]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10300/mn10300.h
linux.h (SIZE_TYPE, [...]): Undefine.
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef ASM_SPEC
24 #undef LIB_SPEC
25 #undef ENDFILE_SPEC
26 #undef LINK_SPEC
27 #define LINK_SPEC "%{mrelax:--relax}"
28 #undef STARTFILE_SPEC
29 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
30
31 /* Names to predefine in the preprocessor for this target machine. */
32
33 #define TARGET_CPU_CPP_BUILTINS() \
34 do \
35 { \
36 builtin_define ("__mn10300__"); \
37 builtin_define ("__MN10300__"); \
38 builtin_assert ("cpu=mn10300"); \
39 builtin_assert ("machine=mn10300"); \
40 \
41 if (TARGET_AM34) \
42 { \
43 builtin_define ("__AM33__=4"); \
44 builtin_define ("__AM34__"); \
45 } \
46 else if (TARGET_AM33_2) \
47 { \
48 builtin_define ("__AM33__=2"); \
49 builtin_define ("__AM33_2__"); \
50 } \
51 else if (TARGET_AM33) \
52 builtin_define ("__AM33__=1"); \
53 } \
54 while (0)
55
56 extern GTY(()) int mn10300_unspec_int_label_counter;
57
58 enum processor_type
59 {
60 PROCESSOR_MN10300,
61 PROCESSOR_AM33,
62 PROCESSOR_AM33_2,
63 PROCESSOR_AM34
64 };
65
66 extern enum processor_type mn10300_processor;
67 extern enum processor_type mn10300_tune_cpu;
68
69 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
70 #define TARGET_AM33_2 (mn10300_processor >= PROCESSOR_AM33_2)
71 #define TARGET_AM34 (mn10300_processor >= PROCESSOR_AM34)
72
73 #ifndef PROCESSOR_DEFAULT
74 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
75 #endif
76
77 /* Print subsidiary information on the compiler version in use. */
78
79 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
80
81 \f
82 /* Target machine storage layout */
83
84 /* Define this if most significant bit is lowest numbered
85 in instructions that operate on numbered bit-fields.
86 This is not true on the Matsushita MN1003. */
87 #define BITS_BIG_ENDIAN 0
88
89 /* Define this if most significant byte of a word is the lowest numbered. */
90 /* This is not true on the Matsushita MN10300. */
91 #define BYTES_BIG_ENDIAN 0
92
93 /* Define this if most significant word of a multiword number is lowest
94 numbered.
95 This is not true on the Matsushita MN10300. */
96 #define WORDS_BIG_ENDIAN 0
97
98 /* Width of a word, in units (bytes). */
99 #define UNITS_PER_WORD 4
100
101 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
102 #define PARM_BOUNDARY 32
103
104 /* The stack goes in 32-bit lumps. */
105 #define STACK_BOUNDARY 32
106
107 /* Allocation boundary (in *bits*) for the code of a function.
108 8 is the minimum boundary; it's unclear if bigger alignments
109 would improve performance. */
110 #define FUNCTION_BOUNDARY 8
111
112 /* No data type wants to be aligned rounder than this. */
113 #define BIGGEST_ALIGNMENT 32
114
115 /* Alignment of field after `int : 0' in a structure. */
116 #define EMPTY_FIELD_BOUNDARY 32
117
118 /* Define this if move instructions will actually fail to work
119 when given unaligned data. */
120 #define STRICT_ALIGNMENT 1
121
122 /* Define this as 1 if `char' should by default be signed; else as 0. */
123 #define DEFAULT_SIGNED_CHAR 0
124
125 #undef SIZE_TYPE
126 #define SIZE_TYPE "unsigned int"
127
128 #undef PTRDIFF_TYPE
129 #define PTRDIFF_TYPE "int"
130
131 #undef WCHAR_TYPE
132 #define WCHAR_TYPE "long int"
133
134 #undef WCHAR_TYPE_SIZE
135 #define WCHAR_TYPE_SIZE BITS_PER_WORD
136 \f
137 /* Standard register usage. */
138
139 /* Number of actual hardware registers.
140 The hardware registers are assigned numbers for the compiler
141 from 0 to just below FIRST_PSEUDO_REGISTER.
142
143 All registers that the compiler knows about must be given numbers,
144 even those that are not normally considered general registers. */
145
146 #define FIRST_PSEUDO_REGISTER 52
147
148 /* Specify machine-specific register numbers. The commented out entries
149 are defined in mn10300.md. */
150 #define FIRST_DATA_REGNUM 0
151 #define LAST_DATA_REGNUM 3
152 #define FIRST_ADDRESS_REGNUM 4
153 /* #define PIC_REG 6 */
154 #define LAST_ADDRESS_REGNUM 8
155 /* #define SP_REG 9 */
156 #define FIRST_EXTENDED_REGNUM 10
157 #define LAST_EXTENDED_REGNUM 17
158 #define FIRST_FP_REGNUM 18
159 #define LAST_FP_REGNUM 49
160 #define MDR_REGNUM 50
161 /* #define CC_REG 51 */
162 #define FIRST_ARGUMENT_REGNUM 0
163
164 /* Specify the registers used for certain standard purposes.
165 The values of these macros are register numbers. */
166
167 /* Register to use for pushing function arguments. */
168 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
169
170 /* Base register for access to local variables of the function. */
171 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
172
173 /* Base register for access to arguments of the function. This
174 is a fake register and will be eliminated into either the frame
175 pointer or stack pointer. */
176 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
177
178 /* Register in which static-chain is passed to a function. */
179 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
180
181 /* 1 for registers that have pervasive standard uses
182 and are not available for the register allocator. */
183
184 #define FIXED_REGISTERS \
185 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
186 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
187 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 \
188 }
189
190 /* 1 for registers not available across function calls.
191 These must include the FIXED_REGISTERS and also any
192 registers that can be used without being saved.
193 The latter must include the registers where values are returned
194 and the register where structure-value addresses are passed.
195 Aside from that, you can include as many other registers as you
196 like. */
197
198 #define CALL_USED_REGISTERS \
199 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
200 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
201 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
202 }
203
204 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
205 redundant. It is needed when compiling in PIC mode because
206 the a2 register becomes fixed (and hence must be marked as
207 call_used) but in order to preserve the ABI it is not marked
208 as call_really_used. */
209 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
210
211 #define REG_ALLOC_ORDER \
212 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
213 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
214 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 51 \
215 }
216
217 /* Return number of consecutive hard regs needed starting at reg REGNO
218 to hold something of mode MODE.
219
220 This is ordinarily the length in words of a value of mode MODE
221 but can be less for certain modes in special long registers. */
222
223 #define HARD_REGNO_NREGS(REGNO, MODE) \
224 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
225
226 /* Value is 1 if hard register REGNO can hold a value of machine-mode
227 MODE. */
228 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
229 mn10300_hard_regno_mode_ok ((REGNO), (MODE))
230
231 /* Value is 1 if it is a good idea to tie two pseudo registers
232 when one has mode MODE1 and one has mode MODE2.
233 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
234 for any hard reg, then this must be 0 for correct output. */
235 #define MODES_TIEABLE_P(MODE1, MODE2) \
236 mn10300_modes_tieable ((MODE1), (MODE2))
237
238 /* 4 data, and effectively 3 address registers is small as far as I'm
239 concerned. */
240 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
241 \f
242 /* Define the classes of registers for register constraints in the
243 machine description. Also define ranges of constants.
244
245 One of the classes must always be named ALL_REGS and include all hard regs.
246 If there is more than one class, another class must be named NO_REGS
247 and contain no registers.
248
249 The name GENERAL_REGS must be the name of a class (or an alias for
250 another name such as ALL_REGS). This is the class of registers
251 that is allowed by "g" or "r" in a register constraint.
252 Also, registers outside this class are allocated only when
253 instructions express preferences for them.
254
255 The classes must be numbered in nondecreasing order; that is,
256 a larger-numbered class must never be contained completely
257 in a smaller-numbered class.
258
259 For any two classes, it is very desirable that there be another
260 class that represents their union. */
261
262 enum reg_class
263 {
264 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
265 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
266 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
267 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
268 FP_REGS, FP_ACC_REGS, CC_REGS,
269 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
270 };
271
272 #define N_REG_CLASSES (int) LIM_REG_CLASSES
273
274 /* Give names of register classes as strings for dump file. */
275
276 #define REG_CLASS_NAMES \
277 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
278 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
279 "EXTENDED_REGS", \
280 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
281 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
282 "FP_REGS", "FP_ACC_REGS", "CC_REGS", \
283 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" \
284 }
285
286 /* Define which registers fit in which classes.
287 This is an initializer for a vector of HARD_REG_SET
288 of length N_REG_CLASSES. */
289
290 #define REG_CLASS_CONTENTS \
291 { { 0, 0 }, /* No regs */ \
292 { 0x0000000f, 0 }, /* DATA_REGS */ \
293 { 0x000001f0, 0 }, /* ADDRESS_REGS */ \
294 { 0x00000200, 0 }, /* SP_REGS */ \
295 { 0x000001ff, 0 }, /* DATA_OR_ADDRESS_REGS */ \
296 { 0x000003f0, 0 }, /* SP_OR_ADDRESS_REGS */ \
297 { 0x0003fc00, 0 }, /* EXTENDED_REGS */ \
298 { 0x0003fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \
299 { 0x0003fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \
300 { 0x0003fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \
301 { 0x0003fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
302 { 0xfffc0000, 0x3ffff },/* FP_REGS */ \
303 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
304 { 0x00000000, 0x80000 },/* CC_REGS */ \
305 { 0x0003fdff, 0 }, /* GENERAL_REGS */ \
306 { 0xffffffff, 0xfffff } /* ALL_REGS */ \
307 }
308
309 /* The following macro defines cover classes for Integrated Register
310 Allocator. Cover classes is a set of non-intersected register
311 classes covering all hard registers used for register allocation
312 purpose. Any move between two registers of a cover class should be
313 cheaper than load or store of the registers. The macro value is
314 array of register classes with LIM_REG_CLASSES used as the end
315 marker. */
316
317 #define IRA_COVER_CLASSES \
318 { \
319 GENERAL_REGS, FP_REGS, LIM_REG_CLASSES \
320 }
321
322 /* The same information, inverted:
323 Return the class number of the smallest class containing
324 reg number REGNO. This could be a conditional expression
325 or could index an array. */
326
327 #define REGNO_REG_CLASS(REGNO) \
328 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
329 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
330 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
331 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
332 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
333 (REGNO) == CC_REG ? CC_REGS : \
334 NO_REGS)
335
336 /* The class value for index registers, and the one for base regs. */
337 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
338 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
339
340 /* Macros to check register numbers against specific register classes. */
341
342 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
343 and check its validity for a certain class.
344 We have two alternate definitions for each of them.
345 The usual definition accepts all pseudo regs; the other rejects
346 them unless they have been allocated suitable hard regs.
347 The symbol REG_OK_STRICT causes the latter definition to be used.
348
349 Most source files want to accept pseudo regs in the hope that
350 they will get allocated to the class that the insn wants them to be in.
351 Source files for reload pass need to be strict.
352 After reload, it makes no difference, since pseudo regs have
353 been eliminated by then. */
354
355 /* These assume that REGNO is a hard or pseudo reg number.
356 They give nonzero only if REGNO is a hard reg of the suitable class
357 or a pseudo reg currently allocated to a suitable hard reg.
358 Since they use reg_renumber, they are safe only once reg_renumber
359 has been allocated, which happens in local-alloc.c. */
360
361 #ifndef REG_OK_STRICT
362 # define REG_STRICT 0
363 #else
364 # define REG_STRICT 1
365 #endif
366
367 # define REGNO_IN_RANGE_P(regno,min,max,strict) \
368 (IN_RANGE ((regno), (min), (max)) \
369 || ((strict) \
370 ? (reg_renumber \
371 && reg_renumber[(regno)] >= (min) \
372 && reg_renumber[(regno)] <= (max)) \
373 : (regno) >= FIRST_PSEUDO_REGISTER))
374
375 #define REGNO_DATA_P(regno, strict) \
376 (REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM, \
377 (strict)))
378 #define REGNO_ADDRESS_P(regno, strict) \
379 (REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM, \
380 (strict)))
381 #define REGNO_SP_P(regno, strict) \
382 (REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, \
383 (strict)))
384 #define REGNO_EXTENDED_P(regno, strict) \
385 (REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM, \
386 (strict)))
387 #define REGNO_AM33_P(regno, strict) \
388 (REGNO_DATA_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)) \
389 || REGNO_EXTENDED_P ((regno), (strict)))
390 #define REGNO_FP_P(regno, strict) \
391 (REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM, (strict)))
392
393 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
394 (REGNO_SP_P ((regno), (strict)) \
395 || REGNO_ADDRESS_P ((regno), (strict)) \
396 || REGNO_EXTENDED_P ((regno), (strict)))
397 #define REGNO_OK_FOR_BASE_P(regno) \
398 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
399 #define REG_OK_FOR_BASE_P(X) \
400 (REGNO_OK_FOR_BASE_P (REGNO (X)))
401
402 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
403 (REGNO_SP_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)))
404 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
405 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
406 #define REG_OK_FOR_BIT_BASE_P(X) \
407 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
408
409 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
410 (REGNO_DATA_P ((regno), (strict)) || REGNO_EXTENDED_P ((regno), (strict)))
411 #define REGNO_OK_FOR_INDEX_P(regno) \
412 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
413 #define REG_OK_FOR_INDEX_P(X) \
414 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
415
416 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
417 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
418
419 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
420 mn10300_secondary_reload_class(CLASS,MODE,IN)
421
422 /* Return the maximum number of consecutive registers
423 needed to represent mode MODE in a register of class CLASS. */
424
425 #define CLASS_MAX_NREGS(CLASS, MODE) \
426 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
427
428 /* A class that contains registers which the compiler must always
429 access in a mode that is the same size as the mode in which it
430 loaded the register. */
431 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
432
433 /* Return 1 if VALUE is in the range specified. */
434
435 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
436 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
437
438 \f
439 /* Stack layout; function entry, exit and calling. */
440
441 /* Define this if pushing a word on the stack
442 makes the stack pointer a smaller address. */
443
444 #define STACK_GROWS_DOWNWARD
445
446 /* Define this to nonzero if the nominal address of the stack frame
447 is at the high-address end of the local variables;
448 that is, each additional local variable allocated
449 goes at a more negative offset in the frame. */
450
451 #define FRAME_GROWS_DOWNWARD 1
452
453 /* Offset within stack frame to start allocating local variables at.
454 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
455 first local allocated. Otherwise, it is the offset to the BEGINNING
456 of the first local allocated. */
457
458 #define STARTING_FRAME_OFFSET 0
459
460 /* Offset of first parameter from the argument pointer register value. */
461 /* Is equal to the size of the saved fp + pc, even if an fp isn't
462 saved since the value is used before we know. */
463
464 #define FIRST_PARM_OFFSET(FNDECL) 4
465
466 #define ELIMINABLE_REGS \
467 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
468 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
469 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
470
471 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
472 OFFSET = mn10300_initial_offset (FROM, TO)
473
474 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
475 for a register flushback area. */
476 #define REG_PARM_STACK_SPACE(DECL) 8
477 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
478 #define ACCUMULATE_OUTGOING_ARGS 1
479
480 /* So we can allocate space for return pointers once for the function
481 instead of around every call. */
482 #define STACK_POINTER_OFFSET 4
483
484 /* 1 if N is a possible register number for function argument passing.
485 On the MN10300, d0 and d1 are used in this way. */
486
487 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
488
489 \f
490 /* Define a data type for recording info about an argument list
491 during the scan of that argument list. This data type should
492 hold all necessary information about the function itself
493 and about the args processed so far, enough to enable macros
494 such as FUNCTION_ARG to determine where the next arg should go.
495
496 On the MN10300, this is a single integer, which is a number of bytes
497 of arguments scanned so far. */
498
499 #define CUMULATIVE_ARGS struct cum_arg
500
501 struct cum_arg
502 {
503 int nbytes;
504 };
505
506 /* Initialize a variable CUM of type CUMULATIVE_ARGS
507 for a call to a function whose data type is FNTYPE.
508 For a library call, FNTYPE is 0.
509
510 On the MN10300, the offset starts at 0. */
511
512 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
513 ((CUM).nbytes = 0)
514
515 #define FUNCTION_VALUE_REGNO_P(N) mn10300_function_value_regno_p (N)
516
517 #define DEFAULT_PCC_STRUCT_RETURN 0
518
519 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
520 the stack pointer does not matter. The value is tested only in
521 functions that have frame pointers.
522 No definition is equivalent to always zero. */
523
524 #define EXIT_IGNORE_STACK 1
525
526 /* Output assembler code to FILE to increment profiler label # LABELNO
527 for profiling a function entry. */
528
529 #define FUNCTION_PROFILER(FILE, LABELNO) ;
530
531 /* Length in units of the trampoline for entering a nested function. */
532
533 #define TRAMPOLINE_SIZE 0x1b
534
535 #define TRAMPOLINE_ALIGNMENT 32
536
537 /* A C expression whose value is RTL representing the value of the return
538 address for the frame COUNT steps up from the current frame.
539
540 On the mn10300, the return address is not at a constant location
541 due to the frame layout. Luckily, it is at a constant offset from
542 the argument pointer, so we define RETURN_ADDR_RTX to return a
543 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
544 with a reference to the stack/frame pointer + an appropriate offset. */
545
546 #define RETURN_ADDR_RTX(COUNT, FRAME) \
547 ((COUNT == 0) \
548 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
549 : (rtx) 0)
550
551 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, MDR_REGNUM)
552 \f
553 /* Maximum number of registers that can appear in a valid memory address. */
554
555 #define MAX_REGS_PER_ADDRESS 2
556
557 \f
558 #define HAVE_POST_INCREMENT (TARGET_AM33)
559
560 /* Accept either REG or SUBREG where a register is valid. */
561
562 #define RTX_OK_FOR_BASE_P(X, strict) \
563 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
564 (strict))) \
565 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
566 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
567 (strict))))
568
569 \f
570
571 /* Nonzero if the constant value X is a legitimate general operand.
572 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
573 #define LEGITIMATE_CONSTANT_P(X) mn10300_legitimate_constant_p (X)
574
575 /* Zero if this needs fixing up to become PIC. */
576
577 #define LEGITIMATE_PIC_OPERAND_P(X) \
578 mn10300_legitimate_pic_operand_p (X)
579
580 /* Register to hold the addressing base for
581 position independent code access to data items. */
582 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
583
584 /* The name of the pseudo-symbol representing the Global Offset Table. */
585 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
586
587 #define SYMBOLIC_CONST_P(X) \
588 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
589 && ! LEGITIMATE_PIC_OPERAND_P (X))
590
591 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
592 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
593 \f
594 #define SELECT_CC_MODE(OP, X, Y) mn10300_select_cc_mode (X)
595 #define REVERSIBLE_CC_MODE(MODE) 0
596 \f
597 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
598 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
599 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
600 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
601 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
602 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
603 ! TARGET_AM33 ? 6 : \
604 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
605 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
606 (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
607 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
608 4)
609
610 /* Nonzero if access to memory by bytes or half words is no faster
611 than accessing full words. */
612 #define SLOW_BYTE_ACCESS 1
613
614 #define NO_FUNCTION_CSE
615
616 /* According expr.c, a value of around 6 should minimize code size, and
617 for the MN10300 series, that's our primary concern. */
618 #define MOVE_RATIO(speed) 6
619
620 #define TEXT_SECTION_ASM_OP "\t.section .text"
621 #define DATA_SECTION_ASM_OP "\t.section .data"
622 #define BSS_SECTION_ASM_OP "\t.section .bss"
623
624 #define ASM_COMMENT_START "#"
625
626 /* Output to assembler file text saying following lines
627 may contain character constants, extra white space, comments, etc. */
628
629 #define ASM_APP_ON "#APP\n"
630
631 /* Output to assembler file text saying following lines
632 no longer contain unusual constructs. */
633
634 #define ASM_APP_OFF "#NO_APP\n"
635
636 #undef USER_LABEL_PREFIX
637 #define USER_LABEL_PREFIX "_"
638
639 /* This says how to output the assembler to define a global
640 uninitialized but not common symbol.
641 Try to use asm_output_bss to implement this macro. */
642
643 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
644 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
645
646 /* Globalizing directive for a label. */
647 #define GLOBAL_ASM_OP "\t.global "
648
649 /* This is how to output a reference to a user-level label named NAME.
650 `assemble_name' uses this. */
651
652 #undef ASM_OUTPUT_LABELREF
653 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
654 asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
655
656 #define ASM_PN_FORMAT "%s___%lu"
657
658 /* This is how we tell the assembler that two symbols have the same value. */
659
660 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
661 do \
662 { \
663 assemble_name (FILE, NAME1); \
664 fputs (" = ", FILE); \
665 assemble_name (FILE, NAME2); \
666 fputc ('\n', FILE); \
667 } \
668 while (0)
669
670 /* How to refer to registers in assembler output.
671 This sequence is indexed by compiler's hard-register-number (see above). */
672
673 #define REGISTER_NAMES \
674 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
675 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
676 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
677 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
678 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
679 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
680 , "mdr", "EPSW" \
681 }
682
683 #define ADDITIONAL_REGISTER_NAMES \
684 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
685 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
686 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
687 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
688 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
689 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
690 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
691 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
692 , {"cc", CC_REG} \
693 }
694
695 /* Print an instruction operand X on file FILE.
696 look in mn10300.c for details */
697
698 #define PRINT_OPERAND(FILE, X, CODE) \
699 mn10300_print_operand (FILE, X, CODE)
700
701 /* Print a memory operand whose address is X, on file FILE.
702 This uses a function in output-vax.c. */
703
704 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
705 mn10300_print_operand_address (FILE, ADDR)
706
707 /* This is how to output an element of a case-vector that is absolute. */
708
709 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
710 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
711
712 /* This is how to output an element of a case-vector that is relative. */
713
714 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
715 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
716
717 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
718 if ((LOG) != 0) \
719 fprintf (FILE, "\t.align %d\n", (LOG))
720
721 /* We don't have to worry about dbx compatibility for the mn10300. */
722 #define DEFAULT_GDB_EXTENSIONS 1
723
724 /* Use dwarf2 debugging info by default. */
725 #undef PREFERRED_DEBUGGING_TYPE
726 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
727 #define DWARF2_DEBUGGING_INFO 1
728
729 #define DWARF2_ASM_LINE_DEBUG_INFO 1
730
731 /* GDB always assumes the current function's frame begins at the value
732 of the stack pointer upon entry to the current function. Accessing
733 local variables and parameters passed on the stack is done using the
734 base of the frame + an offset provided by GCC.
735
736 For functions which have frame pointers this method works fine;
737 the (frame pointer) == (stack pointer at function entry) and GCC provides
738 an offset relative to the frame pointer.
739
740 This loses for functions without a frame pointer; GCC provides an offset
741 which is relative to the stack pointer after adjusting for the function's
742 frame size. GDB would prefer the offset to be relative to the value of
743 the stack pointer at the function's entry. Yuk! */
744 #define DEBUGGER_AUTO_OFFSET(X) \
745 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
746 + (frame_pointer_needed \
747 ? 0 : - mn10300_initial_offset (FRAME_POINTER_REGNUM, \
748 STACK_POINTER_REGNUM)))
749
750 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
751 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
752 + (frame_pointer_needed \
753 ? 0 : - mn10300_initial_offset (ARG_POINTER_REGNUM, \
754 STACK_POINTER_REGNUM)))
755
756 /* Specify the machine mode that this machine uses
757 for the index in the tablejump instruction. */
758 #define CASE_VECTOR_MODE Pmode
759
760 /* Define if operations between registers always perform the operation
761 on the full register even if a narrower mode is specified. */
762 #define WORD_REGISTER_OPERATIONS
763
764 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
765
766 /* This flag, if defined, says the same insns that convert to a signed fixnum
767 also convert validly to an unsigned one. */
768 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
769
770 /* Max number of bytes we can move from memory to memory
771 in one reasonably fast instruction. */
772 #define MOVE_MAX 4
773
774 /* Define if shifts truncate the shift count
775 which implies one can omit a sign-extension or zero-extension
776 of a shift count. */
777 #define SHIFT_COUNT_TRUNCATED 1
778
779 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
780 is done just by pretending it is already truncated. */
781 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
782
783 /* Specify the machine mode that pointers have.
784 After generation of rtl, the compiler makes no further distinction
785 between pointers and any other objects of this machine mode. */
786 #define Pmode SImode
787
788 /* A function address in a call instruction
789 is a byte address (for indexing purposes)
790 so give the MEM rtx a byte's mode. */
791 #define FUNCTION_MODE QImode
792
793 /* The assembler op to get a word. */
794
795 #define FILE_ASM_OP "\t.file\n"
796