]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mmix/mmix.c
* config/mmix/mmix.c (mmix_encode_section_info): Use alloca to
[thirdparty/gcc.git] / gcc / config / mmix / mmix.c
1 /* Definitions of target machine for GNU compiler, for MMIX.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Hans-Peter Nilsson (hp@bitrange.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "hard-reg-set.h"
29 #include "hashtab.h"
30 #include "insn-config.h"
31 #include "output.h"
32 #include "flags.h"
33 #include "tree.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "toplev.h"
37 #include "recog.h"
38 #include "ggc.h"
39 #include "dwarf2.h"
40 #include "debug.h"
41 #include "tm_p.h"
42 #include "integrate.h"
43 #include "target.h"
44 #include "target-def.h"
45 #include "real.h"
46
47 /* First some local helper definitions. */
48 #define MMIX_FIRST_GLOBAL_REGNUM 32
49
50 /* We'd need a current_function_has_landing_pad. It's marked as such when
51 a nonlocal_goto_receiver is expanded. Not just a C++ thing, but
52 mostly. */
53 #define MMIX_CFUN_HAS_LANDING_PAD (cfun->machine->has_landing_pad != 0)
54
55 /* We have no means to tell DWARF 2 about the register stack, so we need
56 to store the return address on the stack if an exception can get into
57 this function. FIXME: Narrow condition. Before any whole-function
58 analysis, df_regs_ever_live_p () isn't initialized. We know it's up-to-date
59 after reload_completed; it may contain incorrect information some time
60 before that. Within a RTL sequence (after a call to start_sequence,
61 such as in RTL expanders), leaf_function_p doesn't see all insns
62 (perhaps any insn). But regs_ever_live is up-to-date when
63 leaf_function_p () isn't, so we "or" them together to get accurate
64 information. FIXME: Some tweak to leaf_function_p might be
65 preferable. */
66 #define MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS \
67 (flag_exceptions \
68 && ((reload_completed && df_regs_ever_live_p (MMIX_rJ_REGNUM)) \
69 || !leaf_function_p ()))
70
71 #define IS_MMIX_EH_RETURN_DATA_REG(REGNO) \
72 (current_function_calls_eh_return \
73 && (EH_RETURN_DATA_REGNO (0) == REGNO \
74 || EH_RETURN_DATA_REGNO (1) == REGNO \
75 || EH_RETURN_DATA_REGNO (2) == REGNO \
76 || EH_RETURN_DATA_REGNO (3) == REGNO))
77
78 /* For the default ABI, we rename registers at output-time to fill the gap
79 between the (statically partitioned) saved registers and call-clobbered
80 registers. In effect this makes unused call-saved registers to be used
81 as call-clobbered registers. The benefit comes from keeping the number
82 of local registers (value of rL) low, since there's a cost of
83 increasing rL and clearing unused (unset) registers with lower numbers.
84 Don't translate while outputting the prologue. */
85 #define MMIX_OUTPUT_REGNO(N) \
86 (TARGET_ABI_GNU \
87 || (int) (N) < MMIX_RETURN_VALUE_REGNUM \
88 || (int) (N) > MMIX_LAST_STACK_REGISTER_REGNUM \
89 || cfun == NULL \
90 || cfun->machine == NULL \
91 || cfun->machine->in_prologue \
92 ? (N) : ((N) - MMIX_RETURN_VALUE_REGNUM \
93 + cfun->machine->highest_saved_stack_register + 1))
94
95 /* The %d in "POP %d,0". */
96 #define MMIX_POP_ARGUMENT() \
97 ((! TARGET_ABI_GNU \
98 && current_function_return_rtx != NULL \
99 && ! current_function_returns_struct) \
100 ? (GET_CODE (current_function_return_rtx) == PARALLEL \
101 ? GET_NUM_ELEM (XVEC (current_function_return_rtx, 0)) : 1) \
102 : 0)
103
104 /* The canonical saved comparison operands for non-cc0 machines, set in
105 the compare expander. */
106 rtx mmix_compare_op0;
107 rtx mmix_compare_op1;
108
109 /* Declarations of locals. */
110
111 /* Intermediate for insn output. */
112 static int mmix_output_destination_register;
113
114 static void mmix_output_shiftvalue_op_from_str
115 (FILE *, const char *, HOST_WIDEST_INT);
116 static void mmix_output_shifted_value (FILE *, HOST_WIDEST_INT);
117 static void mmix_output_condition (FILE *, rtx, int);
118 static HOST_WIDEST_INT mmix_intval (rtx);
119 static void mmix_output_octa (FILE *, HOST_WIDEST_INT, int);
120 static bool mmix_assemble_integer (rtx, unsigned int, int);
121 static struct machine_function *mmix_init_machine_status (void);
122 static void mmix_encode_section_info (tree, rtx, int);
123 static const char *mmix_strip_name_encoding (const char *);
124 static void mmix_emit_sp_add (HOST_WIDE_INT offset);
125 static void mmix_target_asm_function_prologue (FILE *, HOST_WIDE_INT);
126 static void mmix_target_asm_function_end_prologue (FILE *);
127 static void mmix_target_asm_function_epilogue (FILE *, HOST_WIDE_INT);
128 static void mmix_reorg (void);
129 static void mmix_asm_output_mi_thunk
130 (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree);
131 static void mmix_setup_incoming_varargs
132 (CUMULATIVE_ARGS *, enum machine_mode, tree, int *, int);
133 static void mmix_file_start (void);
134 static void mmix_file_end (void);
135 static bool mmix_rtx_costs (rtx, int, int, int *);
136 static rtx mmix_struct_value_rtx (tree, int);
137 static bool mmix_pass_by_reference (CUMULATIVE_ARGS *,
138 enum machine_mode, const_tree, bool);
139
140 /* Target structure macros. Listed by node. See `Using and Porting GCC'
141 for a general description. */
142
143 /* Node: Function Entry */
144
145 #undef TARGET_ASM_BYTE_OP
146 #define TARGET_ASM_BYTE_OP NULL
147 #undef TARGET_ASM_ALIGNED_HI_OP
148 #define TARGET_ASM_ALIGNED_HI_OP NULL
149 #undef TARGET_ASM_ALIGNED_SI_OP
150 #define TARGET_ASM_ALIGNED_SI_OP NULL
151 #undef TARGET_ASM_ALIGNED_DI_OP
152 #define TARGET_ASM_ALIGNED_DI_OP NULL
153 #undef TARGET_ASM_INTEGER
154 #define TARGET_ASM_INTEGER mmix_assemble_integer
155
156 #undef TARGET_ASM_FUNCTION_PROLOGUE
157 #define TARGET_ASM_FUNCTION_PROLOGUE mmix_target_asm_function_prologue
158
159 #undef TARGET_ASM_FUNCTION_END_PROLOGUE
160 #define TARGET_ASM_FUNCTION_END_PROLOGUE mmix_target_asm_function_end_prologue
161
162 #undef TARGET_ASM_FUNCTION_EPILOGUE
163 #define TARGET_ASM_FUNCTION_EPILOGUE mmix_target_asm_function_epilogue
164
165 #undef TARGET_ENCODE_SECTION_INFO
166 #define TARGET_ENCODE_SECTION_INFO mmix_encode_section_info
167 #undef TARGET_STRIP_NAME_ENCODING
168 #define TARGET_STRIP_NAME_ENCODING mmix_strip_name_encoding
169
170 #undef TARGET_ASM_OUTPUT_MI_THUNK
171 #define TARGET_ASM_OUTPUT_MI_THUNK mmix_asm_output_mi_thunk
172 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
173 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
174 #undef TARGET_ASM_FILE_START
175 #define TARGET_ASM_FILE_START mmix_file_start
176 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
177 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
178 #undef TARGET_ASM_FILE_END
179 #define TARGET_ASM_FILE_END mmix_file_end
180
181 #undef TARGET_RTX_COSTS
182 #define TARGET_RTX_COSTS mmix_rtx_costs
183 #undef TARGET_ADDRESS_COST
184 #define TARGET_ADDRESS_COST hook_int_rtx_0
185
186 #undef TARGET_MACHINE_DEPENDENT_REORG
187 #define TARGET_MACHINE_DEPENDENT_REORG mmix_reorg
188
189 #undef TARGET_PROMOTE_FUNCTION_ARGS
190 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true
191 #if 0
192 /* Apparently not doing TRT if int < register-size. FIXME: Perhaps
193 FUNCTION_VALUE and LIBCALL_VALUE needs tweaking as some ports say. */
194 #undef TARGET_PROMOTE_FUNCTION_RETURN
195 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
196 #endif
197
198 #undef TARGET_STRUCT_VALUE_RTX
199 #define TARGET_STRUCT_VALUE_RTX mmix_struct_value_rtx
200 #undef TARGET_SETUP_INCOMING_VARARGS
201 #define TARGET_SETUP_INCOMING_VARARGS mmix_setup_incoming_varargs
202 #undef TARGET_PASS_BY_REFERENCE
203 #define TARGET_PASS_BY_REFERENCE mmix_pass_by_reference
204 #undef TARGET_CALLEE_COPIES
205 #define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_true
206 #undef TARGET_DEFAULT_TARGET_FLAGS
207 #define TARGET_DEFAULT_TARGET_FLAGS TARGET_DEFAULT
208
209 struct gcc_target targetm = TARGET_INITIALIZER;
210
211 /* Functions that are expansions for target macros.
212 See Target Macros in `Using and Porting GCC'. */
213
214 /* OVERRIDE_OPTIONS. */
215
216 void
217 mmix_override_options (void)
218 {
219 /* Should we err or should we warn? Hmm. At least we must neutralize
220 it. For example the wrong kind of case-tables will be generated with
221 PIC; we use absolute address items for mmixal compatibility. FIXME:
222 They could be relative if we just elide them to after all pertinent
223 labels. */
224 if (flag_pic)
225 {
226 warning (0, "-f%s not supported: ignored", (flag_pic > 1) ? "PIC" : "pic");
227 flag_pic = 0;
228 }
229 }
230
231 /* INIT_EXPANDERS. */
232
233 void
234 mmix_init_expanders (void)
235 {
236 init_machine_status = mmix_init_machine_status;
237 }
238
239 /* Set the per-function data. */
240
241 static struct machine_function *
242 mmix_init_machine_status (void)
243 {
244 return ggc_alloc_cleared (sizeof (struct machine_function));
245 }
246
247 /* DATA_ALIGNMENT.
248 We have trouble getting the address of stuff that is located at other
249 than 32-bit alignments (GETA requirements), so try to give everything
250 at least 32-bit alignment. */
251
252 int
253 mmix_data_alignment (tree type ATTRIBUTE_UNUSED, int basic_align)
254 {
255 if (basic_align < 32)
256 return 32;
257
258 return basic_align;
259 }
260
261 /* CONSTANT_ALIGNMENT. */
262
263 int
264 mmix_constant_alignment (tree constant ATTRIBUTE_UNUSED, int basic_align)
265 {
266 if (basic_align < 32)
267 return 32;
268
269 return basic_align;
270 }
271
272 /* LOCAL_ALIGNMENT. */
273
274 int
275 mmix_local_alignment (tree type ATTRIBUTE_UNUSED, int basic_align)
276 {
277 if (basic_align < 32)
278 return 32;
279
280 return basic_align;
281 }
282
283 /* CONDITIONAL_REGISTER_USAGE. */
284
285 void
286 mmix_conditional_register_usage (void)
287 {
288 int i;
289
290 if (TARGET_ABI_GNU)
291 {
292 static const int gnu_abi_reg_alloc_order[]
293 = MMIX_GNU_ABI_REG_ALLOC_ORDER;
294
295 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
296 reg_alloc_order[i] = gnu_abi_reg_alloc_order[i];
297
298 /* Change the default from the mmixware ABI. For the GNU ABI,
299 $15..$30 are call-saved just as $0..$14. There must be one
300 call-clobbered local register for the "hole" that holds the
301 number of saved local registers saved by PUSHJ/PUSHGO during the
302 function call, receiving the return value at return. So best is
303 to use the highest, $31. It's already marked call-clobbered for
304 the mmixware ABI. */
305 for (i = 15; i <= 30; i++)
306 call_used_regs[i] = 0;
307
308 /* "Unfix" the parameter registers. */
309 for (i = MMIX_RESERVED_GNU_ARG_0_REGNUM;
310 i < MMIX_RESERVED_GNU_ARG_0_REGNUM + MMIX_MAX_ARGS_IN_REGS;
311 i++)
312 fixed_regs[i] = 0;
313 }
314
315 /* Step over the ":" in special register names. */
316 if (! TARGET_TOPLEVEL_SYMBOLS)
317 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
318 if (reg_names[i][0] == ':')
319 reg_names[i]++;
320 }
321
322 /* INCOMING_REGNO and OUTGOING_REGNO worker function.
323 Those two macros must only be applied to function argument
324 registers. FIXME: for their current use in gcc, it'd be better
325 with an explicit specific additional FUNCTION_INCOMING_ARG_REGNO_P
326 a'la FUNCTION_ARG / FUNCTION_INCOMING_ARG instead of forcing the
327 target to commit to a fixed mapping and for any unspecified
328 register use. */
329
330 int
331 mmix_opposite_regno (int regno, int incoming)
332 {
333 if (!mmix_function_arg_regno_p (regno, incoming))
334 return regno;
335
336 return
337 regno - (incoming
338 ? MMIX_FIRST_INCOMING_ARG_REGNUM - MMIX_FIRST_ARG_REGNUM
339 : MMIX_FIRST_ARG_REGNUM - MMIX_FIRST_INCOMING_ARG_REGNUM);
340 }
341
342 /* LOCAL_REGNO.
343 All registers that are part of the register stack and that will be
344 saved are local. */
345
346 int
347 mmix_local_regno (int regno)
348 {
349 return regno <= MMIX_LAST_STACK_REGISTER_REGNUM && !call_used_regs[regno];
350 }
351
352 /* PREFERRED_RELOAD_CLASS.
353 We need to extend the reload class of REMAINDER_REG and HIMULT_REG. */
354
355 enum reg_class
356 mmix_preferred_reload_class (rtx x ATTRIBUTE_UNUSED, enum reg_class class)
357 {
358 /* FIXME: Revisit. */
359 return GET_CODE (x) == MOD && GET_MODE (x) == DImode
360 ? REMAINDER_REG : class;
361 }
362
363 /* PREFERRED_OUTPUT_RELOAD_CLASS.
364 We need to extend the reload class of REMAINDER_REG and HIMULT_REG. */
365
366 enum reg_class
367 mmix_preferred_output_reload_class (rtx x ATTRIBUTE_UNUSED,
368 enum reg_class class)
369 {
370 /* FIXME: Revisit. */
371 return GET_CODE (x) == MOD && GET_MODE (x) == DImode
372 ? REMAINDER_REG : class;
373 }
374
375 /* SECONDARY_RELOAD_CLASS.
376 We need to reload regs of REMAINDER_REG and HIMULT_REG elsewhere. */
377
378 enum reg_class
379 mmix_secondary_reload_class (enum reg_class class,
380 enum machine_mode mode ATTRIBUTE_UNUSED,
381 rtx x ATTRIBUTE_UNUSED,
382 int in_p ATTRIBUTE_UNUSED)
383 {
384 if (class == REMAINDER_REG
385 || class == HIMULT_REG
386 || class == SYSTEM_REGS)
387 return GENERAL_REGS;
388
389 return NO_REGS;
390 }
391
392 /* CONST_OK_FOR_LETTER_P. */
393
394 int
395 mmix_const_ok_for_letter_p (HOST_WIDE_INT value, int c)
396 {
397 return
398 (c == 'I' ? value >= 0 && value <= 255
399 : c == 'J' ? value >= 0 && value <= 65535
400 : c == 'K' ? value <= 0 && value >= -255
401 : c == 'L' ? mmix_shiftable_wyde_value (value)
402 : c == 'M' ? value == 0
403 : c == 'N' ? mmix_shiftable_wyde_value (~value)
404 : c == 'O' ? (value == 3 || value == 5 || value == 9
405 || value == 17)
406 : 0);
407 }
408
409 /* CONST_DOUBLE_OK_FOR_LETTER_P. */
410
411 int
412 mmix_const_double_ok_for_letter_p (rtx value, int c)
413 {
414 return
415 (c == 'G' ? value == CONST0_RTX (GET_MODE (value))
416 : 0);
417 }
418
419 /* EXTRA_CONSTRAINT.
420 We need this since our constants are not always expressible as
421 CONST_INT:s, but rather often as CONST_DOUBLE:s. */
422
423 int
424 mmix_extra_constraint (rtx x, int c, int strict)
425 {
426 HOST_WIDEST_INT value;
427
428 /* When checking for an address, we need to handle strict vs. non-strict
429 register checks. Don't use address_operand, but instead its
430 equivalent (its callee, which it is just a wrapper for),
431 memory_operand_p and the strict-equivalent strict_memory_address_p. */
432 if (c == 'U')
433 return
434 strict
435 ? strict_memory_address_p (Pmode, x)
436 : memory_address_p (Pmode, x);
437
438 /* R asks whether x is to be loaded with GETA or something else. Right
439 now, only a SYMBOL_REF and LABEL_REF can fit for
440 TARGET_BASE_ADDRESSES.
441
442 Only constant symbolic addresses apply. With TARGET_BASE_ADDRESSES,
443 we just allow straight LABEL_REF or SYMBOL_REFs with SYMBOL_REF_FLAG
444 set right now; only function addresses and code labels. If we change
445 to let SYMBOL_REF_FLAG be set on other symbols, we have to check
446 inside CONST expressions. When TARGET_BASE_ADDRESSES is not in
447 effect, a "raw" constant check together with mmix_constant_address_p
448 is all that's needed; we want all constant addresses to be loaded
449 with GETA then. */
450 if (c == 'R')
451 return
452 GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_DOUBLE
453 && mmix_constant_address_p (x)
454 && (! TARGET_BASE_ADDRESSES
455 || (GET_CODE (x) == LABEL_REF
456 || (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_FLAG (x))));
457
458 if (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode)
459 return 0;
460
461 value = mmix_intval (x);
462
463 /* We used to map Q->J, R->K, S->L, T->N, U->O, but we don't have to any
464 more ('U' taken for address_operand, 'R' similarly). Some letters map
465 outside of CONST_INT, though; we still use 'S' and 'T'. */
466 if (c == 'S')
467 return mmix_shiftable_wyde_value (value);
468 else if (c == 'T')
469 return mmix_shiftable_wyde_value (~value);
470 return 0;
471 }
472
473 /* DYNAMIC_CHAIN_ADDRESS. */
474
475 rtx
476 mmix_dynamic_chain_address (rtx frame)
477 {
478 /* FIXME: the frame-pointer is stored at offset -8 from the current
479 frame-pointer. Unfortunately, the caller assumes that a
480 frame-pointer is present for *all* previous frames. There should be
481 a way to say that that cannot be done, like for RETURN_ADDR_RTX. */
482 return plus_constant (frame, -8);
483 }
484
485 /* STARTING_FRAME_OFFSET. */
486
487 int
488 mmix_starting_frame_offset (void)
489 {
490 /* The old frame pointer is in the slot below the new one, so
491 FIRST_PARM_OFFSET does not need to depend on whether the
492 frame-pointer is needed or not. We have to adjust for the register
493 stack pointer being located below the saved frame pointer.
494 Similarly, we store the return address on the stack too, for
495 exception handling, and always if we save the register stack pointer. */
496 return
497 (-8
498 + (MMIX_CFUN_HAS_LANDING_PAD
499 ? -16 : (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS ? -8 : 0)));
500 }
501
502 /* RETURN_ADDR_RTX. */
503
504 rtx
505 mmix_return_addr_rtx (int count, rtx frame ATTRIBUTE_UNUSED)
506 {
507 return count == 0
508 ? (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS
509 /* FIXME: Set frame_alias_set on the following. (Why?)
510 See mmix_initial_elimination_offset for the reason we can't use
511 get_hard_reg_initial_val for both. Always using a stack slot
512 and not a register would be suboptimal. */
513 ? validize_mem (gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, -16)))
514 : get_hard_reg_initial_val (Pmode, MMIX_INCOMING_RETURN_ADDRESS_REGNUM))
515 : NULL_RTX;
516 }
517
518 /* SETUP_FRAME_ADDRESSES. */
519
520 void
521 mmix_setup_frame_addresses (void)
522 {
523 /* Nothing needed at the moment. */
524 }
525
526 /* The difference between the (imaginary) frame pointer and the stack
527 pointer. Used to eliminate the frame pointer. */
528
529 int
530 mmix_initial_elimination_offset (int fromreg, int toreg)
531 {
532 int regno;
533 int fp_sp_offset
534 = (get_frame_size () + current_function_outgoing_args_size + 7) & ~7;
535
536 /* There is no actual offset between these two virtual values, but for
537 the frame-pointer, we have the old one in the stack position below
538 it, so the offset for the frame-pointer to the stack-pointer is one
539 octabyte larger. */
540 if (fromreg == MMIX_ARG_POINTER_REGNUM
541 && toreg == MMIX_FRAME_POINTER_REGNUM)
542 return 0;
543
544 /* The difference is the size of local variables plus the size of
545 outgoing function arguments that would normally be passed as
546 registers but must be passed on stack because we're out of
547 function-argument registers. Only global saved registers are
548 counted; the others go on the register stack.
549
550 The frame-pointer is counted too if it is what is eliminated, as we
551 need to balance the offset for it from STARTING_FRAME_OFFSET.
552
553 Also add in the slot for the register stack pointer we save if we
554 have a landing pad.
555
556 Unfortunately, we can't access $0..$14, from unwinder code easily, so
557 store the return address in a frame slot too. FIXME: Only for
558 non-leaf functions. FIXME: Always with a landing pad, because it's
559 hard to know whether we need the other at the time we know we need
560 the offset for one (and have to state it). It's a kludge until we
561 can express the register stack in the EH frame info.
562
563 We have to do alignment here; get_frame_size will not return a
564 multiple of STACK_BOUNDARY. FIXME: Add note in manual. */
565
566 for (regno = MMIX_FIRST_GLOBAL_REGNUM;
567 regno <= 255;
568 regno++)
569 if ((df_regs_ever_live_p (regno) && ! call_used_regs[regno])
570 || IS_MMIX_EH_RETURN_DATA_REG (regno))
571 fp_sp_offset += 8;
572
573 return fp_sp_offset
574 + (MMIX_CFUN_HAS_LANDING_PAD
575 ? 16 : (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS ? 8 : 0))
576 + (fromreg == MMIX_ARG_POINTER_REGNUM ? 0 : 8);
577 }
578
579 /* Return an rtx for a function argument to go in a register, and 0 for
580 one that must go on stack. */
581
582 rtx
583 mmix_function_arg (const CUMULATIVE_ARGS *argsp,
584 enum machine_mode mode,
585 tree type,
586 int named ATTRIBUTE_UNUSED,
587 int incoming)
588 {
589 /* Last-argument marker. */
590 if (type == void_type_node)
591 return (argsp->regs < MMIX_MAX_ARGS_IN_REGS)
592 ? gen_rtx_REG (mode,
593 (incoming
594 ? MMIX_FIRST_INCOMING_ARG_REGNUM
595 : MMIX_FIRST_ARG_REGNUM) + argsp->regs)
596 : NULL_RTX;
597
598 return (argsp->regs < MMIX_MAX_ARGS_IN_REGS
599 && !targetm.calls.must_pass_in_stack (mode, type)
600 && (GET_MODE_BITSIZE (mode) <= 64
601 || argsp->lib
602 || TARGET_LIBFUNC))
603 ? gen_rtx_REG (mode,
604 (incoming
605 ? MMIX_FIRST_INCOMING_ARG_REGNUM
606 : MMIX_FIRST_ARG_REGNUM)
607 + argsp->regs)
608 : NULL_RTX;
609 }
610
611 /* Returns nonzero for everything that goes by reference, 0 for
612 everything that goes by value. */
613
614 static bool
615 mmix_pass_by_reference (CUMULATIVE_ARGS *argsp, enum machine_mode mode,
616 const_tree type, bool named ATTRIBUTE_UNUSED)
617 {
618 /* FIXME: Check: I'm not sure the must_pass_in_stack check is
619 necessary. */
620 if (targetm.calls.must_pass_in_stack (mode, type))
621 return true;
622
623 if (MMIX_FUNCTION_ARG_SIZE (mode, type) > 8
624 && !TARGET_LIBFUNC
625 && (!argsp || !argsp->lib))
626 return true;
627
628 return false;
629 }
630
631 /* Return nonzero if regno is a register number where a parameter is
632 passed, and 0 otherwise. */
633
634 int
635 mmix_function_arg_regno_p (int regno, int incoming)
636 {
637 int first_arg_regnum
638 = incoming ? MMIX_FIRST_INCOMING_ARG_REGNUM : MMIX_FIRST_ARG_REGNUM;
639
640 return regno >= first_arg_regnum
641 && regno < first_arg_regnum + MMIX_MAX_ARGS_IN_REGS;
642 }
643
644 /* FUNCTION_OUTGOING_VALUE. */
645
646 rtx
647 mmix_function_outgoing_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
648 {
649 enum machine_mode mode = TYPE_MODE (valtype);
650 enum machine_mode cmode;
651 int first_val_regnum = MMIX_OUTGOING_RETURN_VALUE_REGNUM;
652 rtx vec[MMIX_MAX_REGS_FOR_VALUE];
653 int i;
654 int nregs;
655
656 /* Return values that fit in a register need no special handling.
657 There's no register hole when parameters are passed in global
658 registers. */
659 if (TARGET_ABI_GNU
660 || GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
661 return
662 gen_rtx_REG (mode, MMIX_OUTGOING_RETURN_VALUE_REGNUM);
663
664 if (COMPLEX_MODE_P (mode))
665 /* A complex type, made up of components. */
666 cmode = TYPE_MODE (TREE_TYPE (valtype));
667 else
668 {
669 /* Of the other larger-than-register modes, we only support
670 scalar mode TImode. (At least, that's the only one that's
671 been rudimentally tested.) Make sure we're alerted for
672 unexpected cases. */
673 if (mode != TImode)
674 sorry ("support for mode %qs", GET_MODE_NAME (mode));
675
676 /* In any case, we will fill registers to the natural size. */
677 cmode = DImode;
678 }
679
680 nregs = ((GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD);
681
682 /* We need to take care of the effect of the register hole on return
683 values of large sizes; the last register will appear as the first
684 register, with the rest shifted. (For complex modes, this is just
685 swapped registers.) */
686
687 if (nregs > MMIX_MAX_REGS_FOR_VALUE)
688 internal_error ("too large function value type, needs %d registers,\
689 have only %d registers for this", nregs, MMIX_MAX_REGS_FOR_VALUE);
690
691 /* FIXME: Maybe we should handle structure values like this too
692 (adjusted for BLKmode), perhaps for both ABI:s. */
693 for (i = 0; i < nregs - 1; i++)
694 vec[i]
695 = gen_rtx_EXPR_LIST (VOIDmode,
696 gen_rtx_REG (cmode, first_val_regnum + i),
697 GEN_INT ((i + 1) * BITS_PER_UNIT));
698
699 vec[nregs - 1]
700 = gen_rtx_EXPR_LIST (VOIDmode,
701 gen_rtx_REG (cmode, first_val_regnum + nregs - 1),
702 const0_rtx);
703
704 return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nregs, vec));
705 }
706
707 /* FUNCTION_VALUE_REGNO_P. */
708
709 int
710 mmix_function_value_regno_p (int regno)
711 {
712 return regno == MMIX_RETURN_VALUE_REGNUM;
713 }
714
715 /* EH_RETURN_DATA_REGNO. */
716
717 int
718 mmix_eh_return_data_regno (int n)
719 {
720 if (n >= 0 && n < 4)
721 return MMIX_EH_RETURN_DATA_REGNO_START + n;
722
723 return INVALID_REGNUM;
724 }
725
726 /* EH_RETURN_STACKADJ_RTX. */
727
728 rtx
729 mmix_eh_return_stackadj_rtx (void)
730 {
731 return gen_rtx_REG (Pmode, MMIX_EH_RETURN_STACKADJ_REGNUM);
732 }
733
734 /* EH_RETURN_HANDLER_RTX. */
735
736 rtx
737 mmix_eh_return_handler_rtx (void)
738 {
739 return gen_rtx_REG (Pmode, MMIX_INCOMING_RETURN_ADDRESS_REGNUM);
740 }
741
742 /* ASM_PREFERRED_EH_DATA_FORMAT. */
743
744 int
745 mmix_asm_preferred_eh_data_format (int code ATTRIBUTE_UNUSED,
746 int global ATTRIBUTE_UNUSED)
747 {
748 /* This is the default (was at 2001-07-20). Revisit when needed. */
749 return DW_EH_PE_absptr;
750 }
751
752 /* Make a note that we've seen the beginning of the prologue. This
753 matters to whether we'll translate register numbers as calculated by
754 mmix_reorg. */
755
756 static void
757 mmix_target_asm_function_prologue (FILE *stream ATTRIBUTE_UNUSED,
758 HOST_WIDE_INT framesize ATTRIBUTE_UNUSED)
759 {
760 cfun->machine->in_prologue = 1;
761 }
762
763 /* Make a note that we've seen the end of the prologue. */
764
765 static void
766 mmix_target_asm_function_end_prologue (FILE *stream ATTRIBUTE_UNUSED)
767 {
768 cfun->machine->in_prologue = 0;
769 }
770
771 /* Implement TARGET_MACHINE_DEPENDENT_REORG. No actual rearrangements
772 done here; just virtually by calculating the highest saved stack
773 register number used to modify the register numbers at output time. */
774
775 static void
776 mmix_reorg (void)
777 {
778 int regno;
779
780 /* We put the number of the highest saved register-file register in a
781 location convenient for the call-patterns to output. Note that we
782 don't tell dwarf2 about these registers, since it can't restore them
783 anyway. */
784 for (regno = MMIX_LAST_STACK_REGISTER_REGNUM;
785 regno >= 0;
786 regno--)
787 if ((df_regs_ever_live_p (regno) && !call_used_regs[regno])
788 || (regno == MMIX_FRAME_POINTER_REGNUM && frame_pointer_needed))
789 break;
790
791 /* Regardless of whether they're saved (they might be just read), we
792 mustn't include registers that carry parameters. We could scan the
793 insns to see whether they're actually used (and indeed do other less
794 trivial register usage analysis and transformations), but it seems
795 wasteful to optimize for unused parameter registers. As of
796 2002-04-30, df_regs_ever_live_p (n) seems to be set for only-reads too, but
797 that might change. */
798 if (!TARGET_ABI_GNU && regno < current_function_args_info.regs - 1)
799 {
800 regno = current_function_args_info.regs - 1;
801
802 /* We don't want to let this cause us to go over the limit and make
803 incoming parameter registers be misnumbered and treating the last
804 parameter register and incoming return value register call-saved.
805 Stop things at the unmodified scheme. */
806 if (regno > MMIX_RETURN_VALUE_REGNUM - 1)
807 regno = MMIX_RETURN_VALUE_REGNUM - 1;
808 }
809
810 cfun->machine->highest_saved_stack_register = regno;
811 }
812
813 /* TARGET_ASM_FUNCTION_EPILOGUE. */
814
815 static void
816 mmix_target_asm_function_epilogue (FILE *stream,
817 HOST_WIDE_INT locals_size ATTRIBUTE_UNUSED)
818 {
819 /* Emit an \n for readability of the generated assembly. */
820 fputc ('\n', stream);
821 }
822
823 /* TARGET_ASM_OUTPUT_MI_THUNK. */
824
825 static void
826 mmix_asm_output_mi_thunk (FILE *stream,
827 tree fndecl ATTRIBUTE_UNUSED,
828 HOST_WIDE_INT delta,
829 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
830 tree func)
831 {
832 /* If you define TARGET_STRUCT_VALUE_RTX that returns 0 (i.e. pass
833 location of structure to return as invisible first argument), you
834 need to tweak this code too. */
835 const char *regname = reg_names[MMIX_FIRST_INCOMING_ARG_REGNUM];
836
837 if (delta >= 0 && delta < 65536)
838 fprintf (stream, "\tINCL %s,%d\n", regname, (int)delta);
839 else if (delta < 0 && delta >= -255)
840 fprintf (stream, "\tSUBU %s,%s,%d\n", regname, regname, (int)-delta);
841 else
842 {
843 mmix_output_register_setting (stream, 255, delta, 1);
844 fprintf (stream, "\tADDU %s,%s,$255\n", regname, regname);
845 }
846
847 fprintf (stream, "\tJMP ");
848 assemble_name (stream, XSTR (XEXP (DECL_RTL (func), 0), 0));
849 fprintf (stream, "\n");
850 }
851
852 /* FUNCTION_PROFILER. */
853
854 void
855 mmix_function_profiler (FILE *stream ATTRIBUTE_UNUSED,
856 int labelno ATTRIBUTE_UNUSED)
857 {
858 sorry ("function_profiler support for MMIX");
859 }
860
861 /* Worker function for TARGET_SETUP_INCOMING_VARARGS. For the moment,
862 let's stick to pushing argument registers on the stack. Later, we
863 can parse all arguments in registers, to improve performance. */
864
865 static void
866 mmix_setup_incoming_varargs (CUMULATIVE_ARGS *args_so_farp,
867 enum machine_mode mode,
868 tree vartype,
869 int *pretend_sizep,
870 int second_time ATTRIBUTE_UNUSED)
871 {
872 /* The last named variable has been handled, but
873 args_so_farp has not been advanced for it. */
874 if (args_so_farp->regs + 1 < MMIX_MAX_ARGS_IN_REGS)
875 *pretend_sizep = (MMIX_MAX_ARGS_IN_REGS - (args_so_farp->regs + 1)) * 8;
876
877 /* We assume that one argument takes up one register here. That should
878 be true until we start messing with multi-reg parameters. */
879 if ((7 + (MMIX_FUNCTION_ARG_SIZE (mode, vartype))) / 8 != 1)
880 internal_error ("MMIX Internal: Last named vararg would not fit in a register");
881 }
882
883 /* TRAMPOLINE_SIZE. */
884 /* Four 4-byte insns plus two 8-byte values. */
885 int mmix_trampoline_size = 32;
886
887
888 /* TRAMPOLINE_TEMPLATE. */
889
890 void
891 mmix_trampoline_template (FILE *stream)
892 {
893 /* Read a value into the static-chain register and jump somewhere. The
894 static chain is stored at offset 16, and the function address is
895 stored at offset 24. */
896 /* FIXME: GCC copies this using *intsize* (tetra), when it should use
897 register size (octa). */
898 fprintf (stream, "\tGETA $255,1F\n\t");
899 fprintf (stream, "LDOU %s,$255,0\n\t",
900 reg_names[MMIX_STATIC_CHAIN_REGNUM]);
901 fprintf (stream, "LDOU $255,$255,8\n\t");
902 fprintf (stream, "GO $255,$255,0\n");
903 fprintf (stream, "1H\tOCTA 0\n\t");
904 fprintf (stream, "OCTA 0\n");
905 }
906
907 /* INITIALIZE_TRAMPOLINE. */
908 /* Set the static chain and function pointer field in the trampoline.
909 We also SYNCID here to be sure (doesn't matter in the simulator, but
910 some day it will). */
911
912 void
913 mmix_initialize_trampoline (rtx trampaddr, rtx fnaddr, rtx static_chain)
914 {
915 emit_move_insn (gen_rtx_MEM (DImode, plus_constant (trampaddr, 16)),
916 static_chain);
917 emit_move_insn (gen_rtx_MEM (DImode,
918 plus_constant (trampaddr, 24)),
919 fnaddr);
920 emit_insn (gen_sync_icache (validize_mem (gen_rtx_MEM (DImode,
921 trampaddr)),
922 GEN_INT (mmix_trampoline_size - 1)));
923 }
924
925 /* We must exclude constant addresses that have an increment that is not a
926 multiple of four bytes because of restrictions of the GETA
927 instruction, unless TARGET_BASE_ADDRESSES. */
928
929 int
930 mmix_constant_address_p (rtx x)
931 {
932 RTX_CODE code = GET_CODE (x);
933 int addend = 0;
934 /* When using "base addresses", anything constant goes. */
935 int constant_ok = TARGET_BASE_ADDRESSES != 0;
936
937 switch (code)
938 {
939 case LABEL_REF:
940 case SYMBOL_REF:
941 return 1;
942
943 case HIGH:
944 /* FIXME: Don't know how to dissect these. Avoid them for now,
945 except we know they're constants. */
946 return constant_ok;
947
948 case CONST_INT:
949 addend = INTVAL (x);
950 break;
951
952 case CONST_DOUBLE:
953 if (GET_MODE (x) != VOIDmode)
954 /* Strange that we got here. FIXME: Check if we do. */
955 return constant_ok;
956 addend = CONST_DOUBLE_LOW (x);
957 break;
958
959 case CONST:
960 /* Note that expressions with arithmetic on forward references don't
961 work in mmixal. People using gcc assembly code with mmixal might
962 need to move arrays and such to before the point of use. */
963 if (GET_CODE (XEXP (x, 0)) == PLUS)
964 {
965 rtx x0 = XEXP (XEXP (x, 0), 0);
966 rtx x1 = XEXP (XEXP (x, 0), 1);
967
968 if ((GET_CODE (x0) == SYMBOL_REF
969 || GET_CODE (x0) == LABEL_REF)
970 && (GET_CODE (x1) == CONST_INT
971 || (GET_CODE (x1) == CONST_DOUBLE
972 && GET_MODE (x1) == VOIDmode)))
973 addend = mmix_intval (x1);
974 else
975 return constant_ok;
976 }
977 else
978 return constant_ok;
979 break;
980
981 default:
982 return 0;
983 }
984
985 return constant_ok || (addend & 3) == 0;
986 }
987
988 /* Return 1 if the address is OK, otherwise 0.
989 Used by GO_IF_LEGITIMATE_ADDRESS. */
990
991 int
992 mmix_legitimate_address (enum machine_mode mode ATTRIBUTE_UNUSED,
993 rtx x,
994 int strict_checking)
995 {
996 #define MMIX_REG_OK(X) \
997 ((strict_checking \
998 && (REGNO (X) <= MMIX_LAST_GENERAL_REGISTER \
999 || (reg_renumber[REGNO (X)] > 0 \
1000 && reg_renumber[REGNO (X)] <= MMIX_LAST_GENERAL_REGISTER))) \
1001 || (!strict_checking \
1002 && (REGNO (X) <= MMIX_LAST_GENERAL_REGISTER \
1003 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1004 || REGNO (X) == ARG_POINTER_REGNUM)))
1005
1006 /* We only accept:
1007 (mem reg)
1008 (mem (plus reg reg))
1009 (mem (plus reg 0..255)).
1010 unless TARGET_BASE_ADDRESSES, in which case we accept all
1011 (mem constant_address) too. */
1012
1013
1014 /* (mem reg) */
1015 if (REG_P (x) && MMIX_REG_OK (x))
1016 return 1;
1017
1018 if (GET_CODE(x) == PLUS)
1019 {
1020 rtx x1 = XEXP (x, 0);
1021 rtx x2 = XEXP (x, 1);
1022
1023 /* Try swapping the order. FIXME: Do we need this? */
1024 if (! REG_P (x1))
1025 {
1026 rtx tem = x1;
1027 x1 = x2;
1028 x2 = tem;
1029 }
1030
1031 /* (mem (plus (reg?) (?))) */
1032 if (!REG_P (x1) || !MMIX_REG_OK (x1))
1033 return TARGET_BASE_ADDRESSES && mmix_constant_address_p (x);
1034
1035 /* (mem (plus (reg) (reg?))) */
1036 if (REG_P (x2) && MMIX_REG_OK (x2))
1037 return 1;
1038
1039 /* (mem (plus (reg) (0..255?))) */
1040 if (GET_CODE (x2) == CONST_INT
1041 && CONST_OK_FOR_LETTER_P (INTVAL (x2), 'I'))
1042 return 1;
1043
1044 return 0;
1045 }
1046
1047 return TARGET_BASE_ADDRESSES && mmix_constant_address_p (x);
1048 }
1049
1050 /* LEGITIMATE_CONSTANT_P. */
1051
1052 int
1053 mmix_legitimate_constant_p (rtx x)
1054 {
1055 RTX_CODE code = GET_CODE (x);
1056
1057 /* We must allow any number due to the way the cse passes works; if we
1058 do not allow any number here, general_operand will fail, and insns
1059 will fatally fail recognition instead of "softly". */
1060 if (code == CONST_INT || code == CONST_DOUBLE)
1061 return 1;
1062
1063 return CONSTANT_ADDRESS_P (x);
1064 }
1065
1066 /* SELECT_CC_MODE. */
1067
1068 enum machine_mode
1069 mmix_select_cc_mode (RTX_CODE op, rtx x, rtx y ATTRIBUTE_UNUSED)
1070 {
1071 /* We use CCmode, CC_UNSmode, CC_FPmode, CC_FPEQmode and CC_FUNmode to
1072 output different compare insns. Note that we do not check the
1073 validity of the comparison here. */
1074
1075 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1076 {
1077 if (op == ORDERED || op == UNORDERED || op == UNGE
1078 || op == UNGT || op == UNLE || op == UNLT)
1079 return CC_FUNmode;
1080
1081 if (op == EQ || op == NE)
1082 return CC_FPEQmode;
1083
1084 return CC_FPmode;
1085 }
1086
1087 if (op == GTU || op == LTU || op == GEU || op == LEU)
1088 return CC_UNSmode;
1089
1090 return CCmode;
1091 }
1092
1093 /* REVERSIBLE_CC_MODE. */
1094
1095 int
1096 mmix_reversible_cc_mode (enum machine_mode mode)
1097 {
1098 /* That is, all integer and the EQ, NE, ORDERED and UNORDERED float
1099 compares. */
1100 return mode != CC_FPmode;
1101 }
1102
1103 /* TARGET_RTX_COSTS. */
1104
1105 static bool
1106 mmix_rtx_costs (rtx x ATTRIBUTE_UNUSED,
1107 int code ATTRIBUTE_UNUSED,
1108 int outer_code ATTRIBUTE_UNUSED,
1109 int *total ATTRIBUTE_UNUSED)
1110 {
1111 /* For the time being, this is just a stub and we'll accept the
1112 generic calculations, until we can do measurements, at least.
1113 Say we did not modify any calculated costs. */
1114 return false;
1115 }
1116
1117 /* REGISTER_MOVE_COST. */
1118
1119 int
1120 mmix_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
1121 enum reg_class from,
1122 enum reg_class to)
1123 {
1124 return (from == GENERAL_REGS && from == to) ? 2 : 3;
1125 }
1126
1127 /* Note that we don't have a TEXT_SECTION_ASM_OP, because it has to be a
1128 compile-time constant; it's used in an asm in crtstuff.c, compiled for
1129 the target. */
1130
1131 /* DATA_SECTION_ASM_OP. */
1132
1133 const char *
1134 mmix_data_section_asm_op (void)
1135 {
1136 return "\t.data ! mmixal:= 8H LOC 9B";
1137 }
1138
1139 static void
1140 mmix_encode_section_info (tree decl, rtx rtl, int first)
1141 {
1142 /* Test for an external declaration, and do nothing if it is one. */
1143 if ((TREE_CODE (decl) == VAR_DECL
1144 && (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl)))
1145 || (TREE_CODE (decl) == FUNCTION_DECL && TREE_PUBLIC (decl)))
1146 ;
1147 else if (first && DECL_P (decl))
1148 {
1149 /* For non-visible declarations, add a "@" prefix, which we skip
1150 when the label is output. If the label does not have this
1151 prefix, a ":" is output if -mtoplevel-symbols.
1152
1153 Note that this does not work for data that is declared extern and
1154 later defined as static. If there's code in between, that code
1155 will refer to the extern declaration, and vice versa. This just
1156 means that when -mtoplevel-symbols is in use, we can just handle
1157 well-behaved ISO-compliant code. */
1158
1159 const char *str = XSTR (XEXP (rtl, 0), 0);
1160 int len = strlen (str);
1161 char *newstr = alloca (len + 2);
1162 newstr[0] = '@';
1163 strcpy (newstr + 1, str);
1164 *newstr = '@';
1165 XSTR (XEXP (rtl, 0), 0) = ggc_alloc_string (newstr, len + 1);
1166 }
1167
1168 /* Set SYMBOL_REF_FLAG for things that we want to access with GETA. We
1169 may need different options to reach for different things with GETA.
1170 For now, functions and things we know or have been told are constant. */
1171 if (TREE_CODE (decl) == FUNCTION_DECL
1172 || TREE_CONSTANT (decl)
1173 || (TREE_CODE (decl) == VAR_DECL
1174 && TREE_READONLY (decl)
1175 && !TREE_SIDE_EFFECTS (decl)
1176 && (!DECL_INITIAL (decl)
1177 || TREE_CONSTANT (DECL_INITIAL (decl)))))
1178 SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
1179 }
1180
1181 static const char *
1182 mmix_strip_name_encoding (const char *name)
1183 {
1184 for (; (*name == '@' || *name == '*'); name++)
1185 ;
1186
1187 return name;
1188 }
1189
1190 /* TARGET_ASM_FILE_START.
1191 We just emit a little comment for the time being. */
1192
1193 static void
1194 mmix_file_start (void)
1195 {
1196 default_file_start ();
1197
1198 fputs ("! mmixal:= 8H LOC Data_Section\n", asm_out_file);
1199
1200 /* Make sure each file starts with the text section. */
1201 switch_to_section (text_section);
1202 }
1203
1204 /* TARGET_ASM_FILE_END. */
1205
1206 static void
1207 mmix_file_end (void)
1208 {
1209 /* Make sure each file ends with the data section. */
1210 switch_to_section (data_section);
1211 }
1212
1213 /* ASM_OUTPUT_SOURCE_FILENAME. */
1214
1215 void
1216 mmix_asm_output_source_filename (FILE *stream, const char *name)
1217 {
1218 fprintf (stream, "# 1 ");
1219 OUTPUT_QUOTED_STRING (stream, name);
1220 fprintf (stream, "\n");
1221 }
1222
1223 /* OUTPUT_QUOTED_STRING. */
1224
1225 void
1226 mmix_output_quoted_string (FILE *stream, const char *string, int length)
1227 {
1228 const char * string_end = string + length;
1229 static const char *const unwanted_chars = "\"[]\\";
1230
1231 /* Output "any character except newline and double quote character". We
1232 play it safe and avoid all control characters too. We also do not
1233 want [] as characters, should input be passed through m4 with [] as
1234 quotes. Further, we avoid "\", because the GAS port handles it as a
1235 quoting character. */
1236 while (string < string_end)
1237 {
1238 if (*string
1239 && (unsigned char) *string < 128
1240 && !ISCNTRL (*string)
1241 && strchr (unwanted_chars, *string) == NULL)
1242 {
1243 fputc ('"', stream);
1244 while (*string
1245 && (unsigned char) *string < 128
1246 && !ISCNTRL (*string)
1247 && strchr (unwanted_chars, *string) == NULL
1248 && string < string_end)
1249 {
1250 fputc (*string, stream);
1251 string++;
1252 }
1253 fputc ('"', stream);
1254 if (string < string_end)
1255 fprintf (stream, ",");
1256 }
1257 if (string < string_end)
1258 {
1259 fprintf (stream, "#%x", *string & 255);
1260 string++;
1261 if (string < string_end)
1262 fprintf (stream, ",");
1263 }
1264 }
1265 }
1266
1267 /* Target hook for assembling integer objects. Use mmix_print_operand
1268 for WYDE and TETRA. Use mmix_output_octa to output 8-byte
1269 CONST_DOUBLEs. */
1270
1271 static bool
1272 mmix_assemble_integer (rtx x, unsigned int size, int aligned_p)
1273 {
1274 if (aligned_p)
1275 switch (size)
1276 {
1277 /* We handle a limited number of types of operands in here. But
1278 that's ok, because we can punt to generic functions. We then
1279 pretend that aligned data isn't needed, so the usual .<pseudo>
1280 syntax is used (which works for aligned data too). We actually
1281 *must* do that, since we say we don't have simple aligned
1282 pseudos, causing this function to be called. We just try and
1283 keep as much compatibility as possible with mmixal syntax for
1284 normal cases (i.e. without GNU extensions and C only). */
1285 case 1:
1286 if (GET_CODE (x) != CONST_INT)
1287 {
1288 aligned_p = 0;
1289 break;
1290 }
1291 fputs ("\tBYTE\t", asm_out_file);
1292 mmix_print_operand (asm_out_file, x, 'B');
1293 fputc ('\n', asm_out_file);
1294 return true;
1295
1296 case 2:
1297 if (GET_CODE (x) != CONST_INT)
1298 {
1299 aligned_p = 0;
1300 break;
1301 }
1302 fputs ("\tWYDE\t", asm_out_file);
1303 mmix_print_operand (asm_out_file, x, 'W');
1304 fputc ('\n', asm_out_file);
1305 return true;
1306
1307 case 4:
1308 if (GET_CODE (x) != CONST_INT)
1309 {
1310 aligned_p = 0;
1311 break;
1312 }
1313 fputs ("\tTETRA\t", asm_out_file);
1314 mmix_print_operand (asm_out_file, x, 'L');
1315 fputc ('\n', asm_out_file);
1316 return true;
1317
1318 case 8:
1319 /* We don't get here anymore for CONST_DOUBLE, because DImode
1320 isn't expressed as CONST_DOUBLE, and DFmode is handled
1321 elsewhere. */
1322 gcc_assert (GET_CODE (x) != CONST_DOUBLE);
1323 assemble_integer_with_op ("\tOCTA\t", x);
1324 return true;
1325 }
1326 return default_assemble_integer (x, size, aligned_p);
1327 }
1328
1329 /* ASM_OUTPUT_ASCII. */
1330
1331 void
1332 mmix_asm_output_ascii (FILE *stream, const char *string, int length)
1333 {
1334 while (length > 0)
1335 {
1336 int chunk_size = length > 60 ? 60 : length;
1337 fprintf (stream, "\tBYTE ");
1338 mmix_output_quoted_string (stream, string, chunk_size);
1339 string += chunk_size;
1340 length -= chunk_size;
1341 fprintf (stream, "\n");
1342 }
1343 }
1344
1345 /* ASM_OUTPUT_ALIGNED_COMMON. */
1346
1347 void
1348 mmix_asm_output_aligned_common (FILE *stream,
1349 const char *name,
1350 int size,
1351 int align)
1352 {
1353 /* This is mostly the elfos.h one. There doesn't seem to be a way to
1354 express this in a mmixal-compatible way. */
1355 fprintf (stream, "\t.comm\t");
1356 assemble_name (stream, name);
1357 fprintf (stream, ",%u,%u ! mmixal-incompatible COMMON\n",
1358 size, align / BITS_PER_UNIT);
1359 }
1360
1361 /* ASM_OUTPUT_ALIGNED_LOCAL. */
1362
1363 void
1364 mmix_asm_output_aligned_local (FILE *stream,
1365 const char *name,
1366 int size,
1367 int align)
1368 {
1369 switch_to_section (data_section);
1370
1371 ASM_OUTPUT_ALIGN (stream, exact_log2 (align/BITS_PER_UNIT));
1372 assemble_name (stream, name);
1373 fprintf (stream, "\tLOC @+%d\n", size);
1374 }
1375
1376 /* ASM_OUTPUT_LABEL. */
1377
1378 void
1379 mmix_asm_output_label (FILE *stream, const char *name)
1380 {
1381 assemble_name (stream, name);
1382 fprintf (stream, "\tIS @\n");
1383 }
1384
1385 /* ASM_OUTPUT_INTERNAL_LABEL. */
1386
1387 void
1388 mmix_asm_output_internal_label (FILE *stream, const char *name)
1389 {
1390 assemble_name_raw (stream, name);
1391 fprintf (stream, "\tIS @\n");
1392 }
1393
1394 /* ASM_DECLARE_REGISTER_GLOBAL. */
1395
1396 void
1397 mmix_asm_declare_register_global (FILE *stream ATTRIBUTE_UNUSED,
1398 tree decl ATTRIBUTE_UNUSED,
1399 int regno ATTRIBUTE_UNUSED,
1400 const char *name ATTRIBUTE_UNUSED)
1401 {
1402 /* Nothing to do here, but there *will* be, therefore the framework is
1403 here. */
1404 }
1405
1406 /* ASM_WEAKEN_LABEL. */
1407
1408 void
1409 mmix_asm_weaken_label (FILE *stream ATTRIBUTE_UNUSED,
1410 const char *name ATTRIBUTE_UNUSED)
1411 {
1412 fprintf (stream, "\t.weak ");
1413 assemble_name (stream, name);
1414 fprintf (stream, " ! mmixal-incompatible\n");
1415 }
1416
1417 /* MAKE_DECL_ONE_ONLY. */
1418
1419 void
1420 mmix_make_decl_one_only (tree decl)
1421 {
1422 DECL_WEAK (decl) = 1;
1423 }
1424
1425 /* ASM_OUTPUT_LABELREF.
1426 Strip GCC's '*' and our own '@'. No order is assumed. */
1427
1428 void
1429 mmix_asm_output_labelref (FILE *stream, const char *name)
1430 {
1431 int is_extern = 1;
1432
1433 for (; (*name == '@' || *name == '*'); name++)
1434 if (*name == '@')
1435 is_extern = 0;
1436
1437 asm_fprintf (stream, "%s%U%s",
1438 is_extern && TARGET_TOPLEVEL_SYMBOLS ? ":" : "",
1439 name);
1440 }
1441
1442 /* ASM_OUTPUT_DEF. */
1443
1444 void
1445 mmix_asm_output_def (FILE *stream, const char *name, const char *value)
1446 {
1447 assemble_name (stream, name);
1448 fprintf (stream, "\tIS ");
1449 assemble_name (stream, value);
1450 fputc ('\n', stream);
1451 }
1452
1453 /* PRINT_OPERAND. */
1454
1455 void
1456 mmix_print_operand (FILE *stream, rtx x, int code)
1457 {
1458 /* When we add support for different codes later, we can, when needed,
1459 drop through to the main handler with a modified operand. */
1460 rtx modified_x = x;
1461 int regno = x != NULL_RTX && REG_P (x) ? REGNO (x) : 0;
1462
1463 switch (code)
1464 {
1465 /* Unrelated codes are in alphabetic order. */
1466
1467 case '+':
1468 /* For conditional branches, output "P" for a probable branch. */
1469 if (TARGET_BRANCH_PREDICT)
1470 {
1471 x = find_reg_note (current_output_insn, REG_BR_PROB, 0);
1472 if (x && INTVAL (XEXP (x, 0)) > REG_BR_PROB_BASE / 2)
1473 putc ('P', stream);
1474 }
1475 return;
1476
1477 case '.':
1478 /* For the %d in POP %d,0. */
1479 fprintf (stream, "%d", MMIX_POP_ARGUMENT ());
1480 return;
1481
1482 case 'B':
1483 if (GET_CODE (x) != CONST_INT)
1484 fatal_insn ("MMIX Internal: Expected a CONST_INT, not this", x);
1485 fprintf (stream, "%d", (int) (INTVAL (x) & 0xff));
1486 return;
1487
1488 case 'H':
1489 /* Highpart. Must be general register, and not the last one, as
1490 that one cannot be part of a consecutive register pair. */
1491 if (regno > MMIX_LAST_GENERAL_REGISTER - 1)
1492 internal_error ("MMIX Internal: Bad register: %d", regno);
1493
1494 /* This is big-endian, so the high-part is the first one. */
1495 fprintf (stream, "%s", reg_names[MMIX_OUTPUT_REGNO (regno)]);
1496 return;
1497
1498 case 'L':
1499 /* Lowpart. Must be CONST_INT or general register, and not the last
1500 one, as that one cannot be part of a consecutive register pair. */
1501 if (GET_CODE (x) == CONST_INT)
1502 {
1503 fprintf (stream, "#%lx",
1504 (unsigned long) (INTVAL (x)
1505 & ((unsigned int) 0x7fffffff * 2 + 1)));
1506 return;
1507 }
1508
1509 if (GET_CODE (x) == SYMBOL_REF)
1510 {
1511 output_addr_const (stream, x);
1512 return;
1513 }
1514
1515 if (regno > MMIX_LAST_GENERAL_REGISTER - 1)
1516 internal_error ("MMIX Internal: Bad register: %d", regno);
1517
1518 /* This is big-endian, so the low-part is + 1. */
1519 fprintf (stream, "%s", reg_names[MMIX_OUTPUT_REGNO (regno) + 1]);
1520 return;
1521
1522 /* Can't use 'a' because that's a generic modifier for address
1523 output. */
1524 case 'A':
1525 mmix_output_shiftvalue_op_from_str (stream, "ANDN",
1526 ~(unsigned HOST_WIDEST_INT)
1527 mmix_intval (x));
1528 return;
1529
1530 case 'i':
1531 mmix_output_shiftvalue_op_from_str (stream, "INC",
1532 (unsigned HOST_WIDEST_INT)
1533 mmix_intval (x));
1534 return;
1535
1536 case 'o':
1537 mmix_output_shiftvalue_op_from_str (stream, "OR",
1538 (unsigned HOST_WIDEST_INT)
1539 mmix_intval (x));
1540 return;
1541
1542 case 's':
1543 mmix_output_shiftvalue_op_from_str (stream, "SET",
1544 (unsigned HOST_WIDEST_INT)
1545 mmix_intval (x));
1546 return;
1547
1548 case 'd':
1549 case 'D':
1550 mmix_output_condition (stream, x, (code == 'D'));
1551 return;
1552
1553 case 'e':
1554 /* Output an extra "e" to make fcmpe, fune. */
1555 if (TARGET_FCMP_EPSILON)
1556 fprintf (stream, "e");
1557 return;
1558
1559 case 'm':
1560 /* Output the number minus 1. */
1561 if (GET_CODE (x) != CONST_INT)
1562 {
1563 fatal_insn ("MMIX Internal: Bad value for 'm', not a CONST_INT",
1564 x);
1565 }
1566 fprintf (stream, HOST_WIDEST_INT_PRINT_DEC,
1567 (HOST_WIDEST_INT) (mmix_intval (x) - 1));
1568 return;
1569
1570 case 'p':
1571 /* Store the number of registers we want to save. This was setup
1572 by the prologue. The actual operand contains the number of
1573 registers to pass, but we don't use it currently. Anyway, we
1574 need to output the number of saved registers here. */
1575 fprintf (stream, "%d",
1576 cfun->machine->highest_saved_stack_register + 1);
1577 return;
1578
1579 case 'r':
1580 /* Store the register to output a constant to. */
1581 if (! REG_P (x))
1582 fatal_insn ("MMIX Internal: Expected a register, not this", x);
1583 mmix_output_destination_register = MMIX_OUTPUT_REGNO (regno);
1584 return;
1585
1586 case 'I':
1587 /* Output the constant. Note that we use this for floats as well. */
1588 if (GET_CODE (x) != CONST_INT
1589 && (GET_CODE (x) != CONST_DOUBLE
1590 || (GET_MODE (x) != VOIDmode && GET_MODE (x) != DFmode
1591 && GET_MODE (x) != SFmode)))
1592 fatal_insn ("MMIX Internal: Expected a constant, not this", x);
1593 mmix_output_register_setting (stream,
1594 mmix_output_destination_register,
1595 mmix_intval (x), 0);
1596 return;
1597
1598 case 'U':
1599 /* An U for unsigned, if TARGET_ZERO_EXTEND. Ignore the operand. */
1600 if (TARGET_ZERO_EXTEND)
1601 putc ('U', stream);
1602 return;
1603
1604 case 'v':
1605 mmix_output_shifted_value (stream, (HOST_WIDEST_INT) mmix_intval (x));
1606 return;
1607
1608 case 'V':
1609 mmix_output_shifted_value (stream, (HOST_WIDEST_INT) ~mmix_intval (x));
1610 return;
1611
1612 case 'W':
1613 if (GET_CODE (x) != CONST_INT)
1614 fatal_insn ("MMIX Internal: Expected a CONST_INT, not this", x);
1615 fprintf (stream, "#%x", (int) (INTVAL (x) & 0xffff));
1616 return;
1617
1618 case 0:
1619 /* Nothing to do. */
1620 break;
1621
1622 default:
1623 /* Presumably there's a missing case above if we get here. */
1624 internal_error ("MMIX Internal: Missing %qc case in mmix_print_operand", code);
1625 }
1626
1627 switch (GET_CODE (modified_x))
1628 {
1629 case REG:
1630 regno = REGNO (modified_x);
1631 if (regno >= FIRST_PSEUDO_REGISTER)
1632 internal_error ("MMIX Internal: Bad register: %d", regno);
1633 fprintf (stream, "%s", reg_names[MMIX_OUTPUT_REGNO (regno)]);
1634 return;
1635
1636 case MEM:
1637 output_address (XEXP (modified_x, 0));
1638 return;
1639
1640 case CONST_INT:
1641 /* For -2147483648, mmixal complains that the constant does not fit
1642 in 4 bytes, so let's output it as hex. Take care to handle hosts
1643 where HOST_WIDE_INT is longer than an int.
1644
1645 Print small constants +-255 using decimal. */
1646
1647 if (INTVAL (modified_x) > -256 && INTVAL (modified_x) < 256)
1648 fprintf (stream, "%d", (int) (INTVAL (modified_x)));
1649 else
1650 fprintf (stream, "#%x",
1651 (int) (INTVAL (modified_x)) & (unsigned int) ~0);
1652 return;
1653
1654 case CONST_DOUBLE:
1655 /* Do somewhat as CONST_INT. */
1656 mmix_output_octa (stream, mmix_intval (modified_x), 0);
1657 return;
1658
1659 case CONST:
1660 output_addr_const (stream, modified_x);
1661 return;
1662
1663 default:
1664 /* No need to test for all strange things. Let output_addr_const do
1665 it for us. */
1666 if (CONSTANT_P (modified_x)
1667 /* Strangely enough, this is not included in CONSTANT_P.
1668 FIXME: Ask/check about sanity here. */
1669 || GET_CODE (modified_x) == CODE_LABEL)
1670 {
1671 output_addr_const (stream, modified_x);
1672 return;
1673 }
1674
1675 /* We need the original here. */
1676 fatal_insn ("MMIX Internal: Cannot decode this operand", x);
1677 }
1678 }
1679
1680 /* PRINT_OPERAND_PUNCT_VALID_P. */
1681
1682 int
1683 mmix_print_operand_punct_valid_p (int code ATTRIBUTE_UNUSED)
1684 {
1685 /* A '+' is used for branch prediction, similar to other ports. */
1686 return code == '+'
1687 /* A '.' is used for the %d in the POP %d,0 return insn. */
1688 || code == '.';
1689 }
1690
1691 /* PRINT_OPERAND_ADDRESS. */
1692
1693 void
1694 mmix_print_operand_address (FILE *stream, rtx x)
1695 {
1696 if (REG_P (x))
1697 {
1698 /* I find the generated assembly code harder to read without
1699 the ",0". */
1700 fprintf (stream, "%s,0", reg_names[MMIX_OUTPUT_REGNO (REGNO (x))]);
1701 return;
1702 }
1703 else if (GET_CODE (x) == PLUS)
1704 {
1705 rtx x1 = XEXP (x, 0);
1706 rtx x2 = XEXP (x, 1);
1707
1708 if (REG_P (x1))
1709 {
1710 fprintf (stream, "%s,", reg_names[MMIX_OUTPUT_REGNO (REGNO (x1))]);
1711
1712 if (REG_P (x2))
1713 {
1714 fprintf (stream, "%s",
1715 reg_names[MMIX_OUTPUT_REGNO (REGNO (x2))]);
1716 return;
1717 }
1718 else if (GET_CODE (x2) == CONST_INT
1719 && CONST_OK_FOR_LETTER_P (INTVAL (x2), 'I'))
1720 {
1721 output_addr_const (stream, x2);
1722 return;
1723 }
1724 }
1725 }
1726
1727 if (TARGET_BASE_ADDRESSES && mmix_legitimate_constant_p (x))
1728 {
1729 output_addr_const (stream, x);
1730 return;
1731 }
1732
1733 fatal_insn ("MMIX Internal: This is not a recognized address", x);
1734 }
1735
1736 /* ASM_OUTPUT_REG_PUSH. */
1737
1738 void
1739 mmix_asm_output_reg_push (FILE *stream, int regno)
1740 {
1741 fprintf (stream, "\tSUBU %s,%s,8\n\tSTOU %s,%s,0\n",
1742 reg_names[MMIX_STACK_POINTER_REGNUM],
1743 reg_names[MMIX_STACK_POINTER_REGNUM],
1744 reg_names[MMIX_OUTPUT_REGNO (regno)],
1745 reg_names[MMIX_STACK_POINTER_REGNUM]);
1746 }
1747
1748 /* ASM_OUTPUT_REG_POP. */
1749
1750 void
1751 mmix_asm_output_reg_pop (FILE *stream, int regno)
1752 {
1753 fprintf (stream, "\tLDOU %s,%s,0\n\tINCL %s,8\n",
1754 reg_names[MMIX_OUTPUT_REGNO (regno)],
1755 reg_names[MMIX_STACK_POINTER_REGNUM],
1756 reg_names[MMIX_STACK_POINTER_REGNUM]);
1757 }
1758
1759 /* ASM_OUTPUT_ADDR_DIFF_ELT. */
1760
1761 void
1762 mmix_asm_output_addr_diff_elt (FILE *stream,
1763 rtx body ATTRIBUTE_UNUSED,
1764 int value,
1765 int rel)
1766 {
1767 fprintf (stream, "\tTETRA L%d-L%d\n", value, rel);
1768 }
1769
1770 /* ASM_OUTPUT_ADDR_VEC_ELT. */
1771
1772 void
1773 mmix_asm_output_addr_vec_elt (FILE *stream, int value)
1774 {
1775 fprintf (stream, "\tOCTA L:%d\n", value);
1776 }
1777
1778 /* ASM_OUTPUT_SKIP. */
1779
1780 void
1781 mmix_asm_output_skip (FILE *stream, int nbytes)
1782 {
1783 fprintf (stream, "\tLOC @+%d\n", nbytes);
1784 }
1785
1786 /* ASM_OUTPUT_ALIGN. */
1787
1788 void
1789 mmix_asm_output_align (FILE *stream, int power)
1790 {
1791 /* We need to record the needed alignment of this section in the object,
1792 so we have to output an alignment directive. Use a .p2align (not
1793 .align) so people will never have to wonder about whether the
1794 argument is in number of bytes or the log2 thereof. We do it in
1795 addition to the LOC directive, so nothing needs tweaking when
1796 copy-pasting assembly into mmixal. */
1797 fprintf (stream, "\t.p2align %d\n", power);
1798 fprintf (stream, "\tLOC @+(%d-@)&%d\n", 1 << power, (1 << power) - 1);
1799 }
1800
1801 /* DBX_REGISTER_NUMBER. */
1802
1803 int
1804 mmix_dbx_register_number (int regno)
1805 {
1806 /* Adjust the register number to the one it will be output as, dammit.
1807 It'd be nice if we could check the assumption that we're filling a
1808 gap, but every register between the last saved register and parameter
1809 registers might be a valid parameter register. */
1810 regno = MMIX_OUTPUT_REGNO (regno);
1811
1812 /* We need to renumber registers to get the number of the return address
1813 register in the range 0..255. It is also space-saving if registers
1814 mentioned in the call-frame information (which uses this function by
1815 defaulting DWARF_FRAME_REGNUM to DBX_REGISTER_NUMBER) are numbered
1816 0 .. 63. So map 224 .. 256+15 -> 0 .. 47 and 0 .. 223 -> 48..223+48. */
1817 return regno >= 224 ? (regno - 224) : (regno + 48);
1818 }
1819
1820 /* End of target macro support functions.
1821
1822 Now the MMIX port's own functions. First the exported ones. */
1823
1824 /* Wrapper for get_hard_reg_initial_val since integrate.h isn't included
1825 from insn-emit.c. */
1826
1827 rtx
1828 mmix_get_hard_reg_initial_val (enum machine_mode mode, int regno)
1829 {
1830 return get_hard_reg_initial_val (mode, regno);
1831 }
1832
1833 /* Nonzero when the function epilogue is simple enough that a single
1834 "POP %d,0" should be used even within the function. */
1835
1836 int
1837 mmix_use_simple_return (void)
1838 {
1839 int regno;
1840
1841 int stack_space_to_allocate
1842 = (current_function_outgoing_args_size
1843 + current_function_pretend_args_size
1844 + get_frame_size () + 7) & ~7;
1845
1846 if (!TARGET_USE_RETURN_INSN || !reload_completed)
1847 return 0;
1848
1849 for (regno = 255;
1850 regno >= MMIX_FIRST_GLOBAL_REGNUM;
1851 regno--)
1852 /* Note that we assume that the frame-pointer-register is one of these
1853 registers, in which case we don't count it here. */
1854 if ((((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
1855 && df_regs_ever_live_p (regno) && !call_used_regs[regno]))
1856 || IS_MMIX_EH_RETURN_DATA_REG (regno))
1857 return 0;
1858
1859 if (frame_pointer_needed)
1860 stack_space_to_allocate += 8;
1861
1862 if (MMIX_CFUN_HAS_LANDING_PAD)
1863 stack_space_to_allocate += 16;
1864 else if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
1865 stack_space_to_allocate += 8;
1866
1867 return stack_space_to_allocate == 0;
1868 }
1869
1870
1871 /* Expands the function prologue into RTX. */
1872
1873 void
1874 mmix_expand_prologue (void)
1875 {
1876 HOST_WIDE_INT locals_size = get_frame_size ();
1877 int regno;
1878 HOST_WIDE_INT stack_space_to_allocate
1879 = (current_function_outgoing_args_size
1880 + current_function_pretend_args_size
1881 + locals_size + 7) & ~7;
1882 HOST_WIDE_INT offset = -8;
1883
1884 /* Add room needed to save global non-register-stack registers. */
1885 for (regno = 255;
1886 regno >= MMIX_FIRST_GLOBAL_REGNUM;
1887 regno--)
1888 /* Note that we assume that the frame-pointer-register is one of these
1889 registers, in which case we don't count it here. */
1890 if ((((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
1891 && df_regs_ever_live_p (regno) && !call_used_regs[regno]))
1892 || IS_MMIX_EH_RETURN_DATA_REG (regno))
1893 stack_space_to_allocate += 8;
1894
1895 /* If we do have a frame-pointer, add room for it. */
1896 if (frame_pointer_needed)
1897 stack_space_to_allocate += 8;
1898
1899 /* If we have a non-local label, we need to be able to unwind to it, so
1900 store the current register stack pointer. Also store the return
1901 address if we do that. */
1902 if (MMIX_CFUN_HAS_LANDING_PAD)
1903 stack_space_to_allocate += 16;
1904 else if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
1905 /* If we do have a saved return-address slot, add room for it. */
1906 stack_space_to_allocate += 8;
1907
1908 /* Make sure we don't get an unaligned stack. */
1909 if ((stack_space_to_allocate % 8) != 0)
1910 internal_error ("stack frame not a multiple of 8 bytes: %wd",
1911 stack_space_to_allocate);
1912
1913 if (current_function_pretend_args_size)
1914 {
1915 int mmix_first_vararg_reg
1916 = (MMIX_FIRST_INCOMING_ARG_REGNUM
1917 + (MMIX_MAX_ARGS_IN_REGS
1918 - current_function_pretend_args_size / 8));
1919
1920 for (regno
1921 = MMIX_FIRST_INCOMING_ARG_REGNUM + MMIX_MAX_ARGS_IN_REGS - 1;
1922 regno >= mmix_first_vararg_reg;
1923 regno--)
1924 {
1925 if (offset < 0)
1926 {
1927 HOST_WIDE_INT stack_chunk
1928 = stack_space_to_allocate > (256 - 8)
1929 ? (256 - 8) : stack_space_to_allocate;
1930
1931 mmix_emit_sp_add (-stack_chunk);
1932 offset += stack_chunk;
1933 stack_space_to_allocate -= stack_chunk;
1934 }
1935
1936 /* These registers aren't actually saved (as in "will be
1937 restored"), so don't tell DWARF2 they're saved. */
1938 emit_move_insn (gen_rtx_MEM (DImode,
1939 plus_constant (stack_pointer_rtx,
1940 offset)),
1941 gen_rtx_REG (DImode, regno));
1942 offset -= 8;
1943 }
1944 }
1945
1946 /* Store the frame-pointer. */
1947
1948 if (frame_pointer_needed)
1949 {
1950 rtx insn;
1951
1952 if (offset < 0)
1953 {
1954 /* Get 8 less than otherwise, since we need to reach offset + 8. */
1955 HOST_WIDE_INT stack_chunk
1956 = stack_space_to_allocate > (256 - 8 - 8)
1957 ? (256 - 8 - 8) : stack_space_to_allocate;
1958
1959 mmix_emit_sp_add (-stack_chunk);
1960
1961 offset += stack_chunk;
1962 stack_space_to_allocate -= stack_chunk;
1963 }
1964
1965 insn = emit_move_insn (gen_rtx_MEM (DImode,
1966 plus_constant (stack_pointer_rtx,
1967 offset)),
1968 hard_frame_pointer_rtx);
1969 RTX_FRAME_RELATED_P (insn) = 1;
1970 insn = emit_insn (gen_adddi3 (hard_frame_pointer_rtx,
1971 stack_pointer_rtx,
1972 GEN_INT (offset + 8)));
1973 RTX_FRAME_RELATED_P (insn) = 1;
1974 offset -= 8;
1975 }
1976
1977 if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
1978 {
1979 rtx tmpreg, retreg;
1980 rtx insn;
1981
1982 /* Store the return-address, if one is needed on the stack. We
1983 usually store it in a register when needed, but that doesn't work
1984 with -fexceptions. */
1985
1986 if (offset < 0)
1987 {
1988 /* Get 8 less than otherwise, since we need to reach offset + 8. */
1989 HOST_WIDE_INT stack_chunk
1990 = stack_space_to_allocate > (256 - 8 - 8)
1991 ? (256 - 8 - 8) : stack_space_to_allocate;
1992
1993 mmix_emit_sp_add (-stack_chunk);
1994
1995 offset += stack_chunk;
1996 stack_space_to_allocate -= stack_chunk;
1997 }
1998
1999 tmpreg = gen_rtx_REG (DImode, 255);
2000 retreg = gen_rtx_REG (DImode, MMIX_rJ_REGNUM);
2001
2002 /* Dwarf2 code is confused by the use of a temporary register for
2003 storing the return address, so we have to express it as a note,
2004 which we attach to the actual store insn. */
2005 emit_move_insn (tmpreg, retreg);
2006
2007 insn = emit_move_insn (gen_rtx_MEM (DImode,
2008 plus_constant (stack_pointer_rtx,
2009 offset)),
2010 tmpreg);
2011 RTX_FRAME_RELATED_P (insn) = 1;
2012 REG_NOTES (insn)
2013 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
2014 gen_rtx_SET (VOIDmode,
2015 gen_rtx_MEM (DImode,
2016 plus_constant (stack_pointer_rtx,
2017 offset)),
2018 retreg),
2019 REG_NOTES (insn));
2020
2021 offset -= 8;
2022 }
2023 else if (MMIX_CFUN_HAS_LANDING_PAD)
2024 offset -= 8;
2025
2026 if (MMIX_CFUN_HAS_LANDING_PAD)
2027 {
2028 /* Store the register defining the numbering of local registers, so
2029 we know how long to unwind the register stack. */
2030
2031 if (offset < 0)
2032 {
2033 /* Get 8 less than otherwise, since we need to reach offset + 8. */
2034 HOST_WIDE_INT stack_chunk
2035 = stack_space_to_allocate > (256 - 8 - 8)
2036 ? (256 - 8 - 8) : stack_space_to_allocate;
2037
2038 mmix_emit_sp_add (-stack_chunk);
2039
2040 offset += stack_chunk;
2041 stack_space_to_allocate -= stack_chunk;
2042 }
2043
2044 /* We don't tell dwarf2 about this one; we just have it to unwind
2045 the register stack at landing pads. FIXME: It's a kludge because
2046 we can't describe the effect of the PUSHJ and PUSHGO insns on the
2047 register stack at the moment. Best thing would be to handle it
2048 like stack-pointer offsets. Better: some hook into dwarf2out.c
2049 to produce DW_CFA_expression:s that specify the increment of rO,
2050 and unwind it at eh_return (preferred) or at the landing pad.
2051 Then saves to $0..$G-1 could be specified through that register. */
2052
2053 emit_move_insn (gen_rtx_REG (DImode, 255),
2054 gen_rtx_REG (DImode,
2055 MMIX_rO_REGNUM));
2056 emit_move_insn (gen_rtx_MEM (DImode,
2057 plus_constant (stack_pointer_rtx, offset)),
2058 gen_rtx_REG (DImode, 255));
2059 offset -= 8;
2060 }
2061
2062 /* After the return-address and the frame-pointer, we have the local
2063 variables. They're the ones that may have an "unaligned" size. */
2064 offset -= (locals_size + 7) & ~7;
2065
2066 /* Now store all registers that are global, i.e. not saved by the
2067 register file machinery.
2068
2069 It is assumed that the frame-pointer is one of these registers, so it
2070 is explicitly excluded in the count. */
2071
2072 for (regno = 255;
2073 regno >= MMIX_FIRST_GLOBAL_REGNUM;
2074 regno--)
2075 if (((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
2076 && df_regs_ever_live_p (regno) && ! call_used_regs[regno])
2077 || IS_MMIX_EH_RETURN_DATA_REG (regno))
2078 {
2079 rtx insn;
2080
2081 if (offset < 0)
2082 {
2083 HOST_WIDE_INT stack_chunk
2084 = (stack_space_to_allocate > (256 - offset - 8)
2085 ? (256 - offset - 8) : stack_space_to_allocate);
2086
2087 mmix_emit_sp_add (-stack_chunk);
2088 offset += stack_chunk;
2089 stack_space_to_allocate -= stack_chunk;
2090 }
2091
2092 insn = emit_move_insn (gen_rtx_MEM (DImode,
2093 plus_constant (stack_pointer_rtx,
2094 offset)),
2095 gen_rtx_REG (DImode, regno));
2096 RTX_FRAME_RELATED_P (insn) = 1;
2097 offset -= 8;
2098 }
2099
2100 /* Finally, allocate room for outgoing args and local vars if room
2101 wasn't allocated above. */
2102 if (stack_space_to_allocate)
2103 mmix_emit_sp_add (-stack_space_to_allocate);
2104 }
2105
2106 /* Expands the function epilogue into RTX. */
2107
2108 void
2109 mmix_expand_epilogue (void)
2110 {
2111 HOST_WIDE_INT locals_size = get_frame_size ();
2112 int regno;
2113 HOST_WIDE_INT stack_space_to_deallocate
2114 = (current_function_outgoing_args_size
2115 + current_function_pretend_args_size
2116 + locals_size + 7) & ~7;
2117
2118 /* The first address to access is beyond the outgoing_args area. */
2119 HOST_WIDE_INT offset = current_function_outgoing_args_size;
2120
2121 /* Add the space for global non-register-stack registers.
2122 It is assumed that the frame-pointer register can be one of these
2123 registers, in which case it is excluded from the count when needed. */
2124 for (regno = 255;
2125 regno >= MMIX_FIRST_GLOBAL_REGNUM;
2126 regno--)
2127 if (((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
2128 && df_regs_ever_live_p (regno) && !call_used_regs[regno])
2129 || IS_MMIX_EH_RETURN_DATA_REG (regno))
2130 stack_space_to_deallocate += 8;
2131
2132 /* Add in the space for register stack-pointer. If so, always add room
2133 for the saved PC. */
2134 if (MMIX_CFUN_HAS_LANDING_PAD)
2135 stack_space_to_deallocate += 16;
2136 else if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
2137 /* If we have a saved return-address slot, add it in. */
2138 stack_space_to_deallocate += 8;
2139
2140 /* Add in the frame-pointer. */
2141 if (frame_pointer_needed)
2142 stack_space_to_deallocate += 8;
2143
2144 /* Make sure we don't get an unaligned stack. */
2145 if ((stack_space_to_deallocate % 8) != 0)
2146 internal_error ("stack frame not a multiple of octabyte: %wd",
2147 stack_space_to_deallocate);
2148
2149 /* We will add back small offsets to the stack pointer as we go.
2150 First, we restore all registers that are global, i.e. not saved by
2151 the register file machinery. */
2152
2153 for (regno = MMIX_FIRST_GLOBAL_REGNUM;
2154 regno <= 255;
2155 regno++)
2156 if (((regno != MMIX_FRAME_POINTER_REGNUM || !frame_pointer_needed)
2157 && df_regs_ever_live_p (regno) && !call_used_regs[regno])
2158 || IS_MMIX_EH_RETURN_DATA_REG (regno))
2159 {
2160 if (offset > 255)
2161 {
2162 mmix_emit_sp_add (offset);
2163 stack_space_to_deallocate -= offset;
2164 offset = 0;
2165 }
2166
2167 emit_move_insn (gen_rtx_REG (DImode, regno),
2168 gen_rtx_MEM (DImode,
2169 plus_constant (stack_pointer_rtx,
2170 offset)));
2171 offset += 8;
2172 }
2173
2174 /* Here is where the local variables were. As in the prologue, they
2175 might be of an unaligned size. */
2176 offset += (locals_size + 7) & ~7;
2177
2178 /* The saved register stack pointer is just below the frame-pointer
2179 register. We don't need to restore it "manually"; the POP
2180 instruction does that. */
2181 if (MMIX_CFUN_HAS_LANDING_PAD)
2182 offset += 16;
2183 else if (MMIX_CFUN_NEEDS_SAVED_EH_RETURN_ADDRESS)
2184 /* The return-address slot is just below the frame-pointer register.
2185 We don't need to restore it because we don't really use it. */
2186 offset += 8;
2187
2188 /* Get back the old frame-pointer-value. */
2189 if (frame_pointer_needed)
2190 {
2191 if (offset > 255)
2192 {
2193 mmix_emit_sp_add (offset);
2194
2195 stack_space_to_deallocate -= offset;
2196 offset = 0;
2197 }
2198
2199 emit_move_insn (hard_frame_pointer_rtx,
2200 gen_rtx_MEM (DImode,
2201 plus_constant (stack_pointer_rtx,
2202 offset)));
2203 offset += 8;
2204 }
2205
2206 /* We do not need to restore pretended incoming args, just add back
2207 offset to sp. */
2208 if (stack_space_to_deallocate != 0)
2209 mmix_emit_sp_add (stack_space_to_deallocate);
2210
2211 if (current_function_calls_eh_return)
2212 /* Adjust the (normal) stack-pointer to that of the receiver.
2213 FIXME: It would be nice if we could also adjust the register stack
2214 here, but we need to express it through DWARF 2 too. */
2215 emit_insn (gen_adddi3 (stack_pointer_rtx, stack_pointer_rtx,
2216 gen_rtx_REG (DImode,
2217 MMIX_EH_RETURN_STACKADJ_REGNUM)));
2218 }
2219
2220 /* Output an optimal sequence for setting a register to a specific
2221 constant. Used in an alternative for const_ints in movdi, and when
2222 using large stack-frame offsets.
2223
2224 Use do_begin_end to say if a line-starting TAB and newline before the
2225 first insn and after the last insn is wanted. */
2226
2227 void
2228 mmix_output_register_setting (FILE *stream,
2229 int regno,
2230 HOST_WIDEST_INT value,
2231 int do_begin_end)
2232 {
2233 if (do_begin_end)
2234 fprintf (stream, "\t");
2235
2236 if (mmix_shiftable_wyde_value ((unsigned HOST_WIDEST_INT) value))
2237 {
2238 /* First, the one-insn cases. */
2239 mmix_output_shiftvalue_op_from_str (stream, "SET",
2240 (unsigned HOST_WIDEST_INT)
2241 value);
2242 fprintf (stream, " %s,", reg_names[regno]);
2243 mmix_output_shifted_value (stream, (unsigned HOST_WIDEST_INT) value);
2244 }
2245 else if (mmix_shiftable_wyde_value (-(unsigned HOST_WIDEST_INT) value))
2246 {
2247 /* We do this to get a bit more legible assembly code. The next
2248 alternative is mostly redundant with this. */
2249
2250 mmix_output_shiftvalue_op_from_str (stream, "SET",
2251 -(unsigned HOST_WIDEST_INT)
2252 value);
2253 fprintf (stream, " %s,", reg_names[regno]);
2254 mmix_output_shifted_value (stream, -(unsigned HOST_WIDEST_INT) value);
2255 fprintf (stream, "\n\tNEGU %s,0,%s", reg_names[regno],
2256 reg_names[regno]);
2257 }
2258 else if (mmix_shiftable_wyde_value (~(unsigned HOST_WIDEST_INT) value))
2259 {
2260 /* Slightly more expensive, the two-insn cases. */
2261
2262 /* FIXME: We could of course also test if 0..255-N or ~(N | 1..255)
2263 is shiftable, or any other one-insn transformation of the value.
2264 FIXME: Check first if the value is "shiftable" by two loading
2265 with two insns, since it makes more readable assembly code (if
2266 anyone else cares). */
2267
2268 mmix_output_shiftvalue_op_from_str (stream, "SET",
2269 ~(unsigned HOST_WIDEST_INT)
2270 value);
2271 fprintf (stream, " %s,", reg_names[regno]);
2272 mmix_output_shifted_value (stream, ~(unsigned HOST_WIDEST_INT) value);
2273 fprintf (stream, "\n\tNOR %s,%s,0", reg_names[regno],
2274 reg_names[regno]);
2275 }
2276 else
2277 {
2278 /* The generic case. 2..4 insns. */
2279 static const char *const higher_parts[] = {"L", "ML", "MH", "H"};
2280 const char *op = "SET";
2281 const char *line_begin = "";
2282 int insns = 0;
2283 int i;
2284 HOST_WIDEST_INT tmpvalue = value;
2285
2286 /* Compute the number of insns needed to output this constant. */
2287 for (i = 0; i < 4 && tmpvalue != 0; i++)
2288 {
2289 if (tmpvalue & 65535)
2290 insns++;
2291 tmpvalue >>= 16;
2292 }
2293 if (TARGET_BASE_ADDRESSES && insns == 3)
2294 {
2295 /* The number three is based on a static observation on
2296 ghostscript-6.52. Two and four are excluded because there
2297 are too many such constants, and each unique constant (maybe
2298 offset by 1..255) were used few times compared to other uses,
2299 e.g. addresses.
2300
2301 We use base-plus-offset addressing to force it into a global
2302 register; we just use a "LDA reg,VALUE", which will cause the
2303 assembler and linker to DTRT (for constants as well as
2304 addresses). */
2305 fprintf (stream, "LDA %s,", reg_names[regno]);
2306 mmix_output_octa (stream, value, 0);
2307 }
2308 else
2309 {
2310 /* Output pertinent parts of the 4-wyde sequence.
2311 Still more to do if we want this to be optimal, but hey...
2312 Note that the zero case has been handled above. */
2313 for (i = 0; i < 4 && value != 0; i++)
2314 {
2315 if (value & 65535)
2316 {
2317 fprintf (stream, "%s%s%s %s,#%x", line_begin, op,
2318 higher_parts[i], reg_names[regno],
2319 (int) (value & 65535));
2320 /* The first one sets the rest of the bits to 0, the next
2321 ones add set bits. */
2322 op = "INC";
2323 line_begin = "\n\t";
2324 }
2325
2326 value >>= 16;
2327 }
2328 }
2329 }
2330
2331 if (do_begin_end)
2332 fprintf (stream, "\n");
2333 }
2334
2335 /* Return 1 if value is 0..65535*2**(16*N) for N=0..3.
2336 else return 0. */
2337
2338 int
2339 mmix_shiftable_wyde_value (unsigned HOST_WIDEST_INT value)
2340 {
2341 /* Shift by 16 bits per group, stop when we've found two groups with
2342 nonzero bits. */
2343 int i;
2344 int has_candidate = 0;
2345
2346 for (i = 0; i < 4; i++)
2347 {
2348 if (value & 65535)
2349 {
2350 if (has_candidate)
2351 return 0;
2352 else
2353 has_candidate = 1;
2354 }
2355
2356 value >>= 16;
2357 }
2358
2359 return 1;
2360 }
2361
2362 /* Returns zero if code and mode is not a valid condition from a
2363 compare-type insn. Nonzero if it is. The parameter op, if non-NULL,
2364 is the comparison of mode is CC-somethingmode. */
2365
2366 int
2367 mmix_valid_comparison (RTX_CODE code, enum machine_mode mode, rtx op)
2368 {
2369 if (mode == VOIDmode && op != NULL_RTX)
2370 mode = GET_MODE (op);
2371
2372 /* We don't care to look at these, they should always be valid. */
2373 if (mode == CCmode || mode == CC_UNSmode || mode == DImode)
2374 return 1;
2375
2376 if ((mode == CC_FPmode || mode == DFmode)
2377 && (code == GT || code == LT))
2378 return 1;
2379
2380 if ((mode == CC_FPEQmode || mode == DFmode)
2381 && (code == EQ || code == NE))
2382 return 1;
2383
2384 if ((mode == CC_FUNmode || mode == DFmode)
2385 && (code == ORDERED || code == UNORDERED))
2386 return 1;
2387
2388 return 0;
2389 }
2390
2391 /* X and Y are two things to compare using CODE. Emit a compare insn if
2392 possible and return the rtx for the cc-reg in the proper mode, or
2393 NULL_RTX if this is not a valid comparison. */
2394
2395 rtx
2396 mmix_gen_compare_reg (RTX_CODE code, rtx x, rtx y)
2397 {
2398 enum machine_mode ccmode = SELECT_CC_MODE (code, x, y);
2399 rtx cc_reg;
2400
2401 /* FIXME: Do we get constants here? Of double mode? */
2402 enum machine_mode mode
2403 = GET_MODE (x) == VOIDmode
2404 ? GET_MODE (y)
2405 : GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT ? DFmode : DImode;
2406
2407 if (! mmix_valid_comparison (code, mode, x))
2408 return NULL_RTX;
2409
2410 cc_reg = gen_reg_rtx (ccmode);
2411
2412 /* FIXME: Can we avoid emitting a compare insn here? */
2413 if (! REG_P (x) && ! REG_P (y))
2414 x = force_reg (mode, x);
2415
2416 /* If it's not quite right yet, put y in a register. */
2417 if (! REG_P (y)
2418 && (GET_CODE (y) != CONST_INT
2419 || ! CONST_OK_FOR_LETTER_P (INTVAL (y), 'I')))
2420 y = force_reg (mode, y);
2421
2422 emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
2423 gen_rtx_COMPARE (ccmode, x, y)));
2424
2425 return cc_reg;
2426 }
2427
2428 /* Local (static) helper functions. */
2429
2430 static void
2431 mmix_emit_sp_add (HOST_WIDE_INT offset)
2432 {
2433 rtx insn;
2434
2435 if (offset < 0)
2436 {
2437 /* Negative stack-pointer adjustments are allocations and appear in
2438 the prologue only. We mark them as frame-related so unwind and
2439 debug info is properly emitted for them. */
2440 if (offset > -255)
2441 insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
2442 stack_pointer_rtx,
2443 GEN_INT (offset)));
2444 else
2445 {
2446 rtx tmpr = gen_rtx_REG (DImode, 255);
2447 RTX_FRAME_RELATED_P (emit_move_insn (tmpr, GEN_INT (offset))) = 1;
2448 insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
2449 stack_pointer_rtx, tmpr));
2450 }
2451 RTX_FRAME_RELATED_P (insn) = 1;
2452 }
2453 else
2454 {
2455 /* Positive adjustments are in the epilogue only. Don't mark them
2456 as "frame-related" for unwind info. */
2457 if (CONST_OK_FOR_LETTER_P (offset, 'L'))
2458 emit_insn (gen_adddi3 (stack_pointer_rtx,
2459 stack_pointer_rtx,
2460 GEN_INT (offset)));
2461 else
2462 {
2463 rtx tmpr = gen_rtx_REG (DImode, 255);
2464 emit_move_insn (tmpr, GEN_INT (offset));
2465 insn = emit_insn (gen_adddi3 (stack_pointer_rtx,
2466 stack_pointer_rtx, tmpr));
2467 }
2468 }
2469 }
2470
2471 /* Print operator suitable for doing something with a shiftable
2472 wyde. The type of operator is passed as an asm output modifier. */
2473
2474 static void
2475 mmix_output_shiftvalue_op_from_str (FILE *stream,
2476 const char *mainop,
2477 HOST_WIDEST_INT value)
2478 {
2479 static const char *const op_part[] = {"L", "ML", "MH", "H"};
2480 int i;
2481
2482 if (! mmix_shiftable_wyde_value (value))
2483 {
2484 char s[sizeof ("0xffffffffffffffff")];
2485 sprintf (s, HOST_WIDEST_INT_PRINT_HEX, value);
2486 internal_error ("MMIX Internal: %s is not a shiftable int", s);
2487 }
2488
2489 for (i = 0; i < 4; i++)
2490 {
2491 /* We know we're through when we find one-bits in the low
2492 16 bits. */
2493 if (value & 0xffff)
2494 {
2495 fprintf (stream, "%s%s", mainop, op_part[i]);
2496 return;
2497 }
2498 value >>= 16;
2499 }
2500
2501 /* No bits set? Then it must have been zero. */
2502 fprintf (stream, "%sL", mainop);
2503 }
2504
2505 /* Print a 64-bit value, optionally prefixed by assembly pseudo. */
2506
2507 static void
2508 mmix_output_octa (FILE *stream, HOST_WIDEST_INT value, int do_begin_end)
2509 {
2510 /* Snipped from final.c:output_addr_const. We need to avoid the
2511 presumed universal "0x" prefix. We can do it by replacing "0x" with
2512 "#0" here; we must avoid a space in the operands and no, the zero
2513 won't cause the number to be assumed in octal format. */
2514 char hex_format[sizeof (HOST_WIDEST_INT_PRINT_HEX)];
2515
2516 if (do_begin_end)
2517 fprintf (stream, "\tOCTA ");
2518
2519 strcpy (hex_format, HOST_WIDEST_INT_PRINT_HEX);
2520 hex_format[0] = '#';
2521 hex_format[1] = '0';
2522
2523 /* Provide a few alternative output formats depending on the number, to
2524 improve legibility of assembler output. */
2525 if ((value < (HOST_WIDEST_INT) 0 && value > (HOST_WIDEST_INT) -10000)
2526 || (value >= (HOST_WIDEST_INT) 0 && value <= (HOST_WIDEST_INT) 16384))
2527 fprintf (stream, "%d", (int) value);
2528 else if (value > (HOST_WIDEST_INT) 0
2529 && value < ((HOST_WIDEST_INT) 1 << 31) * 2)
2530 fprintf (stream, "#%x", (unsigned int) value);
2531 else
2532 fprintf (stream, hex_format, value);
2533
2534 if (do_begin_end)
2535 fprintf (stream, "\n");
2536 }
2537
2538 /* Print the presumed shiftable wyde argument shifted into place (to
2539 be output with an operand). */
2540
2541 static void
2542 mmix_output_shifted_value (FILE *stream, HOST_WIDEST_INT value)
2543 {
2544 int i;
2545
2546 if (! mmix_shiftable_wyde_value (value))
2547 {
2548 char s[16+2+1];
2549 sprintf (s, HOST_WIDEST_INT_PRINT_HEX, value);
2550 internal_error ("MMIX Internal: %s is not a shiftable int", s);
2551 }
2552
2553 for (i = 0; i < 4; i++)
2554 {
2555 /* We know we're through when we find one-bits in the low 16 bits. */
2556 if (value & 0xffff)
2557 {
2558 fprintf (stream, "#%x", (int) (value & 0xffff));
2559 return;
2560 }
2561
2562 value >>= 16;
2563 }
2564
2565 /* No bits set? Then it must have been zero. */
2566 fprintf (stream, "0");
2567 }
2568
2569 /* Output an MMIX condition name corresponding to an operator
2570 and operands:
2571 (comparison_operator [(comparison_operator ...) (const_int 0)])
2572 which means we have to look at *two* operators.
2573
2574 The argument "reversed" refers to reversal of the condition (not the
2575 same as swapping the arguments). */
2576
2577 static void
2578 mmix_output_condition (FILE *stream, rtx x, int reversed)
2579 {
2580 struct cc_conv
2581 {
2582 RTX_CODE cc;
2583
2584 /* The normal output cc-code. */
2585 const char *const normal;
2586
2587 /* The reversed cc-code, or NULL if invalid. */
2588 const char *const reversed;
2589 };
2590
2591 struct cc_type_conv
2592 {
2593 enum machine_mode cc_mode;
2594
2595 /* Terminated with {UNKNOWN, NULL, NULL} */
2596 const struct cc_conv *const convs;
2597 };
2598
2599 #undef CCEND
2600 #define CCEND {UNKNOWN, NULL, NULL}
2601
2602 static const struct cc_conv cc_fun_convs[]
2603 = {{ORDERED, "Z", "P"},
2604 {UNORDERED, "P", "Z"},
2605 CCEND};
2606 static const struct cc_conv cc_fp_convs[]
2607 = {{GT, "P", NULL},
2608 {LT, "N", NULL},
2609 CCEND};
2610 static const struct cc_conv cc_fpeq_convs[]
2611 = {{NE, "Z", "P"},
2612 {EQ, "P", "Z"},
2613 CCEND};
2614 static const struct cc_conv cc_uns_convs[]
2615 = {{GEU, "NN", "N"},
2616 {GTU, "P", "NP"},
2617 {LEU, "NP", "P"},
2618 {LTU, "N", "NN"},
2619 CCEND};
2620 static const struct cc_conv cc_signed_convs[]
2621 = {{NE, "NZ", "Z"},
2622 {EQ, "Z", "NZ"},
2623 {GE, "NN", "N"},
2624 {GT, "P", "NP"},
2625 {LE, "NP", "P"},
2626 {LT, "N", "NN"},
2627 CCEND};
2628 static const struct cc_conv cc_di_convs[]
2629 = {{NE, "NZ", "Z"},
2630 {EQ, "Z", "NZ"},
2631 {GE, "NN", "N"},
2632 {GT, "P", "NP"},
2633 {LE, "NP", "P"},
2634 {LT, "N", "NN"},
2635 {GTU, "NZ", "Z"},
2636 {LEU, "Z", "NZ"},
2637 CCEND};
2638 #undef CCEND
2639
2640 static const struct cc_type_conv cc_convs[]
2641 = {{CC_FUNmode, cc_fun_convs},
2642 {CC_FPmode, cc_fp_convs},
2643 {CC_FPEQmode, cc_fpeq_convs},
2644 {CC_UNSmode, cc_uns_convs},
2645 {CCmode, cc_signed_convs},
2646 {DImode, cc_di_convs}};
2647
2648 size_t i;
2649 int j;
2650
2651 enum machine_mode mode = GET_MODE (XEXP (x, 0));
2652 RTX_CODE cc = GET_CODE (x);
2653
2654 for (i = 0; i < ARRAY_SIZE (cc_convs); i++)
2655 {
2656 if (mode == cc_convs[i].cc_mode)
2657 {
2658 for (j = 0; cc_convs[i].convs[j].cc != UNKNOWN; j++)
2659 if (cc == cc_convs[i].convs[j].cc)
2660 {
2661 const char *mmix_cc
2662 = (reversed ? cc_convs[i].convs[j].reversed
2663 : cc_convs[i].convs[j].normal);
2664
2665 if (mmix_cc == NULL)
2666 fatal_insn ("MMIX Internal: Trying to output invalidly\
2667 reversed condition:", x);
2668
2669 fprintf (stream, "%s", mmix_cc);
2670 return;
2671 }
2672
2673 fatal_insn ("MMIX Internal: What's the CC of this?", x);
2674 }
2675 }
2676
2677 fatal_insn ("MMIX Internal: What is the CC of this?", x);
2678 }
2679
2680 /* Return the bit-value for a const_int or const_double. */
2681
2682 static HOST_WIDEST_INT
2683 mmix_intval (rtx x)
2684 {
2685 unsigned HOST_WIDEST_INT retval;
2686
2687 if (GET_CODE (x) == CONST_INT)
2688 return INTVAL (x);
2689
2690 /* We make a little song and dance because converting to long long in
2691 gcc-2.7.2 is broken. I still want people to be able to use it for
2692 cross-compilation to MMIX. */
2693 if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == VOIDmode)
2694 {
2695 if (sizeof (HOST_WIDE_INT) < sizeof (HOST_WIDEST_INT))
2696 {
2697 retval = (unsigned) CONST_DOUBLE_LOW (x) / 2;
2698 retval *= 2;
2699 retval |= CONST_DOUBLE_LOW (x) & 1;
2700
2701 retval |=
2702 (unsigned HOST_WIDEST_INT) CONST_DOUBLE_HIGH (x)
2703 << (HOST_BITS_PER_LONG);
2704 }
2705 else
2706 retval = CONST_DOUBLE_HIGH (x);
2707
2708 return retval;
2709 }
2710
2711 if (GET_CODE (x) == CONST_DOUBLE)
2712 {
2713 REAL_VALUE_TYPE value;
2714
2715 /* FIXME: This macro is not in the manual but should be. */
2716 REAL_VALUE_FROM_CONST_DOUBLE (value, x);
2717
2718 if (GET_MODE (x) == DFmode)
2719 {
2720 long bits[2];
2721
2722 REAL_VALUE_TO_TARGET_DOUBLE (value, bits);
2723
2724 /* The double cast is necessary to avoid getting the long
2725 sign-extended to unsigned long long(!) when they're of
2726 different size (usually 32-bit hosts). */
2727 return
2728 ((unsigned HOST_WIDEST_INT) (unsigned long) bits[0]
2729 << (unsigned HOST_WIDEST_INT) 32U)
2730 | (unsigned HOST_WIDEST_INT) (unsigned long) bits[1];
2731 }
2732 else if (GET_MODE (x) == SFmode)
2733 {
2734 long bits;
2735 REAL_VALUE_TO_TARGET_SINGLE (value, bits);
2736
2737 return (unsigned long) bits;
2738 }
2739 }
2740
2741 fatal_insn ("MMIX Internal: This is not a constant:", x);
2742 }
2743
2744 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
2745
2746 static rtx
2747 mmix_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
2748 int incoming ATTRIBUTE_UNUSED)
2749 {
2750 return gen_rtx_REG (Pmode, MMIX_STRUCT_VALUE_REGNUM);
2751 }
2752
2753 /*
2754 * Local variables:
2755 * eval: (c-set-style "gnu")
2756 * indent-tabs-mode: t
2757 * End:
2758 */