]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10300/mn10300.h
genrecog.c: Include regs.h in generated file.
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24
25 #undef ASM_SPEC
26 #undef LIB_SPEC
27 #undef ENDFILE_SPEC
28 #undef LINK_SPEC
29 #define LINK_SPEC "%{mrelax:--relax}"
30 #undef STARTFILE_SPEC
31 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
32
33 /* Names to predefine in the preprocessor for this target machine. */
34
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do \
37 { \
38 builtin_define ("__mn10300__"); \
39 builtin_define ("__MN10300__"); \
40 builtin_assert ("cpu=mn10300"); \
41 builtin_assert ("machine=mn10300"); \
42 } \
43 while (0)
44
45 #define CPP_SPEC "%{mam33:-D__AM33__} %{mam33-2:-D__AM33__=2 -D__AM33_2__}"
46
47 extern GTY(()) int mn10300_unspec_int_label_counter;
48
49 enum processor_type {
50 PROCESSOR_MN10300,
51 PROCESSOR_AM33,
52 PROCESSOR_AM33_2
53 };
54
55 extern enum processor_type mn10300_processor;
56
57 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
58 #define TARGET_AM33_2 (mn10300_processor == PROCESSOR_AM33_2)
59
60 #ifndef PROCESSOR_DEFAULT
61 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
62 #endif
63
64 #define OVERRIDE_OPTIONS mn10300_override_options ()
65
66 /* Print subsidiary information on the compiler version in use. */
67
68 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
69
70 \f
71 /* Target machine storage layout */
72
73 /* Define this if most significant bit is lowest numbered
74 in instructions that operate on numbered bit-fields.
75 This is not true on the Matsushita MN1003. */
76 #define BITS_BIG_ENDIAN 0
77
78 /* Define this if most significant byte of a word is the lowest numbered. */
79 /* This is not true on the Matsushita MN10300. */
80 #define BYTES_BIG_ENDIAN 0
81
82 /* Define this if most significant word of a multiword number is lowest
83 numbered.
84 This is not true on the Matsushita MN10300. */
85 #define WORDS_BIG_ENDIAN 0
86
87 /* Width of a word, in units (bytes). */
88 #define UNITS_PER_WORD 4
89
90 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
91 #define PARM_BOUNDARY 32
92
93 /* The stack goes in 32-bit lumps. */
94 #define STACK_BOUNDARY 32
95
96 /* Allocation boundary (in *bits*) for the code of a function.
97 8 is the minimum boundary; it's unclear if bigger alignments
98 would improve performance. */
99 #define FUNCTION_BOUNDARY 8
100
101 /* No data type wants to be aligned rounder than this. */
102 #define BIGGEST_ALIGNMENT 32
103
104 /* Alignment of field after `int : 0' in a structure. */
105 #define EMPTY_FIELD_BOUNDARY 32
106
107 /* Define this if move instructions will actually fail to work
108 when given unaligned data. */
109 #define STRICT_ALIGNMENT 1
110
111 /* Define this as 1 if `char' should by default be signed; else as 0. */
112 #define DEFAULT_SIGNED_CHAR 0
113 \f
114 /* Standard register usage. */
115
116 /* Number of actual hardware registers.
117 The hardware registers are assigned numbers for the compiler
118 from 0 to just below FIRST_PSEUDO_REGISTER.
119
120 All registers that the compiler knows about must be given numbers,
121 even those that are not normally considered general registers. */
122
123 #define FIRST_PSEUDO_REGISTER 50
124
125 /* Specify machine-specific register numbers. */
126 #define FIRST_DATA_REGNUM 0
127 #define LAST_DATA_REGNUM 3
128 #define FIRST_ADDRESS_REGNUM 4
129 #define LAST_ADDRESS_REGNUM 8
130 #define FIRST_EXTENDED_REGNUM 10
131 #define LAST_EXTENDED_REGNUM 17
132 #define FIRST_FP_REGNUM 18
133 #define LAST_FP_REGNUM 49
134
135 /* Specify the registers used for certain standard purposes.
136 The values of these macros are register numbers. */
137
138 /* Register to use for pushing function arguments. */
139 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM+1)
140
141 /* Base register for access to local variables of the function. */
142 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM-1)
143
144 /* Base register for access to arguments of the function. This
145 is a fake register and will be eliminated into either the frame
146 pointer or stack pointer. */
147 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
148
149 /* Register in which static-chain is passed to a function. */
150 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM+1)
151
152 /* 1 for registers that have pervasive standard uses
153 and are not available for the register allocator. */
154
155 #define FIXED_REGISTERS \
156 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
157 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
158 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
159 }
160
161 /* 1 for registers not available across function calls.
162 These must include the FIXED_REGISTERS and also any
163 registers that can be used without being saved.
164 The latter must include the registers where values are returned
165 and the register where structure-value addresses are passed.
166 Aside from that, you can include as many other registers as you
167 like. */
168
169 #define CALL_USED_REGISTERS \
170 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
171 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
172 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
173 }
174
175 #define REG_ALLOC_ORDER \
176 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
177 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
178 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 \
179 }
180
181 #define CONDITIONAL_REGISTER_USAGE \
182 { \
183 unsigned int i; \
184 \
185 if (!TARGET_AM33) \
186 { \
187 for (i = FIRST_EXTENDED_REGNUM; \
188 i <= LAST_EXTENDED_REGNUM; i++) \
189 fixed_regs[i] = call_used_regs[i] = 1; \
190 } \
191 if (!TARGET_AM33_2) \
192 { \
193 for (i = FIRST_FP_REGNUM; \
194 i <= LAST_FP_REGNUM; \
195 i++) \
196 fixed_regs[i] = call_used_regs[i] = 1; \
197 } \
198 if (flag_pic) \
199 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = \
200 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;\
201 }
202
203 /* Return number of consecutive hard regs needed starting at reg REGNO
204 to hold something of mode MODE.
205
206 This is ordinarily the length in words of a value of mode MODE
207 but can be less for certain modes in special long registers. */
208
209 #define HARD_REGNO_NREGS(REGNO, MODE) \
210 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
211
212 /* Value is 1 if hard register REGNO can hold a value of machine-mode
213 MODE. */
214
215 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
216 ((REGNO_REG_CLASS (REGNO) == DATA_REGS \
217 || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
218 || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
219 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
220 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
221
222 /* Value is 1 if it is a good idea to tie two pseudo registers
223 when one has mode MODE1 and one has mode MODE2.
224 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
225 for any hard reg, then this must be 0 for correct output. */
226 #define MODES_TIEABLE_P(MODE1, MODE2) \
227 (TARGET_AM33 \
228 || MODE1 == MODE2 \
229 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
230
231 /* 4 data, and effectively 3 address registers is small as far as I'm
232 concerned. */
233 #define SMALL_REGISTER_CLASSES 1
234 \f
235 /* Define the classes of registers for register constraints in the
236 machine description. Also define ranges of constants.
237
238 One of the classes must always be named ALL_REGS and include all hard regs.
239 If there is more than one class, another class must be named NO_REGS
240 and contain no registers.
241
242 The name GENERAL_REGS must be the name of a class (or an alias for
243 another name such as ALL_REGS). This is the class of registers
244 that is allowed by "g" or "r" in a register constraint.
245 Also, registers outside this class are allocated only when
246 instructions express preferences for them.
247
248 The classes must be numbered in nondecreasing order; that is,
249 a larger-numbered class must never be contained completely
250 in a smaller-numbered class.
251
252 For any two classes, it is very desirable that there be another
253 class that represents their union. */
254
255 enum reg_class {
256 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
257 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
258 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
259 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
260 FP_REGS, FP_ACC_REGS,
261 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
262 };
263
264 #define N_REG_CLASSES (int) LIM_REG_CLASSES
265
266 /* Give names of register classes as strings for dump file. */
267
268 #define REG_CLASS_NAMES \
269 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
270 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
271 "EXTENDED_REGS", \
272 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
273 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
274 "FP_REGS", "FP_ACC_REGS", \
275 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
276
277 /* Define which registers fit in which classes.
278 This is an initializer for a vector of HARD_REG_SET
279 of length N_REG_CLASSES. */
280
281 #define REG_CLASS_CONTENTS \
282 { { 0, 0 }, /* No regs */ \
283 { 0x0000f, 0 }, /* DATA_REGS */ \
284 { 0x001f0, 0 }, /* ADDRESS_REGS */ \
285 { 0x00200, 0 }, /* SP_REGS */ \
286 { 0x001ff, 0 }, /* DATA_OR_ADDRESS_REGS */\
287 { 0x003f0, 0 }, /* SP_OR_ADDRESS_REGS */\
288 { 0x3fc00, 0 }, /* EXTENDED_REGS */ \
289 { 0x3fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \
290 { 0x3fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \
291 { 0x3fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \
292 { 0x3fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
293 { 0xfffc0000, 0x3ffff }, /* FP_REGS */ \
294 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
295 { 0x3fdff, 0 }, /* GENERAL_REGS */ \
296 { 0xffffffff, 0x3ffff } /* ALL_REGS */ \
297 }
298
299 /* The same information, inverted:
300 Return the class number of the smallest class containing
301 reg number REGNO. This could be a conditional expression
302 or could index an array. */
303
304 #define REGNO_REG_CLASS(REGNO) \
305 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
306 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
307 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
308 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
309 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
310 NO_REGS)
311
312 /* The class value for index registers, and the one for base regs. */
313 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
314 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
315
316 /* Macros to check register numbers against specific register classes. */
317
318 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
319 and check its validity for a certain class.
320 We have two alternate definitions for each of them.
321 The usual definition accepts all pseudo regs; the other rejects
322 them unless they have been allocated suitable hard regs.
323 The symbol REG_OK_STRICT causes the latter definition to be used.
324
325 Most source files want to accept pseudo regs in the hope that
326 they will get allocated to the class that the insn wants them to be in.
327 Source files for reload pass need to be strict.
328 After reload, it makes no difference, since pseudo regs have
329 been eliminated by then. */
330
331 /* These assume that REGNO is a hard or pseudo reg number.
332 They give nonzero only if REGNO is a hard reg of the suitable class
333 or a pseudo reg currently allocated to a suitable hard reg.
334 Since they use reg_renumber, they are safe only once reg_renumber
335 has been allocated, which happens in local-alloc.c. */
336
337 #ifndef REG_OK_STRICT
338 # define REG_STRICT 0
339 #else
340 # define REG_STRICT 1
341 #endif
342
343 # define REGNO_IN_RANGE_P(regno,min,max,strict) \
344 (IN_RANGE ((regno), (min), (max)) \
345 || ((strict) \
346 ? (reg_renumber \
347 && reg_renumber[(regno)] >= (min) \
348 && reg_renumber[(regno)] <= (max)) \
349 : (regno) >= FIRST_PSEUDO_REGISTER))
350
351 #define REGNO_DATA_P(regno, strict) \
352 (REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM, \
353 (strict)))
354 #define REGNO_ADDRESS_P(regno, strict) \
355 (REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM, \
356 (strict)))
357 #define REGNO_SP_P(regno, strict) \
358 (REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, \
359 (strict)))
360 #define REGNO_EXTENDED_P(regno, strict) \
361 (REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM, \
362 (strict)))
363 #define REGNO_AM33_P(regno, strict) \
364 (REGNO_DATA_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)) \
365 || REGNO_EXTENDED_P ((regno), (strict)))
366 #define REGNO_FP_P(regno, strict) \
367 (REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM, (strict)))
368
369 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
370 (REGNO_SP_P ((regno), (strict)) \
371 || REGNO_ADDRESS_P ((regno), (strict)) \
372 || REGNO_EXTENDED_P ((regno), (strict)))
373 #define REGNO_OK_FOR_BASE_P(regno) \
374 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
375 #define REG_OK_FOR_BASE_P(X) \
376 (REGNO_OK_FOR_BASE_P (REGNO (X)))
377
378 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
379 (REGNO_SP_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)))
380 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
381 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
382 #define REG_OK_FOR_BIT_BASE_P(X) \
383 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
384
385 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
386 (REGNO_DATA_P ((regno), (strict)) || REGNO_EXTENDED_P ((regno), (strict)))
387 #define REGNO_OK_FOR_INDEX_P(regno) \
388 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
389 #define REG_OK_FOR_INDEX_P(X) \
390 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
391
392 /* Given an rtx X being reloaded into a reg required to be
393 in class CLASS, return the class of reg to actually use.
394 In general this is just CLASS; but on some machines
395 in some cases it is preferable to use a more restrictive class. */
396
397 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
398 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
399 ? ADDRESS_OR_EXTENDED_REGS \
400 : (GET_CODE (X) == MEM \
401 || (GET_CODE (X) == REG \
402 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
403 || (GET_CODE (X) == SUBREG \
404 && GET_CODE (SUBREG_REG (X)) == REG \
405 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
406 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
407 : (CLASS)))
408
409 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
410 (X == stack_pointer_rtx && CLASS != SP_REGS \
411 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
412
413 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
414 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
415
416 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
417 mn10300_secondary_reload_class(CLASS,MODE,IN)
418
419 /* Return the maximum number of consecutive registers
420 needed to represent mode MODE in a register of class CLASS. */
421
422 #define CLASS_MAX_NREGS(CLASS, MODE) \
423 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
424
425 /* A class that contains registers which the compiler must always
426 access in a mode that is the same size as the mode in which it
427 loaded the register. */
428 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
429
430 /* Return 1 if VALUE is in the range specified. */
431
432 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
433 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
434
435 \f
436 /* Stack layout; function entry, exit and calling. */
437
438 /* Define this if pushing a word on the stack
439 makes the stack pointer a smaller address. */
440
441 #define STACK_GROWS_DOWNWARD
442
443 /* Define this to nonzero if the nominal address of the stack frame
444 is at the high-address end of the local variables;
445 that is, each additional local variable allocated
446 goes at a more negative offset in the frame. */
447
448 #define FRAME_GROWS_DOWNWARD 1
449
450 /* Offset within stack frame to start allocating local variables at.
451 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
452 first local allocated. Otherwise, it is the offset to the BEGINNING
453 of the first local allocated. */
454
455 #define STARTING_FRAME_OFFSET 0
456
457 /* Offset of first parameter from the argument pointer register value. */
458 /* Is equal to the size of the saved fp + pc, even if an fp isn't
459 saved since the value is used before we know. */
460
461 #define FIRST_PARM_OFFSET(FNDECL) 4
462
463 #define ELIMINABLE_REGS \
464 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
465 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
466 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
467
468 #define CAN_ELIMINATE(FROM, TO) 1
469
470 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
471 OFFSET = initial_offset (FROM, TO)
472
473 /* We can debug without frame pointers on the mn10300, so eliminate
474 them whenever possible. */
475 #define FRAME_POINTER_REQUIRED 0
476 #define CAN_DEBUG_WITHOUT_FP
477
478 /* Value is the number of bytes of arguments automatically
479 popped when returning from a subroutine call.
480 FUNDECL is the declaration node of the function (as a tree),
481 FUNTYPE is the data type of the function (as a tree),
482 or for a library call it is an identifier node for the subroutine name.
483 SIZE is the number of bytes of arguments passed on the stack. */
484
485 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
486
487 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
488 for a register flushback area. */
489 #define REG_PARM_STACK_SPACE(DECL) 8
490 #define OUTGOING_REG_PARM_STACK_SPACE 1
491 #define ACCUMULATE_OUTGOING_ARGS 1
492
493 /* So we can allocate space for return pointers once for the function
494 instead of around every call. */
495 #define STACK_POINTER_OFFSET 4
496
497 /* 1 if N is a possible register number for function argument passing.
498 On the MN10300, no registers are used in this way. */
499
500 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
501
502 \f
503 /* Define a data type for recording info about an argument list
504 during the scan of that argument list. This data type should
505 hold all necessary information about the function itself
506 and about the args processed so far, enough to enable macros
507 such as FUNCTION_ARG to determine where the next arg should go.
508
509 On the MN10300, this is a single integer, which is a number of bytes
510 of arguments scanned so far. */
511
512 #define CUMULATIVE_ARGS struct cum_arg
513 struct cum_arg {int nbytes; };
514
515 /* Initialize a variable CUM of type CUMULATIVE_ARGS
516 for a call to a function whose data type is FNTYPE.
517 For a library call, FNTYPE is 0.
518
519 On the MN10300, the offset starts at 0. */
520
521 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
522 ((CUM).nbytes = 0)
523
524 /* Update the data in CUM to advance over an argument
525 of mode MODE and data type TYPE.
526 (TYPE is null for libcalls where that information may not be available.) */
527
528 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
529 ((CUM).nbytes += ((MODE) != BLKmode \
530 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
531 : (int_size_in_bytes (TYPE) + 3) & ~3))
532
533 /* Define where to put the arguments to a function.
534 Value is zero to push the argument on the stack,
535 or a hard register in which to store the argument.
536
537 MODE is the argument's machine mode.
538 TYPE is the data type of the argument (as a tree).
539 This is null for libcalls where that information may
540 not be available.
541 CUM is a variable of type CUMULATIVE_ARGS which gives info about
542 the preceding args and about the function being called.
543 NAMED is nonzero if this argument is a named parameter
544 (otherwise it is an extra parameter matching an ellipsis). */
545
546 /* On the MN10300 all args are pushed. */
547
548 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
549 function_arg (&CUM, MODE, TYPE, NAMED)
550
551 /* Define how to find the value returned by a function.
552 VALTYPE is the data type of the value (as a tree).
553 If the precise function being called is known, FUNC is its FUNCTION_DECL;
554 otherwise, FUNC is 0. */
555
556 #define FUNCTION_VALUE(VALTYPE, FUNC) \
557 mn10300_function_value (VALTYPE, FUNC, 0)
558 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
559 mn10300_function_value (VALTYPE, FUNC, 1)
560
561 /* Define how to find the value returned by a library function
562 assuming the value has mode MODE. */
563
564 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
565
566 /* 1 if N is a possible register number for a function value. */
567
568 #define FUNCTION_VALUE_REGNO_P(N) \
569 ((N) == FIRST_DATA_REGNUM || (N) == FIRST_ADDRESS_REGNUM)
570
571 #define DEFAULT_PCC_STRUCT_RETURN 0
572
573 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
574 the stack pointer does not matter. The value is tested only in
575 functions that have frame pointers.
576 No definition is equivalent to always zero. */
577
578 #define EXIT_IGNORE_STACK 1
579
580 /* Output assembler code to FILE to increment profiler label # LABELNO
581 for profiling a function entry. */
582
583 #define FUNCTION_PROFILER(FILE, LABELNO) ;
584
585 #define TRAMPOLINE_TEMPLATE(FILE) \
586 do { \
587 fprintf (FILE, "\tadd -4,sp\n"); \
588 fprintf (FILE, "\t.long 0x0004fffa\n"); \
589 fprintf (FILE, "\tmov (0,sp),a0\n"); \
590 fprintf (FILE, "\tadd 4,sp\n"); \
591 fprintf (FILE, "\tmov (13,a0),a1\n"); \
592 fprintf (FILE, "\tmov (17,a0),a0\n"); \
593 fprintf (FILE, "\tjmp (a0)\n"); \
594 fprintf (FILE, "\t.long 0\n"); \
595 fprintf (FILE, "\t.long 0\n"); \
596 } while (0)
597
598 /* Length in units of the trampoline for entering a nested function. */
599
600 #define TRAMPOLINE_SIZE 0x1b
601
602 #define TRAMPOLINE_ALIGNMENT 32
603
604 /* Emit RTL insns to initialize the variable parts of a trampoline.
605 FNADDR is an RTX for the address of the function's pure code.
606 CXT is an RTX for the static chain value for the function. */
607
608 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
609 { \
610 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
611 (CXT)); \
612 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
613 (FNADDR)); \
614 }
615 /* A C expression whose value is RTL representing the value of the return
616 address for the frame COUNT steps up from the current frame.
617
618 On the mn10300, the return address is not at a constant location
619 due to the frame layout. Luckily, it is at a constant offset from
620 the argument pointer, so we define RETURN_ADDR_RTX to return a
621 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
622 with a reference to the stack/frame pointer + an appropriate offset. */
623
624 #define RETURN_ADDR_RTX(COUNT, FRAME) \
625 ((COUNT == 0) \
626 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
627 : (rtx) 0)
628
629 /* Implement `va_start' for varargs and stdarg. */
630 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
631 mn10300_va_start (valist, nextarg)
632 \f
633 /* 1 if X is an rtx for a constant that is a valid address. */
634
635 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
636
637 /* Maximum number of registers that can appear in a valid memory address. */
638
639 #define MAX_REGS_PER_ADDRESS 2
640
641 \f
642 #define HAVE_POST_INCREMENT (TARGET_AM33)
643
644 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
645 that is a valid memory address for an instruction.
646 The MODE argument is the machine mode for the MEM expression
647 that wants to use this address.
648
649 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
650 except for CONSTANT_ADDRESS_P which is actually
651 machine-independent.
652
653 On the mn10300, the value in the address register must be
654 in the same memory space/segment as the effective address.
655
656 This is problematical for reload since it does not understand
657 that base+index != index+base in a memory reference.
658
659 Note it is still possible to use reg+reg addressing modes,
660 it's just much more difficult. For a discussion of a possible
661 workaround and solution, see the comments in pa.c before the
662 function record_unscaled_index_insn_codes. */
663
664 /* Accept either REG or SUBREG where a register is valid. */
665
666 #define RTX_OK_FOR_BASE_P(X, strict) \
667 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
668 (strict))) \
669 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
670 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
671 (strict))))
672
673 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
674 do \
675 { \
676 if (legitimate_address_p ((MODE), (X), REG_STRICT)) \
677 goto ADDR; \
678 } \
679 while (0)
680
681 \f
682 /* Try machine-dependent ways of modifying an illegitimate address
683 to be legitimate. If we find one, return the new, valid address.
684 This macro is used in only one place: `memory_address' in explow.c.
685
686 OLDX is the address as it was before break_out_memory_refs was called.
687 In some cases it is useful to look at this to decide what needs to be done.
688
689 MODE and WIN are passed so that this macro can use
690 GO_IF_LEGITIMATE_ADDRESS.
691
692 It is always safe for this macro to do nothing. It exists to recognize
693 opportunities to optimize the output. */
694
695 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
696 { rtx orig_x = (X); \
697 (X) = legitimize_address (X, OLDX, MODE); \
698 if ((X) != orig_x && memory_address_p (MODE, X)) \
699 goto WIN; }
700
701 /* Go to LABEL if ADDR (a legitimate address expression)
702 has an effect that depends on the machine mode it is used for. */
703
704 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
705
706 /* Nonzero if the constant value X is a legitimate general operand.
707 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
708
709 #define LEGITIMATE_CONSTANT_P(X) 1
710
711 /* Zero if this needs fixing up to become PIC. */
712
713 #define LEGITIMATE_PIC_OPERAND_P(X) (legitimate_pic_operand_p (X))
714
715 /* Register to hold the addressing base for
716 position independent code access to data items. */
717 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
718
719 /* The name of the pseudo-symbol representing the Global Offset Table. */
720 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
721
722 #define SYMBOLIC_CONST_P(X) \
723 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
724 && ! LEGITIMATE_PIC_OPERAND_P (X))
725
726 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
727 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
728
729 /* Recognize machine-specific patterns that may appear within
730 constants. Used for PIC-specific UNSPECs. */
731 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
732 do \
733 if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
734 { \
735 switch (XINT ((X), 1)) \
736 { \
737 case UNSPEC_INT_LABEL: \
738 asm_fprintf ((STREAM), ".%LLIL%d", \
739 INTVAL (XVECEXP ((X), 0, 0))); \
740 break; \
741 case UNSPEC_PIC: \
742 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
743 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
744 break; \
745 case UNSPEC_GOT: \
746 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
747 fputs ("@GOT", (STREAM)); \
748 break; \
749 case UNSPEC_GOTOFF: \
750 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
751 fputs ("@GOTOFF", (STREAM)); \
752 break; \
753 case UNSPEC_PLT: \
754 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
755 fputs ("@PLT", (STREAM)); \
756 break; \
757 default: \
758 goto FAIL; \
759 } \
760 break; \
761 } \
762 else \
763 goto FAIL; \
764 while (0)
765 \f
766 /* Tell final.c how to eliminate redundant test instructions. */
767
768 /* Here we define machine-dependent flags and fields in cc_status
769 (see `conditions.h'). No extra ones are needed for the VAX. */
770
771 /* Store in cc_status the expressions
772 that the condition codes will describe
773 after execution of an instruction whose pattern is EXP.
774 Do not alter them if the instruction would not alter the cc's. */
775
776 #define CC_OVERFLOW_UNUSABLE 0x200
777 #define CC_NO_CARRY CC_NO_OVERFLOW
778 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
779
780 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
781 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
782 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
783 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
784 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
785 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
786 ! TARGET_AM33 ? 6 : \
787 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
788 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
789 (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
790 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
791 4)
792
793 /* Nonzero if access to memory by bytes or half words is no faster
794 than accessing full words. */
795 #define SLOW_BYTE_ACCESS 1
796
797 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
798 and readonly data size. So we crank up the case threshold value to
799 encourage a series of if/else comparisons to implement many small switch
800 statements. In theory, this value could be increased much more if we
801 were solely optimizing for space, but we keep it "reasonable" to avoid
802 serious code efficiency lossage. */
803 #define CASE_VALUES_THRESHOLD 6
804
805 #define NO_FUNCTION_CSE
806
807 /* According expr.c, a value of around 6 should minimize code size, and
808 for the MN10300 series, that's our primary concern. */
809 #define MOVE_RATIO 6
810
811 #define TEXT_SECTION_ASM_OP "\t.section .text"
812 #define DATA_SECTION_ASM_OP "\t.section .data"
813 #define BSS_SECTION_ASM_OP "\t.section .bss"
814
815 #define ASM_COMMENT_START "#"
816
817 /* Output to assembler file text saying following lines
818 may contain character constants, extra white space, comments, etc. */
819
820 #define ASM_APP_ON "#APP\n"
821
822 /* Output to assembler file text saying following lines
823 no longer contain unusual constructs. */
824
825 #define ASM_APP_OFF "#NO_APP\n"
826
827 /* This says how to output the assembler to define a global
828 uninitialized but not common symbol.
829 Try to use asm_output_bss to implement this macro. */
830
831 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
832 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
833
834 /* Globalizing directive for a label. */
835 #define GLOBAL_ASM_OP "\t.global "
836
837 /* This is how to output a reference to a user-level label named NAME.
838 `assemble_name' uses this. */
839
840 #undef ASM_OUTPUT_LABELREF
841 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
842 fprintf (FILE, "_%s", (*targetm.strip_name_encoding) (NAME))
843
844 #define ASM_PN_FORMAT "%s___%lu"
845
846 /* This is how we tell the assembler that two symbols have the same value. */
847
848 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
849 do { assemble_name(FILE, NAME1); \
850 fputs(" = ", FILE); \
851 assemble_name(FILE, NAME2); \
852 fputc('\n', FILE); } while (0)
853
854
855 /* How to refer to registers in assembler output.
856 This sequence is indexed by compiler's hard-register-number (see above). */
857
858 #define REGISTER_NAMES \
859 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
860 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
861 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
862 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
863 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
864 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
865 }
866
867 #define ADDITIONAL_REGISTER_NAMES \
868 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
869 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
870 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
871 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
872 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
873 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
874 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
875 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
876 }
877
878 /* Print an instruction operand X on file FILE.
879 look in mn10300.c for details */
880
881 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
882
883 /* Print a memory operand whose address is X, on file FILE.
884 This uses a function in output-vax.c. */
885
886 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
887
888 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
889 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
890
891 /* This is how to output an element of a case-vector that is absolute. */
892
893 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
894 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
895
896 /* This is how to output an element of a case-vector that is relative. */
897
898 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
899 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
900
901 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
902 if ((LOG) != 0) \
903 fprintf (FILE, "\t.align %d\n", (LOG))
904
905 /* We don't have to worry about dbx compatibility for the mn10300. */
906 #define DEFAULT_GDB_EXTENSIONS 1
907
908 /* Use dwarf2 debugging info by default. */
909 #undef PREFERRED_DEBUGGING_TYPE
910 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
911
912 #define DWARF2_ASM_LINE_DEBUG_INFO 1
913
914 /* GDB always assumes the current function's frame begins at the value
915 of the stack pointer upon entry to the current function. Accessing
916 local variables and parameters passed on the stack is done using the
917 base of the frame + an offset provided by GCC.
918
919 For functions which have frame pointers this method works fine;
920 the (frame pointer) == (stack pointer at function entry) and GCC provides
921 an offset relative to the frame pointer.
922
923 This loses for functions without a frame pointer; GCC provides an offset
924 which is relative to the stack pointer after adjusting for the function's
925 frame size. GDB would prefer the offset to be relative to the value of
926 the stack pointer at the function's entry. Yuk! */
927 #define DEBUGGER_AUTO_OFFSET(X) \
928 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
929 + (frame_pointer_needed \
930 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
931
932 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
933 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
934 + (frame_pointer_needed \
935 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
936
937 /* Specify the machine mode that this machine uses
938 for the index in the tablejump instruction. */
939 #define CASE_VECTOR_MODE Pmode
940
941 /* Define if operations between registers always perform the operation
942 on the full register even if a narrower mode is specified. */
943 #define WORD_REGISTER_OPERATIONS
944
945 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
946
947 /* This flag, if defined, says the same insns that convert to a signed fixnum
948 also convert validly to an unsigned one. */
949 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
950
951 /* Max number of bytes we can move from memory to memory
952 in one reasonably fast instruction. */
953 #define MOVE_MAX 4
954
955 /* Define if shifts truncate the shift count
956 which implies one can omit a sign-extension or zero-extension
957 of a shift count. */
958 #define SHIFT_COUNT_TRUNCATED 1
959
960 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
961 is done just by pretending it is already truncated. */
962 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
963
964 /* Specify the machine mode that pointers have.
965 After generation of rtl, the compiler makes no further distinction
966 between pointers and any other objects of this machine mode. */
967 #define Pmode SImode
968
969 /* A function address in a call instruction
970 is a byte address (for indexing purposes)
971 so give the MEM rtx a byte's mode. */
972 #define FUNCTION_MODE QImode
973
974 /* The assembler op to get a word. */
975
976 #define FILE_ASM_OP "\t.file\n"
977
978 typedef struct mn10300_cc_status_mdep
979 {
980 int fpCC;
981 }
982 cc_status_mdep;
983
984 #define CC_STATUS_MDEP cc_status_mdep
985
986 #define CC_STATUS_MDEP_INIT (cc_status.mdep.fpCC = 0)