]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10300/mn10300.h
[multiple changes]
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2007 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 #undef ASM_SPEC
25 #undef LIB_SPEC
26 #undef ENDFILE_SPEC
27 #undef LINK_SPEC
28 #define LINK_SPEC "%{mrelax:--relax}"
29 #undef STARTFILE_SPEC
30 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
31
32 /* Names to predefine in the preprocessor for this target machine. */
33
34 #define TARGET_CPU_CPP_BUILTINS() \
35 do \
36 { \
37 builtin_define ("__mn10300__"); \
38 builtin_define ("__MN10300__"); \
39 builtin_assert ("cpu=mn10300"); \
40 builtin_assert ("machine=mn10300"); \
41 } \
42 while (0)
43
44 #define CPP_SPEC "%{mam33:-D__AM33__} %{mam33-2:-D__AM33__=2 -D__AM33_2__}"
45
46 extern GTY(()) int mn10300_unspec_int_label_counter;
47
48 enum processor_type {
49 PROCESSOR_MN10300,
50 PROCESSOR_AM33,
51 PROCESSOR_AM33_2
52 };
53
54 extern enum processor_type mn10300_processor;
55
56 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
57 #define TARGET_AM33_2 (mn10300_processor == PROCESSOR_AM33_2)
58
59 #ifndef PROCESSOR_DEFAULT
60 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
61 #endif
62
63 #define OVERRIDE_OPTIONS mn10300_override_options ()
64
65 /* Print subsidiary information on the compiler version in use. */
66
67 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
68
69 \f
70 /* Target machine storage layout */
71
72 /* Define this if most significant bit is lowest numbered
73 in instructions that operate on numbered bit-fields.
74 This is not true on the Matsushita MN1003. */
75 #define BITS_BIG_ENDIAN 0
76
77 /* Define this if most significant byte of a word is the lowest numbered. */
78 /* This is not true on the Matsushita MN10300. */
79 #define BYTES_BIG_ENDIAN 0
80
81 /* Define this if most significant word of a multiword number is lowest
82 numbered.
83 This is not true on the Matsushita MN10300. */
84 #define WORDS_BIG_ENDIAN 0
85
86 /* Width of a word, in units (bytes). */
87 #define UNITS_PER_WORD 4
88
89 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
90 #define PARM_BOUNDARY 32
91
92 /* The stack goes in 32-bit lumps. */
93 #define STACK_BOUNDARY 32
94
95 /* Allocation boundary (in *bits*) for the code of a function.
96 8 is the minimum boundary; it's unclear if bigger alignments
97 would improve performance. */
98 #define FUNCTION_BOUNDARY 8
99
100 /* No data type wants to be aligned rounder than this. */
101 #define BIGGEST_ALIGNMENT 32
102
103 /* Alignment of field after `int : 0' in a structure. */
104 #define EMPTY_FIELD_BOUNDARY 32
105
106 /* Define this if move instructions will actually fail to work
107 when given unaligned data. */
108 #define STRICT_ALIGNMENT 1
109
110 /* Define this as 1 if `char' should by default be signed; else as 0. */
111 #define DEFAULT_SIGNED_CHAR 0
112 \f
113 /* Standard register usage. */
114
115 /* Number of actual hardware registers.
116 The hardware registers are assigned numbers for the compiler
117 from 0 to just below FIRST_PSEUDO_REGISTER.
118
119 All registers that the compiler knows about must be given numbers,
120 even those that are not normally considered general registers. */
121
122 #define FIRST_PSEUDO_REGISTER 50
123
124 /* Specify machine-specific register numbers. */
125 #define FIRST_DATA_REGNUM 0
126 #define LAST_DATA_REGNUM 3
127 #define FIRST_ADDRESS_REGNUM 4
128 #define LAST_ADDRESS_REGNUM 8
129 #define FIRST_EXTENDED_REGNUM 10
130 #define LAST_EXTENDED_REGNUM 17
131 #define FIRST_FP_REGNUM 18
132 #define LAST_FP_REGNUM 49
133
134 /* Specify the registers used for certain standard purposes.
135 The values of these macros are register numbers. */
136
137 /* Register to use for pushing function arguments. */
138 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM+1)
139
140 /* Base register for access to local variables of the function. */
141 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM-1)
142
143 /* Base register for access to arguments of the function. This
144 is a fake register and will be eliminated into either the frame
145 pointer or stack pointer. */
146 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
147
148 /* Register in which static-chain is passed to a function. */
149 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM+1)
150
151 /* 1 for registers that have pervasive standard uses
152 and are not available for the register allocator. */
153
154 #define FIXED_REGISTERS \
155 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
156 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
157 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
158 }
159
160 /* 1 for registers not available across function calls.
161 These must include the FIXED_REGISTERS and also any
162 registers that can be used without being saved.
163 The latter must include the registers where values are returned
164 and the register where structure-value addresses are passed.
165 Aside from that, you can include as many other registers as you
166 like. */
167
168 #define CALL_USED_REGISTERS \
169 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
170 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
171 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
172 }
173
174 #define REG_ALLOC_ORDER \
175 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
176 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
177 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 \
178 }
179
180 #define CONDITIONAL_REGISTER_USAGE \
181 { \
182 unsigned int i; \
183 \
184 if (!TARGET_AM33) \
185 { \
186 for (i = FIRST_EXTENDED_REGNUM; \
187 i <= LAST_EXTENDED_REGNUM; i++) \
188 fixed_regs[i] = call_used_regs[i] = 1; \
189 } \
190 if (!TARGET_AM33_2) \
191 { \
192 for (i = FIRST_FP_REGNUM; \
193 i <= LAST_FP_REGNUM; \
194 i++) \
195 fixed_regs[i] = call_used_regs[i] = 1; \
196 } \
197 if (flag_pic) \
198 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = \
199 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;\
200 }
201
202 /* Return number of consecutive hard regs needed starting at reg REGNO
203 to hold something of mode MODE.
204
205 This is ordinarily the length in words of a value of mode MODE
206 but can be less for certain modes in special long registers. */
207
208 #define HARD_REGNO_NREGS(REGNO, MODE) \
209 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
210
211 /* Value is 1 if hard register REGNO can hold a value of machine-mode
212 MODE. */
213
214 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
215 ((REGNO_REG_CLASS (REGNO) == DATA_REGS \
216 || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
217 || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
218 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
219 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
220
221 /* Value is 1 if it is a good idea to tie two pseudo registers
222 when one has mode MODE1 and one has mode MODE2.
223 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
224 for any hard reg, then this must be 0 for correct output. */
225 #define MODES_TIEABLE_P(MODE1, MODE2) \
226 (TARGET_AM33 \
227 || MODE1 == MODE2 \
228 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
229
230 /* 4 data, and effectively 3 address registers is small as far as I'm
231 concerned. */
232 #define SMALL_REGISTER_CLASSES 1
233 \f
234 /* Define the classes of registers for register constraints in the
235 machine description. Also define ranges of constants.
236
237 One of the classes must always be named ALL_REGS and include all hard regs.
238 If there is more than one class, another class must be named NO_REGS
239 and contain no registers.
240
241 The name GENERAL_REGS must be the name of a class (or an alias for
242 another name such as ALL_REGS). This is the class of registers
243 that is allowed by "g" or "r" in a register constraint.
244 Also, registers outside this class are allocated only when
245 instructions express preferences for them.
246
247 The classes must be numbered in nondecreasing order; that is,
248 a larger-numbered class must never be contained completely
249 in a smaller-numbered class.
250
251 For any two classes, it is very desirable that there be another
252 class that represents their union. */
253
254 enum reg_class {
255 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
256 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
257 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
258 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
259 FP_REGS, FP_ACC_REGS,
260 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
261 };
262
263 #define N_REG_CLASSES (int) LIM_REG_CLASSES
264
265 /* Give names of register classes as strings for dump file. */
266
267 #define REG_CLASS_NAMES \
268 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
269 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
270 "EXTENDED_REGS", \
271 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
272 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
273 "FP_REGS", "FP_ACC_REGS", \
274 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
275
276 /* Define which registers fit in which classes.
277 This is an initializer for a vector of HARD_REG_SET
278 of length N_REG_CLASSES. */
279
280 #define REG_CLASS_CONTENTS \
281 { { 0, 0 }, /* No regs */ \
282 { 0x0000f, 0 }, /* DATA_REGS */ \
283 { 0x001f0, 0 }, /* ADDRESS_REGS */ \
284 { 0x00200, 0 }, /* SP_REGS */ \
285 { 0x001ff, 0 }, /* DATA_OR_ADDRESS_REGS */\
286 { 0x003f0, 0 }, /* SP_OR_ADDRESS_REGS */\
287 { 0x3fc00, 0 }, /* EXTENDED_REGS */ \
288 { 0x3fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \
289 { 0x3fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \
290 { 0x3fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \
291 { 0x3fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
292 { 0xfffc0000, 0x3ffff }, /* FP_REGS */ \
293 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
294 { 0x3fdff, 0 }, /* GENERAL_REGS */ \
295 { 0xffffffff, 0x3ffff } /* ALL_REGS */ \
296 }
297
298 /* The following macro defines cover classes for Integrated Register
299 Allocator. Cover classes is a set of non-intersected register
300 classes covering all hard registers used for register allocation
301 purpose. Any move between two registers of a cover class should be
302 cheaper than load or store of the registers. The macro value is
303 array of register classes with LIM_REG_CLASSES used as the end
304 marker. */
305
306 #define IRA_COVER_CLASSES \
307 { \
308 GENERAL_REGS, FP_REGS, LIM_REG_CLASSES \
309 }
310
311 /* The same information, inverted:
312 Return the class number of the smallest class containing
313 reg number REGNO. This could be a conditional expression
314 or could index an array. */
315
316 #define REGNO_REG_CLASS(REGNO) \
317 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
318 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
319 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
320 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
321 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
322 NO_REGS)
323
324 /* The class value for index registers, and the one for base regs. */
325 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
326 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
327
328 /* Macros to check register numbers against specific register classes. */
329
330 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
331 and check its validity for a certain class.
332 We have two alternate definitions for each of them.
333 The usual definition accepts all pseudo regs; the other rejects
334 them unless they have been allocated suitable hard regs.
335 The symbol REG_OK_STRICT causes the latter definition to be used.
336
337 Most source files want to accept pseudo regs in the hope that
338 they will get allocated to the class that the insn wants them to be in.
339 Source files for reload pass need to be strict.
340 After reload, it makes no difference, since pseudo regs have
341 been eliminated by then. */
342
343 /* These assume that REGNO is a hard or pseudo reg number.
344 They give nonzero only if REGNO is a hard reg of the suitable class
345 or a pseudo reg currently allocated to a suitable hard reg.
346 Since they use reg_renumber, they are safe only once reg_renumber
347 has been allocated, which happens in local-alloc.c. */
348
349 #ifndef REG_OK_STRICT
350 # define REG_STRICT 0
351 #else
352 # define REG_STRICT 1
353 #endif
354
355 # define REGNO_IN_RANGE_P(regno,min,max,strict) \
356 (IN_RANGE ((regno), (min), (max)) \
357 || ((strict) \
358 ? (reg_renumber \
359 && reg_renumber[(regno)] >= (min) \
360 && reg_renumber[(regno)] <= (max)) \
361 : (regno) >= FIRST_PSEUDO_REGISTER))
362
363 #define REGNO_DATA_P(regno, strict) \
364 (REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM, \
365 (strict)))
366 #define REGNO_ADDRESS_P(regno, strict) \
367 (REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM, \
368 (strict)))
369 #define REGNO_SP_P(regno, strict) \
370 (REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, \
371 (strict)))
372 #define REGNO_EXTENDED_P(regno, strict) \
373 (REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM, \
374 (strict)))
375 #define REGNO_AM33_P(regno, strict) \
376 (REGNO_DATA_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)) \
377 || REGNO_EXTENDED_P ((regno), (strict)))
378 #define REGNO_FP_P(regno, strict) \
379 (REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM, (strict)))
380
381 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
382 (REGNO_SP_P ((regno), (strict)) \
383 || REGNO_ADDRESS_P ((regno), (strict)) \
384 || REGNO_EXTENDED_P ((regno), (strict)))
385 #define REGNO_OK_FOR_BASE_P(regno) \
386 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
387 #define REG_OK_FOR_BASE_P(X) \
388 (REGNO_OK_FOR_BASE_P (REGNO (X)))
389
390 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
391 (REGNO_SP_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)))
392 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
393 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
394 #define REG_OK_FOR_BIT_BASE_P(X) \
395 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
396
397 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
398 (REGNO_DATA_P ((regno), (strict)) || REGNO_EXTENDED_P ((regno), (strict)))
399 #define REGNO_OK_FOR_INDEX_P(regno) \
400 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
401 #define REG_OK_FOR_INDEX_P(X) \
402 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
403
404 /* Given an rtx X being reloaded into a reg required to be
405 in class CLASS, return the class of reg to actually use.
406 In general this is just CLASS; but on some machines
407 in some cases it is preferable to use a more restrictive class. */
408
409 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
410 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
411 ? ADDRESS_OR_EXTENDED_REGS \
412 : (GET_CODE (X) == MEM \
413 || (GET_CODE (X) == REG \
414 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
415 || (GET_CODE (X) == SUBREG \
416 && GET_CODE (SUBREG_REG (X)) == REG \
417 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
418 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
419 : (CLASS)))
420
421 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
422 (X == stack_pointer_rtx && CLASS != SP_REGS \
423 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
424
425 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
426 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
427
428 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
429 mn10300_secondary_reload_class(CLASS,MODE,IN)
430
431 /* Return the maximum number of consecutive registers
432 needed to represent mode MODE in a register of class CLASS. */
433
434 #define CLASS_MAX_NREGS(CLASS, MODE) \
435 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
436
437 /* A class that contains registers which the compiler must always
438 access in a mode that is the same size as the mode in which it
439 loaded the register. */
440 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
441
442 /* Return 1 if VALUE is in the range specified. */
443
444 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
445 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
446
447 \f
448 /* Stack layout; function entry, exit and calling. */
449
450 /* Define this if pushing a word on the stack
451 makes the stack pointer a smaller address. */
452
453 #define STACK_GROWS_DOWNWARD
454
455 /* Define this to nonzero if the nominal address of the stack frame
456 is at the high-address end of the local variables;
457 that is, each additional local variable allocated
458 goes at a more negative offset in the frame. */
459
460 #define FRAME_GROWS_DOWNWARD 1
461
462 /* Offset within stack frame to start allocating local variables at.
463 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
464 first local allocated. Otherwise, it is the offset to the BEGINNING
465 of the first local allocated. */
466
467 #define STARTING_FRAME_OFFSET 0
468
469 /* Offset of first parameter from the argument pointer register value. */
470 /* Is equal to the size of the saved fp + pc, even if an fp isn't
471 saved since the value is used before we know. */
472
473 #define FIRST_PARM_OFFSET(FNDECL) 4
474
475 #define ELIMINABLE_REGS \
476 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
477 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
478 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
479
480 #define CAN_ELIMINATE(FROM, TO) 1
481
482 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
483 OFFSET = initial_offset (FROM, TO)
484
485 /* We can debug without frame pointers on the mn10300, so eliminate
486 them whenever possible. */
487 #define FRAME_POINTER_REQUIRED 0
488 #define CAN_DEBUG_WITHOUT_FP
489
490 /* Value is the number of bytes of arguments automatically
491 popped when returning from a subroutine call.
492 FUNDECL is the declaration node of the function (as a tree),
493 FUNTYPE is the data type of the function (as a tree),
494 or for a library call it is an identifier node for the subroutine name.
495 SIZE is the number of bytes of arguments passed on the stack. */
496
497 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
498
499 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
500 for a register flushback area. */
501 #define REG_PARM_STACK_SPACE(DECL) 8
502 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
503 #define ACCUMULATE_OUTGOING_ARGS 1
504
505 /* So we can allocate space for return pointers once for the function
506 instead of around every call. */
507 #define STACK_POINTER_OFFSET 4
508
509 /* 1 if N is a possible register number for function argument passing.
510 On the MN10300, no registers are used in this way. */
511
512 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
513
514 \f
515 /* Define a data type for recording info about an argument list
516 during the scan of that argument list. This data type should
517 hold all necessary information about the function itself
518 and about the args processed so far, enough to enable macros
519 such as FUNCTION_ARG to determine where the next arg should go.
520
521 On the MN10300, this is a single integer, which is a number of bytes
522 of arguments scanned so far. */
523
524 #define CUMULATIVE_ARGS struct cum_arg
525 struct cum_arg {int nbytes; };
526
527 /* Initialize a variable CUM of type CUMULATIVE_ARGS
528 for a call to a function whose data type is FNTYPE.
529 For a library call, FNTYPE is 0.
530
531 On the MN10300, the offset starts at 0. */
532
533 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
534 ((CUM).nbytes = 0)
535
536 /* Update the data in CUM to advance over an argument
537 of mode MODE and data type TYPE.
538 (TYPE is null for libcalls where that information may not be available.) */
539
540 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
541 ((CUM).nbytes += ((MODE) != BLKmode \
542 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
543 : (int_size_in_bytes (TYPE) + 3) & ~3))
544
545 /* Define where to put the arguments to a function.
546 Value is zero to push the argument on the stack,
547 or a hard register in which to store the argument.
548
549 MODE is the argument's machine mode.
550 TYPE is the data type of the argument (as a tree).
551 This is null for libcalls where that information may
552 not be available.
553 CUM is a variable of type CUMULATIVE_ARGS which gives info about
554 the preceding args and about the function being called.
555 NAMED is nonzero if this argument is a named parameter
556 (otherwise it is an extra parameter matching an ellipsis). */
557
558 /* On the MN10300 all args are pushed. */
559
560 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
561 function_arg (&CUM, MODE, TYPE, NAMED)
562
563 /* Define how to find the value returned by a function.
564 VALTYPE is the data type of the value (as a tree).
565 If the precise function being called is known, FUNC is its FUNCTION_DECL;
566 otherwise, FUNC is 0. */
567
568 #define FUNCTION_VALUE(VALTYPE, FUNC) \
569 mn10300_function_value (VALTYPE, FUNC, 0)
570 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
571 mn10300_function_value (VALTYPE, FUNC, 1)
572
573 /* Define how to find the value returned by a library function
574 assuming the value has mode MODE. */
575
576 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
577
578 /* 1 if N is a possible register number for a function value. */
579
580 #define FUNCTION_VALUE_REGNO_P(N) \
581 ((N) == FIRST_DATA_REGNUM || (N) == FIRST_ADDRESS_REGNUM)
582
583 #define DEFAULT_PCC_STRUCT_RETURN 0
584
585 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
586 the stack pointer does not matter. The value is tested only in
587 functions that have frame pointers.
588 No definition is equivalent to always zero. */
589
590 #define EXIT_IGNORE_STACK 1
591
592 /* Output assembler code to FILE to increment profiler label # LABELNO
593 for profiling a function entry. */
594
595 #define FUNCTION_PROFILER(FILE, LABELNO) ;
596
597 #define TRAMPOLINE_TEMPLATE(FILE) \
598 do { \
599 fprintf (FILE, "\tadd -4,sp\n"); \
600 fprintf (FILE, "\t.long 0x0004fffa\n"); \
601 fprintf (FILE, "\tmov (0,sp),a0\n"); \
602 fprintf (FILE, "\tadd 4,sp\n"); \
603 fprintf (FILE, "\tmov (13,a0),a1\n"); \
604 fprintf (FILE, "\tmov (17,a0),a0\n"); \
605 fprintf (FILE, "\tjmp (a0)\n"); \
606 fprintf (FILE, "\t.long 0\n"); \
607 fprintf (FILE, "\t.long 0\n"); \
608 } while (0)
609
610 /* Length in units of the trampoline for entering a nested function. */
611
612 #define TRAMPOLINE_SIZE 0x1b
613
614 #define TRAMPOLINE_ALIGNMENT 32
615
616 /* Emit RTL insns to initialize the variable parts of a trampoline.
617 FNADDR is an RTX for the address of the function's pure code.
618 CXT is an RTX for the static chain value for the function. */
619
620 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
621 { \
622 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
623 (CXT)); \
624 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
625 (FNADDR)); \
626 }
627 /* A C expression whose value is RTL representing the value of the return
628 address for the frame COUNT steps up from the current frame.
629
630 On the mn10300, the return address is not at a constant location
631 due to the frame layout. Luckily, it is at a constant offset from
632 the argument pointer, so we define RETURN_ADDR_RTX to return a
633 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
634 with a reference to the stack/frame pointer + an appropriate offset. */
635
636 #define RETURN_ADDR_RTX(COUNT, FRAME) \
637 ((COUNT == 0) \
638 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
639 : (rtx) 0)
640 \f
641 /* 1 if X is an rtx for a constant that is a valid address. */
642
643 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
644
645 /* Maximum number of registers that can appear in a valid memory address. */
646
647 #define MAX_REGS_PER_ADDRESS 2
648
649 \f
650 #define HAVE_POST_INCREMENT (TARGET_AM33)
651
652 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
653 that is a valid memory address for an instruction.
654 The MODE argument is the machine mode for the MEM expression
655 that wants to use this address.
656
657 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
658 except for CONSTANT_ADDRESS_P which is actually
659 machine-independent.
660
661 On the mn10300, the value in the address register must be
662 in the same memory space/segment as the effective address.
663
664 This is problematical for reload since it does not understand
665 that base+index != index+base in a memory reference.
666
667 Note it is still possible to use reg+reg addressing modes,
668 it's just much more difficult. For a discussion of a possible
669 workaround and solution, see the comments in pa.c before the
670 function record_unscaled_index_insn_codes. */
671
672 /* Accept either REG or SUBREG where a register is valid. */
673
674 #define RTX_OK_FOR_BASE_P(X, strict) \
675 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
676 (strict))) \
677 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
678 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
679 (strict))))
680
681 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
682 do \
683 { \
684 if (legitimate_address_p ((MODE), (X), REG_STRICT)) \
685 goto ADDR; \
686 } \
687 while (0)
688
689 \f
690 /* Try machine-dependent ways of modifying an illegitimate address
691 to be legitimate. If we find one, return the new, valid address.
692 This macro is used in only one place: `memory_address' in explow.c.
693
694 OLDX is the address as it was before break_out_memory_refs was called.
695 In some cases it is useful to look at this to decide what needs to be done.
696
697 MODE and WIN are passed so that this macro can use
698 GO_IF_LEGITIMATE_ADDRESS.
699
700 It is always safe for this macro to do nothing. It exists to recognize
701 opportunities to optimize the output. */
702
703 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
704 { rtx orig_x = (X); \
705 (X) = legitimize_address (X, OLDX, MODE); \
706 if ((X) != orig_x && memory_address_p (MODE, X)) \
707 goto WIN; }
708
709 /* Go to LABEL if ADDR (a legitimate address expression)
710 has an effect that depends on the machine mode it is used for. */
711
712 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
713
714 /* Nonzero if the constant value X is a legitimate general operand.
715 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
716
717 #define LEGITIMATE_CONSTANT_P(X) 1
718
719 /* Zero if this needs fixing up to become PIC. */
720
721 #define LEGITIMATE_PIC_OPERAND_P(X) (legitimate_pic_operand_p (X))
722
723 /* Register to hold the addressing base for
724 position independent code access to data items. */
725 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
726
727 /* The name of the pseudo-symbol representing the Global Offset Table. */
728 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
729
730 #define SYMBOLIC_CONST_P(X) \
731 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
732 && ! LEGITIMATE_PIC_OPERAND_P (X))
733
734 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
735 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
736
737 /* Recognize machine-specific patterns that may appear within
738 constants. Used for PIC-specific UNSPECs. */
739 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
740 do \
741 if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
742 { \
743 switch (XINT ((X), 1)) \
744 { \
745 case UNSPEC_INT_LABEL: \
746 asm_fprintf ((STREAM), ".%LLIL" HOST_WIDE_INT_PRINT_DEC, \
747 INTVAL (XVECEXP ((X), 0, 0))); \
748 break; \
749 case UNSPEC_PIC: \
750 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
751 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
752 break; \
753 case UNSPEC_GOT: \
754 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
755 fputs ("@GOT", (STREAM)); \
756 break; \
757 case UNSPEC_GOTOFF: \
758 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
759 fputs ("@GOTOFF", (STREAM)); \
760 break; \
761 case UNSPEC_PLT: \
762 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
763 fputs ("@PLT", (STREAM)); \
764 break; \
765 default: \
766 goto FAIL; \
767 } \
768 break; \
769 } \
770 else \
771 goto FAIL; \
772 while (0)
773 \f
774 /* Tell final.c how to eliminate redundant test instructions. */
775
776 /* Here we define machine-dependent flags and fields in cc_status
777 (see `conditions.h'). No extra ones are needed for the VAX. */
778
779 /* Store in cc_status the expressions
780 that the condition codes will describe
781 after execution of an instruction whose pattern is EXP.
782 Do not alter them if the instruction would not alter the cc's. */
783
784 #define CC_OVERFLOW_UNUSABLE 0x200
785 #define CC_NO_CARRY CC_NO_OVERFLOW
786 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
787
788 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
789 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
790 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
791 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
792 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
793 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
794 ! TARGET_AM33 ? 6 : \
795 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
796 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
797 (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
798 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
799 4)
800
801 /* Nonzero if access to memory by bytes or half words is no faster
802 than accessing full words. */
803 #define SLOW_BYTE_ACCESS 1
804
805 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
806 and readonly data size. So we crank up the case threshold value to
807 encourage a series of if/else comparisons to implement many small switch
808 statements. In theory, this value could be increased much more if we
809 were solely optimizing for space, but we keep it "reasonable" to avoid
810 serious code efficiency lossage. */
811 #define CASE_VALUES_THRESHOLD 6
812
813 #define NO_FUNCTION_CSE
814
815 /* According expr.c, a value of around 6 should minimize code size, and
816 for the MN10300 series, that's our primary concern. */
817 #define MOVE_RATIO 6
818
819 #define TEXT_SECTION_ASM_OP "\t.section .text"
820 #define DATA_SECTION_ASM_OP "\t.section .data"
821 #define BSS_SECTION_ASM_OP "\t.section .bss"
822
823 #define ASM_COMMENT_START "#"
824
825 /* Output to assembler file text saying following lines
826 may contain character constants, extra white space, comments, etc. */
827
828 #define ASM_APP_ON "#APP\n"
829
830 /* Output to assembler file text saying following lines
831 no longer contain unusual constructs. */
832
833 #define ASM_APP_OFF "#NO_APP\n"
834
835 /* This says how to output the assembler to define a global
836 uninitialized but not common symbol.
837 Try to use asm_output_bss to implement this macro. */
838
839 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
840 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
841
842 /* Globalizing directive for a label. */
843 #define GLOBAL_ASM_OP "\t.global "
844
845 /* This is how to output a reference to a user-level label named NAME.
846 `assemble_name' uses this. */
847
848 #undef ASM_OUTPUT_LABELREF
849 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
850 fprintf (FILE, "_%s", (*targetm.strip_name_encoding) (NAME))
851
852 #define ASM_PN_FORMAT "%s___%lu"
853
854 /* This is how we tell the assembler that two symbols have the same value. */
855
856 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
857 do { assemble_name(FILE, NAME1); \
858 fputs(" = ", FILE); \
859 assemble_name(FILE, NAME2); \
860 fputc('\n', FILE); } while (0)
861
862
863 /* How to refer to registers in assembler output.
864 This sequence is indexed by compiler's hard-register-number (see above). */
865
866 #define REGISTER_NAMES \
867 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
868 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
869 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
870 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
871 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
872 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
873 }
874
875 #define ADDITIONAL_REGISTER_NAMES \
876 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
877 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
878 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
879 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
880 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
881 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
882 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
883 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
884 }
885
886 /* Print an instruction operand X on file FILE.
887 look in mn10300.c for details */
888
889 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
890
891 /* Print a memory operand whose address is X, on file FILE.
892 This uses a function in output-vax.c. */
893
894 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
895
896 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
897 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
898
899 /* This is how to output an element of a case-vector that is absolute. */
900
901 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
902 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
903
904 /* This is how to output an element of a case-vector that is relative. */
905
906 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
907 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
908
909 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
910 if ((LOG) != 0) \
911 fprintf (FILE, "\t.align %d\n", (LOG))
912
913 /* We don't have to worry about dbx compatibility for the mn10300. */
914 #define DEFAULT_GDB_EXTENSIONS 1
915
916 /* Use dwarf2 debugging info by default. */
917 #undef PREFERRED_DEBUGGING_TYPE
918 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
919
920 #define DWARF2_ASM_LINE_DEBUG_INFO 1
921
922 /* GDB always assumes the current function's frame begins at the value
923 of the stack pointer upon entry to the current function. Accessing
924 local variables and parameters passed on the stack is done using the
925 base of the frame + an offset provided by GCC.
926
927 For functions which have frame pointers this method works fine;
928 the (frame pointer) == (stack pointer at function entry) and GCC provides
929 an offset relative to the frame pointer.
930
931 This loses for functions without a frame pointer; GCC provides an offset
932 which is relative to the stack pointer after adjusting for the function's
933 frame size. GDB would prefer the offset to be relative to the value of
934 the stack pointer at the function's entry. Yuk! */
935 #define DEBUGGER_AUTO_OFFSET(X) \
936 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
937 + (frame_pointer_needed \
938 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
939
940 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
941 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
942 + (frame_pointer_needed \
943 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
944
945 /* Specify the machine mode that this machine uses
946 for the index in the tablejump instruction. */
947 #define CASE_VECTOR_MODE Pmode
948
949 /* Define if operations between registers always perform the operation
950 on the full register even if a narrower mode is specified. */
951 #define WORD_REGISTER_OPERATIONS
952
953 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
954
955 /* This flag, if defined, says the same insns that convert to a signed fixnum
956 also convert validly to an unsigned one. */
957 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
958
959 /* Max number of bytes we can move from memory to memory
960 in one reasonably fast instruction. */
961 #define MOVE_MAX 4
962
963 /* Define if shifts truncate the shift count
964 which implies one can omit a sign-extension or zero-extension
965 of a shift count. */
966 #define SHIFT_COUNT_TRUNCATED 1
967
968 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
969 is done just by pretending it is already truncated. */
970 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
971
972 /* Specify the machine mode that pointers have.
973 After generation of rtl, the compiler makes no further distinction
974 between pointers and any other objects of this machine mode. */
975 #define Pmode SImode
976
977 /* A function address in a call instruction
978 is a byte address (for indexing purposes)
979 so give the MEM rtx a byte's mode. */
980 #define FUNCTION_MODE QImode
981
982 /* The assembler op to get a word. */
983
984 #define FILE_ASM_OP "\t.file\n"
985
986 typedef struct mn10300_cc_status_mdep
987 {
988 int fpCC;
989 }
990 cc_status_mdep;
991
992 #define CC_STATUS_MDEP cc_status_mdep
993
994 #define CC_STATUS_MDEP_INIT (cc_status.mdep.fpCC = 0)