]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mmix/mmix.c
Merge basic-improvements-branch to trunk
[thirdparty/gcc.git] / gcc / config / mmix / mmix.c
1 /* Definitions of target machine for GNU compiler, for MMIX.
2 Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson (hp@bitrange.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "hard-reg-set.h"
29 #include "hashtab.h"
30 #include "insn-config.h"
31 #include "output.h"
32 #include "flags.h"
33 #include "tree.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "toplev.h"
37 #include "recog.h"
38 #include "ggc.h"
39 #include "dwarf2.h"
40 #include "debug.h"
41 #include "tm_p.h"
42 #include "integrate.h"
43 #include "target.h"
44 #include "target-def.h"
45 #include "real.h"
46
47 /* First some local helper definitions. */
48 #define MMIX_FIRST_GLOBAL_REGNUM 32
49
50 /* We'd need a current_function_has_landing_pad. It's marked as such when
51 a nonlocal_goto_receiver is expanded. Not just a C++ thing, but
52 mostly. */
53 #define MMIX_CFUN_HAS_LANDING_PAD (cfun->machine->has_landing_pad != 0)
54
55 /* We have no means to tell DWARF 2 about the register stack, so we need
56 to store the return address on the stack if an exception can get into
57 this function. FIXME: Narrow condition. Before any whole-function
58 analysis, regs_ever_live[] isn't initialized. We know it's up-to-date
59 after reload_completed; it may contain incorrect information some time
60 before that. Within a RTL sequence (after a call to start_sequence,
61 such as in RTL expanders), leaf_function_p doesn't see all insns
62 (perhaps any insn). But regs_ever_live is up-to-date when
63 leaf_function_p () isn't, so we "or" them together to get accurate
64 information. FIXME: Some tweak to leaf_function_p might be
65 preferrable. */
66 #define MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS \
67 (flag_exceptions \
68 && ((reload_completed && regs_ever_live[MMIX_rJ_REGNUM]) \
69 || !leaf_function_p ()))
70
71 #define IS_MMIX_EH_RETURN_DATA_REG(REGNO) \
72 (current_function_calls_eh_return \
73 && (EH_RETURN_DATA_REGNO (0) == REGNO \
74 || EH_RETURN_DATA_REGNO (1) == REGNO \
75 || EH_RETURN_DATA_REGNO (2) == REGNO \
76 || EH_RETURN_DATA_REGNO (3) == REGNO))
77
78 /* For the default ABI, we rename registers at output-time to fill the gap
79 between the (statically partitioned) saved registers and call-clobbered
80 registers. In effect this makes unused call-saved registers to be used
81 as call-clobbered registers. The benefit comes from keeping the number
82 of local registers (value of rL) low, since there's a cost of
83 increasing rL and clearing unused (unset) registers with lower numbers.
84 Don't translate while outputting the prologue. */
85 #define MMIX_OUTPUT_REGNO(N) \
86 (TARGET_ABI_GNU \
87 || (int) (N) < MMIX_RETURN_VALUE_REGNUM \
88 || (int) (N) > MMIX_LAST_STACK_REGISTER_REGNUM \
89 || cfun == NULL \
90 || cfun->machine == NULL \
91 || cfun->machine->in_prologue \
92 ? (N) : ((N) - MMIX_RETURN_VALUE_REGNUM \
93 + cfun->machine->highest_saved_stack_register + 1))
94
95 /* The %d in "POP %d,0". */
96 #define MMIX_POP_ARGUMENT() \
97 ((! TARGET_ABI_GNU \
98 && current_function_return_rtx != NULL \
99 && ! current_function_returns_struct) \
100 ? (GET_CODE (current_function_return_rtx) == PARALLEL \
101 ? GET_NUM_ELEM (XVEC (current_function_return_rtx, 0)) : 1) \
102 : 0)
103
104 /* The canonical saved comparison operands for non-cc0 machines, set in
105 the compare expander. */
106 rtx mmix_compare_op0;
107 rtx mmix_compare_op1;
108
109 /* We ignore some options with arguments. They are passed to the linker,
110 but also ends up here because they start with "-m". We tell the driver
111 to store them in a variable we don't inspect. */
112 const char *mmix_cc1_ignored_option;
113
114 /* Declarations of locals. */
115
116 /* Intermediate for insn output. */
117 static int mmix_output_destination_register;
118
119 static void mmix_output_shiftvalue_op_from_str
120 PARAMS ((FILE *, const char *, HOST_WIDEST_INT));
121 static void mmix_output_shifted_value PARAMS ((FILE *, HOST_WIDEST_INT));
122 static void mmix_output_condition PARAMS ((FILE *, rtx, int));
123 static HOST_WIDEST_INT mmix_intval PARAMS ((rtx));
124 static void mmix_output_octa PARAMS ((FILE *, HOST_WIDEST_INT, int));
125 static bool mmix_assemble_integer PARAMS ((rtx, unsigned int, int));
126 static struct machine_function * mmix_init_machine_status PARAMS ((void));
127 static void mmix_encode_section_info PARAMS ((tree, int));
128 static const char *mmix_strip_name_encoding PARAMS ((const char *));
129 static void mmix_emit_sp_add PARAMS ((HOST_WIDE_INT offset));
130 static void mmix_target_asm_function_prologue
131 PARAMS ((FILE *, HOST_WIDE_INT));
132 static void mmix_target_asm_function_end_prologue PARAMS ((FILE *));
133 static void mmix_target_asm_function_epilogue
134 PARAMS ((FILE *, HOST_WIDE_INT));
135 static void mmix_asm_output_mi_thunk
136 PARAMS ((FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree));
137
138
139 /* Target structure macros. Listed by node. See `Using and Porting GCC'
140 for a general description. */
141
142 /* Node: Function Entry */
143
144 #undef TARGET_ASM_BYTE_OP
145 #define TARGET_ASM_BYTE_OP NULL
146 #undef TARGET_ASM_ALIGNED_HI_OP
147 #define TARGET_ASM_ALIGNED_HI_OP NULL
148 #undef TARGET_ASM_ALIGNED_SI_OP
149 #define TARGET_ASM_ALIGNED_SI_OP NULL
150 #undef TARGET_ASM_ALIGNED_DI_OP
151 #define TARGET_ASM_ALIGNED_DI_OP NULL
152 #undef TARGET_ASM_INTEGER
153 #define TARGET_ASM_INTEGER mmix_assemble_integer
154
155 #undef TARGET_ASM_FUNCTION_PROLOGUE
156 #define TARGET_ASM_FUNCTION_PROLOGUE mmix_target_asm_function_prologue
157
158 #undef TARGET_ASM_FUNCTION_END_PROLOGUE
159 #define TARGET_ASM_FUNCTION_END_PROLOGUE mmix_target_asm_function_end_prologue
160
161 #undef TARGET_ASM_FUNCTION_EPILOGUE
162 #define TARGET_ASM_FUNCTION_EPILOGUE mmix_target_asm_function_epilogue
163
164 #undef TARGET_ENCODE_SECTION_INFO
165 #define TARGET_ENCODE_SECTION_INFO mmix_encode_section_info
166 #undef TARGET_STRIP_NAME_ENCODING
167 #define TARGET_STRIP_NAME_ENCODING mmix_strip_name_encoding
168
169 #undef TARGET_ASM_OUTPUT_MI_THUNK
170 #define TARGET_ASM_OUTPUT_MI_THUNK mmix_asm_output_mi_thunk
171 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
172 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
173
174 struct gcc_target targetm = TARGET_INITIALIZER;
175
176 /* Functions that are expansions for target macros.
177 See Target Macros in `Using and Porting GCC'. */
178
179 /* OVERRIDE_OPTIONS. */
180
181 void
182 mmix_override_options ()
183 {
184 /* Should we err or should we warn? Hmm. At least we must neutralize
185 it. For example the wrong kind of case-tables will be generated with
186 PIC; we use absolute address items for mmixal compatibility. FIXME:
187 They could be relative if we just elide them to after all pertinent
188 labels. */
189 if (flag_pic)
190 {
191 warning ("-f%s not supported: ignored", (flag_pic > 1) ? "PIC" : "pic");
192 flag_pic = 0;
193 }
194 }
195
196 /* INIT_EXPANDERS. */
197
198 void
199 mmix_init_expanders ()
200 {
201 init_machine_status = mmix_init_machine_status;
202 }
203
204 /* Set the per-function data. */
205
206 static struct machine_function *
207 mmix_init_machine_status ()
208 {
209 return ggc_alloc_cleared (sizeof (struct machine_function));
210 }
211
212 /* DATA_ALIGNMENT.
213 We have trouble getting the address of stuff that is located at other
214 than 32-bit alignments (GETA requirements), so try to give everything
215 at least 32-bit alignment. */
216
217 int
218 mmix_data_alignment (type, basic_align)
219 tree type ATTRIBUTE_UNUSED;
220 int basic_align;
221 {
222 if (basic_align < 32)
223 return 32;
224
225 return basic_align;
226 }
227
228 /* CONSTANT_ALIGNMENT. */
229
230 int
231 mmix_constant_alignment (constant, basic_align)
232 tree constant ATTRIBUTE_UNUSED;
233 int basic_align;
234 {
235 if (basic_align < 32)
236 return 32;
237
238 return basic_align;
239 }
240
241 /* LOCAL_ALIGNMENT. */
242
243 int
244 mmix_local_alignment (type, basic_align)
245 tree type ATTRIBUTE_UNUSED;
246 int basic_align;
247 {
248 if (basic_align < 32)
249 return 32;
250
251 return basic_align;
252 }
253
254 /* CONDITIONAL_REGISTER_USAGE. */
255
256 void
257 mmix_conditional_register_usage ()
258 {
259 int i;
260
261 if (TARGET_ABI_GNU)
262 {
263 static const int gnu_abi_reg_alloc_order[]
264 = MMIX_GNU_ABI_REG_ALLOC_ORDER;
265
266 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
267 reg_alloc_order[i] = gnu_abi_reg_alloc_order[i];
268
269 /* Change the default from the mmixware ABI. For the GNU ABI,
270 $15..$30 are call-saved just as $0..$14. There must be one
271 call-clobbered local register for the "hole" that holds the
272 number of saved local registers saved by PUSHJ/PUSHGO during the
273 function call, receiving the return value at return. So best is
274 to use the highest, $31. It's already marked call-clobbered for
275 the mmixware ABI. */
276 for (i = 15; i <= 30; i++)
277 call_used_regs[i] = 0;
278
279 /* "Unfix" the parameter registers. */
280 for (i = MMIX_RESERVED_GNU_ARG_0_REGNUM;
281 i < MMIX_RESERVED_GNU_ARG_0_REGNUM + MMIX_MAX_ARGS_IN_REGS;
282 i++)
283 fixed_regs[i] = 0;
284 }
285
286 /* Step over the ":" in special register names. */
287 if (! TARGET_TOPLEVEL_SYMBOLS)
288 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
289 if (reg_names[i][0] == ':')
290 reg_names[i]++;
291 }
292
293 /* LOCAL_REGNO.
294 All registers that are part of the register stack and that will be
295 saved are local. */
296
297 int
298 mmix_local_regno (regno)
299 int regno;
300 {
301 return regno <= MMIX_LAST_STACK_REGISTER_REGNUM && !call_used_regs[regno];
302 }
303
304 /* PREFERRED_RELOAD_CLASS.
305 We need to extend the reload class of REMAINDER_REG and HIMULT_REG. */
306
307 enum reg_class
308 mmix_preferred_reload_class (x, class)
309 rtx x ATTRIBUTE_UNUSED;
310 enum reg_class class;
311 {
312 /* FIXME: Revisit. */
313 return GET_CODE (x) == MOD && GET_MODE (x) == DImode
314 ? REMAINDER_REG : class;
315 }
316
317 /* PREFERRED_OUTPUT_RELOAD_CLASS.
318 We need to extend the reload class of REMAINDER_REG and HIMULT_REG. */
319
320 enum reg_class
321 mmix_preferred_output_reload_class (x, class)
322 rtx x ATTRIBUTE_UNUSED;
323 enum reg_class class;
324 {
325 /* FIXME: Revisit. */
326 return GET_CODE (x) == MOD && GET_MODE (x) == DImode
327 ? REMAINDER_REG : class;
328 }
329
330 /* SECONDARY_RELOAD_CLASS.
331 We need to reload regs of REMAINDER_REG and HIMULT_REG elsewhere. */
332
333 enum reg_class
334 mmix_secondary_reload_class (class, mode, x, in_p)
335 enum reg_class class;
336 enum machine_mode mode ATTRIBUTE_UNUSED;
337 rtx x ATTRIBUTE_UNUSED;
338 int in_p ATTRIBUTE_UNUSED;
339 {
340 if (class == REMAINDER_REG
341 || class == HIMULT_REG
342 || class == SYSTEM_REGS)
343 return GENERAL_REGS;
344
345 return NO_REGS;
346 }
347
348 /* CONST_OK_FOR_LETTER_P. */
349
350 int
351 mmix_const_ok_for_letter_p (value, c)
352 HOST_WIDE_INT value;
353 int c;
354 {
355 return
356 (c == 'I' ? value >= 0 && value <= 255
357 : c == 'J' ? value >= 0 && value <= 65535
358 : c == 'K' ? value <= 0 && value >= -255
359 : c == 'L' ? mmix_shiftable_wyde_value (value)
360 : c == 'M' ? value == 0
361 : c == 'N' ? mmix_shiftable_wyde_value (~value)
362 : c == 'O' ? (value == 3 || value == 5 || value == 9
363 || value == 17)
364 : 0);
365 }
366
367 /* CONST_DOUBLE_OK_FOR_LETTER_P. */
368
369 int
370 mmix_const_double_ok_for_letter_p (value, c)
371 rtx value;
372 int c;
373 {
374 return
375 (c == 'G' ? value == CONST0_RTX (GET_MODE (value))
376 : 0);
377 }
378
379 /* EXTRA_CONSTRAINT.
380 We need this since our constants are not always expressible as
381 CONST_INT:s, but rather often as CONST_DOUBLE:s. */
382
383 int
384 mmix_extra_constraint (x, c, strict)
385 rtx x;
386 int c;
387 int strict;
388 {
389 HOST_WIDEST_INT value;
390
391 /* When checking for an address, we need to handle strict vs. non-strict
392 register checks. Don't use address_operand, but instead its
393 equivalent (its callee, which it is just a wrapper for),
394 memory_operand_p and the strict-equivalent strict_memory_address_p. */
395 if (c == 'U')
396 return
397 strict
398 ? strict_memory_address_p (Pmode, x)
399 : memory_address_p (Pmode, x);
400
401 /* R asks whether x is to be loaded with GETA or something else. Right
402 now, only a SYMBOL_REF and LABEL_REF can fit for
403 TARGET_BASE_ADDRESSES.
404
405 Only constant symbolic addresses apply. With TARGET_BASE_ADDRESSES,
406 we just allow straight LABEL_REF or SYMBOL_REFs with SYMBOL_REF_FLAG
407 set right now; only function addresses and code labels. If we change
408 to let SYMBOL_REF_FLAG be set on other symbols, we have to check
409 inside CONST expressions. When TARGET_BASE_ADDRESSES is not in
410 effect, a "raw" constant check together with mmix_constant_address_p
411 is all that's needed; we want all constant addresses to be loaded
412 with GETA then. */
413 if (c == 'R')
414 return
415 GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_DOUBLE
416 && mmix_constant_address_p (x)
417 && (! TARGET_BASE_ADDRESSES
418 || (GET_CODE (x) == LABEL_REF
419 || (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_FLAG (x))));
420
421 if (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode)
422 return 0;
423
424 value = mmix_intval (x);
425
426 /* We used to map Q->J, R->K, S->L, T->N, U->O, but we don't have to any
427 more ('U' taken for address_operand, 'R' similarly). Some letters map
428 outside of CONST_INT, though; we still use 'S' and 'T'. */
429 if (c == 'S')
430 return mmix_shiftable_wyde_value (value);
431 else if (c == 'T')
432 return mmix_shiftable_wyde_value (~value);
433 return 0;
434 }
435
436 /* DYNAMIC_CHAIN_ADDRESS. */
437
438 rtx
439 mmix_dynamic_chain_address (frame)
440 rtx frame;
441 {
442 /* FIXME: the frame-pointer is stored at offset -8 from the current
443 frame-pointer. Unfortunately, the caller assumes that a
444 frame-pointer is present for *all* previous frames. There should be
445 a way to say that that cannot be done, like for RETURN_ADDR_RTX. */
446 return plus_constant (frame, -8);
447 }
448
449 /* STARTING_FRAME_OFFSET. */
450
451 int
452 mmix_starting_frame_offset ()
453 {
454 /* The old frame pointer is in the slot below the new one, so
455 FIRST_PARM_OFFSET does not need to depend on whether the
456 frame-pointer is needed or not. We have to adjust for the register
457 stack pointer being located below the saved frame pointer.
458 Similarly, we store the return address on the stack too, for
459 exception handling, and always if we save the register stack pointer. */
460 return
461 (-8
462 + (MMIX_CFUN_HAS_LANDING_PAD
463 ? -16 : (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS ? -8 : 0)));
464 }
465
466 /* RETURN_ADDR_RTX. */
467
468 rtx
469 mmix_return_addr_rtx (count, frame)
470 int count;
471 rtx frame ATTRIBUTE_UNUSED;
472 {
473 return count == 0
474 ? (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS
475 /* FIXME: Set frame_alias_set on the following. (Why?)
476 See mmix_initial_elimination_offset for the reason we can't use
477 get_hard_reg_initial_val for both. Always using a stack slot
478 and not a register would be suboptimal. */
479 ? validize_mem (gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, -16)))
480 : get_hard_reg_initial_val (Pmode, MMIX_INCOMING_RETURN_ADDRESS_REGNUM))
481 : NULL_RTX;
482 }
483
484 /* SETUP_FRAME_ADDRESSES. */
485
486 void
487 mmix_setup_frame_addresses ()
488 {
489 /* Nothing needed at the moment. */
490 }
491
492 /* The difference between the (imaginary) frame pointer and the stack
493 pointer. Used to eliminate the frame pointer. */
494
495 int
496 mmix_initial_elimination_offset (fromreg, toreg)
497 int fromreg;
498 int toreg;
499 {
500 int regno;
501 int fp_sp_offset
502 = (get_frame_size () + current_function_outgoing_args_size + 7) & ~7;
503
504 /* There is no actual offset between these two virtual values, but for
505 the frame-pointer, we have the old one in the stack position below
506 it, so the offset for the frame-pointer to the stack-pointer is one
507 octabyte larger. */
508 if (fromreg == MMIX_ARG_POINTER_REGNUM
509 && toreg == MMIX_FRAME_POINTER_REGNUM)
510 return 0;
511
512 /* The difference is the size of local variables plus the size of
513 outgoing function arguments that would normally be passed as
514 registers but must be passed on stack because we're out of
515 function-argument registers. Only global saved registers are
516 counted; the others go on the register stack.
517
518 The frame-pointer is counted too if it is what is eliminated, as we
519 need to balance the offset for it from STARTING_FRAME_OFFSET.
520
521 Also add in the slot for the register stack pointer we save if we
522 have a landing pad.
523
524 Unfortunately, we can't access $0..$14, from unwinder code easily, so
525 store the return address in a frame slot too. FIXME: Only for
526 non-leaf functions. FIXME: Always with a landing pad, because it's
527 hard to know whether we need the other at the time we know we need
528 the offset for one (and have to state it). It's a kludge until we
529 can express the register stack in the EH frame info.
530
531 We have to do alignment here; get_frame_size will not return a
532 multiple of STACK_BOUNDARY. FIXME: Add note in manual. */
533
534 for (regno = MMIX_FIRST_GLOBAL_REGNUM;
535 regno <= 255;
536 regno++)
537 if ((regs_ever_live[regno] && ! call_used_regs[regno])
538 || IS_MMIX_EH_RETURN_DATA_REG (regno))
539 fp_sp_offset += 8;
540
541 return fp_sp_offset
542 + (MMIX_CFUN_HAS_LANDING_PAD
543 ? 16 : (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS ? 8 : 0))
544 + (fromreg == MMIX_ARG_POINTER_REGNUM ? 0 : 8);
545 }
546
547 /* Return an rtx for a function argument to go in a register, and 0 for
548 one that must go on stack. */
549
550 rtx
551 mmix_function_arg (argsp, mode, type, named, incoming)
552 const CUMULATIVE_ARGS * argsp;
553 enum machine_mode mode;
554 tree type;
555 int named ATTRIBUTE_UNUSED;
556 int incoming;
557 {
558 /* Last-argument marker. */
559 if (type == void_type_node)
560 return (argsp->regs < MMIX_MAX_ARGS_IN_REGS)
561 ? gen_rtx_REG (mode,
562 (incoming
563 ? MMIX_FIRST_INCOMING_ARG_REGNUM
564 : MMIX_FIRST_ARG_REGNUM) + argsp->regs)
565 : NULL_RTX;
566
567 return (argsp->regs < MMIX_MAX_ARGS_IN_REGS
568 && !MUST_PASS_IN_STACK (mode, type)
569 && (GET_MODE_BITSIZE (mode) <= 64
570 || argsp->lib
571 || TARGET_LIBFUNC))
572 ? gen_rtx_REG (mode,
573 (incoming
574 ? MMIX_FIRST_INCOMING_ARG_REGNUM
575 : MMIX_FIRST_ARG_REGNUM)
576 + argsp->regs)
577 : NULL_RTX;
578 }
579
580 /* Returns nonzero for everything that goes by reference, 0 for
581 everything that goes by value. */
582
583 int
584 mmix_function_arg_pass_by_reference (argsp, mode, type, named)
585 const CUMULATIVE_ARGS * argsp;
586 enum machine_mode mode;
587 tree type;
588 int named ATTRIBUTE_UNUSED;
589 {
590 /* FIXME: Check: I'm not sure the MUST_PASS_IN_STACK check is
591 necessary. */
592 return
593 MUST_PASS_IN_STACK (mode, type)
594 || (MMIX_FUNCTION_ARG_SIZE (mode, type) > 8
595 && !TARGET_LIBFUNC
596 && !argsp->lib);
597 }
598
599 /* Return nonzero if regno is a register number where a parameter is
600 passed, and 0 otherwise. */
601
602 int
603 mmix_function_arg_regno_p (regno, incoming)
604 int regno;
605 int incoming;
606 {
607 int first_arg_regnum
608 = incoming ? MMIX_FIRST_INCOMING_ARG_REGNUM : MMIX_FIRST_ARG_REGNUM;
609
610 return regno >= first_arg_regnum
611 && regno < first_arg_regnum + MMIX_MAX_ARGS_IN_REGS;
612 }
613
614 /* FUNCTION_OUTGOING_VALUE. */
615
616 rtx
617 mmix_function_outgoing_value (valtype, func)
618 tree valtype;
619 tree func ATTRIBUTE_UNUSED;
620 {
621 enum machine_mode mode = TYPE_MODE (valtype);
622 enum machine_mode cmode;
623 int first_val_regnum = MMIX_OUTGOING_RETURN_VALUE_REGNUM;
624 rtx vec[MMIX_MAX_REGS_FOR_VALUE];
625 int i;
626 int nregs;
627
628 /* Return values that fit in a register need no special handling.
629 There's no register hole when parameters are passed in global
630 registers. */
631 if (TARGET_ABI_GNU
632 || GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
633 return
634 gen_rtx_REG (mode, MMIX_OUTGOING_RETURN_VALUE_REGNUM);
635
636 /* A complex type, made up of components. */
637 cmode = TYPE_MODE (TREE_TYPE (valtype));
638 nregs = ((GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD);
639
640 /* We need to take care of the effect of the register hole on return
641 values of large sizes; the last register will appear as the first
642 register, with the rest shifted. (For complex modes, this is just
643 swapped registers.) */
644
645 if (nregs > MMIX_MAX_REGS_FOR_VALUE)
646 internal_error ("too large function value type, needs %d registers,\
647 have only %d registers for this", nregs, MMIX_MAX_REGS_FOR_VALUE);
648
649 /* FIXME: Maybe we should handle structure values like this too
650 (adjusted for BLKmode), perhaps for both ABI:s. */
651 for (i = 0; i < nregs - 1; i++)
652 vec[i]
653 = gen_rtx_EXPR_LIST (VOIDmode,
654 gen_rtx_REG (cmode, first_val_regnum + i),
655 GEN_INT ((i + 1) * BITS_PER_UNIT));
656
657 vec[nregs - 1]
658 = gen_rtx_EXPR_LIST (VOIDmode,
659 gen_rtx_REG (cmode, first_val_regnum + nregs - 1),
660 GEN_INT (0));
661
662 return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nregs, vec));
663 }
664
665 /* FUNCTION_VALUE_REGNO_P. */
666
667 int
668 mmix_function_value_regno_p (regno)
669 int regno;
670 {
671 return regno == MMIX_RETURN_VALUE_REGNUM;
672 }
673
674 /* EH_RETURN_DATA_REGNO. */
675
676 int
677 mmix_eh_return_data_regno (n)
678 int n ATTRIBUTE_UNUSED;
679 {
680 if (n >= 0 && n < 4)
681 return MMIX_EH_RETURN_DATA_REGNO_START + n;
682
683 return INVALID_REGNUM;
684 }
685
686 /* EH_RETURN_STACKADJ_RTX. */
687
688 rtx
689 mmix_eh_return_stackadj_rtx ()
690 {
691 return gen_rtx_REG (Pmode, MMIX_EH_RETURN_STACKADJ_REGNUM);
692 }
693
694 /* EH_RETURN_HANDLER_RTX. */
695
696 rtx
697 mmix_eh_return_handler_rtx ()
698 {
699 return
700 gen_rtx_REG (Pmode, MMIX_INCOMING_RETURN_ADDRESS_REGNUM);
701 }
702
703 /* ASM_PREFERRED_EH_DATA_FORMAT. */
704
705 int
706 mmix_asm_preferred_eh_data_format (code, global)
707 int code ATTRIBUTE_UNUSED;
708 int global ATTRIBUTE_UNUSED;
709 {
710 /* This is the default (was at 2001-07-20). Revisit when needed. */
711 return DW_EH_PE_absptr;
712 }
713
714 /* Make a note that we've seen the beginning of the prologue. This
715 matters to whether we'll translate register numbers as calculated by
716 mmix_machine_dependent_reorg. */
717
718 static void
719 mmix_target_asm_function_prologue (stream, framesize)
720 FILE *stream ATTRIBUTE_UNUSED;
721 HOST_WIDE_INT framesize ATTRIBUTE_UNUSED;
722 {
723 cfun->machine->in_prologue = 1;
724 }
725
726 /* Make a note that we've seen the end of the prologue. */
727
728 static void
729 mmix_target_asm_function_end_prologue (stream)
730 FILE *stream ATTRIBUTE_UNUSED;
731 {
732 cfun->machine->in_prologue = 0;
733 }
734
735 /* MACHINE_DEPENDENT_REORG.
736 No actual rearrangements done here; just virtually by calculating the
737 highest saved stack register number used to modify the register numbers
738 at output time. */
739
740 void
741 mmix_machine_dependent_reorg (first)
742 rtx first ATTRIBUTE_UNUSED;
743 {
744 int regno;
745
746 /* We put the number of the highest saved register-file register in a
747 location convenient for the call-patterns to output. Note that we
748 don't tell dwarf2 about these registers, since it can't restore them
749 anyway. */
750 for (regno = MMIX_LAST_STACK_REGISTER_REGNUM;
751 regno >= 0;
752 regno--)
753 if ((regs_ever_live[regno] && !call_used_regs[regno])
754 || (regno == MMIX_FRAME_POINTER_REGNUM && frame_pointer_needed))
755 break;
756
757 /* Regardless of whether they're saved (they might be just read), we
758 mustn't include registers that carry parameters. We could scan the
759 insns to see whether they're actually used (and indeed do other less
760 trivial register usage analysis and transformations), but it seems
761 wasteful to optimize for unused parameter registers. As of
762 2002-04-30, regs_ever_live[n] seems to be set for only-reads too, but
763 that might change. */
764 if (!TARGET_ABI_GNU && regno < current_function_args_info.regs - 1)
765 {
766 regno = current_function_args_info.regs - 1;
767
768 /* We don't want to let this cause us to go over the limit and make
769 incoming parameter registers be misnumbered and treating the last
770 parameter register and incoming return value register call-saved.
771 Stop things at the unmodified scheme. */
772 if (regno > MMIX_RETURN_VALUE_REGNUM - 1)
773 regno = MMIX_RETURN_VALUE_REGNUM - 1;
774 }
775
776 cfun->machine->highest_saved_stack_register = regno;
777 }
778
779 /* TARGET_ASM_FUNCTION_EPILOGUE. */
780
781 static void
782 mmix_target_asm_function_epilogue (stream, locals_size)
783 FILE *stream;
784 HOST_WIDE_INT locals_size ATTRIBUTE_UNUSED;
785
786 {
787 /* Emit an \n for readability of the generated assembly. */
788 fputc ('\n', stream);
789 }
790
791 /* TARGET_ASM_OUTPUT_MI_THUNK. */
792
793 static void
794 mmix_asm_output_mi_thunk (stream, fndecl, delta, vcall_offset, func)
795 FILE * stream;
796 tree fndecl ATTRIBUTE_UNUSED;
797 HOST_WIDE_INT delta;
798 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED;
799 tree func;
800 {
801 /* If you define STRUCT_VALUE to 0, rather than use STRUCT_VALUE_REGNUM,
802 (i.e. pass location of structure to return as invisible first
803 argument) you need to tweak this code too. */
804 const char *regname = reg_names[MMIX_FIRST_INCOMING_ARG_REGNUM];
805
806 if (delta >= 0 && delta < 65536)
807 fprintf (stream, "\tINCL %s,%d\n", regname, (int)delta);
808 else if (delta < 0 && delta >= -255)
809 fprintf (stream, "\tSUBU %s,%s,%d\n", regname, regname, (int)-delta);
810 else
811 {
812 mmix_output_register_setting (stream, 255, delta, 1);
813 fprintf (stream, "\tADDU %s,%s,$255\n", regname, regname);
814 }
815
816 fprintf (stream, "\tJMP ");
817 assemble_name (stream, XSTR (XEXP (DECL_RTL (func), 0), 0));
818 fprintf (stream, "\n");
819 }
820
821 /* FUNCTION_PROFILER. */
822
823 void
824 mmix_function_profiler (stream, labelno)
825 FILE *stream ATTRIBUTE_UNUSED;
826 int labelno ATTRIBUTE_UNUSED;
827 {
828 sorry ("function_profiler support for MMIX");
829 }
830
831 /* SETUP_INCOMING_VARARGS. */
832
833 void
834 mmix_setup_incoming_varargs (args_so_farp, mode, vartype, pretend_sizep,
835 second_time)
836 CUMULATIVE_ARGS * args_so_farp;
837 enum machine_mode mode;
838 tree vartype;
839 int * pretend_sizep;
840 int second_time ATTRIBUTE_UNUSED;
841 {
842 /* The last named variable has been handled, but
843 args_so_farp has not been advanced for it. */
844 if (args_so_farp->regs + 1 < MMIX_MAX_ARGS_IN_REGS)
845 *pretend_sizep = (MMIX_MAX_ARGS_IN_REGS - (args_so_farp->regs + 1)) * 8;
846
847 /* We assume that one argument takes up one register here. That should
848 be true until we start messing with multi-reg parameters. */
849 if ((7 + (MMIX_FUNCTION_ARG_SIZE (mode, vartype))) / 8 != 1)
850 internal_error ("MMIX Internal: Last named vararg would not fit in a register");
851 }
852
853 /* EXPAND_BUILTIN_VA_ARG. */
854
855 /* This is modified from the "standard" implementation of va_arg: read the
856 value from the current (padded) address and increment by the (padded)
857 size. The difference for MMIX is that if the type is
858 pass-by-reference, then perform an indirection. */
859
860 rtx
861 mmix_expand_builtin_va_arg (valist, type)
862 tree valist;
863 tree type;
864 {
865 tree ptr_size = size_int (BITS_PER_WORD / BITS_PER_UNIT);
866 tree addr_tree, type_size = NULL;
867 tree align, alignm1;
868 tree rounded_size;
869 rtx addr;
870
871 /* Compute the rounded size of the type. */
872
873 /* Get AP. */
874 addr_tree = valist;
875 align = size_int (PARM_BOUNDARY / BITS_PER_UNIT);
876 alignm1 = size_int (PARM_BOUNDARY / BITS_PER_UNIT - 1);
877 if (type == error_mark_node
878 || (type_size = TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (type))) == NULL
879 || TREE_OVERFLOW (type_size))
880 /* Presumably an error; the size isn't computable. A message has
881 supposedly been emitted elsewhere. */
882 rounded_size = size_zero_node;
883 else
884 rounded_size = fold (build (MULT_EXPR, sizetype,
885 fold (build (TRUNC_DIV_EXPR, sizetype,
886 fold (build (PLUS_EXPR, sizetype,
887 type_size, alignm1)),
888 align)),
889 align));
890
891 if (AGGREGATE_TYPE_P (type)
892 && GET_MODE_UNIT_SIZE (TYPE_MODE (type)) < 8
893 && GET_MODE_UNIT_SIZE (TYPE_MODE (type)) != 0)
894 {
895 /* Adjust for big-endian the location of aggregates passed in a
896 register, but where the aggregate is accessed in a shorter mode
897 than the natural register mode (i.e. it is accessed as SFmode(?),
898 SImode, HImode or QImode rather than DImode or DFmode(?)). FIXME:
899 Or should we adjust the mode in which the aggregate is read, to be
900 a register size mode? (Hum, nah, a small offset is generally
901 cheaper than a wider memory access on MMIX.) */
902 addr_tree
903 = build (PLUS_EXPR, TREE_TYPE (addr_tree), addr_tree,
904 size_int ((BITS_PER_WORD / BITS_PER_UNIT)
905 - GET_MODE_UNIT_SIZE (TYPE_MODE (type))));
906 }
907 else if (!integer_zerop (rounded_size))
908 {
909 if (!really_constant_p (type_size))
910 /* Varying-size types come in by reference. */
911 addr_tree
912 = build1 (INDIRECT_REF, build_pointer_type (type), addr_tree);
913 else
914 {
915 /* If the size is less than a register, then we need to pad the
916 address by adding the difference. */
917 tree addend
918 = fold (build (COND_EXPR, sizetype,
919 fold (build (GT_EXPR, sizetype,
920 rounded_size,
921 align)),
922 size_zero_node,
923 fold (build (MINUS_EXPR, sizetype,
924 rounded_size,
925 type_size))));
926 tree addr_tree1
927 = fold (build (PLUS_EXPR, TREE_TYPE (addr_tree), addr_tree,
928 addend));
929
930 /* If this type is larger than what fits in a register, then it
931 is passed by reference. */
932 addr_tree
933 = fold (build (COND_EXPR, TREE_TYPE (addr_tree1),
934 fold (build (GT_EXPR, sizetype,
935 rounded_size,
936 ptr_size)),
937 build1 (INDIRECT_REF, build_pointer_type (type),
938 addr_tree1),
939 addr_tree1));
940 }
941 }
942
943 addr = expand_expr (addr_tree, NULL_RTX, Pmode, EXPAND_NORMAL);
944 addr = copy_to_reg (addr);
945
946 if (!integer_zerop (rounded_size))
947 {
948 /* Compute new value for AP. For MMIX, it is always advanced by the
949 size of a register. */
950 tree t = build (MODIFY_EXPR, TREE_TYPE (valist), valist,
951 build (PLUS_EXPR, TREE_TYPE (valist), valist,
952 ptr_size));
953 TREE_SIDE_EFFECTS (t) = 1;
954 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
955 }
956
957 return addr;
958 }
959
960 /* TRAMPOLINE_SIZE. */
961 /* Four 4-byte insns plus two 8-byte values. */
962 int mmix_trampoline_size = 32;
963
964
965 /* TRAMPOLINE_TEMPLATE. */
966
967 void
968 mmix_trampoline_template (stream)
969 FILE * stream;
970 {
971 /* Read a value into the static-chain register and jump somewhere. The
972 static chain is stored at offset 16, and the function address is
973 stored at offset 24. */
974 /* FIXME: GCC copies this using *intsize* (tetra), when it should use
975 register size (octa). */
976 fprintf (stream, "\tGETA $255,1F\n\t");
977 fprintf (stream, "LDOU %s,$255,0\n\t",
978 reg_names[MMIX_STATIC_CHAIN_REGNUM]);
979 fprintf (stream, "LDOU $255,$255,8\n\t");
980 fprintf (stream, "GO $255,$255,0\n");
981 fprintf (stream, "1H\tOCTA 0\n\t");
982 fprintf (stream, "OCTA 0\n");
983 }
984
985 /* INITIALIZE_TRAMPOLINE. */
986 /* Set the static chain and function pointer field in the trampoline.
987 We also SYNCID here to be sure (doesn't matter in the simulator, but
988 some day it will). */
989
990 void
991 mmix_initialize_trampoline (trampaddr, fnaddr, static_chain)
992 rtx trampaddr;
993 rtx fnaddr;
994 rtx static_chain;
995 {
996 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (trampaddr, 16)),
997 static_chain);
998 emit_move_insn (gen_rtx_MEM (DImode,
999 plus_constant (trampaddr, 24)),
1000 fnaddr);
1001 emit_insn (gen_sync_icache (validize_mem (gen_rtx_MEM (DImode,
1002 trampaddr)),
1003 GEN_INT (mmix_trampoline_size - 1)));
1004 }
1005
1006 /* We must exclude constant addresses that have an increment that is not a
1007 multiple of four bytes because of restrictions of the GETA
1008 instruction, unless TARGET_BASE_ADDRESSES. */
1009
1010 int
1011 mmix_constant_address_p (x)
1012 rtx x;
1013 {
1014 RTX_CODE code = GET_CODE (x);
1015 int addend = 0;
1016 /* When using "base addresses", anything constant goes. */
1017 int constant_ok = TARGET_BASE_ADDRESSES != 0;
1018
1019 switch (code)
1020 {
1021 case LABEL_REF:
1022 case SYMBOL_REF:
1023 return 1;
1024
1025 case CONSTANT_P_RTX:
1026 case HIGH:
1027 /* FIXME: Don't know how to dissect these. Avoid them for now,
1028 except we know they're constants. */
1029 return constant_ok;
1030
1031 case CONST_INT:
1032 addend = INTVAL (x);
1033 break;
1034
1035 case CONST_DOUBLE:
1036 if (GET_MODE (x) != VOIDmode)
1037 /* Strange that we got here. FIXME: Check if we do. */
1038 return constant_ok;
1039 addend = CONST_DOUBLE_LOW (x);
1040 break;
1041
1042 case CONST:
1043 /* Note that expressions with arithmetic on forward references don't
1044 work in mmixal. People using gcc assembly code with mmixal might
1045 need to move arrays and such to before the point of use. */
1046 if (GET_CODE (XEXP (x, 0)) == PLUS)
1047 {
1048 rtx x0 = XEXP (XEXP (x, 0), 0);
1049 rtx x1 = XEXP (XEXP (x, 0), 1);
1050
1051 if ((GET_CODE (x0) == SYMBOL_REF
1052 || GET_CODE (x0) == LABEL_REF)
1053 && (GET_CODE (x1) == CONST_INT
1054 || (GET_CODE (x1) == CONST_DOUBLE
1055 && GET_MODE (x1) == VOIDmode)))
1056 addend = mmix_intval (x1);
1057 else
1058 return constant_ok;
1059 }
1060 else
1061 return constant_ok;
1062 break;
1063
1064 default:
1065 return 0;
1066 }
1067
1068 return constant_ok || (addend & 3) == 0;
1069 }
1070
1071 /* Return 1 if the address is OK, otherwise 0.
1072 Used by GO_IF_LEGITIMATE_ADDRESS. */
1073
1074 int
1075 mmix_legitimate_address (mode, x, strict_checking)
1076 enum machine_mode mode ATTRIBUTE_UNUSED;
1077 rtx x;
1078 int strict_checking;
1079 {
1080 #define MMIX_REG_OK(X) \
1081 ((strict_checking \
1082 && (REGNO (X) <= MMIX_LAST_GENERAL_REGISTER \
1083 || (reg_renumber[REGNO (X)] > 0 \
1084 && reg_renumber[REGNO (X)] <= MMIX_LAST_GENERAL_REGISTER))) \
1085 || (!strict_checking \
1086 && (REGNO (X) <= MMIX_LAST_GENERAL_REGISTER \
1087 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1088 || REGNO (X) == ARG_POINTER_REGNUM)))
1089
1090 /* We only accept:
1091 (mem reg)
1092 (mem (plus reg reg))
1093 (mem (plus reg 0..255)).
1094 unless TARGET_BASE_ADDRESSES, in which case we accept all
1095 (mem constant_address) too. */
1096
1097
1098 /* (mem reg) */
1099 if (REG_P (x) && MMIX_REG_OK (x))
1100 return 1;
1101
1102 if (GET_CODE(x) == PLUS)
1103 {
1104 rtx x1 = XEXP (x, 0);
1105 rtx x2 = XEXP (x, 1);
1106
1107 /* Try swapping the order. FIXME: Do we need this? */
1108 if (! REG_P (x1))
1109 {
1110 rtx tem = x1;
1111 x1 = x2;
1112 x2 = tem;
1113 }
1114
1115 /* (mem (plus (reg?) (?))) */
1116 if (!REG_P (x1) || !MMIX_REG_OK (x1))
1117 return TARGET_BASE_ADDRESSES && mmix_constant_address_p (x);
1118
1119 /* (mem (plus (reg) (reg?))) */
1120 if (REG_P (x2) && MMIX_REG_OK (x2))
1121 return 1;
1122
1123 /* (mem (plus (reg) (0..255?))) */
1124 if (GET_CODE (x2) == CONST_INT
1125 && CONST_OK_FOR_LETTER_P (INTVAL (x2), 'I'))
1126 return 1;
1127
1128 return 0;
1129 }
1130
1131 return TARGET_BASE_ADDRESSES && mmix_constant_address_p (x);
1132 }
1133
1134 /* LEGITIMATE_CONSTANT_P. */
1135
1136 int
1137 mmix_legitimate_constant_p (x)
1138 rtx x;
1139 {
1140 RTX_CODE code = GET_CODE (x);
1141
1142 /* We must allow any number due to the way the cse passes works; if we
1143 do not allow any number here, general_operand will fail, and insns
1144 will fatally fail recognition instead of "softly". */
1145 if (code == CONST_INT || code == CONST_DOUBLE)
1146 return 1;
1147
1148 return CONSTANT_ADDRESS_P (x);
1149 }
1150
1151 /* SELECT_CC_MODE. */
1152
1153 enum machine_mode
1154 mmix_select_cc_mode (op, x, y)
1155 RTX_CODE op;
1156 rtx x;
1157 rtx y ATTRIBUTE_UNUSED;
1158 {
1159 /* We use CCmode, CC_UNSmode, CC_FPmode, CC_FPEQmode and CC_FUNmode to
1160 output different compare insns. Note that we do not check the
1161 validity of the comparison here. */
1162
1163 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1164 {
1165 if (op == ORDERED || op == UNORDERED || op == UNGE
1166 || op == UNGT || op == UNLE || op == UNLT)
1167 return CC_FUNmode;
1168
1169 if (op == EQ || op == NE)
1170 return CC_FPEQmode;
1171
1172 return CC_FPmode;
1173 }
1174
1175 if (op == GTU || op == LTU || op == GEU || op == LEU)
1176 return CC_UNSmode;
1177
1178 return CCmode;
1179 }
1180
1181 /* REVERSIBLE_CC_MODE. */
1182
1183 int
1184 mmix_reversible_cc_mode (mode)
1185 enum machine_mode mode;
1186 {
1187 /* That is, all integer and the EQ, NE, ORDERED and UNORDERED float
1188 compares. */
1189 return mode != CC_FPmode;
1190 }
1191
1192 /* DEFAULT_RTX_COSTS. */
1193
1194 int
1195 mmix_rtx_cost_recalculated (x, code, outer_code, costp)
1196 rtx x ATTRIBUTE_UNUSED;
1197 RTX_CODE code ATTRIBUTE_UNUSED;
1198 RTX_CODE outer_code ATTRIBUTE_UNUSED;
1199 int *costp ATTRIBUTE_UNUSED;
1200 {
1201 /* For the time being, this is just a stub and we'll accept the
1202 generic calculations, until we can do measurements, at least.
1203 Say we did not modify any calculated costs. */
1204 return 0;
1205 }
1206
1207 /* ADDRESS_COST. */
1208
1209 int
1210 mmix_address_cost (addr)
1211 rtx addr ATTRIBUTE_UNUSED;
1212 {
1213 /* There's no difference in the address costs and we have lots of
1214 registers. Some targets use constant 0, many others use 1 to say
1215 this. Let's start with 1. */
1216 return 1;
1217 }
1218
1219 /* REGISTER_MOVE_COST. */
1220
1221 int
1222 mmix_register_move_cost (mode, from, to)
1223 enum machine_mode mode ATTRIBUTE_UNUSED;
1224 enum reg_class from;
1225 enum reg_class to;
1226 {
1227 return (from == GENERAL_REGS && from == to) ? 2 : 3;
1228 }
1229
1230 /* Note that we don't have a TEXT_SECTION_ASM_OP, because it has to be a
1231 compile-time constant; it's used in an asm in crtstuff.c, compiled for
1232 the target. */
1233
1234 /* DATA_SECTION_ASM_OP. */
1235
1236 const char *
1237 mmix_data_section_asm_op ()
1238 {
1239 return "\t.data ! mmixal:= 8H LOC 9B";
1240 }
1241
1242 static void
1243 mmix_encode_section_info (decl, first)
1244 tree decl;
1245 int first;
1246 {
1247 /* Test for an external declaration, and do nothing if it is one. */
1248 if ((TREE_CODE (decl) == VAR_DECL
1249 && (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl)))
1250 || (TREE_CODE (decl) == FUNCTION_DECL && TREE_PUBLIC (decl)))
1251 ;
1252 else if (first && DECL_P (decl))
1253 {
1254 /* For non-visible declarations, add a "@" prefix, which we skip
1255 when the label is output. If the label does not have this
1256 prefix, a ":" is output if -mtoplevel-symbols.
1257
1258 Note that this does not work for data that is declared extern and
1259 later defined as static. If there's code in between, that code
1260 will refer to the extern declaration, and vice versa. This just
1261 means that when -mtoplevel-symbols is in use, we can just handle
1262 well-behaved ISO-compliant code. */
1263
1264 const char *str = XSTR (XEXP (DECL_RTL (decl), 0), 0);
1265 int len = strlen (str);
1266 char *newstr;
1267
1268 /* Why is the return type of ggc_alloc_string const? */
1269 newstr = (char *) ggc_alloc_string ("", len + 1);
1270
1271 strcpy (newstr + 1, str);
1272 *newstr = '@';
1273 XSTR (XEXP (DECL_RTL (decl), 0), 0) = newstr;
1274 }
1275
1276 /* Set SYMBOL_REF_FLAG for things that we want to access with GETA. We
1277 may need different options to reach for different things with GETA.
1278 For now, functions and things we know or have been told are constant. */
1279 if (TREE_CODE (decl) == FUNCTION_DECL
1280 || TREE_CONSTANT (decl)
1281 || (TREE_CODE (decl) == VAR_DECL
1282 && TREE_READONLY (decl)
1283 && !TREE_SIDE_EFFECTS (decl)
1284 && (!DECL_INITIAL (decl)
1285 || TREE_CONSTANT (DECL_INITIAL (decl)))))
1286 {
1287 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (decl)) != 'd'
1288 ? TREE_CST_RTL (decl) : DECL_RTL (decl));
1289 SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
1290 }
1291 }
1292
1293 static const char *
1294 mmix_strip_name_encoding (name)
1295 const char *name;
1296 {
1297 for (; (*name == '@' || *name == '*'); name++)
1298 ;
1299
1300 return name;
1301 }
1302
1303 /* ASM_FILE_START. */
1304
1305 void
1306 mmix_asm_file_start (stream)
1307 FILE * stream;
1308 {
1309 /* We just emit a little comment for the time being. FIXME: Perhaps add
1310 -mstandalone and some segment and prefix setup here. */
1311 ASM_OUTPUT_SOURCE_FILENAME (stream, main_input_filename);
1312
1313 fprintf (stream, "! mmixal:= 8H LOC Data_Section\n");
1314
1315 /* Make sure each file starts with the text section. */
1316 text_section ();
1317 }
1318
1319 /* ASM_FILE_END. */
1320
1321 void
1322 mmix_asm_file_end (stream)
1323 FILE * stream ATTRIBUTE_UNUSED;
1324 {
1325 /* Make sure each file ends with the data section. */
1326 data_section ();
1327 }
1328
1329 /* ASM_OUTPUT_SOURCE_FILENAME. */
1330
1331 void
1332 mmix_asm_output_source_filename (stream, name)
1333 FILE * stream;
1334 const char * name;
1335 {
1336 fprintf (stream, "# 1 ");
1337 OUTPUT_QUOTED_STRING (stream, name);
1338 fprintf (stream, "\n");
1339 }
1340
1341 /* OUTPUT_QUOTED_STRING. */
1342
1343 void
1344 mmix_output_quoted_string (stream, string, length)
1345 FILE * stream;
1346 const char * string;
1347 int length;
1348 {
1349 const char * string_end = string + length;
1350 static const char *const unwanted_chars = "\"[]\\";
1351
1352 /* Output "any character except newline and double quote character". We
1353 play it safe and avoid all control characters too. We also do not
1354 want [] as characters, should input be passed through m4 with [] as
1355 quotes. Further, we avoid "\", because the GAS port handles it as a
1356 quoting character. */
1357 while (string < string_end)
1358 {
1359 if (*string
1360 && (unsigned char) *string < 128
1361 && !ISCNTRL (*string)
1362 && strchr (unwanted_chars, *string) == NULL)
1363 {
1364 fputc ('"', stream);
1365 while (*string
1366 && (unsigned char) *string < 128
1367 && !ISCNTRL (*string)
1368 && strchr (unwanted_chars, *string) == NULL
1369 && string < string_end)
1370 {
1371 fputc (*string, stream);
1372 string++;
1373 }
1374 fputc ('"', stream);
1375 if (string < string_end)
1376 fprintf (stream, ",");
1377 }
1378 if (string < string_end)
1379 {
1380 fprintf (stream, "#%x", *string & 255);
1381 string++;
1382 if (string < string_end)
1383 fprintf (stream, ",");
1384 }
1385 }
1386 }
1387
1388 /* ASM_OUTPUT_SOURCE_LINE. */
1389
1390 void
1391 mmix_asm_output_source_line (stream, lineno)
1392 FILE * stream;
1393 int lineno;
1394 {
1395 fprintf (stream, "# %d ", lineno);
1396 OUTPUT_QUOTED_STRING (stream, main_input_filename);
1397 fprintf (stream, "\n");
1398 }
1399
1400 /* Target hook for assembling integer objects. Use mmix_print_operand
1401 for WYDE and TETRA. Use mmix_output_octa to output 8-byte
1402 CONST_DOUBLEs. */
1403
1404 static bool
1405 mmix_assemble_integer (x, size, aligned_p)
1406 rtx x;
1407 unsigned int size;
1408 int aligned_p;
1409 {
1410 if (aligned_p)
1411 switch (size)
1412 {
1413 /* We handle a limited number of types of operands in here. But
1414 that's ok, because we can punt to generic functions. We then
1415 pretend that aligned data isn't needed, so the usual .<pseudo>
1416 syntax is used (which works for aligned data too). We actually
1417 *must* do that, since we say we don't have simple aligned
1418 pseudos, causing this function to be called. We just try and
1419 keep as much compatibility as possible with mmixal syntax for
1420 normal cases (i.e. without GNU extensions and C only). */
1421 case 1:
1422 if (GET_CODE (x) != CONST_INT)
1423 {
1424 aligned_p = 0;
1425 break;
1426 }
1427 fputs ("\tBYTE\t", asm_out_file);
1428 mmix_print_operand (asm_out_file, x, 'B');
1429 fputc ('\n', asm_out_file);
1430 return true;
1431
1432 case 2:
1433 if (GET_CODE (x) != CONST_INT)
1434 {
1435 aligned_p = 0;
1436 break;
1437 }
1438 fputs ("\tWYDE\t", asm_out_file);
1439 mmix_print_operand (asm_out_file, x, 'W');
1440 fputc ('\n', asm_out_file);
1441 return true;
1442
1443 case 4:
1444 if (GET_CODE (x) != CONST_INT)
1445 {
1446 aligned_p = 0;
1447 break;
1448 }
1449 fputs ("\tTETRA\t", asm_out_file);
1450 mmix_print_operand (asm_out_file, x, 'L');
1451 fputc ('\n', asm_out_file);
1452 return true;
1453
1454 case 8:
1455 if (GET_CODE (x) == CONST_DOUBLE)
1456 /* We don't get here anymore for CONST_DOUBLE, because DImode
1457 isn't expressed as CONST_DOUBLE, and DFmode is handled
1458 elsewhere. */
1459 abort ();
1460 assemble_integer_with_op ("\tOCTA\t", x);
1461 return true;
1462 }
1463 return default_assemble_integer (x, size, aligned_p);
1464 }
1465
1466 /* ASM_OUTPUT_ASCII. */
1467
1468 void
1469 mmix_asm_output_ascii (stream, string, length)
1470 FILE *stream;
1471 const char *string;
1472 int length;
1473 {
1474 while (length > 0)
1475 {
1476 int chunk_size = length > 60 ? 60 : length;
1477 fprintf (stream, "\tBYTE ");
1478 mmix_output_quoted_string (stream, string, chunk_size);
1479 string += chunk_size;
1480 length -= chunk_size;
1481 fprintf (stream, "\n");
1482 }
1483 }
1484
1485 /* ASM_OUTPUT_ALIGNED_COMMON. */
1486
1487 void
1488 mmix_asm_output_aligned_common (stream, name, size, align)
1489 FILE *stream;
1490 const char *name;
1491 int size;
1492 int align;
1493 {
1494 /* This is mostly the elfos.h one. There doesn't seem to be a way to
1495 express this in a mmixal-compatible way. */
1496 fprintf (stream, "\t.comm\t");
1497 assemble_name (stream, name);
1498 fprintf (stream, ",%u,%u ! mmixal-incompatible COMMON\n",
1499 size, align / BITS_PER_UNIT);
1500 }
1501
1502 /* ASM_OUTPUT_ALIGNED_LOCAL. */
1503
1504 void
1505 mmix_asm_output_aligned_local (stream, name, size, align)
1506 FILE * stream;
1507 const char * name;
1508 int size;
1509 int align;
1510 {
1511 data_section ();
1512
1513 ASM_OUTPUT_ALIGN (stream, exact_log2 (align/BITS_PER_UNIT));
1514 assemble_name (stream, name);
1515 fprintf (stream, "\tLOC @+%d\n", size);
1516 }
1517
1518 /* ASM_OUTPUT_LABEL. */
1519
1520 void
1521 mmix_asm_output_label (stream, name)
1522 FILE *stream;
1523 const char * name;
1524 {
1525 assemble_name (stream, name);
1526 fprintf (stream, "\tIS @\n");
1527 }
1528
1529 /* ASM_DECLARE_REGISTER_GLOBAL. */
1530
1531 void
1532 mmix_asm_declare_register_global (stream, decl, regno, name)
1533 FILE *stream ATTRIBUTE_UNUSED;
1534 tree decl ATTRIBUTE_UNUSED;
1535 int regno ATTRIBUTE_UNUSED;
1536 const char *name ATTRIBUTE_UNUSED;
1537 {
1538 /* Nothing to do here, but there *will* be, therefore the framework is
1539 here. */
1540 }
1541
1542 /* ASM_WEAKEN_LABEL. */
1543
1544 void
1545 mmix_asm_weaken_label (stream, name)
1546 FILE * stream ATTRIBUTE_UNUSED;
1547 const char * name ATTRIBUTE_UNUSED;
1548 {
1549 fprintf (stream, "\t.weak ");
1550 assemble_name (stream, name);
1551 fprintf (stream, " ! mmixal-incompatible\n");
1552 }
1553
1554 /* MAKE_DECL_ONE_ONLY. */
1555
1556 void
1557 mmix_make_decl_one_only (decl)
1558 tree decl;
1559 {
1560 DECL_WEAK (decl) = 1;
1561 }
1562
1563 /* ASM_OUTPUT_LABELREF.
1564 Strip GCC's '*' and our own '@'. No order is assumed. */
1565
1566 void
1567 mmix_asm_output_labelref (stream, name)
1568 FILE *stream;
1569 const char *name;
1570 {
1571 int is_extern = 1;
1572
1573 for (; (*name == '@' || *name == '*'); name++)
1574 if (*name == '@')
1575 is_extern = 0;
1576
1577 asm_fprintf (stream, "%s%U%s",
1578 is_extern && TARGET_TOPLEVEL_SYMBOLS ? ":" : "",
1579 name);
1580 }
1581
1582 /* ASM_OUTPUT_DEF. */
1583
1584 void
1585 mmix_asm_output_def (stream, name, value)
1586 FILE * stream;
1587 const char * name;
1588 const char * value;
1589 {
1590 assemble_name (stream, name);
1591 fprintf (stream, "\tIS ");
1592 assemble_name (stream, value);
1593 fputc ('\n', stream);
1594 }
1595
1596 /* PRINT_OPERAND. */
1597
1598 void
1599 mmix_print_operand (stream, x, code)
1600 FILE * stream;
1601 rtx x;
1602 int code;
1603 {
1604 /* When we add support for different codes later, we can, when needed,
1605 drop through to the main handler with a modified operand. */
1606 rtx modified_x = x;
1607 int regno = x != NULL_RTX && REG_P (x) ? REGNO (x) : 0;
1608
1609 switch (code)
1610 {
1611 /* Unrelated codes are in alphabetic order. */
1612
1613 case '+':
1614 /* For conditional branches, output "P" for a probable branch. */
1615 if (TARGET_BRANCH_PREDICT)
1616 {
1617 x = find_reg_note (current_output_insn, REG_BR_PROB, 0);
1618 if (x && INTVAL (XEXP (x, 0)) > REG_BR_PROB_BASE / 2)
1619 putc ('P', stream);
1620 }
1621 return;
1622
1623 case '.':
1624 /* For the %d in POP %d,0. */
1625 fprintf (stream, "%d", MMIX_POP_ARGUMENT ());
1626 return;
1627
1628 case 'B':
1629 if (GET_CODE (x) != CONST_INT)
1630 fatal_insn ("MMIX Internal: Expected a CONST_INT, not this", x);
1631 fprintf (stream, "%d", (int) (INTVAL (x) & 0xff));
1632 return;
1633
1634 case 'H':
1635 /* Highpart. Must be general register, and not the last one, as
1636 that one cannot be part of a consecutive register pair. */
1637 if (regno > MMIX_LAST_GENERAL_REGISTER - 1)
1638 internal_error ("MMIX Internal: Bad register: %d", regno);
1639
1640 /* This is big-endian, so the high-part is the first one. */
1641 fprintf (stream, "%s", reg_names[MMIX_OUTPUT_REGNO (regno)]);
1642 return;
1643
1644 case 'L':
1645 /* Lowpart. Must be CONST_INT or general register, and not the last
1646 one, as that one cannot be part of a consecutive register pair. */
1647 if (GET_CODE (x) == CONST_INT)
1648 {
1649 fprintf (stream, "#%lx",
1650 (unsigned long) (INTVAL (x)
1651 & ((unsigned int) 0x7fffffff * 2 + 1)));
1652 return;
1653 }
1654
1655 if (GET_CODE (x) == SYMBOL_REF)
1656 {
1657 output_addr_const (stream, x);
1658 return;
1659 }
1660
1661 if (regno > MMIX_LAST_GENERAL_REGISTER - 1)
1662 internal_error ("MMIX Internal: Bad register: %d", regno);
1663
1664 /* This is big-endian, so the low-part is + 1. */
1665 fprintf (stream, "%s", reg_names[MMIX_OUTPUT_REGNO (regno) + 1]);
1666 return;
1667
1668 /* Can't use 'a' because that's a generic modifier for address
1669 output. */
1670 case 'A':
1671 mmix_output_shiftvalue_op_from_str (stream, "ANDN",
1672 ~(unsigned HOST_WIDEST_INT)
1673 mmix_intval (x));
1674 return;
1675
1676 case 'i':
1677 mmix_output_shiftvalue_op_from_str (stream, "INC",
1678 (unsigned HOST_WIDEST_INT)
1679 mmix_intval (x));
1680 return;
1681
1682 case 'o':
1683 mmix_output_shiftvalue_op_from_str (stream, "OR",
1684 (unsigned HOST_WIDEST_INT)
1685 mmix_intval (x));
1686 return;
1687
1688 case 's':
1689 mmix_output_shiftvalue_op_from_str (stream, "SET",
1690 (unsigned HOST_WIDEST_INT)
1691 mmix_intval (x));
1692 return;
1693
1694 case 'd':
1695 case 'D':
1696 mmix_output_condition (stream, x, (code == 'D'));
1697 return;
1698
1699 case 'e':
1700 /* Output an extra "e" to make fcmpe, fune. */
1701 if (TARGET_FCMP_EPSILON)
1702 fprintf (stream, "e");
1703 return;
1704
1705 case 'm':
1706 /* Output the number minus 1. */
1707 if (GET_CODE (x) != CONST_INT)
1708 {
1709 fatal_insn ("MMIX Internal: Bad value for 'm', not a CONST_INT",
1710 x);
1711 }
1712 fprintf (stream, HOST_WIDEST_INT_PRINT_DEC,
1713 (HOST_WIDEST_INT) (mmix_intval (x) - 1));
1714 return;
1715
1716 case 'p':
1717 /* Store the number of registers we want to save. This was setup
1718 by the prologue. The actual operand contains the number of
1719 registers to pass, but we don't use it currently. Anyway, we
1720 need to output the number of saved registers here. */
1721 fprintf (stream, "%d",
1722 cfun->machine->highest_saved_stack_register + 1);
1723 return;
1724
1725 case 'r':
1726 /* Store the register to output a constant to. */
1727 if (! REG_P (x))
1728 fatal_insn ("MMIX Internal: Expected a register, not this", x);
1729 mmix_output_destination_register = MMIX_OUTPUT_REGNO (regno);
1730 return;
1731
1732 case 'I':
1733 /* Output the constant. Note that we use this for floats as well. */
1734 if (GET_CODE (x) != CONST_INT
1735 && (GET_CODE (x) != CONST_DOUBLE
1736 || (GET_MODE (x) != VOIDmode && GET_MODE (x) != DFmode
1737 && GET_MODE (x) != SFmode)))
1738 fatal_insn ("MMIX Internal: Expected a constant, not this", x);
1739 mmix_output_register_setting (stream,
1740 mmix_output_destination_register,
1741 mmix_intval (x), 0);
1742 return;
1743
1744 case 'U':
1745 /* An U for unsigned, if TARGET_ZERO_EXTEND. Ignore the operand. */
1746 if (TARGET_ZERO_EXTEND)
1747 putc ('U', stream);
1748 return;
1749
1750 case 'v':
1751 mmix_output_shifted_value (stream, (HOST_WIDEST_INT) mmix_intval (x));
1752 return;
1753
1754 case 'V':
1755 mmix_output_shifted_value (stream, (HOST_WIDEST_INT) ~mmix_intval (x));
1756 return;
1757
1758 case 'W':
1759 if (GET_CODE (x) != CONST_INT)
1760 fatal_insn ("MMIX Internal: Expected a CONST_INT, not this", x);
1761 fprintf (stream, "#%x", (int) (INTVAL (x) & 0xffff));
1762 return;
1763
1764 case 0:
1765 /* Nothing to do. */
1766 break;
1767
1768 default:
1769 /* Presumably there's a missing case above if we get here. */
1770 internal_error ("MMIX Internal: Missing `%c' case in mmix_print_operand", code);
1771 }
1772
1773 switch (GET_CODE (modified_x))
1774 {
1775 case REG:
1776 regno = REGNO (modified_x);
1777 if (regno >= FIRST_PSEUDO_REGISTER)
1778 internal_error ("MMIX Internal: Bad register: %d", regno);
1779 fprintf (stream, "%s", reg_names[MMIX_OUTPUT_REGNO (regno)]);
1780 return;
1781
1782 case MEM:
1783 output_address (XEXP (modified_x, 0));
1784 return;
1785
1786 case CONST_INT:
1787 /* For -2147483648, mmixal complains that the constant does not fit
1788 in 4 bytes, so let's output it as hex. Take care to handle hosts
1789 where HOST_WIDE_INT is longer than an int.
1790
1791 Print small constants +-255 using decimal. */
1792
1793 if (INTVAL (modified_x) > -256 && INTVAL (modified_x) < 256)
1794 fprintf (stream, "%d", (int) (INTVAL (modified_x)));
1795 else
1796 fprintf (stream, "#%x",
1797 (int) (INTVAL (modified_x)) & (unsigned int) ~0);
1798 return;
1799
1800 case CONST_DOUBLE:
1801 /* Do somewhat as CONST_INT. */
1802 mmix_output_octa (stream, mmix_intval (modified_x), 0);
1803 return;
1804
1805 case CONST:
1806 output_addr_const (stream, modified_x);
1807 return;
1808
1809 default:
1810 /* No need to test for all strange things. Let output_addr_const do
1811 it for us. */
1812 if (CONSTANT_P (modified_x)
1813 /* Strangely enough, this is not included in CONSTANT_P.
1814 FIXME: Ask/check about sanity here. */
1815 || GET_CODE (modified_x) == CODE_LABEL)
1816 {
1817 output_addr_const (stream, modified_x);
1818 return;
1819 }
1820
1821 /* We need the original here. */
1822 fatal_insn ("MMIX Internal: Cannot decode this operand", x);
1823 }
1824 }
1825
1826 /* PRINT_OPERAND_PUNCT_VALID_P. */
1827
1828 int
1829 mmix_print_operand_punct_valid_p (code)
1830 int code ATTRIBUTE_UNUSED;
1831 {
1832 /* A '+' is used for branch prediction, similar to other ports. */
1833 return code == '+'
1834 /* A '.' is used for the %d in the POP %d,0 return insn. */
1835 || code == '.';
1836 }
1837
1838 /* PRINT_OPERAND_ADDRESS. */
1839
1840 void
1841 mmix_print_operand_address (stream, x)
1842 FILE *stream;
1843 rtx x;
1844 {
1845 if (REG_P (x))
1846 {
1847 /* I find the generated assembly code harder to read without
1848 the ",0". */
1849 fprintf (stream, "%s,0", reg_names[MMIX_OUTPUT_REGNO (REGNO (x))]);
1850 return;
1851 }
1852 else if (GET_CODE (x) == PLUS)
1853 {
1854 rtx x1 = XEXP (x, 0);
1855 rtx x2 = XEXP (x, 1);
1856
1857 if (REG_P (x1))
1858 {
1859 fprintf (stream, "%s,", reg_names[MMIX_OUTPUT_REGNO (REGNO (x1))]);
1860
1861 if (REG_P (x2))
1862 {
1863 fprintf (stream, "%s",
1864 reg_names[MMIX_OUTPUT_REGNO (REGNO (x2))]);
1865 return;
1866 }
1867 else if (GET_CODE (x2) == CONST_INT
1868 && CONST_OK_FOR_LETTER_P (INTVAL (x2), 'I'))
1869 {
1870 output_addr_const (stream, x2);
1871 return;
1872 }
1873 }
1874 }
1875
1876 if (TARGET_BASE_ADDRESSES && mmix_legitimate_constant_p (x))
1877 {
1878 output_addr_const (stream, x);
1879 return;
1880 }
1881
1882 fatal_insn ("MMIX Internal: This is not a recognized address", x);
1883 }
1884
1885 /* ASM_OUTPUT_REG_PUSH. */
1886
1887 void
1888 mmix_asm_output_reg_push (stream, regno)
1889 FILE * stream;
1890 int regno;
1891 {
1892 fprintf (stream, "\tSUBU %s,%s,8\n\tSTOU %s,%s,0\n",
1893 reg_names[MMIX_STACK_POINTER_REGNUM],
1894 reg_names[MMIX_STACK_POINTER_REGNUM],
1895 reg_names[MMIX_OUTPUT_REGNO (regno)],
1896 reg_names[MMIX_STACK_POINTER_REGNUM]);
1897 }
1898
1899 /* ASM_OUTPUT_REG_POP. */
1900
1901 void
1902 mmix_asm_output_reg_pop (stream, regno)
1903 FILE * stream;
1904 int regno;
1905 {
1906 fprintf (stream, "\tLDOU %s,%s,0\n\tINCL %s,8\n",
1907 reg_names[MMIX_OUTPUT_REGNO (regno)],
1908 reg_names[MMIX_STACK_POINTER_REGNUM],
1909 reg_names[MMIX_STACK_POINTER_REGNUM]);
1910 }
1911
1912 /* ASM_OUTPUT_ADDR_DIFF_ELT. */
1913
1914 void
1915 mmix_asm_output_addr_diff_elt (stream, body, value, rel)
1916 FILE *stream;
1917 rtx body ATTRIBUTE_UNUSED;
1918 int value;
1919 int rel;
1920 {
1921 fprintf (stream, "\tTETRA L%d-L%d\n", value, rel);
1922 }
1923
1924 /* ASM_OUTPUT_ADDR_VEC_ELT. */
1925
1926 void
1927 mmix_asm_output_addr_vec_elt (stream, value)
1928 FILE *stream;
1929 int value;
1930 {
1931 fprintf (stream, "\tOCTA L:%d\n", value);
1932 }
1933
1934 /* ASM_OUTPUT_SKIP. */
1935
1936 void
1937 mmix_asm_output_skip (stream, nbytes)
1938 FILE *stream;
1939 int nbytes;
1940 {
1941 fprintf (stream, "\tLOC @+%d\n", nbytes);
1942 }
1943
1944 /* ASM_OUTPUT_ALIGN. */
1945
1946 void
1947 mmix_asm_output_align (stream, power)
1948 FILE *stream;
1949 int power;
1950 {
1951 /* We need to record the needed alignment of this section in the object,
1952 so we have to output an alignment directive. Use a .p2align (not
1953 .align) so people will never have to wonder about whether the
1954 argument is in number of bytes or the log2 thereof. We do it in
1955 addition to the LOC directive, so nothing needs tweaking when
1956 copy-pasting assembly into mmixal. */
1957 fprintf (stream, "\t.p2align %d\n", power);
1958 fprintf (stream, "\tLOC @+(%d-@)&%d\n", 1 << power, (1 << power) - 1);
1959 }
1960
1961 /* DBX_REGISTER_NUMBER. */
1962
1963 int
1964 mmix_dbx_register_number (regno)
1965 int regno;
1966 {
1967 /* Adjust the register number to the one it will be output as, dammit.
1968 It'd be nice if we could check the assumption that we're filling a
1969 gap, but every register between the last saved register and parameter
1970 registers might be a valid parameter register. */
1971 regno = MMIX_OUTPUT_REGNO (regno);
1972
1973 /* We need to renumber registers to get the number of the return address
1974 register in the range 0..255. It is also space-saving if registers
1975 mentioned in the call-frame information (which uses this function by
1976 defaulting DWARF_FRAME_REGNUM to DBX_REGISTER_NUMBER) are numbered
1977 0 .. 63. So map 224 .. 256+15 -> 0 .. 47 and 0 .. 223 -> 48..223+48. */
1978 return regno >= 224 ? (regno - 224) : (regno + 48);
1979 }
1980
1981 /* End of target macro support functions.
1982
1983 Now MMIX's own functions. First the exported ones. */
1984
1985 /* Wrapper for get_hard_reg_initial_val since integrate.h isn't included
1986 from insn-emit.c. */
1987
1988 rtx
1989 mmix_get_hard_reg_initial_val (mode, regno)
1990 enum machine_mode mode;
1991 int regno;
1992 {
1993 return get_hard_reg_initial_val (mode, regno);
1994 }
1995
1996 /* Nonzero when the function epilogue is simple enough that a single
1997 "POP %d,0" should be used even within the function. */
1998
1999 int
2000 mmix_use_simple_return ()
2001 {
2002 int regno;
2003
2004 int stack_space_to_allocate
2005 = (current_function_outgoing_args_size
2006 + current_function_pretend_args_size
2007 + get_frame_size () + 7) & ~7;
2008
2009 if (!TARGET_USE_RETURN_INSN || !reload_completed)
2010 return 0;
2011
2012 for (regno = 255;
2013 regno >= MMIX_FIRST_GLOBAL_REGNUM;
2014 regno--)
2015 /* Note that we assume that the frame-pointer-register is one of these
2016 registers, in which case we don't count it here. */
2017 if ((((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
2018 && regs_ever_live[regno] && !call_used_regs[regno]))
2019 || IS_MMIX_EH_RETURN_DATA_REG (regno))
2020 return 0;
2021
2022 if (frame_pointer_needed)
2023 stack_space_to_allocate += 8;
2024
2025 if (MMIX_CFUN_HAS_LANDING_PAD)
2026 stack_space_to_allocate += 16;
2027 else if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
2028 stack_space_to_allocate += 8;
2029
2030 return stack_space_to_allocate == 0;
2031 }
2032
2033
2034 /* Expands the function prologue into RTX. */
2035
2036 void
2037 mmix_expand_prologue ()
2038 {
2039 HOST_WIDE_INT locals_size = get_frame_size ();
2040 int regno;
2041 HOST_WIDE_INT stack_space_to_allocate
2042 = (current_function_outgoing_args_size
2043 + current_function_pretend_args_size
2044 + locals_size + 7) & ~7;
2045 HOST_WIDE_INT offset = -8;
2046
2047 /* Add room needed to save global non-register-stack registers. */
2048 for (regno = 255;
2049 regno >= MMIX_FIRST_GLOBAL_REGNUM;
2050 regno--)
2051 /* Note that we assume that the frame-pointer-register is one of these
2052 registers, in which case we don't count it here. */
2053 if ((((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
2054 && regs_ever_live[regno] && !call_used_regs[regno]))
2055 || IS_MMIX_EH_RETURN_DATA_REG (regno))
2056 stack_space_to_allocate += 8;
2057
2058 /* If we do have a frame-pointer, add room for it. */
2059 if (frame_pointer_needed)
2060 stack_space_to_allocate += 8;
2061
2062 /* If we have a non-local label, we need to be able to unwind to it, so
2063 store the current register stack pointer. Also store the return
2064 address if we do that. */
2065 if (MMIX_CFUN_HAS_LANDING_PAD)
2066 stack_space_to_allocate += 16;
2067 else if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
2068 /* If we do have a saved return-address slot, add room for it. */
2069 stack_space_to_allocate += 8;
2070
2071 /* Make sure we don't get an unaligned stack. */
2072 if ((stack_space_to_allocate % 8) != 0)
2073 internal_error ("stack frame not a multiple of 8 bytes: %d",
2074 stack_space_to_allocate);
2075
2076 if (current_function_pretend_args_size)
2077 {
2078 int mmix_first_vararg_reg
2079 = (MMIX_FIRST_INCOMING_ARG_REGNUM
2080 + (MMIX_MAX_ARGS_IN_REGS
2081 - current_function_pretend_args_size / 8));
2082
2083 for (regno
2084 = MMIX_FIRST_INCOMING_ARG_REGNUM + MMIX_MAX_ARGS_IN_REGS - 1;
2085 regno >= mmix_first_vararg_reg;
2086 regno--)
2087 {
2088 if (offset < 0)
2089 {
2090 HOST_WIDE_INT stack_chunk
2091 = stack_space_to_allocate > (256 - 8)
2092 ? (256 - 8) : stack_space_to_allocate;
2093
2094 mmix_emit_sp_add (-stack_chunk);
2095 offset += stack_chunk;
2096 stack_space_to_allocate -= stack_chunk;
2097 }
2098
2099 /* These registers aren't actually saved (as in "will be
2100 restored"), so don't tell DWARF2 they're saved. */
2101 emit_move_insn (gen_rtx_MEM (DImode,
2102 plus_constant (stack_pointer_rtx,
2103 offset)),
2104 gen_rtx_REG (DImode, regno));
2105 offset -= 8;
2106 }
2107 }
2108
2109 /* Store the frame-pointer. */
2110
2111 if (frame_pointer_needed)
2112 {
2113 rtx insn;
2114
2115 if (offset < 0)
2116 {
2117 /* Get 8 less than otherwise, since we need to reach offset + 8. */
2118 HOST_WIDE_INT stack_chunk
2119 = stack_space_to_allocate > (256 - 8 - 8)
2120 ? (256 - 8 - 8) : stack_space_to_allocate;
2121
2122 mmix_emit_sp_add (-stack_chunk);
2123
2124 offset += stack_chunk;
2125 stack_space_to_allocate -= stack_chunk;
2126 }
2127
2128 insn = emit_move_insn (gen_rtx_MEM (DImode,
2129 plus_constant (stack_pointer_rtx,
2130 offset)),
2131 hard_frame_pointer_rtx);
2132 RTX_FRAME_RELATED_P (insn) = 1;
2133 insn = emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
2134 stack_pointer_rtx,
2135 GEN_INT (offset + 8)));
2136 RTX_FRAME_RELATED_P (insn) = 1;
2137 offset -= 8;
2138 }
2139
2140 if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
2141 {
2142 rtx tmpreg, retreg;
2143 rtx insn;
2144
2145 /* Store the return-address, if one is needed on the stack. We
2146 usually store it in a register when needed, but that doesn't work
2147 with -fexceptions. */
2148
2149 if (offset < 0)
2150 {
2151 /* Get 8 less than otherwise, since we need to reach offset + 8. */
2152 HOST_WIDE_INT stack_chunk
2153 = stack_space_to_allocate > (256 - 8 - 8)
2154 ? (256 - 8 - 8) : stack_space_to_allocate;
2155
2156 mmix_emit_sp_add (-stack_chunk);
2157
2158 offset += stack_chunk;
2159 stack_space_to_allocate -= stack_chunk;
2160 }
2161
2162 tmpreg = gen_rtx_REG (DImode, 255);
2163 retreg = gen_rtx_REG (DImode, MMIX_rJ_REGNUM);
2164
2165 /* Dwarf2 code is confused by the use of a temporary register for
2166 storing the return address, so we have to express it as a note,
2167 which we attach to the actual store insn. */
2168 emit_move_insn (tmpreg, retreg);
2169
2170 insn = emit_move_insn (gen_rtx_MEM (DImode,
2171 plus_constant (stack_pointer_rtx,
2172 offset)),
2173 tmpreg);
2174 RTX_FRAME_RELATED_P (insn) = 1;
2175 REG_NOTES (insn)
2176 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
2177 gen_rtx_SET (VOIDmode,
2178 gen_rtx_MEM (DImode,
2179 plus_constant (stack_pointer_rtx,
2180 offset)),
2181 retreg),
2182 REG_NOTES (insn));
2183
2184 offset -= 8;
2185 }
2186 else if (MMIX_CFUN_HAS_LANDING_PAD)
2187 offset -= 8;
2188
2189 if (MMIX_CFUN_HAS_LANDING_PAD)
2190 {
2191 /* Store the register defining the numbering of local registers, so
2192 we know how long to unwind the register stack. */
2193
2194 if (offset < 0)
2195 {
2196 /* Get 8 less than otherwise, since we need to reach offset + 8. */
2197 HOST_WIDE_INT stack_chunk
2198 = stack_space_to_allocate > (256 - 8 - 8)
2199 ? (256 - 8 - 8) : stack_space_to_allocate;
2200
2201 mmix_emit_sp_add (-stack_chunk);
2202
2203 offset += stack_chunk;
2204 stack_space_to_allocate -= stack_chunk;
2205 }
2206
2207 /* We don't tell dwarf2 about this one; we just have it to unwind
2208 the register stack at landing pads. FIXME: It's a kludge because
2209 we can't describe the effect of the PUSHJ and PUSHGO insns on the
2210 register stack at the moment. Best thing would be to handle it
2211 like stack-pointer offsets. Better: some hook into dwarf2out.c
2212 to produce DW_CFA_expression:s that specify the increment of rO,
2213 and unwind it at eh_return (preferred) or at the landing pad.
2214 Then saves to $0..$G-1 could be specified through that register. */
2215
2216 emit_move_insn (gen_rtx_REG (DImode, 255),
2217 gen_rtx_REG (DImode,
2218 MMIX_rO_REGNUM));
2219 emit_move_insn (gen_rtx_MEM (DImode,
2220 plus_constant (stack_pointer_rtx, offset)),
2221 gen_rtx_REG (DImode, 255));
2222 offset -= 8;
2223 }
2224
2225 /* After the return-address and the frame-pointer, we have the local
2226 variables. They're the ones that may have an "unaligned" size. */
2227 offset -= (locals_size + 7) & ~7;
2228
2229 /* Now store all registers that are global, i.e. not saved by the
2230 register file machinery.
2231
2232 It is assumed that the frame-pointer is one of these registers, so it
2233 is explicitly excluded in the count. */
2234
2235 for (regno = 255;
2236 regno >= MMIX_FIRST_GLOBAL_REGNUM;
2237 regno--)
2238 if (((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
2239 && regs_ever_live[regno] && ! call_used_regs[regno])
2240 || IS_MMIX_EH_RETURN_DATA_REG (regno))
2241 {
2242 rtx insn;
2243
2244 if (offset < 0)
2245 {
2246 HOST_WIDE_INT stack_chunk
2247 = (stack_space_to_allocate > (256 - offset - 8)
2248 ? (256 - offset - 8) : stack_space_to_allocate);
2249
2250 mmix_emit_sp_add (-stack_chunk);
2251 offset += stack_chunk;
2252 stack_space_to_allocate -= stack_chunk;
2253 }
2254
2255 insn = emit_move_insn (gen_rtx_MEM (DImode,
2256 plus_constant (stack_pointer_rtx,
2257 offset)),
2258 gen_rtx_REG (DImode, regno));
2259 RTX_FRAME_RELATED_P (insn) = 1;
2260 offset -= 8;
2261 }
2262
2263 /* Finally, allocate room for outgoing args and local vars if room
2264 wasn't allocated above. */
2265 if (stack_space_to_allocate)
2266 mmix_emit_sp_add (-stack_space_to_allocate);
2267 }
2268
2269 /* Expands the function epilogue into RTX. */
2270
2271 void
2272 mmix_expand_epilogue ()
2273 {
2274 HOST_WIDE_INT locals_size = get_frame_size ();
2275 int regno;
2276 HOST_WIDE_INT stack_space_to_deallocate
2277 = (current_function_outgoing_args_size
2278 + current_function_pretend_args_size
2279 + locals_size + 7) & ~7;
2280
2281 /* The assumption that locals_size fits in an int is asserted in
2282 mmix_expand_prologue. */
2283
2284 /* The first address to access is beyond the outgoing_args area. */
2285 int offset = current_function_outgoing_args_size;
2286
2287 /* Add the space for global non-register-stack registers.
2288 It is assumed that the frame-pointer register can be one of these
2289 registers, in which case it is excluded from the count when needed. */
2290 for (regno = 255;
2291 regno >= MMIX_FIRST_GLOBAL_REGNUM;
2292 regno--)
2293 if (((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
2294 && regs_ever_live[regno] && !call_used_regs[regno])
2295 || IS_MMIX_EH_RETURN_DATA_REG (regno))
2296 stack_space_to_deallocate += 8;
2297
2298 /* Add in the space for register stack-pointer. If so, always add room
2299 for the saved PC. */
2300 if (MMIX_CFUN_HAS_LANDING_PAD)
2301 stack_space_to_deallocate += 16;
2302 else if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
2303 /* If we have a saved return-address slot, add it in. */
2304 stack_space_to_deallocate += 8;
2305
2306 /* Add in the frame-pointer. */
2307 if (frame_pointer_needed)
2308 stack_space_to_deallocate += 8;
2309
2310 /* Make sure we don't get an unaligned stack. */
2311 if ((stack_space_to_deallocate % 8) != 0)
2312 internal_error ("stack frame not a multiple of octabyte: %d",
2313 stack_space_to_deallocate);
2314
2315 /* We will add back small offsets to the stack pointer as we go.
2316 First, we restore all registers that are global, i.e. not saved by
2317 the register file machinery. */
2318
2319 for (regno = MMIX_FIRST_GLOBAL_REGNUM;
2320 regno <= 255;
2321 regno++)
2322 if (((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
2323 && regs_ever_live[regno] && !call_used_regs[regno])
2324 || IS_MMIX_EH_RETURN_DATA_REG (regno))
2325 {
2326 if (offset > 255)
2327 {
2328 mmix_emit_sp_add (offset);
2329 stack_space_to_deallocate -= offset;
2330 offset = 0;
2331 }
2332
2333 emit_move_insn (gen_rtx_REG (DImode, regno),
2334 gen_rtx_MEM (DImode,
2335 plus_constant (stack_pointer_rtx,
2336 offset)));
2337 offset += 8;
2338 }
2339
2340 /* Here is where the local variables were. As in the prologue, they
2341 might be of an unaligned size. */
2342 offset += (locals_size + 7) & ~7;
2343
2344
2345 /* The saved register stack pointer is just below the frame-pointer
2346 register. We don't need to restore it "manually"; the POP
2347 instruction does that. */
2348 if (MMIX_CFUN_HAS_LANDING_PAD)
2349 offset += 16;
2350 else if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
2351 /* The return-address slot is just below the frame-pointer register.
2352 We don't need to restore it because we don't really use it. */
2353 offset += 8;
2354
2355 /* Get back the old frame-pointer-value. */
2356 if (frame_pointer_needed)
2357 {
2358 if (offset > 255)
2359 {
2360 mmix_emit_sp_add (offset);
2361
2362 stack_space_to_deallocate -= offset;
2363 offset = 0;
2364 }
2365
2366 emit_move_insn (hard_frame_pointer_rtx,
2367 gen_rtx_MEM (DImode,
2368 plus_constant (stack_pointer_rtx,
2369 offset)));
2370 offset += 8;
2371 }
2372
2373 /* We do not need to restore pretended incoming args, just add back
2374 offset to sp. */
2375 if (stack_space_to_deallocate != 0)
2376 mmix_emit_sp_add (stack_space_to_deallocate);
2377
2378 if (current_function_calls_eh_return)
2379 /* Adjust the (normal) stack-pointer to that of the receiver.
2380 FIXME: It would be nice if we could also adjust the register stack
2381 here, but we need to express it through DWARF 2 too. */
2382 emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
2383 gen_rtx_REG (DImode,
2384 MMIX_EH_RETURN_STACKADJ_REGNUM)));
2385 }
2386
2387 /* Output an optimal sequence for setting a register to a specific
2388 constant. Used in an alternative for const_ints in movdi, and when
2389 using large stack-frame offsets.
2390
2391 Use do_begin_end to say if a line-starting TAB and newline before the
2392 first insn and after the last insn is wanted. */
2393
2394 void
2395 mmix_output_register_setting (stream, regno, value, do_begin_end)
2396 FILE *stream;
2397 int regno;
2398 HOST_WIDEST_INT value;
2399 int do_begin_end;
2400 {
2401 if (do_begin_end)
2402 fprintf (stream, "\t");
2403
2404 if (mmix_shiftable_wyde_value ((unsigned HOST_WIDEST_INT) value))
2405 {
2406 /* First, the one-insn cases. */
2407 mmix_output_shiftvalue_op_from_str (stream, "SET",
2408 (unsigned HOST_WIDEST_INT)
2409 value);
2410 fprintf (stream, " %s,", reg_names[regno]);
2411 mmix_output_shifted_value (stream, (unsigned HOST_WIDEST_INT) value);
2412 }
2413 else if (mmix_shiftable_wyde_value (-(unsigned HOST_WIDEST_INT) value))
2414 {
2415 /* We do this to get a bit more legible assembly code. The next
2416 alternative is mostly redundant with this. */
2417
2418 mmix_output_shiftvalue_op_from_str (stream, "SET",
2419 -(unsigned HOST_WIDEST_INT)
2420 value);
2421 fprintf (stream, " %s,", reg_names[regno]);
2422 mmix_output_shifted_value (stream, -(unsigned HOST_WIDEST_INT) value);
2423 fprintf (stream, "\n\tNEGU %s,0,%s", reg_names[regno],
2424 reg_names[regno]);
2425 }
2426 else if (mmix_shiftable_wyde_value (~(unsigned HOST_WIDEST_INT) value))
2427 {
2428 /* Slightly more expensive, the two-insn cases. */
2429
2430 /* FIXME: We could of course also test if 0..255-N or ~(N | 1..255)
2431 is shiftable, or any other one-insn transformation of the value.
2432 FIXME: Check first if the value is "shiftable" by two loading
2433 with two insns, since it makes more readable assembly code (if
2434 anyone else cares). */
2435
2436 mmix_output_shiftvalue_op_from_str (stream, "SET",
2437 ~(unsigned HOST_WIDEST_INT)
2438 value);
2439 fprintf (stream, " %s,", reg_names[regno]);
2440 mmix_output_shifted_value (stream, ~(unsigned HOST_WIDEST_INT) value);
2441 fprintf (stream, "\n\tNOR %s,%s,0", reg_names[regno],
2442 reg_names[regno]);
2443 }
2444 else
2445 {
2446 /* The generic case. 2..4 insns. */
2447 static const char *const higher_parts[] = {"L", "ML", "MH", "H"};
2448 const char *op = "SET";
2449 const char *line_begin = "";
2450 int insns = 0;
2451 int i;
2452 HOST_WIDEST_INT tmpvalue = value;
2453
2454 /* Compute the number of insns needed to output this constant. */
2455 for (i = 0; i < 4 && tmpvalue != 0; i++)
2456 {
2457 if (tmpvalue & 65535)
2458 insns++;
2459 tmpvalue >>= 16;
2460 }
2461 if (TARGET_BASE_ADDRESSES && insns == 3)
2462 {
2463 /* The number three is based on a static observation on
2464 ghostscript-6.52. Two and four are excluded because there
2465 are too many such constants, and each unique constant (maybe
2466 offset by 1..255) were used few times compared to other uses,
2467 e.g. addresses.
2468
2469 We use base-plus-offset addressing to force it into a global
2470 register; we just use a "LDA reg,VALUE", which will cause the
2471 assembler and linker to DTRT (for constants as well as
2472 addresses). */
2473 fprintf (stream, "LDA %s,", reg_names[regno]);
2474 mmix_output_octa (stream, value, 0);
2475 }
2476 else
2477 {
2478 /* Output pertinent parts of the 4-wyde sequence.
2479 Still more to do if we want this to be optimal, but hey...
2480 Note that the zero case has been handled above. */
2481 for (i = 0; i < 4 && value != 0; i++)
2482 {
2483 if (value & 65535)
2484 {
2485 fprintf (stream, "%s%s%s %s,#%x", line_begin, op,
2486 higher_parts[i], reg_names[regno],
2487 (int) (value & 65535));
2488 /* The first one sets the rest of the bits to 0, the next
2489 ones add set bits. */
2490 op = "INC";
2491 line_begin = "\n\t";
2492 }
2493
2494 value >>= 16;
2495 }
2496 }
2497 }
2498
2499 if (do_begin_end)
2500 fprintf (stream, "\n");
2501 }
2502
2503 /* Return 1 if value is 0..65535*2**(16*N) for N=0..3.
2504 else return 0. */
2505
2506 int
2507 mmix_shiftable_wyde_value (value)
2508 unsigned HOST_WIDEST_INT value;
2509 {
2510 /* Shift by 16 bits per group, stop when we've found two groups with
2511 nonzero bits. */
2512 int i;
2513 int has_candidate = 0;
2514
2515 for (i = 0; i < 4; i++)
2516 {
2517 if (value & 65535)
2518 {
2519 if (has_candidate)
2520 return 0;
2521 else
2522 has_candidate = 1;
2523 }
2524
2525 value >>= 16;
2526 }
2527
2528 return 1;
2529 }
2530
2531 /* True if this is an address_operand or a symbolic operand. */
2532
2533 int
2534 mmix_symbolic_or_address_operand (op, mode)
2535 rtx op;
2536 enum machine_mode mode;
2537 {
2538 switch (GET_CODE (op))
2539 {
2540 case SYMBOL_REF:
2541 case LABEL_REF:
2542 return 1;
2543 case CONST:
2544 op = XEXP (op, 0);
2545 if ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
2546 || GET_CODE (XEXP (op, 0)) == LABEL_REF)
2547 && (GET_CODE (XEXP (op, 1)) == CONST_INT
2548 || (GET_CODE (XEXP (op, 1)) == CONST_DOUBLE
2549 && GET_MODE (XEXP (op, 1)) == VOIDmode)))
2550 return 1;
2551 /* FALLTHROUGH */
2552 default:
2553 return address_operand (op, mode);
2554 }
2555 }
2556
2557 /* True if this is a register or CONST_INT (or CONST_DOUBLE for DImode).
2558 We could narrow the value down with a couple of predicated, but that
2559 doesn't seem to be worth it at the moment. */
2560
2561 int
2562 mmix_reg_or_constant_operand (op, mode)
2563 rtx op;
2564 enum machine_mode mode;
2565 {
2566 return register_operand (op, mode)
2567 || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
2568 || GET_CODE (op) == CONST_INT;
2569 }
2570
2571 /* True if this is a register with a condition-code mode. */
2572
2573 int
2574 mmix_reg_cc_operand (op, mode)
2575 rtx op;
2576 enum machine_mode mode;
2577 {
2578 if (mode == VOIDmode)
2579 mode = GET_MODE (op);
2580
2581 return register_operand (op, mode)
2582 && (mode == CCmode || mode == CC_UNSmode || mode == CC_FPmode
2583 || mode == CC_FPEQmode || mode == CC_FUNmode);
2584 }
2585
2586 /* True if this is a foldable comparison operator
2587 - one where a the result of (compare:CC (reg) (const_int 0)) can be
2588 replaced by (reg). */
2589
2590 int
2591 mmix_foldable_comparison_operator (op, mode)
2592 rtx op;
2593 enum machine_mode mode;
2594 {
2595 RTX_CODE code = GET_CODE (op);
2596
2597 if (mode == VOIDmode)
2598 mode = GET_MODE (op);
2599
2600 if (mode == VOIDmode && GET_RTX_CLASS (GET_CODE (op)) == '<')
2601 mode = GET_MODE (XEXP (op, 0));
2602
2603 return ((mode == CCmode || mode == DImode)
2604 && (code == NE || code == EQ || code == GE || code == GT
2605 || code == LE))
2606 /* FIXME: This may be a stupid trick. What happens when GCC wants to
2607 reverse the condition? Can it do that by itself? Maybe it can
2608 even reverse the condition to fit a foldable one in the first
2609 place? */
2610 || (mode == CC_UNSmode && (code == GTU || code == LEU));
2611 }
2612
2613 /* Like comparison_operator, but only true if this comparison operator is
2614 applied to a valid mode. Needed to avoid jump.c generating invalid
2615 code with -ffast-math (gcc.dg/20001228-1.c). */
2616
2617 int
2618 mmix_comparison_operator (op, mode)
2619 rtx op;
2620 enum machine_mode mode;
2621 {
2622 RTX_CODE code = GET_CODE (op);
2623
2624 /* Comparison operators usually don't have a mode, but let's try and get
2625 one anyway for the day that changes. */
2626 if (mode == VOIDmode)
2627 mode = GET_MODE (op);
2628
2629 /* Get the mode from the first operand if we don't have one. */
2630 if (mode == VOIDmode && GET_RTX_CLASS (GET_CODE (op)) == '<')
2631 mode = GET_MODE (XEXP (op, 0));
2632
2633 /* FIXME: This needs to be kept in sync with the tables in
2634 mmix_output_condition. */
2635 return
2636 (mode == VOIDmode && GET_RTX_CLASS (GET_CODE (op)) == '<')
2637 || (mode == CC_FUNmode
2638 && (code == ORDERED || code == UNORDERED))
2639 || (mode == CC_FPmode
2640 && (code == GT || code == LT))
2641 || (mode == CC_FPEQmode
2642 && (code == NE || code == EQ))
2643 || (mode == CC_UNSmode
2644 && (code == GEU || code == GTU || code == LEU || code == LTU))
2645 || (mode == CCmode
2646 && (code == NE || code == EQ || code == GE || code == GT
2647 || code == LE || code == LT))
2648 || (mode == DImode
2649 && (code == NE || code == EQ || code == GE || code == GT
2650 || code == LE || code == LT || code == LEU || code == GTU));
2651 }
2652
2653 /* True if this is a register or 0 (int or float). */
2654
2655 int
2656 mmix_reg_or_0_operand (op, mode)
2657 rtx op;
2658 enum machine_mode mode;
2659 {
2660 /* FIXME: Is mode calculation necessary and correct? */
2661 return
2662 op == CONST0_RTX (mode == VOIDmode ? GET_MODE (op) : mode)
2663 || register_operand (op, mode);
2664 }
2665
2666 /* True if this is a register or an int 0..255. */
2667
2668 int
2669 mmix_reg_or_8bit_operand (op, mode)
2670 rtx op;
2671 enum machine_mode mode;
2672 {
2673 return register_operand (op, mode)
2674 || (GET_CODE (op) == CONST_INT
2675 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'I'));
2676 }
2677
2678 /* Returns zero if code and mode is not a valid condition from a
2679 compare-type insn. Nonzero if it is. The parameter op, if non-NULL,
2680 is the comparison of mode is CC-somethingmode. */
2681
2682 int
2683 mmix_valid_comparison (code, mode, op)
2684 RTX_CODE code;
2685 enum machine_mode mode;
2686 rtx op;
2687 {
2688 if (mode == VOIDmode && op != NULL_RTX)
2689 mode = GET_MODE (op);
2690
2691 /* We don't care to look at these, they should always be valid. */
2692 if (mode == CCmode || mode == CC_UNSmode || mode == DImode)
2693 return 1;
2694
2695 if ((mode == CC_FPmode || mode == DFmode)
2696 && (code == GT || code == LT))
2697 return 1;
2698
2699 if ((mode == CC_FPEQmode || mode == DFmode)
2700 && (code == EQ || code == NE))
2701 return 1;
2702
2703 if ((mode == CC_FUNmode || mode == DFmode)
2704 && (code == ORDERED || code == UNORDERED))
2705 return 1;
2706
2707 return 0;
2708 }
2709
2710 /* X and Y are two things to compare using CODE. Emit a compare insn if
2711 possible and return the rtx for the cc-reg in the proper mode, or
2712 NULL_RTX if this is not a valid comparison. */
2713
2714 rtx
2715 mmix_gen_compare_reg (code, x, y)
2716 RTX_CODE code;
2717 rtx x, y;
2718 {
2719 enum machine_mode ccmode = SELECT_CC_MODE (code, x, y);
2720 rtx cc_reg;
2721
2722 /* FIXME: Do we get constants here? Of double mode? */
2723 enum machine_mode mode
2724 = GET_MODE (x) == VOIDmode
2725 ? GET_MODE (y)
2726 : GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT ? DFmode : DImode;
2727
2728 if (! mmix_valid_comparison (code, mode, x))
2729 return NULL_RTX;
2730
2731 cc_reg = gen_reg_rtx (ccmode);
2732
2733 /* FIXME: Can we avoid emitting a compare insn here? */
2734 if (! REG_P (x) && ! REG_P (y))
2735 x = force_reg (mode, x);
2736
2737 /* If it's not quite right yet, put y in a register. */
2738 if (! REG_P (y)
2739 && (GET_CODE (y) != CONST_INT
2740 || ! CONST_OK_FOR_LETTER_P (INTVAL (y), 'I')))
2741 y = force_reg (mode, y);
2742
2743 emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
2744 gen_rtx_COMPARE (ccmode, x, y)));
2745
2746 return cc_reg;
2747 }
2748
2749 /* Local (static) helper functions. */
2750
2751 static void
2752 mmix_emit_sp_add (offset)
2753 HOST_WIDE_INT offset;
2754 {
2755 rtx insn;
2756
2757 if (offset < 0)
2758 {
2759 /* Negative stack-pointer adjustments are allocations and appear in
2760 the prologue only. We mark them as frame-related so unwind and
2761 debug info is properly emitted for them. */
2762 if (offset > -255)
2763 insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
2764 stack_pointer_rtx,
2765 GEN_INT (offset)));
2766 else
2767 {
2768 rtx tmpr = gen_rtx_REG (DImode, 255);
2769 RTX_FRAME_RELATED_P (emit_move_insn (tmpr, GEN_INT (offset))) = 1;
2770 insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
2771 stack_pointer_rtx, tmpr));
2772 }
2773 RTX_FRAME_RELATED_P (insn) = 1;
2774 }
2775 else
2776 {
2777 /* Positive adjustments are in the epilogue only. Don't mark them
2778 as "frame-related" for unwind info. */
2779 if (CONST_OK_FOR_LETTER_P (offset, 'L'))
2780 emit_insn (gen_adddi3 (stack_pointer_rtx,
2781 stack_pointer_rtx,
2782 GEN_INT (offset)));
2783 else
2784 {
2785 rtx tmpr = gen_rtx_REG (DImode, 255);
2786 emit_move_insn (tmpr, GEN_INT (offset));
2787 insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
2788 stack_pointer_rtx, tmpr));
2789 }
2790 }
2791 }
2792
2793 /* Print operator suitable for doing something with a shiftable
2794 wyde. The type of operator is passed as an asm output modifier. */
2795
2796 static void
2797 mmix_output_shiftvalue_op_from_str (stream, mainop, value)
2798 FILE *stream;
2799 const char *mainop;
2800 HOST_WIDEST_INT value;
2801 {
2802 static const char *const op_part[] = {"L", "ML", "MH", "H"};
2803 int i;
2804
2805 if (! mmix_shiftable_wyde_value (value))
2806 {
2807 char s[sizeof ("0xffffffffffffffff")];
2808 sprintf (s, HOST_WIDEST_INT_PRINT_HEX, value);
2809 internal_error ("MMIX Internal: %s is not a shiftable int", s);
2810 }
2811
2812 for (i = 0; i < 4; i++)
2813 {
2814 /* We know we're through when we find one-bits in the low
2815 16 bits. */
2816 if (value & 0xffff)
2817 {
2818 fprintf (stream, "%s%s", mainop, op_part[i]);
2819 return;
2820 }
2821 value >>= 16;
2822 }
2823
2824 /* No bits set? Then it must have been zero. */
2825 fprintf (stream, "%sL", mainop);
2826 }
2827
2828 /* Print a 64-bit value, optionally prefixed by assembly pseudo. */
2829
2830 static void
2831 mmix_output_octa (stream, value, do_begin_end)
2832 FILE *stream;
2833 HOST_WIDEST_INT value;
2834 int do_begin_end;
2835 {
2836 /* Snipped from final.c:output_addr_const. We need to avoid the
2837 presumed universal "0x" prefix. We can do it by replacing "0x" with
2838 "#0" here; we must avoid a space in the operands and no, the zero
2839 won't cause the number to be assumed in octal format. */
2840 char hex_format[sizeof (HOST_WIDEST_INT_PRINT_HEX)];
2841
2842 if (do_begin_end)
2843 fprintf (stream, "\tOCTA ");
2844
2845 strcpy (hex_format, HOST_WIDEST_INT_PRINT_HEX);
2846 hex_format[0] = '#';
2847 hex_format[1] = '0';
2848
2849 /* Provide a few alternative output formats depending on the number, to
2850 improve legibility of assembler output. */
2851 if ((value < (HOST_WIDEST_INT) 0 && value > (HOST_WIDEST_INT) -10000)
2852 || (value >= (HOST_WIDEST_INT) 0 && value <= (HOST_WIDEST_INT) 16384))
2853 fprintf (stream, "%d", (int) value);
2854 else if (value > (HOST_WIDEST_INT) 0
2855 && value < ((HOST_WIDEST_INT) 1 << 31) * 2)
2856 fprintf (stream, "#%x", (unsigned int) value);
2857 else
2858 fprintf (stream, hex_format, value);
2859
2860 if (do_begin_end)
2861 fprintf (stream, "\n");
2862 }
2863
2864 /* Print the presumed shiftable wyde argument shifted into place (to
2865 be output with an operand). */
2866
2867 static void
2868 mmix_output_shifted_value (stream, value)
2869 FILE * stream;
2870 HOST_WIDEST_INT value;
2871 {
2872 int i;
2873
2874 if (! mmix_shiftable_wyde_value (value))
2875 {
2876 char s[16+2+1];
2877 sprintf (s, HOST_WIDEST_INT_PRINT_HEX, value);
2878 internal_error ("MMIX Internal: %s is not a shiftable int", s);
2879 }
2880
2881 for (i = 0; i < 4; i++)
2882 {
2883 /* We know we're through when we find one-bits in the low 16 bits. */
2884 if (value & 0xffff)
2885 {
2886 fprintf (stream, "#%x", (int) (value & 0xffff));
2887 return;
2888 }
2889
2890 value >>= 16;
2891 }
2892
2893 /* No bits set? Then it must have been zero. */
2894 fprintf (stream, "0");
2895 }
2896
2897 /* Output an MMIX condition name corresponding to an operator
2898 and operands:
2899 (comparison_operator [(comparison_operator ...) (const_int 0)])
2900 which means we have to look at *two* operators.
2901
2902 The argument "reversed" refers to reversal of the condition (not the
2903 same as swapping the arguments). */
2904
2905 static void
2906 mmix_output_condition (stream, x, reversed)
2907 FILE *stream;
2908 rtx x;
2909 int reversed;
2910 {
2911 struct cc_conv
2912 {
2913 RTX_CODE cc;
2914
2915 /* The normal output cc-code. */
2916 const char *const normal;
2917
2918 /* The reversed cc-code, or NULL if invalid. */
2919 const char *const reversed;
2920 };
2921
2922 struct cc_type_conv
2923 {
2924 enum machine_mode cc_mode;
2925
2926 /* Terminated with {NIL, NULL, NULL} */
2927 const struct cc_conv *const convs;
2928 };
2929
2930 #undef CCEND
2931 #define CCEND {NIL, NULL, NULL}
2932
2933 static const struct cc_conv cc_fun_convs[]
2934 = {{ORDERED, "Z", "P"},
2935 {UNORDERED, "P", "Z"},
2936 CCEND};
2937 static const struct cc_conv cc_fp_convs[]
2938 = {{GT, "P", NULL},
2939 {LT, "N", NULL},
2940 CCEND};
2941 static const struct cc_conv cc_fpeq_convs[]
2942 = {{NE, "Z", "P"},
2943 {EQ, "P", "Z"},
2944 CCEND};
2945 static const struct cc_conv cc_uns_convs[]
2946 = {{GEU, "NN", "N"},
2947 {GTU, "P", "NP"},
2948 {LEU, "NP", "P"},
2949 {LTU, "N", "NN"},
2950 CCEND};
2951 static const struct cc_conv cc_signed_convs[]
2952 = {{NE, "NZ", "Z"},
2953 {EQ, "Z", "NZ"},
2954 {GE, "NN", "N"},
2955 {GT, "P", "NP"},
2956 {LE, "NP", "P"},
2957 {LT, "N", "NN"},
2958 CCEND};
2959 static const struct cc_conv cc_di_convs[]
2960 = {{NE, "NZ", "Z"},
2961 {EQ, "Z", "NZ"},
2962 {GE, "NN", "N"},
2963 {GT, "P", "NP"},
2964 {LE, "NP", "P"},
2965 {LT, "N", "NN"},
2966 {GTU, "NZ", "Z"},
2967 {LEU, "Z", "NZ"},
2968 CCEND};
2969 #undef CCEND
2970
2971 static const struct cc_type_conv cc_convs[]
2972 = {{CC_FUNmode, cc_fun_convs},
2973 {CC_FPmode, cc_fp_convs},
2974 {CC_FPEQmode, cc_fpeq_convs},
2975 {CC_UNSmode, cc_uns_convs},
2976 {CCmode, cc_signed_convs},
2977 {DImode, cc_di_convs}};
2978
2979 size_t i;
2980 int j;
2981
2982 enum machine_mode mode = GET_MODE (XEXP (x, 0));
2983 RTX_CODE cc = GET_CODE (x);
2984
2985 for (i = 0; i < ARRAY_SIZE (cc_convs); i++)
2986 {
2987 if (mode == cc_convs[i].cc_mode)
2988 {
2989 for (j = 0; cc_convs[i].convs[j].cc != NIL; j++)
2990 if (cc == cc_convs[i].convs[j].cc)
2991 {
2992 const char *mmix_cc
2993 = (reversed ? cc_convs[i].convs[j].reversed
2994 : cc_convs[i].convs[j].normal);
2995
2996 if (mmix_cc == NULL)
2997 fatal_insn ("MMIX Internal: Trying to output invalidly\
2998 reversed condition:", x);
2999
3000 fprintf (stream, "%s", mmix_cc);
3001 return;
3002 }
3003
3004 fatal_insn ("MMIX Internal: What's the CC of this?", x);
3005 }
3006 }
3007
3008 fatal_insn ("MMIX Internal: What is the CC of this?", x);
3009 }
3010
3011 /* Return the bit-value for a const_int or const_double. */
3012
3013 static HOST_WIDEST_INT
3014 mmix_intval (x)
3015 rtx x;
3016 {
3017 unsigned HOST_WIDEST_INT retval;
3018
3019 if (GET_CODE (x) == CONST_INT)
3020 return INTVAL (x);
3021
3022 /* We make a little song and dance because converting to long long in
3023 gcc-2.7.2 is broken. I still want people to be able to use it for
3024 cross-compilation to MMIX. */
3025 if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == VOIDmode)
3026 {
3027 if (sizeof (HOST_WIDE_INT) < sizeof (HOST_WIDEST_INT))
3028 {
3029 retval = (unsigned) CONST_DOUBLE_LOW (x) / 2;
3030 retval *= 2;
3031 retval |= CONST_DOUBLE_LOW (x) & 1;
3032
3033 retval |=
3034 (unsigned HOST_WIDEST_INT) CONST_DOUBLE_HIGH (x)
3035 << (HOST_BITS_PER_LONG);
3036 }
3037 else
3038 retval = CONST_DOUBLE_HIGH (x);
3039
3040 return retval;
3041 }
3042
3043 if (GET_CODE (x) == CONST_DOUBLE)
3044 {
3045 REAL_VALUE_TYPE value;
3046
3047 /* FIXME: This macro is not in the manual but should be. */
3048 REAL_VALUE_FROM_CONST_DOUBLE (value, x);
3049
3050 if (GET_MODE (x) == DFmode)
3051 {
3052 long bits[2];
3053
3054 REAL_VALUE_TO_TARGET_DOUBLE (value, bits);
3055
3056 if (sizeof (long) < sizeof (HOST_WIDEST_INT))
3057 {
3058 retval = (unsigned long) bits[1] / 2;
3059 retval *= 2;
3060 retval |= (unsigned long) bits[1] & 1;
3061 retval
3062 |= (unsigned HOST_WIDEST_INT) bits[0]
3063 << (sizeof (bits[0]) * 8);
3064 }
3065 else
3066 retval = (unsigned long) bits[1];
3067
3068 return retval;
3069 }
3070 else if (GET_MODE (x) == SFmode)
3071 {
3072 long bits;
3073 REAL_VALUE_TO_TARGET_SINGLE (value, bits);
3074
3075 return (unsigned long) bits;
3076 }
3077 }
3078
3079 fatal_insn ("MMIX Internal: This is not a constant:", x);
3080 }
3081
3082 /*
3083 * Local variables:
3084 * eval: (c-set-style "gnu")
3085 * indent-tabs-mode: t
3086 * End:
3087 */