]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10300/mn10300.h
Update Copyright years for files modified in 2008 and/or 2009.
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2007, 2008 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 #undef ASM_SPEC
25 #undef LIB_SPEC
26 #undef ENDFILE_SPEC
27 #undef LINK_SPEC
28 #define LINK_SPEC "%{mrelax:--relax}"
29 #undef STARTFILE_SPEC
30 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
31
32 /* Names to predefine in the preprocessor for this target machine. */
33
34 #define TARGET_CPU_CPP_BUILTINS() \
35 do \
36 { \
37 builtin_define ("__mn10300__"); \
38 builtin_define ("__MN10300__"); \
39 builtin_assert ("cpu=mn10300"); \
40 builtin_assert ("machine=mn10300"); \
41 } \
42 while (0)
43
44 #define CPP_SPEC "%{mam33:-D__AM33__} %{mam33-2:-D__AM33__=2 -D__AM33_2__}"
45
46 extern GTY(()) int mn10300_unspec_int_label_counter;
47
48 enum processor_type {
49 PROCESSOR_MN10300,
50 PROCESSOR_AM33,
51 PROCESSOR_AM33_2
52 };
53
54 extern enum processor_type mn10300_processor;
55
56 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
57 #define TARGET_AM33_2 (mn10300_processor == PROCESSOR_AM33_2)
58
59 #ifndef PROCESSOR_DEFAULT
60 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
61 #endif
62
63 #define OVERRIDE_OPTIONS mn10300_override_options ()
64
65 /* Print subsidiary information on the compiler version in use. */
66
67 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
68
69 \f
70 /* Target machine storage layout */
71
72 /* Define this if most significant bit is lowest numbered
73 in instructions that operate on numbered bit-fields.
74 This is not true on the Matsushita MN1003. */
75 #define BITS_BIG_ENDIAN 0
76
77 /* Define this if most significant byte of a word is the lowest numbered. */
78 /* This is not true on the Matsushita MN10300. */
79 #define BYTES_BIG_ENDIAN 0
80
81 /* Define this if most significant word of a multiword number is lowest
82 numbered.
83 This is not true on the Matsushita MN10300. */
84 #define WORDS_BIG_ENDIAN 0
85
86 /* Width of a word, in units (bytes). */
87 #define UNITS_PER_WORD 4
88
89 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
90 #define PARM_BOUNDARY 32
91
92 /* The stack goes in 32-bit lumps. */
93 #define STACK_BOUNDARY 32
94
95 /* Allocation boundary (in *bits*) for the code of a function.
96 8 is the minimum boundary; it's unclear if bigger alignments
97 would improve performance. */
98 #define FUNCTION_BOUNDARY 8
99
100 /* No data type wants to be aligned rounder than this. */
101 #define BIGGEST_ALIGNMENT 32
102
103 /* Alignment of field after `int : 0' in a structure. */
104 #define EMPTY_FIELD_BOUNDARY 32
105
106 /* Define this if move instructions will actually fail to work
107 when given unaligned data. */
108 #define STRICT_ALIGNMENT 1
109
110 /* Define this as 1 if `char' should by default be signed; else as 0. */
111 #define DEFAULT_SIGNED_CHAR 0
112 \f
113 /* Standard register usage. */
114
115 /* Number of actual hardware registers.
116 The hardware registers are assigned numbers for the compiler
117 from 0 to just below FIRST_PSEUDO_REGISTER.
118
119 All registers that the compiler knows about must be given numbers,
120 even those that are not normally considered general registers. */
121
122 #define FIRST_PSEUDO_REGISTER 50
123
124 /* Specify machine-specific register numbers. */
125 #define FIRST_DATA_REGNUM 0
126 #define LAST_DATA_REGNUM 3
127 #define FIRST_ADDRESS_REGNUM 4
128 #define LAST_ADDRESS_REGNUM 8
129 #define FIRST_EXTENDED_REGNUM 10
130 #define LAST_EXTENDED_REGNUM 17
131 #define FIRST_FP_REGNUM 18
132 #define LAST_FP_REGNUM 49
133
134 /* Specify the registers used for certain standard purposes.
135 The values of these macros are register numbers. */
136
137 /* Register to use for pushing function arguments. */
138 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM+1)
139
140 /* Base register for access to local variables of the function. */
141 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM-1)
142
143 /* Base register for access to arguments of the function. This
144 is a fake register and will be eliminated into either the frame
145 pointer or stack pointer. */
146 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
147
148 /* Register in which static-chain is passed to a function. */
149 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM+1)
150
151 /* 1 for registers that have pervasive standard uses
152 and are not available for the register allocator. */
153
154 #define FIXED_REGISTERS \
155 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
156 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
157 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
158 }
159
160 /* 1 for registers not available across function calls.
161 These must include the FIXED_REGISTERS and also any
162 registers that can be used without being saved.
163 The latter must include the registers where values are returned
164 and the register where structure-value addresses are passed.
165 Aside from that, you can include as many other registers as you
166 like. */
167
168 #define CALL_USED_REGISTERS \
169 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
170 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
171 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
172 }
173
174 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
175 redundant. It is needed when compiling in PIC mode because
176 the a2 register becomes fixed (and hence must be marked as
177 call_used) but in order to preserve the ABI it is not marked
178 as call_really_used. */
179 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
180
181 #define REG_ALLOC_ORDER \
182 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
183 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
184 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 \
185 }
186
187 #define CONDITIONAL_REGISTER_USAGE \
188 { \
189 unsigned int i; \
190 \
191 if (!TARGET_AM33) \
192 { \
193 for (i = FIRST_EXTENDED_REGNUM; \
194 i <= LAST_EXTENDED_REGNUM; i++) \
195 fixed_regs[i] = call_used_regs[i] = 1; \
196 } \
197 if (!TARGET_AM33_2) \
198 { \
199 for (i = FIRST_FP_REGNUM; \
200 i <= LAST_FP_REGNUM; \
201 i++) \
202 fixed_regs[i] = call_used_regs[i] = 1; \
203 } \
204 if (flag_pic) \
205 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = \
206 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;\
207 }
208
209 /* Return number of consecutive hard regs needed starting at reg REGNO
210 to hold something of mode MODE.
211
212 This is ordinarily the length in words of a value of mode MODE
213 but can be less for certain modes in special long registers. */
214
215 #define HARD_REGNO_NREGS(REGNO, MODE) \
216 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
217
218 /* Value is 1 if hard register REGNO can hold a value of machine-mode
219 MODE. */
220
221 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
222 ((REGNO_REG_CLASS (REGNO) == DATA_REGS \
223 || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
224 || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
225 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
226 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
227
228 /* Value is 1 if it is a good idea to tie two pseudo registers
229 when one has mode MODE1 and one has mode MODE2.
230 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
231 for any hard reg, then this must be 0 for correct output. */
232 #define MODES_TIEABLE_P(MODE1, MODE2) \
233 (TARGET_AM33 \
234 || MODE1 == MODE2 \
235 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
236
237 /* 4 data, and effectively 3 address registers is small as far as I'm
238 concerned. */
239 #define SMALL_REGISTER_CLASSES 1
240 \f
241 /* Define the classes of registers for register constraints in the
242 machine description. Also define ranges of constants.
243
244 One of the classes must always be named ALL_REGS and include all hard regs.
245 If there is more than one class, another class must be named NO_REGS
246 and contain no registers.
247
248 The name GENERAL_REGS must be the name of a class (or an alias for
249 another name such as ALL_REGS). This is the class of registers
250 that is allowed by "g" or "r" in a register constraint.
251 Also, registers outside this class are allocated only when
252 instructions express preferences for them.
253
254 The classes must be numbered in nondecreasing order; that is,
255 a larger-numbered class must never be contained completely
256 in a smaller-numbered class.
257
258 For any two classes, it is very desirable that there be another
259 class that represents their union. */
260
261 enum reg_class {
262 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
263 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
264 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
265 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
266 FP_REGS, FP_ACC_REGS,
267 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
268 };
269
270 #define N_REG_CLASSES (int) LIM_REG_CLASSES
271
272 /* Give names of register classes as strings for dump file. */
273
274 #define REG_CLASS_NAMES \
275 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
276 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
277 "EXTENDED_REGS", \
278 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
279 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
280 "FP_REGS", "FP_ACC_REGS", \
281 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
282
283 /* Define which registers fit in which classes.
284 This is an initializer for a vector of HARD_REG_SET
285 of length N_REG_CLASSES. */
286
287 #define REG_CLASS_CONTENTS \
288 { { 0, 0 }, /* No regs */ \
289 { 0x0000f, 0 }, /* DATA_REGS */ \
290 { 0x001f0, 0 }, /* ADDRESS_REGS */ \
291 { 0x00200, 0 }, /* SP_REGS */ \
292 { 0x001ff, 0 }, /* DATA_OR_ADDRESS_REGS */\
293 { 0x003f0, 0 }, /* SP_OR_ADDRESS_REGS */\
294 { 0x3fc00, 0 }, /* EXTENDED_REGS */ \
295 { 0x3fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \
296 { 0x3fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \
297 { 0x3fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \
298 { 0x3fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
299 { 0xfffc0000, 0x3ffff }, /* FP_REGS */ \
300 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
301 { 0x3fdff, 0 }, /* GENERAL_REGS */ \
302 { 0xffffffff, 0x3ffff } /* ALL_REGS */ \
303 }
304
305 /* The following macro defines cover classes for Integrated Register
306 Allocator. Cover classes is a set of non-intersected register
307 classes covering all hard registers used for register allocation
308 purpose. Any move between two registers of a cover class should be
309 cheaper than load or store of the registers. The macro value is
310 array of register classes with LIM_REG_CLASSES used as the end
311 marker. */
312
313 #define IRA_COVER_CLASSES \
314 { \
315 GENERAL_REGS, FP_REGS, LIM_REG_CLASSES \
316 }
317
318 /* The same information, inverted:
319 Return the class number of the smallest class containing
320 reg number REGNO. This could be a conditional expression
321 or could index an array. */
322
323 #define REGNO_REG_CLASS(REGNO) \
324 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
325 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
326 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
327 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
328 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
329 NO_REGS)
330
331 /* The class value for index registers, and the one for base regs. */
332 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
333 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
334
335 /* Macros to check register numbers against specific register classes. */
336
337 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
338 and check its validity for a certain class.
339 We have two alternate definitions for each of them.
340 The usual definition accepts all pseudo regs; the other rejects
341 them unless they have been allocated suitable hard regs.
342 The symbol REG_OK_STRICT causes the latter definition to be used.
343
344 Most source files want to accept pseudo regs in the hope that
345 they will get allocated to the class that the insn wants them to be in.
346 Source files for reload pass need to be strict.
347 After reload, it makes no difference, since pseudo regs have
348 been eliminated by then. */
349
350 /* These assume that REGNO is a hard or pseudo reg number.
351 They give nonzero only if REGNO is a hard reg of the suitable class
352 or a pseudo reg currently allocated to a suitable hard reg.
353 Since they use reg_renumber, they are safe only once reg_renumber
354 has been allocated, which happens in local-alloc.c. */
355
356 #ifndef REG_OK_STRICT
357 # define REG_STRICT 0
358 #else
359 # define REG_STRICT 1
360 #endif
361
362 # define REGNO_IN_RANGE_P(regno,min,max,strict) \
363 (IN_RANGE ((regno), (min), (max)) \
364 || ((strict) \
365 ? (reg_renumber \
366 && reg_renumber[(regno)] >= (min) \
367 && reg_renumber[(regno)] <= (max)) \
368 : (regno) >= FIRST_PSEUDO_REGISTER))
369
370 #define REGNO_DATA_P(regno, strict) \
371 (REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM, \
372 (strict)))
373 #define REGNO_ADDRESS_P(regno, strict) \
374 (REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM, \
375 (strict)))
376 #define REGNO_SP_P(regno, strict) \
377 (REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, \
378 (strict)))
379 #define REGNO_EXTENDED_P(regno, strict) \
380 (REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM, \
381 (strict)))
382 #define REGNO_AM33_P(regno, strict) \
383 (REGNO_DATA_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)) \
384 || REGNO_EXTENDED_P ((regno), (strict)))
385 #define REGNO_FP_P(regno, strict) \
386 (REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM, (strict)))
387
388 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
389 (REGNO_SP_P ((regno), (strict)) \
390 || REGNO_ADDRESS_P ((regno), (strict)) \
391 || REGNO_EXTENDED_P ((regno), (strict)))
392 #define REGNO_OK_FOR_BASE_P(regno) \
393 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
394 #define REG_OK_FOR_BASE_P(X) \
395 (REGNO_OK_FOR_BASE_P (REGNO (X)))
396
397 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
398 (REGNO_SP_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)))
399 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
400 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
401 #define REG_OK_FOR_BIT_BASE_P(X) \
402 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
403
404 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
405 (REGNO_DATA_P ((regno), (strict)) || REGNO_EXTENDED_P ((regno), (strict)))
406 #define REGNO_OK_FOR_INDEX_P(regno) \
407 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
408 #define REG_OK_FOR_INDEX_P(X) \
409 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
410
411 /* Given an rtx X being reloaded into a reg required to be
412 in class CLASS, return the class of reg to actually use.
413 In general this is just CLASS; but on some machines
414 in some cases it is preferable to use a more restrictive class. */
415
416 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
417 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
418 ? ADDRESS_OR_EXTENDED_REGS \
419 : (GET_CODE (X) == MEM \
420 || (GET_CODE (X) == REG \
421 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
422 || (GET_CODE (X) == SUBREG \
423 && GET_CODE (SUBREG_REG (X)) == REG \
424 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
425 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
426 : (CLASS)))
427
428 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
429 (X == stack_pointer_rtx && CLASS != SP_REGS \
430 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
431
432 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
433 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
434
435 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
436 mn10300_secondary_reload_class(CLASS,MODE,IN)
437
438 /* Return the maximum number of consecutive registers
439 needed to represent mode MODE in a register of class CLASS. */
440
441 #define CLASS_MAX_NREGS(CLASS, MODE) \
442 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
443
444 /* A class that contains registers which the compiler must always
445 access in a mode that is the same size as the mode in which it
446 loaded the register. */
447 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
448
449 /* Return 1 if VALUE is in the range specified. */
450
451 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
452 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
453
454 \f
455 /* Stack layout; function entry, exit and calling. */
456
457 /* Define this if pushing a word on the stack
458 makes the stack pointer a smaller address. */
459
460 #define STACK_GROWS_DOWNWARD
461
462 /* Define this to nonzero if the nominal address of the stack frame
463 is at the high-address end of the local variables;
464 that is, each additional local variable allocated
465 goes at a more negative offset in the frame. */
466
467 #define FRAME_GROWS_DOWNWARD 1
468
469 /* Offset within stack frame to start allocating local variables at.
470 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
471 first local allocated. Otherwise, it is the offset to the BEGINNING
472 of the first local allocated. */
473
474 #define STARTING_FRAME_OFFSET 0
475
476 /* Offset of first parameter from the argument pointer register value. */
477 /* Is equal to the size of the saved fp + pc, even if an fp isn't
478 saved since the value is used before we know. */
479
480 #define FIRST_PARM_OFFSET(FNDECL) 4
481
482 #define ELIMINABLE_REGS \
483 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
484 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
485 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
486
487 #define CAN_ELIMINATE(FROM, TO) 1
488
489 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
490 OFFSET = initial_offset (FROM, TO)
491
492 /* We can debug without frame pointers on the mn10300, so eliminate
493 them whenever possible. */
494 #define FRAME_POINTER_REQUIRED 0
495 #define CAN_DEBUG_WITHOUT_FP
496
497 /* Value is the number of bytes of arguments automatically
498 popped when returning from a subroutine call.
499 FUNDECL is the declaration node of the function (as a tree),
500 FUNTYPE is the data type of the function (as a tree),
501 or for a library call it is an identifier node for the subroutine name.
502 SIZE is the number of bytes of arguments passed on the stack. */
503
504 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
505
506 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
507 for a register flushback area. */
508 #define REG_PARM_STACK_SPACE(DECL) 8
509 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
510 #define ACCUMULATE_OUTGOING_ARGS 1
511
512 /* So we can allocate space for return pointers once for the function
513 instead of around every call. */
514 #define STACK_POINTER_OFFSET 4
515
516 /* 1 if N is a possible register number for function argument passing.
517 On the MN10300, no registers are used in this way. */
518
519 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
520
521 \f
522 /* Define a data type for recording info about an argument list
523 during the scan of that argument list. This data type should
524 hold all necessary information about the function itself
525 and about the args processed so far, enough to enable macros
526 such as FUNCTION_ARG to determine where the next arg should go.
527
528 On the MN10300, this is a single integer, which is a number of bytes
529 of arguments scanned so far. */
530
531 #define CUMULATIVE_ARGS struct cum_arg
532 struct cum_arg {int nbytes; };
533
534 /* Initialize a variable CUM of type CUMULATIVE_ARGS
535 for a call to a function whose data type is FNTYPE.
536 For a library call, FNTYPE is 0.
537
538 On the MN10300, the offset starts at 0. */
539
540 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
541 ((CUM).nbytes = 0)
542
543 /* Update the data in CUM to advance over an argument
544 of mode MODE and data type TYPE.
545 (TYPE is null for libcalls where that information may not be available.) */
546
547 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
548 ((CUM).nbytes += ((MODE) != BLKmode \
549 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
550 : (int_size_in_bytes (TYPE) + 3) & ~3))
551
552 /* Define where to put the arguments to a function.
553 Value is zero to push the argument on the stack,
554 or a hard register in which to store the argument.
555
556 MODE is the argument's machine mode.
557 TYPE is the data type of the argument (as a tree).
558 This is null for libcalls where that information may
559 not be available.
560 CUM is a variable of type CUMULATIVE_ARGS which gives info about
561 the preceding args and about the function being called.
562 NAMED is nonzero if this argument is a named parameter
563 (otherwise it is an extra parameter matching an ellipsis). */
564
565 /* On the MN10300 all args are pushed. */
566
567 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
568 function_arg (&CUM, MODE, TYPE, NAMED)
569
570 /* Define how to find the value returned by a function.
571 VALTYPE is the data type of the value (as a tree).
572 If the precise function being called is known, FUNC is its FUNCTION_DECL;
573 otherwise, FUNC is 0. */
574
575 #define FUNCTION_VALUE(VALTYPE, FUNC) \
576 mn10300_function_value (VALTYPE, FUNC, 0)
577 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
578 mn10300_function_value (VALTYPE, FUNC, 1)
579
580 /* Define how to find the value returned by a library function
581 assuming the value has mode MODE. */
582
583 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
584
585 /* 1 if N is a possible register number for a function value. */
586
587 #define FUNCTION_VALUE_REGNO_P(N) \
588 ((N) == FIRST_DATA_REGNUM || (N) == FIRST_ADDRESS_REGNUM)
589
590 #define DEFAULT_PCC_STRUCT_RETURN 0
591
592 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
593 the stack pointer does not matter. The value is tested only in
594 functions that have frame pointers.
595 No definition is equivalent to always zero. */
596
597 #define EXIT_IGNORE_STACK 1
598
599 /* Output assembler code to FILE to increment profiler label # LABELNO
600 for profiling a function entry. */
601
602 #define FUNCTION_PROFILER(FILE, LABELNO) ;
603
604 #define TRAMPOLINE_TEMPLATE(FILE) \
605 do { \
606 fprintf (FILE, "\tadd -4,sp\n"); \
607 fprintf (FILE, "\t.long 0x0004fffa\n"); \
608 fprintf (FILE, "\tmov (0,sp),a0\n"); \
609 fprintf (FILE, "\tadd 4,sp\n"); \
610 fprintf (FILE, "\tmov (13,a0),a1\n"); \
611 fprintf (FILE, "\tmov (17,a0),a0\n"); \
612 fprintf (FILE, "\tjmp (a0)\n"); \
613 fprintf (FILE, "\t.long 0\n"); \
614 fprintf (FILE, "\t.long 0\n"); \
615 } while (0)
616
617 /* Length in units of the trampoline for entering a nested function. */
618
619 #define TRAMPOLINE_SIZE 0x1b
620
621 #define TRAMPOLINE_ALIGNMENT 32
622
623 /* Emit RTL insns to initialize the variable parts of a trampoline.
624 FNADDR is an RTX for the address of the function's pure code.
625 CXT is an RTX for the static chain value for the function. */
626
627 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
628 { \
629 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
630 (CXT)); \
631 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
632 (FNADDR)); \
633 }
634 /* A C expression whose value is RTL representing the value of the return
635 address for the frame COUNT steps up from the current frame.
636
637 On the mn10300, the return address is not at a constant location
638 due to the frame layout. Luckily, it is at a constant offset from
639 the argument pointer, so we define RETURN_ADDR_RTX to return a
640 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
641 with a reference to the stack/frame pointer + an appropriate offset. */
642
643 #define RETURN_ADDR_RTX(COUNT, FRAME) \
644 ((COUNT == 0) \
645 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
646 : (rtx) 0)
647 \f
648 /* 1 if X is an rtx for a constant that is a valid address. */
649
650 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
651
652 /* Maximum number of registers that can appear in a valid memory address. */
653
654 #define MAX_REGS_PER_ADDRESS 2
655
656 \f
657 #define HAVE_POST_INCREMENT (TARGET_AM33)
658
659 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
660 that is a valid memory address for an instruction.
661 The MODE argument is the machine mode for the MEM expression
662 that wants to use this address.
663
664 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
665 except for CONSTANT_ADDRESS_P which is actually
666 machine-independent.
667
668 On the mn10300, the value in the address register must be
669 in the same memory space/segment as the effective address.
670
671 This is problematical for reload since it does not understand
672 that base+index != index+base in a memory reference.
673
674 Note it is still possible to use reg+reg addressing modes,
675 it's just much more difficult. For a discussion of a possible
676 workaround and solution, see the comments in pa.c before the
677 function record_unscaled_index_insn_codes. */
678
679 /* Accept either REG or SUBREG where a register is valid. */
680
681 #define RTX_OK_FOR_BASE_P(X, strict) \
682 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
683 (strict))) \
684 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
685 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
686 (strict))))
687
688 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
689 do \
690 { \
691 if (legitimate_address_p ((MODE), (X), REG_STRICT)) \
692 goto ADDR; \
693 } \
694 while (0)
695
696 \f
697 /* Try machine-dependent ways of modifying an illegitimate address
698 to be legitimate. If we find one, return the new, valid address.
699 This macro is used in only one place: `memory_address' in explow.c.
700
701 OLDX is the address as it was before break_out_memory_refs was called.
702 In some cases it is useful to look at this to decide what needs to be done.
703
704 MODE and WIN are passed so that this macro can use
705 GO_IF_LEGITIMATE_ADDRESS.
706
707 It is always safe for this macro to do nothing. It exists to recognize
708 opportunities to optimize the output. */
709
710 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
711 { rtx orig_x = (X); \
712 (X) = legitimize_address (X, OLDX, MODE); \
713 if ((X) != orig_x && memory_address_p (MODE, X)) \
714 goto WIN; }
715
716 /* Go to LABEL if ADDR (a legitimate address expression)
717 has an effect that depends on the machine mode it is used for. */
718
719 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
720
721 /* Nonzero if the constant value X is a legitimate general operand.
722 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
723
724 #define LEGITIMATE_CONSTANT_P(X) 1
725
726 /* Zero if this needs fixing up to become PIC. */
727
728 #define LEGITIMATE_PIC_OPERAND_P(X) (legitimate_pic_operand_p (X))
729
730 /* Register to hold the addressing base for
731 position independent code access to data items. */
732 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
733
734 /* The name of the pseudo-symbol representing the Global Offset Table. */
735 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
736
737 #define SYMBOLIC_CONST_P(X) \
738 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
739 && ! LEGITIMATE_PIC_OPERAND_P (X))
740
741 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
742 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
743
744 /* Recognize machine-specific patterns that may appear within
745 constants. Used for PIC-specific UNSPECs. */
746 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
747 do \
748 if (GET_CODE (X) == UNSPEC) \
749 { \
750 switch (XINT ((X), 1)) \
751 { \
752 case UNSPEC_INT_LABEL: \
753 asm_fprintf ((STREAM), ".%LLIL" HOST_WIDE_INT_PRINT_DEC, \
754 INTVAL (XVECEXP ((X), 0, 0))); \
755 break; \
756 case UNSPEC_PIC: \
757 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
758 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
759 break; \
760 case UNSPEC_GOT: \
761 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
762 fputs ("@GOT", (STREAM)); \
763 break; \
764 case UNSPEC_GOTOFF: \
765 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
766 fputs ("@GOTOFF", (STREAM)); \
767 break; \
768 case UNSPEC_PLT: \
769 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
770 fputs ("@PLT", (STREAM)); \
771 break; \
772 case UNSPEC_GOTSYM_OFF: \
773 assemble_name (STREAM, GOT_SYMBOL_NAME); \
774 fputs ("-(", STREAM); \
775 output_addr_const (STREAM, XVECEXP (X, 0, 0)); \
776 fputs ("-.)", STREAM); \
777 break; \
778 default: \
779 goto FAIL; \
780 } \
781 break; \
782 } \
783 else \
784 goto FAIL; \
785 while (0)
786 \f
787 /* Tell final.c how to eliminate redundant test instructions. */
788
789 /* Here we define machine-dependent flags and fields in cc_status
790 (see `conditions.h'). No extra ones are needed for the VAX. */
791
792 /* Store in cc_status the expressions
793 that the condition codes will describe
794 after execution of an instruction whose pattern is EXP.
795 Do not alter them if the instruction would not alter the cc's. */
796
797 #define CC_OVERFLOW_UNUSABLE 0x200
798 #define CC_NO_CARRY CC_NO_OVERFLOW
799 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
800
801 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
802 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
803 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
804 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
805 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
806 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
807 ! TARGET_AM33 ? 6 : \
808 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
809 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
810 (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
811 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
812 4)
813
814 /* Nonzero if access to memory by bytes or half words is no faster
815 than accessing full words. */
816 #define SLOW_BYTE_ACCESS 1
817
818 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
819 and readonly data size. So we crank up the case threshold value to
820 encourage a series of if/else comparisons to implement many small switch
821 statements. In theory, this value could be increased much more if we
822 were solely optimizing for space, but we keep it "reasonable" to avoid
823 serious code efficiency lossage. */
824 #define CASE_VALUES_THRESHOLD 6
825
826 #define NO_FUNCTION_CSE
827
828 /* According expr.c, a value of around 6 should minimize code size, and
829 for the MN10300 series, that's our primary concern. */
830 #define MOVE_RATIO(speed) 6
831
832 #define TEXT_SECTION_ASM_OP "\t.section .text"
833 #define DATA_SECTION_ASM_OP "\t.section .data"
834 #define BSS_SECTION_ASM_OP "\t.section .bss"
835
836 #define ASM_COMMENT_START "#"
837
838 /* Output to assembler file text saying following lines
839 may contain character constants, extra white space, comments, etc. */
840
841 #define ASM_APP_ON "#APP\n"
842
843 /* Output to assembler file text saying following lines
844 no longer contain unusual constructs. */
845
846 #define ASM_APP_OFF "#NO_APP\n"
847
848 /* This says how to output the assembler to define a global
849 uninitialized but not common symbol.
850 Try to use asm_output_bss to implement this macro. */
851
852 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
853 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
854
855 /* Globalizing directive for a label. */
856 #define GLOBAL_ASM_OP "\t.global "
857
858 /* This is how to output a reference to a user-level label named NAME.
859 `assemble_name' uses this. */
860
861 #undef ASM_OUTPUT_LABELREF
862 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
863 fprintf (FILE, "_%s", (*targetm.strip_name_encoding) (NAME))
864
865 #define ASM_PN_FORMAT "%s___%lu"
866
867 /* This is how we tell the assembler that two symbols have the same value. */
868
869 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
870 do { assemble_name(FILE, NAME1); \
871 fputs(" = ", FILE); \
872 assemble_name(FILE, NAME2); \
873 fputc('\n', FILE); } while (0)
874
875
876 /* How to refer to registers in assembler output.
877 This sequence is indexed by compiler's hard-register-number (see above). */
878
879 #define REGISTER_NAMES \
880 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
881 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
882 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
883 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
884 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
885 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
886 }
887
888 #define ADDITIONAL_REGISTER_NAMES \
889 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
890 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
891 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
892 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
893 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
894 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
895 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
896 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
897 }
898
899 /* Print an instruction operand X on file FILE.
900 look in mn10300.c for details */
901
902 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
903
904 /* Print a memory operand whose address is X, on file FILE.
905 This uses a function in output-vax.c. */
906
907 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
908
909 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
910 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
911
912 /* This is how to output an element of a case-vector that is absolute. */
913
914 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
915 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
916
917 /* This is how to output an element of a case-vector that is relative. */
918
919 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
920 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
921
922 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
923 if ((LOG) != 0) \
924 fprintf (FILE, "\t.align %d\n", (LOG))
925
926 /* We don't have to worry about dbx compatibility for the mn10300. */
927 #define DEFAULT_GDB_EXTENSIONS 1
928
929 /* Use dwarf2 debugging info by default. */
930 #undef PREFERRED_DEBUGGING_TYPE
931 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
932
933 #define DWARF2_ASM_LINE_DEBUG_INFO 1
934
935 /* GDB always assumes the current function's frame begins at the value
936 of the stack pointer upon entry to the current function. Accessing
937 local variables and parameters passed on the stack is done using the
938 base of the frame + an offset provided by GCC.
939
940 For functions which have frame pointers this method works fine;
941 the (frame pointer) == (stack pointer at function entry) and GCC provides
942 an offset relative to the frame pointer.
943
944 This loses for functions without a frame pointer; GCC provides an offset
945 which is relative to the stack pointer after adjusting for the function's
946 frame size. GDB would prefer the offset to be relative to the value of
947 the stack pointer at the function's entry. Yuk! */
948 #define DEBUGGER_AUTO_OFFSET(X) \
949 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
950 + (frame_pointer_needed \
951 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
952
953 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
954 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
955 + (frame_pointer_needed \
956 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
957
958 /* Specify the machine mode that this machine uses
959 for the index in the tablejump instruction. */
960 #define CASE_VECTOR_MODE Pmode
961
962 /* Define if operations between registers always perform the operation
963 on the full register even if a narrower mode is specified. */
964 #define WORD_REGISTER_OPERATIONS
965
966 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
967
968 /* This flag, if defined, says the same insns that convert to a signed fixnum
969 also convert validly to an unsigned one. */
970 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
971
972 /* Max number of bytes we can move from memory to memory
973 in one reasonably fast instruction. */
974 #define MOVE_MAX 4
975
976 /* Define if shifts truncate the shift count
977 which implies one can omit a sign-extension or zero-extension
978 of a shift count. */
979 #define SHIFT_COUNT_TRUNCATED 1
980
981 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
982 is done just by pretending it is already truncated. */
983 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
984
985 /* Specify the machine mode that pointers have.
986 After generation of rtl, the compiler makes no further distinction
987 between pointers and any other objects of this machine mode. */
988 #define Pmode SImode
989
990 /* A function address in a call instruction
991 is a byte address (for indexing purposes)
992 so give the MEM rtx a byte's mode. */
993 #define FUNCTION_MODE QImode
994
995 /* The assembler op to get a word. */
996
997 #define FILE_ASM_OP "\t.file\n"
998
999 typedef struct mn10300_cc_status_mdep
1000 {
1001 int fpCC;
1002 }
1003 cc_status_mdep;
1004
1005 #define CC_STATUS_MDEP cc_status_mdep
1006
1007 #define CC_STATUS_MDEP_INIT (cc_status.mdep.fpCC = 0)