]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10200/mn10200.h
Merge from pch-branch up to tag pch-commit-20020603.
[thirdparty/gcc.git] / gcc / config / mn10200 / mn10200.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10200 series
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24
25 /* Get rid of svr4.h stuff we don't want/need. */
26 #undef ASM_SPEC
27 #undef ASM_FINAL_SPEC
28 #undef LIB_SPEC
29 #undef ENDFILE_SPEC
30 #undef LINK_SPEC
31 #undef STARTFILE_SPEC
32
33 /* Names to predefine in the preprocessor for this target machine. */
34
35 #define CPP_PREDEFINES "-D__mn10200__ -D__MN10200__ -D__LONG_MAX__=2147483647L -D__LONG_LONG_MAX__=2147483647L -D__INT_MAX__=32767"
36
37 /* Run-time compilation parameters selecting different hardware subsets. */
38
39 /* We don't have any switched on the mn10200. Though there are some things
40 that might be worth a switch:
41
42 -mspace to optimize even more for space.
43
44 -mrelax to enable the relaxing linker. */
45
46 extern int target_flags;
47
48 /* Macros used in the machine description to test the flags. */
49
50 /* Macro to define tables used to set the flags.
51 This is a list in braces of pairs in braces,
52 each pair being { "NAME", VALUE }
53 where VALUE is the bits to set or minus the bits to clear.
54 An empty string NAME is used to identify the default VALUE. */
55
56 #define TARGET_SWITCHES \
57 {{ "", TARGET_DEFAULT, 0}}
58
59 #ifndef TARGET_DEFAULT
60 #define TARGET_DEFAULT 0
61 #endif
62
63 /* Print subsidiary information on the compiler version in use. */
64
65 #define TARGET_VERSION fprintf (stderr, " (MN10200)");
66
67 \f
68 /* Target machine storage layout */
69
70 /* Define this if most significant bit is lowest numbered
71 in instructions that operate on numbered bit-fields.
72 This is not true on the Matsushita MN10300. */
73 #define BITS_BIG_ENDIAN 0
74
75 /* Define this if most significant byte of a word is the lowest numbered. */
76 /* This is not true on the Matsushita MN10200. */
77 #define BYTES_BIG_ENDIAN 0
78
79 /* Define this if most significant word of a multiword number is lowest
80 numbered.
81 This is not true on the Matsushita MN10200. */
82 #define WORDS_BIG_ENDIAN 0
83
84 /* This is a white lie. Registers are really 24bits, but most operations
85 only operate on 16 bits. GCC chokes badly if we set this to a value
86 that is not a power of two. */
87 /* Width of a word, in units (bytes). */
88 #define UNITS_PER_WORD 2
89
90 /* Width in bits of a pointer.
91 See also the macro `Pmode' defined below.
92
93 This differs from Pmode because we need to allocate 32bits of space
94 to hold the 24bit pointers on this machine. */
95 #define POINTER_SIZE 32
96
97 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
98 #define PARM_BOUNDARY 16
99
100 /* The stack goes in 16 bit lumps. */
101 #define STACK_BOUNDARY 16
102
103 /* Allocation boundary (in *bits*) for the code of a function.
104 8 is the minimum boundary; it's unclear if bigger alignments
105 would improve performance. */
106 #define FUNCTION_BOUNDARY 8
107
108 /* No data type wants to be aligned rounder than this. */
109 #define BIGGEST_ALIGNMENT 16
110
111 /* Alignment of field after `int : 0' in a structure. */
112 #define EMPTY_FIELD_BOUNDARY 16
113
114 /* Seems to be how the Matsushita compiler does things, and there's
115 no real reason to be different. */
116 #define STRUCTURE_SIZE_BOUNDARY 16
117 #undef PCC_BITFIELD_TYPE_MATTERS
118
119 /* Define this if move instructions will actually fail to work
120 when given unaligned data. */
121 #define STRICT_ALIGNMENT 1
122
123 /* Define this as 1 if `char' should by default be signed; else as 0. */
124 #define DEFAULT_SIGNED_CHAR 0
125 \f
126 /* Standard register usage. */
127
128 /* Number of actual hardware registers.
129 The hardware registers are assigned numbers for the compiler
130 from 0 to just below FIRST_PSEUDO_REGISTER.
131
132 All registers that the compiler knows about must be given numbers,
133 even those that are not normally considered general registers.
134
135 XXX Long term we should probably expose the MDR register, we use
136 it for division, multiplication, and some extension operations. */
137
138 #define FIRST_PSEUDO_REGISTER 8
139
140 /* 1 for registers that have pervasive standard uses
141 and are not available for the register allocator. */
142
143 #define FIXED_REGISTERS \
144 { 0, 0, 0, 0, 0, 0, 0, 1}
145
146 /* 1 for registers not available across function calls.
147 These must include the FIXED_REGISTERS and also any
148 registers that can be used without being saved.
149 The latter must include the registers where values are returned
150 and the register where structure-value addresses are passed.
151 Aside from that, you can include as many other registers as you
152 like. */
153
154 #define CALL_USED_REGISTERS \
155 { 1, 1, 0, 0, 1, 0, 0, 1}
156
157 #define REG_ALLOC_ORDER \
158 { 0, 1, 4, 2, 3, 5, 6, 7}
159
160 /* Return number of consecutive hard regs needed starting at reg REGNO
161 to hold something of mode MODE.
162
163 This is ordinarily the length in words of a value of mode MODE
164 but can be less for certain modes in special long registers. */
165
166 #define HARD_REGNO_NREGS(REGNO, MODE) \
167 ((MODE) == PSImode ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
168 / UNITS_PER_WORD))
169
170 /* Value is 1 if hard register REGNO can hold a value of machine-mode
171 MODE.
172
173 We allow any register to hold a PSImode value. We allow any register
174 to hold values <= 16 bits. For values > 16 bits we require aligned
175 register pairs. */
176 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
177 ((MODE) == PSImode ? 1 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 2)
178
179 /* Value is 1 if it is a good idea to tie two pseudo registers
180 when one has mode MODE1 and one has mode MODE2.
181 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
182 for any hard reg, then this must be 0 for correct output. */
183 #define MODES_TIEABLE_P(MODE1, MODE2) \
184 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 2 && GET_MODE_SIZE (MODE2) <= 2))
185
186 /* 4 data, and effectively 2 address registers is small as far as I'm
187 concerned. Especially since we use 2 data registers for argument
188 passing and return values.
189
190 We used to define CLASS_LIKELY_SPILLED_P as true for DATA_REGS too,
191 but we've made improvements to the port which greatly reduce register
192 pressure. As a result we no longer need to define CLASS_LIKELY_SPILLED_P
193 for DATA_REGS (and by not defining it we get significantly better code). */
194 #define SMALL_REGISTER_CLASSES 1
195 #define CLASS_LIKELY_SPILLED_P(CLASS) (CLASS == ADDRESS_REGS)
196 \f
197 /* Define the classes of registers for register constraints in the
198 machine description. Also define ranges of constants.
199
200 One of the classes must always be named ALL_REGS and include all hard regs.
201 If there is more than one class, another class must be named NO_REGS
202 and contain no registers.
203
204 The name GENERAL_REGS must be the name of a class (or an alias for
205 another name such as ALL_REGS). This is the class of registers
206 that is allowed by "g" or "r" in a register constraint.
207 Also, registers outside this class are allocated only when
208 instructions express preferences for them.
209
210 The classes must be numbered in nondecreasing order; that is,
211 a larger-numbered class must never be contained completely
212 in a smaller-numbered class.
213
214 For any two classes, it is very desirable that there be another
215 class that represents their union. */
216
217 enum reg_class {
218 NO_REGS, DATA_REGS, ADDRESS_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
219 };
220
221 #define N_REG_CLASSES (int) LIM_REG_CLASSES
222
223 /* Give names of register classes as strings for dump file. */
224
225 #define REG_CLASS_NAMES \
226 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
227 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
228
229 /* Define which registers fit in which classes.
230 This is an initializer for a vector of HARD_REG_SET
231 of length N_REG_CLASSES. */
232
233 #define REG_CLASS_CONTENTS \
234 { {0}, /* No regs */ \
235 {0x0f}, /* DATA_REGS */ \
236 {0xf0}, /* ADDRESS_REGS */ \
237 {0xff}, /* GENERAL_REGS */ \
238 {0xff}, /* ALL_REGS */ \
239 }
240
241 /* The same information, inverted:
242 Return the class number of the smallest class containing
243 reg number REGNO. This could be a conditional expression
244 or could index an array. */
245
246 #define REGNO_REG_CLASS(REGNO) \
247 ((REGNO) < 4 ? DATA_REGS : ADDRESS_REGS)
248
249 /* The class value for index registers, and the one for base regs. */
250
251 #define INDEX_REG_CLASS DATA_REGS
252 #define BASE_REG_CLASS ADDRESS_REGS
253
254 /* Get reg_class from a letter such as appears in the machine description. */
255
256 #define REG_CLASS_FROM_LETTER(C) \
257 ((C) == 'd' ? DATA_REGS : \
258 (C) == 'a' ? ADDRESS_REGS : NO_REGS)
259
260 /* Macros to check register numbers against specific register classes. */
261
262 /* These assume that REGNO is a hard or pseudo reg number.
263 They give nonzero only if REGNO is a hard reg of the suitable class
264 or a pseudo reg currently allocated to a suitable hard reg.
265 Since they use reg_renumber, they are safe only once reg_renumber
266 has been allocated, which happens in local-alloc.c. */
267
268 #define REGNO_OK_FOR_BASE_P(regno) \
269 (((regno) > 3 && regno < FIRST_PSEUDO_REGISTER) \
270 || (reg_renumber[regno] > 3 && reg_renumber[regno] < FIRST_PSEUDO_REGISTER))
271
272 #define REGNO_OK_FOR_INDEX_P(regno) \
273 (IN_RANGE ((regno), 0, 3) \
274 || (reg_renumber[regno] >= 0 && reg_renumber[regno] < 4))
275
276
277 /* Given an rtx X being reloaded into a reg required to be
278 in class CLASS, return the class of reg to actually use.
279 In general this is just CLASS; but on some machines
280 in some cases it is preferable to use a more restrictive class. */
281
282 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
283 ((GET_MODE (X) != PSImode && GET_MODE (X) != VOIDmode) ? DATA_REGS : CLASS)
284
285 /* We want to use DATA_REGS for anything that is not PSImode. */
286 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
287 ((MODE != PSImode && MODE != VOIDmode) ? DATA_REGS : CLASS)
288
289 /* We have/need secondary reloads on the mn10200. Mostly to deal
290 with problems using address registers. */
291 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,IN) \
292 secondary_reload_class(CLASS,MODE,IN, 1)
293
294 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,IN) \
295 secondary_reload_class(CLASS,MODE,IN, 0)
296
297 /* Return the maximum number of consecutive registers
298 needed to represent mode MODE in a register of class CLASS. */
299
300 #define CLASS_MAX_NREGS(CLASS, MODE) \
301 ((MODE) == PSImode ? 1 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
302
303 /* The letters I, J, K, L, M, N, O, P in a register constraint string
304 can be used to stand for particular ranges of immediate operands.
305 This macro defines what the ranges are.
306 C is the letter, and VALUE is a constant value.
307 Return 1 if VALUE is in the range specified by C. */
308
309 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
310 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
311
312 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
313 #define CONST_OK_FOR_J(VALUE) ((VALUE) >= 1 && (VALUE) <= 3)
314 #define CONST_OK_FOR_K(VALUE) ((VALUE) >= 1 && (VALUE) <= 4)
315 #define CONST_OK_FOR_L(VALUE) ((VALUE) == 15)
316 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 255)
317
318 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
319 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
320 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
321 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
322 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
323 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : 0)
324
325 /* Similar, but for floating constants, and defining letters G and H.
326 Here VALUE is the CONST_DOUBLE rtx itself.
327
328 `G' is a floating-point zero. */
329
330 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
331 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
332 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
333 : 0)
334
335
336 \f
337 /* Stack layout; function entry, exit and calling. */
338
339 /* Define this if pushing a word on the stack
340 makes the stack pointer a smaller address. */
341
342 #define STACK_GROWS_DOWNWARD
343
344 /* Define this if the nominal address of the stack frame
345 is at the high-address end of the local variables;
346 that is, each additional local variable allocated
347 goes at a more negative offset in the frame. */
348
349 #define FRAME_GROWS_DOWNWARD
350
351 /* Offset within stack frame to start allocating local variables at.
352 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
353 first local allocated. Otherwise, it is the offset to the BEGINNING
354 of the first local allocated. */
355
356 #define STARTING_FRAME_OFFSET 0
357
358 /* Offset of first parameter from the argument pointer register value. */
359 /* Is equal to the size of the saved fp + pc, even if an fp isn't
360 saved since the value is used before we know. */
361
362 #define FIRST_PARM_OFFSET(FNDECL) (current_function_needs_context ? 8 : 4)
363
364 /* Specify the registers used for certain standard purposes.
365 The values of these macros are register numbers. */
366
367 /* Register to use for pushing function arguments. */
368 #define STACK_POINTER_REGNUM 7
369
370 /* Base register for access to local variables of the function. */
371 #define FRAME_POINTER_REGNUM 6
372
373 /* Base register for access to arguments of the function. */
374 #define ARG_POINTER_REGNUM 6
375
376 /* Register in which static-chain is passed to a function. */
377 #define STATIC_CHAIN_REGNUM 4
378
379 /* Value should be nonzero if functions must have frame pointers.
380 Zero means the frame pointer need not be set up (and parms
381 may be accessed via the stack pointer) in functions that seem suitable.
382 This is computed in `reload', in reload1.c.
383
384 We allow frame pointers to be eliminated when not having one will
385 not interfere with debugging. */
386 #define ACCUMULATE_OUTGOING_ARGS 1
387 #define FRAME_POINTER_REQUIRED 0
388 #define CAN_DEBUG_WITHOUT_FP
389
390 /* Store in the variable DEPTH the initial difference between the
391 frame pointer reg contents and the stack pointer reg contents,
392 as of the start of the function body. This depends on the layout
393 of the fixed parts of the stack frame and on how registers are saved. */
394
395 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = total_frame_size()
396
397 /* Various type size information.
398
399 The mn10200 has a limited number of small registers. Sizes of basic
400 data types are adjusted accordingly. */
401 #define SHORT_TYPE_SIZE 16
402 #define INT_TYPE_SIZE 16
403 #define LONG_TYPE_SIZE 32
404 #define LONG_LONG_TYPE_SIZE 32
405 #define FLOAT_TYPE_SIZE 32
406 #define DOUBLE_TYPE_SIZE 32
407 #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
408
409 /* Any size less than 64bits will work; but a smarter definition
410 can make G++ code smaller and faster. Most operations on the
411 mn10200 occur on 16bit hunks, so the best size for a boolean
412 is 16bits. */
413 #define BOOL_TYPE_SIZE 16
414
415 /* The difference of two pointers must be at least 24bits since pointers
416 are 24bits; however, no basic data type is 24bits, so we have to round
417 up to a 32bits for the difference of pointers. */
418 #undef SIZE_TYPE
419 #undef PTRDIFF_TYPE
420 #define SIZE_TYPE "long unsigned int"
421 #define PTRDIFF_TYPE "long int"
422
423 /* Note sizeof (WCHAR_TYPE) must be equal to the value of WCHAR_TYPE_SIZE! */
424 #undef WCHAR_TYPE
425 #define WCHAR_TYPE "int"
426
427 #undef WCHAR_TYPE_SIZE
428 #define WCHAR_TYPE_SIZE BITS_PER_WORD
429
430 #define MAX_FIXED_MODE_SIZE 32
431
432 /* A guess for the MN10200. */
433 #define PROMOTE_PROTOTYPES 1
434
435 /* Value is the number of bytes of arguments automatically
436 popped when returning from a subroutine call.
437 FUNDECL is the declaration node of the function (as a tree),
438 FUNTYPE is the data type of the function (as a tree),
439 or for a library call it is an identifier node for the subroutine name.
440 SIZE is the number of bytes of arguments passed on the stack. */
441
442 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
443
444 /* 1 if N is a possible register number for function argument passing. */
445
446 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
447 \f
448 /* Define a data type for recording info about an argument list
449 during the scan of that argument list. This data type should
450 hold all necessary information about the function itself
451 and about the args processed so far, enough to enable macros
452 such as FUNCTION_ARG to determine where the next arg should go. */
453
454 #define CUMULATIVE_ARGS struct cum_arg
455 struct cum_arg { int nbytes; };
456
457 /* Initialize a variable CUM of type CUMULATIVE_ARGS
458 for a call to a function whose data type is FNTYPE.
459 For a library call, FNTYPE is 0.
460
461 On the MN10200, the offset starts at 0. */
462
463 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
464 ((CUM).nbytes = 0)
465
466 /* Update the data in CUM to advance over an argument
467 of mode MODE and data type TYPE.
468 (TYPE is null for libcalls where that information may not be available.) */
469
470 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
471 ((CUM).nbytes += ((MODE) != BLKmode \
472 ? (MODE) == PSImode ? 2 : \
473 (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
474 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
475
476 /* Define where to put the arguments to a function.
477 Value is zero to push the argument on the stack,
478 or a hard register in which to store the argument.
479
480 MODE is the argument's machine mode.
481 TYPE is the data type of the argument (as a tree).
482 This is null for libcalls where that information may
483 not be available.
484 CUM is a variable of type CUMULATIVE_ARGS which gives info about
485 the preceding args and about the function being called.
486 NAMED is nonzero if this argument is a named parameter
487 (otherwise it is an extra parameter matching an ellipsis). */
488
489 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
490 function_arg (&CUM, MODE, TYPE, NAMED)
491
492 /* Implement `va_arg'. */
493 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
494 mn10200_va_arg (valist, type)
495 \f
496 /* For "large" items, we pass them by invisible reference, and the
497 callee is responsible for copying the data item if it might be
498 modified. */
499 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
500 ((TYPE) && int_size_in_bytes (TYPE) > 8)
501
502 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
503 ((TYPE) && int_size_in_bytes (TYPE) > 8)
504
505 /* Define how to find the value returned by a function.
506 VALTYPE is the data type of the value (as a tree).
507 If the precise function being called is known, FUNC is its FUNCTION_DECL;
508 otherwise, FUNC is 0. */
509
510 #define FUNCTION_VALUE(VALTYPE, FUNC) \
511 gen_rtx_REG (TYPE_MODE (VALTYPE), TYPE_MODE (VALTYPE) == PSImode ? 4 : 0)
512
513 /* Define how to find the value returned by a library function
514 assuming the value has mode MODE. */
515
516 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, (MODE) == PSImode ? 4 : 0)
517
518 /* 1 if N is a possible register number for a function value. */
519
520 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 4)
521
522 /* Return values > 8 bytes in length in memory. */
523 #define DEFAULT_PCC_STRUCT_RETURN 0
524 #define RETURN_IN_MEMORY(TYPE) \
525 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
526
527 /* Register in which address to store a structure value
528 is passed to a function. On the MN10200 it's passed as
529 the first parameter. */
530
531 #define STRUCT_VALUE 0
532
533 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
534 the stack pointer does not matter. The value is tested only in
535 functions that have frame pointers.
536 No definition is equivalent to always zero. */
537
538 #define EXIT_IGNORE_STACK 1
539
540 /* Output assembler code to FILE to increment profiler label # LABELNO
541 for profiling a function entry.
542
543 ?!? Profiling is not currently supported. */
544
545 #define FUNCTION_PROFILER(FILE, LABELNO) ;
546
547 /* Yes, we actually support trampolines on this machine, even though
548 nobody is likely to ever use them. */
549 #define TRAMPOLINE_TEMPLATE(FILE) \
550 do { \
551 fprintf (FILE, "\t.byte 0xfd\n"); \
552 fprintf (FILE, "\t.byte 0x00\n"); \
553 fprintf (FILE, "\t.byte 0x00\n"); \
554 fprintf (FILE, "\tmov (a3),a0\n"); \
555 fprintf (FILE, "\tadd -4,a3\n"); \
556 fprintf (FILE, "\tmov a0,(0,a3)\n"); \
557 fprintf (FILE, "\tmov (21,a0),a0\n"); \
558 fprintf (FILE, "\tmov a0,(4,a3)\n"); \
559 fprintf (FILE, "\tmov (0,a3),a0\n"); \
560 fprintf (FILE, "\tmov (17,a0),a0\n"); \
561 fprintf (FILE, "\tadd 4,a3\n"); \
562 fprintf (FILE, "\trts\n"); \
563 fprintf (FILE, "\t.long 0\n"); \
564 fprintf (FILE, "\t.long 0\n"); \
565 } while (0)
566
567 /* Length in units of the trampoline for entering a nested function. */
568
569 #define TRAMPOLINE_SIZE 0x1c
570
571 /* Emit RTL insns to initialize the variable parts of a trampoline.
572 FNADDR is an RTX for the address of the function's pure code.
573 CXT is an RTX for the static chain value for the function. */
574
575 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
576 { \
577 emit_move_insn (gen_rtx_MEM (PSImode, plus_constant ((TRAMP), 20)), \
578 (CXT)); \
579 emit_move_insn (gen_rtx_MEM (PSImode, plus_constant ((TRAMP), 24)), \
580 (FNADDR)); \
581 }
582
583 /* A C expression whose value is RTL representing the value of the return
584 address for the frame COUNT steps up from the current frame. */
585
586 #define RETURN_ADDR_RTX(COUNT, FRAME) \
587 ((COUNT == 0) \
588 ? gen_rtx_MEM (Pmode, frame_pointer_rtx) \
589 : (rtx) 0)
590
591
592 /* Addressing modes, and classification of registers for them. */
593
594 \f
595 /* 1 if X is an rtx for a constant that is a valid address. */
596
597 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
598
599 /* Extra constraints. */
600 #define OK_FOR_R(OP) \
601 (GET_CODE (OP) == MEM \
602 && GET_MODE (OP) == QImode \
603 && REG_P (XEXP (OP, 0)))
604
605 /* Q is used for sp + <something> in the {zero,sign}_extendpsisi2 patterns. */
606 #define EXTRA_CONSTRAINT(OP, C) \
607 ((C) == 'R' ? OK_FOR_R (OP) : \
608 (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF : \
609 (C) == 'Q' ? GET_CODE (OP) == PLUS : 0)
610
611 /* Maximum number of registers that can appear in a valid memory address. */
612
613 #define MAX_REGS_PER_ADDRESS 2
614
615 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
616 and check its validity for a certain class.
617 We have two alternate definitions for each of them.
618 The usual definition accepts all pseudo regs; the other rejects
619 them unless they have been allocated suitable hard regs.
620 The symbol REG_OK_STRICT causes the latter definition to be used.
621
622 Most source files want to accept pseudo regs in the hope that
623 they will get allocated to the class that the insn wants them to be in.
624 Source files for reload pass need to be strict.
625 After reload, it makes no difference, since pseudo regs have
626 been eliminated by then. */
627
628 #ifndef REG_OK_STRICT
629 /* Nonzero if X is a hard reg that can be used as an index
630 or if it is a pseudo reg. */
631 #define REG_OK_FOR_INDEX_P(X) \
632 (IN_RANGE (REGNO (X), 0, 3) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
633 /* Nonzero if X is a hard reg that can be used as a base reg
634 or if it is a pseudo reg. */
635 #define REG_OK_FOR_BASE_P(X) \
636 (((REGNO (X) >= 4 && REGNO(X) <= 8) || REGNO (X) >= FIRST_PSEUDO_REGISTER))
637 #else
638 /* Nonzero if X is a hard reg that can be used as an index. */
639 #define REG_OK_FOR_INDEX_P(X) \
640 REGNO_OK_FOR_INDEX_P (REGNO (X))
641 /* Nonzero if X is a hard reg that can be used as a base reg. */
642 #define REG_OK_FOR_BASE_P(X) \
643 REGNO_OK_FOR_BASE_P (REGNO (X))
644 #endif
645
646 \f
647 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
648 that is a valid memory address for an instruction.
649 The MODE argument is the machine mode for the MEM expression
650 that wants to use this address.
651
652 We used to allow reg+reg addresses for QImode and HImode; however,
653 they tended to cause the register allocator to run out of registers.
654 Basically, an indexed load/store always keeps 2 data and one address
655 register live, which is just too many for this machine.
656
657 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
658 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
659
660 /* Accept either REG or SUBREG where a register is valid. */
661
662 #define RTX_OK_FOR_BASE_P(X) \
663 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
664 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
665 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
666
667 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
668 { \
669 if ((MODE != PSImode) && CONSTANT_ADDRESS_P (X)) \
670 goto ADDR; \
671 if (RTX_OK_FOR_BASE_P (X)) \
672 goto ADDR; \
673 if (GET_CODE (X) == PLUS) \
674 { \
675 rtx base = 0, index = 0; \
676 if (RTX_OK_FOR_BASE_P (XEXP (X, 0))) \
677 base = XEXP (X, 0), index = XEXP (X, 1); \
678 if (RTX_OK_FOR_BASE_P (XEXP (X, 1))) \
679 base = XEXP (X, 1), index = XEXP (X, 0); \
680 if (base != 0 && index != 0) \
681 { \
682 if (GET_CODE (index) == CONST_INT) \
683 goto ADDR; \
684 } \
685 } \
686 }
687
688 \f
689 /* Try machine-dependent ways of modifying an illegitimate address
690 to be legitimate. If we find one, return the new, valid address.
691 This macro is used in only one place: `memory_address' in explow.c.
692
693 OLDX is the address as it was before break_out_memory_refs was called.
694 In some cases it is useful to look at this to decide what needs to be done.
695
696 MODE and WIN are passed so that this macro can use
697 GO_IF_LEGITIMATE_ADDRESS.
698
699 It is always safe for this macro to do nothing. It exists to recognize
700 opportunities to optimize the output. */
701
702 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
703
704 /* Go to LABEL if ADDR (a legitimate address expression)
705 has an effect that depends on the machine mode it is used for. */
706
707 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
708
709 /* Nonzero if the constant value X is a legitimate general operand.
710 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
711
712 #define LEGITIMATE_CONSTANT_P(X) 1
713
714 \f
715 /* Tell final.c how to eliminate redundant test instructions. */
716
717 /* Here we define machine-dependent flags and fields in cc_status
718 (see `conditions.h'). No extra ones are needed for the VAX. */
719
720 /* Store in cc_status the expressions
721 that the condition codes will describe
722 after execution of an instruction whose pattern is EXP.
723 Do not alter them if the instruction would not alter the cc's. */
724
725 #define CC_OVERFLOW_UNUSABLE 0x200
726 #define CC_NO_CARRY CC_NO_OVERFLOW
727 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
728
729 /* The mn10200 has a limited number of registers, so CSE of function
730 addresses generally makes code worse due to register pressure. */
731 #define NO_FUNCTION_CSE
732
733 /* Compute the cost of computing a constant rtl expression RTX
734 whose rtx-code is CODE. The body of this macro is a portion
735 of a switch statement. If the code is computed here,
736 return it with a return statement. Otherwise, break from the switch. */
737
738 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
739 case CONST_INT: \
740 /* Zeros are extremely cheap. */ \
741 if (INTVAL (RTX) == 0) \
742 return 0; \
743 /* If it fits in 8 bits, then it's still relatively cheap. */ \
744 if (INT_8_BITS (INTVAL (RTX))) \
745 return 1; \
746 /* This is the "base" cost, includes constants where either the \
747 upper or lower 16bits are all zeros. */ \
748 if (INT_16_BITS (INTVAL (RTX)) \
749 || (INTVAL (RTX) & 0xffff) == 0 \
750 || (INTVAL (RTX) & 0xffff0000) == 0) \
751 return 2; \
752 return 4; \
753 /* These are more costly than a CONST_INT, but we can relax them, \
754 so they're less costly than a CONST_DOUBLE. */ \
755 case CONST: \
756 case LABEL_REF: \
757 case SYMBOL_REF: \
758 return 6; \
759 /* We don't optimize CONST_DOUBLEs well nor do we relax them well, \
760 so their cost is very high. */ \
761 case CONST_DOUBLE: \
762 return 8;
763
764 /* Make moves between different classes more expensive than moves
765 within the same class. */
766 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) (CLASS1 != CLASS2 ? 4 : 2)
767
768 /* Provide the costs of a rtl expression. This is in the body of a
769 switch on CODE.
770
771 ?!? This probably needs more work. The definitions below were first
772 taken from the H8 port, then tweaked slightly to improve code density
773 on various sample codes. */
774
775 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
776 case MOD: \
777 case DIV: \
778 return 8; \
779 case MULT: \
780 return (GET_MODE (RTX) == SImode ? 20 : 8);
781
782 /* Nonzero if access to memory by bytes or half words is no faster
783 than accessing full words. */
784 #define SLOW_BYTE_ACCESS 1
785
786 /* According expr.c, a value of around 6 should minimize code size, and
787 for the MN10200 series, code size our primary concern. */
788 #define MOVE_RATIO 6
789
790 #define TEXT_SECTION_ASM_OP "\t.section .text"
791 #define DATA_SECTION_ASM_OP "\t.section .data"
792 #define BSS_SECTION_ASM_OP "\t.section .bss"
793
794 /* Output at beginning/end of assembler file. */
795 #undef ASM_FILE_START
796 #define ASM_FILE_START(FILE) asm_file_start(FILE)
797
798 #define ASM_COMMENT_START "#"
799
800 /* Output to assembler file text saying following lines
801 may contain character constants, extra white space, comments, etc. */
802
803 #define ASM_APP_ON "#APP\n"
804
805 /* Output to assembler file text saying following lines
806 no longer contain unusual constructs. */
807
808 #define ASM_APP_OFF "#NO_APP\n"
809
810 /* This says how to output the assembler to define a global
811 uninitialized but not common symbol.
812 Try to use asm_output_bss to implement this macro. */
813
814 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
815 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
816
817 /* This is how to output the definition of a user-level label named NAME,
818 such as the label on a static function or variable NAME. */
819
820 #define ASM_OUTPUT_LABEL(FILE, NAME) \
821 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
822
823 /* This is how to output a command to make the user-level label named NAME
824 defined for reference from other files. */
825
826 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
827 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
828
829 /* This is how to output a reference to a user-level label named NAME.
830 `assemble_name' uses this. */
831
832 #undef ASM_OUTPUT_LABELREF
833 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
834 fprintf (FILE, "_%s", (*targetm.strip_name_encoding) (NAME))
835
836 /* Store in OUTPUT a string (made with alloca) containing
837 an assembler-name for a local static variable named NAME.
838 LABELNO is an integer which is different for each call. */
839
840 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
841 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
842 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
843
844 /* This is how we tell the assembler that two symbols have the same value. */
845
846 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
847 do { assemble_name(FILE, NAME1); \
848 fputs(" = ", FILE); \
849 assemble_name(FILE, NAME2); \
850 fputc('\n', FILE); } while (0)
851
852
853 /* How to refer to registers in assembler output.
854 This sequence is indexed by compiler's hard-register-number (see above). */
855
856 #define REGISTER_NAMES \
857 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3"}
858
859 /* Print an instruction operand X on file FILE.
860 look in mn10200.c for details */
861
862 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
863
864 /* Print a memory operand whose address is X, on file FILE.
865 This uses a function in output-vax.c. */
866
867 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
868
869 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
870 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
871
872 /* This is how to output an element of a case-vector that is absolute. */
873
874 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
875 asm_fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
876
877 /* This is how to output an element of a case-vector that is relative. */
878
879 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
880 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
881
882 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
883 if ((LOG) != 0) \
884 fprintf (FILE, "\t.align %d\n", (LOG))
885
886 /* We don't have to worry about dbx compatibility for the mn10200. */
887 #define DEFAULT_GDB_EXTENSIONS 1
888
889 /* Use stabs debugging info by default. */
890 #undef PREFERRED_DEBUGGING_TYPE
891 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
892
893 /* GDB always assumes the current function's frame begins at the value
894 of the stack pointer upon entry to the current function. Accessing
895 local variables and parameters passed on the stack is done using the
896 base of the frame + an offset provided by GCC.
897
898 For functions which have frame pointers this method works fine;
899 the (frame pointer) == (stack pointer at function entry) and GCC provides
900 an offset relative to the frame pointer.
901
902 This loses for functions without a frame pointer; GCC provides an offset
903 which is relative to the stack pointer after adjusting for the function's
904 frame size. GDB would prefer the offset to be relative to the value of
905 the stack pointer at the function's entry. Yuk! */
906 #define DEBUGGER_AUTO_OFFSET(X) \
907 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
908 + (frame_pointer_needed ? 0 : -total_frame_size ()))
909
910 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
911 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
912 + (frame_pointer_needed ? 0 : -total_frame_size ()))
913
914 /* Specify the machine mode that this machine uses
915 for the index in the tablejump instruction. */
916 #define CASE_VECTOR_MODE Pmode
917
918 /* Dispatch tables on the mn10200 are extremely expensive in terms of code
919 and readonly data size. So we crank up the case threshold value to
920 encourage a series of if/else comparisons to implement many small switch
921 statements. In theory, this value could be increased much more if we
922 were solely optimizing for space, but we keep it "reasonable" to avoid
923 serious code efficiency lossage. */
924 #define CASE_VALUES_THRESHOLD 8
925
926 /* Define if operations between registers always perform the operation
927 on the full register even if a narrower mode is specified. */
928 #define WORD_REGISTER_OPERATIONS
929
930 /* We could define this either way. Using ZERO_EXTEND for QImode makes slightly
931 fast and more compact code. */
932 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
933
934 /* This flag, if defined, says the same insns that convert to a signed fixnum
935 also convert validly to an unsigned one. */
936 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
937
938 /* Max number of bytes we can move from memory to memory
939 in one reasonably fast instruction. */
940 #define MOVE_MAX 2
941
942 /* Define if shifts truncate the shift count
943 which implies one can omit a sign-extension or zero-extension
944 of a shift count. */
945 #define SHIFT_COUNT_TRUNCATED 1
946
947 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
948 is done just by pretending it is already truncated. */
949 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) (OUTPREC != 32)
950
951 /* Specify the machine mode that pointers have.
952 After generation of rtl, the compiler makes no further distinction
953 between pointers and any other objects of this machine mode. */
954 #define Pmode PSImode
955
956 /* A function address in a call instruction
957 is a byte address (for indexing purposes)
958 so give the MEM rtx a byte's mode. */
959 #define FUNCTION_MODE QImode
960
961 /* Perform target dependent optabs initialization. */
962 #define MODHI3_LIBCALL "__modhi3"
963 #define DIVHI3_LIBCALL "__divhi3"
964
965 #define INIT_TARGET_OPTABS \
966 do { \
967 sdiv_optab->handlers[(int) HImode].libfunc \
968 = init_one_libfunc (DIVHI3_LIBCALL); \
969 smod_optab->handlers[(int) HImode].libfunc \
970 = init_one_libfunc (MODHI3_LIBCALL); \
971 } while (0)
972
973 /* The assembler op to get a word. */
974
975 #define FILE_ASM_OP "\t.file\n"
976
977 #define PREDICATE_CODES \
978 {"call_address_operand", { SYMBOL_REF, REG }}, \
979 {"constant_memory_operand", { MEM }}, \
980 {"psimode_truncation_operand",{ PLUS, CONST_INT, CONST_DOUBLE, CONST, \
981 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM }},\
982 {"extendpsi_operand", { PLUS, CONST_INT, CONST_DOUBLE, CONST, \
983 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM }}, \
984 {"nshift_operator", { ASHIFTRT, LSHIFTRT, ASHIFT }},
985
986 extern GTY(()) rtx zero_dreg;
987 extern GTY(()) rtx zero_areg;