]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10300/mn10300.h
tm.texi (INIT_CUMULATIVE_ARGS): Update doco.
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24
25 #undef ASM_SPEC
26 #undef LIB_SPEC
27 #undef ENDFILE_SPEC
28 #undef LINK_SPEC
29 #define LINK_SPEC "%{mrelax:--relax}"
30 #undef STARTFILE_SPEC
31 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
32
33 /* Names to predefine in the preprocessor for this target machine. */
34
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do \
37 { \
38 builtin_define ("__mn10300__"); \
39 builtin_define ("__MN10300__"); \
40 } \
41 while (0)
42
43 #define CPP_SPEC "%{mam33:-D__AM33__} %{mam33-2:-D__AM33__=2 -D__AM33_2__}"
44
45 /* Run-time compilation parameters selecting different hardware subsets. */
46
47 extern int target_flags;
48
49 extern GTY(()) int mn10300_unspec_int_label_counter;
50
51 /* Macros used in the machine description to test the flags. */
52
53 /* Macro to define tables used to set the flags.
54 This is a list in braces of pairs in braces,
55 each pair being { "NAME", VALUE }
56 where VALUE is the bits to set or minus the bits to clear.
57 An empty string NAME is used to identify the default VALUE. */
58
59 /* Generate code to work around mul/mulq bugs on the mn10300. */
60 #define TARGET_MULT_BUG (target_flags & 0x1)
61
62 /* Generate code for the AM33 processor. */
63 #define TARGET_AM33 (target_flags & 0x2)
64
65 /* Generate code for the AM33/2.0 processor. */
66 #define TARGET_AM33_2 (target_flags & 0x4)
67
68 #define TARGET_SWITCHES \
69 {{ "mult-bug", 0x1, N_("Work around hardware multiply bug")}, \
70 { "no-mult-bug", -0x1, N_("Do not work around hardware multiply bug")},\
71 { "am33", 0x2, N_("Target the AM33 processor")}, \
72 { "am33", -(0x1), ""},\
73 { "no-am33", -0x2, ""}, \
74 { "no-crt0", 0, N_("No default crt0.o") }, \
75 { "am33-2", 0x6, N_("Target the AM33/2.0 processor")}, \
76 { "am33-2", -(0x1), ""},\
77 { "no-am33-2", -0x4, ""}, \
78 { "relax", 0, N_("Enable linker relaxations") }, \
79 { "", TARGET_DEFAULT, NULL}}
80
81 #ifndef TARGET_DEFAULT
82 #define TARGET_DEFAULT 0x1
83 #endif
84
85 /* Print subsidiary information on the compiler version in use. */
86
87 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
88
89 \f
90 /* Target machine storage layout */
91
92 /* Define this if most significant bit is lowest numbered
93 in instructions that operate on numbered bit-fields.
94 This is not true on the Matsushita MN1003. */
95 #define BITS_BIG_ENDIAN 0
96
97 /* Define this if most significant byte of a word is the lowest numbered. */
98 /* This is not true on the Matsushita MN10300. */
99 #define BYTES_BIG_ENDIAN 0
100
101 /* Define this if most significant word of a multiword number is lowest
102 numbered.
103 This is not true on the Matsushita MN10300. */
104 #define WORDS_BIG_ENDIAN 0
105
106 /* Width of a word, in units (bytes). */
107 #define UNITS_PER_WORD 4
108
109 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
110 #define PARM_BOUNDARY 32
111
112 /* The stack goes in 32 bit lumps. */
113 #define STACK_BOUNDARY 32
114
115 /* Allocation boundary (in *bits*) for the code of a function.
116 8 is the minimum boundary; it's unclear if bigger alignments
117 would improve performance. */
118 #define FUNCTION_BOUNDARY 8
119
120 /* No data type wants to be aligned rounder than this. */
121 #define BIGGEST_ALIGNMENT 32
122
123 /* Alignment of field after `int : 0' in a structure. */
124 #define EMPTY_FIELD_BOUNDARY 32
125
126 /* Define this if move instructions will actually fail to work
127 when given unaligned data. */
128 #define STRICT_ALIGNMENT 1
129
130 /* Define this as 1 if `char' should by default be signed; else as 0. */
131 #define DEFAULT_SIGNED_CHAR 0
132 \f
133 /* Standard register usage. */
134
135 /* Number of actual hardware registers.
136 The hardware registers are assigned numbers for the compiler
137 from 0 to just below FIRST_PSEUDO_REGISTER.
138
139 All registers that the compiler knows about must be given numbers,
140 even those that are not normally considered general registers. */
141
142 #define FIRST_PSEUDO_REGISTER 50
143
144 /* Specify machine-specific register numbers. */
145 #define FIRST_DATA_REGNUM 0
146 #define LAST_DATA_REGNUM 3
147 #define FIRST_ADDRESS_REGNUM 4
148 #define LAST_ADDRESS_REGNUM 8
149 #define FIRST_EXTENDED_REGNUM 10
150 #define LAST_EXTENDED_REGNUM 17
151 #define FIRST_FP_REGNUM 18
152 #define LAST_FP_REGNUM 49
153
154 /* Specify the registers used for certain standard purposes.
155 The values of these macros are register numbers. */
156
157 /* Register to use for pushing function arguments. */
158 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM+1)
159
160 /* Base register for access to local variables of the function. */
161 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM-1)
162
163 /* Base register for access to arguments of the function. This
164 is a fake register and will be eliminated into either the frame
165 pointer or stack pointer. */
166 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
167
168 /* Register in which static-chain is passed to a function. */
169 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM+1)
170
171 /* 1 for registers that have pervasive standard uses
172 and are not available for the register allocator. */
173
174 #define FIXED_REGISTERS \
175 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
176 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
177 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
178 }
179
180 /* 1 for registers not available across function calls.
181 These must include the FIXED_REGISTERS and also any
182 registers that can be used without being saved.
183 The latter must include the registers where values are returned
184 and the register where structure-value addresses are passed.
185 Aside from that, you can include as many other registers as you
186 like. */
187
188 #define CALL_USED_REGISTERS \
189 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
190 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
191 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
192 }
193
194 #define REG_ALLOC_ORDER \
195 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
196 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
197 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 \
198 }
199
200 #define CONDITIONAL_REGISTER_USAGE \
201 { \
202 unsigned int i; \
203 \
204 if (!TARGET_AM33) \
205 { \
206 for (i = FIRST_EXTENDED_REGNUM; \
207 i <= LAST_EXTENDED_REGNUM; i++) \
208 fixed_regs[i] = call_used_regs[i] = 1; \
209 } \
210 if (!TARGET_AM33_2) \
211 { \
212 for (i = FIRST_FP_REGNUM; \
213 i <= LAST_FP_REGNUM; \
214 i++) \
215 fixed_regs[i] = call_used_regs[i] = 1; \
216 } \
217 if (flag_pic) \
218 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
219 }
220
221 /* Return number of consecutive hard regs needed starting at reg REGNO
222 to hold something of mode MODE.
223
224 This is ordinarily the length in words of a value of mode MODE
225 but can be less for certain modes in special long registers. */
226
227 #define HARD_REGNO_NREGS(REGNO, MODE) \
228 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
229
230 /* Value is 1 if hard register REGNO can hold a value of machine-mode
231 MODE. */
232
233 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
234 ((REGNO_REG_CLASS (REGNO) == DATA_REGS \
235 || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
236 || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
237 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
238 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
239
240 /* Value is 1 if it is a good idea to tie two pseudo registers
241 when one has mode MODE1 and one has mode MODE2.
242 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
243 for any hard reg, then this must be 0 for correct output. */
244 #define MODES_TIEABLE_P(MODE1, MODE2) \
245 (TARGET_AM33 \
246 || MODE1 == MODE2 \
247 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
248
249 /* 4 data, and effectively 3 address registers is small as far as I'm
250 concerned. */
251 #define SMALL_REGISTER_CLASSES 1
252 \f
253 /* Define the classes of registers for register constraints in the
254 machine description. Also define ranges of constants.
255
256 One of the classes must always be named ALL_REGS and include all hard regs.
257 If there is more than one class, another class must be named NO_REGS
258 and contain no registers.
259
260 The name GENERAL_REGS must be the name of a class (or an alias for
261 another name such as ALL_REGS). This is the class of registers
262 that is allowed by "g" or "r" in a register constraint.
263 Also, registers outside this class are allocated only when
264 instructions express preferences for them.
265
266 The classes must be numbered in nondecreasing order; that is,
267 a larger-numbered class must never be contained completely
268 in a smaller-numbered class.
269
270 For any two classes, it is very desirable that there be another
271 class that represents their union. */
272
273 enum reg_class {
274 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
275 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
276 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
277 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
278 FP_REGS, FP_ACC_REGS,
279 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
280 };
281
282 #define N_REG_CLASSES (int) LIM_REG_CLASSES
283
284 /* Give names of register classes as strings for dump file. */
285
286 #define REG_CLASS_NAMES \
287 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
288 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
289 "EXTENDED_REGS", \
290 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
291 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
292 "FP_REGS", "FP_ACC_REGS", \
293 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
294
295 /* Define which registers fit in which classes.
296 This is an initializer for a vector of HARD_REG_SET
297 of length N_REG_CLASSES. */
298
299 #define REG_CLASS_CONTENTS \
300 { { 0, 0 }, /* No regs */ \
301 { 0x0000f, 0 }, /* DATA_REGS */ \
302 { 0x001f0, 0 }, /* ADDRESS_REGS */ \
303 { 0x00200, 0 }, /* SP_REGS */ \
304 { 0x001ff, 0 }, /* DATA_OR_ADDRESS_REGS */\
305 { 0x003f0, 0 }, /* SP_OR_ADDRESS_REGS */\
306 { 0x3fc00, 0 }, /* EXTENDED_REGS */ \
307 { 0x3fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \
308 { 0x3fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \
309 { 0x3fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \
310 { 0x3fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
311 { 0xfffc0000, 0x3ffff }, /* FP_REGS */ \
312 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
313 { 0x3fdff, 0 }, /* GENERAL_REGS */ \
314 { 0xffffffff, 0x3ffff } /* ALL_REGS */ \
315 }
316
317 /* The same information, inverted:
318 Return the class number of the smallest class containing
319 reg number REGNO. This could be a conditional expression
320 or could index an array. */
321
322 #define REGNO_REG_CLASS(REGNO) \
323 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
324 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
325 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
326 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
327 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
328 NO_REGS)
329
330 /* The class value for index registers, and the one for base regs. */
331 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
332 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
333
334 /* Get reg_class from a letter such as appears in the machine description. */
335
336 #define REG_CLASS_FROM_LETTER(C) \
337 ((C) == 'd' ? DATA_REGS : \
338 (C) == 'a' ? ADDRESS_REGS : \
339 (C) == 'y' ? SP_REGS : \
340 ! TARGET_AM33 ? NO_REGS : \
341 (C) == 'x' ? EXTENDED_REGS : \
342 ! TARGET_AM33_2 ? NO_REGS : \
343 (C) == 'f' ? FP_REGS : \
344 (C) == 'A' ? FP_ACC_REGS : \
345 NO_REGS)
346
347 /* Macros to check register numbers against specific register classes. */
348
349 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
350 and check its validity for a certain class.
351 We have two alternate definitions for each of them.
352 The usual definition accepts all pseudo regs; the other rejects
353 them unless they have been allocated suitable hard regs.
354 The symbol REG_OK_STRICT causes the latter definition to be used.
355
356 Most source files want to accept pseudo regs in the hope that
357 they will get allocated to the class that the insn wants them to be in.
358 Source files for reload pass need to be strict.
359 After reload, it makes no difference, since pseudo regs have
360 been eliminated by then. */
361
362 /* These assume that REGNO is a hard or pseudo reg number.
363 They give nonzero only if REGNO is a hard reg of the suitable class
364 or a pseudo reg currently allocated to a suitable hard reg.
365 Since they use reg_renumber, they are safe only once reg_renumber
366 has been allocated, which happens in local-alloc.c. */
367
368 #ifndef REG_OK_STRICT
369 # define REGNO_IN_RANGE_P(regno,min,max) \
370 (IN_RANGE ((regno), (min), (max)) || (regno) >= FIRST_PSEUDO_REGISTER)
371 #else
372 # define REGNO_IN_RANGE_P(regno,min,max) \
373 (IN_RANGE ((regno), (min), (max)) \
374 || (reg_renumber \
375 && reg_renumber[(regno)] >= (min) && reg_renumber[(regno)] <= (max)))
376 #endif
377
378 #define REGNO_DATA_P(regno) \
379 REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM)
380 #define REGNO_ADDRESS_P(regno) \
381 REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM)
382 #define REGNO_SP_P(regno) \
383 REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM)
384 #define REGNO_EXTENDED_P(regno) \
385 REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM)
386 #define REGNO_AM33_P(regno) \
387 (REGNO_DATA_P ((regno)) || REGNO_ADDRESS_P ((regno)) \
388 || REGNO_EXTENDED_P ((regno)))
389 #define REGNO_FP_P(regno) \
390 REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM)
391
392 #define REGNO_OK_FOR_BASE_P(regno) \
393 (REGNO_SP_P ((regno)) \
394 || REGNO_ADDRESS_P ((regno)) || REGNO_EXTENDED_P ((regno)))
395 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
396
397 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
398 (REGNO_SP_P ((regno)) || REGNO_ADDRESS_P ((regno)))
399 #define REG_OK_FOR_BIT_BASE_P(X) REGNO_OK_FOR_BIT_BASE_P (REGNO (X))
400
401 #define REGNO_OK_FOR_INDEX_P(regno) \
402 (REGNO_DATA_P ((regno)) || REGNO_EXTENDED_P ((regno)))
403 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
404
405 /* Given an rtx X being reloaded into a reg required to be
406 in class CLASS, return the class of reg to actually use.
407 In general this is just CLASS; but on some machines
408 in some cases it is preferable to use a more restrictive class. */
409
410 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
411 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
412 ? ADDRESS_OR_EXTENDED_REGS \
413 : (GET_CODE (X) == MEM \
414 || (GET_CODE (X) == REG \
415 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
416 || (GET_CODE (X) == SUBREG \
417 && GET_CODE (SUBREG_REG (X)) == REG \
418 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
419 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
420 : (CLASS)))
421
422 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
423 (X == stack_pointer_rtx && CLASS != SP_REGS \
424 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
425
426 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
427 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
428
429 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
430 secondary_reload_class(CLASS,MODE,IN)
431
432 /* Return the maximum number of consecutive registers
433 needed to represent mode MODE in a register of class CLASS. */
434
435 #define CLASS_MAX_NREGS(CLASS, MODE) \
436 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
437
438 /* A class that contains registers which the compiler must always
439 access in a mode that is the same size as the mode in which it
440 loaded the register. */
441 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
442
443 /* The letters I, J, K, L, M, N, O, P in a register constraint string
444 can be used to stand for particular ranges of immediate operands.
445 This macro defines what the ranges are.
446 C is the letter, and VALUE is a constant value.
447 Return 1 if VALUE is in the range specified by C. */
448
449 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
450 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
451
452 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
453 #define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
454 #define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
455 #define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
456 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 3)
457 #define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535)
458
459 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
460 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
461 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
462 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
463 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
464 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
465 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0)
466
467
468 /* Similar, but for floating constants, and defining letters G and H.
469 Here VALUE is the CONST_DOUBLE rtx itself.
470
471 `G' is a floating-point zero. */
472
473 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
474 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
475 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0)
476
477 \f
478 /* Stack layout; function entry, exit and calling. */
479
480 /* Define this if pushing a word on the stack
481 makes the stack pointer a smaller address. */
482
483 #define STACK_GROWS_DOWNWARD
484
485 /* Define this if the nominal address of the stack frame
486 is at the high-address end of the local variables;
487 that is, each additional local variable allocated
488 goes at a more negative offset in the frame. */
489
490 #define FRAME_GROWS_DOWNWARD
491
492 /* Offset within stack frame to start allocating local variables at.
493 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
494 first local allocated. Otherwise, it is the offset to the BEGINNING
495 of the first local allocated. */
496
497 #define STARTING_FRAME_OFFSET 0
498
499 /* Offset of first parameter from the argument pointer register value. */
500 /* Is equal to the size of the saved fp + pc, even if an fp isn't
501 saved since the value is used before we know. */
502
503 #define FIRST_PARM_OFFSET(FNDECL) 4
504
505 #define ELIMINABLE_REGS \
506 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
507 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
508 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
509
510 #define CAN_ELIMINATE(FROM, TO) 1
511
512 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
513 OFFSET = initial_offset (FROM, TO)
514
515 /* We can debug without frame pointers on the mn10300, so eliminate
516 them whenever possible. */
517 #define FRAME_POINTER_REQUIRED 0
518 #define CAN_DEBUG_WITHOUT_FP
519
520 /* Value is the number of bytes of arguments automatically
521 popped when returning from a subroutine call.
522 FUNDECL is the declaration node of the function (as a tree),
523 FUNTYPE is the data type of the function (as a tree),
524 or for a library call it is an identifier node for the subroutine name.
525 SIZE is the number of bytes of arguments passed on the stack. */
526
527 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
528
529 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
530 for a register flushback area. */
531 #define REG_PARM_STACK_SPACE(DECL) 8
532 #define OUTGOING_REG_PARM_STACK_SPACE
533 #define ACCUMULATE_OUTGOING_ARGS 1
534
535 /* So we can allocate space for return pointers once for the function
536 instead of around every call. */
537 #define STACK_POINTER_OFFSET 4
538
539 /* 1 if N is a possible register number for function argument passing.
540 On the MN10300, no registers are used in this way. */
541
542 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
543
544 \f
545 /* Define a data type for recording info about an argument list
546 during the scan of that argument list. This data type should
547 hold all necessary information about the function itself
548 and about the args processed so far, enough to enable macros
549 such as FUNCTION_ARG to determine where the next arg should go.
550
551 On the MN10300, this is a single integer, which is a number of bytes
552 of arguments scanned so far. */
553
554 #define CUMULATIVE_ARGS struct cum_arg
555 struct cum_arg {int nbytes; };
556
557 /* Initialize a variable CUM of type CUMULATIVE_ARGS
558 for a call to a function whose data type is FNTYPE.
559 For a library call, FNTYPE is 0.
560
561 On the MN10300, the offset starts at 0. */
562
563 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
564 ((CUM).nbytes = 0)
565
566 /* Update the data in CUM to advance over an argument
567 of mode MODE and data type TYPE.
568 (TYPE is null for libcalls where that information may not be available.) */
569
570 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
571 ((CUM).nbytes += ((MODE) != BLKmode \
572 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
573 : (int_size_in_bytes (TYPE) + 3) & ~3))
574
575 /* Define where to put the arguments to a function.
576 Value is zero to push the argument on the stack,
577 or a hard register in which to store the argument.
578
579 MODE is the argument's machine mode.
580 TYPE is the data type of the argument (as a tree).
581 This is null for libcalls where that information may
582 not be available.
583 CUM is a variable of type CUMULATIVE_ARGS which gives info about
584 the preceding args and about the function being called.
585 NAMED is nonzero if this argument is a named parameter
586 (otherwise it is an extra parameter matching an ellipsis). */
587
588 /* On the MN10300 all args are pushed. */
589
590 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
591 function_arg (&CUM, MODE, TYPE, NAMED)
592
593 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
594 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
595 \f
596 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
597 ((TYPE) && int_size_in_bytes (TYPE) > 8)
598
599 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
600 ((TYPE) && int_size_in_bytes (TYPE) > 8)
601
602 /* Define how to find the value returned by a function.
603 VALTYPE is the data type of the value (as a tree).
604 If the precise function being called is known, FUNC is its FUNCTION_DECL;
605 otherwise, FUNC is 0. */
606
607 #define FUNCTION_VALUE(VALTYPE, FUNC) \
608 gen_rtx_REG (TYPE_MODE (VALTYPE), POINTER_TYPE_P (VALTYPE) \
609 ? FIRST_ADDRESS_REGNUM : FIRST_DATA_REGNUM)
610
611 /* Define how to find the value returned by a library function
612 assuming the value has mode MODE. */
613
614 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
615
616 /* 1 if N is a possible register number for a function value. */
617
618 #define FUNCTION_VALUE_REGNO_P(N) \
619 ((N) == FIRST_DATA_REGNUM || (N) == FIRST_ADDRESS_REGNUM)
620
621 #define DEFAULT_PCC_STRUCT_RETURN 0
622
623 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
624 the stack pointer does not matter. The value is tested only in
625 functions that have frame pointers.
626 No definition is equivalent to always zero. */
627
628 #define EXIT_IGNORE_STACK 1
629
630 /* Output assembler code to FILE to increment profiler label # LABELNO
631 for profiling a function entry. */
632
633 #define FUNCTION_PROFILER(FILE, LABELNO) ;
634
635 #define TRAMPOLINE_TEMPLATE(FILE) \
636 do { \
637 fprintf (FILE, "\tadd -4,sp\n"); \
638 fprintf (FILE, "\t.long 0x0004fffa\n"); \
639 fprintf (FILE, "\tmov (0,sp),a0\n"); \
640 fprintf (FILE, "\tadd 4,sp\n"); \
641 fprintf (FILE, "\tmov (13,a0),a1\n"); \
642 fprintf (FILE, "\tmov (17,a0),a0\n"); \
643 fprintf (FILE, "\tjmp (a0)\n"); \
644 fprintf (FILE, "\t.long 0\n"); \
645 fprintf (FILE, "\t.long 0\n"); \
646 } while (0)
647
648 /* Length in units of the trampoline for entering a nested function. */
649
650 #define TRAMPOLINE_SIZE 0x1b
651
652 #define TRAMPOLINE_ALIGNMENT 32
653
654 /* Emit RTL insns to initialize the variable parts of a trampoline.
655 FNADDR is an RTX for the address of the function's pure code.
656 CXT is an RTX for the static chain value for the function. */
657
658 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
659 { \
660 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
661 (CXT)); \
662 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
663 (FNADDR)); \
664 }
665 /* A C expression whose value is RTL representing the value of the return
666 address for the frame COUNT steps up from the current frame.
667
668 On the mn10300, the return address is not at a constant location
669 due to the frame layout. Luckily, it is at a constant offset from
670 the argument pointer, so we define RETURN_ADDR_RTX to return a
671 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
672 with a reference to the stack/frame pointer + an appropriate offset. */
673
674 #define RETURN_ADDR_RTX(COUNT, FRAME) \
675 ((COUNT == 0) \
676 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
677 : (rtx) 0)
678
679 /* Implement `va_start' for varargs and stdarg. */
680 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
681 mn10300_va_start (valist, nextarg)
682
683 /* Implement `va_arg'. */
684 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
685 mn10300_va_arg (valist, type)
686
687 /* Addressing modes, and classification of registers for them. */
688
689 \f
690 /* 1 if X is an rtx for a constant that is a valid address. */
691
692 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
693
694 /* Extra constraints. */
695
696 #define OK_FOR_Q(OP) \
697 (GET_CODE (OP) == MEM && ! CONSTANT_ADDRESS_P (XEXP (OP, 0)))
698
699 #define OK_FOR_R(OP) \
700 (GET_CODE (OP) == MEM \
701 && GET_MODE (OP) == QImode \
702 && (CONSTANT_ADDRESS_P (XEXP (OP, 0)) \
703 || (GET_CODE (XEXP (OP, 0)) == REG \
704 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
705 && XEXP (OP, 0) != stack_pointer_rtx) \
706 || (GET_CODE (XEXP (OP, 0)) == PLUS \
707 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
708 && REG_OK_FOR_BIT_BASE_P (XEXP (XEXP (OP, 0), 0)) \
709 && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx \
710 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT \
711 && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1))))))
712
713 #define OK_FOR_T(OP) \
714 (GET_CODE (OP) == MEM \
715 && GET_MODE (OP) == QImode \
716 && (GET_CODE (XEXP (OP, 0)) == REG \
717 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
718 && XEXP (OP, 0) != stack_pointer_rtx))
719
720 #define EXTRA_CONSTRAINT(OP, C) \
721 ((C) == 'R' ? OK_FOR_R (OP) \
722 : (C) == 'Q' ? OK_FOR_Q (OP) \
723 : (C) == 'S' && flag_pic \
724 ? GET_CODE (OP) == UNSPEC && (XINT (OP, 1) == UNSPEC_PLT \
725 || XINT (OP, 1) == UNSPEC_PIC) \
726 : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF \
727 : (C) == 'T' ? OK_FOR_T (OP) \
728 : 0)
729
730 /* Maximum number of registers that can appear in a valid memory address. */
731
732 #define MAX_REGS_PER_ADDRESS 2
733
734 \f
735 #define HAVE_POST_INCREMENT (TARGET_AM33)
736
737 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
738 that is a valid memory address for an instruction.
739 The MODE argument is the machine mode for the MEM expression
740 that wants to use this address.
741
742 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
743 except for CONSTANT_ADDRESS_P which is actually
744 machine-independent.
745
746 On the mn10300, the value in the address register must be
747 in the same memory space/segment as the effective address.
748
749 This is problematical for reload since it does not understand
750 that base+index != index+base in a memory reference.
751
752 Note it is still possible to use reg+reg addressing modes,
753 it's just much more difficult. For a discussion of a possible
754 workaround and solution, see the comments in pa.c before the
755 function record_unscaled_index_insn_codes. */
756
757 /* Accept either REG or SUBREG where a register is valid. */
758
759 #define RTX_OK_FOR_BASE_P(X) \
760 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
761 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
762 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
763
764 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
765 { \
766 if (CONSTANT_ADDRESS_P (X) \
767 && (! flag_pic || legitimate_pic_operand_p (X))) \
768 goto ADDR; \
769 if (RTX_OK_FOR_BASE_P (X)) \
770 goto ADDR; \
771 if (TARGET_AM33 \
772 && GET_CODE (X) == POST_INC \
773 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
774 && (MODE == SImode || MODE == SFmode || MODE == HImode))\
775 goto ADDR; \
776 if (GET_CODE (X) == PLUS) \
777 { \
778 rtx base = 0, index = 0; \
779 if (REG_P (XEXP (X, 0)) \
780 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
781 base = XEXP (X, 0), index = XEXP (X, 1); \
782 if (REG_P (XEXP (X, 1)) \
783 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
784 base = XEXP (X, 1), index = XEXP (X, 0); \
785 if (base != 0 && index != 0) \
786 { \
787 if (GET_CODE (index) == CONST_INT) \
788 goto ADDR; \
789 if (GET_CODE (index) == CONST) \
790 goto ADDR; \
791 } \
792 } \
793 }
794
795 \f
796 /* Try machine-dependent ways of modifying an illegitimate address
797 to be legitimate. If we find one, return the new, valid address.
798 This macro is used in only one place: `memory_address' in explow.c.
799
800 OLDX is the address as it was before break_out_memory_refs was called.
801 In some cases it is useful to look at this to decide what needs to be done.
802
803 MODE and WIN are passed so that this macro can use
804 GO_IF_LEGITIMATE_ADDRESS.
805
806 It is always safe for this macro to do nothing. It exists to recognize
807 opportunities to optimize the output. */
808
809 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
810 { rtx orig_x = (X); \
811 (X) = legitimize_address (X, OLDX, MODE); \
812 if ((X) != orig_x && memory_address_p (MODE, X)) \
813 goto WIN; }
814
815 /* Go to LABEL if ADDR (a legitimate address expression)
816 has an effect that depends on the machine mode it is used for. */
817
818 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
819 if (GET_CODE (ADDR) == POST_INC) \
820 goto LABEL
821
822 /* Nonzero if the constant value X is a legitimate general operand.
823 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
824
825 #define LEGITIMATE_CONSTANT_P(X) 1
826
827 /* Zero if this needs fixing up to become PIC. */
828
829 #define LEGITIMATE_PIC_OPERAND_P(X) (legitimate_pic_operand_p (X))
830
831 /* Register to hold the addressing base for
832 position independent code access to data items. */
833 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
834
835 /* The name of the pseudo-symbol representing the Global Offset Table. */
836 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
837
838 #define SYMBOLIC_CONST_P(X) \
839 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
840 && ! LEGITIMATE_PIC_OPERAND_P (X))
841
842 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
843 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
844
845 /* Recognize machine-specific patterns that may appear within
846 constants. Used for PIC-specific UNSPECs. */
847 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
848 do \
849 if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
850 { \
851 switch (XINT ((X), 1)) \
852 { \
853 case UNSPEC_INT_LABEL: \
854 asm_fprintf ((STREAM), ".%LLIL%d", \
855 INTVAL (XVECEXP ((X), 0, 0))); \
856 break; \
857 case UNSPEC_PIC: \
858 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
859 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
860 break; \
861 case UNSPEC_GOT: \
862 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
863 fputs ("@GOT", (STREAM)); \
864 break; \
865 case UNSPEC_GOTOFF: \
866 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
867 fputs ("@GOTOFF", (STREAM)); \
868 break; \
869 case UNSPEC_PLT: \
870 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
871 fputs ("@PLT", (STREAM)); \
872 break; \
873 default: \
874 goto FAIL; \
875 } \
876 break; \
877 } \
878 else \
879 goto FAIL; \
880 while (0)
881 \f
882 /* Tell final.c how to eliminate redundant test instructions. */
883
884 /* Here we define machine-dependent flags and fields in cc_status
885 (see `conditions.h'). No extra ones are needed for the VAX. */
886
887 /* Store in cc_status the expressions
888 that the condition codes will describe
889 after execution of an instruction whose pattern is EXP.
890 Do not alter them if the instruction would not alter the cc's. */
891
892 #define CC_OVERFLOW_UNUSABLE 0x200
893 #define CC_NO_CARRY CC_NO_OVERFLOW
894 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
895
896 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
897 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
898 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
899 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
900 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
901 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
902 ! TARGET_AM33 ? 6 : \
903 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
904 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
905 (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
906 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
907 4)
908
909 /* Nonzero if access to memory by bytes or half words is no faster
910 than accessing full words. */
911 #define SLOW_BYTE_ACCESS 1
912
913 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
914 and readonly data size. So we crank up the case threshold value to
915 encourage a series of if/else comparisons to implement many small switch
916 statements. In theory, this value could be increased much more if we
917 were solely optimizing for space, but we keep it "reasonable" to avoid
918 serious code efficiency lossage. */
919 #define CASE_VALUES_THRESHOLD 6
920
921 #define NO_FUNCTION_CSE
922
923 /* According expr.c, a value of around 6 should minimize code size, and
924 for the MN10300 series, that's our primary concern. */
925 #define MOVE_RATIO 6
926
927 #define TEXT_SECTION_ASM_OP "\t.section .text"
928 #define DATA_SECTION_ASM_OP "\t.section .data"
929 #define BSS_SECTION_ASM_OP "\t.section .bss"
930
931 #define ASM_COMMENT_START "#"
932
933 /* Output to assembler file text saying following lines
934 may contain character constants, extra white space, comments, etc. */
935
936 #define ASM_APP_ON "#APP\n"
937
938 /* Output to assembler file text saying following lines
939 no longer contain unusual constructs. */
940
941 #define ASM_APP_OFF "#NO_APP\n"
942
943 /* This says how to output the assembler to define a global
944 uninitialized but not common symbol.
945 Try to use asm_output_bss to implement this macro. */
946
947 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
948 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
949
950 /* Globalizing directive for a label. */
951 #define GLOBAL_ASM_OP "\t.global "
952
953 /* This is how to output a reference to a user-level label named NAME.
954 `assemble_name' uses this. */
955
956 #undef ASM_OUTPUT_LABELREF
957 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
958 fprintf (FILE, "_%s", (*targetm.strip_name_encoding) (NAME))
959
960 #define ASM_PN_FORMAT "%s___%lu"
961
962 /* This is how we tell the assembler that two symbols have the same value. */
963
964 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
965 do { assemble_name(FILE, NAME1); \
966 fputs(" = ", FILE); \
967 assemble_name(FILE, NAME2); \
968 fputc('\n', FILE); } while (0)
969
970
971 /* How to refer to registers in assembler output.
972 This sequence is indexed by compiler's hard-register-number (see above). */
973
974 #define REGISTER_NAMES \
975 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
976 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
977 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
978 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
979 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
980 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
981 }
982
983 #define ADDITIONAL_REGISTER_NAMES \
984 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
985 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
986 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
987 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
988 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
989 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
990 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
991 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
992 }
993
994 /* Print an instruction operand X on file FILE.
995 look in mn10300.c for details */
996
997 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
998
999 /* Print a memory operand whose address is X, on file FILE.
1000 This uses a function in output-vax.c. */
1001
1002 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1003
1004 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
1005 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
1006
1007 /* This is how to output an element of a case-vector that is absolute. */
1008
1009 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1010 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
1011
1012 /* This is how to output an element of a case-vector that is relative. */
1013
1014 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1015 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
1016
1017 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1018 if ((LOG) != 0) \
1019 fprintf (FILE, "\t.align %d\n", (LOG))
1020
1021 /* We don't have to worry about dbx compatibility for the mn10300. */
1022 #define DEFAULT_GDB_EXTENSIONS 1
1023
1024 /* Use dwarf2 debugging info by default. */
1025 #undef PREFERRED_DEBUGGING_TYPE
1026 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1027
1028 #define DWARF2_ASM_LINE_DEBUG_INFO 1
1029
1030 /* GDB always assumes the current function's frame begins at the value
1031 of the stack pointer upon entry to the current function. Accessing
1032 local variables and parameters passed on the stack is done using the
1033 base of the frame + an offset provided by GCC.
1034
1035 For functions which have frame pointers this method works fine;
1036 the (frame pointer) == (stack pointer at function entry) and GCC provides
1037 an offset relative to the frame pointer.
1038
1039 This loses for functions without a frame pointer; GCC provides an offset
1040 which is relative to the stack pointer after adjusting for the function's
1041 frame size. GDB would prefer the offset to be relative to the value of
1042 the stack pointer at the function's entry. Yuk! */
1043 #define DEBUGGER_AUTO_OFFSET(X) \
1044 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
1045 + (frame_pointer_needed \
1046 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1047
1048 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1049 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
1050 + (frame_pointer_needed \
1051 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1052
1053 /* Specify the machine mode that this machine uses
1054 for the index in the tablejump instruction. */
1055 #define CASE_VECTOR_MODE Pmode
1056
1057 /* Define if operations between registers always perform the operation
1058 on the full register even if a narrower mode is specified. */
1059 #define WORD_REGISTER_OPERATIONS
1060
1061 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1062
1063 /* This flag, if defined, says the same insns that convert to a signed fixnum
1064 also convert validly to an unsigned one. */
1065 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1066
1067 /* Max number of bytes we can move from memory to memory
1068 in one reasonably fast instruction. */
1069 #define MOVE_MAX 4
1070
1071 /* Define if shifts truncate the shift count
1072 which implies one can omit a sign-extension or zero-extension
1073 of a shift count. */
1074 #define SHIFT_COUNT_TRUNCATED 1
1075
1076 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1077 is done just by pretending it is already truncated. */
1078 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1079
1080 /* Specify the machine mode that pointers have.
1081 After generation of rtl, the compiler makes no further distinction
1082 between pointers and any other objects of this machine mode. */
1083 #define Pmode SImode
1084
1085 /* A function address in a call instruction
1086 is a byte address (for indexing purposes)
1087 so give the MEM rtx a byte's mode. */
1088 #define FUNCTION_MODE QImode
1089
1090 /* The assembler op to get a word. */
1091
1092 #define FILE_ASM_OP "\t.file\n"
1093
1094 #define PREDICATE_CODES \
1095 {"const_1f_operand", {CONST_INT, CONST_DOUBLE}}, \
1096 {"const_8bit_operand", {CONST_INT}}, \
1097 {"call_address_operand", {SYMBOL_REF, REG, UNSPEC}},
1098
1099 typedef struct mn10300_cc_status_mdep
1100 {
1101 int fpCC;
1102 }
1103 cc_status_mdep;
1104
1105 #define CC_STATUS_MDEP cc_status_mdep
1106
1107 #define CC_STATUS_MDEP_INIT (cc_status.mdep.fpCC = 0)