]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mips/mips.md
mips.md: (*madd4<mode>) Remove accum_in attribute.
[thirdparty/gcc.git] / gcc / config / mips / mips.md
1 ;; Mips.md Machine Description for MIPS based processors
2 ;; Copyright (C) 1989-2015 Free Software Foundation, Inc.
3 ;; Contributed by A. Lichnewsky, lich@inria.inria.fr
4 ;; Changes by Michael Meissner, meissner@osf.org
5 ;; 64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
6 ;; Brendan Eich, brendan@microunity.com.
7
8 ;; This file is part of GCC.
9
10 ;; GCC is free software; you can redistribute it and/or modify
11 ;; it under the terms of the GNU General Public License as published by
12 ;; the Free Software Foundation; either version 3, or (at your option)
13 ;; any later version.
14
15 ;; GCC is distributed in the hope that it will be useful,
16 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
17 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 ;; GNU General Public License for more details.
19
20 ;; You should have received a copy of the GNU General Public License
21 ;; along with GCC; see the file COPYING3. If not see
22 ;; <http://www.gnu.org/licenses/>.
23
24 (define_enum "processor" [
25 r3000
26 4kc
27 4kp
28 5kc
29 5kf
30 20kc
31 24kc
32 24kf2_1
33 24kf1_1
34 74kc
35 74kf2_1
36 74kf1_1
37 74kf3_2
38 loongson_2e
39 loongson_2f
40 loongson_3a
41 m4k
42 octeon
43 octeon2
44 octeon3
45 r3900
46 r6000
47 r4000
48 r4100
49 r4111
50 r4120
51 r4130
52 r4300
53 r4600
54 r4650
55 r4700
56 r5000
57 r5400
58 r5500
59 r5900
60 r7000
61 r8000
62 r9000
63 r10000
64 sb1
65 sb1a
66 sr71000
67 xlr
68 xlp
69 p5600
70 w32
71 w64
72 ])
73
74 (define_c_enum "unspec" [
75 ;; Unaligned accesses.
76 UNSPEC_LOAD_LEFT
77 UNSPEC_LOAD_RIGHT
78 UNSPEC_STORE_LEFT
79 UNSPEC_STORE_RIGHT
80
81 ;; Integer operations that are too cumbersome to describe directly.
82 UNSPEC_WSBH
83 UNSPEC_DSBH
84 UNSPEC_DSHD
85
86 ;; Floating-point moves.
87 UNSPEC_LOAD_LOW
88 UNSPEC_LOAD_HIGH
89 UNSPEC_STORE_WORD
90 UNSPEC_MFHC1
91 UNSPEC_MTHC1
92
93 ;; Floating-point environment.
94 UNSPEC_GET_FCSR
95 UNSPEC_SET_FCSR
96
97 ;; HI/LO moves.
98 UNSPEC_MFHI
99 UNSPEC_MTHI
100 UNSPEC_SET_HILO
101
102 ;; GP manipulation.
103 UNSPEC_LOADGP
104 UNSPEC_COPYGP
105 UNSPEC_MOVE_GP
106 UNSPEC_POTENTIAL_CPRESTORE
107 UNSPEC_CPRESTORE
108 UNSPEC_RESTORE_GP
109 UNSPEC_EH_RETURN
110 UNSPEC_GP
111 UNSPEC_SET_GOT_VERSION
112 UNSPEC_UPDATE_GOT_VERSION
113
114 ;; Symbolic accesses.
115 UNSPEC_LOAD_CALL
116 UNSPEC_LOAD_GOT
117 UNSPEC_TLS_LDM
118 UNSPEC_TLS_GET_TP
119 UNSPEC_UNSHIFTED_HIGH
120
121 ;; MIPS16 constant pools.
122 UNSPEC_ALIGN
123 UNSPEC_CONSTTABLE_INT
124 UNSPEC_CONSTTABLE_FLOAT
125
126 ;; Blockage and synchronisation.
127 UNSPEC_BLOCKAGE
128 UNSPEC_CLEAR_HAZARD
129 UNSPEC_RDHWR
130 UNSPEC_SYNCI
131 UNSPEC_SYNC
132
133 ;; Cache manipulation.
134 UNSPEC_MIPS_CACHE
135 UNSPEC_R10K_CACHE_BARRIER
136
137 ;; Interrupt handling.
138 UNSPEC_ERET
139 UNSPEC_DERET
140 UNSPEC_DI
141 UNSPEC_EHB
142 UNSPEC_RDPGPR
143 UNSPEC_COP0
144
145 ;; Used in a call expression in place of args_size. It's present for PIC
146 ;; indirect calls where it contains args_size and the function symbol.
147 UNSPEC_CALL_ATTR
148
149 ;; MIPS16 casesi jump table dispatch.
150 UNSPEC_CASESI_DISPATCH
151
152 ;; Stack checking.
153 UNSPEC_PROBE_STACK_RANGE
154 ])
155
156 (define_constants
157 [(TLS_GET_TP_REGNUM 3)
158 (GET_FCSR_REGNUM 2)
159 (SET_FCSR_REGNUM 4)
160 (MIPS16_T_REGNUM 24)
161 (PIC_FUNCTION_ADDR_REGNUM 25)
162 (RETURN_ADDR_REGNUM 31)
163 (CPRESTORE_SLOT_REGNUM 76)
164 (GOT_VERSION_REGNUM 79)
165
166 ;; PIC long branch sequences are never longer than 100 bytes.
167 (MAX_PIC_BRANCH_LENGTH 100)
168 ]
169 )
170
171 (include "predicates.md")
172 (include "constraints.md")
173 \f
174 ;; ....................
175 ;;
176 ;; Attributes
177 ;;
178 ;; ....................
179
180 (define_attr "got" "unset,xgot_high,load"
181 (const_string "unset"))
182
183 ;; For jal instructions, this attribute is DIRECT when the target address
184 ;; is symbolic and INDIRECT when it is a register.
185 (define_attr "jal" "unset,direct,indirect"
186 (const_string "unset"))
187
188 ;; This attribute is YES if the instruction is a jal macro (not a
189 ;; real jal instruction).
190 ;;
191 ;; jal is always a macro for TARGET_CALL_CLOBBERED_GP because it includes
192 ;; an instruction to restore $gp. Direct jals are also macros for
193 ;; !TARGET_ABSOLUTE_JUMPS because they first load the target address
194 ;; into a register.
195 (define_attr "jal_macro" "no,yes"
196 (cond [(eq_attr "jal" "direct")
197 (symbol_ref "(TARGET_CALL_CLOBBERED_GP || !TARGET_ABSOLUTE_JUMPS
198 ? JAL_MACRO_YES : JAL_MACRO_NO)")
199 (eq_attr "jal" "indirect")
200 (symbol_ref "(TARGET_CALL_CLOBBERED_GP
201 ? JAL_MACRO_YES : JAL_MACRO_NO)")]
202 (const_string "no")))
203
204 ;; Classification of moves, extensions and truncations. Most values
205 ;; are as for "type" (see below) but there are also the following
206 ;; move-specific values:
207 ;;
208 ;; constN move an N-constraint integer into a MIPS16 register
209 ;; sll0 "sll DEST,SRC,0", which on 64-bit targets is guaranteed
210 ;; to produce a sign-extended DEST, even if SRC is not
211 ;; properly sign-extended
212 ;; ext_ins EXT, DEXT, INS or DINS instruction
213 ;; andi a single ANDI instruction
214 ;; loadpool move a constant into a MIPS16 register by loading it
215 ;; from the pool
216 ;; shift_shift a shift left followed by a shift right
217 ;;
218 ;; This attribute is used to determine the instruction's length and
219 ;; scheduling type. For doubleword moves, the attribute always describes
220 ;; the split instructions; in some cases, it is more appropriate for the
221 ;; scheduling type to be "multi" instead.
222 (define_attr "move_type"
223 "unknown,load,fpload,store,fpstore,mtc,mfc,mtlo,mflo,imul,move,fmove,
224 const,constN,signext,ext_ins,logical,arith,sll0,andi,loadpool,
225 shift_shift"
226 (const_string "unknown"))
227
228 (define_attr "alu_type" "unknown,add,sub,not,nor,and,or,xor"
229 (const_string "unknown"))
230
231 ;; Main data type used by the insn
232 (define_attr "mode" "unknown,none,QI,HI,SI,DI,TI,SF,DF,TF,FPSW"
233 (const_string "unknown"))
234
235 ;; True if the main data type is twice the size of a word.
236 (define_attr "dword_mode" "no,yes"
237 (cond [(and (eq_attr "mode" "DI,DF")
238 (not (match_test "TARGET_64BIT")))
239 (const_string "yes")
240
241 (and (eq_attr "mode" "TI,TF")
242 (match_test "TARGET_64BIT"))
243 (const_string "yes")]
244 (const_string "no")))
245
246 ;; Attributes describing a sync loop. These loops have the form:
247 ;;
248 ;; if (RELEASE_BARRIER == YES) sync
249 ;; 1: OLDVAL = *MEM
250 ;; if ((OLDVAL & INCLUSIVE_MASK) != REQUIRED_OLDVAL) goto 2
251 ;; CMP = 0 [delay slot]
252 ;; $TMP1 = OLDVAL & EXCLUSIVE_MASK
253 ;; $TMP2 = INSN1 (OLDVAL, INSN1_OP2)
254 ;; $TMP3 = INSN2 ($TMP2, INCLUSIVE_MASK)
255 ;; $AT |= $TMP1 | $TMP3
256 ;; if (!commit (*MEM = $AT)) goto 1.
257 ;; if (INSN1 != MOVE && INSN1 != LI) NEWVAL = $TMP3 [delay slot]
258 ;; CMP = 1
259 ;; if (ACQUIRE_BARRIER == YES) sync
260 ;; 2:
261 ;;
262 ;; where "$" values are temporaries and where the other values are
263 ;; specified by the attributes below. Values are specified as operand
264 ;; numbers and insns are specified as enums. If no operand number is
265 ;; specified, the following values are used instead:
266 ;;
267 ;; - OLDVAL: $AT
268 ;; - CMP: NONE
269 ;; - NEWVAL: $AT
270 ;; - INCLUSIVE_MASK: -1
271 ;; - REQUIRED_OLDVAL: OLDVAL & INCLUSIVE_MASK
272 ;; - EXCLUSIVE_MASK: 0
273 ;;
274 ;; MEM and INSN1_OP2 are required.
275 ;;
276 ;; Ideally, the operand attributes would be integers, with -1 meaning "none",
277 ;; but the gen* programs don't yet support that.
278 (define_attr "sync_mem" "none,0,1,2,3,4,5" (const_string "none"))
279 (define_attr "sync_oldval" "none,0,1,2,3,4,5" (const_string "none"))
280 (define_attr "sync_cmp" "none,0,1,2,3,4,5" (const_string "none"))
281 (define_attr "sync_newval" "none,0,1,2,3,4,5" (const_string "none"))
282 (define_attr "sync_inclusive_mask" "none,0,1,2,3,4,5" (const_string "none"))
283 (define_attr "sync_exclusive_mask" "none,0,1,2,3,4,5" (const_string "none"))
284 (define_attr "sync_required_oldval" "none,0,1,2,3,4,5" (const_string "none"))
285 (define_attr "sync_insn1_op2" "none,0,1,2,3,4,5" (const_string "none"))
286 (define_attr "sync_insn1" "move,li,addu,addiu,subu,and,andi,or,ori,xor,xori"
287 (const_string "move"))
288 (define_attr "sync_insn2" "nop,and,xor,not"
289 (const_string "nop"))
290 ;; Memory model specifier.
291 ;; "0"-"9" values specify the operand that stores the memory model value.
292 ;; "10" specifies MEMMODEL_ACQ_REL,
293 ;; "11" specifies MEMMODEL_ACQUIRE.
294 (define_attr "sync_memmodel" "" (const_int 10))
295
296 ;; Accumulator operand for madd patterns.
297 (define_attr "accum_in" "none,0,1,2,3,4,5" (const_string "none"))
298
299 ;; Classification of each insn.
300 ;; branch conditional branch
301 ;; jump unconditional jump
302 ;; call unconditional call
303 ;; load load instruction(s)
304 ;; fpload floating point load
305 ;; fpidxload floating point indexed load
306 ;; store store instruction(s)
307 ;; fpstore floating point store
308 ;; fpidxstore floating point indexed store
309 ;; prefetch memory prefetch (register + offset)
310 ;; prefetchx memory indexed prefetch (register + register)
311 ;; condmove conditional moves
312 ;; mtc transfer to coprocessor
313 ;; mfc transfer from coprocessor
314 ;; mthi transfer to a hi register
315 ;; mtlo transfer to a lo register
316 ;; mfhi transfer from a hi register
317 ;; mflo transfer from a lo register
318 ;; const load constant
319 ;; arith integer arithmetic instructions
320 ;; logical integer logical instructions
321 ;; shift integer shift instructions
322 ;; slt set less than instructions
323 ;; signext sign extend instructions
324 ;; clz the clz and clo instructions
325 ;; pop the pop instruction
326 ;; trap trap if instructions
327 ;; imul integer multiply 2 operands
328 ;; imul3 integer multiply 3 operands
329 ;; imul3nc integer multiply 3 operands without clobbering HI/LO
330 ;; imadd integer multiply-add
331 ;; idiv integer divide 2 operands
332 ;; idiv3 integer divide 3 operands
333 ;; move integer register move ({,D}ADD{,U} with rt = 0)
334 ;; fmove floating point register move
335 ;; fadd floating point add/subtract
336 ;; fmul floating point multiply
337 ;; fmadd floating point multiply-add
338 ;; fdiv floating point divide
339 ;; frdiv floating point reciprocal divide
340 ;; frdiv1 floating point reciprocal divide step 1
341 ;; frdiv2 floating point reciprocal divide step 2
342 ;; fabs floating point absolute value
343 ;; fneg floating point negation
344 ;; fcmp floating point compare
345 ;; fcvt floating point convert
346 ;; fsqrt floating point square root
347 ;; frsqrt floating point reciprocal square root
348 ;; frsqrt1 floating point reciprocal square root step1
349 ;; frsqrt2 floating point reciprocal square root step2
350 ;; dspmac DSP MAC instructions not saturating the accumulator
351 ;; dspmacsat DSP MAC instructions that saturate the accumulator
352 ;; accext DSP accumulator extract instructions
353 ;; accmod DSP accumulator modify instructions
354 ;; dspalu DSP ALU instructions not saturating the result
355 ;; dspalusat DSP ALU instructions that saturate the result
356 ;; multi multiword sequence (or user asm statements)
357 ;; atomic atomic memory update instruction
358 ;; syncloop memory atomic operation implemented as a sync loop
359 ;; nop no operation
360 ;; ghost an instruction that produces no real code
361 ;; multimem microMIPS multiword load and store
362 (define_attr "type"
363 "unknown,branch,jump,call,load,fpload,fpidxload,store,fpstore,fpidxstore,
364 prefetch,prefetchx,condmove,mtc,mfc,mthi,mtlo,mfhi,mflo,const,arith,logical,
365 shift,slt,signext,clz,pop,trap,imul,imul3,imul3nc,imadd,idiv,idiv3,move,
366 fmove,fadd,fmul,fmadd,fdiv,frdiv,frdiv1,frdiv2,fabs,fneg,fcmp,fcvt,fsqrt,
367 frsqrt,frsqrt1,frsqrt2,dspmac,dspmacsat,accext,accmod,dspalu,dspalusat,
368 multi,atomic,syncloop,nop,ghost,multimem"
369 (cond [(eq_attr "jal" "!unset") (const_string "call")
370 (eq_attr "got" "load") (const_string "load")
371
372 (eq_attr "alu_type" "add,sub") (const_string "arith")
373
374 (eq_attr "alu_type" "not,nor,and,or,xor") (const_string "logical")
375
376 ;; If a doubleword move uses these expensive instructions,
377 ;; it is usually better to schedule them in the same way
378 ;; as the singleword form, rather than as "multi".
379 (eq_attr "move_type" "load") (const_string "load")
380 (eq_attr "move_type" "fpload") (const_string "fpload")
381 (eq_attr "move_type" "store") (const_string "store")
382 (eq_attr "move_type" "fpstore") (const_string "fpstore")
383 (eq_attr "move_type" "mtc") (const_string "mtc")
384 (eq_attr "move_type" "mfc") (const_string "mfc")
385 (eq_attr "move_type" "mtlo") (const_string "mtlo")
386 (eq_attr "move_type" "mflo") (const_string "mflo")
387
388 ;; These types of move are always single insns.
389 (eq_attr "move_type" "imul") (const_string "imul")
390 (eq_attr "move_type" "fmove") (const_string "fmove")
391 (eq_attr "move_type" "loadpool") (const_string "load")
392 (eq_attr "move_type" "signext") (const_string "signext")
393 (eq_attr "move_type" "ext_ins") (const_string "arith")
394 (eq_attr "move_type" "arith") (const_string "arith")
395 (eq_attr "move_type" "logical") (const_string "logical")
396 (eq_attr "move_type" "sll0") (const_string "shift")
397 (eq_attr "move_type" "andi") (const_string "logical")
398
399 ;; These types of move are always split.
400 (eq_attr "move_type" "constN,shift_shift")
401 (const_string "multi")
402
403 ;; These types of move are split for doubleword modes only.
404 (and (eq_attr "move_type" "move,const")
405 (eq_attr "dword_mode" "yes"))
406 (const_string "multi")
407 (eq_attr "move_type" "move") (const_string "move")
408 (eq_attr "move_type" "const") (const_string "const")
409 (eq_attr "sync_mem" "!none") (const_string "syncloop")]
410 (const_string "unknown")))
411
412 ;; Mode for conversion types (fcvt)
413 ;; I2S integer to float single (SI/DI to SF)
414 ;; I2D integer to float double (SI/DI to DF)
415 ;; S2I float to integer (SF to SI/DI)
416 ;; D2I float to integer (DF to SI/DI)
417 ;; D2S double to float single
418 ;; S2D float single to double
419
420 (define_attr "cnv_mode" "unknown,I2S,I2D,S2I,D2I,D2S,S2D"
421 (const_string "unknown"))
422
423 ;; Is this an extended instruction in mips16 mode?
424 (define_attr "extended_mips16" "no,yes"
425 (if_then_else (ior ;; In general, constant-pool loads are extended
426 ;; instructions. We don't yet optimize for 16-bit
427 ;; PC-relative references.
428 (eq_attr "move_type" "sll0,loadpool")
429 (eq_attr "jal" "direct")
430 (eq_attr "got" "load"))
431 (const_string "yes")
432 (const_string "no")))
433
434 (define_attr "compression" "none,all,micromips32,micromips"
435 (const_string "none"))
436
437 (define_attr "enabled" "no,yes"
438 (cond [;; The o32 FPXX and FP64A ABI extensions prohibit direct moves between
439 ;; GR_REG and FR_REG for 64-bit values.
440 (and (eq_attr "move_type" "mtc,mfc")
441 (match_test "(TARGET_FLOATXX && !ISA_HAS_MXHC1)
442 || TARGET_O32_FP64A_ABI")
443 (eq_attr "dword_mode" "yes"))
444 (const_string "no")
445 (and (eq_attr "compression" "micromips32,micromips")
446 (match_test "!TARGET_MICROMIPS"))
447 (const_string "no")]
448 (const_string "yes")))
449
450 ;; The number of individual instructions that a non-branch pattern generates,
451 ;; using units of BASE_INSN_LENGTH.
452 (define_attr "insn_count" ""
453 (cond [;; "Ghost" instructions occupy no space.
454 (eq_attr "type" "ghost")
455 (const_int 0)
456
457 ;; Extended instructions count as 2.
458 (and (eq_attr "extended_mips16" "yes")
459 (match_test "TARGET_MIPS16"))
460 (const_int 2)
461
462 ;; A GOT load followed by an add of $gp. This is not used for MIPS16.
463 (eq_attr "got" "xgot_high")
464 (const_int 2)
465
466 ;; SHIFT_SHIFTs are decomposed into two separate instructions.
467 ;; They are extended instructions on MIPS16 targets.
468 (eq_attr "move_type" "shift_shift")
469 (if_then_else (match_test "TARGET_MIPS16")
470 (const_int 4)
471 (const_int 2))
472
473 ;; Check for doubleword moves that are decomposed into two
474 ;; instructions. The individual instructions are unextended
475 ;; MIPS16 ones.
476 (and (eq_attr "move_type" "mtc,mfc,mtlo,mflo,move")
477 (eq_attr "dword_mode" "yes"))
478 (const_int 2)
479
480 ;; Constants, loads and stores are handled by external routines.
481 (and (eq_attr "move_type" "const,constN")
482 (eq_attr "dword_mode" "yes"))
483 (symbol_ref "mips_split_const_insns (operands[1])")
484 (eq_attr "move_type" "const,constN")
485 (symbol_ref "mips_const_insns (operands[1])")
486 (eq_attr "move_type" "load,fpload")
487 (symbol_ref "mips_load_store_insns (operands[1], insn)")
488 (eq_attr "move_type" "store,fpstore")
489 (symbol_ref "mips_load_store_insns (operands[0], insn)
490 + (TARGET_FIX_24K ? 1 : 0)")
491
492 ;; In the worst case, a call macro will take 8 instructions:
493 ;;
494 ;; lui $25,%call_hi(FOO)
495 ;; addu $25,$25,$28
496 ;; lw $25,%call_lo(FOO)($25)
497 ;; nop
498 ;; jalr $25
499 ;; nop
500 ;; lw $gp,X($sp)
501 ;; nop
502 (eq_attr "jal_macro" "yes")
503 (const_int 8)
504
505 ;; Various VR4120 errata require a nop to be inserted after a macc
506 ;; instruction. The assembler does this for us, so account for
507 ;; the worst-case length here.
508 (and (eq_attr "type" "imadd")
509 (match_test "TARGET_FIX_VR4120"))
510 (const_int 2)
511
512 ;; VR4120 errata MD(4): if there are consecutive dmult instructions,
513 ;; the result of the second one is missed. The assembler should work
514 ;; around this by inserting a nop after the first dmult.
515 (and (eq_attr "type" "imul,imul3")
516 (eq_attr "mode" "DI")
517 (match_test "TARGET_FIX_VR4120"))
518 (const_int 2)
519
520 (eq_attr "type" "idiv,idiv3")
521 (symbol_ref "mips_idiv_insns ()")
522
523 (not (eq_attr "sync_mem" "none"))
524 (symbol_ref "mips_sync_loop_insns (insn, operands)")]
525 (const_int 1)))
526
527 ;; Length of instruction in bytes. The default is derived from "insn_count",
528 ;; but there are special cases for branches (which must be handled here)
529 ;; and for compressed single instructions.
530 (define_attr "length" ""
531 (cond [(and (ior (eq_attr "compression" "micromips,all")
532 (and (eq_attr "compression" "micromips32")
533 (eq_attr "mode" "SI,SF")))
534 (eq_attr "dword_mode" "no")
535 (match_test "TARGET_MICROMIPS"))
536 (const_int 2)
537
538 ;; Direct microMIPS branch instructions have a range of
539 ;; [-0x10000,0xfffe], otherwise the range is [-0x20000,0x1fffc].
540 ;; If a branch is outside this range, we have a choice of two
541 ;; sequences.
542 ;;
543 ;; For PIC, an out-of-range branch like:
544 ;;
545 ;; bne r1,r2,target
546 ;; dslot
547 ;;
548 ;; becomes the equivalent of:
549 ;;
550 ;; beq r1,r2,1f
551 ;; dslot
552 ;; la $at,target
553 ;; jr $at
554 ;; nop
555 ;; 1:
556 ;;
557 ;; The non-PIC case is similar except that we use a direct
558 ;; jump instead of an la/jr pair. Since the target of this
559 ;; jump is an absolute 28-bit bit address (the other bits
560 ;; coming from the address of the delay slot) this form cannot
561 ;; cross a 256MB boundary. We could provide the option of
562 ;; using la/jr in this case too, but we do not do so at
563 ;; present.
564 ;;
565 ;; The value we specify here does not account for the delay slot
566 ;; instruction, whose length is added separately. If the RTL
567 ;; pattern has no explicit delay slot, mips_adjust_insn_length
568 ;; will add the length of the implicit nop. The range of
569 ;; [-0x20000, 0x1fffc] from the address of the delay slot
570 ;; therefore translates to a range of:
571 ;;
572 ;; [-(0x20000 - sizeof (branch)), 0x1fffc - sizeof (slot)]
573 ;; == [-0x1fffc, 0x1fff8]
574 ;;
575 ;; from the shorten_branches reference address.
576 (and (eq_attr "type" "branch")
577 (not (match_test "TARGET_MIPS16")))
578 (cond [;; Any variant can handle the 17-bit range.
579 (and (le (minus (match_dup 0) (pc)) (const_int 65532))
580 (le (minus (pc) (match_dup 0)) (const_int 65534)))
581 (const_int 4)
582
583 ;; The 18-bit range is OK other than for microMIPS.
584 (and (not (match_test "TARGET_MICROMIPS"))
585 (and (le (minus (match_dup 0) (pc)) (const_int 131064))
586 (le (minus (pc) (match_dup 0)) (const_int 131068))))
587 (const_int 4)
588
589 ;; The non-PIC case: branch, first delay slot, and J.
590 (match_test "TARGET_ABSOLUTE_JUMPS")
591 (const_int 12)]
592
593 ;; Use MAX_PIC_BRANCH_LENGTH as a (gross) overestimate.
594 ;; mips_adjust_insn_length substitutes the correct length.
595 ;;
596 ;; Note that we can't simply use (symbol_ref ...) here
597 ;; because genattrtab needs to know the maximum length
598 ;; of an insn.
599 (const_int MAX_PIC_BRANCH_LENGTH))
600
601 ;; An unextended MIPS16 branch has a range of [-0x100, 0xfe]
602 ;; from the address of the following instruction, which leads
603 ;; to a range of:
604 ;;
605 ;; [-(0x100 - sizeof (branch)), 0xfe]
606 ;; == [-0xfe, 0xfe]
607 ;;
608 ;; from the shorten_branches reference address. Extended branches
609 ;; likewise have a range of [-0x10000, 0xfffe] from the address
610 ;; of the following instruction, which leads to a range of:
611 ;;
612 ;; [-(0x10000 - sizeof (branch)), 0xfffe]
613 ;; == [-0xfffc, 0xfffe]
614 ;;
615 ;; from the reference address.
616 ;;
617 ;; When a branch is out of range, mips_reorg splits it into a form
618 ;; that uses in-range branches. There are four basic sequences:
619 ;;
620 ;; (1) Absolute addressing with a readable text segment
621 ;; (32-bit addresses):
622 ;;
623 ;; b... foo 2 bytes
624 ;; move $1,$2 2 bytes
625 ;; lw $2,label 2 bytes
626 ;; jr $2 2 bytes
627 ;; move $2,$1 2 bytes
628 ;; .align 2 0 or 2 bytes
629 ;; label:
630 ;; .word target 4 bytes
631 ;; foo:
632 ;; (16 bytes in the worst case)
633 ;;
634 ;; (2) Absolute addressing with a readable text segment
635 ;; (64-bit addresses):
636 ;;
637 ;; b... foo 2 bytes
638 ;; move $1,$2 2 bytes
639 ;; ld $2,label 2 bytes
640 ;; jr $2 2 bytes
641 ;; move $2,$1 2 bytes
642 ;; .align 3 0 to 6 bytes
643 ;; label:
644 ;; .dword target 8 bytes
645 ;; foo:
646 ;; (24 bytes in the worst case)
647 ;;
648 ;; (3) Absolute addressing without a readable text segment
649 ;; (which requires 32-bit addresses at present):
650 ;;
651 ;; b... foo 2 bytes
652 ;; move $1,$2 2 bytes
653 ;; lui $2,%hi(target) 4 bytes
654 ;; sll $2,8 2 bytes
655 ;; sll $2,8 2 bytes
656 ;; addiu $2,%lo(target) 4 bytes
657 ;; jr $2 2 bytes
658 ;; move $2,$1 2 bytes
659 ;; foo:
660 ;; (20 bytes)
661 ;;
662 ;; (4) PIC addressing (which requires 32-bit addresses at present):
663 ;;
664 ;; b... foo 2 bytes
665 ;; move $1,$2 2 bytes
666 ;; lw $2,cprestore 0, 2 or 4 bytes
667 ;; lw $2,%got(target)($2) 4 bytes
668 ;; addiu $2,%lo(target) 4 bytes
669 ;; jr $2 2 bytes
670 ;; move $2,$1 2 bytes
671 ;; foo:
672 ;; (20 bytes in the worst case)
673 (and (eq_attr "type" "branch")
674 (match_test "TARGET_MIPS16"))
675 (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254))
676 (le (minus (pc) (match_dup 0)) (const_int 254)))
677 (const_int 2)
678 (and (le (minus (match_dup 0) (pc)) (const_int 65534))
679 (le (minus (pc) (match_dup 0)) (const_int 65532)))
680 (const_int 4)
681 (and (match_test "TARGET_ABICALLS")
682 (not (match_test "TARGET_ABSOLUTE_ABICALLS")))
683 (const_int 20)
684 (match_test "Pmode == SImode")
685 (const_int 16)
686 ] (const_int 24))]
687 (symbol_ref "get_attr_insn_count (insn) * BASE_INSN_LENGTH")))
688
689 ;; Attribute describing the processor.
690 (define_enum_attr "cpu" "processor"
691 (const (symbol_ref "mips_tune")))
692
693 ;; The type of hardware hazard associated with this instruction.
694 ;; DELAY means that the next instruction cannot read the result
695 ;; of this one. HILO means that the next two instructions cannot
696 ;; write to HI or LO.
697 (define_attr "hazard" "none,delay,hilo"
698 (cond [(and (eq_attr "type" "load,fpload,fpidxload")
699 (match_test "ISA_HAS_LOAD_DELAY"))
700 (const_string "delay")
701
702 (and (eq_attr "type" "mfc,mtc")
703 (match_test "ISA_HAS_XFER_DELAY"))
704 (const_string "delay")
705
706 (and (eq_attr "type" "fcmp")
707 (match_test "ISA_HAS_FCMP_DELAY"))
708 (const_string "delay")
709
710 ;; The r4000 multiplication patterns include an mflo instruction.
711 (and (eq_attr "type" "imul")
712 (match_test "TARGET_FIX_R4000"))
713 (const_string "hilo")
714
715 (and (eq_attr "type" "mfhi,mflo")
716 (not (match_test "ISA_HAS_HILO_INTERLOCKS")))
717 (const_string "hilo")]
718 (const_string "none")))
719
720 ;; Can the instruction be put into a delay slot?
721 (define_attr "can_delay" "no,yes"
722 (if_then_else (and (eq_attr "type" "!branch,call,jump")
723 (eq_attr "hazard" "none")
724 (match_test "get_attr_insn_count (insn) == 1"))
725 (const_string "yes")
726 (const_string "no")))
727
728 ;; Attribute defining whether or not we can use the branch-likely
729 ;; instructions.
730 (define_attr "branch_likely" "no,yes"
731 (if_then_else (match_test "GENERATE_BRANCHLIKELY")
732 (const_string "yes")
733 (const_string "no")))
734
735 ;; True if an instruction might assign to hi or lo when reloaded.
736 ;; This is used by the TUNE_MACC_CHAINS code.
737 (define_attr "may_clobber_hilo" "no,yes"
738 (if_then_else (eq_attr "type" "imul,imul3,imadd,idiv,mthi,mtlo")
739 (const_string "yes")
740 (const_string "no")))
741
742 ;; Describe a user's asm statement.
743 (define_asm_attributes
744 [(set_attr "type" "multi")
745 (set_attr "can_delay" "no")])
746 \f
747 ;; This mode iterator allows 32-bit and 64-bit GPR patterns to be generated
748 ;; from the same template.
749 (define_mode_iterator GPR [SI (DI "TARGET_64BIT")])
750
751 ;; A copy of GPR that can be used when a pattern has two independent
752 ;; modes.
753 (define_mode_iterator GPR2 [SI (DI "TARGET_64BIT")])
754
755 (define_mode_iterator MOVEP1 [SI SF])
756 (define_mode_iterator MOVEP2 [SI SF])
757
758 ;; This mode iterator allows :HILO to be used as the mode of the
759 ;; concatenated HI and LO registers.
760 (define_mode_iterator HILO [(DI "!TARGET_64BIT") (TI "TARGET_64BIT")])
761
762 ;; This mode iterator allows :P to be used for patterns that operate on
763 ;; pointer-sized quantities. Exactly one of the two alternatives will match.
764 (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")])
765
766 ;; This mode iterator allows :MOVECC to be used anywhere that a
767 ;; conditional-move-type condition is needed.
768 (define_mode_iterator MOVECC [SI (DI "TARGET_64BIT")
769 (CC "TARGET_HARD_FLOAT
770 && !TARGET_LOONGSON_2EF
771 && !TARGET_MIPS5900")])
772
773 ;; This mode iterator allows :FPCC to be used anywhere that an FP condition
774 ;; is needed.
775 (define_mode_iterator FPCC [(CC "!ISA_HAS_CCF")
776 (CCF "ISA_HAS_CCF")])
777
778 ;; 32-bit integer moves for which we provide move patterns.
779 (define_mode_iterator IMOVE32
780 [SI
781 (V2HI "TARGET_DSP")
782 (V4QI "TARGET_DSP")
783 (V2HQ "TARGET_DSP")
784 (V2UHQ "TARGET_DSP")
785 (V2HA "TARGET_DSP")
786 (V2UHA "TARGET_DSP")
787 (V4QQ "TARGET_DSP")
788 (V4UQQ "TARGET_DSP")])
789
790 ;; 64-bit modes for which we provide move patterns.
791 (define_mode_iterator MOVE64
792 [DI DF
793 (V2SF "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT")
794 (V2SI "TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS")
795 (V4HI "TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS")
796 (V8QI "TARGET_HARD_FLOAT && TARGET_LOONGSON_VECTORS")])
797
798 ;; 128-bit modes for which we provide move patterns on 64-bit targets.
799 (define_mode_iterator MOVE128 [TI TF])
800
801 ;; This mode iterator allows the QI and HI extension patterns to be
802 ;; defined from the same template.
803 (define_mode_iterator SHORT [QI HI])
804
805 ;; Likewise the 64-bit truncate-and-shift patterns.
806 (define_mode_iterator SUBDI [QI HI SI])
807
808 ;; This mode iterator allows :ANYF to be used wherever a scalar or vector
809 ;; floating-point mode is allowed.
810 (define_mode_iterator ANYF [(SF "TARGET_HARD_FLOAT")
811 (DF "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT")
812 (V2SF "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT")])
813
814 ;; Like ANYF, but only applies to scalar modes.
815 (define_mode_iterator SCALARF [(SF "TARGET_HARD_FLOAT")
816 (DF "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT")])
817
818 ;; A floating-point mode for which moves involving FPRs may need to be split.
819 (define_mode_iterator SPLITF
820 [(DF "!TARGET_64BIT && TARGET_DOUBLE_FLOAT")
821 (DI "!TARGET_64BIT && TARGET_DOUBLE_FLOAT")
822 (V2SF "!TARGET_64BIT && TARGET_PAIRED_SINGLE_FLOAT")
823 (V2SI "!TARGET_64BIT && TARGET_LOONGSON_VECTORS")
824 (V4HI "!TARGET_64BIT && TARGET_LOONGSON_VECTORS")
825 (V8QI "!TARGET_64BIT && TARGET_LOONGSON_VECTORS")
826 (TF "TARGET_64BIT && TARGET_FLOAT64")])
827
828 ;; In GPR templates, a string like "<d>subu" will expand to "subu" in the
829 ;; 32-bit version and "dsubu" in the 64-bit version.
830 (define_mode_attr d [(SI "") (DI "d")
831 (QQ "") (HQ "") (SQ "") (DQ "d")
832 (UQQ "") (UHQ "") (USQ "") (UDQ "d")
833 (HA "") (SA "") (DA "d")
834 (UHA "") (USA "") (UDA "d")])
835
836 ;; Same as d but upper-case.
837 (define_mode_attr D [(SI "") (DI "D")
838 (QQ "") (HQ "") (SQ "") (DQ "D")
839 (UQQ "") (UHQ "") (USQ "") (UDQ "D")
840 (HA "") (SA "") (DA "D")
841 (UHA "") (USA "") (UDA "D")])
842
843 ;; This attribute gives the length suffix for a load or store instruction.
844 ;; The same suffixes work for zero and sign extensions.
845 (define_mode_attr size [(QI "b") (HI "h") (SI "w") (DI "d")])
846 (define_mode_attr SIZE [(QI "B") (HI "H") (SI "W") (DI "D")])
847
848 ;; This attributes gives the mode mask of a SHORT.
849 (define_mode_attr mask [(QI "0x00ff") (HI "0xffff")])
850
851 ;; Mode attributes for GPR loads.
852 (define_mode_attr load [(SI "lw") (DI "ld")])
853 ;; Instruction names for stores.
854 (define_mode_attr store [(QI "sb") (HI "sh") (SI "sw") (DI "sd")])
855
856 ;; Similarly for MIPS IV indexed FPR loads and stores.
857 (define_mode_attr loadx [(SF "lwxc1") (DF "ldxc1") (V2SF "ldxc1")])
858 (define_mode_attr storex [(SF "swxc1") (DF "sdxc1") (V2SF "sdxc1")])
859
860 ;; The unextended ranges of the MIPS16 addiu and daddiu instructions
861 ;; are different. Some forms of unextended addiu have an 8-bit immediate
862 ;; field but the equivalent daddiu has only a 5-bit field.
863 (define_mode_attr si8_di5 [(SI "8") (DI "5")])
864
865 ;; This attribute gives the best constraint to use for registers of
866 ;; a given mode.
867 (define_mode_attr reg [(SI "d") (DI "d") (CC "z") (CCF "f")])
868
869 ;; This attribute gives the format suffix for floating-point operations.
870 (define_mode_attr fmt [(SF "s") (DF "d") (V2SF "ps")])
871
872 ;; This attribute gives the upper-case mode name for one unit of a
873 ;; floating-point mode.
874 (define_mode_attr UNITMODE [(SF "SF") (DF "DF") (V2SF "SF")])
875
876 ;; This attribute gives the integer mode that has the same size as a
877 ;; fixed-point mode.
878 (define_mode_attr IMODE [(QQ "QI") (HQ "HI") (SQ "SI") (DQ "DI")
879 (UQQ "QI") (UHQ "HI") (USQ "SI") (UDQ "DI")
880 (HA "HI") (SA "SI") (DA "DI")
881 (UHA "HI") (USA "SI") (UDA "DI")
882 (V4UQQ "SI") (V2UHQ "SI") (V2UHA "SI")
883 (V2HQ "SI") (V2HA "SI")])
884
885 ;; This attribute gives the integer mode that has half the size of
886 ;; the controlling mode.
887 (define_mode_attr HALFMODE [(DF "SI") (DI "SI") (V2SF "SI")
888 (V2SI "SI") (V4HI "SI") (V8QI "SI")
889 (TF "DI")])
890
891 ;; This attribute works around the early SB-1 rev2 core "F2" erratum:
892 ;;
893 ;; In certain cases, div.s and div.ps may have a rounding error
894 ;; and/or wrong inexact flag.
895 ;;
896 ;; Therefore, we only allow div.s if not working around SB-1 rev2
897 ;; errata or if a slight loss of precision is OK.
898 (define_mode_attr divide_condition
899 [DF (SF "!TARGET_FIX_SB1 || flag_unsafe_math_optimizations")
900 (V2SF "TARGET_SB1 && (!TARGET_FIX_SB1 || flag_unsafe_math_optimizations)")])
901
902 ;; This attribute gives the conditions under which SQRT.fmt instructions
903 ;; can be used.
904 (define_mode_attr sqrt_condition
905 [(SF "!ISA_MIPS1") (DF "!ISA_MIPS1") (V2SF "TARGET_SB1")])
906
907 ;; This attribute provides the correct mnemonic for each FP condition mode.
908 (define_mode_attr fpcmp [(CC "c") (CCF "cmp")])
909
910 ;; This code iterator allows signed and unsigned widening multiplications
911 ;; to use the same template.
912 (define_code_iterator any_extend [sign_extend zero_extend])
913
914 ;; This code iterator allows the two right shift instructions to be
915 ;; generated from the same template.
916 (define_code_iterator any_shiftrt [ashiftrt lshiftrt])
917
918 ;; This code iterator allows the three shift instructions to be generated
919 ;; from the same template.
920 (define_code_iterator any_shift [ashift ashiftrt lshiftrt])
921
922 ;; This code iterator allows unsigned and signed division to be generated
923 ;; from the same template.
924 (define_code_iterator any_div [div udiv])
925
926 ;; This code iterator allows unsigned and signed modulus to be generated
927 ;; from the same template.
928 (define_code_iterator any_mod [mod umod])
929
930 ;; This code iterator allows all native floating-point comparisons to be
931 ;; generated from the same template.
932 (define_code_iterator fcond [unordered uneq unlt unle eq lt le
933 (ordered "ISA_HAS_CCF")
934 (ltgt "ISA_HAS_CCF")
935 (ne "ISA_HAS_CCF")])
936
937 ;; This code iterator is used for comparisons that can be implemented
938 ;; by swapping the operands.
939 (define_code_iterator swapped_fcond [ge gt unge ungt])
940
941 ;; Equality operators.
942 (define_code_iterator equality_op [eq ne])
943
944 ;; These code iterators allow the signed and unsigned scc operations to use
945 ;; the same template.
946 (define_code_iterator any_gt [gt gtu])
947 (define_code_iterator any_ge [ge geu])
948 (define_code_iterator any_lt [lt ltu])
949 (define_code_iterator any_le [le leu])
950
951 (define_code_iterator any_return [return simple_return])
952
953 ;; <u> expands to an empty string when doing a signed operation and
954 ;; "u" when doing an unsigned operation.
955 (define_code_attr u [(sign_extend "") (zero_extend "u")
956 (div "") (udiv "u")
957 (mod "") (umod "u")
958 (gt "") (gtu "u")
959 (ge "") (geu "u")
960 (lt "") (ltu "u")
961 (le "") (leu "u")])
962
963 ;; <U> is like <u> except uppercase.
964 (define_code_attr U [(sign_extend "") (zero_extend "U")])
965
966 ;; <su> is like <u>, but the signed form expands to "s" rather than "".
967 (define_code_attr su [(sign_extend "s") (zero_extend "u")])
968
969 ;; <optab> expands to the name of the optab for a particular code.
970 (define_code_attr optab [(ashift "ashl")
971 (ashiftrt "ashr")
972 (lshiftrt "lshr")
973 (ior "ior")
974 (xor "xor")
975 (and "and")
976 (plus "add")
977 (minus "sub")
978 (return "return")
979 (simple_return "simple_return")])
980
981 ;; <insn> expands to the name of the insn that implements a particular code.
982 (define_code_attr insn [(ashift "sll")
983 (ashiftrt "sra")
984 (lshiftrt "srl")
985 (ior "or")
986 (xor "xor")
987 (and "and")
988 (plus "addu")
989 (minus "subu")])
990
991 ;; <immediate_insn> expands to the name of the insn that implements
992 ;; a particular code to operate on immediate values.
993 (define_code_attr immediate_insn [(ior "ori")
994 (xor "xori")
995 (and "andi")])
996
997 (define_code_attr shift_compression [(ashift "micromips32")
998 (lshiftrt "micromips32")
999 (ashiftrt "none")])
1000
1001 ;; <fcond> is the c.cond.fmt condition associated with a particular code.
1002 (define_code_attr fcond [(unordered "un")
1003 (uneq "ueq")
1004 (unlt "ult")
1005 (unle "ule")
1006 (eq "eq")
1007 (lt "lt")
1008 (le "le")
1009 (ordered "or")
1010 (ltgt "ne")
1011 (ne "une")])
1012
1013 ;; Similar, but for swapped conditions.
1014 (define_code_attr swapped_fcond [(ge "le")
1015 (gt "lt")
1016 (unge "ule")
1017 (ungt "ult")])
1018
1019 ;; The value of the bit when the branch is taken for branch_bit patterns.
1020 ;; Comparison is always against zero so this depends on the operator.
1021 (define_code_attr bbv [(eq "0") (ne "1")])
1022
1023 ;; This is the inverse value of bbv.
1024 (define_code_attr bbinv [(eq "1") (ne "0")])
1025
1026 ;; The sel mnemonic to use depending on the condition test.
1027 (define_code_attr sel [(eq "seleqz") (ne "selnez")])
1028 (define_code_attr selinv [(eq "selnez") (ne "seleqz")])
1029 \f
1030 ;; .........................
1031 ;;
1032 ;; Branch, call and jump delay slots
1033 ;;
1034 ;; .........................
1035
1036 (define_delay (and (eq_attr "type" "branch")
1037 (not (match_test "TARGET_MIPS16"))
1038 (eq_attr "branch_likely" "yes"))
1039 [(eq_attr "can_delay" "yes")
1040 (nil)
1041 (eq_attr "can_delay" "yes")])
1042
1043 ;; Branches that don't have likely variants do not annul on false.
1044 (define_delay (and (eq_attr "type" "branch")
1045 (not (match_test "TARGET_MIPS16"))
1046 (eq_attr "branch_likely" "no"))
1047 [(eq_attr "can_delay" "yes")
1048 (nil)
1049 (nil)])
1050
1051 (define_delay (eq_attr "type" "jump")
1052 [(eq_attr "can_delay" "yes")
1053 (nil)
1054 (nil)])
1055
1056 (define_delay (and (eq_attr "type" "call")
1057 (eq_attr "jal_macro" "no"))
1058 [(eq_attr "can_delay" "yes")
1059 (nil)
1060 (nil)])
1061 \f
1062 ;; Pipeline descriptions.
1063 ;;
1064 ;; generic.md provides a fallback for processors without a specific
1065 ;; pipeline description. It is derived from the old define_function_unit
1066 ;; version and uses the "alu" and "imuldiv" units declared below.
1067 ;;
1068 ;; Some of the processor-specific files are also derived from old
1069 ;; define_function_unit descriptions and simply override the parts of
1070 ;; generic.md that don't apply. The other processor-specific files
1071 ;; are self-contained.
1072 (define_automaton "alu,imuldiv")
1073
1074 (define_cpu_unit "alu" "alu")
1075 (define_cpu_unit "imuldiv" "imuldiv")
1076
1077 ;; Ghost instructions produce no real code and introduce no hazards.
1078 ;; They exist purely to express an effect on dataflow.
1079 (define_insn_reservation "ghost" 0
1080 (eq_attr "type" "ghost")
1081 "nothing")
1082
1083 (include "p5600.md")
1084 (include "4k.md")
1085 (include "5k.md")
1086 (include "20kc.md")
1087 (include "24k.md")
1088 (include "74k.md")
1089 (include "3000.md")
1090 (include "4000.md")
1091 (include "4100.md")
1092 (include "4130.md")
1093 (include "4300.md")
1094 (include "4600.md")
1095 (include "5000.md")
1096 (include "5400.md")
1097 (include "5500.md")
1098 (include "6000.md")
1099 (include "7000.md")
1100 (include "9000.md")
1101 (include "10000.md")
1102 (include "loongson2ef.md")
1103 (include "loongson3a.md")
1104 (include "octeon.md")
1105 (include "sb1.md")
1106 (include "sr71k.md")
1107 (include "xlr.md")
1108 (include "xlp.md")
1109 (include "generic.md")
1110 \f
1111 ;;
1112 ;; ....................
1113 ;;
1114 ;; CONDITIONAL TRAPS
1115 ;;
1116 ;; ....................
1117 ;;
1118
1119 (define_insn "trap"
1120 [(trap_if (const_int 1) (const_int 0))]
1121 ""
1122 {
1123 if (ISA_HAS_COND_TRAP)
1124 return "teq\t$0,$0";
1125 else if (TARGET_MIPS16)
1126 return "break 0";
1127 else
1128 return "break";
1129 }
1130 [(set_attr "type" "trap")])
1131
1132 (define_expand "ctrap<mode>4"
1133 [(trap_if (match_operator 0 "comparison_operator"
1134 [(match_operand:GPR 1 "reg_or_0_operand")
1135 (match_operand:GPR 2 "arith_operand")])
1136 (match_operand 3 "const_0_operand"))]
1137 "ISA_HAS_COND_TRAPI || ISA_HAS_COND_TRAP"
1138 {
1139 mips_expand_conditional_trap (operands[0]);
1140 DONE;
1141 })
1142
1143 (define_insn "*conditional_trap_reg<mode>"
1144 [(trap_if (match_operator:GPR 0 "trap_comparison_operator"
1145 [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
1146 (match_operand:GPR 2 "reg_or_0_operand" "dJ")])
1147 (const_int 0))]
1148 "ISA_HAS_COND_TRAP && !ISA_HAS_COND_TRAPI"
1149 "t%C0\t%z1,%2"
1150 [(set_attr "type" "trap")])
1151
1152 (define_insn "*conditional_trap<mode>"
1153 [(trap_if (match_operator:GPR 0 "trap_comparison_operator"
1154 [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
1155 (match_operand:GPR 2 "arith_operand" "dI")])
1156 (const_int 0))]
1157 "ISA_HAS_COND_TRAPI"
1158 "t%C0\t%z1,%2"
1159 [(set_attr "type" "trap")])
1160 \f
1161 ;;
1162 ;; ....................
1163 ;;
1164 ;; ADDITION
1165 ;;
1166 ;; ....................
1167 ;;
1168
1169 (define_insn "add<mode>3"
1170 [(set (match_operand:ANYF 0 "register_operand" "=f")
1171 (plus:ANYF (match_operand:ANYF 1 "register_operand" "f")
1172 (match_operand:ANYF 2 "register_operand" "f")))]
1173 ""
1174 "add.<fmt>\t%0,%1,%2"
1175 [(set_attr "type" "fadd")
1176 (set_attr "mode" "<UNITMODE>")])
1177
1178 (define_expand "add<mode>3"
1179 [(set (match_operand:GPR 0 "register_operand")
1180 (plus:GPR (match_operand:GPR 1 "register_operand")
1181 (match_operand:GPR 2 "arith_operand")))]
1182 "")
1183
1184 (define_insn "*add<mode>3"
1185 [(set (match_operand:GPR 0 "register_operand" "=!u,d,!u,!u,!ks,!d,d")
1186 (plus:GPR (match_operand:GPR 1 "register_operand" "!u,d,!u,!ks,!ks,0,d")
1187 (match_operand:GPR 2 "arith_operand" "!u,d,Uead,Uuw6,Uesp,Usb4,Q")))]
1188 "!TARGET_MIPS16"
1189 {
1190 if (which_alternative == 0
1191 || which_alternative == 1)
1192 return "<d>addu\t%0,%1,%2";
1193 else
1194 return "<d>addiu\t%0,%1,%2";
1195 }
1196 [(set_attr "alu_type" "add")
1197 (set_attr "compression" "micromips32,*,micromips32,micromips32,micromips32,micromips32,*")
1198 (set_attr "mode" "<MODE>")])
1199
1200 (define_insn "*add<mode>3_mips16"
1201 [(set (match_operand:GPR 0 "register_operand" "=ks,ks,d,d,d,d,d,d,d")
1202 (plus:GPR (match_operand:GPR 1 "register_operand" "ks,ks,ks,ks,0,0,d,d,d")
1203 (match_operand:GPR 2 "arith_operand" "Usd8,Q,Uuw<si8_di5>,Q,Usb<si8_di5>,Q,Usb4,O,d")))]
1204 "TARGET_MIPS16"
1205 "@
1206 <d>addiu\t%0,%2
1207 <d>addiu\t%0,%2
1208 <d>addiu\t%0,%1,%2
1209 <d>addiu\t%0,%1,%2
1210 <d>addiu\t%0,%2
1211 <d>addiu\t%0,%2
1212 <d>addiu\t%0,%1,%2
1213 <d>addiu\t%0,%1,%2
1214 <d>addu\t%0,%1,%2"
1215 [(set_attr "alu_type" "add")
1216 (set_attr "mode" "<MODE>")
1217 (set_attr "extended_mips16" "no,yes,no,yes,no,yes,no,yes,no")])
1218
1219 ;; On the mips16, we can sometimes split an add of a constant which is
1220 ;; a 4 byte instruction into two adds which are both 2 byte
1221 ;; instructions. There are two cases: one where we are adding a
1222 ;; constant plus a register to another register, and one where we are
1223 ;; simply adding a constant to a register.
1224
1225 (define_split
1226 [(set (match_operand:SI 0 "d_operand")
1227 (plus:SI (match_dup 0)
1228 (match_operand:SI 1 "const_int_operand")))]
1229 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
1230 && ((INTVAL (operands[1]) > 0x7f
1231 && INTVAL (operands[1]) <= 0x7f + 0x7f)
1232 || (INTVAL (operands[1]) < - 0x80
1233 && INTVAL (operands[1]) >= - 0x80 - 0x80))"
1234 [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
1235 (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
1236 {
1237 HOST_WIDE_INT val = INTVAL (operands[1]);
1238
1239 if (val >= 0)
1240 {
1241 operands[1] = GEN_INT (0x7f);
1242 operands[2] = GEN_INT (val - 0x7f);
1243 }
1244 else
1245 {
1246 operands[1] = GEN_INT (- 0x80);
1247 operands[2] = GEN_INT (val + 0x80);
1248 }
1249 })
1250
1251 (define_split
1252 [(set (match_operand:SI 0 "d_operand")
1253 (plus:SI (match_operand:SI 1 "d_operand")
1254 (match_operand:SI 2 "const_int_operand")))]
1255 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
1256 && REGNO (operands[0]) != REGNO (operands[1])
1257 && ((INTVAL (operands[2]) > 0x7
1258 && INTVAL (operands[2]) <= 0x7 + 0x7f)
1259 || (INTVAL (operands[2]) < - 0x8
1260 && INTVAL (operands[2]) >= - 0x8 - 0x80))"
1261 [(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 2)))
1262 (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 3)))]
1263 {
1264 HOST_WIDE_INT val = INTVAL (operands[2]);
1265
1266 if (val >= 0)
1267 {
1268 operands[2] = GEN_INT (0x7);
1269 operands[3] = GEN_INT (val - 0x7);
1270 }
1271 else
1272 {
1273 operands[2] = GEN_INT (- 0x8);
1274 operands[3] = GEN_INT (val + 0x8);
1275 }
1276 })
1277
1278 (define_split
1279 [(set (match_operand:DI 0 "d_operand")
1280 (plus:DI (match_dup 0)
1281 (match_operand:DI 1 "const_int_operand")))]
1282 "TARGET_MIPS16 && TARGET_64BIT && reload_completed && !TARGET_DEBUG_D_MODE
1283 && ((INTVAL (operands[1]) > 0xf
1284 && INTVAL (operands[1]) <= 0xf + 0xf)
1285 || (INTVAL (operands[1]) < - 0x10
1286 && INTVAL (operands[1]) >= - 0x10 - 0x10))"
1287 [(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 1)))
1288 (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 2)))]
1289 {
1290 HOST_WIDE_INT val = INTVAL (operands[1]);
1291
1292 if (val >= 0)
1293 {
1294 operands[1] = GEN_INT (0xf);
1295 operands[2] = GEN_INT (val - 0xf);
1296 }
1297 else
1298 {
1299 operands[1] = GEN_INT (- 0x10);
1300 operands[2] = GEN_INT (val + 0x10);
1301 }
1302 })
1303
1304 (define_split
1305 [(set (match_operand:DI 0 "d_operand")
1306 (plus:DI (match_operand:DI 1 "d_operand")
1307 (match_operand:DI 2 "const_int_operand")))]
1308 "TARGET_MIPS16 && TARGET_64BIT && reload_completed && !TARGET_DEBUG_D_MODE
1309 && REGNO (operands[0]) != REGNO (operands[1])
1310 && ((INTVAL (operands[2]) > 0x7
1311 && INTVAL (operands[2]) <= 0x7 + 0xf)
1312 || (INTVAL (operands[2]) < - 0x8
1313 && INTVAL (operands[2]) >= - 0x8 - 0x10))"
1314 [(set (match_dup 0) (plus:DI (match_dup 1) (match_dup 2)))
1315 (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 3)))]
1316 {
1317 HOST_WIDE_INT val = INTVAL (operands[2]);
1318
1319 if (val >= 0)
1320 {
1321 operands[2] = GEN_INT (0x7);
1322 operands[3] = GEN_INT (val - 0x7);
1323 }
1324 else
1325 {
1326 operands[2] = GEN_INT (- 0x8);
1327 operands[3] = GEN_INT (val + 0x8);
1328 }
1329 })
1330
1331 (define_insn "*addsi3_extended"
1332 [(set (match_operand:DI 0 "register_operand" "=d,d")
1333 (sign_extend:DI
1334 (plus:SI (match_operand:SI 1 "register_operand" "d,d")
1335 (match_operand:SI 2 "arith_operand" "d,Q"))))]
1336 "TARGET_64BIT && !TARGET_MIPS16"
1337 "@
1338 addu\t%0,%1,%2
1339 addiu\t%0,%1,%2"
1340 [(set_attr "alu_type" "add")
1341 (set_attr "mode" "SI")])
1342
1343 ;; Split this insn so that the addiu splitters can have a crack at it.
1344 ;; Use a conservative length estimate until the split.
1345 (define_insn_and_split "*addsi3_extended_mips16"
1346 [(set (match_operand:DI 0 "register_operand" "=d,d,d")
1347 (sign_extend:DI
1348 (plus:SI (match_operand:SI 1 "register_operand" "0,d,d")
1349 (match_operand:SI 2 "arith_operand" "Q,O,d"))))]
1350 "TARGET_64BIT && TARGET_MIPS16"
1351 "#"
1352 "&& reload_completed"
1353 [(set (match_dup 3) (plus:SI (match_dup 1) (match_dup 2)))]
1354 { operands[3] = gen_lowpart (SImode, operands[0]); }
1355 [(set_attr "alu_type" "add")
1356 (set_attr "mode" "SI")
1357 (set_attr "extended_mips16" "yes")])
1358
1359 ;; Combiner patterns for unsigned byte-add.
1360
1361 (define_insn "*baddu_si_eb"
1362 [(set (match_operand:SI 0 "register_operand" "=d")
1363 (zero_extend:SI
1364 (subreg:QI
1365 (plus:SI (match_operand:SI 1 "register_operand" "d")
1366 (match_operand:SI 2 "register_operand" "d")) 3)))]
1367 "ISA_HAS_BADDU && BYTES_BIG_ENDIAN"
1368 "baddu\\t%0,%1,%2"
1369 [(set_attr "alu_type" "add")])
1370
1371 (define_insn "*baddu_si_el"
1372 [(set (match_operand:SI 0 "register_operand" "=d")
1373 (zero_extend:SI
1374 (subreg:QI
1375 (plus:SI (match_operand:SI 1 "register_operand" "d")
1376 (match_operand:SI 2 "register_operand" "d")) 0)))]
1377 "ISA_HAS_BADDU && !BYTES_BIG_ENDIAN"
1378 "baddu\\t%0,%1,%2"
1379 [(set_attr "alu_type" "add")])
1380
1381 (define_insn "*baddu_di<mode>"
1382 [(set (match_operand:GPR 0 "register_operand" "=d")
1383 (zero_extend:GPR
1384 (truncate:QI
1385 (plus:DI (match_operand:DI 1 "register_operand" "d")
1386 (match_operand:DI 2 "register_operand" "d")))))]
1387 "ISA_HAS_BADDU && TARGET_64BIT"
1388 "baddu\\t%0,%1,%2"
1389 [(set_attr "alu_type" "add")])
1390 \f
1391 ;;
1392 ;; ....................
1393 ;;
1394 ;; SUBTRACTION
1395 ;;
1396 ;; ....................
1397 ;;
1398
1399 (define_insn "sub<mode>3"
1400 [(set (match_operand:ANYF 0 "register_operand" "=f")
1401 (minus:ANYF (match_operand:ANYF 1 "register_operand" "f")
1402 (match_operand:ANYF 2 "register_operand" "f")))]
1403 ""
1404 "sub.<fmt>\t%0,%1,%2"
1405 [(set_attr "type" "fadd")
1406 (set_attr "mode" "<UNITMODE>")])
1407
1408 (define_insn "sub<mode>3"
1409 [(set (match_operand:GPR 0 "register_operand" "=!u,d")
1410 (minus:GPR (match_operand:GPR 1 "register_operand" "!u,d")
1411 (match_operand:GPR 2 "register_operand" "!u,d")))]
1412 ""
1413 "<d>subu\t%0,%1,%2"
1414 [(set_attr "alu_type" "sub")
1415 (set_attr "compression" "micromips32,*")
1416 (set_attr "mode" "<MODE>")])
1417
1418 (define_insn "*subsi3_extended"
1419 [(set (match_operand:DI 0 "register_operand" "=d")
1420 (sign_extend:DI
1421 (minus:SI (match_operand:SI 1 "register_operand" "d")
1422 (match_operand:SI 2 "register_operand" "d"))))]
1423 "TARGET_64BIT"
1424 "subu\t%0,%1,%2"
1425 [(set_attr "alu_type" "sub")
1426 (set_attr "mode" "DI")])
1427 \f
1428 ;;
1429 ;; ....................
1430 ;;
1431 ;; MULTIPLICATION
1432 ;;
1433 ;; ....................
1434 ;;
1435
1436 (define_expand "mul<mode>3"
1437 [(set (match_operand:SCALARF 0 "register_operand")
1438 (mult:SCALARF (match_operand:SCALARF 1 "register_operand")
1439 (match_operand:SCALARF 2 "register_operand")))]
1440 ""
1441 "")
1442
1443 (define_insn "*mul<mode>3"
1444 [(set (match_operand:SCALARF 0 "register_operand" "=f")
1445 (mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f")
1446 (match_operand:SCALARF 2 "register_operand" "f")))]
1447 "!TARGET_4300_MUL_FIX"
1448 "mul.<fmt>\t%0,%1,%2"
1449 [(set_attr "type" "fmul")
1450 (set_attr "mode" "<MODE>")])
1451
1452 ;; Early VR4300 silicon has a CPU bug where multiplies with certain
1453 ;; operands may corrupt immediately following multiplies. This is a
1454 ;; simple fix to insert NOPs.
1455
1456 (define_insn "*mul<mode>3_r4300"
1457 [(set (match_operand:SCALARF 0 "register_operand" "=f")
1458 (mult:SCALARF (match_operand:SCALARF 1 "register_operand" "f")
1459 (match_operand:SCALARF 2 "register_operand" "f")))]
1460 "TARGET_4300_MUL_FIX"
1461 "mul.<fmt>\t%0,%1,%2\;nop"
1462 [(set_attr "type" "fmul")
1463 (set_attr "mode" "<MODE>")
1464 (set_attr "insn_count" "2")])
1465
1466 (define_insn "mulv2sf3"
1467 [(set (match_operand:V2SF 0 "register_operand" "=f")
1468 (mult:V2SF (match_operand:V2SF 1 "register_operand" "f")
1469 (match_operand:V2SF 2 "register_operand" "f")))]
1470 "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT"
1471 "mul.ps\t%0,%1,%2"
1472 [(set_attr "type" "fmul")
1473 (set_attr "mode" "SF")])
1474
1475 ;; The original R4000 has a cpu bug. If a double-word or a variable
1476 ;; shift executes while an integer multiplication is in progress, the
1477 ;; shift may give an incorrect result. Avoid this by keeping the mflo
1478 ;; with the mult on the R4000.
1479 ;;
1480 ;; From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
1481 ;; (also valid for MIPS R4000MC processors):
1482 ;;
1483 ;; "16. R4000PC, R4000SC: Please refer to errata 28 for an update to
1484 ;; this errata description.
1485 ;; The following code sequence causes the R4000 to incorrectly
1486 ;; execute the Double Shift Right Arithmetic 32 (dsra32)
1487 ;; instruction. If the dsra32 instruction is executed during an
1488 ;; integer multiply, the dsra32 will only shift by the amount in
1489 ;; specified in the instruction rather than the amount plus 32
1490 ;; bits.
1491 ;; instruction 1: mult rs,rt integer multiply
1492 ;; instruction 2-12: dsra32 rd,rt,rs doubleword shift
1493 ;; right arithmetic + 32
1494 ;; Workaround: A dsra32 instruction placed after an integer
1495 ;; multiply should not be one of the 11 instructions after the
1496 ;; multiply instruction."
1497 ;;
1498 ;; and:
1499 ;;
1500 ;; "28. R4000PC, R4000SC: The text from errata 16 should be replaced by
1501 ;; the following description.
1502 ;; All extended shifts (shift by n+32) and variable shifts (32 and
1503 ;; 64-bit versions) may produce incorrect results under the
1504 ;; following conditions:
1505 ;; 1) An integer multiply is currently executing
1506 ;; 2) These types of shift instructions are executed immediately
1507 ;; following an integer divide instruction.
1508 ;; Workaround:
1509 ;; 1) Make sure no integer multiply is running wihen these
1510 ;; instruction are executed. If this cannot be predicted at
1511 ;; compile time, then insert a "mfhi" to R0 instruction
1512 ;; immediately after the integer multiply instruction. This
1513 ;; will cause the integer multiply to complete before the shift
1514 ;; is executed.
1515 ;; 2) Separate integer divide and these two classes of shift
1516 ;; instructions by another instruction or a noop."
1517 ;;
1518 ;; These processors have PRId values of 0x00004220 and 0x00004300,
1519 ;; respectively.
1520
1521 (define_expand "mul<mode>3"
1522 [(set (match_operand:GPR 0 "register_operand")
1523 (mult:GPR (match_operand:GPR 1 "register_operand")
1524 (match_operand:GPR 2 "register_operand")))]
1525 "ISA_HAS_<D>MULT || ISA_HAS_R6<D>MUL"
1526 {
1527 rtx lo;
1528
1529 if (TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A || ISA_HAS_R6<D>MUL)
1530 emit_insn (gen_mul<mode>3_mul3_nohilo (operands[0], operands[1],
1531 operands[2]));
1532 else if (ISA_HAS_<D>MUL3)
1533 emit_insn (gen_mul<mode>3_mul3 (operands[0], operands[1], operands[2]));
1534 else if (TARGET_MIPS16)
1535 {
1536 lo = gen_rtx_REG (<MODE>mode, LO_REGNUM);
1537 emit_insn (gen_mul<mode>3_internal (lo, operands[1], operands[2]));
1538 emit_move_insn (operands[0], lo);
1539 }
1540 else if (TARGET_FIX_R4000)
1541 emit_insn (gen_mul<mode>3_r4000 (operands[0], operands[1], operands[2]));
1542 else
1543 emit_insn
1544 (gen_mul<mode>3_internal (operands[0], operands[1], operands[2]));
1545 DONE;
1546 })
1547
1548 (define_insn "mul<mode>3_mul3_nohilo"
1549 [(set (match_operand:GPR 0 "register_operand" "=d")
1550 (mult:GPR (match_operand:GPR 1 "register_operand" "d")
1551 (match_operand:GPR 2 "register_operand" "d")))]
1552 "TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A || ISA_HAS_R6<D>MUL"
1553 {
1554 if (TARGET_LOONGSON_2EF)
1555 return "<d>multu.g\t%0,%1,%2";
1556 else if (TARGET_LOONGSON_3A)
1557 return "gs<d>multu\t%0,%1,%2";
1558 else
1559 return "<d>mul\t%0,%1,%2";
1560 }
1561 [(set_attr "type" "imul3nc")
1562 (set_attr "mode" "<MODE>")])
1563
1564 (define_insn "mul<mode>3_mul3"
1565 [(set (match_operand:GPR 0 "register_operand" "=d,l")
1566 (mult:GPR (match_operand:GPR 1 "register_operand" "d,d")
1567 (match_operand:GPR 2 "register_operand" "d,d")))
1568 (clobber (match_scratch:GPR 3 "=l,X"))]
1569 "ISA_HAS_<D>MUL3"
1570 {
1571 if (which_alternative == 1)
1572 return "<d>mult\t%1,%2";
1573 if (<MODE>mode == SImode && (TARGET_MIPS3900 || TARGET_MIPS5900))
1574 return "mult\t%0,%1,%2";
1575 return "<d>mul\t%0,%1,%2";
1576 }
1577 [(set_attr "type" "imul3,imul")
1578 (set_attr "mode" "<MODE>")])
1579
1580 ;; If a register gets allocated to LO, and we spill to memory, the reload
1581 ;; will include a move from LO to a GPR. Merge it into the multiplication
1582 ;; if it can set the GPR directly.
1583 ;;
1584 ;; Operand 0: LO
1585 ;; Operand 1: GPR (1st multiplication operand)
1586 ;; Operand 2: GPR (2nd multiplication operand)
1587 ;; Operand 3: GPR (destination)
1588 (define_peephole2
1589 [(parallel
1590 [(set (match_operand:SI 0 "lo_operand")
1591 (mult:SI (match_operand:SI 1 "d_operand")
1592 (match_operand:SI 2 "d_operand")))
1593 (clobber (scratch:SI))])
1594 (set (match_operand:SI 3 "d_operand")
1595 (match_dup 0))]
1596 "ISA_HAS_MUL3 && peep2_reg_dead_p (2, operands[0])"
1597 [(parallel
1598 [(set (match_dup 3)
1599 (mult:SI (match_dup 1)
1600 (match_dup 2)))
1601 (clobber (match_dup 0))])])
1602
1603 (define_insn "mul<mode>3_internal"
1604 [(set (match_operand:GPR 0 "muldiv_target_operand" "=l")
1605 (mult:GPR (match_operand:GPR 1 "register_operand" "d")
1606 (match_operand:GPR 2 "register_operand" "d")))]
1607 "ISA_HAS_<D>MULT && !TARGET_FIX_R4000"
1608 "<d>mult\t%1,%2"
1609 [(set_attr "type" "imul")
1610 (set_attr "mode" "<MODE>")])
1611
1612 (define_insn "mul<mode>3_r4000"
1613 [(set (match_operand:GPR 0 "register_operand" "=d")
1614 (mult:GPR (match_operand:GPR 1 "register_operand" "d")
1615 (match_operand:GPR 2 "register_operand" "d")))
1616 (clobber (match_scratch:GPR 3 "=l"))]
1617 "ISA_HAS_<D>MULT && TARGET_FIX_R4000"
1618 "<d>mult\t%1,%2\;mflo\t%0"
1619 [(set_attr "type" "imul")
1620 (set_attr "mode" "<MODE>")
1621 (set_attr "insn_count" "2")])
1622
1623 ;; On the VR4120 and VR4130, it is better to use "mtlo $0; macc" instead
1624 ;; of "mult; mflo". They have the same latency, but the first form gives
1625 ;; us an extra cycle to compute the operands.
1626
1627 ;; Operand 0: LO
1628 ;; Operand 1: GPR (1st multiplication operand)
1629 ;; Operand 2: GPR (2nd multiplication operand)
1630 ;; Operand 3: GPR (destination)
1631 (define_peephole2
1632 [(set (match_operand:SI 0 "lo_operand")
1633 (mult:SI (match_operand:SI 1 "d_operand")
1634 (match_operand:SI 2 "d_operand")))
1635 (set (match_operand:SI 3 "d_operand")
1636 (match_dup 0))]
1637 "ISA_HAS_MACC && !ISA_HAS_MUL3"
1638 [(set (match_dup 0)
1639 (const_int 0))
1640 (parallel
1641 [(set (match_dup 0)
1642 (plus:SI (mult:SI (match_dup 1)
1643 (match_dup 2))
1644 (match_dup 0)))
1645 (set (match_dup 3)
1646 (plus:SI (mult:SI (match_dup 1)
1647 (match_dup 2))
1648 (match_dup 0)))])])
1649
1650 ;; Multiply-accumulate patterns
1651
1652 ;; This pattern is first matched by combine, which tries to use the
1653 ;; pattern wherever it can. We don't know until later whether it
1654 ;; is actually profitable to use MADD over a "MUL; ADDIU" sequence,
1655 ;; so we need to keep both options open.
1656 ;;
1657 ;; The second alternative has a "?" marker because it is generally
1658 ;; one instruction more costly than the first alternative. This "?"
1659 ;; marker is enough to convey the relative costs to the register
1660 ;; allocator.
1661 ;;
1662 ;; However, reload counts reloads of operands 4 and 5 in the same way as
1663 ;; reloads of the other operands, even though operands 4 and 5 need no
1664 ;; copy instructions. Reload therefore thinks that the second alternative
1665 ;; is two reloads more costly than the first. We add "*?*?" to the first
1666 ;; alternative as a counterweight.
1667 ;;
1668 ;; LRA simulates reload but the cost of reloading scratches is lower
1669 ;; than of the classic reload. For the time being, removing the counterweight
1670 ;; for LRA is more profitable.
1671 (define_insn "*mul_acc_si"
1672 [(set (match_operand:SI 0 "register_operand" "=l*?*?,l,d?")
1673 (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d,d")
1674 (match_operand:SI 2 "register_operand" "d,d,d"))
1675 (match_operand:SI 3 "register_operand" "0,0,d")))
1676 (clobber (match_scratch:SI 4 "=X,X,l"))
1677 (clobber (match_scratch:SI 5 "=X,X,&d"))]
1678 "GENERATE_MADD_MSUB && !TARGET_MIPS16"
1679 "@
1680 madd\t%1,%2
1681 madd\t%1,%2
1682 #"
1683 [(set_attr "type" "imadd")
1684 (set_attr "accum_in" "3")
1685 (set_attr "mode" "SI")
1686 (set_attr "insn_count" "1,1,2")
1687 (set (attr "enabled")
1688 (cond [(and (eq_attr "alternative" "0")
1689 (match_test "!mips_lra_flag"))
1690 (const_string "yes")
1691 (and (eq_attr "alternative" "1")
1692 (match_test "mips_lra_flag"))
1693 (const_string "yes")
1694 (eq_attr "alternative" "2")
1695 (const_string "yes")]
1696 (const_string "no")))])
1697
1698 ;; The same idea applies here. The middle alternative needs one less
1699 ;; clobber than the final alternative, so we add "*?" as a counterweight.
1700 (define_insn "*mul_acc_si_r3900"
1701 [(set (match_operand:SI 0 "register_operand" "=l*?*?,l,d*?,d?")
1702 (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d,d,d")
1703 (match_operand:SI 2 "register_operand" "d,d,d,d"))
1704 (match_operand:SI 3 "register_operand" "0,0,l,d")))
1705 (clobber (match_scratch:SI 4 "=X,X,3,l"))
1706 (clobber (match_scratch:SI 5 "=X,X,X,&d"))]
1707 "TARGET_MIPS3900 && !TARGET_MIPS16"
1708 "@
1709 madd\t%1,%2
1710 madd\t%1,%2
1711 madd\t%0,%1,%2
1712 #"
1713 [(set_attr "type" "imadd")
1714 (set_attr "accum_in" "3")
1715 (set_attr "mode" "SI")
1716 (set_attr "insn_count" "1,1,1,2")
1717 (set (attr "enabled")
1718 (cond [(and (eq_attr "alternative" "0")
1719 (match_test "!mips_lra_flag"))
1720 (const_string "yes")
1721 (and (eq_attr "alternative" "1")
1722 (match_test "mips_lra_flag"))
1723 (const_string "yes")
1724 (eq_attr "alternative" "2,3")
1725 (const_string "yes")]
1726 (const_string "no")))])
1727
1728 ;; Split *mul_acc_si if both the source and destination accumulator
1729 ;; values are GPRs.
1730 (define_split
1731 [(set (match_operand:SI 0 "d_operand")
1732 (plus:SI (mult:SI (match_operand:SI 1 "d_operand")
1733 (match_operand:SI 2 "d_operand"))
1734 (match_operand:SI 3 "d_operand")))
1735 (clobber (match_operand:SI 4 "lo_operand"))
1736 (clobber (match_operand:SI 5 "d_operand"))]
1737 "reload_completed"
1738 [(parallel [(set (match_dup 5)
1739 (mult:SI (match_dup 1) (match_dup 2)))
1740 (clobber (match_dup 4))])
1741 (set (match_dup 0) (plus:SI (match_dup 5) (match_dup 3)))]
1742 "")
1743
1744 (define_insn "*macc"
1745 [(set (match_operand:SI 0 "register_operand" "=l,d")
1746 (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1747 (match_operand:SI 2 "register_operand" "d,d"))
1748 (match_operand:SI 3 "register_operand" "0,l")))
1749 (clobber (match_scratch:SI 4 "=X,3"))]
1750 "ISA_HAS_MACC"
1751 {
1752 if (which_alternative == 1)
1753 return "macc\t%0,%1,%2";
1754 else if (TARGET_MIPS5500)
1755 return "madd\t%1,%2";
1756 else
1757 /* The VR4130 assumes that there is a two-cycle latency between a macc
1758 that "writes" to $0 and an instruction that reads from it. We avoid
1759 this by assigning to $1 instead. */
1760 return "%[macc\t%@,%1,%2%]";
1761 }
1762 [(set_attr "type" "imadd")
1763 (set_attr "accum_in" "3")
1764 (set_attr "mode" "SI")])
1765
1766 (define_insn "*msac"
1767 [(set (match_operand:SI 0 "register_operand" "=l,d")
1768 (minus:SI (match_operand:SI 1 "register_operand" "0,l")
1769 (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1770 (match_operand:SI 3 "register_operand" "d,d"))))
1771 (clobber (match_scratch:SI 4 "=X,1"))]
1772 "ISA_HAS_MSAC"
1773 {
1774 if (which_alternative == 1)
1775 return "msac\t%0,%2,%3";
1776 else if (TARGET_MIPS5500)
1777 return "msub\t%2,%3";
1778 else
1779 return "msac\t$0,%2,%3";
1780 }
1781 [(set_attr "type" "imadd")
1782 (set_attr "accum_in" "1")
1783 (set_attr "mode" "SI")])
1784
1785 ;; An msac-like instruction implemented using negation and a macc.
1786 (define_insn_and_split "*msac_using_macc"
1787 [(set (match_operand:SI 0 "register_operand" "=l,d")
1788 (minus:SI (match_operand:SI 1 "register_operand" "0,l")
1789 (mult:SI (match_operand:SI 2 "register_operand" "d,d")
1790 (match_operand:SI 3 "register_operand" "d,d"))))
1791 (clobber (match_scratch:SI 4 "=X,1"))
1792 (clobber (match_scratch:SI 5 "=d,d"))]
1793 "ISA_HAS_MACC && !ISA_HAS_MSAC"
1794 "#"
1795 "&& reload_completed"
1796 [(set (match_dup 5)
1797 (neg:SI (match_dup 3)))
1798 (parallel
1799 [(set (match_dup 0)
1800 (plus:SI (mult:SI (match_dup 2)
1801 (match_dup 5))
1802 (match_dup 1)))
1803 (clobber (match_dup 4))])]
1804 ""
1805 [(set_attr "type" "imadd")
1806 (set_attr "accum_in" "1")
1807 (set_attr "insn_count" "2")])
1808
1809 ;; Patterns generated by the define_peephole2 below.
1810
1811 (define_insn "*macc2"
1812 [(set (match_operand:SI 0 "muldiv_target_operand" "=l")
1813 (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
1814 (match_operand:SI 2 "register_operand" "d"))
1815 (match_dup 0)))
1816 (set (match_operand:SI 3 "register_operand" "=d")
1817 (plus:SI (mult:SI (match_dup 1)
1818 (match_dup 2))
1819 (match_dup 0)))]
1820 "ISA_HAS_MACC && reload_completed"
1821 "macc\t%3,%1,%2"
1822 [(set_attr "type" "imadd")
1823 (set_attr "accum_in" "0")
1824 (set_attr "mode" "SI")])
1825
1826 (define_insn "*msac2"
1827 [(set (match_operand:SI 0 "muldiv_target_operand" "=l")
1828 (minus:SI (match_dup 0)
1829 (mult:SI (match_operand:SI 1 "register_operand" "d")
1830 (match_operand:SI 2 "register_operand" "d"))))
1831 (set (match_operand:SI 3 "register_operand" "=d")
1832 (minus:SI (match_dup 0)
1833 (mult:SI (match_dup 1)
1834 (match_dup 2))))]
1835 "ISA_HAS_MSAC && reload_completed"
1836 "msac\t%3,%1,%2"
1837 [(set_attr "type" "imadd")
1838 (set_attr "accum_in" "0")
1839 (set_attr "mode" "SI")])
1840
1841 ;; Convert macc $0,<r1>,<r2> & mflo <r3> into macc <r3>,<r1>,<r2>
1842 ;; Similarly msac.
1843 ;;
1844 ;; Operand 0: LO
1845 ;; Operand 1: macc/msac
1846 ;; Operand 2: GPR (destination)
1847 (define_peephole2
1848 [(parallel
1849 [(set (match_operand:SI 0 "lo_operand")
1850 (match_operand:SI 1 "macc_msac_operand"))
1851 (clobber (scratch:SI))])
1852 (set (match_operand:SI 2 "d_operand")
1853 (match_dup 0))]
1854 ""
1855 [(parallel [(set (match_dup 0)
1856 (match_dup 1))
1857 (set (match_dup 2)
1858 (match_dup 1))])])
1859
1860 ;; When we have a three-address multiplication instruction, it should
1861 ;; be faster to do a separate multiply and add, rather than moving
1862 ;; something into LO in order to use a macc instruction.
1863 ;;
1864 ;; This peephole needs a scratch register to cater for the case when one
1865 ;; of the multiplication operands is the same as the destination.
1866 ;;
1867 ;; Operand 0: GPR (scratch)
1868 ;; Operand 1: LO
1869 ;; Operand 2: GPR (addend)
1870 ;; Operand 3: GPR (destination)
1871 ;; Operand 4: macc/msac
1872 ;; Operand 5: new multiplication
1873 ;; Operand 6: new addition/subtraction
1874 (define_peephole2
1875 [(match_scratch:SI 0 "d")
1876 (set (match_operand:SI 1 "lo_operand")
1877 (match_operand:SI 2 "d_operand"))
1878 (match_dup 0)
1879 (parallel
1880 [(set (match_operand:SI 3 "d_operand")
1881 (match_operand:SI 4 "macc_msac_operand"))
1882 (clobber (match_dup 1))])]
1883 "ISA_HAS_MUL3 && peep2_reg_dead_p (2, operands[1])"
1884 [(parallel [(set (match_dup 0)
1885 (match_dup 5))
1886 (clobber (match_dup 1))])
1887 (set (match_dup 3)
1888 (match_dup 6))]
1889 {
1890 operands[5] = XEXP (operands[4], GET_CODE (operands[4]) == PLUS ? 0 : 1);
1891 operands[6] = gen_rtx_fmt_ee (GET_CODE (operands[4]), SImode,
1892 operands[2], operands[0]);
1893 })
1894
1895 ;; Same as above, except LO is the initial target of the macc.
1896 ;;
1897 ;; Operand 0: GPR (scratch)
1898 ;; Operand 1: LO
1899 ;; Operand 2: GPR (addend)
1900 ;; Operand 3: macc/msac
1901 ;; Operand 4: GPR (destination)
1902 ;; Operand 5: new multiplication
1903 ;; Operand 6: new addition/subtraction
1904 (define_peephole2
1905 [(match_scratch:SI 0 "d")
1906 (set (match_operand:SI 1 "lo_operand")
1907 (match_operand:SI 2 "d_operand"))
1908 (match_dup 0)
1909 (parallel
1910 [(set (match_dup 1)
1911 (match_operand:SI 3 "macc_msac_operand"))
1912 (clobber (scratch:SI))])
1913 (match_dup 0)
1914 (set (match_operand:SI 4 "d_operand")
1915 (match_dup 1))]
1916 "ISA_HAS_MUL3 && peep2_reg_dead_p (3, operands[1])"
1917 [(parallel [(set (match_dup 0)
1918 (match_dup 5))
1919 (clobber (match_dup 1))])
1920 (set (match_dup 4)
1921 (match_dup 6))]
1922 {
1923 operands[5] = XEXP (operands[3], GET_CODE (operands[3]) == PLUS ? 0 : 1);
1924 operands[6] = gen_rtx_fmt_ee (GET_CODE (operands[3]), SImode,
1925 operands[2], operands[0]);
1926 })
1927
1928 ;; See the comment above *mul_add_si for details.
1929 (define_insn "*mul_sub_si"
1930 [(set (match_operand:SI 0 "register_operand" "=l*?*?,l,d?")
1931 (minus:SI (match_operand:SI 1 "register_operand" "0,0,d")
1932 (mult:SI (match_operand:SI 2 "register_operand" "d,d,d")
1933 (match_operand:SI 3 "register_operand" "d,d,d"))))
1934 (clobber (match_scratch:SI 4 "=X,X,l"))
1935 (clobber (match_scratch:SI 5 "=X,X,&d"))]
1936 "GENERATE_MADD_MSUB"
1937 "@
1938 msub\t%2,%3
1939 msub\t%2,%3
1940 #"
1941 [(set_attr "type" "imadd")
1942 (set_attr "accum_in" "1")
1943 (set_attr "mode" "SI")
1944 (set_attr "insn_count" "1,1,2")
1945 (set (attr "enabled")
1946 (cond [(and (eq_attr "alternative" "0")
1947 (match_test "!mips_lra_flag"))
1948 (const_string "yes")
1949 (and (eq_attr "alternative" "1")
1950 (match_test "mips_lra_flag"))
1951 (const_string "yes")
1952 (eq_attr "alternative" "2")
1953 (const_string "yes")]
1954 (const_string "no")))])
1955
1956 ;; Split *mul_sub_si if both the source and destination accumulator
1957 ;; values are GPRs.
1958 (define_split
1959 [(set (match_operand:SI 0 "d_operand")
1960 (minus:SI (match_operand:SI 1 "d_operand")
1961 (mult:SI (match_operand:SI 2 "d_operand")
1962 (match_operand:SI 3 "d_operand"))))
1963 (clobber (match_operand:SI 4 "lo_operand"))
1964 (clobber (match_operand:SI 5 "d_operand"))]
1965 "reload_completed"
1966 [(parallel [(set (match_dup 5)
1967 (mult:SI (match_dup 2) (match_dup 3)))
1968 (clobber (match_dup 4))])
1969 (set (match_dup 0) (minus:SI (match_dup 1) (match_dup 5)))]
1970 "")
1971
1972 (define_insn "*muls"
1973 [(set (match_operand:SI 0 "register_operand" "=l,d")
1974 (neg:SI (mult:SI (match_operand:SI 1 "register_operand" "d,d")
1975 (match_operand:SI 2 "register_operand" "d,d"))))
1976 (clobber (match_scratch:SI 3 "=X,l"))]
1977 "ISA_HAS_MULS"
1978 "@
1979 muls\t$0,%1,%2
1980 muls\t%0,%1,%2"
1981 [(set_attr "type" "imul,imul3")
1982 (set_attr "mode" "SI")])
1983
1984 (define_expand "<u>mulsidi3"
1985 [(set (match_operand:DI 0 "register_operand")
1986 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1987 (any_extend:DI (match_operand:SI 2 "register_operand"))))]
1988 "mips_mulsidi3_gen_fn (<CODE>) != NULL"
1989 {
1990 mulsidi3_gen_fn fn = mips_mulsidi3_gen_fn (<CODE>);
1991 emit_insn (fn (operands[0], operands[1], operands[2]));
1992 DONE;
1993 })
1994
1995 (define_expand "<u>mulsidi3_32bit_r6"
1996 [(set (match_operand:DI 0 "register_operand")
1997 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
1998 (any_extend:DI (match_operand:SI 2 "register_operand"))))]
1999 "!TARGET_64BIT && ISA_HAS_R6MUL"
2000 {
2001 rtx dest = gen_reg_rtx (DImode);
2002 rtx low = mips_subword (dest, 0);
2003 rtx high = mips_subword (dest, 1);
2004
2005 emit_insn (gen_mulsi3_mul3_nohilo (low, operands[1], operands[2]));
2006 emit_insn (gen_<su>mulsi3_highpart_r6 (high, operands[1], operands[2]));
2007
2008 emit_move_insn (mips_subword (operands[0], 0), low);
2009 emit_move_insn (mips_subword (operands[0], 1), high);
2010 DONE;
2011 })
2012
2013 (define_expand "<u>mulsidi3_32bit_mips16"
2014 [(set (match_operand:DI 0 "register_operand")
2015 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
2016 (any_extend:DI (match_operand:SI 2 "register_operand"))))]
2017 "!TARGET_64BIT && TARGET_MIPS16"
2018 {
2019 rtx hilo;
2020
2021 hilo = gen_rtx_REG (DImode, MD_REG_FIRST);
2022 emit_insn (gen_<u>mulsidi3_32bit (hilo, operands[1], operands[2]));
2023 emit_move_insn (operands[0], hilo);
2024 DONE;
2025 })
2026
2027 ;; As well as being named patterns, these instructions are used by the
2028 ;; __builtin_mips_mult<u>() functions. We must always make those functions
2029 ;; available if !TARGET_64BIT && ISA_HAS_DSP.
2030 (define_insn "<u>mulsidi3_32bit"
2031 [(set (match_operand:DI 0 "muldiv_target_operand" "=ka")
2032 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2033 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))]
2034 "!TARGET_64BIT && (!TARGET_FIX_R4000 || ISA_HAS_DSP) && ISA_HAS_MULT"
2035 {
2036 if (ISA_HAS_DSP_MULT)
2037 return "mult<u>\t%q0,%1,%2";
2038 else
2039 return "mult<u>\t%1,%2";
2040 }
2041 [(set_attr "type" "imul")
2042 (set_attr "mode" "SI")])
2043
2044 (define_insn "<u>mulsidi3_32bit_r4000"
2045 [(set (match_operand:DI 0 "register_operand" "=d")
2046 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2047 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
2048 (clobber (match_scratch:DI 3 "=x"))]
2049 "!TARGET_64BIT && TARGET_FIX_R4000 && !ISA_HAS_DSP && ISA_HAS_MULT"
2050 "mult<u>\t%1,%2\;mflo\t%L0\;mfhi\t%M0"
2051 [(set_attr "type" "imul")
2052 (set_attr "mode" "SI")
2053 (set_attr "insn_count" "3")])
2054
2055 (define_insn_and_split "<u>mulsidi3_64bit"
2056 [(set (match_operand:DI 0 "register_operand" "=d")
2057 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2058 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
2059 (clobber (match_scratch:TI 3 "=x"))
2060 (clobber (match_scratch:DI 4 "=d"))]
2061 "TARGET_64BIT && !TARGET_FIX_R4000 && !ISA_HAS_DMUL3
2062 && !TARGET_MIPS16 && ISA_HAS_MULT"
2063 "#"
2064 "&& reload_completed"
2065 [(const_int 0)]
2066 {
2067 emit_insn (gen_<u>mulsidi3_64bit_split (operands[0], operands[1],
2068 operands[2], operands[4]));
2069 DONE;
2070 }
2071 [(set_attr "type" "imul")
2072 (set_attr "mode" "SI")
2073 (set (attr "insn_count")
2074 (if_then_else (match_test "ISA_HAS_EXT_INS")
2075 (const_int 4)
2076 (const_int 7)))])
2077
2078 (define_expand "<u>mulsidi3_64bit_mips16"
2079 [(set (match_operand:DI 0 "register_operand")
2080 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
2081 (any_extend:DI (match_operand:SI 2 "register_operand"))))]
2082 "TARGET_64BIT && TARGET_MIPS16"
2083 {
2084 emit_insn (gen_<u>mulsidi3_64bit_split (operands[0], operands[1],
2085 operands[2], gen_reg_rtx (DImode)));
2086 DONE;
2087 })
2088
2089 (define_expand "<u>mulsidi3_64bit_split"
2090 [(set (match_operand:DI 0 "register_operand")
2091 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
2092 (any_extend:DI (match_operand:SI 2 "register_operand"))))
2093 (clobber (match_operand:DI 3 "register_operand"))]
2094 ""
2095 {
2096 rtx hilo;
2097
2098 hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2099 emit_insn (gen_<u>mulsidi3_64bit_hilo (hilo, operands[1], operands[2]));
2100
2101 emit_move_insn (operands[0], gen_rtx_REG (DImode, LO_REGNUM));
2102 emit_insn (gen_mfhidi_ti (operands[3], hilo));
2103
2104 if (ISA_HAS_EXT_INS)
2105 emit_insn (gen_insvdi (operands[0], GEN_INT (32), GEN_INT (32),
2106 operands[3]));
2107 else
2108 {
2109 /* Zero-extend the low part. */
2110 mips_emit_binary (ASHIFT, operands[0], operands[0], GEN_INT (32));
2111 mips_emit_binary (LSHIFTRT, operands[0], operands[0], GEN_INT (32));
2112
2113 /* Shift the high part into place. */
2114 mips_emit_binary (ASHIFT, operands[3], operands[3], GEN_INT (32));
2115
2116 /* OR the two halves together. */
2117 mips_emit_binary (IOR, operands[0], operands[0], operands[3]);
2118 }
2119 DONE;
2120 })
2121
2122 (define_insn "<u>mulsidi3_64bit_hilo"
2123 [(set (match_operand:TI 0 "muldiv_target_operand" "=x")
2124 (unspec:TI
2125 [(mult:DI
2126 (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2127 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))]
2128 UNSPEC_SET_HILO))]
2129 "TARGET_64BIT && !TARGET_FIX_R4000"
2130 "mult<u>\t%1,%2"
2131 [(set_attr "type" "imul")
2132 (set_attr "mode" "SI")])
2133
2134 ;; See comment before the ISA_HAS_DMUL3 case in mips_mulsidi3_gen_fn.
2135 (define_insn "mulsidi3_64bit_dmul"
2136 [(set (match_operand:DI 0 "register_operand" "=d")
2137 (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "d"))
2138 (sign_extend:DI (match_operand:SI 2 "register_operand" "d"))))
2139 (clobber (match_scratch:DI 3 "=l"))]
2140 "ISA_HAS_DMUL3"
2141 "dmul\t%0,%1,%2"
2142 [(set_attr "type" "imul3")
2143 (set_attr "mode" "DI")])
2144
2145 (define_insn "mulsidi3_64bit_r6dmul"
2146 [(set (match_operand:DI 0 "register_operand" "=d")
2147 (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "d"))
2148 (sign_extend:DI (match_operand:SI 2 "register_operand" "d"))))]
2149 "ISA_HAS_R6DMUL"
2150 "dmul\t%0,%1,%2"
2151 [(set_attr "type" "imul3nc")
2152 (set_attr "mode" "DI")])
2153
2154 ;; Widening multiply with negation.
2155 (define_insn "*muls<u>_di"
2156 [(set (match_operand:DI 0 "muldiv_target_operand" "=x")
2157 (neg:DI
2158 (mult:DI
2159 (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2160 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))))]
2161 "!TARGET_64BIT && ISA_HAS_MULS"
2162 "muls<u>\t$0,%1,%2"
2163 [(set_attr "type" "imul")
2164 (set_attr "mode" "SI")])
2165
2166 ;; As well as being named patterns, these instructions are used by the
2167 ;; __builtin_mips_msub<u>() functions. We must always make those functions
2168 ;; available if !TARGET_64BIT && ISA_HAS_DSP.
2169 ;;
2170 ;; This leads to a slight inconsistency. We honor any tuning overrides
2171 ;; in GENERATE_MADD_MSUB for -mno-dsp, but always ignore them for -mdsp,
2172 ;; even if !ISA_HAS_DSP_MULT.
2173 (define_insn "<u>msubsidi4"
2174 [(set (match_operand:DI 0 "muldiv_target_operand" "=ka")
2175 (minus:DI
2176 (match_operand:DI 3 "muldiv_target_operand" "0")
2177 (mult:DI
2178 (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2179 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))))]
2180 "!TARGET_64BIT && (ISA_HAS_MSAC || GENERATE_MADD_MSUB || ISA_HAS_DSP)"
2181 {
2182 if (ISA_HAS_DSP_MULT)
2183 return "msub<u>\t%q0,%1,%2";
2184 else if (TARGET_MIPS5500 || GENERATE_MADD_MSUB)
2185 return "msub<u>\t%1,%2";
2186 else
2187 return "msac<u>\t$0,%1,%2";
2188 }
2189 [(set_attr "type" "imadd")
2190 (set_attr "accum_in" "3")
2191 (set_attr "mode" "SI")])
2192
2193 ;; _highpart patterns
2194
2195 (define_expand "<su>mulsi3_highpart"
2196 [(set (match_operand:SI 0 "register_operand")
2197 (truncate:SI
2198 (lshiftrt:DI
2199 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
2200 (any_extend:DI (match_operand:SI 2 "register_operand")))
2201 (const_int 32))))]
2202 ""
2203 {
2204 if (ISA_HAS_MULHI)
2205 emit_insn (gen_<su>mulsi3_highpart_mulhi_internal (operands[0],
2206 operands[1],
2207 operands[2]));
2208 else if (TARGET_MIPS16)
2209 emit_insn (gen_<su>mulsi3_highpart_split (operands[0], operands[1],
2210 operands[2]));
2211 else if (ISA_HAS_R6MUL)
2212 emit_insn (gen_<su>mulsi3_highpart_r6 (operands[0], operands[1],
2213 operands[2]));
2214 else
2215 emit_insn (gen_<su>mulsi3_highpart_internal (operands[0], operands[1],
2216 operands[2]));
2217 DONE;
2218 })
2219
2220 (define_insn "<su>mulsi3_highpart_r6"
2221 [(set (match_operand:SI 0 "register_operand" "=d")
2222 (truncate:SI
2223 (lshiftrt:DI
2224 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2225 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
2226 (const_int 32))))]
2227 "ISA_HAS_R6MUL"
2228 "muh<u>\t%0,%1,%2"
2229 [(set_attr "type" "imul3nc")
2230 (set_attr "mode" "SI")])
2231
2232 (define_insn_and_split "<su>mulsi3_highpart_internal"
2233 [(set (match_operand:SI 0 "register_operand" "=d")
2234 (truncate:SI
2235 (lshiftrt:DI
2236 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2237 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
2238 (const_int 32))))
2239 (clobber (match_scratch:SI 3 "=l"))]
2240 "ISA_HAS_MULT && !ISA_HAS_MULHI && !TARGET_MIPS16"
2241 { return TARGET_FIX_R4000 ? "mult<u>\t%1,%2\n\tmfhi\t%0" : "#"; }
2242 "&& reload_completed && !TARGET_FIX_R4000"
2243 [(const_int 0)]
2244 {
2245 emit_insn (gen_<su>mulsi3_highpart_split (operands[0], operands[1],
2246 operands[2]));
2247 DONE;
2248 }
2249 [(set_attr "type" "imul")
2250 (set_attr "mode" "SI")
2251 (set_attr "insn_count" "2")])
2252
2253 (define_expand "<su>mulsi3_highpart_split"
2254 [(set (match_operand:SI 0 "register_operand")
2255 (truncate:SI
2256 (lshiftrt:DI
2257 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand"))
2258 (any_extend:DI (match_operand:SI 2 "register_operand")))
2259 (const_int 32))))]
2260 ""
2261 {
2262 rtx hilo;
2263
2264 if (TARGET_64BIT)
2265 {
2266 hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2267 emit_insn (gen_<u>mulsidi3_64bit_hilo (hilo, operands[1], operands[2]));
2268 emit_insn (gen_mfhisi_ti (operands[0], hilo));
2269 }
2270 else
2271 {
2272 hilo = gen_rtx_REG (DImode, MD_REG_FIRST);
2273 emit_insn (gen_<u>mulsidi3_32bit (hilo, operands[1], operands[2]));
2274 emit_insn (gen_mfhisi_di (operands[0], hilo));
2275 }
2276 DONE;
2277 })
2278
2279 (define_insn "<su>mulsi3_highpart_mulhi_internal"
2280 [(set (match_operand:SI 0 "register_operand" "=d")
2281 (truncate:SI
2282 (lshiftrt:DI
2283 (mult:DI
2284 (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2285 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
2286 (const_int 32))))
2287 (clobber (match_scratch:SI 3 "=l"))]
2288 "ISA_HAS_MULHI"
2289 "mulhi<u>\t%0,%1,%2"
2290 [(set_attr "type" "imul3")
2291 (set_attr "mode" "SI")])
2292
2293 (define_insn "*<su>mulsi3_highpart_neg_mulhi_internal"
2294 [(set (match_operand:SI 0 "register_operand" "=d")
2295 (truncate:SI
2296 (lshiftrt:DI
2297 (neg:DI
2298 (mult:DI
2299 (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2300 (any_extend:DI (match_operand:SI 2 "register_operand" "d"))))
2301 (const_int 32))))
2302 (clobber (match_scratch:SI 3 "=l"))]
2303 "ISA_HAS_MULHI"
2304 "mulshi<u>\t%0,%1,%2"
2305 [(set_attr "type" "imul3")
2306 (set_attr "mode" "SI")])
2307
2308 ;; Disable unsigned multiplication for -mfix-vr4120. This is for VR4120
2309 ;; errata MD(0), which says that dmultu does not always produce the
2310 ;; correct result.
2311 (define_expand "<su>muldi3_highpart"
2312 [(set (match_operand:DI 0 "register_operand")
2313 (truncate:DI
2314 (lshiftrt:TI
2315 (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand"))
2316 (any_extend:TI (match_operand:DI 2 "register_operand")))
2317 (const_int 64))))]
2318 "ISA_HAS_R6DMUL
2319 || (ISA_HAS_DMULT
2320 && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120))"
2321 {
2322 if (TARGET_MIPS16)
2323 emit_insn (gen_<su>muldi3_highpart_split (operands[0], operands[1],
2324 operands[2]));
2325 else if (ISA_HAS_R6DMUL)
2326 emit_insn (gen_<su>muldi3_highpart_r6 (operands[0], operands[1],
2327 operands[2]));
2328 else
2329 emit_insn (gen_<su>muldi3_highpart_internal (operands[0], operands[1],
2330 operands[2]));
2331 DONE;
2332 })
2333
2334 (define_insn "<su>muldi3_highpart_r6"
2335 [(set (match_operand:DI 0 "register_operand" "=d")
2336 (truncate:DI
2337 (lshiftrt:TI
2338 (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
2339 (any_extend:TI (match_operand:DI 2 "register_operand" "d")))
2340 (const_int 64))))]
2341 "ISA_HAS_R6DMUL"
2342 "dmuh<u>\t%0,%1,%2"
2343 [(set_attr "type" "imul3nc")
2344 (set_attr "mode" "DI")])
2345
2346 (define_insn_and_split "<su>muldi3_highpart_internal"
2347 [(set (match_operand:DI 0 "register_operand" "=d")
2348 (truncate:DI
2349 (lshiftrt:TI
2350 (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
2351 (any_extend:TI (match_operand:DI 2 "register_operand" "d")))
2352 (const_int 64))))
2353 (clobber (match_scratch:DI 3 "=l"))]
2354 "ISA_HAS_DMULT
2355 && !TARGET_MIPS16
2356 && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2357 { return TARGET_FIX_R4000 ? "dmult<u>\t%1,%2\n\tmfhi\t%0" : "#"; }
2358 "&& reload_completed && !TARGET_FIX_R4000"
2359 [(const_int 0)]
2360 {
2361 emit_insn (gen_<su>muldi3_highpart_split (operands[0], operands[1],
2362 operands[2]));
2363 DONE;
2364 }
2365 [(set_attr "type" "imul")
2366 (set_attr "mode" "DI")
2367 (set_attr "insn_count" "2")])
2368
2369 (define_expand "<su>muldi3_highpart_split"
2370 [(set (match_operand:DI 0 "register_operand")
2371 (truncate:DI
2372 (lshiftrt:TI
2373 (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand"))
2374 (any_extend:TI (match_operand:DI 2 "register_operand")))
2375 (const_int 64))))]
2376 ""
2377 {
2378 rtx hilo;
2379
2380 hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2381 emit_insn (gen_<u>mulditi3_internal (hilo, operands[1], operands[2]));
2382 emit_insn (gen_mfhidi_ti (operands[0], hilo));
2383 DONE;
2384 })
2385
2386 (define_expand "<u>mulditi3"
2387 [(set (match_operand:TI 0 "register_operand")
2388 (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand"))
2389 (any_extend:TI (match_operand:DI 2 "register_operand"))))]
2390 "ISA_HAS_DMULT && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2391 {
2392 rtx hilo;
2393
2394 if (TARGET_MIPS16)
2395 {
2396 hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2397 emit_insn (gen_<u>mulditi3_internal (hilo, operands[1], operands[2]));
2398 emit_move_insn (operands[0], hilo);
2399 }
2400 else if (TARGET_FIX_R4000)
2401 emit_insn (gen_<u>mulditi3_r4000 (operands[0], operands[1], operands[2]));
2402 else
2403 emit_insn (gen_<u>mulditi3_internal (operands[0], operands[1],
2404 operands[2]));
2405 DONE;
2406 })
2407
2408 (define_insn "<u>mulditi3_internal"
2409 [(set (match_operand:TI 0 "muldiv_target_operand" "=x")
2410 (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
2411 (any_extend:TI (match_operand:DI 2 "register_operand" "d"))))]
2412 "ISA_HAS_DMULT
2413 && !TARGET_FIX_R4000
2414 && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2415 "dmult<u>\t%1,%2"
2416 [(set_attr "type" "imul")
2417 (set_attr "mode" "DI")])
2418
2419 (define_insn "<u>mulditi3_r4000"
2420 [(set (match_operand:TI 0 "register_operand" "=d")
2421 (mult:TI (any_extend:TI (match_operand:DI 1 "register_operand" "d"))
2422 (any_extend:TI (match_operand:DI 2 "register_operand" "d"))))
2423 (clobber (match_scratch:TI 3 "=x"))]
2424 "ISA_HAS_DMULT
2425 && TARGET_FIX_R4000
2426 && !(<CODE> == ZERO_EXTEND && TARGET_FIX_VR4120)"
2427 "dmult<u>\t%1,%2\;mflo\t%L0\;mfhi\t%M0"
2428 [(set_attr "type" "imul")
2429 (set_attr "mode" "DI")
2430 (set_attr "insn_count" "3")])
2431
2432 ;; The R4650 supports a 32-bit multiply/ 64-bit accumulate
2433 ;; instruction. The HI/LO registers are used as a 64-bit accumulator.
2434
2435 (define_insn "madsi"
2436 [(set (match_operand:SI 0 "register_operand" "+l")
2437 (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "d")
2438 (match_operand:SI 2 "register_operand" "d"))
2439 (match_dup 0)))]
2440 "TARGET_MAD"
2441 "mad\t%1,%2"
2442 [(set_attr "type" "imadd")
2443 (set_attr "accum_in" "0")
2444 (set_attr "mode" "SI")])
2445
2446 ;; See the comment above <u>msubsidi4 for the relationship between
2447 ;; ISA_HAS_DSP and ISA_HAS_DSP_MULT.
2448 (define_insn "<u>maddsidi4"
2449 [(set (match_operand:DI 0 "muldiv_target_operand" "=ka")
2450 (plus:DI
2451 (mult:DI (any_extend:DI (match_operand:SI 1 "register_operand" "d"))
2452 (any_extend:DI (match_operand:SI 2 "register_operand" "d")))
2453 (match_operand:DI 3 "muldiv_target_operand" "0")))]
2454 "(TARGET_MAD || ISA_HAS_MACC || GENERATE_MADD_MSUB || ISA_HAS_DSP)
2455 && !TARGET_64BIT"
2456 {
2457 if (TARGET_MAD)
2458 return "mad<u>\t%1,%2";
2459 else if (ISA_HAS_DSP_MULT)
2460 return "madd<u>\t%q0,%1,%2";
2461 else if (GENERATE_MADD_MSUB || TARGET_MIPS5500)
2462 return "madd<u>\t%1,%2";
2463 else
2464 /* See comment in *macc. */
2465 return "%[macc<u>\t%@,%1,%2%]";
2466 }
2467 [(set_attr "type" "imadd")
2468 (set_attr "accum_in" "3")
2469 (set_attr "mode" "SI")])
2470
2471 ;; Floating point multiply accumulate instructions.
2472
2473 (define_insn "*madd4<mode>"
2474 [(set (match_operand:ANYF 0 "register_operand" "=f")
2475 (plus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2476 (match_operand:ANYF 2 "register_operand" "f"))
2477 (match_operand:ANYF 3 "register_operand" "f")))]
2478 "ISA_HAS_FP_MADD4_MSUB4 && TARGET_FUSED_MADD"
2479 "madd.<fmt>\t%0,%3,%1,%2"
2480 [(set_attr "type" "fmadd")
2481 (set_attr "mode" "<UNITMODE>")])
2482
2483 (define_insn "fma<mode>4"
2484 [(set (match_operand:ANYF 0 "register_operand" "=f")
2485 (fma:ANYF (match_operand:ANYF 1 "register_operand" "f")
2486 (match_operand:ANYF 2 "register_operand" "f")
2487 (match_operand:ANYF 3 "register_operand" "0")))]
2488 "ISA_HAS_FP_MADDF_MSUBF"
2489 "maddf.<fmt>\t%0,%1,%2"
2490 [(set_attr "type" "fmadd")
2491 (set_attr "mode" "<UNITMODE>")])
2492
2493 (define_insn "*madd3<mode>"
2494 [(set (match_operand:ANYF 0 "register_operand" "=f")
2495 (plus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2496 (match_operand:ANYF 2 "register_operand" "f"))
2497 (match_operand:ANYF 3 "register_operand" "0")))]
2498 "ISA_HAS_FP_MADD3_MSUB3 && TARGET_FUSED_MADD"
2499 "madd.<fmt>\t%0,%1,%2"
2500 [(set_attr "type" "fmadd")
2501 (set_attr "mode" "<UNITMODE>")])
2502
2503 (define_insn "*msub4<mode>"
2504 [(set (match_operand:ANYF 0 "register_operand" "=f")
2505 (minus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2506 (match_operand:ANYF 2 "register_operand" "f"))
2507 (match_operand:ANYF 3 "register_operand" "f")))]
2508 "ISA_HAS_FP_MADD4_MSUB4 && TARGET_FUSED_MADD"
2509 "msub.<fmt>\t%0,%3,%1,%2"
2510 [(set_attr "type" "fmadd")
2511 (set_attr "mode" "<UNITMODE>")])
2512
2513 (define_insn "*msub3<mode>"
2514 [(set (match_operand:ANYF 0 "register_operand" "=f")
2515 (minus:ANYF (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2516 (match_operand:ANYF 2 "register_operand" "f"))
2517 (match_operand:ANYF 3 "register_operand" "0")))]
2518 "ISA_HAS_FP_MADD3_MSUB3 && TARGET_FUSED_MADD"
2519 "msub.<fmt>\t%0,%1,%2"
2520 [(set_attr "type" "fmadd")
2521 (set_attr "mode" "<UNITMODE>")])
2522
2523 (define_insn "*nmadd4<mode>"
2524 [(set (match_operand:ANYF 0 "register_operand" "=f")
2525 (neg:ANYF (plus:ANYF
2526 (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2527 (match_operand:ANYF 2 "register_operand" "f"))
2528 (match_operand:ANYF 3 "register_operand" "f"))))]
2529 "ISA_HAS_NMADD4_NMSUB4
2530 && TARGET_FUSED_MADD
2531 && HONOR_SIGNED_ZEROS (<MODE>mode)
2532 && !HONOR_NANS (<MODE>mode)"
2533 "nmadd.<fmt>\t%0,%3,%1,%2"
2534 [(set_attr "type" "fmadd")
2535 (set_attr "mode" "<UNITMODE>")])
2536
2537 (define_insn "*nmadd3<mode>"
2538 [(set (match_operand:ANYF 0 "register_operand" "=f")
2539 (neg:ANYF (plus:ANYF
2540 (mult:ANYF (match_operand:ANYF 1 "register_operand" "f")
2541 (match_operand:ANYF 2 "register_operand" "f"))
2542 (match_operand:ANYF 3 "register_operand" "0"))))]
2543 "ISA_HAS_NMADD3_NMSUB3
2544 && TARGET_FUSED_MADD
2545 && HONOR_SIGNED_ZEROS (<MODE>mode)
2546 && !HONOR_NANS (<MODE>mode)"
2547 "nmadd.<fmt>\t%0,%1,%2"
2548 [(set_attr "type" "fmadd")
2549 (set_attr "mode" "<UNITMODE>")])
2550
2551 (define_insn "*nmadd4<mode>_fastmath"
2552 [(set (match_operand:ANYF 0 "register_operand" "=f")
2553 (minus:ANYF
2554 (mult:ANYF (neg:ANYF (match_operand:ANYF 1 "register_operand" "f"))
2555 (match_operand:ANYF 2 "register_operand" "f"))
2556 (match_operand:ANYF 3 "register_operand" "f")))]
2557 "ISA_HAS_NMADD4_NMSUB4
2558 && TARGET_FUSED_MADD
2559 && !HONOR_SIGNED_ZEROS (<MODE>mode)
2560 && !HONOR_NANS (<MODE>mode)"
2561 "nmadd.<fmt>\t%0,%3,%1,%2"
2562 [(set_attr "type" "fmadd")
2563 (set_attr "mode" "<UNITMODE>")])
2564
2565 (define_insn "*nmadd3<mode>_fastmath"
2566 [(set (match_operand:ANYF 0 "register_operand" "=f")
2567 (minus:ANYF
2568 (mult:ANYF (neg:ANYF (match_operand:ANYF 1 "register_operand" "f"))
2569 (match_operand:ANYF 2 "register_operand" "f"))
2570 (match_operand:ANYF 3 "register_operand" "0")))]
2571 "ISA_HAS_NMADD3_NMSUB3
2572 && TARGET_FUSED_MADD
2573 && !HONOR_SIGNED_ZEROS (<MODE>mode)
2574 && !HONOR_NANS (<MODE>mode)"
2575 "nmadd.<fmt>\t%0,%1,%2"
2576 [(set_attr "type" "fmadd")
2577 (set_attr "mode" "<UNITMODE>")])
2578
2579 (define_insn "*nmsub4<mode>"
2580 [(set (match_operand:ANYF 0 "register_operand" "=f")
2581 (neg:ANYF (minus:ANYF
2582 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2583 (match_operand:ANYF 3 "register_operand" "f"))
2584 (match_operand:ANYF 1 "register_operand" "f"))))]
2585 "ISA_HAS_NMADD4_NMSUB4
2586 && TARGET_FUSED_MADD
2587 && HONOR_SIGNED_ZEROS (<MODE>mode)
2588 && !HONOR_NANS (<MODE>mode)"
2589 "nmsub.<fmt>\t%0,%1,%2,%3"
2590 [(set_attr "type" "fmadd")
2591 (set_attr "mode" "<UNITMODE>")])
2592
2593 (define_insn "*nmsub3<mode>"
2594 [(set (match_operand:ANYF 0 "register_operand" "=f")
2595 (neg:ANYF (minus:ANYF
2596 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2597 (match_operand:ANYF 3 "register_operand" "f"))
2598 (match_operand:ANYF 1 "register_operand" "0"))))]
2599 "ISA_HAS_NMADD3_NMSUB3
2600 && TARGET_FUSED_MADD
2601 && HONOR_SIGNED_ZEROS (<MODE>mode)
2602 && !HONOR_NANS (<MODE>mode)"
2603 "nmsub.<fmt>\t%0,%1,%2"
2604 [(set_attr "type" "fmadd")
2605 (set_attr "mode" "<UNITMODE>")])
2606
2607 (define_insn "*nmsub4<mode>_fastmath"
2608 [(set (match_operand:ANYF 0 "register_operand" "=f")
2609 (minus:ANYF
2610 (match_operand:ANYF 1 "register_operand" "f")
2611 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2612 (match_operand:ANYF 3 "register_operand" "f"))))]
2613 "ISA_HAS_NMADD4_NMSUB4
2614 && TARGET_FUSED_MADD
2615 && !HONOR_SIGNED_ZEROS (<MODE>mode)
2616 && !HONOR_NANS (<MODE>mode)"
2617 "nmsub.<fmt>\t%0,%1,%2,%3"
2618 [(set_attr "type" "fmadd")
2619 (set_attr "mode" "<UNITMODE>")])
2620
2621 (define_insn "*nmsub3<mode>_fastmath"
2622 [(set (match_operand:ANYF 0 "register_operand" "=f")
2623 (minus:ANYF
2624 (match_operand:ANYF 1 "register_operand" "f")
2625 (mult:ANYF (match_operand:ANYF 2 "register_operand" "f")
2626 (match_operand:ANYF 3 "register_operand" "0"))))]
2627 "ISA_HAS_NMADD3_NMSUB3
2628 && TARGET_FUSED_MADD
2629 && !HONOR_SIGNED_ZEROS (<MODE>mode)
2630 && !HONOR_NANS (<MODE>mode)"
2631 "nmsub.<fmt>\t%0,%1,%2"
2632 [(set_attr "type" "fmadd")
2633 (set_attr "mode" "<UNITMODE>")])
2634
2635 ;;
2636 ;; ....................
2637 ;;
2638 ;; DIVISION and REMAINDER
2639 ;;
2640 ;; ....................
2641 ;;
2642
2643 (define_expand "div<mode>3"
2644 [(set (match_operand:ANYF 0 "register_operand")
2645 (div:ANYF (match_operand:ANYF 1 "reg_or_1_operand")
2646 (match_operand:ANYF 2 "register_operand")))]
2647 "<divide_condition>"
2648 {
2649 if (const_1_operand (operands[1], <MODE>mode))
2650 if (!(ISA_HAS_FP_RECIP_RSQRT (<MODE>mode)
2651 && flag_unsafe_math_optimizations))
2652 operands[1] = force_reg (<MODE>mode, operands[1]);
2653 })
2654
2655 ;; These patterns work around the early SB-1 rev2 core "F1" erratum:
2656 ;;
2657 ;; If an mfc1 or dmfc1 happens to access the floating point register
2658 ;; file at the same time a long latency operation (div, sqrt, recip,
2659 ;; sqrt) iterates an intermediate result back through the floating
2660 ;; point register file bypass, then instead returning the correct
2661 ;; register value the mfc1 or dmfc1 operation returns the intermediate
2662 ;; result of the long latency operation.
2663 ;;
2664 ;; The workaround is to insert an unconditional 'mov' from/to the
2665 ;; long latency op destination register.
2666
2667 (define_insn "*div<mode>3"
2668 [(set (match_operand:ANYF 0 "register_operand" "=f")
2669 (div:ANYF (match_operand:ANYF 1 "register_operand" "f")
2670 (match_operand:ANYF 2 "register_operand" "f")))]
2671 "<divide_condition>"
2672 {
2673 if (TARGET_FIX_SB1)
2674 return "div.<fmt>\t%0,%1,%2\;mov.<fmt>\t%0,%0";
2675 else
2676 return "div.<fmt>\t%0,%1,%2";
2677 }
2678 [(set_attr "type" "fdiv")
2679 (set_attr "mode" "<UNITMODE>")
2680 (set (attr "insn_count")
2681 (if_then_else (match_test "TARGET_FIX_SB1")
2682 (const_int 2)
2683 (const_int 1)))])
2684
2685 (define_insn "*recip<mode>3"
2686 [(set (match_operand:ANYF 0 "register_operand" "=f")
2687 (div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
2688 (match_operand:ANYF 2 "register_operand" "f")))]
2689 "ISA_HAS_FP_RECIP_RSQRT (<MODE>mode) && flag_unsafe_math_optimizations"
2690 {
2691 if (TARGET_FIX_SB1)
2692 return "recip.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
2693 else
2694 return "recip.<fmt>\t%0,%2";
2695 }
2696 [(set_attr "type" "frdiv")
2697 (set_attr "mode" "<UNITMODE>")
2698 (set (attr "insn_count")
2699 (if_then_else (match_test "TARGET_FIX_SB1")
2700 (const_int 2)
2701 (const_int 1)))])
2702
2703 ;; VR4120 errata MD(A1): signed division instructions do not work correctly
2704 ;; with negative operands. We use special libgcc functions instead.
2705 (define_expand "divmod<mode>4"
2706 [(parallel
2707 [(set (match_operand:GPR 0 "register_operand")
2708 (div:GPR (match_operand:GPR 1 "register_operand")
2709 (match_operand:GPR 2 "register_operand")))
2710 (set (match_operand:GPR 3 "register_operand")
2711 (mod:GPR (match_dup 1)
2712 (match_dup 2)))])]
2713 "ISA_HAS_<D>DIV && !TARGET_FIX_VR4120"
2714 {
2715 if (TARGET_MIPS16)
2716 {
2717 rtx lo = gen_rtx_REG (<MODE>mode, LO_REGNUM);
2718 emit_insn (gen_divmod<mode>4_mips16 (operands[0], operands[1],
2719 operands[2], operands[3], lo));
2720 DONE;
2721 }
2722 })
2723
2724 (define_insn_and_split "*divmod<mode>4"
2725 [(set (match_operand:GPR 0 "register_operand" "=l")
2726 (div:GPR (match_operand:GPR 1 "register_operand" "d")
2727 (match_operand:GPR 2 "register_operand" "d")))
2728 (set (match_operand:GPR 3 "register_operand" "=d")
2729 (mod:GPR (match_dup 1)
2730 (match_dup 2)))]
2731 "ISA_HAS_<D>DIV && !TARGET_FIX_VR4120 && !TARGET_MIPS16"
2732 "#"
2733 "&& reload_completed"
2734 [(const_int 0)]
2735 {
2736 emit_insn (gen_divmod<mode>4_split (operands[3], operands[1], operands[2]));
2737 DONE;
2738 }
2739 [(set_attr "type" "idiv")
2740 (set_attr "mode" "<MODE>")
2741 (set_attr "insn_count" "2")])
2742
2743 ;; Expand generates divmod instructions for individual division and modulus
2744 ;; operations. We then rely on CSE to reuse earlier divmods where possible.
2745 ;; This means that, when generating MIPS16 code, it is better not to expose
2746 ;; the fixed LO register until after CSE has finished. However, it's still
2747 ;; better to split before register allocation, so that we don't allocate
2748 ;; one of the scarce MIPS16 registers to an unused result.
2749 (define_insn_and_split "divmod<mode>4_mips16"
2750 [(set (match_operand:GPR 0 "register_operand" "=d")
2751 (div:GPR (match_operand:GPR 1 "register_operand" "d")
2752 (match_operand:GPR 2 "register_operand" "d")))
2753 (set (match_operand:GPR 3 "register_operand" "=d")
2754 (mod:GPR (match_dup 1)
2755 (match_dup 2)))
2756 (clobber (match_operand:GPR 4 "lo_operand" "=l"))]
2757 "ISA_HAS_<D>DIV && !TARGET_FIX_VR4120 && TARGET_MIPS16"
2758 "#"
2759 "&& cse_not_expected"
2760 [(const_int 0)]
2761 {
2762 emit_insn (gen_divmod<mode>4_split (operands[3], operands[1], operands[2]));
2763 emit_move_insn (operands[0], operands[4]);
2764 DONE;
2765 }
2766 [(set_attr "type" "idiv")
2767 (set_attr "mode" "<MODE>")
2768 (set_attr "insn_count" "3")])
2769
2770 (define_expand "udivmod<mode>4"
2771 [(parallel
2772 [(set (match_operand:GPR 0 "register_operand")
2773 (udiv:GPR (match_operand:GPR 1 "register_operand")
2774 (match_operand:GPR 2 "register_operand")))
2775 (set (match_operand:GPR 3 "register_operand")
2776 (umod:GPR (match_dup 1)
2777 (match_dup 2)))])]
2778 "ISA_HAS_<D>DIV && !TARGET_FIX_VR4120"
2779 {
2780 if (TARGET_MIPS16)
2781 {
2782 rtx lo = gen_rtx_REG (<MODE>mode, LO_REGNUM);
2783 emit_insn (gen_udivmod<mode>4_mips16 (operands[0], operands[1],
2784 operands[2], operands[3], lo));
2785 DONE;
2786 }
2787 })
2788
2789 (define_insn_and_split "*udivmod<mode>4"
2790 [(set (match_operand:GPR 0 "register_operand" "=l")
2791 (udiv:GPR (match_operand:GPR 1 "register_operand" "d")
2792 (match_operand:GPR 2 "register_operand" "d")))
2793 (set (match_operand:GPR 3 "register_operand" "=d")
2794 (umod:GPR (match_dup 1)
2795 (match_dup 2)))]
2796 "ISA_HAS_<D>DIV && !TARGET_MIPS16"
2797 "#"
2798 "reload_completed"
2799 [(const_int 0)]
2800 {
2801 emit_insn (gen_udivmod<mode>4_split (operands[3], operands[1], operands[2]));
2802 DONE;
2803 }
2804 [(set_attr "type" "idiv")
2805 (set_attr "mode" "<MODE>")
2806 (set_attr "insn_count" "2")])
2807
2808 ;; See the comment above "divmod<mode>4_mips16" for the split timing.
2809 (define_insn_and_split "udivmod<mode>4_mips16"
2810 [(set (match_operand:GPR 0 "register_operand" "=d")
2811 (udiv:GPR (match_operand:GPR 1 "register_operand" "d")
2812 (match_operand:GPR 2 "register_operand" "d")))
2813 (set (match_operand:GPR 3 "register_operand" "=d")
2814 (umod:GPR (match_dup 1)
2815 (match_dup 2)))
2816 (clobber (match_operand:GPR 4 "lo_operand" "=l"))]
2817 "ISA_HAS_<D>DIV && TARGET_MIPS16"
2818 "#"
2819 "cse_not_expected"
2820 [(const_int 0)]
2821 {
2822 emit_insn (gen_udivmod<mode>4_split (operands[3], operands[1], operands[2]));
2823 emit_move_insn (operands[0], operands[4]);
2824 DONE;
2825 }
2826 [(set_attr "type" "idiv")
2827 (set_attr "mode" "<MODE>")
2828 (set_attr "insn_count" "3")])
2829
2830 (define_expand "<u>divmod<mode>4_split"
2831 [(set (match_operand:GPR 0 "register_operand")
2832 (any_mod:GPR (match_operand:GPR 1 "register_operand")
2833 (match_operand:GPR 2 "register_operand")))]
2834 ""
2835 {
2836 rtx hilo;
2837
2838 if (TARGET_64BIT)
2839 {
2840 hilo = gen_rtx_REG (TImode, MD_REG_FIRST);
2841 emit_insn (gen_<u>divmod<mode>4_hilo_ti (hilo, operands[1],
2842 operands[2]));
2843 emit_insn (gen_mfhi<mode>_ti (operands[0], hilo));
2844 }
2845 else
2846 {
2847 hilo = gen_rtx_REG (DImode, MD_REG_FIRST);
2848 emit_insn (gen_<u>divmod<mode>4_hilo_di (hilo, operands[1],
2849 operands[2]));
2850 emit_insn (gen_mfhi<mode>_di (operands[0], hilo));
2851 }
2852 DONE;
2853 })
2854
2855 (define_insn "<u>divmod<GPR:mode>4_hilo_<HILO:mode>"
2856 [(set (match_operand:HILO 0 "muldiv_target_operand" "=x")
2857 (unspec:HILO
2858 [(any_div:GPR (match_operand:GPR 1 "register_operand" "d")
2859 (match_operand:GPR 2 "register_operand" "d"))]
2860 UNSPEC_SET_HILO))]
2861 "ISA_HAS_<GPR:D>DIV"
2862 { return mips_output_division ("<GPR:d>div<u>\t%.,%1,%2", operands); }
2863 [(set_attr "type" "idiv")
2864 (set_attr "mode" "<GPR:MODE>")])
2865
2866 ;; Integer division and modulus.
2867
2868 (define_insn "<u>div<mode>3"
2869 [(set (match_operand:GPR 0 "register_operand" "=&d")
2870 (any_div:GPR (match_operand:GPR 1 "register_operand" "d")
2871 (match_operand:GPR 2 "register_operand" "d")))]
2872 "TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A || ISA_HAS_R6<D>DIV"
2873 {
2874 if (TARGET_LOONGSON_2EF)
2875 return mips_output_division ("<d>div<u>.g\t%0,%1,%2", operands);
2876 else if (TARGET_LOONGSON_3A)
2877 return mips_output_division ("gs<d>div<u>\t%0,%1,%2", operands);
2878 else
2879 return mips_output_division ("<d>div<u>\t%0,%1,%2", operands);
2880 }
2881 [(set_attr "type" "idiv3")
2882 (set_attr "mode" "<MODE>")])
2883
2884 (define_insn "<u>mod<mode>3"
2885 [(set (match_operand:GPR 0 "register_operand" "=&d")
2886 (any_mod:GPR (match_operand:GPR 1 "register_operand" "d")
2887 (match_operand:GPR 2 "register_operand" "d")))]
2888 "TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A || ISA_HAS_R6<D>DIV"
2889 {
2890 if (TARGET_LOONGSON_2EF)
2891 return mips_output_division ("<d>mod<u>.g\t%0,%1,%2", operands);
2892 else if (TARGET_LOONGSON_3A)
2893 return mips_output_division ("gs<d>mod<u>\t%0,%1,%2", operands);
2894 else
2895 return mips_output_division ("<d>mod<u>\t%0,%1,%2", operands);
2896 }
2897 [(set_attr "type" "idiv3")
2898 (set_attr "mode" "<MODE>")])
2899 \f
2900 ;;
2901 ;; ....................
2902 ;;
2903 ;; SQUARE ROOT
2904 ;;
2905 ;; ....................
2906
2907 ;; These patterns work around the early SB-1 rev2 core "F1" erratum (see
2908 ;; "*div[sd]f3" comment for details).
2909
2910 (define_insn "sqrt<mode>2"
2911 [(set (match_operand:ANYF 0 "register_operand" "=f")
2912 (sqrt:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
2913 "<sqrt_condition>"
2914 {
2915 if (TARGET_FIX_SB1)
2916 return "sqrt.<fmt>\t%0,%1\;mov.<fmt>\t%0,%0";
2917 else
2918 return "sqrt.<fmt>\t%0,%1";
2919 }
2920 [(set_attr "type" "fsqrt")
2921 (set_attr "mode" "<UNITMODE>")
2922 (set (attr "insn_count")
2923 (if_then_else (match_test "TARGET_FIX_SB1")
2924 (const_int 2)
2925 (const_int 1)))])
2926
2927 (define_insn "*rsqrt<mode>a"
2928 [(set (match_operand:ANYF 0 "register_operand" "=f")
2929 (div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
2930 (sqrt:ANYF (match_operand:ANYF 2 "register_operand" "f"))))]
2931 "ISA_HAS_FP_RECIP_RSQRT (<MODE>mode) && flag_unsafe_math_optimizations"
2932 {
2933 if (TARGET_FIX_SB1)
2934 return "rsqrt.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
2935 else
2936 return "rsqrt.<fmt>\t%0,%2";
2937 }
2938 [(set_attr "type" "frsqrt")
2939 (set_attr "mode" "<UNITMODE>")
2940 (set (attr "insn_count")
2941 (if_then_else (match_test "TARGET_FIX_SB1")
2942 (const_int 2)
2943 (const_int 1)))])
2944
2945 (define_insn "*rsqrt<mode>b"
2946 [(set (match_operand:ANYF 0 "register_operand" "=f")
2947 (sqrt:ANYF (div:ANYF (match_operand:ANYF 1 "const_1_operand" "")
2948 (match_operand:ANYF 2 "register_operand" "f"))))]
2949 "ISA_HAS_FP_RECIP_RSQRT (<MODE>mode) && flag_unsafe_math_optimizations"
2950 {
2951 if (TARGET_FIX_SB1)
2952 return "rsqrt.<fmt>\t%0,%2\;mov.<fmt>\t%0,%0";
2953 else
2954 return "rsqrt.<fmt>\t%0,%2";
2955 }
2956 [(set_attr "type" "frsqrt")
2957 (set_attr "mode" "<UNITMODE>")
2958 (set (attr "insn_count")
2959 (if_then_else (match_test "TARGET_FIX_SB1")
2960 (const_int 2)
2961 (const_int 1)))])
2962 \f
2963 ;;
2964 ;; ....................
2965 ;;
2966 ;; ABSOLUTE VALUE
2967 ;;
2968 ;; ....................
2969
2970 ;; Do not use the integer abs macro instruction, since that signals an
2971 ;; exception on -2147483648 (sigh).
2972
2973 ;; The "legacy" (as opposed to "2008") form of ABS.fmt is an arithmetic
2974 ;; instruction that treats all NaN inputs as invalid; it does not clear
2975 ;; their sign bit. We therefore can't use that form if the signs of
2976 ;; NaNs matter.
2977
2978 (define_insn "abs<mode>2"
2979 [(set (match_operand:ANYF 0 "register_operand" "=f")
2980 (abs:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
2981 "mips_abs == MIPS_IEEE_754_2008 || !HONOR_NANS (<MODE>mode)"
2982 "abs.<fmt>\t%0,%1"
2983 [(set_attr "type" "fabs")
2984 (set_attr "mode" "<UNITMODE>")])
2985 \f
2986 ;;
2987 ;; ...................
2988 ;;
2989 ;; Count leading zeroes.
2990 ;;
2991 ;; ...................
2992 ;;
2993
2994 (define_insn "clz<mode>2"
2995 [(set (match_operand:GPR 0 "register_operand" "=d")
2996 (clz:GPR (match_operand:GPR 1 "register_operand" "d")))]
2997 "ISA_HAS_CLZ_CLO"
2998 "<d>clz\t%0,%1"
2999 [(set_attr "type" "clz")
3000 (set_attr "mode" "<MODE>")])
3001
3002 ;;
3003 ;; ...................
3004 ;;
3005 ;; Count number of set bits.
3006 ;;
3007 ;; ...................
3008 ;;
3009
3010 (define_insn "popcount<mode>2"
3011 [(set (match_operand:GPR 0 "register_operand" "=d")
3012 (popcount:GPR (match_operand:GPR 1 "register_operand" "d")))]
3013 "ISA_HAS_POP"
3014 "<d>pop\t%0,%1"
3015 [(set_attr "type" "pop")
3016 (set_attr "mode" "<MODE>")])
3017
3018 ;; The POP instruction is special as it does not take into account the upper
3019 ;; 32bits and is documented that way.
3020 (define_insn "*popcountdi2_trunc"
3021 [(set (match_operand:SI 0 "register_operand" "=d")
3022 (popcount:SI (truncate:SI (match_operand:DI 1 "register_operand" "d"))))]
3023 "ISA_HAS_POP && TARGET_64BIT"
3024 "pop\t%0,%1"
3025 [(set_attr "type" "pop")
3026 (set_attr "mode" "SI")])
3027 \f
3028 ;;
3029 ;; ....................
3030 ;;
3031 ;; NEGATION and ONE'S COMPLEMENT
3032 ;;
3033 ;; ....................
3034
3035 (define_insn "negsi2"
3036 [(set (match_operand:SI 0 "register_operand" "=d")
3037 (neg:SI (match_operand:SI 1 "register_operand" "d")))]
3038 ""
3039 {
3040 if (TARGET_MIPS16)
3041 return "neg\t%0,%1";
3042 else
3043 return "subu\t%0,%.,%1";
3044 }
3045 [(set_attr "alu_type" "sub")
3046 (set_attr "mode" "SI")])
3047
3048 (define_insn "negdi2"
3049 [(set (match_operand:DI 0 "register_operand" "=d")
3050 (neg:DI (match_operand:DI 1 "register_operand" "d")))]
3051 "TARGET_64BIT && !TARGET_MIPS16"
3052 "dsubu\t%0,%.,%1"
3053 [(set_attr "alu_type" "sub")
3054 (set_attr "mode" "DI")])
3055
3056 ;; The "legacy" (as opposed to "2008") form of NEG.fmt is an arithmetic
3057 ;; instruction that treats all NaN inputs as invalid; it does not flip
3058 ;; their sign bit. We therefore can't use that form if the signs of
3059 ;; NaNs matter.
3060
3061 (define_insn "neg<mode>2"
3062 [(set (match_operand:ANYF 0 "register_operand" "=f")
3063 (neg:ANYF (match_operand:ANYF 1 "register_operand" "f")))]
3064 "mips_abs == MIPS_IEEE_754_2008 || !HONOR_NANS (<MODE>mode)"
3065 "neg.<fmt>\t%0,%1"
3066 [(set_attr "type" "fneg")
3067 (set_attr "mode" "<UNITMODE>")])
3068
3069 (define_insn "one_cmpl<mode>2"
3070 [(set (match_operand:GPR 0 "register_operand" "=!u,d")
3071 (not:GPR (match_operand:GPR 1 "register_operand" "!u,d")))]
3072 ""
3073 {
3074 if (TARGET_MIPS16)
3075 return "not\t%0,%1";
3076 else
3077 return "nor\t%0,%.,%1";
3078 }
3079 [(set_attr "alu_type" "not")
3080 (set_attr "compression" "micromips,*")
3081 (set_attr "mode" "<MODE>")])
3082 \f
3083 ;;
3084 ;; ....................
3085 ;;
3086 ;; LOGICAL
3087 ;;
3088 ;; ....................
3089 ;;
3090
3091 ;; Many of these instructions use trivial define_expands, because we
3092 ;; want to use a different set of constraints when TARGET_MIPS16.
3093
3094 (define_expand "and<mode>3"
3095 [(set (match_operand:GPR 0 "register_operand")
3096 (and:GPR (match_operand:GPR 1 "register_operand")
3097 (match_operand:GPR 2 "and_reg_operand")))])
3098
3099 ;; The middle-end is not allowed to convert ANDing with 0xffff_ffff into a
3100 ;; zero_extendsidi2 because of TRULY_NOOP_TRUNCATION, so handle these here.
3101 ;; Note that this variant does not trigger for SI mode because we require
3102 ;; a 64-bit HOST_WIDE_INT and 0xffff_ffff wouldn't be a canonical
3103 ;; sign-extended SImode value.
3104 ;;
3105 ;; These are possible combinations for operand 1 and 2. The table
3106 ;; includes both MIPS and MIPS16 cases. (r=register, mem=memory,
3107 ;; 16=MIPS16, x=match, S=split):
3108 ;;
3109 ;; \ op1 r/EXT r/!EXT mem r/16 mem/16
3110 ;; op2
3111 ;;
3112 ;; andi x x
3113 ;; 0xff x x x x
3114 ;; 0xffff x x x x
3115 ;; 0xffff_ffff x S x S x
3116 ;; low-bitmask x
3117 ;; register x x
3118 ;; register =op1 x
3119
3120 (define_insn "*and<mode>3"
3121 [(set (match_operand:GPR 0 "register_operand" "=d,d,d,!u,d,d,d,!u,d")
3122 (and:GPR (match_operand:GPR 1 "nonimmediate_operand" "o,o,W,!u,d,d,d,0,d")
3123 (match_operand:GPR 2 "and_operand" "Yb,Yh,Yw,Uean,K,Yx,Yw,!u,d")))]
3124 "!TARGET_MIPS16 && and_operands_ok (<MODE>mode, operands[1], operands[2])"
3125 {
3126 int len;
3127
3128 switch (which_alternative)
3129 {
3130 case 0:
3131 operands[1] = gen_lowpart (QImode, operands[1]);
3132 return "lbu\t%0,%1";
3133 case 1:
3134 operands[1] = gen_lowpart (HImode, operands[1]);
3135 return "lhu\t%0,%1";
3136 case 2:
3137 operands[1] = gen_lowpart (SImode, operands[1]);
3138 return "lwu\t%0,%1";
3139 case 3:
3140 case 4:
3141 return "andi\t%0,%1,%x2";
3142 case 5:
3143 len = low_bitmask_len (<MODE>mode, INTVAL (operands[2]));
3144 operands[2] = GEN_INT (len);
3145 return "<d>ext\t%0,%1,0,%2";
3146 case 6:
3147 return "#";
3148 case 7:
3149 case 8:
3150 return "and\t%0,%1,%2";
3151 default:
3152 gcc_unreachable ();
3153 }
3154 }
3155 [(set_attr "move_type" "load,load,load,andi,andi,ext_ins,shift_shift,logical,logical")
3156 (set_attr "compression" "*,*,*,micromips,*,*,*,micromips,*")
3157 (set_attr "mode" "<MODE>")])
3158
3159 (define_insn "*and<mode>3_mips16"
3160 [(set (match_operand:GPR 0 "register_operand" "=d,d,d,d,d")
3161 (and:GPR (match_operand:GPR 1 "nonimmediate_operand" "%W,W,W,d,0")
3162 (match_operand:GPR 2 "and_operand" "Yb,Yh,Yw,Yw,d")))]
3163 "TARGET_MIPS16 && and_operands_ok (<MODE>mode, operands[1], operands[2])"
3164 {
3165 switch (which_alternative)
3166 {
3167 case 0:
3168 operands[1] = gen_lowpart (QImode, operands[1]);
3169 return "lbu\t%0,%1";
3170 case 1:
3171 operands[1] = gen_lowpart (HImode, operands[1]);
3172 return "lhu\t%0,%1";
3173 case 2:
3174 operands[1] = gen_lowpart (SImode, operands[1]);
3175 return "lwu\t%0,%1";
3176 case 3:
3177 return "#";
3178 case 4:
3179 return "and\t%0,%2";
3180 default:
3181 gcc_unreachable ();
3182 }
3183 }
3184 [(set_attr "move_type" "load,load,load,shift_shift,logical")
3185 (set_attr "mode" "<MODE>")])
3186
3187 (define_expand "ior<mode>3"
3188 [(set (match_operand:GPR 0 "register_operand")
3189 (ior:GPR (match_operand:GPR 1 "register_operand")
3190 (match_operand:GPR 2 "uns_arith_operand")))]
3191 ""
3192 {
3193 if (TARGET_MIPS16)
3194 operands[2] = force_reg (<MODE>mode, operands[2]);
3195 })
3196
3197 (define_insn "*ior<mode>3"
3198 [(set (match_operand:GPR 0 "register_operand" "=!u,d,d")
3199 (ior:GPR (match_operand:GPR 1 "register_operand" "%0,d,d")
3200 (match_operand:GPR 2 "uns_arith_operand" "!u,d,K")))]
3201 "!TARGET_MIPS16"
3202 "@
3203 or\t%0,%1,%2
3204 or\t%0,%1,%2
3205 ori\t%0,%1,%x2"
3206 [(set_attr "alu_type" "or")
3207 (set_attr "compression" "micromips,*,*")
3208 (set_attr "mode" "<MODE>")])
3209
3210 (define_insn "*ior<mode>3_mips16"
3211 [(set (match_operand:GPR 0 "register_operand" "=d")
3212 (ior:GPR (match_operand:GPR 1 "register_operand" "%0")
3213 (match_operand:GPR 2 "register_operand" "d")))]
3214 "TARGET_MIPS16"
3215 "or\t%0,%2"
3216 [(set_attr "alu_type" "or")
3217 (set_attr "mode" "<MODE>")])
3218
3219 (define_expand "xor<mode>3"
3220 [(set (match_operand:GPR 0 "register_operand")
3221 (xor:GPR (match_operand:GPR 1 "register_operand")
3222 (match_operand:GPR 2 "uns_arith_operand")))]
3223 ""
3224 "")
3225
3226 (define_insn "*xor<mode>3"
3227 [(set (match_operand:GPR 0 "register_operand" "=!u,d,d")
3228 (xor:GPR (match_operand:GPR 1 "register_operand" "%0,d,d")
3229 (match_operand:GPR 2 "uns_arith_operand" "!u,d,K")))]
3230 "!TARGET_MIPS16"
3231 "@
3232 xor\t%0,%1,%2
3233 xor\t%0,%1,%2
3234 xori\t%0,%1,%x2"
3235 [(set_attr "alu_type" "xor")
3236 (set_attr "compression" "micromips,*,*")
3237 (set_attr "mode" "<MODE>")])
3238
3239 (define_insn "*xor<mode>3_mips16"
3240 [(set (match_operand:GPR 0 "register_operand" "=d,t,t,t")
3241 (xor:GPR (match_operand:GPR 1 "register_operand" "%0,d,d,d")
3242 (match_operand:GPR 2 "uns_arith_operand" "d,Uub8,K,d")))]
3243 "TARGET_MIPS16"
3244 "@
3245 xor\t%0,%2
3246 cmpi\t%1,%2
3247 cmpi\t%1,%2
3248 cmp\t%1,%2"
3249 [(set_attr "alu_type" "xor")
3250 (set_attr "mode" "<MODE>")
3251 (set_attr "extended_mips16" "no,no,yes,no")])
3252
3253 (define_insn "*nor<mode>3"
3254 [(set (match_operand:GPR 0 "register_operand" "=d")
3255 (and:GPR (not:GPR (match_operand:GPR 1 "register_operand" "d"))
3256 (not:GPR (match_operand:GPR 2 "register_operand" "d"))))]
3257 "!TARGET_MIPS16"
3258 "nor\t%0,%1,%2"
3259 [(set_attr "alu_type" "nor")
3260 (set_attr "mode" "<MODE>")])
3261 \f
3262 ;;
3263 ;; ....................
3264 ;;
3265 ;; TRUNCATION
3266 ;;
3267 ;; ....................
3268
3269
3270
3271 (define_insn "truncdfsf2"
3272 [(set (match_operand:SF 0 "register_operand" "=f")
3273 (float_truncate:SF (match_operand:DF 1 "register_operand" "f")))]
3274 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3275 "cvt.s.d\t%0,%1"
3276 [(set_attr "type" "fcvt")
3277 (set_attr "cnv_mode" "D2S")
3278 (set_attr "mode" "SF")])
3279
3280 ;; Integer truncation patterns. Truncating SImode values to smaller
3281 ;; modes is a no-op, as it is for most other GCC ports. Truncating
3282 ;; DImode values to SImode is not a no-op for TARGET_64BIT since we
3283 ;; need to make sure that the lower 32 bits are properly sign-extended
3284 ;; (see TRULY_NOOP_TRUNCATION). Truncating DImode values into modes
3285 ;; smaller than SImode is equivalent to two separate truncations:
3286 ;;
3287 ;; A B
3288 ;; DI ---> HI == DI ---> SI ---> HI
3289 ;; DI ---> QI == DI ---> SI ---> QI
3290 ;;
3291 ;; Step A needs a real instruction but step B does not.
3292
3293 (define_insn "truncdi<mode>2"
3294 [(set (match_operand:SUBDI 0 "nonimmediate_operand" "=d,m")
3295 (truncate:SUBDI (match_operand:DI 1 "register_operand" "d,d")))]
3296 "TARGET_64BIT"
3297 "@
3298 sll\t%0,%1,0
3299 <store>\t%1,%0"
3300 [(set_attr "move_type" "sll0,store")
3301 (set_attr "mode" "SI")])
3302
3303 ;; Combiner patterns to optimize shift/truncate combinations.
3304
3305 (define_insn "*ashr_trunc<mode>"
3306 [(set (match_operand:SUBDI 0 "register_operand" "=d")
3307 (truncate:SUBDI
3308 (ashiftrt:DI (match_operand:DI 1 "register_operand" "d")
3309 (match_operand:DI 2 "const_arith_operand" ""))))]
3310 "TARGET_64BIT && !TARGET_MIPS16 && IN_RANGE (INTVAL (operands[2]), 32, 63)"
3311 "dsra\t%0,%1,%2"
3312 [(set_attr "type" "shift")
3313 (set_attr "mode" "<MODE>")])
3314
3315 (define_insn "*lshr32_trunc<mode>"
3316 [(set (match_operand:SUBDI 0 "register_operand" "=d")
3317 (truncate:SUBDI
3318 (lshiftrt:DI (match_operand:DI 1 "register_operand" "d")
3319 (const_int 32))))]
3320 "TARGET_64BIT && !TARGET_MIPS16"
3321 "dsra\t%0,%1,32"
3322 [(set_attr "type" "shift")
3323 (set_attr "mode" "<MODE>")])
3324
3325 ;; Logical shift by more than 32 results in proper SI values so truncation is
3326 ;; removed by the middle end. Note that a logical shift by 32 is handled by
3327 ;; the previous pattern.
3328 (define_insn "*<optab>_trunc<mode>_exts"
3329 [(set (match_operand:SUBDI 0 "register_operand" "=d")
3330 (truncate:SUBDI
3331 (any_shiftrt:DI (match_operand:DI 1 "register_operand" "d")
3332 (match_operand:DI 2 "const_arith_operand" ""))))]
3333 "ISA_HAS_EXTS && TARGET_64BIT && UINTVAL (operands[2]) < 32"
3334 "exts\t%0,%1,%2,31"
3335 [(set_attr "type" "arith")
3336 (set_attr "mode" "<MODE>")])
3337 \f
3338 ;;
3339 ;; ....................
3340 ;;
3341 ;; ZERO EXTENSION
3342 ;;
3343 ;; ....................
3344
3345 ;; Extension insns.
3346
3347 (define_expand "zero_extendsidi2"
3348 [(set (match_operand:DI 0 "register_operand")
3349 (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand")))]
3350 "TARGET_64BIT")
3351
3352 (define_insn_and_split "*zero_extendsidi2"
3353 [(set (match_operand:DI 0 "register_operand" "=d,d")
3354 (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "d,W")))]
3355 "TARGET_64BIT && !ISA_HAS_EXT_INS"
3356 "@
3357 #
3358 lwu\t%0,%1"
3359 "&& reload_completed && REG_P (operands[1])"
3360 [(set (match_dup 0)
3361 (ashift:DI (match_dup 1) (const_int 32)))
3362 (set (match_dup 0)
3363 (lshiftrt:DI (match_dup 0) (const_int 32)))]
3364 { operands[1] = gen_lowpart (DImode, operands[1]); }
3365 [(set_attr "move_type" "shift_shift,load")
3366 (set_attr "mode" "DI")])
3367
3368 (define_insn "*zero_extendsidi2_dext"
3369 [(set (match_operand:DI 0 "register_operand" "=d,d")
3370 (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "d,W")))]
3371 "TARGET_64BIT && ISA_HAS_EXT_INS"
3372 "@
3373 dext\t%0,%1,0,32
3374 lwu\t%0,%1"
3375 [(set_attr "move_type" "arith,load")
3376 (set_attr "mode" "DI")])
3377
3378 ;; See the comment before the *and<mode>3 pattern why this is generated by
3379 ;; combine.
3380
3381 (define_split
3382 [(set (match_operand:DI 0 "register_operand")
3383 (and:DI (match_operand:DI 1 "register_operand")
3384 (const_int 4294967295)))]
3385 "TARGET_64BIT && !ISA_HAS_EXT_INS && reload_completed"
3386 [(set (match_dup 0)
3387 (ashift:DI (match_dup 1) (const_int 32)))
3388 (set (match_dup 0)
3389 (lshiftrt:DI (match_dup 0) (const_int 32)))])
3390
3391 (define_expand "zero_extend<SHORT:mode><GPR:mode>2"
3392 [(set (match_operand:GPR 0 "register_operand")
3393 (zero_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand")))]
3394 ""
3395 {
3396 if (TARGET_MIPS16 && !GENERATE_MIPS16E
3397 && !memory_operand (operands[1], <SHORT:MODE>mode))
3398 {
3399 emit_insn (gen_and<GPR:mode>3 (operands[0],
3400 gen_lowpart (<GPR:MODE>mode, operands[1]),
3401 force_reg (<GPR:MODE>mode,
3402 GEN_INT (<SHORT:mask>))));
3403 DONE;
3404 }
3405 })
3406
3407 (define_insn "*zero_extend<SHORT:mode><GPR:mode>2"
3408 [(set (match_operand:GPR 0 "register_operand" "=!u,d,d")
3409 (zero_extend:GPR
3410 (match_operand:SHORT 1 "nonimmediate_operand" "!u,d,m")))]
3411 "!TARGET_MIPS16"
3412 "@
3413 andi\t%0,%1,<SHORT:mask>
3414 andi\t%0,%1,<SHORT:mask>
3415 l<SHORT:size>u\t%0,%1"
3416 [(set_attr "move_type" "andi,andi,load")
3417 (set_attr "compression" "micromips,*,*")
3418 (set_attr "mode" "<GPR:MODE>")])
3419
3420 (define_insn "*zero_extend<SHORT:mode><GPR:mode>2_mips16e"
3421 [(set (match_operand:GPR 0 "register_operand" "=d")
3422 (zero_extend:GPR (match_operand:SHORT 1 "register_operand" "0")))]
3423 "GENERATE_MIPS16E"
3424 "ze<SHORT:size>\t%0"
3425 ;; This instruction is effectively a special encoding of ANDI.
3426 [(set_attr "move_type" "andi")
3427 (set_attr "mode" "<GPR:MODE>")])
3428
3429 (define_insn "*zero_extend<SHORT:mode><GPR:mode>2_mips16"
3430 [(set (match_operand:GPR 0 "register_operand" "=d")
3431 (zero_extend:GPR (match_operand:SHORT 1 "memory_operand" "m")))]
3432 "TARGET_MIPS16"
3433 "l<SHORT:size>u\t%0,%1"
3434 [(set_attr "move_type" "load")
3435 (set_attr "mode" "<GPR:MODE>")])
3436
3437 (define_expand "zero_extendqihi2"
3438 [(set (match_operand:HI 0 "register_operand")
3439 (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand")))]
3440 ""
3441 {
3442 if (TARGET_MIPS16 && !memory_operand (operands[1], QImode))
3443 {
3444 emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]),
3445 operands[1]));
3446 DONE;
3447 }
3448 })
3449
3450 (define_insn "*zero_extendqihi2"
3451 [(set (match_operand:HI 0 "register_operand" "=d,d")
3452 (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
3453 "!TARGET_MIPS16"
3454 "@
3455 andi\t%0,%1,0x00ff
3456 lbu\t%0,%1"
3457 [(set_attr "move_type" "andi,load")
3458 (set_attr "mode" "HI")])
3459
3460 (define_insn "*zero_extendqihi2_mips16"
3461 [(set (match_operand:HI 0 "register_operand" "=d")
3462 (zero_extend:HI (match_operand:QI 1 "memory_operand" "m")))]
3463 "TARGET_MIPS16"
3464 "lbu\t%0,%1"
3465 [(set_attr "move_type" "load")
3466 (set_attr "mode" "HI")])
3467
3468 ;; Combiner patterns to optimize truncate/zero_extend combinations.
3469
3470 (define_insn "*zero_extend<GPR:mode>_trunc<SHORT:mode>"
3471 [(set (match_operand:GPR 0 "register_operand" "=d")
3472 (zero_extend:GPR
3473 (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
3474 "TARGET_64BIT && !TARGET_MIPS16"
3475 {
3476 operands[2] = GEN_INT (GET_MODE_MASK (<SHORT:MODE>mode));
3477 return "andi\t%0,%1,%x2";
3478 }
3479 [(set_attr "alu_type" "and")
3480 (set_attr "mode" "<GPR:MODE>")])
3481
3482 (define_insn "*zero_extendhi_truncqi"
3483 [(set (match_operand:HI 0 "register_operand" "=d")
3484 (zero_extend:HI
3485 (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
3486 "TARGET_64BIT && !TARGET_MIPS16"
3487 "andi\t%0,%1,0xff"
3488 [(set_attr "alu_type" "and")
3489 (set_attr "mode" "HI")])
3490 \f
3491 ;;
3492 ;; ....................
3493 ;;
3494 ;; SIGN EXTENSION
3495 ;;
3496 ;; ....................
3497
3498 ;; Extension insns.
3499 ;; Those for integer source operand are ordered widest source type first.
3500
3501 ;; When TARGET_64BIT, all SImode integer and accumulator registers
3502 ;; should already be in sign-extended form (see TRULY_NOOP_TRUNCATION
3503 ;; and truncdisi2). We can therefore get rid of register->register
3504 ;; instructions if we constrain the source to be in the same register as
3505 ;; the destination.
3506 ;;
3507 ;; Only the pre-reload scheduler sees the type of the register alternatives;
3508 ;; we split them into nothing before the post-reload scheduler runs.
3509 ;; These alternatives therefore have type "move" in order to reflect
3510 ;; what happens if the two pre-reload operands cannot be tied, and are
3511 ;; instead allocated two separate GPRs. We don't distinguish between
3512 ;; the GPR and LO cases because we don't usually know during pre-reload
3513 ;; scheduling whether an operand will be LO or not.
3514 (define_insn_and_split "extendsidi2"
3515 [(set (match_operand:DI 0 "register_operand" "=d,l,d")
3516 (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "0,0,m")))]
3517 "TARGET_64BIT"
3518 "@
3519 #
3520 #
3521 lw\t%0,%1"
3522 "&& reload_completed && register_operand (operands[1], VOIDmode)"
3523 [(const_int 0)]
3524 {
3525 emit_note (NOTE_INSN_DELETED);
3526 DONE;
3527 }
3528 [(set_attr "move_type" "move,move,load")
3529 (set_attr "mode" "DI")])
3530
3531 (define_expand "extend<SHORT:mode><GPR:mode>2"
3532 [(set (match_operand:GPR 0 "register_operand")
3533 (sign_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand")))]
3534 "")
3535
3536 (define_insn "*extend<SHORT:mode><GPR:mode>2_mips16e"
3537 [(set (match_operand:GPR 0 "register_operand" "=d,d")
3538 (sign_extend:GPR (match_operand:SHORT 1 "nonimmediate_operand" "0,m")))]
3539 "GENERATE_MIPS16E"
3540 "@
3541 se<SHORT:size>\t%0
3542 l<SHORT:size>\t%0,%1"
3543 [(set_attr "move_type" "signext,load")
3544 (set_attr "mode" "<GPR:MODE>")])
3545
3546 (define_insn_and_split "*extend<SHORT:mode><GPR:mode>2"
3547 [(set (match_operand:GPR 0 "register_operand" "=d,d")
3548 (sign_extend:GPR
3549 (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
3550 "!ISA_HAS_SEB_SEH && !GENERATE_MIPS16E"
3551 "@
3552 #
3553 l<SHORT:size>\t%0,%1"
3554 "&& reload_completed && REG_P (operands[1])"
3555 [(set (match_dup 0) (ashift:GPR (match_dup 1) (match_dup 2)))
3556 (set (match_dup 0) (ashiftrt:GPR (match_dup 0) (match_dup 2)))]
3557 {
3558 operands[1] = gen_lowpart (<GPR:MODE>mode, operands[1]);
3559 operands[2] = GEN_INT (GET_MODE_BITSIZE (<GPR:MODE>mode)
3560 - GET_MODE_BITSIZE (<SHORT:MODE>mode));
3561 }
3562 [(set_attr "move_type" "shift_shift,load")
3563 (set_attr "mode" "<GPR:MODE>")])
3564
3565 (define_insn "*extend<SHORT:mode><GPR:mode>2_se<SHORT:size>"
3566 [(set (match_operand:GPR 0 "register_operand" "=d,d")
3567 (sign_extend:GPR
3568 (match_operand:SHORT 1 "nonimmediate_operand" "d,m")))]
3569 "ISA_HAS_SEB_SEH"
3570 "@
3571 se<SHORT:size>\t%0,%1
3572 l<SHORT:size>\t%0,%1"
3573 [(set_attr "move_type" "signext,load")
3574 (set_attr "mode" "<GPR:MODE>")])
3575
3576 (define_expand "extendqihi2"
3577 [(set (match_operand:HI 0 "register_operand")
3578 (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand")))]
3579 "")
3580
3581 (define_insn "*extendqihi2_mips16e"
3582 [(set (match_operand:HI 0 "register_operand" "=d,d")
3583 (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0,m")))]
3584 "GENERATE_MIPS16E"
3585 "@
3586 seb\t%0
3587 lb\t%0,%1"
3588 [(set_attr "move_type" "signext,load")
3589 (set_attr "mode" "SI")])
3590
3591 (define_insn_and_split "*extendqihi2"
3592 [(set (match_operand:HI 0 "register_operand" "=d,d")
3593 (sign_extend:HI
3594 (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
3595 "!ISA_HAS_SEB_SEH && !GENERATE_MIPS16E"
3596 "@
3597 #
3598 lb\t%0,%1"
3599 "&& reload_completed && REG_P (operands[1])"
3600 [(set (match_dup 0) (ashift:SI (match_dup 1) (match_dup 2)))
3601 (set (match_dup 0) (ashiftrt:SI (match_dup 0) (match_dup 2)))]
3602 {
3603 operands[0] = gen_lowpart (SImode, operands[0]);
3604 operands[1] = gen_lowpart (SImode, operands[1]);
3605 operands[2] = GEN_INT (GET_MODE_BITSIZE (SImode)
3606 - GET_MODE_BITSIZE (QImode));
3607 }
3608 [(set_attr "move_type" "shift_shift,load")
3609 (set_attr "mode" "SI")])
3610
3611 (define_insn "*extendqihi2_seb"
3612 [(set (match_operand:HI 0 "register_operand" "=d,d")
3613 (sign_extend:HI
3614 (match_operand:QI 1 "nonimmediate_operand" "d,m")))]
3615 "ISA_HAS_SEB_SEH"
3616 "@
3617 seb\t%0,%1
3618 lb\t%0,%1"
3619 [(set_attr "move_type" "signext,load")
3620 (set_attr "mode" "SI")])
3621
3622 ;; Combiner patterns for truncate/sign_extend combinations. The SI versions
3623 ;; use the shift/truncate patterns.
3624
3625 (define_insn_and_split "*extenddi_truncate<mode>"
3626 [(set (match_operand:DI 0 "register_operand" "=d")
3627 (sign_extend:DI
3628 (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
3629 "TARGET_64BIT && !TARGET_MIPS16 && !ISA_HAS_EXTS"
3630 "#"
3631 "&& reload_completed"
3632 [(set (match_dup 2)
3633 (ashift:DI (match_dup 1)
3634 (match_dup 3)))
3635 (set (match_dup 0)
3636 (ashiftrt:DI (match_dup 2)
3637 (match_dup 3)))]
3638 {
3639 operands[2] = gen_lowpart (DImode, operands[0]);
3640 operands[3] = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (<MODE>mode));
3641 }
3642 [(set_attr "move_type" "shift_shift")
3643 (set_attr "mode" "DI")])
3644
3645 (define_insn_and_split "*extendsi_truncate<mode>"
3646 [(set (match_operand:SI 0 "register_operand" "=d")
3647 (sign_extend:SI
3648 (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
3649 "TARGET_64BIT && !TARGET_MIPS16 && !ISA_HAS_EXTS"
3650 "#"
3651 "&& reload_completed"
3652 [(set (match_dup 2)
3653 (ashift:DI (match_dup 1)
3654 (match_dup 3)))
3655 (set (match_dup 0)
3656 (truncate:SI (ashiftrt:DI (match_dup 2)
3657 (match_dup 3))))]
3658 {
3659 operands[2] = gen_lowpart (DImode, operands[0]);
3660 operands[3] = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (<MODE>mode));
3661 }
3662 [(set_attr "move_type" "shift_shift")
3663 (set_attr "mode" "SI")])
3664
3665 (define_insn_and_split "*extendhi_truncateqi"
3666 [(set (match_operand:HI 0 "register_operand" "=d")
3667 (sign_extend:HI
3668 (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
3669 "TARGET_64BIT && !TARGET_MIPS16 && !ISA_HAS_EXTS"
3670 "#"
3671 "&& reload_completed"
3672 [(set (match_dup 2)
3673 (ashift:DI (match_dup 1)
3674 (const_int 56)))
3675 (set (match_dup 0)
3676 (truncate:HI (ashiftrt:DI (match_dup 2)
3677 (const_int 56))))]
3678 {
3679 operands[2] = gen_lowpart (DImode, operands[0]);
3680 }
3681 [(set_attr "move_type" "shift_shift")
3682 (set_attr "mode" "SI")])
3683
3684 (define_insn "*extend<GPR:mode>_truncate<SHORT:mode>_exts"
3685 [(set (match_operand:GPR 0 "register_operand" "=d")
3686 (sign_extend:GPR
3687 (truncate:SHORT (match_operand:DI 1 "register_operand" "d"))))]
3688 "TARGET_64BIT && !TARGET_MIPS16 && ISA_HAS_EXTS"
3689 {
3690 operands[2] = GEN_INT (GET_MODE_BITSIZE (<SHORT:MODE>mode));
3691 return "exts\t%0,%1,0,%m2";
3692 }
3693 [(set_attr "type" "arith")
3694 (set_attr "mode" "<GPR:MODE>")])
3695
3696 (define_insn "*extendhi_truncateqi_exts"
3697 [(set (match_operand:HI 0 "register_operand" "=d")
3698 (sign_extend:HI
3699 (truncate:QI (match_operand:DI 1 "register_operand" "d"))))]
3700 "TARGET_64BIT && !TARGET_MIPS16 && ISA_HAS_EXTS"
3701 "exts\t%0,%1,0,7"
3702 [(set_attr "type" "arith")
3703 (set_attr "mode" "SI")])
3704
3705 (define_insn "extendsfdf2"
3706 [(set (match_operand:DF 0 "register_operand" "=f")
3707 (float_extend:DF (match_operand:SF 1 "register_operand" "f")))]
3708 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3709 "cvt.d.s\t%0,%1"
3710 [(set_attr "type" "fcvt")
3711 (set_attr "cnv_mode" "S2D")
3712 (set_attr "mode" "DF")])
3713 \f
3714 ;;
3715 ;; ....................
3716 ;;
3717 ;; CONVERSIONS
3718 ;;
3719 ;; ....................
3720
3721 (define_expand "fix_truncdfsi2"
3722 [(set (match_operand:SI 0 "register_operand")
3723 (fix:SI (match_operand:DF 1 "register_operand")))]
3724 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3725 {
3726 if (!ISA_HAS_TRUNC_W)
3727 {
3728 emit_insn (gen_fix_truncdfsi2_macro (operands[0], operands[1]));
3729 DONE;
3730 }
3731 })
3732
3733 (define_insn "fix_truncdfsi2_insn"
3734 [(set (match_operand:SI 0 "register_operand" "=f")
3735 (fix:SI (match_operand:DF 1 "register_operand" "f")))]
3736 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && ISA_HAS_TRUNC_W"
3737 "trunc.w.d %0,%1"
3738 [(set_attr "type" "fcvt")
3739 (set_attr "mode" "DF")
3740 (set_attr "cnv_mode" "D2I")])
3741
3742 (define_insn "fix_truncdfsi2_macro"
3743 [(set (match_operand:SI 0 "register_operand" "=f")
3744 (fix:SI (match_operand:DF 1 "register_operand" "f")))
3745 (clobber (match_scratch:DF 2 "=d"))]
3746 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT && !ISA_HAS_TRUNC_W"
3747 {
3748 if (mips_nomacro.nesting_level > 0)
3749 return ".set\tmacro\;trunc.w.d %0,%1,%2\;.set\tnomacro";
3750 else
3751 return "trunc.w.d %0,%1,%2";
3752 }
3753 [(set_attr "type" "fcvt")
3754 (set_attr "mode" "DF")
3755 (set_attr "cnv_mode" "D2I")
3756 (set_attr "insn_count" "9")])
3757
3758 (define_expand "fix_truncsfsi2"
3759 [(set (match_operand:SI 0 "register_operand")
3760 (fix:SI (match_operand:SF 1 "register_operand")))]
3761 "TARGET_HARD_FLOAT"
3762 {
3763 if (!ISA_HAS_TRUNC_W)
3764 {
3765 emit_insn (gen_fix_truncsfsi2_macro (operands[0], operands[1]));
3766 DONE;
3767 }
3768 })
3769
3770 (define_insn "fix_truncsfsi2_insn"
3771 [(set (match_operand:SI 0 "register_operand" "=f")
3772 (fix:SI (match_operand:SF 1 "register_operand" "f")))]
3773 "TARGET_HARD_FLOAT && ISA_HAS_TRUNC_W"
3774 "trunc.w.s %0,%1"
3775 [(set_attr "type" "fcvt")
3776 (set_attr "mode" "SF")
3777 (set_attr "cnv_mode" "S2I")])
3778
3779 (define_insn "fix_truncsfsi2_macro"
3780 [(set (match_operand:SI 0 "register_operand" "=f")
3781 (fix:SI (match_operand:SF 1 "register_operand" "f")))
3782 (clobber (match_scratch:SF 2 "=d"))]
3783 "TARGET_HARD_FLOAT && !ISA_HAS_TRUNC_W"
3784 {
3785 if (mips_nomacro.nesting_level > 0)
3786 return ".set\tmacro\;trunc.w.s %0,%1,%2\;.set\tnomacro";
3787 else
3788 return "trunc.w.s %0,%1,%2";
3789 }
3790 [(set_attr "type" "fcvt")
3791 (set_attr "mode" "SF")
3792 (set_attr "cnv_mode" "S2I")
3793 (set_attr "insn_count" "9")])
3794
3795
3796 (define_insn "fix_truncdfdi2"
3797 [(set (match_operand:DI 0 "register_operand" "=f")
3798 (fix:DI (match_operand:DF 1 "register_operand" "f")))]
3799 "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3800 "trunc.l.d %0,%1"
3801 [(set_attr "type" "fcvt")
3802 (set_attr "mode" "DF")
3803 (set_attr "cnv_mode" "D2I")])
3804
3805
3806 (define_insn "fix_truncsfdi2"
3807 [(set (match_operand:DI 0 "register_operand" "=f")
3808 (fix:DI (match_operand:SF 1 "register_operand" "f")))]
3809 "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3810 "trunc.l.s %0,%1"
3811 [(set_attr "type" "fcvt")
3812 (set_attr "mode" "SF")
3813 (set_attr "cnv_mode" "S2I")])
3814
3815
3816 (define_insn "floatsidf2"
3817 [(set (match_operand:DF 0 "register_operand" "=f")
3818 (float:DF (match_operand:SI 1 "register_operand" "f")))]
3819 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3820 "cvt.d.w\t%0,%1"
3821 [(set_attr "type" "fcvt")
3822 (set_attr "mode" "DF")
3823 (set_attr "cnv_mode" "I2D")])
3824
3825
3826 (define_insn "floatdidf2"
3827 [(set (match_operand:DF 0 "register_operand" "=f")
3828 (float:DF (match_operand:DI 1 "register_operand" "f")))]
3829 "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3830 "cvt.d.l\t%0,%1"
3831 [(set_attr "type" "fcvt")
3832 (set_attr "mode" "DF")
3833 (set_attr "cnv_mode" "I2D")])
3834
3835
3836 (define_insn "floatsisf2"
3837 [(set (match_operand:SF 0 "register_operand" "=f")
3838 (float:SF (match_operand:SI 1 "register_operand" "f")))]
3839 "TARGET_HARD_FLOAT"
3840 "cvt.s.w\t%0,%1"
3841 [(set_attr "type" "fcvt")
3842 (set_attr "mode" "SF")
3843 (set_attr "cnv_mode" "I2S")])
3844
3845
3846 (define_insn "floatdisf2"
3847 [(set (match_operand:SF 0 "register_operand" "=f")
3848 (float:SF (match_operand:DI 1 "register_operand" "f")))]
3849 "TARGET_HARD_FLOAT && TARGET_FLOAT64 && TARGET_DOUBLE_FLOAT"
3850 "cvt.s.l\t%0,%1"
3851 [(set_attr "type" "fcvt")
3852 (set_attr "mode" "SF")
3853 (set_attr "cnv_mode" "I2S")])
3854
3855
3856 (define_expand "fixuns_truncdfsi2"
3857 [(set (match_operand:SI 0 "register_operand")
3858 (unsigned_fix:SI (match_operand:DF 1 "register_operand")))]
3859 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
3860 {
3861 rtx reg1 = gen_reg_rtx (DFmode);
3862 rtx reg2 = gen_reg_rtx (DFmode);
3863 rtx reg3 = gen_reg_rtx (SImode);
3864 rtx_code_label *label1 = gen_label_rtx ();
3865 rtx_code_label *label2 = gen_label_rtx ();
3866 rtx test;
3867 REAL_VALUE_TYPE offset;
3868
3869 real_2expN (&offset, 31, DFmode);
3870
3871 if (reg1) /* Turn off complaints about unreached code. */
3872 {
3873 mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, DFmode));
3874 do_pending_stack_adjust ();
3875
3876 test = gen_rtx_GE (VOIDmode, operands[1], reg1);
3877 emit_jump_insn (gen_cbranchdf4 (test, operands[1], reg1, label1));
3878
3879 emit_insn (gen_fix_truncdfsi2 (operands[0], operands[1]));
3880 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3881 gen_rtx_LABEL_REF (VOIDmode, label2)));
3882 emit_barrier ();
3883
3884 emit_label (label1);
3885 mips_emit_move (reg2, gen_rtx_MINUS (DFmode, operands[1], reg1));
3886 mips_emit_move (reg3, GEN_INT (trunc_int_for_mode
3887 (BITMASK_HIGH, SImode)));
3888
3889 emit_insn (gen_fix_truncdfsi2 (operands[0], reg2));
3890 emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
3891
3892 emit_label (label2);
3893
3894 /* Allow REG_NOTES to be set on last insn (labels don't have enough
3895 fields, and can't be used for REG_NOTES anyway). */
3896 emit_use (stack_pointer_rtx);
3897 DONE;
3898 }
3899 })
3900
3901
3902 (define_expand "fixuns_truncdfdi2"
3903 [(set (match_operand:DI 0 "register_operand")
3904 (unsigned_fix:DI (match_operand:DF 1 "register_operand")))]
3905 "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT"
3906 {
3907 rtx reg1 = gen_reg_rtx (DFmode);
3908 rtx reg2 = gen_reg_rtx (DFmode);
3909 rtx reg3 = gen_reg_rtx (DImode);
3910 rtx_code_label *label1 = gen_label_rtx ();
3911 rtx_code_label *label2 = gen_label_rtx ();
3912 rtx test;
3913 REAL_VALUE_TYPE offset;
3914
3915 real_2expN (&offset, 63, DFmode);
3916
3917 mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, DFmode));
3918 do_pending_stack_adjust ();
3919
3920 test = gen_rtx_GE (VOIDmode, operands[1], reg1);
3921 emit_jump_insn (gen_cbranchdf4 (test, operands[1], reg1, label1));
3922
3923 emit_insn (gen_fix_truncdfdi2 (operands[0], operands[1]));
3924 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3925 gen_rtx_LABEL_REF (VOIDmode, label2)));
3926 emit_barrier ();
3927
3928 emit_label (label1);
3929 mips_emit_move (reg2, gen_rtx_MINUS (DFmode, operands[1], reg1));
3930 mips_emit_move (reg3, GEN_INT (BITMASK_HIGH));
3931 emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
3932
3933 emit_insn (gen_fix_truncdfdi2 (operands[0], reg2));
3934 emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
3935
3936 emit_label (label2);
3937
3938 /* Allow REG_NOTES to be set on last insn (labels don't have enough
3939 fields, and can't be used for REG_NOTES anyway). */
3940 emit_use (stack_pointer_rtx);
3941 DONE;
3942 })
3943
3944
3945 (define_expand "fixuns_truncsfsi2"
3946 [(set (match_operand:SI 0 "register_operand")
3947 (unsigned_fix:SI (match_operand:SF 1 "register_operand")))]
3948 "TARGET_HARD_FLOAT"
3949 {
3950 rtx reg1 = gen_reg_rtx (SFmode);
3951 rtx reg2 = gen_reg_rtx (SFmode);
3952 rtx reg3 = gen_reg_rtx (SImode);
3953 rtx_code_label *label1 = gen_label_rtx ();
3954 rtx_code_label *label2 = gen_label_rtx ();
3955 rtx test;
3956 REAL_VALUE_TYPE offset;
3957
3958 real_2expN (&offset, 31, SFmode);
3959
3960 mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, SFmode));
3961 do_pending_stack_adjust ();
3962
3963 test = gen_rtx_GE (VOIDmode, operands[1], reg1);
3964 emit_jump_insn (gen_cbranchsf4 (test, operands[1], reg1, label1));
3965
3966 emit_insn (gen_fix_truncsfsi2 (operands[0], operands[1]));
3967 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
3968 gen_rtx_LABEL_REF (VOIDmode, label2)));
3969 emit_barrier ();
3970
3971 emit_label (label1);
3972 mips_emit_move (reg2, gen_rtx_MINUS (SFmode, operands[1], reg1));
3973 mips_emit_move (reg3, GEN_INT (trunc_int_for_mode
3974 (BITMASK_HIGH, SImode)));
3975
3976 emit_insn (gen_fix_truncsfsi2 (operands[0], reg2));
3977 emit_insn (gen_iorsi3 (operands[0], operands[0], reg3));
3978
3979 emit_label (label2);
3980
3981 /* Allow REG_NOTES to be set on last insn (labels don't have enough
3982 fields, and can't be used for REG_NOTES anyway). */
3983 emit_use (stack_pointer_rtx);
3984 DONE;
3985 })
3986
3987
3988 (define_expand "fixuns_truncsfdi2"
3989 [(set (match_operand:DI 0 "register_operand")
3990 (unsigned_fix:DI (match_operand:SF 1 "register_operand")))]
3991 "TARGET_HARD_FLOAT && TARGET_64BIT && TARGET_DOUBLE_FLOAT"
3992 {
3993 rtx reg1 = gen_reg_rtx (SFmode);
3994 rtx reg2 = gen_reg_rtx (SFmode);
3995 rtx reg3 = gen_reg_rtx (DImode);
3996 rtx_code_label *label1 = gen_label_rtx ();
3997 rtx_code_label *label2 = gen_label_rtx ();
3998 rtx test;
3999 REAL_VALUE_TYPE offset;
4000
4001 real_2expN (&offset, 63, SFmode);
4002
4003 mips_emit_move (reg1, CONST_DOUBLE_FROM_REAL_VALUE (offset, SFmode));
4004 do_pending_stack_adjust ();
4005
4006 test = gen_rtx_GE (VOIDmode, operands[1], reg1);
4007 emit_jump_insn (gen_cbranchsf4 (test, operands[1], reg1, label1));
4008
4009 emit_insn (gen_fix_truncsfdi2 (operands[0], operands[1]));
4010 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
4011 gen_rtx_LABEL_REF (VOIDmode, label2)));
4012 emit_barrier ();
4013
4014 emit_label (label1);
4015 mips_emit_move (reg2, gen_rtx_MINUS (SFmode, operands[1], reg1));
4016 mips_emit_move (reg3, GEN_INT (BITMASK_HIGH));
4017 emit_insn (gen_ashldi3 (reg3, reg3, GEN_INT (32)));
4018
4019 emit_insn (gen_fix_truncsfdi2 (operands[0], reg2));
4020 emit_insn (gen_iordi3 (operands[0], operands[0], reg3));
4021
4022 emit_label (label2);
4023
4024 /* Allow REG_NOTES to be set on last insn (labels don't have enough
4025 fields, and can't be used for REG_NOTES anyway). */
4026 emit_use (stack_pointer_rtx);
4027 DONE;
4028 })
4029 \f
4030 ;;
4031 ;; ....................
4032 ;;
4033 ;; DATA MOVEMENT
4034 ;;
4035 ;; ....................
4036
4037 ;; Bit field extract patterns which use lwl/lwr or ldl/ldr.
4038
4039 (define_expand "extvmisalign<mode>"
4040 [(set (match_operand:GPR 0 "register_operand")
4041 (sign_extract:GPR (match_operand:BLK 1 "memory_operand")
4042 (match_operand 2 "const_int_operand")
4043 (match_operand 3 "const_int_operand")))]
4044 "ISA_HAS_LWL_LWR"
4045 {
4046 if (mips_expand_ext_as_unaligned_load (operands[0], operands[1],
4047 INTVAL (operands[2]),
4048 INTVAL (operands[3]),
4049 /*unsigned=*/ false))
4050 DONE;
4051 else
4052 FAIL;
4053 })
4054
4055 (define_expand "extv<mode>"
4056 [(set (match_operand:GPR 0 "register_operand")
4057 (sign_extract:GPR (match_operand:GPR 1 "register_operand")
4058 (match_operand 2 "const_int_operand")
4059 (match_operand 3 "const_int_operand")))]
4060 "ISA_HAS_EXTS"
4061 {
4062 if (UINTVAL (operands[2]) > 32)
4063 FAIL;
4064 })
4065
4066 (define_insn "*extv<mode>"
4067 [(set (match_operand:GPR 0 "register_operand" "=d")
4068 (sign_extract:GPR (match_operand:GPR 1 "register_operand" "d")
4069 (match_operand 2 "const_int_operand" "")
4070 (match_operand 3 "const_int_operand" "")))]
4071 "ISA_HAS_EXTS && UINTVAL (operands[2]) <= 32"
4072 "exts\t%0,%1,%3,%m2"
4073 [(set_attr "type" "arith")
4074 (set_attr "mode" "<MODE>")])
4075
4076 (define_expand "extzvmisalign<mode>"
4077 [(set (match_operand:GPR 0 "register_operand")
4078 (zero_extract:GPR (match_operand:BLK 1 "memory_operand")
4079 (match_operand 2 "const_int_operand")
4080 (match_operand 3 "const_int_operand")))]
4081 "ISA_HAS_LWL_LWR"
4082 {
4083 if (mips_expand_ext_as_unaligned_load (operands[0], operands[1],
4084 INTVAL (operands[2]),
4085 INTVAL (operands[3]),
4086 /*unsigned=*/ true))
4087 DONE;
4088 else
4089 FAIL;
4090 })
4091
4092 (define_expand "extzv<mode>"
4093 [(set (match_operand:GPR 0 "register_operand")
4094 (zero_extract:GPR (match_operand:GPR 1 "register_operand")
4095 (match_operand 2 "const_int_operand")
4096 (match_operand 3 "const_int_operand")))]
4097 ""
4098 {
4099 if (!mips_use_ins_ext_p (operands[1], INTVAL (operands[2]),
4100 INTVAL (operands[3])))
4101 FAIL;
4102 })
4103
4104 (define_insn "*extzv<mode>"
4105 [(set (match_operand:GPR 0 "register_operand" "=d")
4106 (zero_extract:GPR (match_operand:GPR 1 "register_operand" "d")
4107 (match_operand 2 "const_int_operand" "")
4108 (match_operand 3 "const_int_operand" "")))]
4109 "mips_use_ins_ext_p (operands[1], INTVAL (operands[2]),
4110 INTVAL (operands[3]))"
4111 "<d>ext\t%0,%1,%3,%2"
4112 [(set_attr "type" "arith")
4113 (set_attr "mode" "<MODE>")])
4114
4115 (define_insn "*extzv_truncsi_exts"
4116 [(set (match_operand:SI 0 "register_operand" "=d")
4117 (truncate:SI
4118 (zero_extract:DI (match_operand:DI 1 "register_operand" "d")
4119 (match_operand 2 "const_int_operand" "")
4120 (match_operand 3 "const_int_operand" ""))))]
4121 "ISA_HAS_EXTS && TARGET_64BIT && IN_RANGE (INTVAL (operands[2]), 32, 63)"
4122 "exts\t%0,%1,%3,31"
4123 [(set_attr "type" "arith")
4124 (set_attr "mode" "SI")])
4125
4126
4127 (define_expand "insvmisalign<mode>"
4128 [(set (zero_extract:GPR (match_operand:BLK 0 "memory_operand")
4129 (match_operand 1 "const_int_operand")
4130 (match_operand 2 "const_int_operand"))
4131 (match_operand:GPR 3 "reg_or_0_operand"))]
4132 "ISA_HAS_LWL_LWR"
4133 {
4134 if (mips_expand_ins_as_unaligned_store (operands[0], operands[3],
4135 INTVAL (operands[1]),
4136 INTVAL (operands[2])))
4137 DONE;
4138 else
4139 FAIL;
4140 })
4141
4142 (define_expand "insv<mode>"
4143 [(set (zero_extract:GPR (match_operand:GPR 0 "register_operand")
4144 (match_operand 1 "const_int_operand")
4145 (match_operand 2 "const_int_operand"))
4146 (match_operand:GPR 3 "reg_or_0_operand"))]
4147 ""
4148 {
4149 if (!mips_use_ins_ext_p (operands[0], INTVAL (operands[1]),
4150 INTVAL (operands[2])))
4151 FAIL;
4152 })
4153
4154 (define_insn "*insv<mode>"
4155 [(set (zero_extract:GPR (match_operand:GPR 0 "register_operand" "+d")
4156 (match_operand:SI 1 "const_int_operand" "")
4157 (match_operand:SI 2 "const_int_operand" ""))
4158 (match_operand:GPR 3 "reg_or_0_operand" "dJ"))]
4159 "mips_use_ins_ext_p (operands[0], INTVAL (operands[1]),
4160 INTVAL (operands[2]))"
4161 "<d>ins\t%0,%z3,%2,%1"
4162 [(set_attr "type" "arith")
4163 (set_attr "mode" "<MODE>")])
4164
4165 ;; Combiner pattern for cins (clear and insert bit field). We can
4166 ;; implement mask-and-shift-left operation with this. Note that if
4167 ;; the upper bit of the mask is set in an SImode operation, the mask
4168 ;; itself will be sign-extended. mask_low_and_shift_len will
4169 ;; therefore be greater than our threshold of 32.
4170
4171 (define_insn "*cins<mode>"
4172 [(set (match_operand:GPR 0 "register_operand" "=d")
4173 (and:GPR
4174 (ashift:GPR (match_operand:GPR 1 "register_operand" "d")
4175 (match_operand:GPR 2 "const_int_operand" ""))
4176 (match_operand:GPR 3 "const_int_operand" "")))]
4177 "ISA_HAS_CINS
4178 && mask_low_and_shift_p (<MODE>mode, operands[3], operands[2], 32)"
4179 {
4180 operands[3] =
4181 GEN_INT (mask_low_and_shift_len (<MODE>mode, operands[3], operands[2]));
4182 return "cins\t%0,%1,%2,%m3";
4183 }
4184 [(set_attr "type" "shift")
4185 (set_attr "mode" "<MODE>")])
4186
4187 ;; Unaligned word moves generated by the bit field patterns.
4188 ;;
4189 ;; As far as the rtl is concerned, both the left-part and right-part
4190 ;; instructions can access the whole field. However, the real operand
4191 ;; refers to just the first or the last byte (depending on endianness).
4192 ;; We therefore use two memory operands to each instruction, one to
4193 ;; describe the rtl effect and one to use in the assembly output.
4194 ;;
4195 ;; Operands 0 and 1 are the rtl-level target and source respectively.
4196 ;; This allows us to use the standard length calculations for the "load"
4197 ;; and "store" type attributes.
4198
4199 (define_insn "mov_<load>l"
4200 [(set (match_operand:GPR 0 "register_operand" "=d")
4201 (unspec:GPR [(match_operand:BLK 1 "memory_operand" "m")
4202 (match_operand:QI 2 "memory_operand" "ZC")]
4203 UNSPEC_LOAD_LEFT))]
4204 "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[1])"
4205 "<load>l\t%0,%2"
4206 [(set_attr "move_type" "load")
4207 (set_attr "mode" "<MODE>")])
4208
4209 (define_insn "mov_<load>r"
4210 [(set (match_operand:GPR 0 "register_operand" "=d")
4211 (unspec:GPR [(match_operand:BLK 1 "memory_operand" "m")
4212 (match_operand:QI 2 "memory_operand" "ZC")
4213 (match_operand:GPR 3 "register_operand" "0")]
4214 UNSPEC_LOAD_RIGHT))]
4215 "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[1])"
4216 "<load>r\t%0,%2"
4217 [(set_attr "move_type" "load")
4218 (set_attr "mode" "<MODE>")])
4219
4220 (define_insn "mov_<store>l"
4221 [(set (match_operand:BLK 0 "memory_operand" "=m")
4222 (unspec:BLK [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
4223 (match_operand:QI 2 "memory_operand" "ZC")]
4224 UNSPEC_STORE_LEFT))]
4225 "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[0])"
4226 "<store>l\t%z1,%2"
4227 [(set_attr "move_type" "store")
4228 (set_attr "mode" "<MODE>")])
4229
4230 (define_insn "mov_<store>r"
4231 [(set (match_operand:BLK 0 "memory_operand" "+m")
4232 (unspec:BLK [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
4233 (match_operand:QI 2 "memory_operand" "ZC")
4234 (match_dup 0)]
4235 UNSPEC_STORE_RIGHT))]
4236 "!TARGET_MIPS16 && mips_mem_fits_mode_p (<MODE>mode, operands[0])"
4237 "<store>r\t%z1,%2"
4238 [(set_attr "move_type" "store")
4239 (set_attr "mode" "<MODE>")])
4240
4241 ;; An instruction to calculate the high part of a 64-bit SYMBOL_ABSOLUTE.
4242 ;; The required value is:
4243 ;;
4244 ;; (%highest(op1) << 48) + (%higher(op1) << 32) + (%hi(op1) << 16)
4245 ;;
4246 ;; which translates to:
4247 ;;
4248 ;; lui op0,%highest(op1)
4249 ;; daddiu op0,op0,%higher(op1)
4250 ;; dsll op0,op0,16
4251 ;; daddiu op0,op0,%hi(op1)
4252 ;; dsll op0,op0,16
4253 ;;
4254 ;; The split is deferred until after flow2 to allow the peephole2 below
4255 ;; to take effect.
4256 (define_insn_and_split "*lea_high64"
4257 [(set (match_operand:DI 0 "register_operand" "=d")
4258 (high:DI (match_operand:DI 1 "absolute_symbolic_operand" "")))]
4259 "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS"
4260 "#"
4261 "&& epilogue_completed"
4262 [(set (match_dup 0) (high:DI (match_dup 2)))
4263 (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 2)))
4264 (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 16)))
4265 (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 3)))
4266 (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 16)))]
4267 {
4268 operands[2] = mips_unspec_address (operands[1], SYMBOL_64_HIGH);
4269 operands[3] = mips_unspec_address (operands[1], SYMBOL_64_MID);
4270 }
4271 [(set_attr "insn_count" "5")])
4272
4273 ;; Use a scratch register to reduce the latency of the above pattern
4274 ;; on superscalar machines. The optimized sequence is:
4275 ;;
4276 ;; lui op1,%highest(op2)
4277 ;; lui op0,%hi(op2)
4278 ;; daddiu op1,op1,%higher(op2)
4279 ;; dsll32 op1,op1,0
4280 ;; daddu op1,op1,op0
4281 (define_peephole2
4282 [(set (match_operand:DI 1 "d_operand")
4283 (high:DI (match_operand:DI 2 "absolute_symbolic_operand")))
4284 (match_scratch:DI 0 "d")]
4285 "TARGET_EXPLICIT_RELOCS && ABI_HAS_64BIT_SYMBOLS"
4286 [(set (match_dup 1) (high:DI (match_dup 3)))
4287 (set (match_dup 0) (high:DI (match_dup 4)))
4288 (set (match_dup 1) (lo_sum:DI (match_dup 1) (match_dup 3)))
4289 (set (match_dup 1) (ashift:DI (match_dup 1) (const_int 32)))
4290 (set (match_dup 1) (plus:DI (match_dup 1) (match_dup 0)))]
4291 {
4292 operands[3] = mips_unspec_address (operands[2], SYMBOL_64_HIGH);
4293 operands[4] = mips_unspec_address (operands[2], SYMBOL_64_LOW);
4294 })
4295
4296 ;; On most targets, the expansion of (lo_sum (high X) X) for a 64-bit
4297 ;; SYMBOL_ABSOLUTE X will take 6 cycles. This next pattern allows combine
4298 ;; to merge the HIGH and LO_SUM parts of a move if the HIGH part is only
4299 ;; used once. We can then use the sequence:
4300 ;;
4301 ;; lui op0,%highest(op1)
4302 ;; lui op2,%hi(op1)
4303 ;; daddiu op0,op0,%higher(op1)
4304 ;; daddiu op2,op2,%lo(op1)
4305 ;; dsll32 op0,op0,0
4306 ;; daddu op0,op0,op2
4307 ;;
4308 ;; which takes 4 cycles on most superscalar targets.
4309 (define_insn_and_split "*lea64"
4310 [(set (match_operand:DI 0 "register_operand" "=d")
4311 (match_operand:DI 1 "absolute_symbolic_operand" ""))
4312 (clobber (match_scratch:DI 2 "=&d"))]
4313 "!TARGET_MIPS16
4314 && TARGET_EXPLICIT_RELOCS
4315 && ABI_HAS_64BIT_SYMBOLS
4316 && cse_not_expected"
4317 "#"
4318 "&& reload_completed"
4319 [(set (match_dup 0) (high:DI (match_dup 3)))
4320 (set (match_dup 2) (high:DI (match_dup 4)))
4321 (set (match_dup 0) (lo_sum:DI (match_dup 0) (match_dup 3)))
4322 (set (match_dup 2) (lo_sum:DI (match_dup 2) (match_dup 4)))
4323 (set (match_dup 0) (ashift:DI (match_dup 0) (const_int 32)))
4324 (set (match_dup 0) (plus:DI (match_dup 0) (match_dup 2)))]
4325 {
4326 operands[3] = mips_unspec_address (operands[1], SYMBOL_64_HIGH);
4327 operands[4] = mips_unspec_address (operands[1], SYMBOL_64_LOW);
4328 }
4329 [(set_attr "insn_count" "6")])
4330
4331 ;; Split HIGHs into:
4332 ;;
4333 ;; li op0,%hi(sym)
4334 ;; sll op0,16
4335 ;;
4336 ;; on MIPS16 targets.
4337 (define_split
4338 [(set (match_operand:P 0 "d_operand")
4339 (high:P (match_operand:P 1 "symbolic_operand_with_high")))]
4340 "TARGET_MIPS16 && reload_completed"
4341 [(set (match_dup 0) (unspec:P [(match_dup 1)] UNSPEC_UNSHIFTED_HIGH))
4342 (set (match_dup 0) (ashift:P (match_dup 0) (const_int 16)))])
4343
4344 (define_insn "*unshifted_high"
4345 [(set (match_operand:P 0 "d_operand" "=d")
4346 (unspec:P [(match_operand:P 1 "symbolic_operand_with_high")]
4347 UNSPEC_UNSHIFTED_HIGH))]
4348 ""
4349 "li\t%0,%h1"
4350 [(set_attr "extended_mips16" "yes")])
4351
4352 ;; Insns to fetch a symbol from a big GOT.
4353
4354 (define_insn_and_split "*xgot_hi<mode>"
4355 [(set (match_operand:P 0 "register_operand" "=d")
4356 (high:P (match_operand:P 1 "got_disp_operand" "")))]
4357 "TARGET_EXPLICIT_RELOCS && TARGET_XGOT"
4358 "#"
4359 "&& reload_completed"
4360 [(set (match_dup 0) (high:P (match_dup 2)))
4361 (set (match_dup 0) (plus:P (match_dup 0) (match_dup 3)))]
4362 {
4363 operands[2] = mips_unspec_address (operands[1], SYMBOL_GOTOFF_DISP);
4364 operands[3] = pic_offset_table_rtx;
4365 }
4366 [(set_attr "got" "xgot_high")
4367 (set_attr "mode" "<MODE>")])
4368
4369 (define_insn_and_split "*xgot_lo<mode>"
4370 [(set (match_operand:P 0 "register_operand" "=d")
4371 (lo_sum:P (match_operand:P 1 "register_operand" "d")
4372 (match_operand:P 2 "got_disp_operand" "")))]
4373 "TARGET_EXPLICIT_RELOCS && TARGET_XGOT"
4374 "#"
4375 "&& reload_completed"
4376 [(set (match_dup 0)
4377 (unspec:P [(match_dup 1) (match_dup 3)] UNSPEC_LOAD_GOT))]
4378 { operands[3] = mips_unspec_address (operands[2], SYMBOL_GOTOFF_DISP); }
4379 [(set_attr "got" "load")
4380 (set_attr "mode" "<MODE>")])
4381
4382 ;; Insns to fetch a symbol from a normal GOT.
4383
4384 (define_insn_and_split "*got_disp<mode>"
4385 [(set (match_operand:P 0 "register_operand" "=d")
4386 (match_operand:P 1 "got_disp_operand" ""))]
4387 "TARGET_EXPLICIT_RELOCS && !mips_split_p[SYMBOL_GOT_DISP]"
4388 "#"
4389 "&& reload_completed"
4390 [(set (match_dup 0) (match_dup 2))]
4391 { operands[2] = mips_got_load (NULL, operands[1], SYMBOL_GOTOFF_DISP); }
4392 [(set_attr "got" "load")
4393 (set_attr "mode" "<MODE>")])
4394
4395 ;; Insns for loading the "page" part of a page/ofst address from the GOT.
4396
4397 (define_insn_and_split "*got_page<mode>"
4398 [(set (match_operand:P 0 "register_operand" "=d")
4399 (high:P (match_operand:P 1 "got_page_ofst_operand" "")))]
4400 "TARGET_EXPLICIT_RELOCS && !mips_split_hi_p[SYMBOL_GOT_PAGE_OFST]"
4401 "#"
4402 "&& reload_completed"
4403 [(set (match_dup 0) (match_dup 2))]
4404 { operands[2] = mips_got_load (NULL, operands[1], SYMBOL_GOTOFF_PAGE); }
4405 [(set_attr "got" "load")
4406 (set_attr "mode" "<MODE>")])
4407
4408 ;; Convenience expander that generates the rhs of a load_got<mode> insn.
4409 (define_expand "unspec_got_<mode>"
4410 [(unspec:P [(match_operand:P 0)
4411 (match_operand:P 1)] UNSPEC_LOAD_GOT)])
4412
4413 ;; Lower-level instructions for loading an address from the GOT.
4414 ;; We could use MEMs, but an unspec gives more optimization
4415 ;; opportunities.
4416
4417 (define_insn "load_got<mode>"
4418 [(set (match_operand:P 0 "register_operand" "=d")
4419 (unspec:P [(match_operand:P 1 "register_operand" "d")
4420 (match_operand:P 2 "immediate_operand" "")]
4421 UNSPEC_LOAD_GOT))]
4422 ""
4423 "<load>\t%0,%R2(%1)"
4424 [(set_attr "got" "load")
4425 (set_attr "mode" "<MODE>")])
4426
4427 ;; Instructions for adding the low 16 bits of an address to a register.
4428 ;; Operand 2 is the address: mips_print_operand works out which relocation
4429 ;; should be applied.
4430
4431 (define_insn "*low<mode>"
4432 [(set (match_operand:P 0 "register_operand" "=d")
4433 (lo_sum:P (match_operand:P 1 "register_operand" "d")
4434 (match_operand:P 2 "immediate_operand" "")))]
4435 "!TARGET_MIPS16"
4436 "<d>addiu\t%0,%1,%R2"
4437 [(set_attr "alu_type" "add")
4438 (set_attr "mode" "<MODE>")])
4439
4440 (define_insn "*low<mode>_mips16"
4441 [(set (match_operand:P 0 "register_operand" "=d")
4442 (lo_sum:P (match_operand:P 1 "register_operand" "0")
4443 (match_operand:P 2 "immediate_operand" "")))]
4444 "TARGET_MIPS16"
4445 "<d>addiu\t%0,%R2"
4446 [(set_attr "alu_type" "add")
4447 (set_attr "mode" "<MODE>")
4448 (set_attr "extended_mips16" "yes")])
4449
4450 ;; Expose MIPS16 uses of the global pointer after reload if the function
4451 ;; is responsible for setting up the register itself.
4452 (define_split
4453 [(set (match_operand:GPR 0 "d_operand")
4454 (const:GPR (unspec:GPR [(const_int 0)] UNSPEC_GP)))]
4455 "TARGET_MIPS16 && TARGET_USE_GOT && reload_completed"
4456 [(set (match_dup 0) (match_dup 1))]
4457 { operands[1] = pic_offset_table_rtx; })
4458
4459 ;; Allow combine to split complex const_int load sequences, using operand 2
4460 ;; to store the intermediate results. See move_operand for details.
4461 (define_split
4462 [(set (match_operand:GPR 0 "register_operand")
4463 (match_operand:GPR 1 "splittable_const_int_operand"))
4464 (clobber (match_operand:GPR 2 "register_operand"))]
4465 ""
4466 [(const_int 0)]
4467 {
4468 mips_move_integer (operands[2], operands[0], INTVAL (operands[1]));
4469 DONE;
4470 })
4471
4472 ;; Likewise, for symbolic operands.
4473 (define_split
4474 [(set (match_operand:P 0 "register_operand")
4475 (match_operand:P 1))
4476 (clobber (match_operand:P 2 "register_operand"))]
4477 "mips_split_symbol (operands[2], operands[1], MAX_MACHINE_MODE, NULL)"
4478 [(set (match_dup 0) (match_dup 3))]
4479 {
4480 mips_split_symbol (operands[2], operands[1],
4481 MAX_MACHINE_MODE, &operands[3]);
4482 })
4483
4484 ;; 64-bit integer moves
4485
4486 ;; Unlike most other insns, the move insns can't be split with
4487 ;; different predicates, because register spilling and other parts of
4488 ;; the compiler, have memoized the insn number already.
4489
4490 (define_expand "movdi"
4491 [(set (match_operand:DI 0 "")
4492 (match_operand:DI 1 ""))]
4493 ""
4494 {
4495 if (mips_legitimize_move (DImode, operands[0], operands[1]))
4496 DONE;
4497 })
4498
4499 ;; For mips16, we need a special case to handle storing $31 into
4500 ;; memory, since we don't have a constraint to match $31. This
4501 ;; instruction can be generated by save_restore_insns.
4502
4503 (define_insn "*mov<mode>_ra"
4504 [(set (match_operand:GPR 0 "stack_operand" "=m")
4505 (reg:GPR RETURN_ADDR_REGNUM))]
4506 "TARGET_MIPS16"
4507 "<store>\t$31,%0"
4508 [(set_attr "move_type" "store")
4509 (set_attr "mode" "<MODE>")])
4510
4511 (define_insn "*movdi_32bit"
4512 [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,d,m,*a,*a,*d,*f,*f,*d,*m,*B*C*D,*B*C*D,*d,*m")
4513 (match_operand:DI 1 "move_operand" "d,i,m,d,*J,*d,*a,*J*d,*m,*f,*f,*d,*m,*B*C*D,*B*C*D"))]
4514 "!TARGET_64BIT && !TARGET_MIPS16
4515 && (register_operand (operands[0], DImode)
4516 || reg_or_0_operand (operands[1], DImode))"
4517 { return mips_output_move (operands[0], operands[1]); }
4518 [(set_attr "move_type" "move,const,load,store,imul,mtlo,mflo,mtc,fpload,mfc,fpstore,mtc,fpload,mfc,fpstore")
4519 (set (attr "mode")
4520 (if_then_else (eq_attr "move_type" "imul")
4521 (const_string "SI")
4522 (const_string "DI")))])
4523
4524 (define_insn "*movdi_32bit_mips16"
4525 [(set (match_operand:DI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4526 (match_operand:DI 1 "move_operand" "d,d,y,K,N,m,d,*x"))]
4527 "!TARGET_64BIT && TARGET_MIPS16
4528 && (register_operand (operands[0], DImode)
4529 || register_operand (operands[1], DImode))"
4530 { return mips_output_move (operands[0], operands[1]); }
4531 [(set_attr "move_type" "move,move,move,const,constN,load,store,mflo")
4532 (set_attr "mode" "DI")])
4533
4534 (define_insn "*movdi_64bit"
4535 [(set (match_operand:DI 0 "nonimmediate_operand" "=d,d,e,d,m,*f,*f,*d,*m,*a,*d,*B*C*D,*B*C*D,*d,*m")
4536 (match_operand:DI 1 "move_operand" "d,Yd,Yf,m,dJ,*d*J,*m,*f,*f,*J*d,*a,*d,*m,*B*C*D,*B*C*D"))]
4537 "TARGET_64BIT && !TARGET_MIPS16
4538 && (register_operand (operands[0], DImode)
4539 || reg_or_0_operand (operands[1], DImode))"
4540 { return mips_output_move (operands[0], operands[1]); }
4541 [(set_attr "move_type" "move,const,const,load,store,mtc,fpload,mfc,fpstore,mtlo,mflo,mtc,fpload,mfc,fpstore")
4542 (set_attr "mode" "DI")])
4543
4544 (define_insn "*movdi_64bit_mips16"
4545 [(set (match_operand:DI 0 "nonimmediate_operand" "=d,y,d,d,d,d,d,d,m,*d")
4546 (match_operand:DI 1 "move_operand" "d,d,y,K,N,Yd,kf,m,d,*a"))]
4547 "TARGET_64BIT && TARGET_MIPS16
4548 && (register_operand (operands[0], DImode)
4549 || register_operand (operands[1], DImode))"
4550 { return mips_output_move (operands[0], operands[1]); }
4551 [(set_attr "move_type" "move,move,move,const,constN,const,loadpool,load,store,mflo")
4552 (set_attr "mode" "DI")])
4553
4554 ;; On the mips16, we can split ld $r,N($r) into an add and a load,
4555 ;; when the original load is a 4 byte instruction but the add and the
4556 ;; load are 2 2 byte instructions.
4557
4558 (define_split
4559 [(set (match_operand:DI 0 "d_operand")
4560 (mem:DI (plus:DI (match_dup 0)
4561 (match_operand:DI 1 "const_int_operand"))))]
4562 "TARGET_64BIT && TARGET_MIPS16 && reload_completed
4563 && !TARGET_DEBUG_D_MODE
4564 && ((INTVAL (operands[1]) < 0
4565 && INTVAL (operands[1]) >= -0x10)
4566 || (INTVAL (operands[1]) >= 32 * 8
4567 && INTVAL (operands[1]) <= 31 * 8 + 0x8)
4568 || (INTVAL (operands[1]) >= 0
4569 && INTVAL (operands[1]) < 32 * 8
4570 && (INTVAL (operands[1]) & 7) != 0))"
4571 [(set (match_dup 0) (plus:DI (match_dup 0) (match_dup 1)))
4572 (set (match_dup 0) (mem:DI (plus:DI (match_dup 0) (match_dup 2))))]
4573 {
4574 HOST_WIDE_INT val = INTVAL (operands[1]);
4575
4576 if (val < 0)
4577 operands[2] = const0_rtx;
4578 else if (val >= 32 * 8)
4579 {
4580 int off = val & 7;
4581
4582 operands[1] = GEN_INT (0x8 + off);
4583 operands[2] = GEN_INT (val - off - 0x8);
4584 }
4585 else
4586 {
4587 int off = val & 7;
4588
4589 operands[1] = GEN_INT (off);
4590 operands[2] = GEN_INT (val - off);
4591 }
4592 })
4593
4594 ;; 32-bit Integer moves
4595
4596 ;; Unlike most other insns, the move insns can't be split with
4597 ;; different predicates, because register spilling and other parts of
4598 ;; the compiler, have memoized the insn number already.
4599
4600 (define_expand "mov<mode>"
4601 [(set (match_operand:IMOVE32 0 "")
4602 (match_operand:IMOVE32 1 ""))]
4603 ""
4604 {
4605 if (mips_legitimize_move (<MODE>mode, operands[0], operands[1]))
4606 DONE;
4607 })
4608
4609 ;; The difference between these two is whether or not ints are allowed
4610 ;; in FP registers (off by default, use -mdebugh to enable).
4611
4612 (define_insn "*mov<mode>_internal"
4613 [(set (match_operand:IMOVE32 0 "nonimmediate_operand" "=d,!u,!u,d,e,!u,!ks,d,ZS,ZT,m,*f,*f,*d,*m,*d,*z,*a,*d,*B*C*D,*B*C*D,*d,*m")
4614 (match_operand:IMOVE32 1 "move_operand" "d,J,Udb7,Yd,Yf,ZT,ZS,m,!ks,!kbJ,dJ,*d*J,*m,*f,*f,*z,*d,*J*d,*a,*d,*m,*B*C*D,*B*C*D"))]
4615 "!TARGET_MIPS16
4616 && (register_operand (operands[0], <MODE>mode)
4617 || reg_or_0_operand (operands[1], <MODE>mode))"
4618 { return mips_output_move (operands[0], operands[1]); }
4619 [(set_attr "move_type" "move,move,const,const,const,load,load,load,store,store,store,mtc,fpload,mfc,fpstore,mfc,mtc,mtlo,mflo,mtc,fpload,mfc,fpstore")
4620 (set_attr "compression" "all,micromips,micromips,*,*,micromips,micromips,*,micromips,micromips,*,*,*,*,*,*,*,*,*,*,*,*,*")
4621 (set_attr "mode" "SI")])
4622
4623 (define_insn "*mov<mode>_mips16"
4624 [(set (match_operand:IMOVE32 0 "nonimmediate_operand" "=d,y,d,d,d,d,d,d,m,*d")
4625 (match_operand:IMOVE32 1 "move_operand" "d,d,y,K,N,Yd,kf,m,d,*a"))]
4626 "TARGET_MIPS16
4627 && (register_operand (operands[0], <MODE>mode)
4628 || register_operand (operands[1], <MODE>mode))"
4629 { return mips_output_move (operands[0], operands[1]); }
4630 [(set_attr "move_type" "move,move,move,const,constN,const,loadpool,load,store,mflo")
4631 (set_attr "mode" "SI")])
4632
4633 ;; On the mips16, we can split lw $r,N($r) into an add and a load,
4634 ;; when the original load is a 4 byte instruction but the add and the
4635 ;; load are 2 2 byte instructions.
4636
4637 (define_split
4638 [(set (match_operand:SI 0 "d_operand")
4639 (mem:SI (plus:SI (match_dup 0)
4640 (match_operand:SI 1 "const_int_operand"))))]
4641 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4642 && ((INTVAL (operands[1]) < 0
4643 && INTVAL (operands[1]) >= -0x80)
4644 || (INTVAL (operands[1]) >= 32 * 4
4645 && INTVAL (operands[1]) <= 31 * 4 + 0x7c)
4646 || (INTVAL (operands[1]) >= 0
4647 && INTVAL (operands[1]) < 32 * 4
4648 && (INTVAL (operands[1]) & 3) != 0))"
4649 [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
4650 (set (match_dup 0) (mem:SI (plus:SI (match_dup 0) (match_dup 2))))]
4651 {
4652 HOST_WIDE_INT val = INTVAL (operands[1]);
4653
4654 if (val < 0)
4655 operands[2] = const0_rtx;
4656 else if (val >= 32 * 4)
4657 {
4658 int off = val & 3;
4659
4660 operands[1] = GEN_INT (0x7c + off);
4661 operands[2] = GEN_INT (val - off - 0x7c);
4662 }
4663 else
4664 {
4665 int off = val & 3;
4666
4667 operands[1] = GEN_INT (off);
4668 operands[2] = GEN_INT (val - off);
4669 }
4670 })
4671
4672 ;; On the mips16, we can split a load of certain constants into a load
4673 ;; and an add. This turns a 4 byte instruction into 2 2 byte
4674 ;; instructions.
4675
4676 (define_split
4677 [(set (match_operand:SI 0 "d_operand")
4678 (match_operand:SI 1 "const_int_operand"))]
4679 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4680 && INTVAL (operands[1]) >= 0x100
4681 && INTVAL (operands[1]) <= 0xff + 0x7f"
4682 [(set (match_dup 0) (match_dup 1))
4683 (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))]
4684 {
4685 int val = INTVAL (operands[1]);
4686
4687 operands[1] = GEN_INT (0xff);
4688 operands[2] = GEN_INT (val - 0xff);
4689 })
4690
4691 ;; MIPS4 supports loading and storing a floating point register from
4692 ;; the sum of two general registers. We use two versions for each of
4693 ;; these four instructions: one where the two general registers are
4694 ;; SImode, and one where they are DImode. This is because general
4695 ;; registers will be in SImode when they hold 32-bit values, but,
4696 ;; since the 32-bit values are always sign extended, the [ls][wd]xc1
4697 ;; instructions will still work correctly.
4698
4699 ;; ??? Perhaps it would be better to support these instructions by
4700 ;; modifying TARGET_LEGITIMATE_ADDRESS_P and friends. However, since
4701 ;; these instructions can only be used to load and store floating
4702 ;; point registers, that would probably cause trouble in reload.
4703
4704 (define_insn "*<ANYF:loadx>_<P:mode>"
4705 [(set (match_operand:ANYF 0 "register_operand" "=f")
4706 (mem:ANYF (plus:P (match_operand:P 1 "register_operand" "d")
4707 (match_operand:P 2 "register_operand" "d"))))]
4708 "ISA_HAS_LXC1_SXC1"
4709 "<ANYF:loadx>\t%0,%1(%2)"
4710 [(set_attr "type" "fpidxload")
4711 (set_attr "mode" "<ANYF:UNITMODE>")])
4712
4713 (define_insn "*<ANYF:storex>_<P:mode>"
4714 [(set (mem:ANYF (plus:P (match_operand:P 1 "register_operand" "d")
4715 (match_operand:P 2 "register_operand" "d")))
4716 (match_operand:ANYF 0 "register_operand" "f"))]
4717 "ISA_HAS_LXC1_SXC1"
4718 "<ANYF:storex>\t%0,%1(%2)"
4719 [(set_attr "type" "fpidxstore")
4720 (set_attr "mode" "<ANYF:UNITMODE>")])
4721
4722 ;; Scaled indexed address load.
4723 ;; Per md.texi, we only need to look for a pattern with multiply in the
4724 ;; address expression, not shift.
4725
4726 (define_insn "*lwxs"
4727 [(set (match_operand:IMOVE32 0 "register_operand" "=d")
4728 (mem:IMOVE32
4729 (plus:P (mult:P (match_operand:P 1 "register_operand" "d")
4730 (const_int 4))
4731 (match_operand:P 2 "register_operand" "d"))))]
4732 "ISA_HAS_LWXS"
4733 "lwxs\t%0,%1(%2)"
4734 [(set_attr "type" "load")
4735 (set_attr "mode" "SI")])
4736
4737 ;; 16-bit Integer moves
4738
4739 ;; Unlike most other insns, the move insns can't be split with
4740 ;; different predicates, because register spilling and other parts of
4741 ;; the compiler, have memoized the insn number already.
4742 ;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND.
4743
4744 (define_expand "movhi"
4745 [(set (match_operand:HI 0 "")
4746 (match_operand:HI 1 ""))]
4747 ""
4748 {
4749 if (mips_legitimize_move (HImode, operands[0], operands[1]))
4750 DONE;
4751 })
4752
4753 (define_insn "*movhi_internal"
4754 [(set (match_operand:HI 0 "nonimmediate_operand" "=d,!u,d,!u,d,ZU,m,*a,*d")
4755 (match_operand:HI 1 "move_operand" "d,J,I,ZU,m,!kbJ,dJ,*d*J,*a"))]
4756 "!TARGET_MIPS16
4757 && (register_operand (operands[0], HImode)
4758 || reg_or_0_operand (operands[1], HImode))"
4759 { return mips_output_move (operands[0], operands[1]); }
4760 [(set_attr "move_type" "move,const,const,load,load,store,store,mtlo,mflo")
4761 (set_attr "compression" "all,micromips,*,micromips,*,micromips,*,*,*")
4762 (set_attr "mode" "HI")])
4763
4764 (define_insn "*movhi_mips16"
4765 [(set (match_operand:HI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4766 (match_operand:HI 1 "move_operand" "d,d,y,K,N,m,d,*a"))]
4767 "TARGET_MIPS16
4768 && (register_operand (operands[0], HImode)
4769 || register_operand (operands[1], HImode))"
4770 { return mips_output_move (operands[0], operands[1]); }
4771 [(set_attr "move_type" "move,move,move,const,constN,load,store,mflo")
4772 (set_attr "mode" "HI")])
4773
4774 ;; On the mips16, we can split lh $r,N($r) into an add and a load,
4775 ;; when the original load is a 4 byte instruction but the add and the
4776 ;; load are 2 2 byte instructions.
4777
4778 (define_split
4779 [(set (match_operand:HI 0 "d_operand")
4780 (mem:HI (plus:SI (match_dup 0)
4781 (match_operand:SI 1 "const_int_operand"))))]
4782 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4783 && ((INTVAL (operands[1]) < 0
4784 && INTVAL (operands[1]) >= -0x80)
4785 || (INTVAL (operands[1]) >= 32 * 2
4786 && INTVAL (operands[1]) <= 31 * 2 + 0x7e)
4787 || (INTVAL (operands[1]) >= 0
4788 && INTVAL (operands[1]) < 32 * 2
4789 && (INTVAL (operands[1]) & 1) != 0))"
4790 [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
4791 (set (match_dup 0) (mem:HI (plus:SI (match_dup 0) (match_dup 2))))]
4792 {
4793 HOST_WIDE_INT val = INTVAL (operands[1]);
4794
4795 if (val < 0)
4796 operands[2] = const0_rtx;
4797 else if (val >= 32 * 2)
4798 {
4799 int off = val & 1;
4800
4801 operands[1] = GEN_INT (0x7e + off);
4802 operands[2] = GEN_INT (val - off - 0x7e);
4803 }
4804 else
4805 {
4806 int off = val & 1;
4807
4808 operands[1] = GEN_INT (off);
4809 operands[2] = GEN_INT (val - off);
4810 }
4811 })
4812
4813 ;; 8-bit Integer moves
4814
4815 ;; Unlike most other insns, the move insns can't be split with
4816 ;; different predicates, because register spilling and other parts of
4817 ;; the compiler, have memoized the insn number already.
4818 ;; Unsigned loads are used because LOAD_EXTEND_OP returns ZERO_EXTEND.
4819
4820 (define_expand "movqi"
4821 [(set (match_operand:QI 0 "")
4822 (match_operand:QI 1 ""))]
4823 ""
4824 {
4825 if (mips_legitimize_move (QImode, operands[0], operands[1]))
4826 DONE;
4827 })
4828
4829 (define_insn "*movqi_internal"
4830 [(set (match_operand:QI 0 "nonimmediate_operand" "=d,!u,d,!u,d,ZV,m,*a,*d")
4831 (match_operand:QI 1 "move_operand" "d,J,I,ZW,m,!kbJ,dJ,*d*J,*a"))]
4832 "!TARGET_MIPS16
4833 && (register_operand (operands[0], QImode)
4834 || reg_or_0_operand (operands[1], QImode))"
4835 { return mips_output_move (operands[0], operands[1]); }
4836 [(set_attr "move_type" "move,const,const,load,load,store,store,mtlo,mflo")
4837 (set_attr "compression" "all,micromips,*,micromips,*,micromips,*,*,*")
4838 (set_attr "mode" "QI")])
4839
4840 (define_insn "*movqi_mips16"
4841 [(set (match_operand:QI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4842 (match_operand:QI 1 "move_operand" "d,d,y,K,N,m,d,*a"))]
4843 "TARGET_MIPS16
4844 && (register_operand (operands[0], QImode)
4845 || register_operand (operands[1], QImode))"
4846 { return mips_output_move (operands[0], operands[1]); }
4847 [(set_attr "move_type" "move,move,move,const,constN,load,store,mflo")
4848 (set_attr "mode" "QI")])
4849
4850 ;; On the mips16, we can split lb $r,N($r) into an add and a load,
4851 ;; when the original load is a 4 byte instruction but the add and the
4852 ;; load are 2 2 byte instructions.
4853
4854 (define_split
4855 [(set (match_operand:QI 0 "d_operand")
4856 (mem:QI (plus:SI (match_dup 0)
4857 (match_operand:SI 1 "const_int_operand"))))]
4858 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
4859 && ((INTVAL (operands[1]) < 0
4860 && INTVAL (operands[1]) >= -0x80)
4861 || (INTVAL (operands[1]) >= 32
4862 && INTVAL (operands[1]) <= 31 + 0x7f))"
4863 [(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 1)))
4864 (set (match_dup 0) (mem:QI (plus:SI (match_dup 0) (match_dup 2))))]
4865 {
4866 HOST_WIDE_INT val = INTVAL (operands[1]);
4867
4868 if (val < 0)
4869 operands[2] = const0_rtx;
4870 else
4871 {
4872 operands[1] = GEN_INT (0x7f);
4873 operands[2] = GEN_INT (val - 0x7f);
4874 }
4875 })
4876
4877 ;; 32-bit floating point moves
4878
4879 (define_expand "movsf"
4880 [(set (match_operand:SF 0 "")
4881 (match_operand:SF 1 ""))]
4882 ""
4883 {
4884 if (mips_legitimize_move (SFmode, operands[0], operands[1]))
4885 DONE;
4886 })
4887
4888 (define_insn "movccf"
4889 [(set (match_operand:CCF 0 "nonimmediate_operand" "=f,f,m")
4890 (match_operand:CCF 1 "nonimmediate_operand" "f,m,f"))]
4891 "ISA_HAS_CCF"
4892 { return mips_output_move (operands[0], operands[1]); }
4893 [(set_attr "move_type" "fmove,fpload,fpstore")])
4894
4895 (define_insn "*movsf_hardfloat"
4896 [(set (match_operand:SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
4897 (match_operand:SF 1 "move_operand" "f,G,m,f,G,*d,*f,*G*d,*m,*d"))]
4898 "TARGET_HARD_FLOAT
4899 && (register_operand (operands[0], SFmode)
4900 || reg_or_0_operand (operands[1], SFmode))"
4901 { return mips_output_move (operands[0], operands[1]); }
4902 [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store")
4903 (set_attr "mode" "SF")])
4904
4905 (define_insn "*movsf_softfloat"
4906 [(set (match_operand:SF 0 "nonimmediate_operand" "=d,d,m")
4907 (match_operand:SF 1 "move_operand" "Gd,m,d"))]
4908 "TARGET_SOFT_FLOAT && !TARGET_MIPS16
4909 && (register_operand (operands[0], SFmode)
4910 || reg_or_0_operand (operands[1], SFmode))"
4911 { return mips_output_move (operands[0], operands[1]); }
4912 [(set_attr "move_type" "move,load,store")
4913 (set_attr "mode" "SF")])
4914
4915 (define_insn "*movsf_mips16"
4916 [(set (match_operand:SF 0 "nonimmediate_operand" "=d,y,d,d,m")
4917 (match_operand:SF 1 "move_operand" "d,d,y,m,d"))]
4918 "TARGET_MIPS16
4919 && (register_operand (operands[0], SFmode)
4920 || register_operand (operands[1], SFmode))"
4921 { return mips_output_move (operands[0], operands[1]); }
4922 [(set_attr "move_type" "move,move,move,load,store")
4923 (set_attr "mode" "SF")])
4924
4925 ;; 64-bit floating point moves
4926
4927 (define_expand "movdf"
4928 [(set (match_operand:DF 0 "")
4929 (match_operand:DF 1 ""))]
4930 ""
4931 {
4932 if (mips_legitimize_move (DFmode, operands[0], operands[1]))
4933 DONE;
4934 })
4935
4936 (define_insn "*movdf_hardfloat"
4937 [(set (match_operand:DF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
4938 (match_operand:DF 1 "move_operand" "f,G,m,f,G,*d,*f,*d*G,*m,*d"))]
4939 "TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT
4940 && (register_operand (operands[0], DFmode)
4941 || reg_or_0_operand (operands[1], DFmode))"
4942 { return mips_output_move (operands[0], operands[1]); }
4943 [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store")
4944 (set_attr "mode" "DF")])
4945
4946 (define_insn "*movdf_softfloat"
4947 [(set (match_operand:DF 0 "nonimmediate_operand" "=d,d,m")
4948 (match_operand:DF 1 "move_operand" "dG,m,dG"))]
4949 "(TARGET_SOFT_FLOAT || TARGET_SINGLE_FLOAT) && !TARGET_MIPS16
4950 && (register_operand (operands[0], DFmode)
4951 || reg_or_0_operand (operands[1], DFmode))"
4952 { return mips_output_move (operands[0], operands[1]); }
4953 [(set_attr "move_type" "move,load,store")
4954 (set_attr "mode" "DF")])
4955
4956 (define_insn "*movdf_mips16"
4957 [(set (match_operand:DF 0 "nonimmediate_operand" "=d,y,d,d,m")
4958 (match_operand:DF 1 "move_operand" "d,d,y,m,d"))]
4959 "TARGET_MIPS16
4960 && (register_operand (operands[0], DFmode)
4961 || register_operand (operands[1], DFmode))"
4962 { return mips_output_move (operands[0], operands[1]); }
4963 [(set_attr "move_type" "move,move,move,load,store")
4964 (set_attr "mode" "DF")])
4965
4966 ;; 128-bit integer moves
4967
4968 (define_expand "movti"
4969 [(set (match_operand:TI 0)
4970 (match_operand:TI 1))]
4971 "TARGET_64BIT"
4972 {
4973 if (mips_legitimize_move (TImode, operands[0], operands[1]))
4974 DONE;
4975 })
4976
4977 (define_insn "*movti"
4978 [(set (match_operand:TI 0 "nonimmediate_operand" "=d,d,d,m,*a,*a,*d")
4979 (match_operand:TI 1 "move_operand" "d,i,m,dJ,*J,*d,*a"))]
4980 "TARGET_64BIT
4981 && !TARGET_MIPS16
4982 && (register_operand (operands[0], TImode)
4983 || reg_or_0_operand (operands[1], TImode))"
4984 { return mips_output_move (operands[0], operands[1]); }
4985 [(set_attr "move_type" "move,const,load,store,imul,mtlo,mflo")
4986 (set (attr "mode")
4987 (if_then_else (eq_attr "move_type" "imul")
4988 (const_string "SI")
4989 (const_string "TI")))])
4990
4991 (define_insn "*movti_mips16"
4992 [(set (match_operand:TI 0 "nonimmediate_operand" "=d,y,d,d,d,d,m,*d")
4993 (match_operand:TI 1 "move_operand" "d,d,y,K,N,m,d,*a"))]
4994 "TARGET_64BIT
4995 && TARGET_MIPS16
4996 && (register_operand (operands[0], TImode)
4997 || register_operand (operands[1], TImode))"
4998 "#"
4999 [(set_attr "move_type" "move,move,move,const,constN,load,store,mflo")
5000 (set_attr "mode" "TI")])
5001
5002 ;; 128-bit floating point moves
5003
5004 (define_expand "movtf"
5005 [(set (match_operand:TF 0)
5006 (match_operand:TF 1))]
5007 "TARGET_64BIT"
5008 {
5009 if (mips_legitimize_move (TFmode, operands[0], operands[1]))
5010 DONE;
5011 })
5012
5013 ;; This pattern handles both hard- and soft-float cases.
5014 (define_insn "*movtf"
5015 [(set (match_operand:TF 0 "nonimmediate_operand" "=d,d,m,f,d,f,m")
5016 (match_operand:TF 1 "move_operand" "dG,m,dG,dG,f,m,f"))]
5017 "TARGET_64BIT
5018 && !TARGET_MIPS16
5019 && (register_operand (operands[0], TFmode)
5020 || reg_or_0_operand (operands[1], TFmode))"
5021 "#"
5022 [(set_attr "move_type" "move,load,store,mtc,mfc,fpload,fpstore")
5023 (set_attr "mode" "TF")])
5024
5025 (define_insn "*movtf_mips16"
5026 [(set (match_operand:TF 0 "nonimmediate_operand" "=d,y,d,d,m")
5027 (match_operand:TF 1 "move_operand" "d,d,y,m,d"))]
5028 "TARGET_64BIT
5029 && TARGET_MIPS16
5030 && (register_operand (operands[0], TFmode)
5031 || register_operand (operands[1], TFmode))"
5032 "#"
5033 [(set_attr "move_type" "move,move,move,load,store")
5034 (set_attr "mode" "TF")])
5035
5036 (define_split
5037 [(set (match_operand:MOVE64 0 "nonimmediate_operand")
5038 (match_operand:MOVE64 1 "move_operand"))]
5039 "reload_completed && mips_split_move_insn_p (operands[0], operands[1], insn)"
5040 [(const_int 0)]
5041 {
5042 mips_split_move_insn (operands[0], operands[1], curr_insn);
5043 DONE;
5044 })
5045
5046 (define_split
5047 [(set (match_operand:MOVE128 0 "nonimmediate_operand")
5048 (match_operand:MOVE128 1 "move_operand"))]
5049 "reload_completed && mips_split_move_insn_p (operands[0], operands[1], insn)"
5050 [(const_int 0)]
5051 {
5052 mips_split_move_insn (operands[0], operands[1], curr_insn);
5053 DONE;
5054 })
5055
5056 ;; When generating mips16 code, split moves of negative constants into
5057 ;; a positive "li" followed by a negation.
5058 (define_split
5059 [(set (match_operand 0 "d_operand")
5060 (match_operand 1 "const_int_operand"))]
5061 "TARGET_MIPS16 && reload_completed && INTVAL (operands[1]) < 0"
5062 [(set (match_dup 2)
5063 (match_dup 3))
5064 (set (match_dup 2)
5065 (neg:SI (match_dup 2)))]
5066 {
5067 operands[2] = gen_lowpart (SImode, operands[0]);
5068 operands[3] = GEN_INT (-INTVAL (operands[1]));
5069 })
5070
5071 ;; 64-bit paired-single floating point moves
5072
5073 (define_expand "movv2sf"
5074 [(set (match_operand:V2SF 0)
5075 (match_operand:V2SF 1))]
5076 "TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT"
5077 {
5078 if (mips_legitimize_move (V2SFmode, operands[0], operands[1]))
5079 DONE;
5080 })
5081
5082 (define_insn "*movv2sf"
5083 [(set (match_operand:V2SF 0 "nonimmediate_operand" "=f,f,f,m,m,*f,*d,*d,*d,*m")
5084 (match_operand:V2SF 1 "move_operand" "f,YG,m,f,YG,*d,*f,*d*YG,*m,*d"))]
5085 "TARGET_HARD_FLOAT
5086 && TARGET_PAIRED_SINGLE_FLOAT
5087 && (register_operand (operands[0], V2SFmode)
5088 || reg_or_0_operand (operands[1], V2SFmode))"
5089 { return mips_output_move (operands[0], operands[1]); }
5090 [(set_attr "move_type" "fmove,mtc,fpload,fpstore,store,mtc,mfc,move,load,store")
5091 (set_attr "mode" "DF")])
5092
5093 ;; Extract the high part of a HI/LO value. See mips_hard_regno_mode_ok_p
5094 ;; for the reason why we can't just use (reg:GPR HI_REGNUM).
5095 ;;
5096 ;; When generating VR4120 or VR4130 code, we use MACCHI and DMACCHI
5097 ;; instead of MFHI. This avoids both the normal MIPS III hi/lo hazards
5098 ;; and the errata related to -mfix-vr4130.
5099 (define_insn "mfhi<GPR:mode>_<HILO:mode>"
5100 [(set (match_operand:GPR 0 "register_operand" "=d")
5101 (unspec:GPR [(match_operand:HILO 1 "hilo_operand" "x")]
5102 UNSPEC_MFHI))]
5103 ""
5104 { return ISA_HAS_MACCHI ? "<GPR:d>macchi\t%0,%.,%." : "mfhi\t%0"; }
5105 [(set_attr "type" "mfhi")
5106 (set_attr "mode" "<GPR:MODE>")])
5107
5108 ;; Set the high part of a HI/LO value, given that the low part has
5109 ;; already been set. See mips_hard_regno_mode_ok_p for the reason
5110 ;; why we can't just use (reg:GPR HI_REGNUM).
5111 (define_insn "mthi<GPR:mode>_<HILO:mode>"
5112 [(set (match_operand:HILO 0 "register_operand" "=x")
5113 (unspec:HILO [(match_operand:GPR 1 "reg_or_0_operand" "dJ")
5114 (match_operand:GPR 2 "register_operand" "l")]
5115 UNSPEC_MTHI))]
5116 ""
5117 "mthi\t%z1"
5118 [(set_attr "type" "mthi")
5119 (set_attr "mode" "SI")])
5120
5121 ;; Emit a doubleword move in which exactly one of the operands is
5122 ;; a floating-point register. We can't just emit two normal moves
5123 ;; because of the constraints imposed by the FPU register model;
5124 ;; see mips_cannot_change_mode_class for details. Instead, we keep
5125 ;; the FPR whole and use special patterns to refer to each word of
5126 ;; the other operand.
5127
5128 (define_expand "move_doubleword_fpr<mode>"
5129 [(set (match_operand:SPLITF 0)
5130 (match_operand:SPLITF 1))]
5131 ""
5132 {
5133 if (FP_REG_RTX_P (operands[0]))
5134 {
5135 rtx low = mips_subword (operands[1], 0);
5136 rtx high = mips_subword (operands[1], 1);
5137 emit_insn (gen_load_low<mode> (operands[0], low));
5138 if (ISA_HAS_MXHC1 && !TARGET_64BIT)
5139 emit_insn (gen_mthc1<mode> (operands[0], high, operands[0]));
5140 else
5141 emit_insn (gen_load_high<mode> (operands[0], high, operands[0]));
5142 }
5143 else
5144 {
5145 rtx low = mips_subword (operands[0], 0);
5146 rtx high = mips_subword (operands[0], 1);
5147 emit_insn (gen_store_word<mode> (low, operands[1], const0_rtx));
5148 if (ISA_HAS_MXHC1 && !TARGET_64BIT)
5149 emit_insn (gen_mfhc1<mode> (high, operands[1]));
5150 else
5151 emit_insn (gen_store_word<mode> (high, operands[1], const1_rtx));
5152 }
5153 DONE;
5154 })
5155
5156 ;; Load the low word of operand 0 with operand 1.
5157 (define_insn "load_low<mode>"
5158 [(set (match_operand:SPLITF 0 "register_operand" "=f,f")
5159 (unspec:SPLITF [(match_operand:<HALFMODE> 1 "general_operand" "dJ,m")]
5160 UNSPEC_LOAD_LOW))]
5161 "TARGET_HARD_FLOAT"
5162 {
5163 operands[0] = mips_subword (operands[0], 0);
5164 return mips_output_move (operands[0], operands[1]);
5165 }
5166 [(set_attr "move_type" "mtc,fpload")
5167 (set_attr "mode" "<HALFMODE>")])
5168
5169 ;; Load the high word of operand 0 from operand 1, preserving the value
5170 ;; in the low word.
5171 (define_insn "load_high<mode>"
5172 [(set (match_operand:SPLITF 0 "register_operand" "=f,f")
5173 (unspec:SPLITF [(match_operand:<HALFMODE> 1 "general_operand" "dJ,m")
5174 (match_operand:SPLITF 2 "register_operand" "0,0")]
5175 UNSPEC_LOAD_HIGH))]
5176 "TARGET_HARD_FLOAT"
5177 {
5178 operands[0] = mips_subword (operands[0], 1);
5179 return mips_output_move (operands[0], operands[1]);
5180 }
5181 [(set_attr "move_type" "mtc,fpload")
5182 (set_attr "mode" "<HALFMODE>")])
5183
5184 ;; Store one word of operand 1 in operand 0. Operand 2 is 1 to store the
5185 ;; high word and 0 to store the low word.
5186 (define_insn "store_word<mode>"
5187 [(set (match_operand:<HALFMODE> 0 "nonimmediate_operand" "=d,m")
5188 (unspec:<HALFMODE> [(match_operand:SPLITF 1 "register_operand" "f,f")
5189 (match_operand 2 "const_int_operand")]
5190 UNSPEC_STORE_WORD))]
5191 "TARGET_HARD_FLOAT"
5192 {
5193 operands[1] = mips_subword (operands[1], INTVAL (operands[2]));
5194 return mips_output_move (operands[0], operands[1]);
5195 }
5196 [(set_attr "move_type" "mfc,fpstore")
5197 (set_attr "mode" "<HALFMODE>")])
5198
5199 ;; Move operand 1 to the high word of operand 0 using mthc1, preserving the
5200 ;; value in the low word.
5201 (define_insn "mthc1<mode>"
5202 [(set (match_operand:SPLITF 0 "register_operand" "=f")
5203 (unspec:SPLITF [(match_operand:<HALFMODE> 1 "reg_or_0_operand" "dJ")
5204 (match_operand:SPLITF 2 "register_operand" "0")]
5205 UNSPEC_MTHC1))]
5206 "TARGET_HARD_FLOAT && ISA_HAS_MXHC1"
5207 "mthc1\t%z1,%0"
5208 [(set_attr "move_type" "mtc")
5209 (set_attr "mode" "<HALFMODE>")])
5210
5211 ;; Move high word of operand 1 to operand 0 using mfhc1.
5212 (define_insn "mfhc1<mode>"
5213 [(set (match_operand:<HALFMODE> 0 "register_operand" "=d")
5214 (unspec:<HALFMODE> [(match_operand:SPLITF 1 "register_operand" "f")]
5215 UNSPEC_MFHC1))]
5216 "TARGET_HARD_FLOAT && ISA_HAS_MXHC1"
5217 "mfhc1\t%0,%1"
5218 [(set_attr "move_type" "mfc")
5219 (set_attr "mode" "<HALFMODE>")])
5220
5221 ;; Move a constant that satisfies CONST_GP_P into operand 0.
5222 (define_expand "load_const_gp_<mode>"
5223 [(set (match_operand:P 0 "register_operand" "=d")
5224 (const:P (unspec:P [(const_int 0)] UNSPEC_GP)))])
5225
5226 ;; Insn to initialize $gp for n32/n64 abicalls. Operand 0 is the offset
5227 ;; of _gp from the start of this function. Operand 1 is the incoming
5228 ;; function address.
5229 (define_insn_and_split "loadgp_newabi_<mode>"
5230 [(set (match_operand:P 0 "register_operand" "=&d")
5231 (unspec:P [(match_operand:P 1)
5232 (match_operand:P 2 "register_operand" "d")]
5233 UNSPEC_LOADGP))]
5234 "mips_current_loadgp_style () == LOADGP_NEWABI"
5235 { return mips_must_initialize_gp_p () ? "#" : ""; }
5236 "&& mips_must_initialize_gp_p ()"
5237 [(set (match_dup 0) (match_dup 3))
5238 (set (match_dup 0) (match_dup 4))
5239 (set (match_dup 0) (match_dup 5))]
5240 {
5241 operands[3] = gen_rtx_HIGH (Pmode, operands[1]);
5242 operands[4] = gen_rtx_PLUS (Pmode, operands[0], operands[2]);
5243 operands[5] = gen_rtx_LO_SUM (Pmode, operands[0], operands[1]);
5244 }
5245 [(set_attr "type" "ghost")])
5246
5247 ;; Likewise, for -mno-shared code. Operand 0 is the __gnu_local_gp symbol.
5248 (define_insn_and_split "loadgp_absolute_<mode>"
5249 [(set (match_operand:P 0 "register_operand" "=d")
5250 (unspec:P [(match_operand:P 1)] UNSPEC_LOADGP))]
5251 "mips_current_loadgp_style () == LOADGP_ABSOLUTE"
5252 { return mips_must_initialize_gp_p () ? "#" : ""; }
5253 "&& mips_must_initialize_gp_p ()"
5254 [(const_int 0)]
5255 {
5256 mips_emit_move (operands[0], operands[1]);
5257 DONE;
5258 }
5259 [(set_attr "type" "ghost")])
5260
5261 ;; This blockage instruction prevents the gp load from being
5262 ;; scheduled after an implicit use of gp. It also prevents
5263 ;; the load from being deleted as dead.
5264 (define_insn "loadgp_blockage"
5265 [(unspec_volatile [(reg:SI 28)] UNSPEC_BLOCKAGE)]
5266 ""
5267 ""
5268 [(set_attr "type" "ghost")])
5269
5270 ;; Initialize $gp for RTP PIC. Operand 0 is the __GOTT_BASE__ symbol
5271 ;; and operand 1 is the __GOTT_INDEX__ symbol.
5272 (define_insn_and_split "loadgp_rtp_<mode>"
5273 [(set (match_operand:P 0 "register_operand" "=d")
5274 (unspec:P [(match_operand:P 1 "symbol_ref_operand")
5275 (match_operand:P 2 "symbol_ref_operand")]
5276 UNSPEC_LOADGP))]
5277 "mips_current_loadgp_style () == LOADGP_RTP"
5278 { return mips_must_initialize_gp_p () ? "#" : ""; }
5279 "&& mips_must_initialize_gp_p ()"
5280 [(set (match_dup 0) (high:P (match_dup 3)))
5281 (set (match_dup 0) (unspec:P [(match_dup 0)
5282 (match_dup 3)] UNSPEC_LOAD_GOT))
5283 (set (match_dup 0) (unspec:P [(match_dup 0)
5284 (match_dup 4)] UNSPEC_LOAD_GOT))]
5285 {
5286 operands[3] = mips_unspec_address (operands[1], SYMBOL_ABSOLUTE);
5287 operands[4] = mips_unspec_address (operands[2], SYMBOL_HALF);
5288 }
5289 [(set_attr "type" "ghost")])
5290
5291 ;; Initialize the global pointer for MIPS16 code. Operand 0 is the
5292 ;; global pointer and operand 1 is the MIPS16 register that holds
5293 ;; the required value.
5294 (define_insn_and_split "copygp_mips16_<mode>"
5295 [(set (match_operand:P 0 "register_operand" "=y")
5296 (unspec:P [(match_operand:P 1 "register_operand" "d")]
5297 UNSPEC_COPYGP))]
5298 "TARGET_MIPS16"
5299 { return mips_must_initialize_gp_p () ? "#" : ""; }
5300 "&& mips_must_initialize_gp_p ()"
5301 [(set (match_dup 0) (match_dup 1))]
5302 ""
5303 [(set_attr "type" "ghost")])
5304
5305 ;; A placeholder for where the cprestore instruction should go,
5306 ;; if we decide we need one. Operand 0 and operand 1 are as for
5307 ;; "cprestore". Operand 2 is a register that holds the gp value.
5308 ;;
5309 ;; The "cprestore" pattern requires operand 2 to be pic_offset_table_rtx,
5310 ;; otherwise any register that holds the correct value will do.
5311 (define_insn_and_split "potential_cprestore_<mode>"
5312 [(set (match_operand:P 0 "cprestore_save_slot_operand" "=X,X")
5313 (unspec:P [(match_operand:P 1 "const_int_operand" "I,i")
5314 (match_operand:P 2 "register_operand" "d,d")]
5315 UNSPEC_POTENTIAL_CPRESTORE))
5316 (clobber (match_operand:P 3 "scratch_operand" "=X,&d"))]
5317 "!TARGET_CPRESTORE_DIRECTIVE || operands[2] == pic_offset_table_rtx"
5318 { return mips_must_initialize_gp_p () ? "#" : ""; }
5319 "mips_must_initialize_gp_p ()"
5320 [(const_int 0)]
5321 {
5322 mips_save_gp_to_cprestore_slot (operands[0], operands[1],
5323 operands[2], operands[3]);
5324 DONE;
5325 }
5326 [(set_attr "type" "ghost")])
5327
5328 ;; Emit a .cprestore directive, which normally expands to a single store
5329 ;; instruction. Operand 0 is a (possibly illegitimate) sp-based MEM
5330 ;; for the cprestore slot. Operand 1 is the offset of the slot from
5331 ;; the stack pointer. (This is redundant with operand 0, but it makes
5332 ;; things a little simpler.)
5333 (define_insn "cprestore_<mode>"
5334 [(set (match_operand:P 0 "cprestore_save_slot_operand" "=X,X")
5335 (unspec:P [(match_operand:P 1 "const_int_operand" "I,i")
5336 (reg:P 28)]
5337 UNSPEC_CPRESTORE))]
5338 "TARGET_CPRESTORE_DIRECTIVE"
5339 {
5340 if (mips_nomacro.nesting_level > 0 && which_alternative == 1)
5341 return ".set\tmacro\;.cprestore\t%1\;.set\tnomacro";
5342 else
5343 return ".cprestore\t%1";
5344 }
5345 [(set_attr "type" "store")
5346 (set_attr "insn_count" "1,3")])
5347
5348 (define_insn "use_cprestore_<mode>"
5349 [(set (reg:P CPRESTORE_SLOT_REGNUM)
5350 (match_operand:P 0 "cprestore_load_slot_operand"))]
5351 ""
5352 ""
5353 [(set_attr "type" "ghost")])
5354
5355 ;; Expand in-line code to clear the instruction cache between operand[0] and
5356 ;; operand[1].
5357 (define_expand "clear_cache"
5358 [(match_operand 0 "pmode_register_operand")
5359 (match_operand 1 "pmode_register_operand")]
5360 ""
5361 "
5362 {
5363 if (TARGET_SYNCI)
5364 {
5365 mips_expand_synci_loop (operands[0], operands[1]);
5366 emit_insn (gen_sync ());
5367 emit_insn (PMODE_INSN (gen_clear_hazard, ()));
5368 }
5369 else if (mips_cache_flush_func && mips_cache_flush_func[0])
5370 {
5371 rtx len = gen_reg_rtx (Pmode);
5372 emit_insn (gen_sub3_insn (len, operands[1], operands[0]));
5373 MIPS_ICACHE_SYNC (operands[0], len);
5374 }
5375 DONE;
5376 }")
5377
5378 (define_insn "sync"
5379 [(unspec_volatile [(const_int 0)] UNSPEC_SYNC)]
5380 "GENERATE_SYNC"
5381 { return mips_output_sync (); })
5382
5383 (define_insn "synci"
5384 [(unspec_volatile [(match_operand 0 "pmode_register_operand" "d")]
5385 UNSPEC_SYNCI)]
5386 "TARGET_SYNCI"
5387 "synci\t0(%0)")
5388
5389 (define_insn "rdhwr_synci_step_<mode>"
5390 [(set (match_operand:P 0 "register_operand" "=d")
5391 (unspec_volatile [(const_int 1)]
5392 UNSPEC_RDHWR))]
5393 "ISA_HAS_SYNCI"
5394 "rdhwr\t%0,$1")
5395
5396 (define_insn "clear_hazard_<mode>"
5397 [(unspec_volatile [(const_int 0)] UNSPEC_CLEAR_HAZARD)
5398 (clobber (reg:P RETURN_ADDR_REGNUM))]
5399 "ISA_HAS_SYNCI"
5400 {
5401 return "%(%<bal\t1f\n"
5402 "\tnop\n"
5403 "1:\t<d>addiu\t$31,$31,12\n"
5404 "\tjr.hb\t$31\n"
5405 "\tnop%>%)";
5406 }
5407 [(set_attr "insn_count" "5")])
5408
5409 ;; Cache operations for R4000-style caches.
5410 (define_insn "mips_cache"
5411 [(set (mem:BLK (scratch))
5412 (unspec:BLK [(match_operand:SI 0 "const_int_operand")
5413 (match_operand:QI 1 "address_operand" "ZD")]
5414 UNSPEC_MIPS_CACHE))]
5415 "ISA_HAS_CACHE"
5416 "cache\t%X0,%a1")
5417
5418 ;; Similar, but with the operands hard-coded to an R10K cache barrier
5419 ;; operation. We keep the pattern distinct so that we can identify
5420 ;; cache operations inserted by -mr10k-cache-barrier=, and so that
5421 ;; the operation is never inserted into a delay slot.
5422 (define_insn "r10k_cache_barrier"
5423 [(set (mem:BLK (scratch))
5424 (unspec:BLK [(const_int 0)] UNSPEC_R10K_CACHE_BARRIER))]
5425 "ISA_HAS_CACHE"
5426 "cache\t0x14,0(%$)"
5427 [(set_attr "can_delay" "no")])
5428 \f
5429 ;; Block moves, see mips.c for more details.
5430 ;; Argument 0 is the destination
5431 ;; Argument 1 is the source
5432 ;; Argument 2 is the length
5433 ;; Argument 3 is the alignment
5434
5435 (define_expand "movmemsi"
5436 [(parallel [(set (match_operand:BLK 0 "general_operand")
5437 (match_operand:BLK 1 "general_operand"))
5438 (use (match_operand:SI 2 ""))
5439 (use (match_operand:SI 3 "const_int_operand"))])]
5440 "!TARGET_MIPS16 && !TARGET_MEMCPY"
5441 {
5442 if (mips_expand_block_move (operands[0], operands[1], operands[2]))
5443 DONE;
5444 else
5445 FAIL;
5446 })
5447 \f
5448 ;;
5449 ;; ....................
5450 ;;
5451 ;; SHIFTS
5452 ;;
5453 ;; ....................
5454
5455 (define_expand "<optab><mode>3"
5456 [(set (match_operand:GPR 0 "register_operand")
5457 (any_shift:GPR (match_operand:GPR 1 "register_operand")
5458 (match_operand:SI 2 "arith_operand")))]
5459 ""
5460 {
5461 /* On the mips16, a shift of more than 8 is a four byte instruction,
5462 so, for a shift between 8 and 16, it is just as fast to do two
5463 shifts of 8 or less. If there is a lot of shifting going on, we
5464 may win in CSE. Otherwise combine will put the shifts back
5465 together again. This can be called by mips_function_arg, so we must
5466 be careful not to allocate a new register if we've reached the
5467 reload pass. */
5468 if (TARGET_MIPS16
5469 && optimize
5470 && CONST_INT_P (operands[2])
5471 && INTVAL (operands[2]) > 8
5472 && INTVAL (operands[2]) <= 16
5473 && !reload_in_progress
5474 && !reload_completed)
5475 {
5476 rtx temp = gen_reg_rtx (<MODE>mode);
5477
5478 emit_insn (gen_<optab><mode>3 (temp, operands[1], GEN_INT (8)));
5479 emit_insn (gen_<optab><mode>3 (operands[0], temp,
5480 GEN_INT (INTVAL (operands[2]) - 8)));
5481 DONE;
5482 }
5483 })
5484
5485 (define_insn "*<optab><mode>3"
5486 [(set (match_operand:GPR 0 "register_operand" "=!u,d")
5487 (any_shift:GPR (match_operand:GPR 1 "register_operand" "!u,d")
5488 (match_operand:SI 2 "arith_operand" "Uib3,dI")))]
5489 "!TARGET_MIPS16"
5490 {
5491 if (CONST_INT_P (operands[2]))
5492 operands[2] = GEN_INT (INTVAL (operands[2])
5493 & (GET_MODE_BITSIZE (<MODE>mode) - 1));
5494
5495 return "<d><insn>\t%0,%1,%2";
5496 }
5497 [(set_attr "type" "shift")
5498 (set_attr "compression" "<shift_compression>,none")
5499 (set_attr "mode" "<MODE>")])
5500
5501 (define_insn "*<optab>si3_extend"
5502 [(set (match_operand:DI 0 "register_operand" "=d")
5503 (sign_extend:DI
5504 (any_shift:SI (match_operand:SI 1 "register_operand" "d")
5505 (match_operand:SI 2 "arith_operand" "dI"))))]
5506 "TARGET_64BIT && !TARGET_MIPS16"
5507 {
5508 if (CONST_INT_P (operands[2]))
5509 operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
5510
5511 return "<insn>\t%0,%1,%2";
5512 }
5513 [(set_attr "type" "shift")
5514 (set_attr "mode" "SI")])
5515
5516 (define_insn "*<optab>si3_mips16"
5517 [(set (match_operand:SI 0 "register_operand" "=d,d,d")
5518 (any_shift:SI (match_operand:SI 1 "register_operand" "0,d,d")
5519 (match_operand:SI 2 "arith_operand" "d,Uib3,I")))]
5520 "TARGET_MIPS16"
5521 {
5522 if (which_alternative == 0)
5523 return "<insn>\t%0,%2";
5524
5525 operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);
5526 return "<insn>\t%0,%1,%2";
5527 }
5528 [(set_attr "type" "shift")
5529 (set_attr "mode" "SI")
5530 (set_attr "extended_mips16" "no,no,yes")])
5531
5532 (define_insn "<GPR:d>lsa"
5533 [(set (match_operand:GPR 0 "register_operand" "=d")
5534 (plus:GPR (mult:GPR (match_operand:GPR 1 "register_operand" "d")
5535 (match_operand 2 "const_immlsa_operand" ""))
5536 (match_operand:GPR 3 "register_operand" "d")))]
5537 "ISA_HAS_<GPR:D>LSA"
5538 "<GPR:d>lsa\t%0,%1,%3,%y2"
5539 [(set_attr "type" "arith")
5540 (set_attr "mode" "<GPR:MODE>")])
5541
5542 ;; We need separate DImode MIPS16 patterns because of the irregularity
5543 ;; of right shifts.
5544 (define_insn "*ashldi3_mips16"
5545 [(set (match_operand:DI 0 "register_operand" "=d,d,d")
5546 (ashift:DI (match_operand:DI 1 "register_operand" "0,d,d")
5547 (match_operand:SI 2 "arith_operand" "d,Uib3,I")))]
5548 "TARGET_64BIT && TARGET_MIPS16"
5549 {
5550 if (which_alternative == 0)
5551 return "dsll\t%0,%2";
5552
5553 operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
5554 return "dsll\t%0,%1,%2";
5555 }
5556 [(set_attr "type" "shift")
5557 (set_attr "mode" "DI")
5558 (set_attr "extended_mips16" "no,no,yes")])
5559
5560 (define_insn "*ashrdi3_mips16"
5561 [(set (match_operand:DI 0 "register_operand" "=d,d,d")
5562 (ashiftrt:DI (match_operand:DI 1 "register_operand" "0,0,0")
5563 (match_operand:SI 2 "arith_operand" "d,Uib3,I")))]
5564 "TARGET_64BIT && TARGET_MIPS16"
5565 {
5566 if (CONST_INT_P (operands[2]))
5567 operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
5568
5569 return "dsra\t%0,%2";
5570 }
5571 [(set_attr "type" "shift")
5572 (set_attr "mode" "DI")
5573 (set_attr "extended_mips16" "no,no,yes")])
5574
5575 (define_insn "*lshrdi3_mips16"
5576 [(set (match_operand:DI 0 "register_operand" "=d,d,d")
5577 (lshiftrt:DI (match_operand:DI 1 "register_operand" "0,0,0")
5578 (match_operand:SI 2 "arith_operand" "d,Uib3,I")))]
5579 "TARGET_64BIT && TARGET_MIPS16"
5580 {
5581 if (CONST_INT_P (operands[2]))
5582 operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
5583
5584 return "dsrl\t%0,%2";
5585 }
5586 [(set_attr "type" "shift")
5587 (set_attr "mode" "DI")
5588 (set_attr "extended_mips16" "no,no,yes")])
5589
5590 ;; On the mips16, we can split a 4 byte shift into 2 2 byte shifts.
5591
5592 (define_split
5593 [(set (match_operand:GPR 0 "d_operand")
5594 (any_shift:GPR (match_operand:GPR 1 "d_operand")
5595 (match_operand:GPR 2 "const_int_operand")))]
5596 "TARGET_MIPS16 && reload_completed && !TARGET_DEBUG_D_MODE
5597 && INTVAL (operands[2]) > 8
5598 && INTVAL (operands[2]) <= 16"
5599 [(set (match_dup 0) (any_shift:GPR (match_dup 1) (const_int 8)))
5600 (set (match_dup 0) (any_shift:GPR (match_dup 0) (match_dup 2)))]
5601 { operands[2] = GEN_INT (INTVAL (operands[2]) - 8); })
5602
5603 ;; If we load a byte on the mips16 as a bitfield, the resulting
5604 ;; sequence of instructions is too complicated for combine, because it
5605 ;; involves four instructions: a load, a shift, a constant load into a
5606 ;; register, and an and (the key problem here is that the mips16 does
5607 ;; not have and immediate). We recognize a shift of a load in order
5608 ;; to make it simple enough for combine to understand.
5609 ;;
5610 ;; The instruction count here is the worst case.
5611 (define_insn_and_split ""
5612 [(set (match_operand:SI 0 "register_operand" "=d")
5613 (lshiftrt:SI (match_operand:SI 1 "memory_operand" "m")
5614 (match_operand:SI 2 "immediate_operand" "I")))]
5615 "TARGET_MIPS16"
5616 "#"
5617 ""
5618 [(set (match_dup 0) (match_dup 1))
5619 (set (match_dup 0) (lshiftrt:SI (match_dup 0) (match_dup 2)))]
5620 ""
5621 [(set_attr "type" "load")
5622 (set_attr "mode" "SI")
5623 (set (attr "insn_count")
5624 (symbol_ref "mips_load_store_insns (operands[1], insn) + 2"))])
5625
5626 (define_insn "rotr<mode>3"
5627 [(set (match_operand:GPR 0 "register_operand" "=d")
5628 (rotatert:GPR (match_operand:GPR 1 "register_operand" "d")
5629 (match_operand:SI 2 "arith_operand" "dI")))]
5630 "ISA_HAS_ROR"
5631 {
5632 if (CONST_INT_P (operands[2]))
5633 gcc_assert (INTVAL (operands[2]) >= 0
5634 && INTVAL (operands[2]) < GET_MODE_BITSIZE (<MODE>mode));
5635
5636 return "<d>ror\t%0,%1,%2";
5637 }
5638 [(set_attr "type" "shift")
5639 (set_attr "mode" "<MODE>")])
5640
5641 (define_insn "bswaphi2"
5642 [(set (match_operand:HI 0 "register_operand" "=d")
5643 (bswap:HI (match_operand:HI 1 "register_operand" "d")))]
5644 "ISA_HAS_WSBH"
5645 "wsbh\t%0,%1"
5646 [(set_attr "type" "shift")])
5647
5648 (define_insn_and_split "bswapsi2"
5649 [(set (match_operand:SI 0 "register_operand" "=d")
5650 (bswap:SI (match_operand:SI 1 "register_operand" "d")))]
5651 "ISA_HAS_WSBH && ISA_HAS_ROR"
5652 "#"
5653 ""
5654 [(set (match_dup 0) (unspec:SI [(match_dup 1)] UNSPEC_WSBH))
5655 (set (match_dup 0) (rotatert:SI (match_dup 0) (const_int 16)))]
5656 ""
5657 [(set_attr "insn_count" "2")])
5658
5659 (define_insn_and_split "bswapdi2"
5660 [(set (match_operand:DI 0 "register_operand" "=d")
5661 (bswap:DI (match_operand:DI 1 "register_operand" "d")))]
5662 "TARGET_64BIT && ISA_HAS_WSBH"
5663 "#"
5664 ""
5665 [(set (match_dup 0) (unspec:DI [(match_dup 1)] UNSPEC_DSBH))
5666 (set (match_dup 0) (unspec:DI [(match_dup 0)] UNSPEC_DSHD))]
5667 ""
5668 [(set_attr "insn_count" "2")])
5669
5670 (define_insn "wsbh"
5671 [(set (match_operand:SI 0 "register_operand" "=d")
5672 (unspec:SI [(match_operand:SI 1 "register_operand" "d")] UNSPEC_WSBH))]
5673 "ISA_HAS_WSBH"
5674 "wsbh\t%0,%1"
5675 [(set_attr "type" "shift")])
5676
5677 (define_insn "dsbh"
5678 [(set (match_operand:DI 0 "register_operand" "=d")
5679 (unspec:DI [(match_operand:DI 1 "register_operand" "d")] UNSPEC_DSBH))]
5680 "TARGET_64BIT && ISA_HAS_WSBH"
5681 "dsbh\t%0,%1"
5682 [(set_attr "type" "shift")])
5683
5684 (define_insn "dshd"
5685 [(set (match_operand:DI 0 "register_operand" "=d")
5686 (unspec:DI [(match_operand:DI 1 "register_operand" "d")] UNSPEC_DSHD))]
5687 "TARGET_64BIT && ISA_HAS_WSBH"
5688 "dshd\t%0,%1"
5689 [(set_attr "type" "shift")])
5690 \f
5691 ;;
5692 ;; ....................
5693 ;;
5694 ;; CONDITIONAL BRANCHES
5695 ;;
5696 ;; ....................
5697
5698 ;; Conditional branches on floating-point equality tests.
5699
5700 (define_insn "*branch_fp_<mode>"
5701 [(set (pc)
5702 (if_then_else
5703 (match_operator 1 "equality_operator"
5704 [(match_operand:FPCC 2 "register_operand" "<reg>")
5705 (const_int 0)])
5706 (label_ref (match_operand 0 "" ""))
5707 (pc)))]
5708 "TARGET_HARD_FLOAT"
5709 {
5710 return mips_output_conditional_branch (insn, operands,
5711 MIPS_BRANCH ("b%F1", "%Z2%0"),
5712 MIPS_BRANCH ("b%W1", "%Z2%0"));
5713 }
5714 [(set_attr "type" "branch")])
5715
5716 (define_insn "*branch_fp_inverted_<mode>"
5717 [(set (pc)
5718 (if_then_else
5719 (match_operator 1 "equality_operator"
5720 [(match_operand:FPCC 2 "register_operand" "<reg>")
5721 (const_int 0)])
5722 (pc)
5723 (label_ref (match_operand 0 "" ""))))]
5724 "TARGET_HARD_FLOAT"
5725 {
5726 return mips_output_conditional_branch (insn, operands,
5727 MIPS_BRANCH ("b%W1", "%Z2%0"),
5728 MIPS_BRANCH ("b%F1", "%Z2%0"));
5729 }
5730 [(set_attr "type" "branch")])
5731
5732 ;; Conditional branches on ordered comparisons with zero.
5733
5734 (define_insn "*branch_order<mode>"
5735 [(set (pc)
5736 (if_then_else
5737 (match_operator 1 "order_operator"
5738 [(match_operand:GPR 2 "register_operand" "d")
5739 (const_int 0)])
5740 (label_ref (match_operand 0 "" ""))
5741 (pc)))]
5742 "!TARGET_MIPS16"
5743 { return mips_output_order_conditional_branch (insn, operands, false); }
5744 [(set_attr "type" "branch")])
5745
5746 (define_insn "*branch_order<mode>_inverted"
5747 [(set (pc)
5748 (if_then_else
5749 (match_operator 1 "order_operator"
5750 [(match_operand:GPR 2 "register_operand" "d")
5751 (const_int 0)])
5752 (pc)
5753 (label_ref (match_operand 0 "" ""))))]
5754 "!TARGET_MIPS16"
5755 { return mips_output_order_conditional_branch (insn, operands, true); }
5756 [(set_attr "type" "branch")])
5757
5758 ;; Conditional branch on equality comparison.
5759
5760 (define_insn "*branch_equality<mode>"
5761 [(set (pc)
5762 (if_then_else
5763 (match_operator 1 "equality_operator"
5764 [(match_operand:GPR 2 "register_operand" "d")
5765 (match_operand:GPR 3 "reg_or_0_operand" "dJ")])
5766 (label_ref (match_operand 0 "" ""))
5767 (pc)))]
5768 "!TARGET_MIPS16"
5769 {
5770 /* For a simple BNEZ or BEQZ microMIPS branch. */
5771 if (TARGET_MICROMIPS
5772 && operands[3] == const0_rtx
5773 && get_attr_length (insn) <= 8)
5774 return mips_output_conditional_branch (insn, operands,
5775 "%*b%C1z%:\t%2,%0",
5776 "%*b%N1z%:\t%2,%0");
5777
5778 return mips_output_conditional_branch (insn, operands,
5779 MIPS_BRANCH ("b%C1", "%2,%z3,%0"),
5780 MIPS_BRANCH ("b%N1", "%2,%z3,%0"));
5781 }
5782 [(set_attr "type" "branch")])
5783
5784 (define_insn "*branch_equality<mode>_inverted"
5785 [(set (pc)
5786 (if_then_else
5787 (match_operator 1 "equality_operator"
5788 [(match_operand:GPR 2 "register_operand" "d")
5789 (match_operand:GPR 3 "reg_or_0_operand" "dJ")])
5790 (pc)
5791 (label_ref (match_operand 0 "" ""))))]
5792 "!TARGET_MIPS16"
5793 {
5794 /* For a simple BNEZ or BEQZ microMIPS branch. */
5795 if (TARGET_MICROMIPS
5796 && operands[3] == const0_rtx
5797 && get_attr_length (insn) <= 8)
5798 return mips_output_conditional_branch (insn, operands,
5799 "%*b%N0z%:\t%2,%1",
5800 "%*b%C0z%:\t%2,%1");
5801
5802 return mips_output_conditional_branch (insn, operands,
5803 MIPS_BRANCH ("b%N1", "%2,%z3,%0"),
5804 MIPS_BRANCH ("b%C1", "%2,%z3,%0"));
5805 }
5806 [(set_attr "type" "branch")])
5807
5808 ;; MIPS16 branches
5809
5810 (define_insn "*branch_equality<mode>_mips16"
5811 [(set (pc)
5812 (if_then_else
5813 (match_operator 1 "equality_operator"
5814 [(match_operand:GPR 2 "register_operand" "d,t")
5815 (const_int 0)])
5816 (label_ref (match_operand 0 "" ""))
5817 (pc)))]
5818 "TARGET_MIPS16"
5819 "@
5820 b%C1z\t%2,%0
5821 bt%C1z\t%0"
5822 [(set_attr "type" "branch")])
5823
5824 (define_insn "*branch_equality<mode>_mips16_inverted"
5825 [(set (pc)
5826 (if_then_else
5827 (match_operator 1 "equality_operator"
5828 [(match_operand:GPR 2 "register_operand" "d,t")
5829 (const_int 0)])
5830 (pc)
5831 (label_ref (match_operand 0 "" ""))))]
5832 "TARGET_MIPS16"
5833 "@
5834 b%N1z\t%2,%0
5835 bt%N1z\t%0"
5836 [(set_attr "type" "branch")])
5837
5838 (define_expand "cbranch<mode>4"
5839 [(set (pc)
5840 (if_then_else (match_operator 0 "comparison_operator"
5841 [(match_operand:GPR 1 "register_operand")
5842 (match_operand:GPR 2 "nonmemory_operand")])
5843 (label_ref (match_operand 3 ""))
5844 (pc)))]
5845 ""
5846 {
5847 mips_expand_conditional_branch (operands);
5848 DONE;
5849 })
5850
5851 (define_expand "cbranch<mode>4"
5852 [(set (pc)
5853 (if_then_else (match_operator 0 "comparison_operator"
5854 [(match_operand:SCALARF 1 "register_operand")
5855 (match_operand:SCALARF 2 "register_operand")])
5856 (label_ref (match_operand 3 ""))
5857 (pc)))]
5858 ""
5859 {
5860 mips_expand_conditional_branch (operands);
5861 DONE;
5862 })
5863
5864 ;; Used to implement built-in functions.
5865 (define_expand "condjump"
5866 [(set (pc)
5867 (if_then_else (match_operand 0)
5868 (label_ref (match_operand 1))
5869 (pc)))])
5870
5871 ;; Branch if bit is set/clear.
5872
5873 (define_insn "*branch_bit<bbv><mode>"
5874 [(set (pc)
5875 (if_then_else
5876 (equality_op (zero_extract:GPR
5877 (match_operand:GPR 1 "register_operand" "d")
5878 (const_int 1)
5879 (match_operand 2 "const_int_operand" ""))
5880 (const_int 0))
5881 (label_ref (match_operand 0 ""))
5882 (pc)))]
5883 "ISA_HAS_BBIT && UINTVAL (operands[2]) < GET_MODE_BITSIZE (<MODE>mode)"
5884 {
5885 return
5886 mips_output_conditional_branch (insn, operands,
5887 MIPS_BRANCH ("bbit<bbv>", "%1,%2,%0"),
5888 MIPS_BRANCH ("bbit<bbinv>", "%1,%2,%0"));
5889 }
5890 [(set_attr "type" "branch")
5891 (set_attr "branch_likely" "no")])
5892
5893 (define_insn "*branch_bit<bbv><mode>_inverted"
5894 [(set (pc)
5895 (if_then_else
5896 (equality_op (zero_extract:GPR
5897 (match_operand:GPR 1 "register_operand" "d")
5898 (const_int 1)
5899 (match_operand 2 "const_int_operand" ""))
5900 (const_int 0))
5901 (pc)
5902 (label_ref (match_operand 0 ""))))]
5903 "ISA_HAS_BBIT && UINTVAL (operands[2]) < GET_MODE_BITSIZE (<MODE>mode)"
5904 {
5905 return
5906 mips_output_conditional_branch (insn, operands,
5907 MIPS_BRANCH ("bbit<bbinv>", "%1,%2,%0"),
5908 MIPS_BRANCH ("bbit<bbv>", "%1,%2,%0"));
5909 }
5910 [(set_attr "type" "branch")
5911 (set_attr "branch_likely" "no")])
5912 \f
5913 ;;
5914 ;; ....................
5915 ;;
5916 ;; SETTING A REGISTER FROM A COMPARISON
5917 ;;
5918 ;; ....................
5919
5920 ;; Destination is always set in SI mode.
5921
5922 (define_expand "cstore<mode>4"
5923 [(set (match_operand:SI 0 "register_operand")
5924 (match_operator:SI 1 "mips_cstore_operator"
5925 [(match_operand:GPR 2 "register_operand")
5926 (match_operand:GPR 3 "nonmemory_operand")]))]
5927 ""
5928 {
5929 mips_expand_scc (operands);
5930 DONE;
5931 })
5932
5933 (define_insn "*seq_zero_<GPR:mode><GPR2:mode>"
5934 [(set (match_operand:GPR2 0 "register_operand" "=d")
5935 (eq:GPR2 (match_operand:GPR 1 "register_operand" "d")
5936 (const_int 0)))]
5937 "!TARGET_MIPS16 && !ISA_HAS_SEQ_SNE"
5938 "sltu\t%0,%1,1"
5939 [(set_attr "type" "slt")
5940 (set_attr "mode" "<GPR:MODE>")])
5941
5942 (define_insn "*seq_zero_<GPR:mode><GPR2:mode>_mips16"
5943 [(set (match_operand:GPR2 0 "register_operand" "=t")
5944 (eq:GPR2 (match_operand:GPR 1 "register_operand" "d")
5945 (const_int 0)))]
5946 "TARGET_MIPS16 && !ISA_HAS_SEQ_SNE"
5947 "sltu\t%1,1"
5948 [(set_attr "type" "slt")
5949 (set_attr "mode" "<GPR:MODE>")])
5950
5951 ;; Generate sltiu unless using seq results in better code.
5952 (define_insn "*seq_<GPR:mode><GPR2:mode>_seq"
5953 [(set (match_operand:GPR2 0 "register_operand" "=d,d,d")
5954 (eq:GPR2 (match_operand:GPR 1 "register_operand" "%d,d,d")
5955 (match_operand:GPR 2 "reg_imm10_operand" "d,J,YB")))]
5956 "ISA_HAS_SEQ_SNE"
5957 "@
5958 seq\t%0,%1,%2
5959 sltiu\t%0,%1,1
5960 seqi\t%0,%1,%2"
5961 [(set_attr "type" "slt")
5962 (set_attr "mode" "<GPR:MODE>")])
5963
5964 (define_insn "*sne_zero_<GPR:mode><GPR2:mode>"
5965 [(set (match_operand:GPR2 0 "register_operand" "=d")
5966 (ne:GPR2 (match_operand:GPR 1 "register_operand" "d")
5967 (const_int 0)))]
5968 "!TARGET_MIPS16 && !ISA_HAS_SEQ_SNE"
5969 "sltu\t%0,%.,%1"
5970 [(set_attr "type" "slt")
5971 (set_attr "mode" "<GPR:MODE>")])
5972
5973 ;; Generate sltu unless using sne results in better code.
5974 (define_insn "*sne_<GPR:mode><GPR2:mode>_sne"
5975 [(set (match_operand:GPR2 0 "register_operand" "=d,d,d")
5976 (ne:GPR2 (match_operand:GPR 1 "register_operand" "%d,d,d")
5977 (match_operand:GPR 2 "reg_imm10_operand" "d,J,YB")))]
5978 "ISA_HAS_SEQ_SNE"
5979 "@
5980 sne\t%0,%1,%2
5981 sltu\t%0,%.,%1
5982 snei\t%0,%1,%2"
5983 [(set_attr "type" "slt")
5984 (set_attr "mode" "<GPR:MODE>")])
5985
5986 (define_insn "*sgt<u>_<GPR:mode><GPR2:mode>"
5987 [(set (match_operand:GPR2 0 "register_operand" "=d")
5988 (any_gt:GPR2 (match_operand:GPR 1 "register_operand" "d")
5989 (match_operand:GPR 2 "reg_or_0_operand" "dJ")))]
5990 "!TARGET_MIPS16"
5991 "slt<u>\t%0,%z2,%1"
5992 [(set_attr "type" "slt")
5993 (set_attr "mode" "<GPR:MODE>")])
5994
5995 (define_insn "*sgt<u>_<GPR:mode><GPR2:mode>_mips16"
5996 [(set (match_operand:GPR2 0 "register_operand" "=t")
5997 (any_gt:GPR2 (match_operand:GPR 1 "register_operand" "d")
5998 (match_operand:GPR 2 "register_operand" "d")))]
5999 "TARGET_MIPS16"
6000 "slt<u>\t%2,%1"
6001 [(set_attr "type" "slt")
6002 (set_attr "mode" "<GPR:MODE>")])
6003
6004 (define_insn "*sge<u>_<GPR:mode><GPR2:mode>"
6005 [(set (match_operand:GPR2 0 "register_operand" "=d")
6006 (any_ge:GPR2 (match_operand:GPR 1 "register_operand" "d")
6007 (const_int 1)))]
6008 "!TARGET_MIPS16"
6009 "slt<u>\t%0,%.,%1"
6010 [(set_attr "type" "slt")
6011 (set_attr "mode" "<GPR:MODE>")])
6012
6013 (define_insn "*slt<u>_<GPR:mode><GPR2:mode>"
6014 [(set (match_operand:GPR2 0 "register_operand" "=d")
6015 (any_lt:GPR2 (match_operand:GPR 1 "register_operand" "d")
6016 (match_operand:GPR 2 "arith_operand" "dI")))]
6017 "!TARGET_MIPS16"
6018 "slt<u>\t%0,%1,%2"
6019 [(set_attr "type" "slt")
6020 (set_attr "mode" "<GPR:MODE>")])
6021
6022 (define_insn "*slt<u>_<GPR:mode><GPR2:mode>_mips16"
6023 [(set (match_operand:GPR2 0 "register_operand" "=t,t,t")
6024 (any_lt:GPR2 (match_operand:GPR 1 "register_operand" "d,d,d")
6025 (match_operand:GPR 2 "arith_operand" "d,Uub8,I")))]
6026 "TARGET_MIPS16"
6027 "slt<u>\t%1,%2"
6028 [(set_attr "type" "slt")
6029 (set_attr "mode" "<GPR:MODE>")
6030 (set_attr "extended_mips16" "no,no,yes")])
6031
6032 (define_insn "*sle<u>_<GPR:mode><GPR2:mode>"
6033 [(set (match_operand:GPR2 0 "register_operand" "=d")
6034 (any_le:GPR2 (match_operand:GPR 1 "register_operand" "d")
6035 (match_operand:GPR 2 "sle_operand" "")))]
6036 "!TARGET_MIPS16"
6037 {
6038 operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
6039 return "slt<u>\t%0,%1,%2";
6040 }
6041 [(set_attr "type" "slt")
6042 (set_attr "mode" "<GPR:MODE>")])
6043
6044 (define_insn "*sle<u>_<GPR:mode><GPR2:mode>_mips16"
6045 [(set (match_operand:GPR2 0 "register_operand" "=t,t")
6046 (any_le:GPR2 (match_operand:GPR 1 "register_operand" "d,d")
6047 (match_operand:GPR 2 "sle_operand" "Udb8,i")))]
6048 "TARGET_MIPS16"
6049 {
6050 operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
6051 return "slt<u>\t%1,%2";
6052 }
6053 [(set_attr "type" "slt")
6054 (set_attr "mode" "<GPR:MODE>")
6055 (set_attr "extended_mips16" "no,yes")])
6056 \f
6057 ;;
6058 ;; ....................
6059 ;;
6060 ;; FLOATING POINT COMPARISONS
6061 ;;
6062 ;; ....................
6063
6064 (define_insn "s<code>_<SCALARF:mode>_using_<FPCC:mode>"
6065 [(set (match_operand:FPCC 0 "register_operand" "=<reg>")
6066 (fcond:FPCC (match_operand:SCALARF 1 "register_operand" "f")
6067 (match_operand:SCALARF 2 "register_operand" "f")))]
6068 ""
6069 "<fpcmp>.<fcond>.<fmt>\t%Z0%1,%2"
6070 [(set_attr "type" "fcmp")
6071 (set_attr "mode" "FPSW")])
6072
6073 (define_insn "s<code>_<SCALARF:mode>_using_<FPCC:mode>"
6074 [(set (match_operand:FPCC 0 "register_operand" "=<reg>")
6075 (swapped_fcond:FPCC (match_operand:SCALARF 1 "register_operand" "f")
6076 (match_operand:SCALARF 2 "register_operand" "f")))]
6077 ""
6078 "<fpcmp>.<swapped_fcond>.<fmt>\t%Z0%2,%1"
6079 [(set_attr "type" "fcmp")
6080 (set_attr "mode" "FPSW")])
6081 \f
6082 ;;
6083 ;; ....................
6084 ;;
6085 ;; UNCONDITIONAL BRANCHES
6086 ;;
6087 ;; ....................
6088
6089 ;; Unconditional branches.
6090
6091 (define_expand "jump"
6092 [(set (pc)
6093 (label_ref (match_operand 0)))])
6094
6095 (define_insn "*jump_absolute"
6096 [(set (pc)
6097 (label_ref (match_operand 0)))]
6098 "!TARGET_MIPS16 && TARGET_ABSOLUTE_JUMPS"
6099 {
6100 if (get_attr_length (insn) <= 8)
6101 return "%*b\t%l0%/";
6102 else
6103 return MIPS_ABSOLUTE_JUMP ("%*j\t%l0%/");
6104 }
6105 [(set_attr "type" "branch")])
6106
6107 (define_insn "*jump_pic"
6108 [(set (pc)
6109 (label_ref (match_operand 0)))]
6110 "!TARGET_MIPS16 && !TARGET_ABSOLUTE_JUMPS"
6111 {
6112 if (get_attr_length (insn) <= 8)
6113 return "%*b\t%l0%/";
6114 else
6115 {
6116 mips_output_load_label (operands[0]);
6117 return "%*jr\t%@%/%]";
6118 }
6119 }
6120 [(set_attr "type" "branch")])
6121
6122 ;; We need a different insn for the mips16, because a mips16 branch
6123 ;; does not have a delay slot.
6124
6125 (define_insn "*jump_mips16"
6126 [(set (pc)
6127 (label_ref (match_operand 0 "" "")))]
6128 "TARGET_MIPS16"
6129 "b\t%l0"
6130 [(set_attr "type" "branch")
6131 (set (attr "length")
6132 ;; This calculation is like the normal branch one, but the
6133 ;; range of the unextended instruction is [-0x800, 0x7fe] rather
6134 ;; than [-0x100, 0xfe]. This translates to a range of:
6135 ;;
6136 ;; [-(0x800 - sizeof (branch)), 0x7fe]
6137 ;; == [-0x7fe, 0x7fe]
6138 ;;
6139 ;; from the shorten_branches reference address. Long-branch
6140 ;; sequences will replace this one, so the minimum length
6141 ;; is one instruction shorter than for conditional branches.
6142 (cond [(and (le (minus (match_dup 0) (pc)) (const_int 2046))
6143 (le (minus (pc) (match_dup 0)) (const_int 2046)))
6144 (const_int 2)
6145 (and (le (minus (match_dup 0) (pc)) (const_int 65534))
6146 (le (minus (pc) (match_dup 0)) (const_int 65532)))
6147 (const_int 4)
6148 (and (match_test "TARGET_ABICALLS")
6149 (not (match_test "TARGET_ABSOLUTE_ABICALLS")))
6150 (const_int 18)
6151 (match_test "Pmode == SImode")
6152 (const_int 14)
6153 ] (const_int 22)))])
6154
6155 (define_expand "indirect_jump"
6156 [(set (pc) (match_operand 0 "register_operand"))]
6157 ""
6158 {
6159 operands[0] = force_reg (Pmode, operands[0]);
6160 emit_jump_insn (PMODE_INSN (gen_indirect_jump, (operands[0])));
6161 DONE;
6162 })
6163
6164 (define_insn "indirect_jump_<mode>"
6165 [(set (pc) (match_operand:P 0 "register_operand" "d"))]
6166 ""
6167 {
6168 if (TARGET_MICROMIPS)
6169 return "%*jr%:\t%0";
6170 else
6171 return "%*j\t%0%/";
6172 }
6173 [(set_attr "type" "jump")
6174 (set_attr "mode" "none")])
6175
6176 ;; A combined jump-and-move instruction, used for MIPS16 long-branch
6177 ;; sequences. Having a dedicated pattern is more convenient than
6178 ;; creating a SEQUENCE for this special case.
6179 (define_insn "indirect_jump_and_restore_<mode>"
6180 [(set (pc) (match_operand:P 1 "register_operand" "d"))
6181 (set (match_operand:P 0 "register_operand" "=d")
6182 (match_operand:P 2 "register_operand" "y"))]
6183 ""
6184 "%(%<jr\t%1\;move\t%0,%2%>%)"
6185 [(set_attr "type" "multi")
6186 (set_attr "extended_mips16" "yes")])
6187
6188 (define_expand "tablejump"
6189 [(set (pc)
6190 (match_operand 0 "register_operand"))
6191 (use (label_ref (match_operand 1 "")))]
6192 "!TARGET_MIPS16_SHORT_JUMP_TABLES"
6193 {
6194 if (TARGET_GPWORD)
6195 operands[0] = expand_binop (Pmode, add_optab, operands[0],
6196 pic_offset_table_rtx, 0, 0, OPTAB_WIDEN);
6197 else if (TARGET_RTP_PIC)
6198 {
6199 /* When generating RTP PIC, we use case table entries that are relative
6200 to the start of the function. Add the function's address to the
6201 value we loaded. */
6202 rtx start = get_hard_reg_initial_val (Pmode, PIC_FUNCTION_ADDR_REGNUM);
6203 operands[0] = expand_binop (ptr_mode, add_optab, operands[0],
6204 start, 0, 0, OPTAB_WIDEN);
6205 }
6206
6207 emit_jump_insn (PMODE_INSN (gen_tablejump, (operands[0], operands[1])));
6208 DONE;
6209 })
6210
6211 (define_insn "tablejump_<mode>"
6212 [(set (pc)
6213 (match_operand:P 0 "register_operand" "d"))
6214 (use (label_ref (match_operand 1 "" "")))]
6215 ""
6216 {
6217 if (TARGET_MICROMIPS)
6218 return "%*jr%:\t%0";
6219 else
6220 return "%*j\t%0%/";
6221 }
6222 [(set_attr "type" "jump")
6223 (set_attr "mode" "none")])
6224
6225 ;; For MIPS16, we don't know whether a given jump table will use short or
6226 ;; word-sized offsets until late in compilation, when we are able to determine
6227 ;; the sizes of the insns which comprise the containing function. This
6228 ;; necessitates the use of the casesi rather than the tablejump pattern, since
6229 ;; the latter tries to calculate the index of the offset to jump through early
6230 ;; in compilation, i.e. at expand time, when nothing is known about the
6231 ;; eventual function layout.
6232
6233 (define_expand "casesi"
6234 [(match_operand:SI 0 "register_operand" "") ; index to jump on
6235 (match_operand:SI 1 "const_int_operand" "") ; lower bound
6236 (match_operand:SI 2 "const_int_operand" "") ; total range
6237 (match_operand 3 "" "") ; table label
6238 (match_operand 4 "" "")] ; out of range label
6239 "TARGET_MIPS16_SHORT_JUMP_TABLES"
6240 {
6241 if (operands[1] != const0_rtx)
6242 {
6243 rtx reg = gen_reg_rtx (SImode);
6244 rtx offset = gen_int_mode (-INTVAL (operands[1]), SImode);
6245
6246 if (!arith_operand (offset, SImode))
6247 offset = force_reg (SImode, offset);
6248
6249 emit_insn (gen_addsi3 (reg, operands[0], offset));
6250 operands[0] = reg;
6251 }
6252
6253 if (!arith_operand (operands[0], SImode))
6254 operands[0] = force_reg (SImode, operands[0]);
6255
6256 operands[2] = GEN_INT (INTVAL (operands[2]) + 1);
6257
6258 emit_jump_insn (PMODE_INSN (gen_casesi_internal_mips16,
6259 (operands[0], operands[2],
6260 operands[3], operands[4])));
6261
6262 DONE;
6263 })
6264
6265 (define_insn "casesi_internal_mips16_<mode>"
6266 [(set (pc)
6267 (if_then_else
6268 (leu (match_operand:SI 0 "register_operand" "d")
6269 (match_operand:SI 1 "arith_operand" "dI"))
6270 (unspec:P
6271 [(match_dup 0)
6272 (label_ref (match_operand 2 "" ""))]
6273 UNSPEC_CASESI_DISPATCH)
6274 (label_ref (match_operand 3 "" ""))))
6275 (clobber (match_scratch:P 4 "=d"))
6276 (clobber (match_scratch:P 5 "=d"))
6277 (clobber (reg:SI MIPS16_T_REGNUM))]
6278 "TARGET_MIPS16_SHORT_JUMP_TABLES"
6279 {
6280 rtx diff_vec = PATTERN (NEXT_INSN (as_a <rtx_insn *> (operands[2])));
6281
6282 gcc_assert (GET_CODE (diff_vec) == ADDR_DIFF_VEC);
6283
6284 output_asm_insn ("sltu\t%0, %1", operands);
6285 output_asm_insn ("bteqz\t%3", operands);
6286
6287 switch (GET_MODE (diff_vec))
6288 {
6289 case HImode:
6290 output_asm_insn ("sll\t%5, %0, 1", operands);
6291 output_asm_insn ("la\t%4, %2", operands);
6292 output_asm_insn ("<d>addu\t%5, %4, %5", operands);
6293 output_asm_insn ("lh\t%5, 0(%5)", operands);
6294 break;
6295
6296 case SImode:
6297 output_asm_insn ("sll\t%5, %0, 2", operands);
6298 output_asm_insn ("la\t%4, %2", operands);
6299 output_asm_insn ("<d>addu\t%5, %4, %5", operands);
6300 output_asm_insn ("lw\t%5, 0(%5)", operands);
6301 break;
6302
6303 default:
6304 gcc_unreachable ();
6305 }
6306
6307 output_asm_insn ("addu\t%4, %4, %5", operands);
6308
6309 return "j\t%4";
6310 }
6311 [(set_attr "insn_count" "16")])
6312
6313 ;; For TARGET_USE_GOT, we save the gp in the jmp_buf as well.
6314 ;; While it is possible to either pull it off the stack (in the
6315 ;; o32 case) or recalculate it given t9 and our target label,
6316 ;; it takes 3 or 4 insns to do so.
6317
6318 (define_expand "builtin_setjmp_setup"
6319 [(use (match_operand 0 "register_operand"))]
6320 "TARGET_USE_GOT"
6321 {
6322 rtx addr;
6323
6324 addr = plus_constant (Pmode, operands[0], GET_MODE_SIZE (Pmode) * 3);
6325 mips_emit_move (gen_rtx_MEM (Pmode, addr), pic_offset_table_rtx);
6326 DONE;
6327 })
6328
6329 ;; Restore the gp that we saved above. Despite the earlier comment, it seems
6330 ;; that older code did recalculate the gp from $25. Continue to jump through
6331 ;; $25 for compatibility (we lose nothing by doing so).
6332
6333 (define_expand "builtin_longjmp"
6334 [(use (match_operand 0 "register_operand"))]
6335 "TARGET_USE_GOT"
6336 {
6337 /* The elements of the buffer are, in order: */
6338 int W = GET_MODE_SIZE (Pmode);
6339 rtx fp = gen_rtx_MEM (Pmode, operands[0]);
6340 rtx lab = gen_rtx_MEM (Pmode, plus_constant (Pmode, operands[0], 1*W));
6341 rtx stack = gen_rtx_MEM (Pmode, plus_constant (Pmode, operands[0], 2*W));
6342 rtx gpv = gen_rtx_MEM (Pmode, plus_constant (Pmode, operands[0], 3*W));
6343 rtx pv = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
6344 /* Use gen_raw_REG to avoid being given pic_offset_table_rtx.
6345 The target is bound to be using $28 as the global pointer
6346 but the current function might not be. */
6347 rtx gp = gen_raw_REG (Pmode, GLOBAL_POINTER_REGNUM);
6348
6349 /* This bit is similar to expand_builtin_longjmp except that it
6350 restores $gp as well. */
6351 mips_emit_move (hard_frame_pointer_rtx, fp);
6352 mips_emit_move (pv, lab);
6353 emit_stack_restore (SAVE_NONLOCAL, stack);
6354 mips_emit_move (gp, gpv);
6355 emit_use (hard_frame_pointer_rtx);
6356 emit_use (stack_pointer_rtx);
6357 emit_use (gp);
6358 emit_indirect_jump (pv);
6359 DONE;
6360 })
6361 \f
6362 ;;
6363 ;; ....................
6364 ;;
6365 ;; Function prologue/epilogue
6366 ;;
6367 ;; ....................
6368 ;;
6369
6370 (define_expand "prologue"
6371 [(const_int 1)]
6372 ""
6373 {
6374 mips_expand_prologue ();
6375 DONE;
6376 })
6377
6378 ;; Block any insns from being moved before this point, since the
6379 ;; profiling call to mcount can use various registers that aren't
6380 ;; saved or used to pass arguments.
6381
6382 (define_insn "blockage"
6383 [(unspec_volatile [(const_int 0)] UNSPEC_BLOCKAGE)]
6384 ""
6385 ""
6386 [(set_attr "type" "ghost")
6387 (set_attr "mode" "none")])
6388
6389 (define_insn "probe_stack_range_<P:mode>"
6390 [(set (match_operand:P 0 "register_operand" "=d")
6391 (unspec_volatile:P [(match_operand:P 1 "register_operand" "0")
6392 (match_operand:P 2 "register_operand" "d")]
6393 UNSPEC_PROBE_STACK_RANGE))]
6394 ""
6395 { return mips_output_probe_stack_range (operands[0], operands[2]); }
6396 [(set_attr "type" "unknown")
6397 (set_attr "can_delay" "no")
6398 (set_attr "mode" "<MODE>")])
6399
6400 (define_expand "epilogue"
6401 [(const_int 2)]
6402 ""
6403 {
6404 mips_expand_epilogue (false);
6405 DONE;
6406 })
6407
6408 (define_expand "sibcall_epilogue"
6409 [(const_int 2)]
6410 ""
6411 {
6412 mips_expand_epilogue (true);
6413 DONE;
6414 })
6415
6416 ;; Trivial return. Make it look like a normal return insn as that
6417 ;; allows jump optimizations to work better.
6418
6419 (define_expand "return"
6420 [(simple_return)]
6421 "mips_can_use_return_insn ()"
6422 { mips_expand_before_return (); })
6423
6424 (define_expand "simple_return"
6425 [(simple_return)]
6426 ""
6427 { mips_expand_before_return (); })
6428
6429 (define_insn "*<optab>"
6430 [(any_return)]
6431 ""
6432 {
6433 if (TARGET_MICROMIPS)
6434 return "%*jr%:\t$31";
6435 else
6436 return "%*j\t$31%/";
6437 }
6438 [(set_attr "type" "jump")
6439 (set_attr "mode" "none")])
6440
6441 ;; Normal return.
6442
6443 (define_insn "<optab>_internal"
6444 [(any_return)
6445 (use (match_operand 0 "pmode_register_operand" ""))]
6446 ""
6447 {
6448 if (TARGET_MICROMIPS)
6449 return "%*jr%:\t%0";
6450 else
6451 return "%*j\t%0%/";
6452 }
6453 [(set_attr "type" "jump")
6454 (set_attr "mode" "none")])
6455
6456 ;; Exception return.
6457 (define_insn "mips_eret"
6458 [(return)
6459 (unspec_volatile [(const_int 0)] UNSPEC_ERET)]
6460 ""
6461 "eret"
6462 [(set_attr "type" "trap")
6463 (set_attr "mode" "none")])
6464
6465 ;; Debug exception return.
6466 (define_insn "mips_deret"
6467 [(return)
6468 (unspec_volatile [(const_int 0)] UNSPEC_DERET)]
6469 ""
6470 "deret"
6471 [(set_attr "type" "trap")
6472 (set_attr "mode" "none")])
6473
6474 ;; Disable interrupts.
6475 (define_insn "mips_di"
6476 [(unspec_volatile [(const_int 0)] UNSPEC_DI)]
6477 ""
6478 "di"
6479 [(set_attr "type" "trap")
6480 (set_attr "mode" "none")])
6481
6482 ;; Execution hazard barrier.
6483 (define_insn "mips_ehb"
6484 [(unspec_volatile [(const_int 0)] UNSPEC_EHB)]
6485 ""
6486 "ehb"
6487 [(set_attr "type" "trap")
6488 (set_attr "mode" "none")])
6489
6490 ;; Read GPR from previous shadow register set.
6491 (define_insn "mips_rdpgpr"
6492 [(set (match_operand:SI 0 "register_operand" "=d")
6493 (unspec_volatile:SI [(match_operand:SI 1 "register_operand" "d")]
6494 UNSPEC_RDPGPR))]
6495 ""
6496 "rdpgpr\t%0,%1"
6497 [(set_attr "type" "move")
6498 (set_attr "mode" "SI")])
6499
6500 ;; Move involving COP0 registers.
6501 (define_insn "cop0_move"
6502 [(set (match_operand:SI 0 "register_operand" "=B,d")
6503 (unspec_volatile:SI [(match_operand:SI 1 "register_operand" "d,B")]
6504 UNSPEC_COP0))]
6505 ""
6506 { return mips_output_move (operands[0], operands[1]); }
6507 [(set_attr "type" "mtc,mfc")
6508 (set_attr "mode" "SI")])
6509
6510 ;; This is used in compiling the unwind routines.
6511 (define_expand "eh_return"
6512 [(use (match_operand 0 "general_operand"))]
6513 ""
6514 {
6515 if (GET_MODE (operands[0]) != word_mode)
6516 operands[0] = convert_to_mode (word_mode, operands[0], 0);
6517 if (TARGET_64BIT)
6518 emit_insn (gen_eh_set_lr_di (operands[0]));
6519 else
6520 emit_insn (gen_eh_set_lr_si (operands[0]));
6521 DONE;
6522 })
6523
6524 ;; Clobber the return address on the stack. We can't expand this
6525 ;; until we know where it will be put in the stack frame.
6526
6527 (define_insn "eh_set_lr_si"
6528 [(unspec [(match_operand:SI 0 "register_operand" "d")] UNSPEC_EH_RETURN)
6529 (clobber (match_scratch:SI 1 "=&d"))]
6530 "! TARGET_64BIT"
6531 "#")
6532
6533 (define_insn "eh_set_lr_di"
6534 [(unspec [(match_operand:DI 0 "register_operand" "d")] UNSPEC_EH_RETURN)
6535 (clobber (match_scratch:DI 1 "=&d"))]
6536 "TARGET_64BIT"
6537 "#")
6538
6539 (define_split
6540 [(unspec [(match_operand 0 "register_operand")] UNSPEC_EH_RETURN)
6541 (clobber (match_scratch 1))]
6542 "reload_completed"
6543 [(const_int 0)]
6544 {
6545 mips_set_return_address (operands[0], operands[1]);
6546 DONE;
6547 })
6548
6549 (define_expand "exception_receiver"
6550 [(const_int 0)]
6551 "TARGET_USE_GOT"
6552 {
6553 /* See the comment above load_call<mode> for details. */
6554 emit_insn (gen_set_got_version ());
6555
6556 /* If we have a call-clobbered $gp, restore it from its save slot. */
6557 if (HAVE_restore_gp_si)
6558 emit_insn (gen_restore_gp_si ());
6559 else if (HAVE_restore_gp_di)
6560 emit_insn (gen_restore_gp_di ());
6561 DONE;
6562 })
6563
6564 (define_expand "nonlocal_goto_receiver"
6565 [(const_int 0)]
6566 "TARGET_USE_GOT"
6567 {
6568 /* See the comment above load_call<mode> for details. */
6569 emit_insn (gen_set_got_version ());
6570 DONE;
6571 })
6572
6573 ;; Restore $gp from its .cprestore stack slot. The instruction remains
6574 ;; volatile until all uses of $28 are exposed.
6575 (define_insn_and_split "restore_gp_<mode>"
6576 [(set (reg:P 28)
6577 (unspec_volatile:P [(const_int 0)] UNSPEC_RESTORE_GP))
6578 (clobber (match_scratch:P 0 "=&d"))]
6579 "TARGET_CALL_CLOBBERED_GP"
6580 "#"
6581 "&& epilogue_completed"
6582 [(const_int 0)]
6583 {
6584 mips_restore_gp_from_cprestore_slot (operands[0]);
6585 DONE;
6586 }
6587 [(set_attr "type" "ghost")])
6588
6589 ;; Move between $gp and its register save slot.
6590 (define_insn_and_split "move_gp<mode>"
6591 [(set (match_operand:GPR 0 "nonimmediate_operand" "=d,m")
6592 (unspec:GPR [(match_operand:GPR 1 "move_operand" "m,d")]
6593 UNSPEC_MOVE_GP))]
6594 ""
6595 { return mips_must_initialize_gp_p () ? "#" : ""; }
6596 "mips_must_initialize_gp_p ()"
6597 [(const_int 0)]
6598 {
6599 mips_emit_move (operands[0], operands[1]);
6600 DONE;
6601 }
6602 [(set_attr "type" "ghost")])
6603 \f
6604 ;;
6605 ;; ....................
6606 ;;
6607 ;; FUNCTION CALLS
6608 ;;
6609 ;; ....................
6610
6611 ;; Instructions to load a call address from the GOT. The address might
6612 ;; point to a function or to a lazy binding stub. In the latter case,
6613 ;; the stub will use the dynamic linker to resolve the function, which
6614 ;; in turn will change the GOT entry to point to the function's real
6615 ;; address.
6616 ;;
6617 ;; This means that every call, even pure and constant ones, can
6618 ;; potentially modify the GOT entry. And once a stub has been called,
6619 ;; we must not call it again.
6620 ;;
6621 ;; We represent this restriction using an imaginary, fixed, call-saved
6622 ;; register called GOT_VERSION_REGNUM. The idea is to make the register
6623 ;; live throughout the function and to change its value after every
6624 ;; potential call site. This stops any rtx value that uses the register
6625 ;; from being computed before an earlier call. To do this, we:
6626 ;;
6627 ;; - Ensure that the register is live on entry to the function,
6628 ;; so that it is never thought to be used uninitalized.
6629 ;;
6630 ;; - Ensure that the register is live on exit from the function,
6631 ;; so that it is live throughout.
6632 ;;
6633 ;; - Make each call (lazily-bound or not) use the current value
6634 ;; of GOT_VERSION_REGNUM, so that updates of the register are
6635 ;; not moved across call boundaries.
6636 ;;
6637 ;; - Add "ghost" definitions of the register to the beginning of
6638 ;; blocks reached by EH and ABNORMAL_CALL edges, because those
6639 ;; edges may involve calls that normal paths don't. (E.g. the
6640 ;; unwinding code that handles a non-call exception may change
6641 ;; lazily-bound GOT entries.) We do this by making the
6642 ;; exception_receiver and nonlocal_goto_receiver expanders emit
6643 ;; a set_got_version instruction.
6644 ;;
6645 ;; - After each call (lazily-bound or not), use a "ghost"
6646 ;; update_got_version instruction to change the register's value.
6647 ;; This instruction mimics the _possible_ effect of the dynamic
6648 ;; resolver during the call and it remains live even if the call
6649 ;; itself becomes dead.
6650 ;;
6651 ;; - Leave GOT_VERSION_REGNUM out of all register classes.
6652 ;; The register is therefore not a valid register_operand
6653 ;; and cannot be moved to or from other registers.
6654
6655 (define_insn "load_call<mode>"
6656 [(set (match_operand:P 0 "register_operand" "=d")
6657 (unspec:P [(match_operand:P 1 "register_operand" "d")
6658 (match_operand:P 2 "immediate_operand" "")
6659 (reg:SI GOT_VERSION_REGNUM)] UNSPEC_LOAD_CALL))]
6660 "TARGET_USE_GOT"
6661 "<load>\t%0,%R2(%1)"
6662 [(set_attr "got" "load")
6663 (set_attr "mode" "<MODE>")])
6664
6665 (define_insn "set_got_version"
6666 [(set (reg:SI GOT_VERSION_REGNUM)
6667 (unspec_volatile:SI [(const_int 0)] UNSPEC_SET_GOT_VERSION))]
6668 "TARGET_USE_GOT"
6669 ""
6670 [(set_attr "type" "ghost")])
6671
6672 (define_insn "update_got_version"
6673 [(set (reg:SI GOT_VERSION_REGNUM)
6674 (unspec:SI [(reg:SI GOT_VERSION_REGNUM)] UNSPEC_UPDATE_GOT_VERSION))]
6675 "TARGET_USE_GOT"
6676 ""
6677 [(set_attr "type" "ghost")])
6678
6679 ;; Sibling calls. All these patterns use jump instructions.
6680
6681 ;; If TARGET_SIBCALLS, call_insn_operand will only accept constant
6682 ;; addresses if a direct jump is acceptable. Since the 'S' constraint
6683 ;; is defined in terms of call_insn_operand, the same is true of the
6684 ;; constraints.
6685
6686 ;; When we use an indirect jump, we need a register that will be
6687 ;; preserved by the epilogue. Since TARGET_USE_PIC_FN_ADDR_REG forces
6688 ;; us to use $25 for this purpose -- and $25 is never clobbered by the
6689 ;; epilogue -- we might as well use it for !TARGET_USE_PIC_FN_ADDR_REG
6690 ;; as well.
6691
6692 (define_expand "sibcall"
6693 [(parallel [(call (match_operand 0 "")
6694 (match_operand 1 ""))
6695 (use (match_operand 2 "")) ;; next_arg_reg
6696 (use (match_operand 3 ""))])] ;; struct_value_size_rtx
6697 "TARGET_SIBCALLS"
6698 {
6699 mips_expand_call (MIPS_CALL_SIBCALL, NULL_RTX, XEXP (operands[0], 0),
6700 operands[1], operands[2], false);
6701 DONE;
6702 })
6703
6704 (define_insn "sibcall_internal"
6705 [(call (mem:SI (match_operand 0 "call_insn_operand" "j,S"))
6706 (match_operand 1 "" ""))]
6707 "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
6708 {
6709 if (TARGET_MICROMIPS)
6710 return MICROMIPS_J ("j", operands, 0);
6711 else
6712 return MIPS_CALL ("j", operands, 0, 1);
6713 }
6714 [(set_attr "jal" "indirect,direct")
6715 (set_attr "jal_macro" "no")])
6716
6717 (define_expand "sibcall_value"
6718 [(parallel [(set (match_operand 0 "")
6719 (call (match_operand 1 "")
6720 (match_operand 2 "")))
6721 (use (match_operand 3 ""))])] ;; next_arg_reg
6722 "TARGET_SIBCALLS"
6723 {
6724 mips_expand_call (MIPS_CALL_SIBCALL, operands[0], XEXP (operands[1], 0),
6725 operands[2], operands[3], false);
6726 DONE;
6727 })
6728
6729 (define_insn "sibcall_value_internal"
6730 [(set (match_operand 0 "register_operand" "")
6731 (call (mem:SI (match_operand 1 "call_insn_operand" "j,S"))
6732 (match_operand 2 "" "")))]
6733 "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
6734 {
6735 if (TARGET_MICROMIPS)
6736 return MICROMIPS_J ("j", operands, 1);
6737 else
6738 return MIPS_CALL ("j", operands, 1, 2);
6739 }
6740 [(set_attr "jal" "indirect,direct")
6741 (set_attr "jal_macro" "no")])
6742
6743 (define_insn "sibcall_value_multiple_internal"
6744 [(set (match_operand 0 "register_operand" "")
6745 (call (mem:SI (match_operand 1 "call_insn_operand" "j,S"))
6746 (match_operand 2 "" "")))
6747 (set (match_operand 3 "register_operand" "")
6748 (call (mem:SI (match_dup 1))
6749 (match_dup 2)))]
6750 "TARGET_SIBCALLS && SIBLING_CALL_P (insn)"
6751 {
6752 if (TARGET_MICROMIPS)
6753 return MICROMIPS_J ("j", operands, 1);
6754 else
6755 return MIPS_CALL ("j", operands, 1, 2);
6756 }
6757 [(set_attr "jal" "indirect,direct")
6758 (set_attr "jal_macro" "no")])
6759
6760 (define_expand "call"
6761 [(parallel [(call (match_operand 0 "")
6762 (match_operand 1 ""))
6763 (use (match_operand 2 "")) ;; next_arg_reg
6764 (use (match_operand 3 ""))])] ;; struct_value_size_rtx
6765 ""
6766 {
6767 mips_expand_call (MIPS_CALL_NORMAL, NULL_RTX, XEXP (operands[0], 0),
6768 operands[1], operands[2], false);
6769 DONE;
6770 })
6771
6772 ;; This instruction directly corresponds to an assembly-language "jal".
6773 ;; There are four cases:
6774 ;;
6775 ;; - -mno-abicalls:
6776 ;; Both symbolic and register destinations are OK. The pattern
6777 ;; always expands to a single mips instruction.
6778 ;;
6779 ;; - -mabicalls/-mno-explicit-relocs:
6780 ;; Again, both symbolic and register destinations are OK.
6781 ;; The call is treated as a multi-instruction black box.
6782 ;;
6783 ;; - -mabicalls/-mexplicit-relocs with n32 or n64:
6784 ;; Only "jal $25" is allowed. This expands to a single "jalr $25"
6785 ;; instruction.
6786 ;;
6787 ;; - -mabicalls/-mexplicit-relocs with o32 or o64:
6788 ;; Only "jal $25" is allowed. The call is actually two instructions:
6789 ;; "jalr $25" followed by an insn to reload $gp.
6790 ;;
6791 ;; In the last case, we can generate the individual instructions with
6792 ;; a define_split. There are several things to be wary of:
6793 ;;
6794 ;; - We can't expose the load of $gp before reload. If we did,
6795 ;; it might get removed as dead, but reload can introduce new
6796 ;; uses of $gp by rematerializing constants.
6797 ;;
6798 ;; - We shouldn't restore $gp after calls that never return.
6799 ;; It isn't valid to insert instructions between a noreturn
6800 ;; call and the following barrier.
6801 ;;
6802 ;; - The splitter deliberately changes the liveness of $gp. The unsplit
6803 ;; instruction preserves $gp and so have no effect on its liveness.
6804 ;; But once we generate the separate insns, it becomes obvious that
6805 ;; $gp is not live on entry to the call.
6806 ;;
6807 (define_insn_and_split "call_internal"
6808 [(call (mem:SI (match_operand 0 "call_insn_operand" "c,S"))
6809 (match_operand 1 "" ""))
6810 (clobber (reg:SI RETURN_ADDR_REGNUM))]
6811 ""
6812 { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 0, 1); }
6813 "reload_completed && TARGET_SPLIT_CALLS"
6814 [(const_int 0)]
6815 {
6816 mips_split_call (curr_insn, gen_call_split (operands[0], operands[1]));
6817 DONE;
6818 }
6819 [(set_attr "jal" "indirect,direct")])
6820
6821 (define_insn "call_split"
6822 [(call (mem:SI (match_operand 0 "call_insn_operand" "c,S"))
6823 (match_operand 1 "" ""))
6824 (clobber (reg:SI RETURN_ADDR_REGNUM))
6825 (clobber (reg:SI 28))]
6826 "TARGET_SPLIT_CALLS"
6827 { return MIPS_CALL ("jal", operands, 0, 1); }
6828 [(set_attr "jal" "indirect,direct")
6829 (set_attr "jal_macro" "no")])
6830
6831 ;; A pattern for calls that must be made directly. It is used for
6832 ;; MIPS16 calls that the linker may need to redirect to a hard-float
6833 ;; stub; the linker relies on the call relocation type to detect when
6834 ;; such redirection is needed.
6835 (define_insn_and_split "call_internal_direct"
6836 [(call (mem:SI (match_operand 0 "const_call_insn_operand"))
6837 (match_operand 1))
6838 (const_int 1)
6839 (clobber (reg:SI RETURN_ADDR_REGNUM))]
6840 ""
6841 { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 0, -1); }
6842 "reload_completed && TARGET_SPLIT_CALLS"
6843 [(const_int 0)]
6844 {
6845 mips_split_call (curr_insn,
6846 gen_call_direct_split (operands[0], operands[1]));
6847 DONE;
6848 }
6849 [(set_attr "jal" "direct")])
6850
6851 (define_insn "call_direct_split"
6852 [(call (mem:SI (match_operand 0 "const_call_insn_operand"))
6853 (match_operand 1))
6854 (const_int 1)
6855 (clobber (reg:SI RETURN_ADDR_REGNUM))
6856 (clobber (reg:SI 28))]
6857 "TARGET_SPLIT_CALLS"
6858 { return MIPS_CALL ("jal", operands, 0, -1); }
6859 [(set_attr "jal" "direct")
6860 (set_attr "jal_macro" "no")])
6861
6862 (define_expand "call_value"
6863 [(parallel [(set (match_operand 0 "")
6864 (call (match_operand 1 "")
6865 (match_operand 2 "")))
6866 (use (match_operand 3 ""))])] ;; next_arg_reg
6867 ""
6868 {
6869 mips_expand_call (MIPS_CALL_NORMAL, operands[0], XEXP (operands[1], 0),
6870 operands[2], operands[3], false);
6871 DONE;
6872 })
6873
6874 ;; See comment for call_internal.
6875 (define_insn_and_split "call_value_internal"
6876 [(set (match_operand 0 "register_operand" "")
6877 (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6878 (match_operand 2 "" "")))
6879 (clobber (reg:SI RETURN_ADDR_REGNUM))]
6880 ""
6881 { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 1, 2); }
6882 "reload_completed && TARGET_SPLIT_CALLS"
6883 [(const_int 0)]
6884 {
6885 mips_split_call (curr_insn,
6886 gen_call_value_split (operands[0], operands[1],
6887 operands[2]));
6888 DONE;
6889 }
6890 [(set_attr "jal" "indirect,direct")])
6891
6892 (define_insn "call_value_split"
6893 [(set (match_operand 0 "register_operand" "")
6894 (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6895 (match_operand 2 "" "")))
6896 (clobber (reg:SI RETURN_ADDR_REGNUM))
6897 (clobber (reg:SI 28))]
6898 "TARGET_SPLIT_CALLS"
6899 { return MIPS_CALL ("jal", operands, 1, 2); }
6900 [(set_attr "jal" "indirect,direct")
6901 (set_attr "jal_macro" "no")])
6902
6903 ;; See call_internal_direct.
6904 (define_insn_and_split "call_value_internal_direct"
6905 [(set (match_operand 0 "register_operand")
6906 (call (mem:SI (match_operand 1 "const_call_insn_operand"))
6907 (match_operand 2)))
6908 (const_int 1)
6909 (clobber (reg:SI RETURN_ADDR_REGNUM))]
6910 ""
6911 { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 1, -1); }
6912 "reload_completed && TARGET_SPLIT_CALLS"
6913 [(const_int 0)]
6914 {
6915 mips_split_call (curr_insn,
6916 gen_call_value_direct_split (operands[0], operands[1],
6917 operands[2]));
6918 DONE;
6919 }
6920 [(set_attr "jal" "direct")])
6921
6922 (define_insn "call_value_direct_split"
6923 [(set (match_operand 0 "register_operand")
6924 (call (mem:SI (match_operand 1 "const_call_insn_operand"))
6925 (match_operand 2)))
6926 (const_int 1)
6927 (clobber (reg:SI RETURN_ADDR_REGNUM))
6928 (clobber (reg:SI 28))]
6929 "TARGET_SPLIT_CALLS"
6930 { return MIPS_CALL ("jal", operands, 1, -1); }
6931 [(set_attr "jal" "direct")
6932 (set_attr "jal_macro" "no")])
6933
6934 ;; See comment for call_internal.
6935 (define_insn_and_split "call_value_multiple_internal"
6936 [(set (match_operand 0 "register_operand" "")
6937 (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6938 (match_operand 2 "" "")))
6939 (set (match_operand 3 "register_operand" "")
6940 (call (mem:SI (match_dup 1))
6941 (match_dup 2)))
6942 (clobber (reg:SI RETURN_ADDR_REGNUM))]
6943 ""
6944 { return TARGET_SPLIT_CALLS ? "#" : MIPS_CALL ("jal", operands, 1, 2); }
6945 "reload_completed && TARGET_SPLIT_CALLS"
6946 [(const_int 0)]
6947 {
6948 mips_split_call (curr_insn,
6949 gen_call_value_multiple_split (operands[0], operands[1],
6950 operands[2], operands[3]));
6951 DONE;
6952 }
6953 [(set_attr "jal" "indirect,direct")])
6954
6955 (define_insn "call_value_multiple_split"
6956 [(set (match_operand 0 "register_operand" "")
6957 (call (mem:SI (match_operand 1 "call_insn_operand" "c,S"))
6958 (match_operand 2 "" "")))
6959 (set (match_operand 3 "register_operand" "")
6960 (call (mem:SI (match_dup 1))
6961 (match_dup 2)))
6962 (clobber (reg:SI RETURN_ADDR_REGNUM))
6963 (clobber (reg:SI 28))]
6964 "TARGET_SPLIT_CALLS"
6965 { return MIPS_CALL ("jal", operands, 1, 2); }
6966 [(set_attr "jal" "indirect,direct")
6967 (set_attr "jal_macro" "no")])
6968
6969 ;; Call subroutine returning any type.
6970
6971 (define_expand "untyped_call"
6972 [(parallel [(call (match_operand 0 "")
6973 (const_int 0))
6974 (match_operand 1 "")
6975 (match_operand 2 "")])]
6976 ""
6977 {
6978 int i;
6979
6980 emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx));
6981
6982 for (i = 0; i < XVECLEN (operands[2], 0); i++)
6983 {
6984 rtx set = XVECEXP (operands[2], 0, i);
6985 mips_emit_move (SET_DEST (set), SET_SRC (set));
6986 }
6987
6988 emit_insn (gen_blockage ());
6989 DONE;
6990 })
6991 \f
6992 ;;
6993 ;; ....................
6994 ;;
6995 ;; MISC.
6996 ;;
6997 ;; ....................
6998 ;;
6999
7000
7001 (define_insn "prefetch"
7002 [(prefetch (match_operand:QI 0 "address_operand" "ZD")
7003 (match_operand 1 "const_int_operand" "n")
7004 (match_operand 2 "const_int_operand" "n"))]
7005 "ISA_HAS_PREFETCH && TARGET_EXPLICIT_RELOCS"
7006 {
7007 if (TARGET_LOONGSON_2EF || TARGET_LOONGSON_3A)
7008 {
7009 /* Loongson 2[ef] and Loongson 3a use load to $0 for prefetching. */
7010 if (TARGET_64BIT)
7011 return "ld\t$0,%a0";
7012 else
7013 return "lw\t$0,%a0";
7014 }
7015 operands[1] = mips_prefetch_cookie (operands[1], operands[2]);
7016 return "pref\t%1,%a0";
7017 }
7018 [(set_attr "type" "prefetch")])
7019
7020 (define_insn "*prefetch_indexed_<mode>"
7021 [(prefetch (plus:P (match_operand:P 0 "register_operand" "d")
7022 (match_operand:P 1 "register_operand" "d"))
7023 (match_operand 2 "const_int_operand" "n")
7024 (match_operand 3 "const_int_operand" "n"))]
7025 "ISA_HAS_PREFETCHX && TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT"
7026 {
7027 operands[2] = mips_prefetch_cookie (operands[2], operands[3]);
7028 return "prefx\t%2,%1(%0)";
7029 }
7030 [(set_attr "type" "prefetchx")])
7031
7032 (define_insn "nop"
7033 [(const_int 0)]
7034 ""
7035 "%(nop%)"
7036 [(set_attr "type" "nop")
7037 (set_attr "mode" "none")])
7038
7039 ;; Like nop, but commented out when outside a .set noreorder block.
7040 (define_insn "hazard_nop"
7041 [(const_int 1)]
7042 ""
7043 {
7044 if (mips_noreorder.nesting_level > 0)
7045 return "nop";
7046 else
7047 return "#nop";
7048 }
7049 [(set_attr "type" "nop")])
7050 \f
7051 ;; MIPS4 Conditional move instructions.
7052
7053 (define_insn "*mov<GPR:mode>_on_<MOVECC:mode>"
7054 [(set (match_operand:GPR 0 "register_operand" "=d,d")
7055 (if_then_else:GPR
7056 (match_operator 4 "equality_operator"
7057 [(match_operand:MOVECC 1 "register_operand" "<MOVECC:reg>,<MOVECC:reg>")
7058 (const_int 0)])
7059 (match_operand:GPR 2 "reg_or_0_operand" "dJ,0")
7060 (match_operand:GPR 3 "reg_or_0_operand" "0,dJ")))]
7061 "ISA_HAS_CONDMOVE"
7062 "@
7063 mov%T4\t%0,%z2,%1
7064 mov%t4\t%0,%z3,%1"
7065 [(set_attr "type" "condmove")
7066 (set_attr "mode" "<GPR:MODE>")])
7067
7068 (define_insn "*mov<GPR:mode>_on_<GPR2:mode>_ne"
7069 [(set (match_operand:GPR 0 "register_operand" "=d,d")
7070 (if_then_else:GPR
7071 (match_operand:GPR2 1 "register_operand" "<GPR2:reg>,<GPR2:reg>")
7072 (match_operand:GPR 2 "reg_or_0_operand" "dJ,0")
7073 (match_operand:GPR 3 "reg_or_0_operand" "0,dJ")))]
7074 "ISA_HAS_CONDMOVE"
7075 "@
7076 movn\t%0,%z2,%1
7077 movz\t%0,%z3,%1"
7078 [(set_attr "type" "condmove")
7079 (set_attr "mode" "<GPR:MODE>")])
7080
7081 (define_insn "*mov<SCALARF:mode>_on_<MOVECC:mode>"
7082 [(set (match_operand:SCALARF 0 "register_operand" "=f,f")
7083 (if_then_else:SCALARF
7084 (match_operator 4 "equality_operator"
7085 [(match_operand:MOVECC 1 "register_operand" "<MOVECC:reg>,<MOVECC:reg>")
7086 (const_int 0)])
7087 (match_operand:SCALARF 2 "register_operand" "f,0")
7088 (match_operand:SCALARF 3 "register_operand" "0,f")))]
7089 "ISA_HAS_FP_CONDMOVE"
7090 "@
7091 mov%T4.<fmt>\t%0,%2,%1
7092 mov%t4.<fmt>\t%0,%3,%1"
7093 [(set_attr "type" "condmove")
7094 (set_attr "mode" "<SCALARF:MODE>")])
7095
7096 (define_insn "*sel<code><GPR:mode>_using_<GPR2:mode>"
7097 [(set (match_operand:GPR 0 "register_operand" "=d,d")
7098 (if_then_else:GPR
7099 (equality_op:GPR2 (match_operand:GPR2 1 "register_operand" "d,d")
7100 (const_int 0))
7101 (match_operand:GPR 2 "reg_or_0_operand" "d,J")
7102 (match_operand:GPR 3 "reg_or_0_operand" "J,d")))]
7103 "ISA_HAS_SEL
7104 && (register_operand (operands[2], <GPR:MODE>mode)
7105 != register_operand (operands[3], <GPR:MODE>mode))"
7106 "@
7107 <sel>\t%0,%2,%1
7108 <selinv>\t%0,%3,%1"
7109 [(set_attr "type" "condmove")
7110 (set_attr "mode" "<GPR:MODE>")])
7111
7112 ;; sel.fmt copies the 3rd argument when the 1st is non-zero and the 2nd
7113 ;; argument if the 1st is zero. This means operand 2 and 3 are
7114 ;; inverted in the instruction.
7115
7116 (define_insn "*sel<mode>"
7117 [(set (match_operand:SCALARF 0 "register_operand" "=f,f,f")
7118 (if_then_else:SCALARF
7119 (ne:CCF (match_operand:CCF 1 "register_operand" "0,f,f")
7120 (const_int 0))
7121 (match_operand:SCALARF 2 "reg_or_0_operand" "f,G,f")
7122 (match_operand:SCALARF 3 "reg_or_0_operand" "f,f,G")))]
7123 "ISA_HAS_SEL && ISA_HAS_CCF"
7124 "@
7125 sel.<fmt>\t%0,%3,%2
7126 seleqz.<fmt>\t%0,%3,%1
7127 selnez.<fmt>\t%0,%2,%1"
7128 [(set_attr "type" "condmove")
7129 (set_attr "mode" "<SCALARF:MODE>")])
7130
7131 ;; These are the main define_expand's used to make conditional moves.
7132
7133 (define_expand "mov<mode>cc"
7134 [(set (match_dup 4) (match_operand 1 "comparison_operator"))
7135 (set (match_operand:GPR 0 "register_operand")
7136 (if_then_else:GPR (match_dup 5)
7137 (match_operand:GPR 2 "reg_or_0_operand")
7138 (match_operand:GPR 3 "reg_or_0_operand")))]
7139 "ISA_HAS_CONDMOVE || ISA_HAS_SEL"
7140 {
7141 if (!ISA_HAS_FP_CONDMOVE
7142 && !INTEGRAL_MODE_P (GET_MODE (XEXP (operands[1], 0))))
7143 FAIL;
7144
7145 mips_expand_conditional_move (operands);
7146 DONE;
7147 })
7148
7149 (define_expand "mov<mode>cc"
7150 [(set (match_dup 4) (match_operand 1 "comparison_operator"))
7151 (set (match_operand:SCALARF 0 "register_operand")
7152 (if_then_else:SCALARF (match_dup 5)
7153 (match_operand:SCALARF 2 "reg_or_0_operand")
7154 (match_operand:SCALARF 3 "reg_or_0_operand")))]
7155 "ISA_HAS_FP_CONDMOVE
7156 || (ISA_HAS_SEL && ISA_HAS_CCF)"
7157 {
7158 if (ISA_HAS_SEL && !FLOAT_MODE_P (GET_MODE (XEXP (operands[1], 0))))
7159 FAIL;
7160
7161 /* Workaround an LRA bug which means that tied operands in the sel.fmt
7162 pattern lead to the double precision destination of sel.d getting
7163 reloaded with the full register file usable and the restrictions on
7164 whether the CCFmode input can be used in odd-numbered single-precision
7165 registers are ignored. For consistency reasons the CCF mode values
7166 must be guaranteed to only exist in the even-registers because of
7167 the unusual duality between single and double precision values. */
7168 if (ISA_HAS_SEL && <MODE>mode == DFmode
7169 && (!TARGET_ODD_SPREG || TARGET_FLOATXX))
7170 FAIL;
7171
7172 mips_expand_conditional_move (operands);
7173 DONE;
7174 })
7175 \f
7176 ;;
7177 ;; ....................
7178 ;;
7179 ;; mips16 inline constant tables
7180 ;;
7181 ;; ....................
7182 ;;
7183
7184 (define_insn "consttable_tls_reloc"
7185 [(unspec_volatile [(match_operand 0 "tls_reloc_operand" "")
7186 (match_operand 1 "const_int_operand" "")]
7187 UNSPEC_CONSTTABLE_INT)]
7188 "TARGET_MIPS16_PCREL_LOADS"
7189 { return mips_output_tls_reloc_directive (&operands[0]); }
7190 [(set (attr "length") (symbol_ref "INTVAL (operands[1])"))])
7191
7192 (define_insn "consttable_int"
7193 [(unspec_volatile [(match_operand 0 "consttable_operand" "")
7194 (match_operand 1 "const_int_operand" "")]
7195 UNSPEC_CONSTTABLE_INT)]
7196 "TARGET_MIPS16"
7197 {
7198 assemble_integer (mips_strip_unspec_address (operands[0]),
7199 INTVAL (operands[1]),
7200 BITS_PER_UNIT * INTVAL (operands[1]), 1);
7201 return "";
7202 }
7203 [(set (attr "length") (symbol_ref "INTVAL (operands[1])"))])
7204
7205 (define_insn "consttable_float"
7206 [(unspec_volatile [(match_operand 0 "consttable_operand" "")]
7207 UNSPEC_CONSTTABLE_FLOAT)]
7208 "TARGET_MIPS16"
7209 {
7210 REAL_VALUE_TYPE d;
7211
7212 gcc_assert (GET_CODE (operands[0]) == CONST_DOUBLE);
7213 REAL_VALUE_FROM_CONST_DOUBLE (d, operands[0]);
7214 assemble_real (d, GET_MODE (operands[0]),
7215 GET_MODE_BITSIZE (GET_MODE (operands[0])));
7216 return "";
7217 }
7218 [(set (attr "length")
7219 (symbol_ref "GET_MODE_SIZE (GET_MODE (operands[0]))"))])
7220
7221 (define_insn "align"
7222 [(unspec_volatile [(match_operand 0 "const_int_operand" "")] UNSPEC_ALIGN)]
7223 ""
7224 ".align\t%0"
7225 [(set (attr "length") (symbol_ref "(1 << INTVAL (operands[0])) - 1"))])
7226 \f
7227 (define_split
7228 [(match_operand 0 "small_data_pattern")]
7229 "reload_completed"
7230 [(match_dup 0)]
7231 { operands[0] = mips_rewrite_small_data (operands[0]); })
7232
7233 ;;
7234 ;; ....................
7235 ;;
7236 ;; MIPS16e Save/Restore
7237 ;;
7238 ;; ....................
7239 ;;
7240
7241 (define_insn "*mips16e_save_restore"
7242 [(match_parallel 0 ""
7243 [(set (match_operand:SI 1 "register_operand")
7244 (plus:SI (match_dup 1)
7245 (match_operand:SI 2 "const_int_operand")))])]
7246 "operands[1] == stack_pointer_rtx
7247 && mips16e_save_restore_pattern_p (operands[0], INTVAL (operands[2]), NULL)"
7248 { return mips16e_output_save_restore (operands[0], INTVAL (operands[2])); }
7249 [(set_attr "type" "arith")
7250 (set_attr "extended_mips16" "yes")])
7251
7252 ;; Thread-Local Storage
7253
7254 ;; The TLS base pointer is accessed via "rdhwr $3, $29". No current
7255 ;; MIPS architecture defines this register, and no current
7256 ;; implementation provides it; instead, any OS which supports TLS is
7257 ;; expected to trap and emulate this instruction. rdhwr is part of the
7258 ;; MIPS 32r2 specification, but we use it on any architecture because
7259 ;; we expect it to be emulated. Use .set to force the assembler to
7260 ;; accept it.
7261 ;;
7262 ;; We do not use a constraint to force the destination to be $3
7263 ;; because $3 can appear explicitly as a function return value.
7264 ;; If we leave the use of $3 implicit in the constraints until
7265 ;; reload, we may end up making a $3 return value live across
7266 ;; the instruction, leading to a spill failure when reloading it.
7267 (define_insn_and_split "tls_get_tp_<mode>"
7268 [(set (match_operand:P 0 "register_operand" "=d")
7269 (unspec:P [(const_int 0)] UNSPEC_TLS_GET_TP))
7270 (clobber (reg:P TLS_GET_TP_REGNUM))]
7271 "HAVE_AS_TLS && !TARGET_MIPS16"
7272 "#"
7273 "&& reload_completed"
7274 [(set (reg:P TLS_GET_TP_REGNUM)
7275 (unspec:P [(const_int 0)] UNSPEC_TLS_GET_TP))
7276 (set (match_dup 0) (reg:P TLS_GET_TP_REGNUM))]
7277 ""
7278 [(set_attr "type" "unknown")
7279 (set_attr "mode" "<MODE>")
7280 (set_attr "insn_count" "2")])
7281
7282 (define_insn "*tls_get_tp_<mode>_split"
7283 [(set (reg:P TLS_GET_TP_REGNUM)
7284 (unspec:P [(const_int 0)] UNSPEC_TLS_GET_TP))]
7285 "HAVE_AS_TLS && !TARGET_MIPS16"
7286 {
7287 if (mips_isa_rev >= 2)
7288 return "rdhwr\t$3,$29";
7289
7290 return ".set\tpush\;.set\tmips32r2\t\;rdhwr\t$3,$29\;.set\tpop";
7291 }
7292 [(set_attr "type" "unknown")
7293 ; Since rdhwr always generates a trap for now, putting it in a delay
7294 ; slot would make the kernel's emulation of it much slower.
7295 (set_attr "can_delay" "no")
7296 (set_attr "mode" "<MODE>")])
7297
7298 ;; In MIPS16 mode, the TLS base pointer is accessed by a
7299 ;; libgcc helper function __mips16_rdhwr(), as 'rdhwr' is not
7300 ;; accessible in MIPS16.
7301 ;;
7302 ;; This is not represented as a call insn, to avoid the
7303 ;; unnecesarry clobbering of caller-save registers by a
7304 ;; function consisting only of: "rdhwr $3,$29; j $31; nop;"
7305 ;;
7306 ;; A $25 clobber is added to cater for a $25 load stub added by the
7307 ;; linker to __mips16_rdhwr when the call is made from non-PIC code.
7308
7309 (define_insn_and_split "tls_get_tp_mips16_<mode>"
7310 [(set (match_operand:P 0 "register_operand" "=d")
7311 (unspec:P [(match_operand:P 1 "call_insn_operand" "dS")]
7312 UNSPEC_TLS_GET_TP))
7313 (clobber (reg:P TLS_GET_TP_REGNUM))
7314 (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
7315 (clobber (reg:P RETURN_ADDR_REGNUM))]
7316 "HAVE_AS_TLS && TARGET_MIPS16"
7317 "#"
7318 "&& reload_completed"
7319 [(parallel [(set (reg:P TLS_GET_TP_REGNUM)
7320 (unspec:P [(match_dup 1)] UNSPEC_TLS_GET_TP))
7321 (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
7322 (clobber (reg:P RETURN_ADDR_REGNUM))])
7323 (set (match_dup 0) (reg:P TLS_GET_TP_REGNUM))]
7324 ""
7325 [(set_attr "type" "multi")
7326 (set_attr "insn_count" "4")
7327 (set_attr "mode" "<MODE>")])
7328
7329 (define_insn "*tls_get_tp_mips16_call_<mode>"
7330 [(set (reg:P TLS_GET_TP_REGNUM)
7331 (unspec:P [(match_operand:P 0 "call_insn_operand" "dS")]
7332 UNSPEC_TLS_GET_TP))
7333 (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
7334 (clobber (reg:P RETURN_ADDR_REGNUM))]
7335 "HAVE_AS_TLS && TARGET_MIPS16"
7336 { return MIPS_CALL ("jal", operands, 0, -1); }
7337 [(set_attr "type" "call")
7338 (set_attr "insn_count" "3")
7339 (set_attr "mode" "<MODE>")])
7340
7341 ;; Named pattern for expanding thread pointer reference.
7342 (define_expand "get_thread_pointer<mode>"
7343 [(match_operand:P 0 "register_operand" "=d")]
7344 "HAVE_AS_TLS"
7345 {
7346 mips_expand_thread_pointer (operands[0]);
7347 DONE;
7348 })
7349
7350 ;; __builtin_mips_get_fcsr: move the FCSR into operand 0.
7351 (define_expand "mips_get_fcsr"
7352 [(set (match_operand:SI 0 "register_operand")
7353 (unspec_volatile [(const_int 0)] UNSPEC_GET_FCSR))]
7354 "TARGET_HARD_FLOAT_ABI"
7355 {
7356 if (TARGET_MIPS16)
7357 {
7358 mips16_expand_get_fcsr (operands[0]);
7359 DONE;
7360 }
7361 })
7362
7363 (define_insn "*mips_get_fcsr"
7364 [(set (match_operand:SI 0 "register_operand" "=d")
7365 (unspec_volatile [(const_int 0)] UNSPEC_GET_FCSR))]
7366 "TARGET_HARD_FLOAT"
7367 "cfc1\t%0,$31")
7368
7369 ;; See tls_get_tp_mips16_<mode> for why this form is used.
7370 (define_insn "mips_get_fcsr_mips16_<mode>"
7371 [(set (reg:SI GET_FCSR_REGNUM)
7372 (unspec:SI [(match_operand:P 0 "call_insn_operand" "dS")]
7373 UNSPEC_GET_FCSR))
7374 (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
7375 (clobber (reg:P RETURN_ADDR_REGNUM))]
7376 "TARGET_HARD_FLOAT_ABI && TARGET_MIPS16"
7377 { return MIPS_CALL ("jal", operands, 0, -1); }
7378 [(set_attr "type" "call")
7379 (set_attr "insn_count" "3")])
7380
7381 ;; __builtin_mips_set_fcsr: move operand 0 into the FCSR.
7382 (define_expand "mips_set_fcsr"
7383 [(unspec_volatile [(match_operand:SI 0 "register_operand")]
7384 UNSPEC_SET_FCSR)]
7385 "TARGET_HARD_FLOAT_ABI"
7386 {
7387 if (TARGET_MIPS16)
7388 {
7389 mips16_expand_set_fcsr (operands[0]);
7390 DONE;
7391 }
7392 })
7393
7394 (define_insn "*mips_set_fcsr"
7395 [(unspec_volatile [(match_operand:SI 0 "register_operand" "d")]
7396 UNSPEC_SET_FCSR)]
7397 "TARGET_HARD_FLOAT"
7398 "ctc1\t%0,$31")
7399
7400 ;; See tls_get_tp_mips16_<mode> for why this form is used.
7401 (define_insn "mips_set_fcsr_mips16_<mode>"
7402 [(unspec_volatile:SI [(match_operand:P 0 "call_insn_operand" "dS")
7403 (reg:SI SET_FCSR_REGNUM)] UNSPEC_SET_FCSR)
7404 (clobber (reg:P PIC_FUNCTION_ADDR_REGNUM))
7405 (clobber (reg:P RETURN_ADDR_REGNUM))]
7406 "TARGET_HARD_FLOAT_ABI && TARGET_MIPS16"
7407 { return MIPS_CALL ("jal", operands, 0, -1); }
7408 [(set_attr "type" "call")
7409 (set_attr "insn_count" "3")])
7410 \f
7411 ;; Synchronization instructions.
7412
7413 (include "sync.md")
7414
7415 ; The MIPS Paired-Single Floating Point and MIPS-3D Instructions.
7416
7417 (include "mips-ps-3d.md")
7418
7419 ; The MIPS DSP Instructions.
7420
7421 (include "mips-dsp.md")
7422
7423 ; The MIPS DSP REV 2 Instructions.
7424
7425 (include "mips-dspr2.md")
7426
7427 ; MIPS fixed-point instructions.
7428 (include "mips-fixed.md")
7429
7430 ; microMIPS patterns.
7431 (include "micromips.md")
7432
7433 ; ST-Microelectronics Loongson-2E/2F-specific patterns.
7434 (include "loongson.md")
7435
7436 (define_c_enum "unspec" [
7437 UNSPEC_ADDRESS_FIRST
7438 ])