]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10300/mn10300.h
Merge basic-improvements-branch to trunk
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24
25 #undef ASM_SPEC
26 #undef ASM_FINAL_SPEC
27 #undef LIB_SPEC
28 #undef ENDFILE_SPEC
29 #undef LINK_SPEC
30 #define LINK_SPEC "%{mrelax:--relax}"
31 #undef STARTFILE_SPEC
32 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
33
34 /* Names to predefine in the preprocessor for this target machine. */
35
36 #define CPP_PREDEFINES "-D__mn10300__ -D__MN10300__"
37
38 #define CPP_SPEC "%{mam33:-D__AM33__}"
39
40 /* Run-time compilation parameters selecting different hardware subsets. */
41
42 extern int target_flags;
43
44 /* Macros used in the machine description to test the flags. */
45
46 /* Macro to define tables used to set the flags.
47 This is a list in braces of pairs in braces,
48 each pair being { "NAME", VALUE }
49 where VALUE is the bits to set or minus the bits to clear.
50 An empty string NAME is used to identify the default VALUE. */
51
52 /* Generate code to work around mul/mulq bugs on the mn10300. */
53 #define TARGET_MULT_BUG (target_flags & 0x1)
54
55 /* Generate code for the AM33 processor. */
56 #define TARGET_AM33 (target_flags & 0x2)
57
58 #define TARGET_SWITCHES \
59 {{ "mult-bug", 0x1, N_("Work around hardware multiply bug")}, \
60 { "no-mult-bug", -0x1, N_("Do not work around hardware multiply bug")},\
61 { "am33", 0x2, N_("Target the AM33 processor")}, \
62 { "am33", -(0x1), ""},\
63 { "no-am33", -0x2, ""}, \
64 { "no-crt0", 0, N_("No default crt0.o") }, \
65 { "relax", 0, N_("Enable linker relaxations") }, \
66 { "", TARGET_DEFAULT, NULL}}
67
68 #ifndef TARGET_DEFAULT
69 #define TARGET_DEFAULT 0x1
70 #endif
71
72 /* Print subsidiary information on the compiler version in use. */
73
74 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
75
76 \f
77 /* Target machine storage layout */
78
79 /* Define this if most significant bit is lowest numbered
80 in instructions that operate on numbered bit-fields.
81 This is not true on the Matsushita MN1003. */
82 #define BITS_BIG_ENDIAN 0
83
84 /* Define this if most significant byte of a word is the lowest numbered. */
85 /* This is not true on the Matsushita MN10300. */
86 #define BYTES_BIG_ENDIAN 0
87
88 /* Define this if most significant word of a multiword number is lowest
89 numbered.
90 This is not true on the Matsushita MN10300. */
91 #define WORDS_BIG_ENDIAN 0
92
93 /* Width of a word, in units (bytes). */
94 #define UNITS_PER_WORD 4
95
96 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
97 #define PARM_BOUNDARY 32
98
99 /* The stack goes in 32 bit lumps. */
100 #define STACK_BOUNDARY 32
101
102 /* Allocation boundary (in *bits*) for the code of a function.
103 8 is the minimum boundary; it's unclear if bigger alignments
104 would improve performance. */
105 #define FUNCTION_BOUNDARY 8
106
107 /* No data type wants to be aligned rounder than this. */
108 #define BIGGEST_ALIGNMENT 32
109
110 /* Alignment of field after `int : 0' in a structure. */
111 #define EMPTY_FIELD_BOUNDARY 32
112
113 /* Define this if move instructions will actually fail to work
114 when given unaligned data. */
115 #define STRICT_ALIGNMENT 1
116
117 /* Define this as 1 if `char' should by default be signed; else as 0. */
118 #define DEFAULT_SIGNED_CHAR 0
119 \f
120 /* Standard register usage. */
121
122 /* Number of actual hardware registers.
123 The hardware registers are assigned numbers for the compiler
124 from 0 to just below FIRST_PSEUDO_REGISTER.
125
126 All registers that the compiler knows about must be given numbers,
127 even those that are not normally considered general registers. */
128
129 #define FIRST_PSEUDO_REGISTER 18
130
131 /* Specify machine-specific register numbers. */
132 #define FIRST_DATA_REGNUM 0
133 #define LAST_DATA_REGNUM 3
134 #define FIRST_ADDRESS_REGNUM 4
135 #define LAST_ADDRESS_REGNUM 8
136 #define FIRST_EXTENDED_REGNUM 10
137 #define LAST_EXTENDED_REGNUM 17
138
139 /* Specify the registers used for certain standard purposes.
140 The values of these macros are register numbers. */
141
142 /* Register to use for pushing function arguments. */
143 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM+1)
144
145 /* Base register for access to local variables of the function. */
146 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM-1)
147
148 /* Base register for access to arguments of the function. This
149 is a fake register and will be eliminated into either the frame
150 pointer or stack pointer. */
151 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
152
153 /* Register in which static-chain is passed to a function. */
154 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM+1)
155
156 /* 1 for registers that have pervasive standard uses
157 and are not available for the register allocator. */
158
159 #define FIXED_REGISTERS \
160 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}
161
162 /* 1 for registers not available across function calls.
163 These must include the FIXED_REGISTERS and also any
164 registers that can be used without being saved.
165 The latter must include the registers where values are returned
166 and the register where structure-value addresses are passed.
167 Aside from that, you can include as many other registers as you
168 like. */
169
170 #define CALL_USED_REGISTERS \
171 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0}
172
173 #define REG_ALLOC_ORDER \
174 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9}
175
176 #define CONDITIONAL_REGISTER_USAGE \
177 { \
178 unsigned int i; \
179 \
180 if (!TARGET_AM33) \
181 { \
182 for (i = FIRST_EXTENDED_REGNUM; \
183 i <= LAST_EXTENDED_REGNUM; i++) \
184 fixed_regs[i] = call_used_regs[i] = 1; \
185 } \
186 }
187
188 /* Return number of consecutive hard regs needed starting at reg REGNO
189 to hold something of mode MODE.
190
191 This is ordinarily the length in words of a value of mode MODE
192 but can be less for certain modes in special long registers. */
193
194 #define HARD_REGNO_NREGS(REGNO, MODE) \
195 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
196
197 /* Value is 1 if hard register REGNO can hold a value of machine-mode
198 MODE. */
199
200 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
201 ((REGNO_REG_CLASS (REGNO) == DATA_REGS \
202 || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
203 || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
204 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
205 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
206
207 /* Value is 1 if it is a good idea to tie two pseudo registers
208 when one has mode MODE1 and one has mode MODE2.
209 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
210 for any hard reg, then this must be 0 for correct output. */
211 #define MODES_TIEABLE_P(MODE1, MODE2) \
212 (TARGET_AM33 \
213 || MODE1 == MODE2 \
214 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
215
216 /* 4 data, and effectively 3 address registers is small as far as I'm
217 concerned. */
218 #define SMALL_REGISTER_CLASSES 1
219 \f
220 /* Define the classes of registers for register constraints in the
221 machine description. Also define ranges of constants.
222
223 One of the classes must always be named ALL_REGS and include all hard regs.
224 If there is more than one class, another class must be named NO_REGS
225 and contain no registers.
226
227 The name GENERAL_REGS must be the name of a class (or an alias for
228 another name such as ALL_REGS). This is the class of registers
229 that is allowed by "g" or "r" in a register constraint.
230 Also, registers outside this class are allocated only when
231 instructions express preferences for them.
232
233 The classes must be numbered in nondecreasing order; that is,
234 a larger-numbered class must never be contained completely
235 in a smaller-numbered class.
236
237 For any two classes, it is very desirable that there be another
238 class that represents their union. */
239
240 enum reg_class {
241 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
242 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
243 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
244 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
245 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
246 };
247
248 #define N_REG_CLASSES (int) LIM_REG_CLASSES
249
250 /* Give names of register classes as strings for dump file. */
251
252 #define REG_CLASS_NAMES \
253 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
254 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
255 "EXTENDED_REGS", \
256 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
257 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
258 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
259
260 /* Define which registers fit in which classes.
261 This is an initializer for a vector of HARD_REG_SET
262 of length N_REG_CLASSES. */
263
264 #define REG_CLASS_CONTENTS \
265 { {0}, /* No regs */ \
266 {0x0000f}, /* DATA_REGS */ \
267 {0x001f0}, /* ADDRESS_REGS */ \
268 {0x00200}, /* SP_REGS */ \
269 {0x001ff}, /* DATA_OR_ADDRESS_REGS */\
270 {0x003f0}, /* SP_OR_ADDRESS_REGS */\
271 {0x3fc00}, /* EXTENDED_REGS */ \
272 {0x3fc0f}, /* DATA_OR_EXTENDED_REGS */ \
273 {0x3fdf0}, /* ADDRESS_OR_EXTENDED_REGS */ \
274 {0x3fe00}, /* SP_OR_EXTENDED_REGS */ \
275 {0x3fff0}, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
276 {0x3fdff}, /* GENERAL_REGS */ \
277 {0x3ffff}, /* ALL_REGS */ \
278 }
279
280 /* The same information, inverted:
281 Return the class number of the smallest class containing
282 reg number REGNO. This could be a conditional expression
283 or could index an array. */
284
285 #define REGNO_REG_CLASS(REGNO) \
286 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
287 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
288 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
289 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
290 NO_REGS)
291
292 /* The class value for index registers, and the one for base regs. */
293 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
294 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
295
296 /* Get reg_class from a letter such as appears in the machine description. */
297
298 #define REG_CLASS_FROM_LETTER(C) \
299 ((C) == 'd' ? DATA_REGS : \
300 (C) == 'a' ? ADDRESS_REGS : \
301 (C) == 'y' ? SP_REGS : \
302 ! TARGET_AM33 ? NO_REGS : \
303 (C) == 'x' ? EXTENDED_REGS : \
304 NO_REGS)
305
306 /* Macros to check register numbers against specific register classes. */
307
308 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
309 and check its validity for a certain class.
310 We have two alternate definitions for each of them.
311 The usual definition accepts all pseudo regs; the other rejects
312 them unless they have been allocated suitable hard regs.
313 The symbol REG_OK_STRICT causes the latter definition to be used.
314
315 Most source files want to accept pseudo regs in the hope that
316 they will get allocated to the class that the insn wants them to be in.
317 Source files for reload pass need to be strict.
318 After reload, it makes no difference, since pseudo regs have
319 been eliminated by then. */
320
321 /* These assume that REGNO is a hard or pseudo reg number.
322 They give nonzero only if REGNO is a hard reg of the suitable class
323 or a pseudo reg currently allocated to a suitable hard reg.
324 Since they use reg_renumber, they are safe only once reg_renumber
325 has been allocated, which happens in local-alloc.c. */
326
327 #ifndef REG_OK_STRICT
328 # define REGNO_IN_RANGE_P(regno,min,max) \
329 (IN_RANGE ((regno), (min), (max)) || (regno) >= FIRST_PSEUDO_REGISTER)
330 #else
331 # define REGNO_IN_RANGE_P(regno,min,max) \
332 (IN_RANGE ((regno), (min), (max)) \
333 || (reg_renumber \
334 && reg_renumber[(regno)] >= (min) && reg_renumber[(regno)] <= (max)))
335 #endif
336
337 #define REGNO_DATA_P(regno) \
338 REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM)
339 #define REGNO_ADDRESS_P(regno) \
340 REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM)
341 #define REGNO_SP_P(regno) \
342 REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM)
343 #define REGNO_EXTENDED_P(regno) \
344 REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM)
345 #define REGNO_AM33_P(regno) \
346 (REGNO_DATA_P ((regno)) || REGNO_ADDRESS_P ((regno)) \
347 || REGNO_EXTENDED_P ((regno)))
348
349 #define REGNO_OK_FOR_BASE_P(regno) \
350 (REGNO_SP_P ((regno)) \
351 || REGNO_ADDRESS_P ((regno)) || REGNO_EXTENDED_P ((regno)))
352 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
353
354 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
355 (REGNO_SP_P ((regno)) || REGNO_ADDRESS_P ((regno)))
356 #define REG_OK_FOR_BIT_BASE_P(X) REGNO_OK_FOR_BIT_BASE_P (REGNO (X))
357
358 #define REGNO_OK_FOR_INDEX_P(regno) \
359 (REGNO_DATA_P ((regno)) || REGNO_EXTENDED_P ((regno)))
360 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
361
362 /* Given an rtx X being reloaded into a reg required to be
363 in class CLASS, return the class of reg to actually use.
364 In general this is just CLASS; but on some machines
365 in some cases it is preferable to use a more restrictive class. */
366
367 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
368 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
369 ? ADDRESS_OR_EXTENDED_REGS \
370 : (GET_CODE (X) == MEM \
371 || (GET_CODE (X) == REG \
372 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
373 || (GET_CODE (X) == SUBREG \
374 && GET_CODE (SUBREG_REG (X)) == REG \
375 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
376 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
377 : (CLASS)))
378
379 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
380 (X == stack_pointer_rtx && CLASS != SP_REGS \
381 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
382
383 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
384 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
385
386 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
387 secondary_reload_class(CLASS,MODE,IN)
388
389 /* Return the maximum number of consecutive registers
390 needed to represent mode MODE in a register of class CLASS. */
391
392 #define CLASS_MAX_NREGS(CLASS, MODE) \
393 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
394
395 /* The letters I, J, K, L, M, N, O, P in a register constraint string
396 can be used to stand for particular ranges of immediate operands.
397 This macro defines what the ranges are.
398 C is the letter, and VALUE is a constant value.
399 Return 1 if VALUE is in the range specified by C. */
400
401 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
402 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
403
404 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
405 #define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
406 #define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
407 #define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
408 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 3)
409 #define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535)
410
411 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
412 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
413 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
414 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
415 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
416 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
417 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0)
418
419
420 /* Similar, but for floating constants, and defining letters G and H.
421 Here VALUE is the CONST_DOUBLE rtx itself.
422
423 `G' is a floating-point zero. */
424
425 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
426 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
427 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0)
428
429 \f
430 /* Stack layout; function entry, exit and calling. */
431
432 /* Define this if pushing a word on the stack
433 makes the stack pointer a smaller address. */
434
435 #define STACK_GROWS_DOWNWARD
436
437 /* Define this if the nominal address of the stack frame
438 is at the high-address end of the local variables;
439 that is, each additional local variable allocated
440 goes at a more negative offset in the frame. */
441
442 #define FRAME_GROWS_DOWNWARD
443
444 /* Offset within stack frame to start allocating local variables at.
445 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
446 first local allocated. Otherwise, it is the offset to the BEGINNING
447 of the first local allocated. */
448
449 #define STARTING_FRAME_OFFSET 0
450
451 /* Offset of first parameter from the argument pointer register value. */
452 /* Is equal to the size of the saved fp + pc, even if an fp isn't
453 saved since the value is used before we know. */
454
455 #define FIRST_PARM_OFFSET(FNDECL) 4
456
457 #define ELIMINABLE_REGS \
458 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
459 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
460 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
461
462 #define CAN_ELIMINATE(FROM, TO) 1
463
464 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
465 OFFSET = initial_offset (FROM, TO)
466
467 /* We can debug without frame pointers on the mn10300, so eliminate
468 them whenever possible. */
469 #define FRAME_POINTER_REQUIRED 0
470 #define CAN_DEBUG_WITHOUT_FP
471
472 /* A guess for the MN10300. */
473 #define PROMOTE_PROTOTYPES 1
474
475 /* Value is the number of bytes of arguments automatically
476 popped when returning from a subroutine call.
477 FUNDECL is the declaration node of the function (as a tree),
478 FUNTYPE is the data type of the function (as a tree),
479 or for a library call it is an identifier node for the subroutine name.
480 SIZE is the number of bytes of arguments passed on the stack. */
481
482 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
483
484 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
485 for a register flushback area. */
486 #define REG_PARM_STACK_SPACE(DECL) 8
487 #define OUTGOING_REG_PARM_STACK_SPACE
488 #define ACCUMULATE_OUTGOING_ARGS 1
489
490 /* So we can allocate space for return pointers once for the function
491 instead of around every call. */
492 #define STACK_POINTER_OFFSET 4
493
494 /* 1 if N is a possible register number for function argument passing.
495 On the MN10300, no registers are used in this way. */
496
497 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
498
499 \f
500 /* Define a data type for recording info about an argument list
501 during the scan of that argument list. This data type should
502 hold all necessary information about the function itself
503 and about the args processed so far, enough to enable macros
504 such as FUNCTION_ARG to determine where the next arg should go.
505
506 On the MN10300, this is a single integer, which is a number of bytes
507 of arguments scanned so far. */
508
509 #define CUMULATIVE_ARGS struct cum_arg
510 struct cum_arg {int nbytes; };
511
512 /* Initialize a variable CUM of type CUMULATIVE_ARGS
513 for a call to a function whose data type is FNTYPE.
514 For a library call, FNTYPE is 0.
515
516 On the MN10300, the offset starts at 0. */
517
518 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
519 ((CUM).nbytes = 0)
520
521 /* Update the data in CUM to advance over an argument
522 of mode MODE and data type TYPE.
523 (TYPE is null for libcalls where that information may not be available.) */
524
525 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
526 ((CUM).nbytes += ((MODE) != BLKmode \
527 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
528 : (int_size_in_bytes (TYPE) + 3) & ~3))
529
530 /* Define where to put the arguments to a function.
531 Value is zero to push the argument on the stack,
532 or a hard register in which to store the argument.
533
534 MODE is the argument's machine mode.
535 TYPE is the data type of the argument (as a tree).
536 This is null for libcalls where that information may
537 not be available.
538 CUM is a variable of type CUMULATIVE_ARGS which gives info about
539 the preceding args and about the function being called.
540 NAMED is nonzero if this argument is a named parameter
541 (otherwise it is an extra parameter matching an ellipsis). */
542
543 /* On the MN10300 all args are pushed. */
544
545 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
546 function_arg (&CUM, MODE, TYPE, NAMED)
547
548 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
549 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
550 \f
551 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
552 ((TYPE) && int_size_in_bytes (TYPE) > 8)
553
554 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
555 ((TYPE) && int_size_in_bytes (TYPE) > 8)
556
557 /* Define how to find the value returned by a function.
558 VALTYPE is the data type of the value (as a tree).
559 If the precise function being called is known, FUNC is its FUNCTION_DECL;
560 otherwise, FUNC is 0. */
561
562 #define FUNCTION_VALUE(VALTYPE, FUNC) \
563 gen_rtx_REG (TYPE_MODE (VALTYPE), POINTER_TYPE_P (VALTYPE) \
564 ? FIRST_ADDRESS_REGNUM : FIRST_DATA_REGNUM)
565
566 /* Define how to find the value returned by a library function
567 assuming the value has mode MODE. */
568
569 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
570
571 /* 1 if N is a possible register number for a function value. */
572
573 #define FUNCTION_VALUE_REGNO_P(N) \
574 ((N) == FIRST_DATA_REGNUM || (N) == FIRST_ADDRESS_REGNUM)
575
576 /* Return values > 8 bytes in length in memory. */
577 #define DEFAULT_PCC_STRUCT_RETURN 0
578 #define RETURN_IN_MEMORY(TYPE) \
579 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
580
581 /* Register in which address to store a structure value
582 is passed to a function. On the MN10300 it's passed as
583 the first parameter. */
584
585 #define STRUCT_VALUE FIRST_DATA_REGNUM
586
587 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
588 the stack pointer does not matter. The value is tested only in
589 functions that have frame pointers.
590 No definition is equivalent to always zero. */
591
592 #define EXIT_IGNORE_STACK 1
593
594 /* Output assembler code to FILE to increment profiler label # LABELNO
595 for profiling a function entry. */
596
597 #define FUNCTION_PROFILER(FILE, LABELNO) ;
598
599 #define TRAMPOLINE_TEMPLATE(FILE) \
600 do { \
601 fprintf (FILE, "\tadd -4,sp\n"); \
602 fprintf (FILE, "\t.long 0x0004fffa\n"); \
603 fprintf (FILE, "\tmov (0,sp),a0\n"); \
604 fprintf (FILE, "\tadd 4,sp\n"); \
605 fprintf (FILE, "\tmov (13,a0),a1\n"); \
606 fprintf (FILE, "\tmov (17,a0),a0\n"); \
607 fprintf (FILE, "\tjmp (a0)\n"); \
608 fprintf (FILE, "\t.long 0\n"); \
609 fprintf (FILE, "\t.long 0\n"); \
610 } while (0)
611
612 /* Length in units of the trampoline for entering a nested function. */
613
614 #define TRAMPOLINE_SIZE 0x1b
615
616 #define TRAMPOLINE_ALIGNMENT 32
617
618 /* Emit RTL insns to initialize the variable parts of a trampoline.
619 FNADDR is an RTX for the address of the function's pure code.
620 CXT is an RTX for the static chain value for the function. */
621
622 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
623 { \
624 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
625 (CXT)); \
626 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
627 (FNADDR)); \
628 }
629 /* A C expression whose value is RTL representing the value of the return
630 address for the frame COUNT steps up from the current frame.
631
632 On the mn10300, the return address is not at a constant location
633 due to the frame layout. Luckily, it is at a constant offset from
634 the argument pointer, so we define RETURN_ADDR_RTX to return a
635 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
636 with a reference to the stack/frame pointer + an appropriate offset. */
637
638 #define RETURN_ADDR_RTX(COUNT, FRAME) \
639 ((COUNT == 0) \
640 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
641 : (rtx) 0)
642
643 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
644 reference the 2 integer arg registers.
645 Ordinarily they are not call used registers, but they are for
646 _builtin_saveregs, so we must make this explicit. */
647
648 #define EXPAND_BUILTIN_SAVEREGS() mn10300_builtin_saveregs ()
649
650 /* Implement `va_start' for varargs and stdarg. */
651 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
652 mn10300_va_start (valist, nextarg)
653
654 /* Implement `va_arg'. */
655 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
656 mn10300_va_arg (valist, type)
657
658 /* Addressing modes, and classification of registers for them. */
659
660 \f
661 /* 1 if X is an rtx for a constant that is a valid address. */
662
663 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
664
665 /* Extra constraints. */
666
667 #define OK_FOR_R(OP) \
668 (GET_CODE (OP) == MEM \
669 && GET_MODE (OP) == QImode \
670 && (CONSTANT_ADDRESS_P (XEXP (OP, 0)) \
671 || (GET_CODE (XEXP (OP, 0)) == REG \
672 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
673 && XEXP (OP, 0) != stack_pointer_rtx) \
674 || (GET_CODE (XEXP (OP, 0)) == PLUS \
675 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
676 && REG_OK_FOR_BIT_BASE_P (XEXP (XEXP (OP, 0), 0)) \
677 && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx \
678 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT \
679 && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1))))))
680
681 #define OK_FOR_T(OP) \
682 (GET_CODE (OP) == MEM \
683 && GET_MODE (OP) == QImode \
684 && (GET_CODE (XEXP (OP, 0)) == REG \
685 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
686 && XEXP (OP, 0) != stack_pointer_rtx))
687
688 #define EXTRA_CONSTRAINT(OP, C) \
689 ((C) == 'R' ? OK_FOR_R (OP) \
690 : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF \
691 : (C) == 'T' ? OK_FOR_T (OP) \
692 : 0)
693
694 /* Maximum number of registers that can appear in a valid memory address. */
695
696 #define MAX_REGS_PER_ADDRESS 2
697
698 \f
699 #define HAVE_POST_INCREMENT (TARGET_AM33)
700
701 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
702 that is a valid memory address for an instruction.
703 The MODE argument is the machine mode for the MEM expression
704 that wants to use this address.
705
706 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
707 except for CONSTANT_ADDRESS_P which is actually
708 machine-independent.
709
710 On the mn10300, the value in the address register must be
711 in the same memory space/segment as the effective address.
712
713 This is problematical for reload since it does not understand
714 that base+index != index+base in a memory reference.
715
716 Note it is still possible to use reg+reg addressing modes,
717 it's just much more difficult. For a discussion of a possible
718 workaround and solution, see the comments in pa.c before the
719 function record_unscaled_index_insn_codes. */
720
721 /* Accept either REG or SUBREG where a register is valid. */
722
723 #define RTX_OK_FOR_BASE_P(X) \
724 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
725 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
726 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
727
728 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
729 { \
730 if (CONSTANT_ADDRESS_P (X)) \
731 goto ADDR; \
732 if (RTX_OK_FOR_BASE_P (X)) \
733 goto ADDR; \
734 if (TARGET_AM33 \
735 && GET_CODE (X) == POST_INC \
736 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
737 && (MODE == SImode || MODE == SFmode || MODE == HImode))\
738 goto ADDR; \
739 if (GET_CODE (X) == PLUS) \
740 { \
741 rtx base = 0, index = 0; \
742 if (REG_P (XEXP (X, 0)) \
743 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
744 base = XEXP (X, 0), index = XEXP (X, 1); \
745 if (REG_P (XEXP (X, 1)) \
746 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
747 base = XEXP (X, 1), index = XEXP (X, 0); \
748 if (base != 0 && index != 0) \
749 { \
750 if (GET_CODE (index) == CONST_INT) \
751 goto ADDR; \
752 } \
753 } \
754 }
755
756 \f
757 /* Try machine-dependent ways of modifying an illegitimate address
758 to be legitimate. If we find one, return the new, valid address.
759 This macro is used in only one place: `memory_address' in explow.c.
760
761 OLDX is the address as it was before break_out_memory_refs was called.
762 In some cases it is useful to look at this to decide what needs to be done.
763
764 MODE and WIN are passed so that this macro can use
765 GO_IF_LEGITIMATE_ADDRESS.
766
767 It is always safe for this macro to do nothing. It exists to recognize
768 opportunities to optimize the output. */
769
770 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
771 { rtx orig_x = (X); \
772 (X) = legitimize_address (X, OLDX, MODE); \
773 if ((X) != orig_x && memory_address_p (MODE, X)) \
774 goto WIN; }
775
776 /* Go to LABEL if ADDR (a legitimate address expression)
777 has an effect that depends on the machine mode it is used for. */
778
779 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
780 if (GET_CODE (ADDR) == POST_INC) \
781 goto LABEL
782
783 /* Nonzero if the constant value X is a legitimate general operand.
784 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
785
786 #define LEGITIMATE_CONSTANT_P(X) 1
787
788 \f
789 /* Tell final.c how to eliminate redundant test instructions. */
790
791 /* Here we define machine-dependent flags and fields in cc_status
792 (see `conditions.h'). No extra ones are needed for the VAX. */
793
794 /* Store in cc_status the expressions
795 that the condition codes will describe
796 after execution of an instruction whose pattern is EXP.
797 Do not alter them if the instruction would not alter the cc's. */
798
799 #define CC_OVERFLOW_UNUSABLE 0x200
800 #define CC_NO_CARRY CC_NO_OVERFLOW
801 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
802
803 /* Compute the cost of computing a constant rtl expression RTX
804 whose rtx-code is CODE. The body of this macro is a portion
805 of a switch statement. If the code is computed here,
806 return it with a return statement. Otherwise, break from the switch. */
807
808 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
809 case CONST_INT: \
810 /* Zeros are extremely cheap. */ \
811 if (INTVAL (RTX) == 0 && OUTER_CODE == SET) \
812 return 0; \
813 /* If it fits in 8 bits, then it's still relatively cheap. */ \
814 if (INT_8_BITS (INTVAL (RTX))) \
815 return 1; \
816 /* This is the "base" cost, includes constants where either the \
817 upper or lower 16bits are all zeros. */ \
818 if (INT_16_BITS (INTVAL (RTX)) \
819 || (INTVAL (RTX) & 0xffff) == 0 \
820 || (INTVAL (RTX) & 0xffff0000) == 0) \
821 return 2; \
822 return 4; \
823 /* These are more costly than a CONST_INT, but we can relax them, \
824 so they're less costly than a CONST_DOUBLE. */ \
825 case CONST: \
826 case LABEL_REF: \
827 case SYMBOL_REF: \
828 return 6; \
829 /* We don't optimize CONST_DOUBLEs well nor do we relax them well, \
830 so their cost is very high. */ \
831 case CONST_DOUBLE: \
832 return 8;
833
834 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
835 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
836 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
837 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
838 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
839 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
840 ! TARGET_AM33 ? 6 : \
841 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
842 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
843 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
844 4)
845
846 #define ADDRESS_COST(X) mn10300_address_cost((X), 0)
847
848 /* A crude cut at RTX_COSTS for the MN10300. */
849
850 /* Provide the costs of a rtl expression. This is in the body of a
851 switch on CODE. */
852 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
853 case UMOD: \
854 case UDIV: \
855 case MOD: \
856 case DIV: \
857 return 8; \
858 case MULT: \
859 return 8;
860
861 /* Nonzero if access to memory by bytes or half words is no faster
862 than accessing full words. */
863 #define SLOW_BYTE_ACCESS 1
864
865 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
866 and readonly data size. So we crank up the case threshold value to
867 encourage a series of if/else comparisons to implement many small switch
868 statements. In theory, this value could be increased much more if we
869 were solely optimizing for space, but we keep it "reasonable" to avoid
870 serious code efficiency lossage. */
871 #define CASE_VALUES_THRESHOLD 6
872
873 #define NO_FUNCTION_CSE
874
875 /* According expr.c, a value of around 6 should minimize code size, and
876 for the MN10300 series, that's our primary concern. */
877 #define MOVE_RATIO 6
878
879 #define TEXT_SECTION_ASM_OP "\t.section .text"
880 #define DATA_SECTION_ASM_OP "\t.section .data"
881 #define BSS_SECTION_ASM_OP "\t.section .bss"
882
883 /* Output at beginning/end of assembler file. */
884 #undef ASM_FILE_START
885 #define ASM_FILE_START(FILE) asm_file_start(FILE)
886
887 #define ASM_COMMENT_START "#"
888
889 /* Output to assembler file text saying following lines
890 may contain character constants, extra white space, comments, etc. */
891
892 #define ASM_APP_ON "#APP\n"
893
894 /* Output to assembler file text saying following lines
895 no longer contain unusual constructs. */
896
897 #define ASM_APP_OFF "#NO_APP\n"
898
899 /* This says how to output the assembler to define a global
900 uninitialized but not common symbol.
901 Try to use asm_output_bss to implement this macro. */
902
903 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
904 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
905
906 /* Globalizing directive for a label. */
907 #define GLOBAL_ASM_OP "\t.global "
908
909 /* This is how to output a reference to a user-level label named NAME.
910 `assemble_name' uses this. */
911
912 #undef ASM_OUTPUT_LABELREF
913 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
914 fprintf (FILE, "_%s", (*targetm.strip_name_encoding) (NAME))
915
916 #define ASM_PN_FORMAT "%s___%lu"
917
918 /* This is how we tell the assembler that two symbols have the same value. */
919
920 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
921 do { assemble_name(FILE, NAME1); \
922 fputs(" = ", FILE); \
923 assemble_name(FILE, NAME2); \
924 fputc('\n', FILE); } while (0)
925
926
927 /* How to refer to registers in assembler output.
928 This sequence is indexed by compiler's hard-register-number (see above). */
929
930 #define REGISTER_NAMES \
931 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
932 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
933 }
934
935 #define ADDITIONAL_REGISTER_NAMES \
936 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
937 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
938 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
939 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
940 }
941
942 /* Print an instruction operand X on file FILE.
943 look in mn10300.c for details */
944
945 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
946
947 /* Print a memory operand whose address is X, on file FILE.
948 This uses a function in output-vax.c. */
949
950 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
951
952 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
953 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
954
955 /* This is how to output an element of a case-vector that is absolute. */
956
957 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
958 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
959
960 /* This is how to output an element of a case-vector that is relative. */
961
962 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
963 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
964
965 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
966 if ((LOG) != 0) \
967 fprintf (FILE, "\t.align %d\n", (LOG))
968
969 /* We don't have to worry about dbx compatibility for the mn10300. */
970 #define DEFAULT_GDB_EXTENSIONS 1
971
972 /* Use dwarf2 debugging info by default. */
973 #undef PREFERRED_DEBUGGING_TYPE
974 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
975
976 #define DWARF2_ASM_LINE_DEBUG_INFO 1
977
978 /* GDB always assumes the current function's frame begins at the value
979 of the stack pointer upon entry to the current function. Accessing
980 local variables and parameters passed on the stack is done using the
981 base of the frame + an offset provided by GCC.
982
983 For functions which have frame pointers this method works fine;
984 the (frame pointer) == (stack pointer at function entry) and GCC provides
985 an offset relative to the frame pointer.
986
987 This loses for functions without a frame pointer; GCC provides an offset
988 which is relative to the stack pointer after adjusting for the function's
989 frame size. GDB would prefer the offset to be relative to the value of
990 the stack pointer at the function's entry. Yuk! */
991 #define DEBUGGER_AUTO_OFFSET(X) \
992 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
993 + (frame_pointer_needed \
994 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
995
996 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
997 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
998 + (frame_pointer_needed \
999 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1000
1001 /* Specify the machine mode that this machine uses
1002 for the index in the tablejump instruction. */
1003 #define CASE_VECTOR_MODE Pmode
1004
1005 /* Define if operations between registers always perform the operation
1006 on the full register even if a narrower mode is specified. */
1007 #define WORD_REGISTER_OPERATIONS
1008
1009 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1010
1011 /* This flag, if defined, says the same insns that convert to a signed fixnum
1012 also convert validly to an unsigned one. */
1013 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1014
1015 /* Max number of bytes we can move from memory to memory
1016 in one reasonably fast instruction. */
1017 #define MOVE_MAX 4
1018
1019 /* Define if shifts truncate the shift count
1020 which implies one can omit a sign-extension or zero-extension
1021 of a shift count. */
1022 #define SHIFT_COUNT_TRUNCATED 1
1023
1024 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1025 is done just by pretending it is already truncated. */
1026 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1027
1028 /* Specify the machine mode that pointers have.
1029 After generation of rtl, the compiler makes no further distinction
1030 between pointers and any other objects of this machine mode. */
1031 #define Pmode SImode
1032
1033 /* A function address in a call instruction
1034 is a byte address (for indexing purposes)
1035 so give the MEM rtx a byte's mode. */
1036 #define FUNCTION_MODE QImode
1037
1038 /* The assembler op to get a word. */
1039
1040 #define FILE_ASM_OP "\t.file\n"
1041