]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mmix/mmix.c
gcc/
[thirdparty/gcc.git] / gcc / config / mmix / mmix.c
1 /* Definitions of target machine for GNU compiler, for MMIX.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson (hp@bitrange.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "hashtab.h"
29 #include "insn-config.h"
30 #include "output.h"
31 #include "predict.h"
32 #include "vec.h"
33 #include "hash-set.h"
34 #include "machmode.h"
35 #include "input.h"
36 #include "function.h"
37 #include "dominance.h"
38 #include "cfg.h"
39 #include "cfgrtl.h"
40 #include "cfganal.h"
41 #include "lcm.h"
42 #include "cfgbuild.h"
43 #include "cfgcleanup.h"
44 #include "basic-block.h"
45 #include "flags.h"
46 #include "symtab.h"
47 #include "wide-int.h"
48 #include "inchash.h"
49 #include "tree.h"
50 #include "varasm.h"
51 #include "stor-layout.h"
52 #include "calls.h"
53 #include "statistics.h"
54 #include "double-int.h"
55 #include "real.h"
56 #include "fixed-value.h"
57 #include "alias.h"
58 #include "expmed.h"
59 #include "dojump.h"
60 #include "explow.h"
61 #include "emit-rtl.h"
62 #include "stmt.h"
63 #include "expr.h"
64 #include "diagnostic-core.h"
65 #include "recog.h"
66 #include "ggc.h"
67 #include "dwarf2.h"
68 #include "debug.h"
69 #include "tm_p.h"
70 #include "target.h"
71 #include "target-def.h"
72 #include "df.h"
73 #include "tm-constrs.h"
74 #include "builtins.h"
75
76 /* First some local helper definitions. */
77 #define MMIX_FIRST_GLOBAL_REGNUM 32
78
79 /* We'd need a current_function_has_landing_pad. It's marked as such when
80 a nonlocal_goto_receiver is expanded. Not just a C++ thing, but
81 mostly. */
82 #define MMIX_CFUN_HAS_LANDING_PAD (cfun->machine->has_landing_pad != 0)
83
84 /* We have no means to tell DWARF 2 about the register stack, so we need
85 to store the return address on the stack if an exception can get into
86 this function. FIXME: Narrow condition. Before any whole-function
87 analysis, df_regs_ever_live_p () isn't initialized. We know it's up-to-date
88 after reload_completed; it may contain incorrect information some time
89 before that. Within a RTL sequence (after a call to start_sequence,
90 such as in RTL expanders), leaf_function_p doesn't see all insns
91 (perhaps any insn). But regs_ever_live is up-to-date when
92 leaf_function_p () isn't, so we "or" them together to get accurate
93 information. FIXME: Some tweak to leaf_function_p might be
94 preferable. */
95 #define MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS \
96 (flag_exceptions \
97 && ((reload_completed && df_regs_ever_live_p (MMIX_rJ_REGNUM)) \
98 || !leaf_function_p ()))
99
100 #define IS_MMIX_EH_RETURN_DATA_REG(REGNO) \
101 (crtl->calls_eh_return \
102 && (EH_RETURN_DATA_REGNO (0) == REGNO \
103 || EH_RETURN_DATA_REGNO (1) == REGNO \
104 || EH_RETURN_DATA_REGNO (2) == REGNO \
105 || EH_RETURN_DATA_REGNO (3) == REGNO))
106
107 /* For the default ABI, we rename registers at output-time to fill the gap
108 between the (statically partitioned) saved registers and call-clobbered
109 registers. In effect this makes unused call-saved registers to be used
110 as call-clobbered registers. The benefit comes from keeping the number
111 of local registers (value of rL) low, since there's a cost of
112 increasing rL and clearing unused (unset) registers with lower numbers.
113 Don't translate while outputting the prologue. */
114 #define MMIX_OUTPUT_REGNO(N) \
115 (TARGET_ABI_GNU \
116 || (int) (N) < MMIX_RETURN_VALUE_REGNUM \
117 || (int) (N) > MMIX_LAST_STACK_REGISTER_REGNUM \
118 || cfun == NULL \
119 || cfun->machine == NULL \
120 || cfun->machine->in_prologue \
121 ? (N) : ((N) - MMIX_RETURN_VALUE_REGNUM \
122 + cfun->machine->highest_saved_stack_register + 1))
123
124 /* The %d in "POP %d,0". */
125 #define MMIX_POP_ARGUMENT() \
126 ((! TARGET_ABI_GNU \
127 && crtl->return_rtx != NULL \
128 && ! cfun->returns_struct) \
129 ? (GET_CODE (crtl->return_rtx) == PARALLEL \
130 ? GET_NUM_ELEM (XVEC (crtl->return_rtx, 0)) : 1) \
131 : 0)
132
133 /* The canonical saved comparison operands for non-cc0 machines, set in
134 the compare expander. */
135 rtx mmix_compare_op0;
136 rtx mmix_compare_op1;
137
138 /* Declarations of locals. */
139
140 /* Intermediate for insn output. */
141 static int mmix_output_destination_register;
142
143 static void mmix_option_override (void);
144 static void mmix_asm_output_source_filename (FILE *, const char *);
145 static void mmix_output_shiftvalue_op_from_str
146 (FILE *, const char *, int64_t);
147 static void mmix_output_shifted_value (FILE *, int64_t);
148 static void mmix_output_condition (FILE *, const_rtx, int);
149 static void mmix_output_octa (FILE *, int64_t, int);
150 static bool mmix_assemble_integer (rtx, unsigned int, int);
151 static struct machine_function *mmix_init_machine_status (void);
152 static void mmix_encode_section_info (tree, rtx, int);
153 static const char *mmix_strip_name_encoding (const char *);
154 static void mmix_emit_sp_add (HOST_WIDE_INT offset);
155 static void mmix_target_asm_function_prologue (FILE *, HOST_WIDE_INT);
156 static void mmix_target_asm_function_end_prologue (FILE *);
157 static void mmix_target_asm_function_epilogue (FILE *, HOST_WIDE_INT);
158 static reg_class_t mmix_preferred_reload_class (rtx, reg_class_t);
159 static reg_class_t mmix_preferred_output_reload_class (rtx, reg_class_t);
160 static bool mmix_legitimate_address_p (machine_mode, rtx, bool);
161 static bool mmix_legitimate_constant_p (machine_mode, rtx);
162 static void mmix_reorg (void);
163 static void mmix_asm_output_mi_thunk
164 (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree);
165 static void mmix_setup_incoming_varargs
166 (cumulative_args_t, machine_mode, tree, int *, int);
167 static void mmix_file_start (void);
168 static void mmix_file_end (void);
169 static bool mmix_rtx_costs (rtx, int, int, int, int *, bool);
170 static int mmix_register_move_cost (machine_mode,
171 reg_class_t, reg_class_t);
172 static rtx mmix_struct_value_rtx (tree, int);
173 static machine_mode mmix_promote_function_mode (const_tree,
174 machine_mode,
175 int *, const_tree, int);
176 static void mmix_function_arg_advance (cumulative_args_t, machine_mode,
177 const_tree, bool);
178 static rtx mmix_function_arg_1 (const cumulative_args_t, machine_mode,
179 const_tree, bool, bool);
180 static rtx mmix_function_incoming_arg (cumulative_args_t, machine_mode,
181 const_tree, bool);
182 static rtx mmix_function_arg (cumulative_args_t, machine_mode,
183 const_tree, bool);
184 static rtx mmix_function_value (const_tree, const_tree, bool);
185 static rtx mmix_libcall_value (machine_mode, const_rtx);
186 static bool mmix_function_value_regno_p (const unsigned int);
187 static bool mmix_pass_by_reference (cumulative_args_t,
188 machine_mode, const_tree, bool);
189 static bool mmix_frame_pointer_required (void);
190 static void mmix_asm_trampoline_template (FILE *);
191 static void mmix_trampoline_init (rtx, tree, rtx);
192 static void mmix_print_operand (FILE *, rtx, int);
193 static void mmix_print_operand_address (FILE *, rtx);
194 static bool mmix_print_operand_punct_valid_p (unsigned char);
195 static void mmix_conditional_register_usage (void);
196
197 /* Target structure macros. Listed by node. See `Using and Porting GCC'
198 for a general description. */
199
200 /* Node: Function Entry */
201
202 #undef TARGET_ASM_BYTE_OP
203 #define TARGET_ASM_BYTE_OP NULL
204 #undef TARGET_ASM_ALIGNED_HI_OP
205 #define TARGET_ASM_ALIGNED_HI_OP NULL
206 #undef TARGET_ASM_ALIGNED_SI_OP
207 #define TARGET_ASM_ALIGNED_SI_OP NULL
208 #undef TARGET_ASM_ALIGNED_DI_OP
209 #define TARGET_ASM_ALIGNED_DI_OP NULL
210 #undef TARGET_ASM_INTEGER
211 #define TARGET_ASM_INTEGER mmix_assemble_integer
212
213 #undef TARGET_ASM_FUNCTION_PROLOGUE
214 #define TARGET_ASM_FUNCTION_PROLOGUE mmix_target_asm_function_prologue
215
216 #undef TARGET_ASM_FUNCTION_END_PROLOGUE
217 #define TARGET_ASM_FUNCTION_END_PROLOGUE mmix_target_asm_function_end_prologue
218
219 #undef TARGET_ASM_FUNCTION_EPILOGUE
220 #define TARGET_ASM_FUNCTION_EPILOGUE mmix_target_asm_function_epilogue
221
222 #undef TARGET_PRINT_OPERAND
223 #define TARGET_PRINT_OPERAND mmix_print_operand
224 #undef TARGET_PRINT_OPERAND_ADDRESS
225 #define TARGET_PRINT_OPERAND_ADDRESS mmix_print_operand_address
226 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
227 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P mmix_print_operand_punct_valid_p
228
229 #undef TARGET_ENCODE_SECTION_INFO
230 #define TARGET_ENCODE_SECTION_INFO mmix_encode_section_info
231 #undef TARGET_STRIP_NAME_ENCODING
232 #define TARGET_STRIP_NAME_ENCODING mmix_strip_name_encoding
233
234 #undef TARGET_ASM_OUTPUT_MI_THUNK
235 #define TARGET_ASM_OUTPUT_MI_THUNK mmix_asm_output_mi_thunk
236 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
237 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
238 #undef TARGET_ASM_FILE_START
239 #define TARGET_ASM_FILE_START mmix_file_start
240 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
241 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
242 #undef TARGET_ASM_FILE_END
243 #define TARGET_ASM_FILE_END mmix_file_end
244 #undef TARGET_ASM_OUTPUT_SOURCE_FILENAME
245 #define TARGET_ASM_OUTPUT_SOURCE_FILENAME mmix_asm_output_source_filename
246
247 #undef TARGET_CONDITIONAL_REGISTER_USAGE
248 #define TARGET_CONDITIONAL_REGISTER_USAGE mmix_conditional_register_usage
249
250 #undef TARGET_RTX_COSTS
251 #define TARGET_RTX_COSTS mmix_rtx_costs
252 #undef TARGET_ADDRESS_COST
253 #define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
254
255 #undef TARGET_REGISTER_MOVE_COST
256 #define TARGET_REGISTER_MOVE_COST mmix_register_move_cost
257
258 #undef TARGET_MACHINE_DEPENDENT_REORG
259 #define TARGET_MACHINE_DEPENDENT_REORG mmix_reorg
260
261 #undef TARGET_PROMOTE_FUNCTION_MODE
262 #define TARGET_PROMOTE_FUNCTION_MODE mmix_promote_function_mode
263
264 #undef TARGET_FUNCTION_VALUE
265 #define TARGET_FUNCTION_VALUE mmix_function_value
266 #undef TARGET_LIBCALL_VALUE
267 #define TARGET_LIBCALL_VALUE mmix_libcall_value
268 #undef TARGET_FUNCTION_VALUE_REGNO_P
269 #define TARGET_FUNCTION_VALUE_REGNO_P mmix_function_value_regno_p
270
271 #undef TARGET_FUNCTION_ARG
272 #define TARGET_FUNCTION_ARG mmix_function_arg
273 #undef TARGET_FUNCTION_INCOMING_ARG
274 #define TARGET_FUNCTION_INCOMING_ARG mmix_function_incoming_arg
275 #undef TARGET_FUNCTION_ARG_ADVANCE
276 #define TARGET_FUNCTION_ARG_ADVANCE mmix_function_arg_advance
277 #undef TARGET_STRUCT_VALUE_RTX
278 #define TARGET_STRUCT_VALUE_RTX mmix_struct_value_rtx
279 #undef TARGET_SETUP_INCOMING_VARARGS
280 #define TARGET_SETUP_INCOMING_VARARGS mmix_setup_incoming_varargs
281 #undef TARGET_PASS_BY_REFERENCE
282 #define TARGET_PASS_BY_REFERENCE mmix_pass_by_reference
283 #undef TARGET_CALLEE_COPIES
284 #define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_true
285
286 #undef TARGET_PREFERRED_RELOAD_CLASS
287 #define TARGET_PREFERRED_RELOAD_CLASS mmix_preferred_reload_class
288 #undef TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
289 #define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS mmix_preferred_output_reload_class
290
291 #undef TARGET_LEGITIMATE_ADDRESS_P
292 #define TARGET_LEGITIMATE_ADDRESS_P mmix_legitimate_address_p
293 #undef TARGET_LEGITIMATE_CONSTANT_P
294 #define TARGET_LEGITIMATE_CONSTANT_P mmix_legitimate_constant_p
295
296 #undef TARGET_FRAME_POINTER_REQUIRED
297 #define TARGET_FRAME_POINTER_REQUIRED mmix_frame_pointer_required
298
299 #undef TARGET_ASM_TRAMPOLINE_TEMPLATE
300 #define TARGET_ASM_TRAMPOLINE_TEMPLATE mmix_asm_trampoline_template
301 #undef TARGET_TRAMPOLINE_INIT
302 #define TARGET_TRAMPOLINE_INIT mmix_trampoline_init
303
304 #undef TARGET_OPTION_OVERRIDE
305 #define TARGET_OPTION_OVERRIDE mmix_option_override
306
307 struct gcc_target targetm = TARGET_INITIALIZER;
308
309 /* Functions that are expansions for target macros.
310 See Target Macros in `Using and Porting GCC'. */
311
312 /* TARGET_OPTION_OVERRIDE. */
313
314 static void
315 mmix_option_override (void)
316 {
317 /* Should we err or should we warn? Hmm. At least we must neutralize
318 it. For example the wrong kind of case-tables will be generated with
319 PIC; we use absolute address items for mmixal compatibility. FIXME:
320 They could be relative if we just elide them to after all pertinent
321 labels. */
322 if (flag_pic)
323 {
324 warning (0, "-f%s not supported: ignored", (flag_pic > 1) ? "PIC" : "pic");
325 flag_pic = 0;
326 }
327 }
328
329 /* INIT_EXPANDERS. */
330
331 void
332 mmix_init_expanders (void)
333 {
334 init_machine_status = mmix_init_machine_status;
335 }
336
337 /* Set the per-function data. */
338
339 static struct machine_function *
340 mmix_init_machine_status (void)
341 {
342 return ggc_cleared_alloc<machine_function> ();
343 }
344
345 /* DATA_ABI_ALIGNMENT.
346 We have trouble getting the address of stuff that is located at other
347 than 32-bit alignments (GETA requirements), so try to give everything
348 at least 32-bit alignment. */
349
350 int
351 mmix_data_alignment (tree type ATTRIBUTE_UNUSED, int basic_align)
352 {
353 if (basic_align < 32)
354 return 32;
355
356 return basic_align;
357 }
358
359 /* CONSTANT_ALIGNMENT. */
360
361 int
362 mmix_constant_alignment (tree constant ATTRIBUTE_UNUSED, int basic_align)
363 {
364 if (basic_align < 32)
365 return 32;
366
367 return basic_align;
368 }
369
370 /* LOCAL_ALIGNMENT. */
371
372 unsigned
373 mmix_local_alignment (tree type ATTRIBUTE_UNUSED, unsigned basic_align)
374 {
375 if (basic_align < 32)
376 return 32;
377
378 return basic_align;
379 }
380
381 /* TARGET_CONDITIONAL_REGISTER_USAGE. */
382
383 static void
384 mmix_conditional_register_usage (void)
385 {
386 int i;
387
388 if (TARGET_ABI_GNU)
389 {
390 static const int gnu_abi_reg_alloc_order[]
391 = MMIX_GNU_ABI_REG_ALLOC_ORDER;
392
393 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
394 reg_alloc_order[i] = gnu_abi_reg_alloc_order[i];
395
396 /* Change the default from the mmixware ABI. For the GNU ABI,
397 $15..$30 are call-saved just as $0..$14. There must be one
398 call-clobbered local register for the "hole" that holds the
399 number of saved local registers saved by PUSHJ/PUSHGO during the
400 function call, receiving the return value at return. So best is
401 to use the highest, $31. It's already marked call-clobbered for
402 the mmixware ABI. */
403 for (i = 15; i <= 30; i++)
404 call_used_regs[i] = 0;
405
406 /* "Unfix" the parameter registers. */
407 for (i = MMIX_RESERVED_GNU_ARG_0_REGNUM;
408 i < MMIX_RESERVED_GNU_ARG_0_REGNUM + MMIX_MAX_ARGS_IN_REGS;
409 i++)
410 fixed_regs[i] = 0;
411 }
412
413 /* Step over the ":" in special register names. */
414 if (! TARGET_TOPLEVEL_SYMBOLS)
415 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
416 if (reg_names[i][0] == ':')
417 reg_names[i]++;
418 }
419
420 /* INCOMING_REGNO and OUTGOING_REGNO worker function.
421 Those two macros must only be applied to function argument
422 registers and the function return value register for the opposite
423 use. FIXME: for their current use in gcc, it'd be better with an
424 explicit specific additional FUNCTION_INCOMING_ARG_REGNO_P a'la
425 TARGET_FUNCTION_ARG / TARGET_FUNCTION_INCOMING_ARG instead of
426 forcing the target to commit to a fixed mapping and for any
427 unspecified register use. Particularly when thinking about the
428 return-value, it is better to imagine INCOMING_REGNO and
429 OUTGOING_REGNO as named CALLEE_TO_CALLER_REGNO and INNER_REGNO as
430 named CALLER_TO_CALLEE_REGNO because the direction. The "incoming"
431 and "outgoing" is from the perspective of the parameter-registers,
432 but the same macro is (must be, lacking an alternative like
433 suggested above) used to map the return-value-register from the
434 same perspective. To make directions even more confusing, the macro
435 MMIX_OUTGOING_RETURN_VALUE_REGNUM holds the number of the register
436 in which to return a value, i.e. INCOMING_REGNO for the return-value-
437 register as received from a called function; the return-value on the
438 way out. */
439
440 int
441 mmix_opposite_regno (int regno, int incoming)
442 {
443 if (incoming && regno == MMIX_OUTGOING_RETURN_VALUE_REGNUM)
444 return MMIX_RETURN_VALUE_REGNUM;
445
446 if (!incoming && regno == MMIX_RETURN_VALUE_REGNUM)
447 return MMIX_OUTGOING_RETURN_VALUE_REGNUM;
448
449 if (!mmix_function_arg_regno_p (regno, incoming))
450 return regno;
451
452 return
453 regno - (incoming
454 ? MMIX_FIRST_INCOMING_ARG_REGNUM - MMIX_FIRST_ARG_REGNUM
455 : MMIX_FIRST_ARG_REGNUM - MMIX_FIRST_INCOMING_ARG_REGNUM);
456 }
457
458 /* LOCAL_REGNO.
459 All registers that are part of the register stack and that will be
460 saved are local. */
461
462 int
463 mmix_local_regno (int regno)
464 {
465 return regno <= MMIX_LAST_STACK_REGISTER_REGNUM && !call_used_regs[regno];
466 }
467
468 /* TARGET_PREFERRED_RELOAD_CLASS.
469 We need to extend the reload class of REMAINDER_REG and HIMULT_REG. */
470
471 static reg_class_t
472 mmix_preferred_reload_class (rtx x, reg_class_t rclass)
473 {
474 /* FIXME: Revisit. */
475 return GET_CODE (x) == MOD && GET_MODE (x) == DImode
476 ? REMAINDER_REG : rclass;
477 }
478
479 /* TARGET_PREFERRED_OUTPUT_RELOAD_CLASS.
480 We need to extend the reload class of REMAINDER_REG and HIMULT_REG. */
481
482 static reg_class_t
483 mmix_preferred_output_reload_class (rtx x, reg_class_t rclass)
484 {
485 /* FIXME: Revisit. */
486 return GET_CODE (x) == MOD && GET_MODE (x) == DImode
487 ? REMAINDER_REG : rclass;
488 }
489
490 /* SECONDARY_RELOAD_CLASS.
491 We need to reload regs of REMAINDER_REG and HIMULT_REG elsewhere. */
492
493 enum reg_class
494 mmix_secondary_reload_class (enum reg_class rclass,
495 machine_mode mode ATTRIBUTE_UNUSED,
496 rtx x ATTRIBUTE_UNUSED,
497 int in_p ATTRIBUTE_UNUSED)
498 {
499 if (rclass == REMAINDER_REG
500 || rclass == HIMULT_REG
501 || rclass == SYSTEM_REGS)
502 return GENERAL_REGS;
503
504 return NO_REGS;
505 }
506
507 /* DYNAMIC_CHAIN_ADDRESS. */
508
509 rtx
510 mmix_dynamic_chain_address (rtx frame)
511 {
512 /* FIXME: the frame-pointer is stored at offset -8 from the current
513 frame-pointer. Unfortunately, the caller assumes that a
514 frame-pointer is present for *all* previous frames. There should be
515 a way to say that that cannot be done, like for RETURN_ADDR_RTX. */
516 return plus_constant (Pmode, frame, -8);
517 }
518
519 /* STARTING_FRAME_OFFSET. */
520
521 int
522 mmix_starting_frame_offset (void)
523 {
524 /* The old frame pointer is in the slot below the new one, so
525 FIRST_PARM_OFFSET does not need to depend on whether the
526 frame-pointer is needed or not. We have to adjust for the register
527 stack pointer being located below the saved frame pointer.
528 Similarly, we store the return address on the stack too, for
529 exception handling, and always if we save the register stack pointer. */
530 return
531 (-8
532 + (MMIX_CFUN_HAS_LANDING_PAD
533 ? -16 : (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS ? -8 : 0)));
534 }
535
536 /* RETURN_ADDR_RTX. */
537
538 rtx
539 mmix_return_addr_rtx (int count, rtx frame ATTRIBUTE_UNUSED)
540 {
541 return count == 0
542 ? (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS
543 /* FIXME: Set frame_alias_set on the following. (Why?)
544 See mmix_initial_elimination_offset for the reason we can't use
545 get_hard_reg_initial_val for both. Always using a stack slot
546 and not a register would be suboptimal. */
547 ? validize_mem (gen_rtx_MEM (Pmode,
548 plus_constant (Pmode,
549 frame_pointer_rtx, -16)))
550 : get_hard_reg_initial_val (Pmode, MMIX_INCOMING_RETURN_ADDRESS_REGNUM))
551 : NULL_RTX;
552 }
553
554 /* SETUP_FRAME_ADDRESSES. */
555
556 void
557 mmix_setup_frame_addresses (void)
558 {
559 /* Nothing needed at the moment. */
560 }
561
562 /* The difference between the (imaginary) frame pointer and the stack
563 pointer. Used to eliminate the frame pointer. */
564
565 int
566 mmix_initial_elimination_offset (int fromreg, int toreg)
567 {
568 int regno;
569 int fp_sp_offset
570 = (get_frame_size () + crtl->outgoing_args_size + 7) & ~7;
571
572 /* There is no actual offset between these two virtual values, but for
573 the frame-pointer, we have the old one in the stack position below
574 it, so the offset for the frame-pointer to the stack-pointer is one
575 octabyte larger. */
576 if (fromreg == MMIX_ARG_POINTER_REGNUM
577 && toreg == MMIX_FRAME_POINTER_REGNUM)
578 return 0;
579
580 /* The difference is the size of local variables plus the size of
581 outgoing function arguments that would normally be passed as
582 registers but must be passed on stack because we're out of
583 function-argument registers. Only global saved registers are
584 counted; the others go on the register stack.
585
586 The frame-pointer is counted too if it is what is eliminated, as we
587 need to balance the offset for it from STARTING_FRAME_OFFSET.
588
589 Also add in the slot for the register stack pointer we save if we
590 have a landing pad.
591
592 Unfortunately, we can't access $0..$14, from unwinder code easily, so
593 store the return address in a frame slot too. FIXME: Only for
594 non-leaf functions. FIXME: Always with a landing pad, because it's
595 hard to know whether we need the other at the time we know we need
596 the offset for one (and have to state it). It's a kludge until we
597 can express the register stack in the EH frame info.
598
599 We have to do alignment here; get_frame_size will not return a
600 multiple of STACK_BOUNDARY. FIXME: Add note in manual. */
601
602 for (regno = MMIX_FIRST_GLOBAL_REGNUM;
603 regno <= 255;
604 regno++)
605 if ((df_regs_ever_live_p (regno) && ! call_used_regs[regno])
606 || IS_MMIX_EH_RETURN_DATA_REG (regno))
607 fp_sp_offset += 8;
608
609 return fp_sp_offset
610 + (MMIX_CFUN_HAS_LANDING_PAD
611 ? 16 : (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS ? 8 : 0))
612 + (fromreg == MMIX_ARG_POINTER_REGNUM ? 0 : 8);
613 }
614
615 static void
616 mmix_function_arg_advance (cumulative_args_t argsp_v, machine_mode mode,
617 const_tree type, bool named ATTRIBUTE_UNUSED)
618 {
619 CUMULATIVE_ARGS *argsp = get_cumulative_args (argsp_v);
620 int arg_size = MMIX_FUNCTION_ARG_SIZE (mode, type);
621
622 argsp->regs = ((targetm.calls.must_pass_in_stack (mode, type)
623 || (arg_size > 8
624 && !TARGET_LIBFUNC
625 && !argsp->lib))
626 ? (MMIX_MAX_ARGS_IN_REGS) + 1
627 : argsp->regs + (7 + arg_size) / 8);
628 }
629
630 /* Helper function for mmix_function_arg and mmix_function_incoming_arg. */
631
632 static rtx
633 mmix_function_arg_1 (const cumulative_args_t argsp_v,
634 machine_mode mode,
635 const_tree type,
636 bool named ATTRIBUTE_UNUSED,
637 bool incoming)
638 {
639 CUMULATIVE_ARGS *argsp = get_cumulative_args (argsp_v);
640
641 /* Last-argument marker. */
642 if (type == void_type_node)
643 return (argsp->regs < MMIX_MAX_ARGS_IN_REGS)
644 ? gen_rtx_REG (mode,
645 (incoming
646 ? MMIX_FIRST_INCOMING_ARG_REGNUM
647 : MMIX_FIRST_ARG_REGNUM) + argsp->regs)
648 : NULL_RTX;
649
650 return (argsp->regs < MMIX_MAX_ARGS_IN_REGS
651 && !targetm.calls.must_pass_in_stack (mode, type)
652 && (GET_MODE_BITSIZE (mode) <= 64
653 || argsp->lib
654 || TARGET_LIBFUNC))
655 ? gen_rtx_REG (mode,
656 (incoming
657 ? MMIX_FIRST_INCOMING_ARG_REGNUM
658 : MMIX_FIRST_ARG_REGNUM)
659 + argsp->regs)
660 : NULL_RTX;
661 }
662
663 /* Return an rtx for a function argument to go in a register, and 0 for
664 one that must go on stack. */
665
666 static rtx
667 mmix_function_arg (cumulative_args_t argsp,
668 machine_mode mode,
669 const_tree type,
670 bool named)
671 {
672 return mmix_function_arg_1 (argsp, mode, type, named, false);
673 }
674
675 static rtx
676 mmix_function_incoming_arg (cumulative_args_t argsp,
677 machine_mode mode,
678 const_tree type,
679 bool named)
680 {
681 return mmix_function_arg_1 (argsp, mode, type, named, true);
682 }
683
684 /* Returns nonzero for everything that goes by reference, 0 for
685 everything that goes by value. */
686
687 static bool
688 mmix_pass_by_reference (cumulative_args_t argsp_v, machine_mode mode,
689 const_tree type, bool named ATTRIBUTE_UNUSED)
690 {
691 CUMULATIVE_ARGS *argsp = get_cumulative_args (argsp_v);
692
693 /* FIXME: Check: I'm not sure the must_pass_in_stack check is
694 necessary. */
695 if (targetm.calls.must_pass_in_stack (mode, type))
696 return true;
697
698 if (MMIX_FUNCTION_ARG_SIZE (mode, type) > 8
699 && !TARGET_LIBFUNC
700 && (!argsp || !argsp->lib))
701 return true;
702
703 return false;
704 }
705
706 /* Return nonzero if regno is a register number where a parameter is
707 passed, and 0 otherwise. */
708
709 int
710 mmix_function_arg_regno_p (int regno, int incoming)
711 {
712 int first_arg_regnum
713 = incoming ? MMIX_FIRST_INCOMING_ARG_REGNUM : MMIX_FIRST_ARG_REGNUM;
714
715 return regno >= first_arg_regnum
716 && regno < first_arg_regnum + MMIX_MAX_ARGS_IN_REGS;
717 }
718
719 /* Implements TARGET_FUNCTION_VALUE. */
720
721 static rtx
722 mmix_function_value (const_tree valtype,
723 const_tree func ATTRIBUTE_UNUSED,
724 bool outgoing)
725 {
726 machine_mode mode = TYPE_MODE (valtype);
727 machine_mode cmode;
728 int first_val_regnum = MMIX_OUTGOING_RETURN_VALUE_REGNUM;
729 rtx vec[MMIX_MAX_REGS_FOR_VALUE];
730 int i;
731 int nregs;
732
733 if (!outgoing)
734 return gen_rtx_REG (mode, MMIX_RETURN_VALUE_REGNUM);
735
736 /* Return values that fit in a register need no special handling.
737 There's no register hole when parameters are passed in global
738 registers. */
739 if (TARGET_ABI_GNU
740 || GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
741 return
742 gen_rtx_REG (mode, MMIX_OUTGOING_RETURN_VALUE_REGNUM);
743
744 if (COMPLEX_MODE_P (mode))
745 /* A complex type, made up of components. */
746 cmode = TYPE_MODE (TREE_TYPE (valtype));
747 else
748 {
749 /* Of the other larger-than-register modes, we only support
750 scalar mode TImode. (At least, that's the only one that's
751 been rudimentally tested.) Make sure we're alerted for
752 unexpected cases. */
753 if (mode != TImode)
754 sorry ("support for mode %qs", GET_MODE_NAME (mode));
755
756 /* In any case, we will fill registers to the natural size. */
757 cmode = DImode;
758 }
759
760 nregs = ((GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD);
761
762 /* We need to take care of the effect of the register hole on return
763 values of large sizes; the last register will appear as the first
764 register, with the rest shifted. (For complex modes, this is just
765 swapped registers.) */
766
767 if (nregs > MMIX_MAX_REGS_FOR_VALUE)
768 internal_error ("too large function value type, needs %d registers,\
769 have only %d registers for this", nregs, MMIX_MAX_REGS_FOR_VALUE);
770
771 /* FIXME: Maybe we should handle structure values like this too
772 (adjusted for BLKmode), perhaps for both ABI:s. */
773 for (i = 0; i < nregs - 1; i++)
774 vec[i]
775 = gen_rtx_EXPR_LIST (VOIDmode,
776 gen_rtx_REG (cmode, first_val_regnum + i),
777 GEN_INT ((i + 1) * BITS_PER_UNIT));
778
779 vec[nregs - 1]
780 = gen_rtx_EXPR_LIST (VOIDmode,
781 gen_rtx_REG (cmode, first_val_regnum + nregs - 1),
782 const0_rtx);
783
784 return gen_rtx_PARALLEL (mode, gen_rtvec_v (nregs, vec));
785 }
786
787 /* Implements TARGET_LIBCALL_VALUE. */
788
789 static rtx
790 mmix_libcall_value (machine_mode mode,
791 const_rtx fun ATTRIBUTE_UNUSED)
792 {
793 return gen_rtx_REG (mode, MMIX_RETURN_VALUE_REGNUM);
794 }
795
796 /* Implements TARGET_FUNCTION_VALUE_REGNO_P. */
797
798 static bool
799 mmix_function_value_regno_p (const unsigned int regno)
800 {
801 return regno == MMIX_RETURN_VALUE_REGNUM;
802 }
803
804 /* EH_RETURN_DATA_REGNO. */
805
806 int
807 mmix_eh_return_data_regno (int n)
808 {
809 if (n >= 0 && n < 4)
810 return MMIX_EH_RETURN_DATA_REGNO_START + n;
811
812 return INVALID_REGNUM;
813 }
814
815 /* EH_RETURN_STACKADJ_RTX. */
816
817 rtx
818 mmix_eh_return_stackadj_rtx (void)
819 {
820 return gen_rtx_REG (Pmode, MMIX_EH_RETURN_STACKADJ_REGNUM);
821 }
822
823 /* EH_RETURN_HANDLER_RTX. */
824
825 rtx
826 mmix_eh_return_handler_rtx (void)
827 {
828 return gen_rtx_REG (Pmode, MMIX_INCOMING_RETURN_ADDRESS_REGNUM);
829 }
830
831 /* ASM_PREFERRED_EH_DATA_FORMAT. */
832
833 int
834 mmix_asm_preferred_eh_data_format (int code ATTRIBUTE_UNUSED,
835 int global ATTRIBUTE_UNUSED)
836 {
837 /* This is the default (was at 2001-07-20). Revisit when needed. */
838 return DW_EH_PE_absptr;
839 }
840
841 /* Make a note that we've seen the beginning of the prologue. This
842 matters to whether we'll translate register numbers as calculated by
843 mmix_reorg. */
844
845 static void
846 mmix_target_asm_function_prologue (FILE *stream ATTRIBUTE_UNUSED,
847 HOST_WIDE_INT framesize ATTRIBUTE_UNUSED)
848 {
849 cfun->machine->in_prologue = 1;
850 }
851
852 /* Make a note that we've seen the end of the prologue. */
853
854 static void
855 mmix_target_asm_function_end_prologue (FILE *stream ATTRIBUTE_UNUSED)
856 {
857 cfun->machine->in_prologue = 0;
858 }
859
860 /* Implement TARGET_MACHINE_DEPENDENT_REORG. No actual rearrangements
861 done here; just virtually by calculating the highest saved stack
862 register number used to modify the register numbers at output time. */
863
864 static void
865 mmix_reorg (void)
866 {
867 int regno;
868
869 /* We put the number of the highest saved register-file register in a
870 location convenient for the call-patterns to output. Note that we
871 don't tell dwarf2 about these registers, since it can't restore them
872 anyway. */
873 for (regno = MMIX_LAST_STACK_REGISTER_REGNUM;
874 regno >= 0;
875 regno--)
876 if ((df_regs_ever_live_p (regno) && !call_used_regs[regno])
877 || (regno == MMIX_FRAME_POINTER_REGNUM && frame_pointer_needed))
878 break;
879
880 /* Regardless of whether they're saved (they might be just read), we
881 mustn't include registers that carry parameters. We could scan the
882 insns to see whether they're actually used (and indeed do other less
883 trivial register usage analysis and transformations), but it seems
884 wasteful to optimize for unused parameter registers. As of
885 2002-04-30, df_regs_ever_live_p (n) seems to be set for only-reads too, but
886 that might change. */
887 if (!TARGET_ABI_GNU && regno < crtl->args.info.regs - 1)
888 {
889 regno = crtl->args.info.regs - 1;
890
891 /* We don't want to let this cause us to go over the limit and make
892 incoming parameter registers be misnumbered and treating the last
893 parameter register and incoming return value register call-saved.
894 Stop things at the unmodified scheme. */
895 if (regno > MMIX_RETURN_VALUE_REGNUM - 1)
896 regno = MMIX_RETURN_VALUE_REGNUM - 1;
897 }
898
899 cfun->machine->highest_saved_stack_register = regno;
900 }
901
902 /* TARGET_ASM_FUNCTION_EPILOGUE. */
903
904 static void
905 mmix_target_asm_function_epilogue (FILE *stream,
906 HOST_WIDE_INT locals_size ATTRIBUTE_UNUSED)
907 {
908 /* Emit an \n for readability of the generated assembly. */
909 fputc ('\n', stream);
910 }
911
912 /* TARGET_ASM_OUTPUT_MI_THUNK. */
913
914 static void
915 mmix_asm_output_mi_thunk (FILE *stream,
916 tree fndecl ATTRIBUTE_UNUSED,
917 HOST_WIDE_INT delta,
918 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
919 tree func)
920 {
921 /* If you define TARGET_STRUCT_VALUE_RTX that returns 0 (i.e. pass
922 location of structure to return as invisible first argument), you
923 need to tweak this code too. */
924 const char *regname = reg_names[MMIX_FIRST_INCOMING_ARG_REGNUM];
925
926 if (delta >= 0 && delta < 65536)
927 fprintf (stream, "\tINCL %s,%d\n", regname, (int)delta);
928 else if (delta < 0 && delta >= -255)
929 fprintf (stream, "\tSUBU %s,%s,%d\n", regname, regname, (int)-delta);
930 else
931 {
932 mmix_output_register_setting (stream, 255, delta, 1);
933 fprintf (stream, "\tADDU %s,%s,$255\n", regname, regname);
934 }
935
936 fprintf (stream, "\tJMP ");
937 assemble_name (stream, XSTR (XEXP (DECL_RTL (func), 0), 0));
938 fprintf (stream, "\n");
939 }
940
941 /* FUNCTION_PROFILER. */
942
943 void
944 mmix_function_profiler (FILE *stream ATTRIBUTE_UNUSED,
945 int labelno ATTRIBUTE_UNUSED)
946 {
947 sorry ("function_profiler support for MMIX");
948 }
949
950 /* Worker function for TARGET_SETUP_INCOMING_VARARGS. For the moment,
951 let's stick to pushing argument registers on the stack. Later, we
952 can parse all arguments in registers, to improve performance. */
953
954 static void
955 mmix_setup_incoming_varargs (cumulative_args_t args_so_farp_v,
956 machine_mode mode,
957 tree vartype,
958 int *pretend_sizep,
959 int second_time ATTRIBUTE_UNUSED)
960 {
961 CUMULATIVE_ARGS *args_so_farp = get_cumulative_args (args_so_farp_v);
962
963 /* The last named variable has been handled, but
964 args_so_farp has not been advanced for it. */
965 if (args_so_farp->regs + 1 < MMIX_MAX_ARGS_IN_REGS)
966 *pretend_sizep = (MMIX_MAX_ARGS_IN_REGS - (args_so_farp->regs + 1)) * 8;
967
968 /* We assume that one argument takes up one register here. That should
969 be true until we start messing with multi-reg parameters. */
970 if ((7 + (MMIX_FUNCTION_ARG_SIZE (mode, vartype))) / 8 != 1)
971 internal_error ("MMIX Internal: Last named vararg would not fit in a register");
972 }
973
974 /* TARGET_ASM_TRAMPOLINE_TEMPLATE. */
975
976 static void
977 mmix_asm_trampoline_template (FILE *stream)
978 {
979 /* Read a value into the static-chain register and jump somewhere. The
980 static chain is stored at offset 16, and the function address is
981 stored at offset 24. */
982
983 fprintf (stream, "\tGETA $255,1F\n\t");
984 fprintf (stream, "LDOU %s,$255,0\n\t", reg_names[MMIX_STATIC_CHAIN_REGNUM]);
985 fprintf (stream, "LDOU $255,$255,8\n\t");
986 fprintf (stream, "GO $255,$255,0\n");
987 fprintf (stream, "1H\tOCTA 0\n\t");
988 fprintf (stream, "OCTA 0\n");
989 }
990
991 /* TARGET_TRAMPOLINE_INIT. */
992 /* Set the static chain and function pointer field in the trampoline.
993 We also SYNCID here to be sure (doesn't matter in the simulator, but
994 some day it will). */
995
996 static void
997 mmix_trampoline_init (rtx m_tramp, tree fndecl, rtx static_chain)
998 {
999 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
1000 rtx mem;
1001
1002 emit_block_move (m_tramp, assemble_trampoline_template (),
1003 GEN_INT (2*UNITS_PER_WORD), BLOCK_OP_NORMAL);
1004
1005 mem = adjust_address (m_tramp, DImode, 2*UNITS_PER_WORD);
1006 emit_move_insn (mem, static_chain);
1007 mem = adjust_address (m_tramp, DImode, 3*UNITS_PER_WORD);
1008 emit_move_insn (mem, fnaddr);
1009
1010 mem = adjust_address (m_tramp, DImode, 0);
1011 emit_insn (gen_sync_icache (mem, GEN_INT (TRAMPOLINE_SIZE - 1)));
1012 }
1013
1014 /* We must exclude constant addresses that have an increment that is not a
1015 multiple of four bytes because of restrictions of the GETA
1016 instruction, unless TARGET_BASE_ADDRESSES. */
1017
1018 int
1019 mmix_constant_address_p (rtx x)
1020 {
1021 RTX_CODE code = GET_CODE (x);
1022 int addend = 0;
1023 /* When using "base addresses", anything constant goes. */
1024 int constant_ok = TARGET_BASE_ADDRESSES != 0;
1025
1026 switch (code)
1027 {
1028 case LABEL_REF:
1029 case SYMBOL_REF:
1030 return 1;
1031
1032 case HIGH:
1033 /* FIXME: Don't know how to dissect these. Avoid them for now,
1034 except we know they're constants. */
1035 return constant_ok;
1036
1037 case CONST_INT:
1038 addend = INTVAL (x);
1039 break;
1040
1041 case CONST_DOUBLE:
1042 if (GET_MODE (x) != VOIDmode)
1043 /* Strange that we got here. FIXME: Check if we do. */
1044 return constant_ok;
1045 addend = CONST_DOUBLE_LOW (x);
1046 break;
1047
1048 case CONST:
1049 /* Note that expressions with arithmetic on forward references don't
1050 work in mmixal. People using gcc assembly code with mmixal might
1051 need to move arrays and such to before the point of use. */
1052 if (GET_CODE (XEXP (x, 0)) == PLUS)
1053 {
1054 rtx x0 = XEXP (XEXP (x, 0), 0);
1055 rtx x1 = XEXP (XEXP (x, 0), 1);
1056
1057 if ((GET_CODE (x0) == SYMBOL_REF
1058 || GET_CODE (x0) == LABEL_REF)
1059 && (GET_CODE (x1) == CONST_INT
1060 || (GET_CODE (x1) == CONST_DOUBLE
1061 && GET_MODE (x1) == VOIDmode)))
1062 addend = mmix_intval (x1);
1063 else
1064 return constant_ok;
1065 }
1066 else
1067 return constant_ok;
1068 break;
1069
1070 default:
1071 return 0;
1072 }
1073
1074 return constant_ok || (addend & 3) == 0;
1075 }
1076
1077 /* Return 1 if the address is OK, otherwise 0. */
1078
1079 bool
1080 mmix_legitimate_address_p (machine_mode mode ATTRIBUTE_UNUSED,
1081 rtx x,
1082 bool strict_checking)
1083 {
1084 #define MMIX_REG_OK(X) \
1085 ((strict_checking \
1086 && (REGNO (X) <= MMIX_LAST_GENERAL_REGISTER \
1087 || (reg_renumber[REGNO (X)] > 0 \
1088 && reg_renumber[REGNO (X)] <= MMIX_LAST_GENERAL_REGISTER))) \
1089 || (!strict_checking \
1090 && (REGNO (X) <= MMIX_LAST_GENERAL_REGISTER \
1091 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1092 || REGNO (X) == ARG_POINTER_REGNUM)))
1093
1094 /* We only accept:
1095 (mem reg)
1096 (mem (plus reg reg))
1097 (mem (plus reg 0..255)).
1098 unless TARGET_BASE_ADDRESSES, in which case we accept all
1099 (mem constant_address) too. */
1100
1101
1102 /* (mem reg) */
1103 if (REG_P (x) && MMIX_REG_OK (x))
1104 return 1;
1105
1106 if (GET_CODE(x) == PLUS)
1107 {
1108 rtx x1 = XEXP (x, 0);
1109 rtx x2 = XEXP (x, 1);
1110
1111 /* Try swapping the order. FIXME: Do we need this? */
1112 if (! REG_P (x1))
1113 {
1114 rtx tem = x1;
1115 x1 = x2;
1116 x2 = tem;
1117 }
1118
1119 /* (mem (plus (reg?) (?))) */
1120 if (!REG_P (x1) || !MMIX_REG_OK (x1))
1121 return TARGET_BASE_ADDRESSES && mmix_constant_address_p (x);
1122
1123 /* (mem (plus (reg) (reg?))) */
1124 if (REG_P (x2) && MMIX_REG_OK (x2))
1125 return 1;
1126
1127 /* (mem (plus (reg) (0..255?))) */
1128 if (satisfies_constraint_I (x2))
1129 return 1;
1130
1131 return 0;
1132 }
1133
1134 return TARGET_BASE_ADDRESSES && mmix_constant_address_p (x);
1135 }
1136
1137 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
1138
1139 static bool
1140 mmix_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1141 {
1142 RTX_CODE code = GET_CODE (x);
1143
1144 /* We must allow any number due to the way the cse passes works; if we
1145 do not allow any number here, general_operand will fail, and insns
1146 will fatally fail recognition instead of "softly". */
1147 if (code == CONST_INT || code == CONST_DOUBLE)
1148 return 1;
1149
1150 return CONSTANT_ADDRESS_P (x);
1151 }
1152
1153 /* SELECT_CC_MODE. */
1154
1155 machine_mode
1156 mmix_select_cc_mode (RTX_CODE op, rtx x, rtx y ATTRIBUTE_UNUSED)
1157 {
1158 /* We use CCmode, CC_UNSmode, CC_FPmode, CC_FPEQmode and CC_FUNmode to
1159 output different compare insns. Note that we do not check the
1160 validity of the comparison here. */
1161
1162 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1163 {
1164 if (op == ORDERED || op == UNORDERED || op == UNGE
1165 || op == UNGT || op == UNLE || op == UNLT)
1166 return CC_FUNmode;
1167
1168 if (op == EQ || op == NE)
1169 return CC_FPEQmode;
1170
1171 return CC_FPmode;
1172 }
1173
1174 if (op == GTU || op == LTU || op == GEU || op == LEU)
1175 return CC_UNSmode;
1176
1177 return CCmode;
1178 }
1179
1180 /* REVERSIBLE_CC_MODE. */
1181
1182 int
1183 mmix_reversible_cc_mode (machine_mode mode)
1184 {
1185 /* That is, all integer and the EQ, NE, ORDERED and UNORDERED float
1186 compares. */
1187 return mode != CC_FPmode;
1188 }
1189
1190 /* TARGET_RTX_COSTS. */
1191
1192 static bool
1193 mmix_rtx_costs (rtx x ATTRIBUTE_UNUSED,
1194 int code ATTRIBUTE_UNUSED,
1195 int outer_code ATTRIBUTE_UNUSED,
1196 int opno ATTRIBUTE_UNUSED,
1197 int *total ATTRIBUTE_UNUSED,
1198 bool speed ATTRIBUTE_UNUSED)
1199 {
1200 /* For the time being, this is just a stub and we'll accept the
1201 generic calculations, until we can do measurements, at least.
1202 Say we did not modify any calculated costs. */
1203 return false;
1204 }
1205
1206 /* TARGET_REGISTER_MOVE_COST.
1207
1208 The special registers can only move to and from general regs, and we
1209 need to check that their constraints match, so say 3 for them. */
1210
1211 static int
1212 mmix_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
1213 reg_class_t from,
1214 reg_class_t to)
1215 {
1216 return (from == GENERAL_REGS && from == to) ? 2 : 3;
1217 }
1218
1219 /* Note that we don't have a TEXT_SECTION_ASM_OP, because it has to be a
1220 compile-time constant; it's used in an asm in crtstuff.c, compiled for
1221 the target. */
1222
1223 /* DATA_SECTION_ASM_OP. */
1224
1225 const char *
1226 mmix_data_section_asm_op (void)
1227 {
1228 return "\t.data ! mmixal:= 8H LOC 9B";
1229 }
1230
1231 static void
1232 mmix_encode_section_info (tree decl, rtx rtl, int first)
1233 {
1234 /* Test for an external declaration, and do nothing if it is one. */
1235 if ((TREE_CODE (decl) == VAR_DECL
1236 && (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl)))
1237 || (TREE_CODE (decl) == FUNCTION_DECL && TREE_PUBLIC (decl)))
1238 ;
1239 else if (first && DECL_P (decl))
1240 {
1241 /* For non-visible declarations, add a "@" prefix, which we skip
1242 when the label is output. If the label does not have this
1243 prefix, a ":" is output if -mtoplevel-symbols.
1244
1245 Note that this does not work for data that is declared extern and
1246 later defined as static. If there's code in between, that code
1247 will refer to the extern declaration, and vice versa. This just
1248 means that when -mtoplevel-symbols is in use, we can just handle
1249 well-behaved ISO-compliant code. */
1250
1251 const char *str = XSTR (XEXP (rtl, 0), 0);
1252 int len = strlen (str);
1253 char *newstr = XALLOCAVEC (char, len + 2);
1254 newstr[0] = '@';
1255 strcpy (newstr + 1, str);
1256 XSTR (XEXP (rtl, 0), 0) = ggc_alloc_string (newstr, len + 1);
1257 }
1258
1259 /* Set SYMBOL_REF_FLAG for things that we want to access with GETA. We
1260 may need different options to reach for different things with GETA.
1261 For now, functions and things we know or have been told are constant. */
1262 if (TREE_CODE (decl) == FUNCTION_DECL
1263 || TREE_CONSTANT (decl)
1264 || (TREE_CODE (decl) == VAR_DECL
1265 && TREE_READONLY (decl)
1266 && !TREE_SIDE_EFFECTS (decl)
1267 && (!DECL_INITIAL (decl)
1268 || TREE_CONSTANT (DECL_INITIAL (decl)))))
1269 SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
1270 }
1271
1272 static const char *
1273 mmix_strip_name_encoding (const char *name)
1274 {
1275 for (; (*name == '@' || *name == '*'); name++)
1276 ;
1277
1278 return name;
1279 }
1280
1281 /* TARGET_ASM_FILE_START.
1282 We just emit a little comment for the time being. */
1283
1284 static void
1285 mmix_file_start (void)
1286 {
1287 default_file_start ();
1288
1289 fputs ("! mmixal:= 8H LOC Data_Section\n", asm_out_file);
1290
1291 /* Make sure each file starts with the text section. */
1292 switch_to_section (text_section);
1293 }
1294
1295 /* TARGET_ASM_FILE_END. */
1296
1297 static void
1298 mmix_file_end (void)
1299 {
1300 /* Make sure each file ends with the data section. */
1301 switch_to_section (data_section);
1302 }
1303
1304 /* TARGET_ASM_OUTPUT_SOURCE_FILENAME. */
1305
1306 static void
1307 mmix_asm_output_source_filename (FILE *stream, const char *name)
1308 {
1309 fprintf (stream, "# 1 ");
1310 OUTPUT_QUOTED_STRING (stream, name);
1311 fprintf (stream, "\n");
1312 }
1313
1314 /* OUTPUT_QUOTED_STRING. */
1315
1316 void
1317 mmix_output_quoted_string (FILE *stream, const char *string, int length)
1318 {
1319 const char * string_end = string + length;
1320 static const char *const unwanted_chars = "\"[]\\";
1321
1322 /* Output "any character except newline and double quote character". We
1323 play it safe and avoid all control characters too. We also do not
1324 want [] as characters, should input be passed through m4 with [] as
1325 quotes. Further, we avoid "\", because the GAS port handles it as a
1326 quoting character. */
1327 while (string < string_end)
1328 {
1329 if (*string
1330 && (unsigned char) *string < 128
1331 && !ISCNTRL (*string)
1332 && strchr (unwanted_chars, *string) == NULL)
1333 {
1334 fputc ('"', stream);
1335 while (*string
1336 && (unsigned char) *string < 128
1337 && !ISCNTRL (*string)
1338 && strchr (unwanted_chars, *string) == NULL
1339 && string < string_end)
1340 {
1341 fputc (*string, stream);
1342 string++;
1343 }
1344 fputc ('"', stream);
1345 if (string < string_end)
1346 fprintf (stream, ",");
1347 }
1348 if (string < string_end)
1349 {
1350 fprintf (stream, "#%x", *string & 255);
1351 string++;
1352 if (string < string_end)
1353 fprintf (stream, ",");
1354 }
1355 }
1356 }
1357
1358 /* Target hook for assembling integer objects. Use mmix_print_operand
1359 for WYDE and TETRA. Use mmix_output_octa to output 8-byte
1360 CONST_DOUBLEs. */
1361
1362 static bool
1363 mmix_assemble_integer (rtx x, unsigned int size, int aligned_p)
1364 {
1365 if (aligned_p)
1366 switch (size)
1367 {
1368 /* We handle a limited number of types of operands in here. But
1369 that's ok, because we can punt to generic functions. We then
1370 pretend that aligned data isn't needed, so the usual .<pseudo>
1371 syntax is used (which works for aligned data too). We actually
1372 *must* do that, since we say we don't have simple aligned
1373 pseudos, causing this function to be called. We just try and
1374 keep as much compatibility as possible with mmixal syntax for
1375 normal cases (i.e. without GNU extensions and C only). */
1376 case 1:
1377 if (GET_CODE (x) != CONST_INT)
1378 {
1379 aligned_p = 0;
1380 break;
1381 }
1382 fputs ("\tBYTE\t", asm_out_file);
1383 mmix_print_operand (asm_out_file, x, 'B');
1384 fputc ('\n', asm_out_file);
1385 return true;
1386
1387 case 2:
1388 if (GET_CODE (x) != CONST_INT)
1389 {
1390 aligned_p = 0;
1391 break;
1392 }
1393 fputs ("\tWYDE\t", asm_out_file);
1394 mmix_print_operand (asm_out_file, x, 'W');
1395 fputc ('\n', asm_out_file);
1396 return true;
1397
1398 case 4:
1399 if (GET_CODE (x) != CONST_INT)
1400 {
1401 aligned_p = 0;
1402 break;
1403 }
1404 fputs ("\tTETRA\t", asm_out_file);
1405 mmix_print_operand (asm_out_file, x, 'L');
1406 fputc ('\n', asm_out_file);
1407 return true;
1408
1409 case 8:
1410 /* We don't get here anymore for CONST_DOUBLE, because DImode
1411 isn't expressed as CONST_DOUBLE, and DFmode is handled
1412 elsewhere. */
1413 gcc_assert (GET_CODE (x) != CONST_DOUBLE);
1414 assemble_integer_with_op ("\tOCTA\t", x);
1415 return true;
1416 }
1417 return default_assemble_integer (x, size, aligned_p);
1418 }
1419
1420 /* ASM_OUTPUT_ASCII. */
1421
1422 void
1423 mmix_asm_output_ascii (FILE *stream, const char *string, int length)
1424 {
1425 while (length > 0)
1426 {
1427 int chunk_size = length > 60 ? 60 : length;
1428 fprintf (stream, "\tBYTE ");
1429 mmix_output_quoted_string (stream, string, chunk_size);
1430 string += chunk_size;
1431 length -= chunk_size;
1432 fprintf (stream, "\n");
1433 }
1434 }
1435
1436 /* ASM_OUTPUT_ALIGNED_COMMON. */
1437
1438 void
1439 mmix_asm_output_aligned_common (FILE *stream,
1440 const char *name,
1441 int size,
1442 int align)
1443 {
1444 /* This is mostly the elfos.h one. There doesn't seem to be a way to
1445 express this in a mmixal-compatible way. */
1446 fprintf (stream, "\t.comm\t");
1447 assemble_name (stream, name);
1448 fprintf (stream, ",%u,%u ! mmixal-incompatible COMMON\n",
1449 size, align / BITS_PER_UNIT);
1450 }
1451
1452 /* ASM_OUTPUT_ALIGNED_LOCAL. */
1453
1454 void
1455 mmix_asm_output_aligned_local (FILE *stream,
1456 const char *name,
1457 int size,
1458 int align)
1459 {
1460 switch_to_section (data_section);
1461
1462 ASM_OUTPUT_ALIGN (stream, exact_log2 (align/BITS_PER_UNIT));
1463 assemble_name (stream, name);
1464 fprintf (stream, "\tLOC @+%d\n", size);
1465 }
1466
1467 /* ASM_OUTPUT_LABEL. */
1468
1469 void
1470 mmix_asm_output_label (FILE *stream, const char *name)
1471 {
1472 assemble_name (stream, name);
1473 fprintf (stream, "\tIS @\n");
1474 }
1475
1476 /* ASM_OUTPUT_INTERNAL_LABEL. */
1477
1478 void
1479 mmix_asm_output_internal_label (FILE *stream, const char *name)
1480 {
1481 assemble_name_raw (stream, name);
1482 fprintf (stream, "\tIS @\n");
1483 }
1484
1485 /* ASM_DECLARE_REGISTER_GLOBAL. */
1486
1487 void
1488 mmix_asm_declare_register_global (FILE *stream ATTRIBUTE_UNUSED,
1489 tree decl ATTRIBUTE_UNUSED,
1490 int regno ATTRIBUTE_UNUSED,
1491 const char *name ATTRIBUTE_UNUSED)
1492 {
1493 /* Nothing to do here, but there *will* be, therefore the framework is
1494 here. */
1495 }
1496
1497 /* ASM_WEAKEN_LABEL. */
1498
1499 void
1500 mmix_asm_weaken_label (FILE *stream ATTRIBUTE_UNUSED,
1501 const char *name ATTRIBUTE_UNUSED)
1502 {
1503 fprintf (stream, "\t.weak ");
1504 assemble_name (stream, name);
1505 fprintf (stream, " ! mmixal-incompatible\n");
1506 }
1507
1508 /* MAKE_DECL_ONE_ONLY. */
1509
1510 void
1511 mmix_make_decl_one_only (tree decl)
1512 {
1513 DECL_WEAK (decl) = 1;
1514 }
1515
1516 /* ASM_OUTPUT_LABELREF.
1517 Strip GCC's '*' and our own '@'. No order is assumed. */
1518
1519 void
1520 mmix_asm_output_labelref (FILE *stream, const char *name)
1521 {
1522 int is_extern = 1;
1523
1524 for (; (*name == '@' || *name == '*'); name++)
1525 if (*name == '@')
1526 is_extern = 0;
1527
1528 asm_fprintf (stream, "%s%U%s",
1529 is_extern && TARGET_TOPLEVEL_SYMBOLS ? ":" : "",
1530 name);
1531 }
1532
1533 /* ASM_OUTPUT_DEF. */
1534
1535 void
1536 mmix_asm_output_def (FILE *stream, const char *name, const char *value)
1537 {
1538 assemble_name (stream, name);
1539 fprintf (stream, "\tIS ");
1540 assemble_name (stream, value);
1541 fputc ('\n', stream);
1542 }
1543
1544 /* TARGET_PRINT_OPERAND. */
1545
1546 static void
1547 mmix_print_operand (FILE *stream, rtx x, int code)
1548 {
1549 /* When we add support for different codes later, we can, when needed,
1550 drop through to the main handler with a modified operand. */
1551 rtx modified_x = x;
1552 int regno = x != NULL_RTX && REG_P (x) ? REGNO (x) : 0;
1553
1554 switch (code)
1555 {
1556 /* Unrelated codes are in alphabetic order. */
1557
1558 case '+':
1559 /* For conditional branches, output "P" for a probable branch. */
1560 if (TARGET_BRANCH_PREDICT)
1561 {
1562 x = find_reg_note (current_output_insn, REG_BR_PROB, 0);
1563 if (x && XINT (x, 0) > REG_BR_PROB_BASE / 2)
1564 putc ('P', stream);
1565 }
1566 return;
1567
1568 case '.':
1569 /* For the %d in POP %d,0. */
1570 fprintf (stream, "%d", MMIX_POP_ARGUMENT ());
1571 return;
1572
1573 case 'B':
1574 if (GET_CODE (x) != CONST_INT)
1575 fatal_insn ("MMIX Internal: Expected a CONST_INT, not this", x);
1576 fprintf (stream, "%d", (int) (INTVAL (x) & 0xff));
1577 return;
1578
1579 case 'H':
1580 /* Highpart. Must be general register, and not the last one, as
1581 that one cannot be part of a consecutive register pair. */
1582 if (regno > MMIX_LAST_GENERAL_REGISTER - 1)
1583 internal_error ("MMIX Internal: Bad register: %d", regno);
1584
1585 /* This is big-endian, so the high-part is the first one. */
1586 fprintf (stream, "%s", reg_names[MMIX_OUTPUT_REGNO (regno)]);
1587 return;
1588
1589 case 'L':
1590 /* Lowpart. Must be CONST_INT or general register, and not the last
1591 one, as that one cannot be part of a consecutive register pair. */
1592 if (GET_CODE (x) == CONST_INT)
1593 {
1594 fprintf (stream, "#%lx",
1595 (unsigned long) (INTVAL (x)
1596 & ((unsigned int) 0x7fffffff * 2 + 1)));
1597 return;
1598 }
1599
1600 if (GET_CODE (x) == SYMBOL_REF)
1601 {
1602 output_addr_const (stream, x);
1603 return;
1604 }
1605
1606 if (regno > MMIX_LAST_GENERAL_REGISTER - 1)
1607 internal_error ("MMIX Internal: Bad register: %d", regno);
1608
1609 /* This is big-endian, so the low-part is + 1. */
1610 fprintf (stream, "%s", reg_names[MMIX_OUTPUT_REGNO (regno) + 1]);
1611 return;
1612
1613 /* Can't use 'a' because that's a generic modifier for address
1614 output. */
1615 case 'A':
1616 mmix_output_shiftvalue_op_from_str (stream, "ANDN",
1617 ~(uint64_t)
1618 mmix_intval (x));
1619 return;
1620
1621 case 'i':
1622 mmix_output_shiftvalue_op_from_str (stream, "INC",
1623 (uint64_t)
1624 mmix_intval (x));
1625 return;
1626
1627 case 'o':
1628 mmix_output_shiftvalue_op_from_str (stream, "OR",
1629 (uint64_t)
1630 mmix_intval (x));
1631 return;
1632
1633 case 's':
1634 mmix_output_shiftvalue_op_from_str (stream, "SET",
1635 (uint64_t)
1636 mmix_intval (x));
1637 return;
1638
1639 case 'd':
1640 case 'D':
1641 mmix_output_condition (stream, x, (code == 'D'));
1642 return;
1643
1644 case 'e':
1645 /* Output an extra "e" to make fcmpe, fune. */
1646 if (TARGET_FCMP_EPSILON)
1647 fprintf (stream, "e");
1648 return;
1649
1650 case 'm':
1651 /* Output the number minus 1. */
1652 if (GET_CODE (x) != CONST_INT)
1653 {
1654 fatal_insn ("MMIX Internal: Bad value for 'm', not a CONST_INT",
1655 x);
1656 }
1657 fprintf (stream, "%" PRId64,
1658 (int64_t) (mmix_intval (x) - 1));
1659 return;
1660
1661 case 'p':
1662 /* Store the number of registers we want to save. This was setup
1663 by the prologue. The actual operand contains the number of
1664 registers to pass, but we don't use it currently. Anyway, we
1665 need to output the number of saved registers here. */
1666 fprintf (stream, "%d",
1667 cfun->machine->highest_saved_stack_register + 1);
1668 return;
1669
1670 case 'r':
1671 /* Store the register to output a constant to. */
1672 if (! REG_P (x))
1673 fatal_insn ("MMIX Internal: Expected a register, not this", x);
1674 mmix_output_destination_register = MMIX_OUTPUT_REGNO (regno);
1675 return;
1676
1677 case 'I':
1678 /* Output the constant. Note that we use this for floats as well. */
1679 if (GET_CODE (x) != CONST_INT
1680 && (GET_CODE (x) != CONST_DOUBLE
1681 || (GET_MODE (x) != VOIDmode && GET_MODE (x) != DFmode
1682 && GET_MODE (x) != SFmode)))
1683 fatal_insn ("MMIX Internal: Expected a constant, not this", x);
1684 mmix_output_register_setting (stream,
1685 mmix_output_destination_register,
1686 mmix_intval (x), 0);
1687 return;
1688
1689 case 'U':
1690 /* An U for unsigned, if TARGET_ZERO_EXTEND. Ignore the operand. */
1691 if (TARGET_ZERO_EXTEND)
1692 putc ('U', stream);
1693 return;
1694
1695 case 'v':
1696 mmix_output_shifted_value (stream, (int64_t) mmix_intval (x));
1697 return;
1698
1699 case 'V':
1700 mmix_output_shifted_value (stream, (int64_t) ~mmix_intval (x));
1701 return;
1702
1703 case 'W':
1704 if (GET_CODE (x) != CONST_INT)
1705 fatal_insn ("MMIX Internal: Expected a CONST_INT, not this", x);
1706 fprintf (stream, "#%x", (int) (INTVAL (x) & 0xffff));
1707 return;
1708
1709 case 0:
1710 /* Nothing to do. */
1711 break;
1712
1713 default:
1714 /* Presumably there's a missing case above if we get here. */
1715 internal_error ("MMIX Internal: Missing %qc case in mmix_print_operand", code);
1716 }
1717
1718 switch (GET_CODE (modified_x))
1719 {
1720 case REG:
1721 regno = REGNO (modified_x);
1722 if (regno >= FIRST_PSEUDO_REGISTER)
1723 internal_error ("MMIX Internal: Bad register: %d", regno);
1724 fprintf (stream, "%s", reg_names[MMIX_OUTPUT_REGNO (regno)]);
1725 return;
1726
1727 case MEM:
1728 output_address (XEXP (modified_x, 0));
1729 return;
1730
1731 case CONST_INT:
1732 /* For -2147483648, mmixal complains that the constant does not fit
1733 in 4 bytes, so let's output it as hex. Take care to handle hosts
1734 where HOST_WIDE_INT is longer than an int.
1735
1736 Print small constants +-255 using decimal. */
1737
1738 if (INTVAL (modified_x) > -256 && INTVAL (modified_x) < 256)
1739 fprintf (stream, "%d", (int) (INTVAL (modified_x)));
1740 else
1741 fprintf (stream, "#%x",
1742 (int) (INTVAL (modified_x)) & (unsigned int) ~0);
1743 return;
1744
1745 case CONST_DOUBLE:
1746 /* Do somewhat as CONST_INT. */
1747 mmix_output_octa (stream, mmix_intval (modified_x), 0);
1748 return;
1749
1750 case CONST:
1751 output_addr_const (stream, modified_x);
1752 return;
1753
1754 default:
1755 /* No need to test for all strange things. Let output_addr_const do
1756 it for us. */
1757 if (CONSTANT_P (modified_x)
1758 /* Strangely enough, this is not included in CONSTANT_P.
1759 FIXME: Ask/check about sanity here. */
1760 || LABEL_P (modified_x))
1761 {
1762 output_addr_const (stream, modified_x);
1763 return;
1764 }
1765
1766 /* We need the original here. */
1767 fatal_insn ("MMIX Internal: Cannot decode this operand", x);
1768 }
1769 }
1770
1771 /* TARGET_PRINT_OPERAND_PUNCT_VALID_P. */
1772
1773 static bool
1774 mmix_print_operand_punct_valid_p (unsigned char code)
1775 {
1776 /* A '+' is used for branch prediction, similar to other ports. */
1777 return code == '+'
1778 /* A '.' is used for the %d in the POP %d,0 return insn. */
1779 || code == '.';
1780 }
1781
1782 /* TARGET_PRINT_OPERAND_ADDRESS. */
1783
1784 static void
1785 mmix_print_operand_address (FILE *stream, rtx x)
1786 {
1787 if (REG_P (x))
1788 {
1789 /* I find the generated assembly code harder to read without
1790 the ",0". */
1791 fprintf (stream, "%s,0", reg_names[MMIX_OUTPUT_REGNO (REGNO (x))]);
1792 return;
1793 }
1794 else if (GET_CODE (x) == PLUS)
1795 {
1796 rtx x1 = XEXP (x, 0);
1797 rtx x2 = XEXP (x, 1);
1798
1799 if (REG_P (x1))
1800 {
1801 fprintf (stream, "%s,", reg_names[MMIX_OUTPUT_REGNO (REGNO (x1))]);
1802
1803 if (REG_P (x2))
1804 {
1805 fprintf (stream, "%s",
1806 reg_names[MMIX_OUTPUT_REGNO (REGNO (x2))]);
1807 return;
1808 }
1809 else if (satisfies_constraint_I (x2))
1810 {
1811 output_addr_const (stream, x2);
1812 return;
1813 }
1814 }
1815 }
1816
1817 if (TARGET_BASE_ADDRESSES && mmix_legitimate_constant_p (Pmode, x))
1818 {
1819 output_addr_const (stream, x);
1820 return;
1821 }
1822
1823 fatal_insn ("MMIX Internal: This is not a recognized address", x);
1824 }
1825
1826 /* ASM_OUTPUT_REG_PUSH. */
1827
1828 void
1829 mmix_asm_output_reg_push (FILE *stream, int regno)
1830 {
1831 fprintf (stream, "\tSUBU %s,%s,8\n\tSTOU %s,%s,0\n",
1832 reg_names[MMIX_STACK_POINTER_REGNUM],
1833 reg_names[MMIX_STACK_POINTER_REGNUM],
1834 reg_names[MMIX_OUTPUT_REGNO (regno)],
1835 reg_names[MMIX_STACK_POINTER_REGNUM]);
1836 }
1837
1838 /* ASM_OUTPUT_REG_POP. */
1839
1840 void
1841 mmix_asm_output_reg_pop (FILE *stream, int regno)
1842 {
1843 fprintf (stream, "\tLDOU %s,%s,0\n\tINCL %s,8\n",
1844 reg_names[MMIX_OUTPUT_REGNO (regno)],
1845 reg_names[MMIX_STACK_POINTER_REGNUM],
1846 reg_names[MMIX_STACK_POINTER_REGNUM]);
1847 }
1848
1849 /* ASM_OUTPUT_ADDR_DIFF_ELT. */
1850
1851 void
1852 mmix_asm_output_addr_diff_elt (FILE *stream,
1853 rtx body ATTRIBUTE_UNUSED,
1854 int value,
1855 int rel)
1856 {
1857 fprintf (stream, "\tTETRA L%d-L%d\n", value, rel);
1858 }
1859
1860 /* ASM_OUTPUT_ADDR_VEC_ELT. */
1861
1862 void
1863 mmix_asm_output_addr_vec_elt (FILE *stream, int value)
1864 {
1865 fprintf (stream, "\tOCTA L:%d\n", value);
1866 }
1867
1868 /* ASM_OUTPUT_SKIP. */
1869
1870 void
1871 mmix_asm_output_skip (FILE *stream, int nbytes)
1872 {
1873 fprintf (stream, "\tLOC @+%d\n", nbytes);
1874 }
1875
1876 /* ASM_OUTPUT_ALIGN. */
1877
1878 void
1879 mmix_asm_output_align (FILE *stream, int power)
1880 {
1881 /* We need to record the needed alignment of this section in the object,
1882 so we have to output an alignment directive. Use a .p2align (not
1883 .align) so people will never have to wonder about whether the
1884 argument is in number of bytes or the log2 thereof. We do it in
1885 addition to the LOC directive, so nothing needs tweaking when
1886 copy-pasting assembly into mmixal. */
1887 fprintf (stream, "\t.p2align %d\n", power);
1888 fprintf (stream, "\tLOC @+(%d-@)&%d\n", 1 << power, (1 << power) - 1);
1889 }
1890
1891 /* DBX_REGISTER_NUMBER. */
1892
1893 unsigned
1894 mmix_dbx_register_number (unsigned regno)
1895 {
1896 /* Adjust the register number to the one it will be output as, dammit.
1897 It'd be nice if we could check the assumption that we're filling a
1898 gap, but every register between the last saved register and parameter
1899 registers might be a valid parameter register. */
1900 regno = MMIX_OUTPUT_REGNO (regno);
1901
1902 /* We need to renumber registers to get the number of the return address
1903 register in the range 0..255. It is also space-saving if registers
1904 mentioned in the call-frame information (which uses this function by
1905 defaulting DWARF_FRAME_REGNUM to DBX_REGISTER_NUMBER) are numbered
1906 0 .. 63. So map 224 .. 256+15 -> 0 .. 47 and 0 .. 223 -> 48..223+48. */
1907 return regno >= 224 ? (regno - 224) : (regno + 48);
1908 }
1909
1910 /* End of target macro support functions.
1911
1912 Now the MMIX port's own functions. First the exported ones. */
1913
1914 /* Wrapper for get_hard_reg_initial_val since integrate.h isn't included
1915 from insn-emit.c. */
1916
1917 rtx
1918 mmix_get_hard_reg_initial_val (machine_mode mode, int regno)
1919 {
1920 return get_hard_reg_initial_val (mode, regno);
1921 }
1922
1923 /* Nonzero when the function epilogue is simple enough that a single
1924 "POP %d,0" should be used even within the function. */
1925
1926 int
1927 mmix_use_simple_return (void)
1928 {
1929 int regno;
1930
1931 int stack_space_to_allocate
1932 = (crtl->outgoing_args_size
1933 + crtl->args.pretend_args_size
1934 + get_frame_size () + 7) & ~7;
1935
1936 if (!TARGET_USE_RETURN_INSN || !reload_completed)
1937 return 0;
1938
1939 for (regno = 255;
1940 regno >= MMIX_FIRST_GLOBAL_REGNUM;
1941 regno--)
1942 /* Note that we assume that the frame-pointer-register is one of these
1943 registers, in which case we don't count it here. */
1944 if ((((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
1945 && df_regs_ever_live_p (regno) && !call_used_regs[regno]))
1946 || IS_MMIX_EH_RETURN_DATA_REG (regno))
1947 return 0;
1948
1949 if (frame_pointer_needed)
1950 stack_space_to_allocate += 8;
1951
1952 if (MMIX_CFUN_HAS_LANDING_PAD)
1953 stack_space_to_allocate += 16;
1954 else if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
1955 stack_space_to_allocate += 8;
1956
1957 return stack_space_to_allocate == 0;
1958 }
1959
1960
1961 /* Expands the function prologue into RTX. */
1962
1963 void
1964 mmix_expand_prologue (void)
1965 {
1966 HOST_WIDE_INT locals_size = get_frame_size ();
1967 int regno;
1968 HOST_WIDE_INT stack_space_to_allocate
1969 = (crtl->outgoing_args_size
1970 + crtl->args.pretend_args_size
1971 + locals_size + 7) & ~7;
1972 HOST_WIDE_INT offset = -8;
1973
1974 /* Add room needed to save global non-register-stack registers. */
1975 for (regno = 255;
1976 regno >= MMIX_FIRST_GLOBAL_REGNUM;
1977 regno--)
1978 /* Note that we assume that the frame-pointer-register is one of these
1979 registers, in which case we don't count it here. */
1980 if ((((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
1981 && df_regs_ever_live_p (regno) && !call_used_regs[regno]))
1982 || IS_MMIX_EH_RETURN_DATA_REG (regno))
1983 stack_space_to_allocate += 8;
1984
1985 /* If we do have a frame-pointer, add room for it. */
1986 if (frame_pointer_needed)
1987 stack_space_to_allocate += 8;
1988
1989 /* If we have a non-local label, we need to be able to unwind to it, so
1990 store the current register stack pointer. Also store the return
1991 address if we do that. */
1992 if (MMIX_CFUN_HAS_LANDING_PAD)
1993 stack_space_to_allocate += 16;
1994 else if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
1995 /* If we do have a saved return-address slot, add room for it. */
1996 stack_space_to_allocate += 8;
1997
1998 /* Make sure we don't get an unaligned stack. */
1999 if ((stack_space_to_allocate % 8) != 0)
2000 internal_error ("stack frame not a multiple of 8 bytes: %wd",
2001 stack_space_to_allocate);
2002
2003 if (crtl->args.pretend_args_size)
2004 {
2005 int mmix_first_vararg_reg
2006 = (MMIX_FIRST_INCOMING_ARG_REGNUM
2007 + (MMIX_MAX_ARGS_IN_REGS
2008 - crtl->args.pretend_args_size / 8));
2009
2010 for (regno
2011 = MMIX_FIRST_INCOMING_ARG_REGNUM + MMIX_MAX_ARGS_IN_REGS - 1;
2012 regno >= mmix_first_vararg_reg;
2013 regno--)
2014 {
2015 if (offset < 0)
2016 {
2017 HOST_WIDE_INT stack_chunk
2018 = stack_space_to_allocate > (256 - 8)
2019 ? (256 - 8) : stack_space_to_allocate;
2020
2021 mmix_emit_sp_add (-stack_chunk);
2022 offset += stack_chunk;
2023 stack_space_to_allocate -= stack_chunk;
2024 }
2025
2026 /* These registers aren't actually saved (as in "will be
2027 restored"), so don't tell DWARF2 they're saved. */
2028 emit_move_insn (gen_rtx_MEM (DImode,
2029 plus_constant (Pmode, stack_pointer_rtx,
2030 offset)),
2031 gen_rtx_REG (DImode, regno));
2032 offset -= 8;
2033 }
2034 }
2035
2036 /* Store the frame-pointer. */
2037
2038 if (frame_pointer_needed)
2039 {
2040 rtx insn;
2041
2042 if (offset < 0)
2043 {
2044 /* Get 8 less than otherwise, since we need to reach offset + 8. */
2045 HOST_WIDE_INT stack_chunk
2046 = stack_space_to_allocate > (256 - 8 - 8)
2047 ? (256 - 8 - 8) : stack_space_to_allocate;
2048
2049 mmix_emit_sp_add (-stack_chunk);
2050
2051 offset += stack_chunk;
2052 stack_space_to_allocate -= stack_chunk;
2053 }
2054
2055 insn = emit_move_insn (gen_rtx_MEM (DImode,
2056 plus_constant (Pmode,
2057 stack_pointer_rtx,
2058 offset)),
2059 hard_frame_pointer_rtx);
2060 RTX_FRAME_RELATED_P (insn) = 1;
2061 insn = emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
2062 stack_pointer_rtx,
2063 GEN_INT (offset + 8)));
2064 RTX_FRAME_RELATED_P (insn) = 1;
2065 offset -= 8;
2066 }
2067
2068 if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
2069 {
2070 rtx tmpreg, retreg;
2071 rtx insn;
2072
2073 /* Store the return-address, if one is needed on the stack. We
2074 usually store it in a register when needed, but that doesn't work
2075 with -fexceptions. */
2076
2077 if (offset < 0)
2078 {
2079 /* Get 8 less than otherwise, since we need to reach offset + 8. */
2080 HOST_WIDE_INT stack_chunk
2081 = stack_space_to_allocate > (256 - 8 - 8)
2082 ? (256 - 8 - 8) : stack_space_to_allocate;
2083
2084 mmix_emit_sp_add (-stack_chunk);
2085
2086 offset += stack_chunk;
2087 stack_space_to_allocate -= stack_chunk;
2088 }
2089
2090 tmpreg = gen_rtx_REG (DImode, 255);
2091 retreg = gen_rtx_REG (DImode, MMIX_rJ_REGNUM);
2092
2093 /* Dwarf2 code is confused by the use of a temporary register for
2094 storing the return address, so we have to express it as a note,
2095 which we attach to the actual store insn. */
2096 emit_move_insn (tmpreg, retreg);
2097
2098 insn = emit_move_insn (gen_rtx_MEM (DImode,
2099 plus_constant (Pmode,
2100 stack_pointer_rtx,
2101 offset)),
2102 tmpreg);
2103 RTX_FRAME_RELATED_P (insn) = 1;
2104 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
2105 gen_rtx_SET (gen_rtx_MEM (DImode,
2106 plus_constant (Pmode,
2107 stack_pointer_rtx,
2108 offset)),
2109 retreg));
2110
2111 offset -= 8;
2112 }
2113 else if (MMIX_CFUN_HAS_LANDING_PAD)
2114 offset -= 8;
2115
2116 if (MMIX_CFUN_HAS_LANDING_PAD)
2117 {
2118 /* Store the register defining the numbering of local registers, so
2119 we know how long to unwind the register stack. */
2120
2121 if (offset < 0)
2122 {
2123 /* Get 8 less than otherwise, since we need to reach offset + 8. */
2124 HOST_WIDE_INT stack_chunk
2125 = stack_space_to_allocate > (256 - 8 - 8)
2126 ? (256 - 8 - 8) : stack_space_to_allocate;
2127
2128 mmix_emit_sp_add (-stack_chunk);
2129
2130 offset += stack_chunk;
2131 stack_space_to_allocate -= stack_chunk;
2132 }
2133
2134 /* We don't tell dwarf2 about this one; we just have it to unwind
2135 the register stack at landing pads. FIXME: It's a kludge because
2136 we can't describe the effect of the PUSHJ and PUSHGO insns on the
2137 register stack at the moment. Best thing would be to handle it
2138 like stack-pointer offsets. Better: some hook into dwarf2out.c
2139 to produce DW_CFA_expression:s that specify the increment of rO,
2140 and unwind it at eh_return (preferred) or at the landing pad.
2141 Then saves to $0..$G-1 could be specified through that register. */
2142
2143 emit_move_insn (gen_rtx_REG (DImode, 255),
2144 gen_rtx_REG (DImode,
2145 MMIX_rO_REGNUM));
2146 emit_move_insn (gen_rtx_MEM (DImode,
2147 plus_constant (Pmode, stack_pointer_rtx,
2148 offset)),
2149 gen_rtx_REG (DImode, 255));
2150 offset -= 8;
2151 }
2152
2153 /* After the return-address and the frame-pointer, we have the local
2154 variables. They're the ones that may have an "unaligned" size. */
2155 offset -= (locals_size + 7) & ~7;
2156
2157 /* Now store all registers that are global, i.e. not saved by the
2158 register file machinery.
2159
2160 It is assumed that the frame-pointer is one of these registers, so it
2161 is explicitly excluded in the count. */
2162
2163 for (regno = 255;
2164 regno >= MMIX_FIRST_GLOBAL_REGNUM;
2165 regno--)
2166 if (((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
2167 && df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2168 || IS_MMIX_EH_RETURN_DATA_REG (regno))
2169 {
2170 rtx insn;
2171
2172 if (offset < 0)
2173 {
2174 HOST_WIDE_INT stack_chunk
2175 = (stack_space_to_allocate > (256 - offset - 8)
2176 ? (256 - offset - 8) : stack_space_to_allocate);
2177
2178 mmix_emit_sp_add (-stack_chunk);
2179 offset += stack_chunk;
2180 stack_space_to_allocate -= stack_chunk;
2181 }
2182
2183 insn = emit_move_insn (gen_rtx_MEM (DImode,
2184 plus_constant (Pmode,
2185 stack_pointer_rtx,
2186 offset)),
2187 gen_rtx_REG (DImode, regno));
2188 RTX_FRAME_RELATED_P (insn) = 1;
2189 offset -= 8;
2190 }
2191
2192 /* Finally, allocate room for outgoing args and local vars if room
2193 wasn't allocated above. */
2194 if (stack_space_to_allocate)
2195 mmix_emit_sp_add (-stack_space_to_allocate);
2196 }
2197
2198 /* Expands the function epilogue into RTX. */
2199
2200 void
2201 mmix_expand_epilogue (void)
2202 {
2203 HOST_WIDE_INT locals_size = get_frame_size ();
2204 int regno;
2205 HOST_WIDE_INT stack_space_to_deallocate
2206 = (crtl->outgoing_args_size
2207 + crtl->args.pretend_args_size
2208 + locals_size + 7) & ~7;
2209
2210 /* The first address to access is beyond the outgoing_args area. */
2211 HOST_WIDE_INT offset = crtl->outgoing_args_size;
2212
2213 /* Add the space for global non-register-stack registers.
2214 It is assumed that the frame-pointer register can be one of these
2215 registers, in which case it is excluded from the count when needed. */
2216 for (regno = 255;
2217 regno >= MMIX_FIRST_GLOBAL_REGNUM;
2218 regno--)
2219 if (((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
2220 && df_regs_ever_live_p (regno) && !call_used_regs[regno])
2221 || IS_MMIX_EH_RETURN_DATA_REG (regno))
2222 stack_space_to_deallocate += 8;
2223
2224 /* Add in the space for register stack-pointer. If so, always add room
2225 for the saved PC. */
2226 if (MMIX_CFUN_HAS_LANDING_PAD)
2227 stack_space_to_deallocate += 16;
2228 else if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
2229 /* If we have a saved return-address slot, add it in. */
2230 stack_space_to_deallocate += 8;
2231
2232 /* Add in the frame-pointer. */
2233 if (frame_pointer_needed)
2234 stack_space_to_deallocate += 8;
2235
2236 /* Make sure we don't get an unaligned stack. */
2237 if ((stack_space_to_deallocate % 8) != 0)
2238 internal_error ("stack frame not a multiple of octabyte: %wd",
2239 stack_space_to_deallocate);
2240
2241 /* We will add back small offsets to the stack pointer as we go.
2242 First, we restore all registers that are global, i.e. not saved by
2243 the register file machinery. */
2244
2245 for (regno = MMIX_FIRST_GLOBAL_REGNUM;
2246 regno <= 255;
2247 regno++)
2248 if (((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
2249 && df_regs_ever_live_p (regno) && !call_used_regs[regno])
2250 || IS_MMIX_EH_RETURN_DATA_REG (regno))
2251 {
2252 if (offset > 255)
2253 {
2254 mmix_emit_sp_add (offset);
2255 stack_space_to_deallocate -= offset;
2256 offset = 0;
2257 }
2258
2259 emit_move_insn (gen_rtx_REG (DImode, regno),
2260 gen_rtx_MEM (DImode,
2261 plus_constant (Pmode, stack_pointer_rtx,
2262 offset)));
2263 offset += 8;
2264 }
2265
2266 /* Here is where the local variables were. As in the prologue, they
2267 might be of an unaligned size. */
2268 offset += (locals_size + 7) & ~7;
2269
2270 /* The saved register stack pointer is just below the frame-pointer
2271 register. We don't need to restore it "manually"; the POP
2272 instruction does that. */
2273 if (MMIX_CFUN_HAS_LANDING_PAD)
2274 offset += 16;
2275 else if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
2276 /* The return-address slot is just below the frame-pointer register.
2277 We don't need to restore it because we don't really use it. */
2278 offset += 8;
2279
2280 /* Get back the old frame-pointer-value. */
2281 if (frame_pointer_needed)
2282 {
2283 if (offset > 255)
2284 {
2285 mmix_emit_sp_add (offset);
2286
2287 stack_space_to_deallocate -= offset;
2288 offset = 0;
2289 }
2290
2291 emit_move_insn (hard_frame_pointer_rtx,
2292 gen_rtx_MEM (DImode,
2293 plus_constant (Pmode, stack_pointer_rtx,
2294 offset)));
2295 offset += 8;
2296 }
2297
2298 /* We do not need to restore pretended incoming args, just add back
2299 offset to sp. */
2300 if (stack_space_to_deallocate != 0)
2301 mmix_emit_sp_add (stack_space_to_deallocate);
2302
2303 if (crtl->calls_eh_return)
2304 /* Adjust the (normal) stack-pointer to that of the receiver.
2305 FIXME: It would be nice if we could also adjust the register stack
2306 here, but we need to express it through DWARF 2 too. */
2307 emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
2308 gen_rtx_REG (DImode,
2309 MMIX_EH_RETURN_STACKADJ_REGNUM)));
2310 }
2311
2312 /* Output an optimal sequence for setting a register to a specific
2313 constant. Used in an alternative for const_ints in movdi, and when
2314 using large stack-frame offsets.
2315
2316 Use do_begin_end to say if a line-starting TAB and newline before the
2317 first insn and after the last insn is wanted. */
2318
2319 void
2320 mmix_output_register_setting (FILE *stream,
2321 int regno,
2322 int64_t value,
2323 int do_begin_end)
2324 {
2325 if (do_begin_end)
2326 fprintf (stream, "\t");
2327
2328 if (insn_const_int_ok_for_constraint (value, CONSTRAINT_K))
2329 fprintf (stream, "NEGU %s,0,%" PRId64, reg_names[regno], -value);
2330 else if (mmix_shiftable_wyde_value ((uint64_t) value))
2331 {
2332 /* First, the one-insn cases. */
2333 mmix_output_shiftvalue_op_from_str (stream, "SET",
2334 (uint64_t)
2335 value);
2336 fprintf (stream, " %s,", reg_names[regno]);
2337 mmix_output_shifted_value (stream, (uint64_t) value);
2338 }
2339 else if (mmix_shiftable_wyde_value (-(uint64_t) value))
2340 {
2341 /* We do this to get a bit more legible assembly code. The next
2342 alternative is mostly redundant with this. */
2343
2344 mmix_output_shiftvalue_op_from_str (stream, "SET",
2345 -(uint64_t)
2346 value);
2347 fprintf (stream, " %s,", reg_names[regno]);
2348 mmix_output_shifted_value (stream, -(uint64_t) value);
2349 fprintf (stream, "\n\tNEGU %s,0,%s", reg_names[regno],
2350 reg_names[regno]);
2351 }
2352 else if (mmix_shiftable_wyde_value (~(uint64_t) value))
2353 {
2354 /* Slightly more expensive, the two-insn cases. */
2355
2356 /* FIXME: We could of course also test if 0..255-N or ~(N | 1..255)
2357 is shiftable, or any other one-insn transformation of the value.
2358 FIXME: Check first if the value is "shiftable" by two loading
2359 with two insns, since it makes more readable assembly code (if
2360 anyone else cares). */
2361
2362 mmix_output_shiftvalue_op_from_str (stream, "SET",
2363 ~(uint64_t)
2364 value);
2365 fprintf (stream, " %s,", reg_names[regno]);
2366 mmix_output_shifted_value (stream, ~(uint64_t) value);
2367 fprintf (stream, "\n\tNOR %s,%s,0", reg_names[regno],
2368 reg_names[regno]);
2369 }
2370 else
2371 {
2372 /* The generic case. 2..4 insns. */
2373 static const char *const higher_parts[] = {"L", "ML", "MH", "H"};
2374 const char *op = "SET";
2375 const char *line_begin = "";
2376 int insns = 0;
2377 int i;
2378 int64_t tmpvalue = value;
2379
2380 /* Compute the number of insns needed to output this constant. */
2381 for (i = 0; i < 4 && tmpvalue != 0; i++)
2382 {
2383 if (tmpvalue & 65535)
2384 insns++;
2385 tmpvalue >>= 16;
2386 }
2387 if (TARGET_BASE_ADDRESSES && insns == 3)
2388 {
2389 /* The number three is based on a static observation on
2390 ghostscript-6.52. Two and four are excluded because there
2391 are too many such constants, and each unique constant (maybe
2392 offset by 1..255) were used few times compared to other uses,
2393 e.g. addresses.
2394
2395 We use base-plus-offset addressing to force it into a global
2396 register; we just use a "LDA reg,VALUE", which will cause the
2397 assembler and linker to DTRT (for constants as well as
2398 addresses). */
2399 fprintf (stream, "LDA %s,", reg_names[regno]);
2400 mmix_output_octa (stream, value, 0);
2401 }
2402 else
2403 {
2404 /* Output pertinent parts of the 4-wyde sequence.
2405 Still more to do if we want this to be optimal, but hey...
2406 Note that the zero case has been handled above. */
2407 for (i = 0; i < 4 && value != 0; i++)
2408 {
2409 if (value & 65535)
2410 {
2411 fprintf (stream, "%s%s%s %s,#%x", line_begin, op,
2412 higher_parts[i], reg_names[regno],
2413 (int) (value & 65535));
2414 /* The first one sets the rest of the bits to 0, the next
2415 ones add set bits. */
2416 op = "INC";
2417 line_begin = "\n\t";
2418 }
2419
2420 value >>= 16;
2421 }
2422 }
2423 }
2424
2425 if (do_begin_end)
2426 fprintf (stream, "\n");
2427 }
2428
2429 /* Return 1 if value is 0..65535*2**(16*N) for N=0..3.
2430 else return 0. */
2431
2432 int
2433 mmix_shiftable_wyde_value (uint64_t value)
2434 {
2435 /* Shift by 16 bits per group, stop when we've found two groups with
2436 nonzero bits. */
2437 int i;
2438 int has_candidate = 0;
2439
2440 for (i = 0; i < 4; i++)
2441 {
2442 if (value & 65535)
2443 {
2444 if (has_candidate)
2445 return 0;
2446 else
2447 has_candidate = 1;
2448 }
2449
2450 value >>= 16;
2451 }
2452
2453 return 1;
2454 }
2455
2456 /* X and Y are two things to compare using CODE. Return the rtx for
2457 the cc-reg in the proper mode. */
2458
2459 rtx
2460 mmix_gen_compare_reg (RTX_CODE code, rtx x, rtx y)
2461 {
2462 machine_mode ccmode = SELECT_CC_MODE (code, x, y);
2463 return gen_reg_rtx (ccmode);
2464 }
2465
2466 /* Local (static) helper functions. */
2467
2468 static void
2469 mmix_emit_sp_add (HOST_WIDE_INT offset)
2470 {
2471 rtx insn;
2472
2473 if (offset < 0)
2474 {
2475 /* Negative stack-pointer adjustments are allocations and appear in
2476 the prologue only. We mark them as frame-related so unwind and
2477 debug info is properly emitted for them. */
2478 if (offset > -255)
2479 insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
2480 stack_pointer_rtx,
2481 GEN_INT (offset)));
2482 else
2483 {
2484 rtx tmpr = gen_rtx_REG (DImode, 255);
2485 RTX_FRAME_RELATED_P (emit_move_insn (tmpr, GEN_INT (offset))) = 1;
2486 insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
2487 stack_pointer_rtx, tmpr));
2488 }
2489 RTX_FRAME_RELATED_P (insn) = 1;
2490 }
2491 else
2492 {
2493 /* Positive adjustments are in the epilogue only. Don't mark them
2494 as "frame-related" for unwind info. */
2495 if (insn_const_int_ok_for_constraint (offset, CONSTRAINT_L))
2496 emit_insn (gen_adddi3 (stack_pointer_rtx,
2497 stack_pointer_rtx,
2498 GEN_INT (offset)));
2499 else
2500 {
2501 rtx tmpr = gen_rtx_REG (DImode, 255);
2502 emit_move_insn (tmpr, GEN_INT (offset));
2503 insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
2504 stack_pointer_rtx, tmpr));
2505 }
2506 }
2507 }
2508
2509 /* Print operator suitable for doing something with a shiftable
2510 wyde. The type of operator is passed as an asm output modifier. */
2511
2512 static void
2513 mmix_output_shiftvalue_op_from_str (FILE *stream,
2514 const char *mainop,
2515 int64_t value)
2516 {
2517 static const char *const op_part[] = {"L", "ML", "MH", "H"};
2518 int i;
2519
2520 if (! mmix_shiftable_wyde_value (value))
2521 {
2522 char s[sizeof ("0xffffffffffffffff")];
2523 sprintf (s, "%#" PRIx64, value);
2524 internal_error ("MMIX Internal: %s is not a shiftable int", s);
2525 }
2526
2527 for (i = 0; i < 4; i++)
2528 {
2529 /* We know we're through when we find one-bits in the low
2530 16 bits. */
2531 if (value & 0xffff)
2532 {
2533 fprintf (stream, "%s%s", mainop, op_part[i]);
2534 return;
2535 }
2536 value >>= 16;
2537 }
2538
2539 /* No bits set? Then it must have been zero. */
2540 fprintf (stream, "%sL", mainop);
2541 }
2542
2543 /* Print a 64-bit value, optionally prefixed by assembly pseudo. */
2544
2545 static void
2546 mmix_output_octa (FILE *stream, int64_t value, int do_begin_end)
2547 {
2548 if (do_begin_end)
2549 fprintf (stream, "\tOCTA ");
2550
2551 /* Provide a few alternative output formats depending on the number, to
2552 improve legibility of assembler output. */
2553 if ((value < (int64_t) 0 && value > (int64_t) -10000)
2554 || (value >= (int64_t) 0 && value <= (int64_t) 16384))
2555 fprintf (stream, "%d", (int) value);
2556 else if (value > (int64_t) 0
2557 && value < ((int64_t) 1 << 31) * 2)
2558 fprintf (stream, "#%x", (unsigned int) value);
2559 else if (sizeof (HOST_WIDE_INT) == sizeof (int64_t))
2560 /* We need to avoid the not-so-universal "0x" prefix; we need the
2561 pure hex-digits together with the mmixal "#" hex prefix. */
2562 fprintf (stream, "#" HOST_WIDE_INT_PRINT_HEX_PURE,
2563 (HOST_WIDE_INT) value);
2564 else /* Need to avoid the hex output; there's no ...WIDEST...HEX_PURE. */
2565 fprintf (stream, "%" PRIu64, value);
2566
2567 if (do_begin_end)
2568 fprintf (stream, "\n");
2569 }
2570
2571 /* Print the presumed shiftable wyde argument shifted into place (to
2572 be output with an operand). */
2573
2574 static void
2575 mmix_output_shifted_value (FILE *stream, int64_t value)
2576 {
2577 int i;
2578
2579 if (! mmix_shiftable_wyde_value (value))
2580 {
2581 char s[16+2+1];
2582 sprintf (s, "%#" PRIx64, value);
2583 internal_error ("MMIX Internal: %s is not a shiftable int", s);
2584 }
2585
2586 for (i = 0; i < 4; i++)
2587 {
2588 /* We know we're through when we find one-bits in the low 16 bits. */
2589 if (value & 0xffff)
2590 {
2591 fprintf (stream, "#%x", (int) (value & 0xffff));
2592 return;
2593 }
2594
2595 value >>= 16;
2596 }
2597
2598 /* No bits set? Then it must have been zero. */
2599 fprintf (stream, "0");
2600 }
2601
2602 /* Output an MMIX condition name corresponding to an operator
2603 and operands:
2604 (comparison_operator [(comparison_operator ...) (const_int 0)])
2605 which means we have to look at *two* operators.
2606
2607 The argument "reversed" refers to reversal of the condition (not the
2608 same as swapping the arguments). */
2609
2610 static void
2611 mmix_output_condition (FILE *stream, const_rtx x, int reversed)
2612 {
2613 struct cc_conv
2614 {
2615 RTX_CODE cc;
2616
2617 /* The normal output cc-code. */
2618 const char *const normal;
2619
2620 /* The reversed cc-code, or NULL if invalid. */
2621 const char *const reversed;
2622 };
2623
2624 struct cc_type_conv
2625 {
2626 machine_mode cc_mode;
2627
2628 /* Terminated with {UNKNOWN, NULL, NULL} */
2629 const struct cc_conv *const convs;
2630 };
2631
2632 #undef CCEND
2633 #define CCEND {UNKNOWN, NULL, NULL}
2634
2635 static const struct cc_conv cc_fun_convs[]
2636 = {{ORDERED, "Z", "P"},
2637 {UNORDERED, "P", "Z"},
2638 CCEND};
2639 static const struct cc_conv cc_fp_convs[]
2640 = {{GT, "P", NULL},
2641 {LT, "N", NULL},
2642 CCEND};
2643 static const struct cc_conv cc_fpeq_convs[]
2644 = {{NE, "Z", "P"},
2645 {EQ, "P", "Z"},
2646 CCEND};
2647 static const struct cc_conv cc_uns_convs[]
2648 = {{GEU, "NN", "N"},
2649 {GTU, "P", "NP"},
2650 {LEU, "NP", "P"},
2651 {LTU, "N", "NN"},
2652 CCEND};
2653 static const struct cc_conv cc_signed_convs[]
2654 = {{NE, "NZ", "Z"},
2655 {EQ, "Z", "NZ"},
2656 {GE, "NN", "N"},
2657 {GT, "P", "NP"},
2658 {LE, "NP", "P"},
2659 {LT, "N", "NN"},
2660 CCEND};
2661 static const struct cc_conv cc_di_convs[]
2662 = {{NE, "NZ", "Z"},
2663 {EQ, "Z", "NZ"},
2664 {GE, "NN", "N"},
2665 {GT, "P", "NP"},
2666 {LE, "NP", "P"},
2667 {LT, "N", "NN"},
2668 {GTU, "NZ", "Z"},
2669 {LEU, "Z", "NZ"},
2670 CCEND};
2671 #undef CCEND
2672
2673 static const struct cc_type_conv cc_convs[]
2674 = {{CC_FUNmode, cc_fun_convs},
2675 {CC_FPmode, cc_fp_convs},
2676 {CC_FPEQmode, cc_fpeq_convs},
2677 {CC_UNSmode, cc_uns_convs},
2678 {CCmode, cc_signed_convs},
2679 {DImode, cc_di_convs}};
2680
2681 size_t i;
2682 int j;
2683
2684 machine_mode mode = GET_MODE (XEXP (x, 0));
2685 RTX_CODE cc = GET_CODE (x);
2686
2687 for (i = 0; i < ARRAY_SIZE (cc_convs); i++)
2688 {
2689 if (mode == cc_convs[i].cc_mode)
2690 {
2691 for (j = 0; cc_convs[i].convs[j].cc != UNKNOWN; j++)
2692 if (cc == cc_convs[i].convs[j].cc)
2693 {
2694 const char *mmix_cc
2695 = (reversed ? cc_convs[i].convs[j].reversed
2696 : cc_convs[i].convs[j].normal);
2697
2698 if (mmix_cc == NULL)
2699 fatal_insn ("MMIX Internal: Trying to output invalidly\
2700 reversed condition:", x);
2701
2702 fprintf (stream, "%s", mmix_cc);
2703 return;
2704 }
2705
2706 fatal_insn ("MMIX Internal: What's the CC of this?", x);
2707 }
2708 }
2709
2710 fatal_insn ("MMIX Internal: What is the CC of this?", x);
2711 }
2712
2713 /* Return the bit-value for a const_int or const_double. */
2714
2715 int64_t
2716 mmix_intval (const_rtx x)
2717 {
2718 if (GET_CODE (x) == CONST_INT)
2719 return INTVAL (x);
2720
2721 /* We make a little song and dance because converting to long long in
2722 gcc-2.7.2 is broken. I still want people to be able to use it for
2723 cross-compilation to MMIX. */
2724 if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == VOIDmode)
2725 return CONST_DOUBLE_HIGH (x);
2726
2727 if (GET_CODE (x) == CONST_DOUBLE)
2728 {
2729 REAL_VALUE_TYPE value;
2730
2731 /* FIXME: This macro is not in the manual but should be. */
2732 REAL_VALUE_FROM_CONST_DOUBLE (value, x);
2733
2734 if (GET_MODE (x) == DFmode)
2735 {
2736 long bits[2];
2737
2738 REAL_VALUE_TO_TARGET_DOUBLE (value, bits);
2739
2740 /* The double cast is necessary to avoid getting the long
2741 sign-extended to unsigned long long(!) when they're of
2742 different size (usually 32-bit hosts). */
2743 return
2744 ((uint64_t) (unsigned long) bits[0]
2745 << (uint64_t) 32U)
2746 | (uint64_t) (unsigned long) bits[1];
2747 }
2748 else if (GET_MODE (x) == SFmode)
2749 {
2750 long bits;
2751 REAL_VALUE_TO_TARGET_SINGLE (value, bits);
2752
2753 return (unsigned long) bits;
2754 }
2755 }
2756
2757 fatal_insn ("MMIX Internal: This is not a constant:", x);
2758 }
2759
2760 /* Worker function for TARGET_PROMOTE_FUNCTION_MODE. */
2761
2762 machine_mode
2763 mmix_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
2764 machine_mode mode,
2765 int *punsignedp ATTRIBUTE_UNUSED,
2766 const_tree fntype ATTRIBUTE_UNUSED,
2767 int for_return)
2768 {
2769 /* Apparently not doing TRT if int < register-size. FIXME: Perhaps
2770 FUNCTION_VALUE and LIBCALL_VALUE needs tweaking as some ports say. */
2771 if (for_return == 1)
2772 return mode;
2773
2774 /* Promotion of modes currently generates slow code, extending before
2775 operation, so we do it only for arguments. */
2776 if (GET_MODE_CLASS (mode) == MODE_INT
2777 && GET_MODE_SIZE (mode) < 8)
2778 return DImode;
2779 else
2780 return mode;
2781 }
2782 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
2783
2784 static rtx
2785 mmix_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
2786 int incoming ATTRIBUTE_UNUSED)
2787 {
2788 return gen_rtx_REG (Pmode, MMIX_STRUCT_VALUE_REGNUM);
2789 }
2790
2791 /* Worker function for TARGET_FRAME_POINTER_REQUIRED.
2792
2793 FIXME: Is this requirement built-in? Anyway, we should try to get rid
2794 of it; we can deduce the value. */
2795
2796 bool
2797 mmix_frame_pointer_required (void)
2798 {
2799 return (cfun->has_nonlocal_label);
2800 }
2801
2802 /*
2803 * Local variables:
2804 * eval: (c-set-style "gnu")
2805 * indent-tabs-mode: t
2806 * End:
2807 */