print_operand (STREAM, VALUE, 'X'); \
3747 fprintf (STREAM, "\n"); \
3748 } \
3749 else \
3750 { \
3751 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
3752 UNITS_PER_WORD, 1); \
3753 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
3754 UNITS_PER_WORD, 1); \
3755 } \
3756 } while (0)
3757
3758 #define ASM_OUTPUT_SHORT(STREAM,VALUE) \
3759 { \
3760 fprintf (STREAM, "\t.half\t"); \
3761 output_addr_const (STREAM, (VALUE)); \
3762 fprintf (STREAM, "\n"); \
3763 }
3764
3765 #define ASM_OUTPUT_CHAR(STREAM,VALUE) \
3766 { \
3767 fprintf (STREAM, "\t.byte\t"); \
3768 output_addr_const (STREAM, (VALUE)); \
3769 fprintf (STREAM, "\n"); \
3770 }
3771
3772 /* This is how to output an assembler line for a numeric constant byte. */
3773
3774 #define ASM_OUTPUT_BYTE(STREAM,VALUE) \
3775 fprintf (STREAM, "\t.byte\t0x%x\n", (VALUE))
3776
3777 /* This is how to output an element of a case-vector that is absolute. */
3778
3779 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
3780 fprintf (STREAM, "\t%s\t%sL%d\n", \
3781 TARGET_LONG64 ? ".dword" : ".word", \
3782 LOCAL_LABEL_PREFIX, \
3783 VALUE)
3784
3785 /* This is how to output an element of a case-vector that is relative.
3786 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
3787 TARGET_EMBEDDED_PIC). */
3788
3789 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, VALUE, REL) \
3790 do { \
3791 if (TARGET_EMBEDDED_PIC) \
3792 fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n", \
3793 TARGET_LONG64 ? ".dword" : ".word", \
3794 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
3795 else if (mips_abi == ABI_32) \
3796 fprintf (STREAM, "\t%s\t%sL%d\n", \
3797 TARGET_LONG64 ? ".gpdword" : ".gpword", \
3798 LOCAL_LABEL_PREFIX, VALUE); \
3799 else \
3800 fprintf (STREAM, "\t%s\t%sL%d\n", \
3801 TARGET_LONG64 ? ".dword" : ".word", \
3802 LOCAL_LABEL_PREFIX, VALUE); \
3803 } while (0)
3804
3805 /* When generating embedded PIC code we want to put the jump table in
3806 the .text section. In all other cases, we want to put the jump
3807 table in the .rdata section. Unfortunately, we can't use
3808 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
3809 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
3810 section if appropriate. */
3811 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
3812 do { \
3813 if (TARGET_EMBEDDED_PIC) \
3814 text_section (); \
3815 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
3816 } while (0)
3817
3818 /* This is how to output an assembler line
3819 that says to advance the location counter
3820 to a multiple of 2**LOG bytes. */
3821
3822 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
3823 { \
3824 int mask = (1 << (LOG)) - 1; \
3825 fprintf (STREAM, "\t.align\t%d\n", (LOG)); \
3826 }
3827
3828 /* This is how to output an assembler line to to advance the location
3829 counter by SIZE bytes. */
3830
3831 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
3832 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
3833
3834 /* This is how to output a string. */
3835 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
3836 do { \
3837 register int i, c, len = (LEN), cur_pos = 17; \
3838 register unsigned char *string = (unsigned char *)(STRING); \
3839 fprintf ((STREAM), "\t.ascii\t\""); \
3840 for (i = 0; i < len; i++) \
3841 { \
3842 register int c = string[i]; \
3843 \
3844 switch (c) \
3845 { \
3846 case '\"': \
3847 case '\\': \
3848 putc ('\\', (STREAM)); \
3849 putc (c, (STREAM)); \
3850 cur_pos += 2; \
3851 break; \
3852 \
3853 case TARGET_NEWLINE: \
3854 fputs ("\\n", (STREAM)); \
3855 if (i+1 < len \
3856 && (((c = string[i+1]) >= '\040' && c <= '~') \
3857 || c == TARGET_TAB)) \
3858 cur_pos = 32767; /* break right here */ \
3859 else \
3860 cur_pos += 2; \
3861 break; \
3862 \
3863 case TARGET_TAB: \
3864 fputs ("\\t", (STREAM)); \
3865 cur_pos += 2; \
3866 break; \
3867 \
3868 case TARGET_FF: \
3869 fputs ("\\f", (STREAM)); \
3870 cur_pos += 2; \
3871 break; \
3872 \
3873 case TARGET_BS: \
3874 fputs ("\\b", (STREAM)); \
3875 cur_pos += 2; \
3876 break; \
3877 \
3878 case TARGET_CR: \
3879 fputs ("\\r", (STREAM)); \
3880 cur_pos += 2; \
3881 break; \
3882 \
3883 default: \
3884 if (c >= ' ' && c < 0177) \
3885 { \
3886 putc (c, (STREAM)); \
3887 cur_pos++; \
3888 } \
3889 else \
3890 { \
3891 fprintf ((STREAM), "\\%03o", c); \
3892 cur_pos += 4; \
3893 } \
3894 } \
3895 \
3896 if (cur_pos > 72 && i+1 < len) \
3897 { \
3898 cur_pos = 17; \
3899 fprintf ((STREAM), "\"\n\t.ascii\t\""); \
3900 } \
3901 } \
3902 fprintf ((STREAM), "\"\n"); \
3903 } while (0)
3904
3905 /* Handle certain cpp directives used in header files on sysV. */
3906 #define SCCS_DIRECTIVE
3907
3908 /* Output #ident as a in the read-only data section. */
3909 #define ASM_OUTPUT_IDENT(FILE, STRING) \
3910 { \
3911 char *p = STRING; \
3912 int size = strlen (p) + 1; \
3913 rdata_section (); \
3914 assemble_string (p, size); \
3915 }
3916 \f
3917 /* Default to -G 8 */
3918 #ifndef MIPS_DEFAULT_GVALUE
3919 #define MIPS_DEFAULT_GVALUE 8
3920 #endif
3921
3922 /* Define the strings to put out for each section in the object file. */
3923 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
3924 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
3925 #define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
3926 #define RDATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
3927 #define READONLY_DATA_SECTION rdata_section
3928 #define SMALL_DATA_SECTION sdata_section
3929
3930 /* What other sections we support other than the normal .data/.text. */
3931
3932 #define EXTRA_SECTIONS in_sdata, in_rdata
3933
3934 /* Define the additional functions to select our additional sections. */
3935
3936 /* on the MIPS it is not a good idea to put constants in the text
3937 section, since this defeats the sdata/data mechanism. This is
3938 especially true when -O is used. In this case an effort is made to
3939 address with faster (gp) register relative addressing, which can
3940 only get at sdata and sbss items (there is no stext !!) However,
3941 if the constant is too large for sdata, and it's readonly, it
3942 will go into the .rdata section. */
3943
3944 #define EXTRA_SECTION_FUNCTIONS \
3945 void \
3946 sdata_section () \
3947 { \
3948 if (in_section != in_sdata) \
3949 { \
3950 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
3951 in_section = in_sdata; \
3952 } \
3953 } \
3954 \
3955 void \
3956 rdata_section () \
3957 { \
3958 if (in_section != in_rdata) \
3959 { \
3960 fprintf (asm_out_file, "%s\n", RDATA_SECTION_ASM_OP); \
3961 in_section = in_rdata; \
3962 } \
3963 }
3964
3965 /* Given a decl node or constant node, choose the section to output it in
3966 and select that section. */
3967
3968 #define SELECT_RTX_SECTION(MODE,RTX) mips_select_rtx_section (MODE, RTX)
3969
3970 #define SELECT_SECTION(DECL, RELOC) mips_select_section (DECL, RELOC)
3971
3972 \f
3973 /* Store in OUTPUT a string (made with alloca) containing
3974 an assembler-name for a local static variable named NAME.
3975 LABELNO is an integer which is different for each call. */
3976
3977 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3978 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3979 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3980
3981 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
3982 do \
3983 { \
3984 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
3985 TARGET_64BIT ? "dsubu" : "subu", \
3986 reg_names[STACK_POINTER_REGNUM], \
3987 reg_names[STACK_POINTER_REGNUM], \
3988 TARGET_64BIT ? "sd" : "sw", \
3989 reg_names[REGNO], \
3990 reg_names[STACK_POINTER_REGNUM]); \
3991 } \
3992 while (0)
3993
3994 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
3995 do \
3996 { \
3997 if (! set_noreorder) \
3998 fprintf (STREAM, "\t.set\tnoreorder\n"); \
3999 \
4000 dslots_load_total++; \
4001 dslots_load_filled++; \
4002 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
4003 TARGET_64BIT ? "ld" : "lw", \
4004 reg_names[REGNO], \
4005 reg_names[STACK_POINTER_REGNUM], \
4006 TARGET_64BIT ? "daddu" : "addu", \
4007 reg_names[STACK_POINTER_REGNUM], \
4008 reg_names[STACK_POINTER_REGNUM]); \
4009 \
4010 if (! set_noreorder) \
4011 fprintf (STREAM, "\t.set\treorder\n"); \
4012 } \
4013 while (0)
4014
4015 /* Define the parentheses used to group arithmetic operations
4016 in assembler code. */
4017
4018 #define ASM_OPEN_PAREN "("
4019 #define ASM_CLOSE_PAREN ")"
4020
4021 /* How to start an assembler comment.
4022 The leading space is important (the mips native assembler requires it). */
4023 #ifndef ASM_COMMENT_START
4024 #define ASM_COMMENT_START " #"
4025 #endif
4026 \f
4027
4028 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
4029 and mips-tdump.c to print them out.
4030
4031 These must match the corresponding definitions in gdb/mipsread.c.
4032 Unfortunately, gcc and gdb do not currently share any directories. */
4033
4034 #define CODE_MASK 0x8F300
4035 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
4036 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
4037 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
4038
4039 \f
4040 /* Default definitions for size_t and ptrdiff_t. */
4041
4042 #ifndef SIZE_TYPE
4043 #define NO_BUILTIN_SIZE_TYPE
4044 #define SIZE_TYPE (TARGET_LONG64 ? "long unsigned int" : "unsigned int")
4045 #endif
4046
4047 #ifndef PTRDIFF_TYPE
4048 #define NO_BUILTIN_PTRDIFF_TYPE
4049 #define PTRDIFF_TYPE (TARGET_LONG64 ? "long int" : "int")
4050 #endif
4051
4052 /* See mips_expand_prologue's use of loadgp for when this should be
4053 true. */
4054
4055 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS && mips_abi != ABI_32)