]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10300/mn10300.h
mn10300: Clean up costing.
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef ASM_SPEC
24 #undef LIB_SPEC
25 #undef ENDFILE_SPEC
26 #undef LINK_SPEC
27 #define LINK_SPEC "%{mrelax:--relax}"
28 #undef STARTFILE_SPEC
29 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
30
31 /* Names to predefine in the preprocessor for this target machine. */
32
33 #define TARGET_CPU_CPP_BUILTINS() \
34 do \
35 { \
36 builtin_define ("__mn10300__"); \
37 builtin_define ("__MN10300__"); \
38 builtin_assert ("cpu=mn10300"); \
39 builtin_assert ("machine=mn10300"); \
40 \
41 if (TARGET_AM34) \
42 { \
43 builtin_define ("__AM33__=4"); \
44 builtin_define ("__AM34__"); \
45 } \
46 else if (TARGET_AM33_2) \
47 { \
48 builtin_define ("__AM33__=2"); \
49 builtin_define ("__AM33_2__"); \
50 } \
51 else if (TARGET_AM33) \
52 builtin_define ("__AM33__=1"); \
53 } \
54 while (0)
55
56 extern GTY(()) int mn10300_unspec_int_label_counter;
57
58 enum processor_type
59 {
60 PROCESSOR_MN10300,
61 PROCESSOR_AM33,
62 PROCESSOR_AM33_2,
63 PROCESSOR_AM34
64 };
65
66 extern enum processor_type mn10300_processor;
67 extern enum processor_type mn10300_tune_cpu;
68
69 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
70 #define TARGET_AM33_2 (mn10300_processor >= PROCESSOR_AM33_2)
71 #define TARGET_AM34 (mn10300_processor >= PROCESSOR_AM34)
72
73 #ifndef PROCESSOR_DEFAULT
74 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
75 #endif
76
77 /* Print subsidiary information on the compiler version in use. */
78
79 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
80
81 \f
82 /* Target machine storage layout */
83
84 /* Define this if most significant bit is lowest numbered
85 in instructions that operate on numbered bit-fields.
86 This is not true on the Matsushita MN1003. */
87 #define BITS_BIG_ENDIAN 0
88
89 /* Define this if most significant byte of a word is the lowest numbered. */
90 /* This is not true on the Matsushita MN10300. */
91 #define BYTES_BIG_ENDIAN 0
92
93 /* Define this if most significant word of a multiword number is lowest
94 numbered.
95 This is not true on the Matsushita MN10300. */
96 #define WORDS_BIG_ENDIAN 0
97
98 /* Width of a word, in units (bytes). */
99 #define UNITS_PER_WORD 4
100
101 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
102 #define PARM_BOUNDARY 32
103
104 /* The stack goes in 32-bit lumps. */
105 #define STACK_BOUNDARY 32
106
107 /* Allocation boundary (in *bits*) for the code of a function.
108 8 is the minimum boundary; it's unclear if bigger alignments
109 would improve performance. */
110 #define FUNCTION_BOUNDARY 8
111
112 /* No data type wants to be aligned rounder than this. */
113 #define BIGGEST_ALIGNMENT 32
114
115 /* Alignment of field after `int : 0' in a structure. */
116 #define EMPTY_FIELD_BOUNDARY 32
117
118 /* Define this if move instructions will actually fail to work
119 when given unaligned data. */
120 #define STRICT_ALIGNMENT 1
121
122 /* Define this as 1 if `char' should by default be signed; else as 0. */
123 #define DEFAULT_SIGNED_CHAR 0
124
125 #undef SIZE_TYPE
126 #define SIZE_TYPE "unsigned int"
127
128 #undef PTRDIFF_TYPE
129 #define PTRDIFF_TYPE "int"
130
131 #undef WCHAR_TYPE
132 #define WCHAR_TYPE "long int"
133
134 #undef WCHAR_TYPE_SIZE
135 #define WCHAR_TYPE_SIZE BITS_PER_WORD
136 \f
137 /* Standard register usage. */
138
139 /* Number of actual hardware registers.
140 The hardware registers are assigned numbers for the compiler
141 from 0 to just below FIRST_PSEUDO_REGISTER.
142
143 All registers that the compiler knows about must be given numbers,
144 even those that are not normally considered general registers. */
145
146 #define FIRST_PSEUDO_REGISTER 52
147
148 /* Specify machine-specific register numbers. The commented out entries
149 are defined in mn10300.md. */
150 #define FIRST_DATA_REGNUM 0
151 #define LAST_DATA_REGNUM 3
152 #define FIRST_ADDRESS_REGNUM 4
153 /* #define PIC_REG 6 */
154 #define LAST_ADDRESS_REGNUM 8
155 /* #define SP_REG 9 */
156 #define FIRST_EXTENDED_REGNUM 10
157 #define LAST_EXTENDED_REGNUM 17
158 #define FIRST_FP_REGNUM 18
159 #define LAST_FP_REGNUM 49
160 #define MDR_REGNUM 50
161 /* #define CC_REG 51 */
162 #define FIRST_ARGUMENT_REGNUM 0
163
164 /* Specify the registers used for certain standard purposes.
165 The values of these macros are register numbers. */
166
167 /* Register to use for pushing function arguments. */
168 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
169
170 /* Base register for access to local variables of the function. */
171 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
172
173 /* Base register for access to arguments of the function. This
174 is a fake register and will be eliminated into either the frame
175 pointer or stack pointer. */
176 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
177
178 /* Register in which static-chain is passed to a function. */
179 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
180
181 /* 1 for registers that have pervasive standard uses
182 and are not available for the register allocator. */
183
184 #define FIXED_REGISTERS \
185 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
186 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
187 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 \
188 }
189
190 /* 1 for registers not available across function calls.
191 These must include the FIXED_REGISTERS and also any
192 registers that can be used without being saved.
193 The latter must include the registers where values are returned
194 and the register where structure-value addresses are passed.
195 Aside from that, you can include as many other registers as you
196 like. */
197
198 #define CALL_USED_REGISTERS \
199 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
200 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
201 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
202 }
203
204 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
205 redundant. It is needed when compiling in PIC mode because
206 the a2 register becomes fixed (and hence must be marked as
207 call_used) but in order to preserve the ABI it is not marked
208 as call_really_used. */
209 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
210
211 #define REG_ALLOC_ORDER \
212 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
213 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
214 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 51 \
215 }
216
217 /* Return number of consecutive hard regs needed starting at reg REGNO
218 to hold something of mode MODE.
219
220 This is ordinarily the length in words of a value of mode MODE
221 but can be less for certain modes in special long registers. */
222
223 #define HARD_REGNO_NREGS(REGNO, MODE) \
224 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
225
226 /* Value is 1 if hard register REGNO can hold a value of machine-mode
227 MODE. */
228 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
229 mn10300_hard_regno_mode_ok ((REGNO), (MODE))
230
231 /* Value is 1 if it is a good idea to tie two pseudo registers
232 when one has mode MODE1 and one has mode MODE2.
233 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
234 for any hard reg, then this must be 0 for correct output. */
235 #define MODES_TIEABLE_P(MODE1, MODE2) \
236 mn10300_modes_tieable ((MODE1), (MODE2))
237
238 /* 4 data, and effectively 3 address registers is small as far as I'm
239 concerned. */
240 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
241 \f
242 /* Define the classes of registers for register constraints in the
243 machine description. Also define ranges of constants.
244
245 One of the classes must always be named ALL_REGS and include all hard regs.
246 If there is more than one class, another class must be named NO_REGS
247 and contain no registers.
248
249 The name GENERAL_REGS must be the name of a class (or an alias for
250 another name such as ALL_REGS). This is the class of registers
251 that is allowed by "g" or "r" in a register constraint.
252 Also, registers outside this class are allocated only when
253 instructions express preferences for them.
254
255 The classes must be numbered in nondecreasing order; that is,
256 a larger-numbered class must never be contained completely
257 in a smaller-numbered class.
258
259 For any two classes, it is very desirable that there be another
260 class that represents their union. */
261
262 enum reg_class
263 {
264 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
265 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
266 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
267 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
268 FP_REGS, FP_ACC_REGS, CC_REGS,
269 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
270 };
271
272 #define N_REG_CLASSES (int) LIM_REG_CLASSES
273
274 /* Give names of register classes as strings for dump file. */
275
276 #define REG_CLASS_NAMES \
277 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
278 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
279 "EXTENDED_REGS", \
280 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
281 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
282 "FP_REGS", "FP_ACC_REGS", "CC_REGS", \
283 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" \
284 }
285
286 /* Define which registers fit in which classes.
287 This is an initializer for a vector of HARD_REG_SET
288 of length N_REG_CLASSES. */
289
290 #define REG_CLASS_CONTENTS \
291 { { 0, 0 }, /* No regs */ \
292 { 0x0000000f, 0 }, /* DATA_REGS */ \
293 { 0x000001f0, 0 }, /* ADDRESS_REGS */ \
294 { 0x00000200, 0 }, /* SP_REGS */ \
295 { 0x000001ff, 0 }, /* DATA_OR_ADDRESS_REGS */ \
296 { 0x000003f0, 0 }, /* SP_OR_ADDRESS_REGS */ \
297 { 0x0003fc00, 0 }, /* EXTENDED_REGS */ \
298 { 0x0003fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \
299 { 0x0003fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \
300 { 0x0003fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \
301 { 0x0003fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
302 { 0xfffc0000, 0x3ffff },/* FP_REGS */ \
303 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
304 { 0x00000000, 0x80000 },/* CC_REGS */ \
305 { 0x0003fdff, 0 }, /* GENERAL_REGS */ \
306 { 0xffffffff, 0xfffff } /* ALL_REGS */ \
307 }
308
309 /* The following macro defines cover classes for Integrated Register
310 Allocator. Cover classes is a set of non-intersected register
311 classes covering all hard registers used for register allocation
312 purpose. Any move between two registers of a cover class should be
313 cheaper than load or store of the registers. The macro value is
314 array of register classes with LIM_REG_CLASSES used as the end
315 marker. */
316
317 #define IRA_COVER_CLASSES \
318 { \
319 GENERAL_REGS, FP_REGS, LIM_REG_CLASSES \
320 }
321
322 /* The same information, inverted:
323 Return the class number of the smallest class containing
324 reg number REGNO. This could be a conditional expression
325 or could index an array. */
326
327 #define REGNO_REG_CLASS(REGNO) \
328 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
329 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
330 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
331 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
332 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
333 (REGNO) == CC_REG ? CC_REGS : \
334 NO_REGS)
335
336 /* The class value for index registers, and the one for base regs. */
337 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
338 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
339
340 /* Macros to check register numbers against specific register classes. */
341
342 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
343 and check its validity for a certain class.
344 We have two alternate definitions for each of them.
345 The usual definition accepts all pseudo regs; the other rejects
346 them unless they have been allocated suitable hard regs.
347 The symbol REG_OK_STRICT causes the latter definition to be used.
348
349 Most source files want to accept pseudo regs in the hope that
350 they will get allocated to the class that the insn wants them to be in.
351 Source files for reload pass need to be strict.
352 After reload, it makes no difference, since pseudo regs have
353 been eliminated by then. */
354
355 /* These assume that REGNO is a hard or pseudo reg number.
356 They give nonzero only if REGNO is a hard reg of the suitable class
357 or a pseudo reg currently allocated to a suitable hard reg.
358 Since they use reg_renumber, they are safe only once reg_renumber
359 has been allocated, which happens in local-alloc.c. */
360
361 #ifndef REG_OK_STRICT
362 # define REG_STRICT 0
363 #else
364 # define REG_STRICT 1
365 #endif
366
367 # define REGNO_IN_RANGE_P(regno,min,max,strict) \
368 (IN_RANGE ((regno), (min), (max)) \
369 || ((strict) \
370 ? (reg_renumber \
371 && reg_renumber[(regno)] >= (min) \
372 && reg_renumber[(regno)] <= (max)) \
373 : (regno) >= FIRST_PSEUDO_REGISTER))
374
375 #define REGNO_DATA_P(regno, strict) \
376 (REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM, \
377 (strict)))
378 #define REGNO_ADDRESS_P(regno, strict) \
379 (REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM, \
380 (strict)))
381 #define REGNO_SP_P(regno, strict) \
382 (REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, \
383 (strict)))
384 #define REGNO_EXTENDED_P(regno, strict) \
385 (REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM, \
386 (strict)))
387 #define REGNO_AM33_P(regno, strict) \
388 (REGNO_DATA_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)) \
389 || REGNO_EXTENDED_P ((regno), (strict)))
390 #define REGNO_FP_P(regno, strict) \
391 (REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM, (strict)))
392
393 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
394 (REGNO_SP_P ((regno), (strict)) \
395 || REGNO_ADDRESS_P ((regno), (strict)) \
396 || REGNO_EXTENDED_P ((regno), (strict)))
397 #define REGNO_OK_FOR_BASE_P(regno) \
398 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
399 #define REG_OK_FOR_BASE_P(X) \
400 (REGNO_OK_FOR_BASE_P (REGNO (X)))
401
402 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
403 (REGNO_SP_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)))
404 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
405 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
406 #define REG_OK_FOR_BIT_BASE_P(X) \
407 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
408
409 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
410 (REGNO_DATA_P ((regno), (strict)) || REGNO_EXTENDED_P ((regno), (strict)))
411 #define REGNO_OK_FOR_INDEX_P(regno) \
412 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
413 #define REG_OK_FOR_INDEX_P(X) \
414 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
415
416 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
417 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
418
419 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
420 mn10300_secondary_reload_class(CLASS,MODE,IN)
421
422 /* Return the maximum number of consecutive registers
423 needed to represent mode MODE in a register of class CLASS. */
424
425 #define CLASS_MAX_NREGS(CLASS, MODE) \
426 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
427
428 /* A class that contains registers which the compiler must always
429 access in a mode that is the same size as the mode in which it
430 loaded the register. */
431 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
432
433 /* Return 1 if VALUE is in the range specified. */
434
435 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
436 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
437
438 \f
439 /* Stack layout; function entry, exit and calling. */
440
441 /* Define this if pushing a word on the stack
442 makes the stack pointer a smaller address. */
443
444 #define STACK_GROWS_DOWNWARD
445
446 /* Define this to nonzero if the nominal address of the stack frame
447 is at the high-address end of the local variables;
448 that is, each additional local variable allocated
449 goes at a more negative offset in the frame. */
450
451 #define FRAME_GROWS_DOWNWARD 1
452
453 /* Offset within stack frame to start allocating local variables at.
454 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
455 first local allocated. Otherwise, it is the offset to the BEGINNING
456 of the first local allocated. */
457
458 #define STARTING_FRAME_OFFSET 0
459
460 /* Offset of first parameter from the argument pointer register value. */
461 /* Is equal to the size of the saved fp + pc, even if an fp isn't
462 saved since the value is used before we know. */
463
464 #define FIRST_PARM_OFFSET(FNDECL) 4
465
466 /* But the CFA is at the arg pointer directly, not at the first argument. */
467 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
468
469 #define ELIMINABLE_REGS \
470 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
471 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
472 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
473
474 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
475 OFFSET = mn10300_initial_offset (FROM, TO)
476
477 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
478 for a register flushback area. */
479 #define REG_PARM_STACK_SPACE(DECL) 8
480 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
481 #define ACCUMULATE_OUTGOING_ARGS 1
482
483 /* So we can allocate space for return pointers once for the function
484 instead of around every call. */
485 #define STACK_POINTER_OFFSET 4
486
487 /* 1 if N is a possible register number for function argument passing.
488 On the MN10300, d0 and d1 are used in this way. */
489
490 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
491
492 \f
493 /* Define a data type for recording info about an argument list
494 during the scan of that argument list. This data type should
495 hold all necessary information about the function itself
496 and about the args processed so far, enough to enable macros
497 such as FUNCTION_ARG to determine where the next arg should go.
498
499 On the MN10300, this is a single integer, which is a number of bytes
500 of arguments scanned so far. */
501
502 #define CUMULATIVE_ARGS struct cum_arg
503
504 struct cum_arg
505 {
506 int nbytes;
507 };
508
509 /* Initialize a variable CUM of type CUMULATIVE_ARGS
510 for a call to a function whose data type is FNTYPE.
511 For a library call, FNTYPE is 0.
512
513 On the MN10300, the offset starts at 0. */
514
515 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
516 ((CUM).nbytes = 0)
517
518 #define FUNCTION_VALUE_REGNO_P(N) mn10300_function_value_regno_p (N)
519
520 #define DEFAULT_PCC_STRUCT_RETURN 0
521
522 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
523 the stack pointer does not matter. The value is tested only in
524 functions that have frame pointers.
525 No definition is equivalent to always zero. */
526
527 #define EXIT_IGNORE_STACK 1
528
529 /* Output assembler code to FILE to increment profiler label # LABELNO
530 for profiling a function entry. */
531
532 #define FUNCTION_PROFILER(FILE, LABELNO) ;
533
534 /* Length in units of the trampoline for entering a nested function. */
535
536 #define TRAMPOLINE_SIZE 0x1b
537
538 #define TRAMPOLINE_ALIGNMENT 32
539
540 /* A C expression whose value is RTL representing the value of the return
541 address for the frame COUNT steps up from the current frame.
542
543 On the mn10300, the return address is not at a constant location
544 due to the frame layout. Luckily, it is at a constant offset from
545 the argument pointer, so we define RETURN_ADDR_RTX to return a
546 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
547 with a reference to the stack/frame pointer + an appropriate offset. */
548
549 #define RETURN_ADDR_RTX(COUNT, FRAME) \
550 ((COUNT == 0) \
551 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
552 : (rtx) 0)
553
554 /* The return address is saved both in the stack and in MDR. Using
555 the stack location is handiest for what unwinding needs. */
556 #define INCOMING_RETURN_ADDR_RTX \
557 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
558 \f
559 /* Maximum number of registers that can appear in a valid memory address. */
560
561 #define MAX_REGS_PER_ADDRESS 2
562
563 \f
564 #define HAVE_POST_INCREMENT (TARGET_AM33)
565
566 /* Accept either REG or SUBREG where a register is valid. */
567
568 #define RTX_OK_FOR_BASE_P(X, strict) \
569 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
570 (strict))) \
571 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
572 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
573 (strict))))
574
575 \f
576
577 /* Nonzero if the constant value X is a legitimate general operand.
578 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
579 #define LEGITIMATE_CONSTANT_P(X) mn10300_legitimate_constant_p (X)
580
581 /* Zero if this needs fixing up to become PIC. */
582
583 #define LEGITIMATE_PIC_OPERAND_P(X) \
584 mn10300_legitimate_pic_operand_p (X)
585
586 /* Register to hold the addressing base for
587 position independent code access to data items. */
588 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
589
590 /* The name of the pseudo-symbol representing the Global Offset Table. */
591 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
592
593 #define SYMBOLIC_CONST_P(X) \
594 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
595 && ! LEGITIMATE_PIC_OPERAND_P (X))
596
597 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
598 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
599 \f
600 #define SELECT_CC_MODE(OP, X, Y) mn10300_select_cc_mode (X)
601 #define REVERSIBLE_CC_MODE(MODE) 0
602 \f
603 /* Nonzero if access to memory by bytes or half words is no faster
604 than accessing full words. */
605 #define SLOW_BYTE_ACCESS 1
606
607 #define NO_FUNCTION_CSE
608
609 /* According expr.c, a value of around 6 should minimize code size, and
610 for the MN10300 series, that's our primary concern. */
611 #define MOVE_RATIO(speed) 6
612
613 #define TEXT_SECTION_ASM_OP "\t.section .text"
614 #define DATA_SECTION_ASM_OP "\t.section .data"
615 #define BSS_SECTION_ASM_OP "\t.section .bss"
616
617 #define ASM_COMMENT_START "#"
618
619 /* Output to assembler file text saying following lines
620 may contain character constants, extra white space, comments, etc. */
621
622 #define ASM_APP_ON "#APP\n"
623
624 /* Output to assembler file text saying following lines
625 no longer contain unusual constructs. */
626
627 #define ASM_APP_OFF "#NO_APP\n"
628
629 #undef USER_LABEL_PREFIX
630 #define USER_LABEL_PREFIX "_"
631
632 /* This says how to output the assembler to define a global
633 uninitialized but not common symbol.
634 Try to use asm_output_bss to implement this macro. */
635
636 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
637 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
638
639 /* Globalizing directive for a label. */
640 #define GLOBAL_ASM_OP "\t.global "
641
642 /* This is how to output a reference to a user-level label named NAME.
643 `assemble_name' uses this. */
644
645 #undef ASM_OUTPUT_LABELREF
646 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
647 asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
648
649 /* This is how we tell the assembler that two symbols have the same value. */
650
651 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
652 do \
653 { \
654 assemble_name (FILE, NAME1); \
655 fputs (" = ", FILE); \
656 assemble_name (FILE, NAME2); \
657 fputc ('\n', FILE); \
658 } \
659 while (0)
660
661 /* How to refer to registers in assembler output.
662 This sequence is indexed by compiler's hard-register-number (see above). */
663
664 #define REGISTER_NAMES \
665 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
666 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
667 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
668 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
669 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
670 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
671 , "mdr", "EPSW" \
672 }
673
674 #define ADDITIONAL_REGISTER_NAMES \
675 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
676 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
677 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
678 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
679 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
680 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
681 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
682 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
683 , {"cc", CC_REG} \
684 }
685
686 /* Print an instruction operand X on file FILE.
687 look in mn10300.c for details */
688
689 #define PRINT_OPERAND(FILE, X, CODE) \
690 mn10300_print_operand (FILE, X, CODE)
691
692 /* Print a memory operand whose address is X, on file FILE.
693 This uses a function in output-vax.c. */
694
695 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
696 mn10300_print_operand_address (FILE, ADDR)
697
698 /* This is how to output an element of a case-vector that is absolute. */
699
700 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
701 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
702
703 /* This is how to output an element of a case-vector that is relative. */
704
705 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
706 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
707
708 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
709 if ((LOG) != 0) \
710 fprintf (FILE, "\t.align %d\n", (LOG))
711
712 /* We don't have to worry about dbx compatibility for the mn10300. */
713 #define DEFAULT_GDB_EXTENSIONS 1
714
715 /* Use dwarf2 debugging info by default. */
716 #undef PREFERRED_DEBUGGING_TYPE
717 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
718 #define DWARF2_DEBUGGING_INFO 1
719 #define DWARF2_ASM_LINE_DEBUG_INFO 1
720
721 /* Specify the machine mode that this machine uses
722 for the index in the tablejump instruction. */
723 #define CASE_VECTOR_MODE Pmode
724
725 /* Define if operations between registers always perform the operation
726 on the full register even if a narrower mode is specified. */
727 #define WORD_REGISTER_OPERATIONS
728
729 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
730
731 /* This flag, if defined, says the same insns that convert to a signed fixnum
732 also convert validly to an unsigned one. */
733 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
734
735 /* Max number of bytes we can move from memory to memory
736 in one reasonably fast instruction. */
737 #define MOVE_MAX 4
738
739 /* Define if shifts truncate the shift count
740 which implies one can omit a sign-extension or zero-extension
741 of a shift count. */
742 #define SHIFT_COUNT_TRUNCATED 1
743
744 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
745 is done just by pretending it is already truncated. */
746 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
747
748 /* Specify the machine mode that pointers have.
749 After generation of rtl, the compiler makes no further distinction
750 between pointers and any other objects of this machine mode. */
751 #define Pmode SImode
752
753 /* A function address in a call instruction
754 is a byte address (for indexing purposes)
755 so give the MEM rtx a byte's mode. */
756 #define FUNCTION_MODE QImode
757
758 /* The assembler op to get a word. */
759
760 #define FILE_ASM_OP "\t.file\n"
761