]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10300/mn10300.h
Turn MODES_TIEABLE_P into a target hook
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996-2017 Free Software Foundation, Inc.
4 Contributed by Jeff Law (law@cygnus.com).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #undef ASM_SPEC
23 #undef LIB_SPEC
24 #undef ENDFILE_SPEC
25 #undef LINK_SPEC
26 #define LINK_SPEC "%{mrelax:%{!r:--relax}}"
27 #undef STARTFILE_SPEC
28 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
29
30 /* Names to predefine in the preprocessor for this target machine. */
31
32 #define TARGET_CPU_CPP_BUILTINS() \
33 do \
34 { \
35 builtin_define ("__mn10300__"); \
36 builtin_define ("__MN10300__"); \
37 builtin_assert ("cpu=mn10300"); \
38 builtin_assert ("machine=mn10300"); \
39 \
40 if (TARGET_AM34) \
41 { \
42 builtin_define ("__AM33__=4"); \
43 builtin_define ("__AM34__"); \
44 } \
45 else if (TARGET_AM33_2) \
46 { \
47 builtin_define ("__AM33__=2"); \
48 builtin_define ("__AM33_2__"); \
49 } \
50 else if (TARGET_AM33) \
51 builtin_define ("__AM33__=1"); \
52 \
53 builtin_define (TARGET_ALLOW_LIW ? \
54 "__LIW__" : "__NO_LIW__");\
55 \
56 builtin_define (TARGET_ALLOW_SETLB ? \
57 "__SETLB__" : "__NO_SETLB__");\
58 } \
59 while (0)
60
61 #ifndef MN10300_OPTS_H
62 #include "config/mn10300/mn10300-opts.h"
63 #endif
64
65 extern enum processor_type mn10300_tune_cpu;
66
67 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
68 #define TARGET_AM33_2 (mn10300_processor >= PROCESSOR_AM33_2)
69 #define TARGET_AM34 (mn10300_processor >= PROCESSOR_AM34)
70
71 #ifndef PROCESSOR_DEFAULT
72 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
73 #endif
74
75 \f
76 /* Target machine storage layout */
77
78 /* Define this if most significant bit is lowest numbered
79 in instructions that operate on numbered bit-fields.
80 This is not true on the Matsushita MN1003. */
81 #define BITS_BIG_ENDIAN 0
82
83 /* Define this if most significant byte of a word is the lowest numbered. */
84 /* This is not true on the Matsushita MN10300. */
85 #define BYTES_BIG_ENDIAN 0
86
87 /* Define this if most significant word of a multiword number is lowest
88 numbered.
89 This is not true on the Matsushita MN10300. */
90 #define WORDS_BIG_ENDIAN 0
91
92 /* Width of a word, in units (bytes). */
93 #define UNITS_PER_WORD 4
94
95 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
96 #define PARM_BOUNDARY 32
97
98 /* The stack goes in 32-bit lumps. */
99 #define STACK_BOUNDARY 32
100
101 /* Allocation boundary (in *bits*) for the code of a function.
102 8 is the minimum boundary; it's unclear if bigger alignments
103 would improve performance. */
104 #define FUNCTION_BOUNDARY 8
105
106 /* No data type wants to be aligned rounder than this. */
107 #define BIGGEST_ALIGNMENT 32
108
109 /* Alignment of field after `int : 0' in a structure. */
110 #define EMPTY_FIELD_BOUNDARY 32
111
112 /* Define this if move instructions will actually fail to work
113 when given unaligned data. */
114 #define STRICT_ALIGNMENT 1
115
116 /* Define this as 1 if `char' should by default be signed; else as 0. */
117 #define DEFAULT_SIGNED_CHAR 0
118
119 #undef SIZE_TYPE
120 #define SIZE_TYPE "unsigned int"
121
122 #undef PTRDIFF_TYPE
123 #define PTRDIFF_TYPE "int"
124
125 #undef WCHAR_TYPE
126 #define WCHAR_TYPE "long int"
127
128 #undef WCHAR_TYPE_SIZE
129 #define WCHAR_TYPE_SIZE BITS_PER_WORD
130 \f
131 /* Standard register usage. */
132
133 /* Number of actual hardware registers.
134 The hardware registers are assigned numbers for the compiler
135 from 0 to just below FIRST_PSEUDO_REGISTER.
136
137 All registers that the compiler knows about must be given numbers,
138 even those that are not normally considered general registers. */
139
140 #define FIRST_PSEUDO_REGISTER 52
141
142 /* Specify machine-specific register numbers. The commented out entries
143 are defined in mn10300.md. */
144 #define FIRST_DATA_REGNUM 0
145 #define LAST_DATA_REGNUM 3
146 #define FIRST_ADDRESS_REGNUM 4
147 /* #define PIC_REG 6 */
148 #define LAST_ADDRESS_REGNUM 8
149 /* #define SP_REG 9 */
150 #define FIRST_EXTENDED_REGNUM 10
151 #define LAST_EXTENDED_REGNUM 17
152 #define FIRST_FP_REGNUM 18
153 #define LAST_FP_REGNUM 49
154 /* #define MDR_REG 50 */
155 /* #define CC_REG 51 */
156 #define FIRST_ARGUMENT_REGNUM 0
157
158 /* Specify the registers used for certain standard purposes.
159 The values of these macros are register numbers. */
160
161 /* Register to use for pushing function arguments. */
162 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
163
164 /* Base register for access to local variables of the function. */
165 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
166
167 /* Base register for access to arguments of the function. This
168 is a fake register and will be eliminated into either the frame
169 pointer or stack pointer. */
170 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
171
172 /* Register in which static-chain is passed to a function. */
173 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
174
175 /* 1 for registers that have pervasive standard uses
176 and are not available for the register allocator. */
177
178 #define FIXED_REGISTERS \
179 { 0, 0, 0, 0, /* data regs */ \
180 0, 0, 0, 0, /* addr regs */ \
181 1, /* arg reg */ \
182 1, /* sp reg */ \
183 0, 0, 0, 0, 0, 0, 0, 0, /* extended regs */ \
184 0, 0, /* fp regs (18-19) */ \
185 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (20-29) */ \
186 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (30-39) */ \
187 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (40-49) */ \
188 0, /* mdr reg */ \
189 1 /* cc reg */ \
190 }
191
192 /* 1 for registers not available across function calls.
193 These must include the FIXED_REGISTERS and also any
194 registers that can be used without being saved.
195 The latter must include the registers where values are returned
196 and the register where structure-value addresses are passed.
197 Aside from that, you can include as many other registers as you
198 like. */
199
200 #define CALL_USED_REGISTERS \
201 { 1, 1, 0, 0, /* data regs */ \
202 1, 1, 0, 0, /* addr regs */ \
203 1, /* arg reg */ \
204 1, /* sp reg */ \
205 1, 1, 1, 1, 0, 0, 0, 0, /* extended regs */ \
206 1, 1, /* fp regs (18-19) */ \
207 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (20-29) */ \
208 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, /* fp regs (30-39) */ \
209 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* fp regs (40-49) */ \
210 1, /* mdr reg */ \
211 1 /* cc reg */ \
212 }
213
214 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
215 redundant. It is needed when compiling in PIC mode because
216 the a2 register becomes fixed (and hence must be marked as
217 call_used) but in order to preserve the ABI it is not marked
218 as call_really_used. */
219 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
220
221 #define REG_ALLOC_ORDER \
222 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
223 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
224 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 50, 51 \
225 }
226
227 /* Return number of consecutive hard regs needed starting at reg REGNO
228 to hold something of mode MODE.
229
230 This is ordinarily the length in words of a value of mode MODE
231 but can be less for certain modes in special long registers. */
232
233 #define HARD_REGNO_NREGS(REGNO, MODE) \
234 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
235
236 /* 4 data, and effectively 3 address registers is small as far as I'm
237 concerned. */
238 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
239 \f
240 /* Define the classes of registers for register constraints in the
241 machine description. Also define ranges of constants.
242
243 One of the classes must always be named ALL_REGS and include all hard regs.
244 If there is more than one class, another class must be named NO_REGS
245 and contain no registers.
246
247 The name GENERAL_REGS must be the name of a class (or an alias for
248 another name such as ALL_REGS). This is the class of registers
249 that is allowed by "g" or "r" in a register constraint.
250 Also, registers outside this class are allocated only when
251 instructions express preferences for them.
252
253 The classes must be numbered in nondecreasing order; that is,
254 a larger-numbered class must never be contained completely
255 in a smaller-numbered class.
256
257 For any two classes, it is very desirable that there be another
258 class that represents their union. */
259
260 enum reg_class
261 {
262 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, SP_OR_ADDRESS_REGS,
263 EXTENDED_REGS, FP_REGS, FP_ACC_REGS, CC_REGS, MDR_REGS,
264 GENERAL_REGS, SP_OR_GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
265 };
266
267 #define N_REG_CLASSES (int) LIM_REG_CLASSES
268
269 /* Give names of register classes as strings for dump file. */
270
271 #define REG_CLASS_NAMES \
272 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", "SP_REGS", "SP_OR_ADDRESS_REGS", \
273 "EXTENDED_REGS", "FP_REGS", "FP_ACC_REGS", "CC_REGS", "MDR_REGS", \
274 "GENERAL_REGS", "SP_OR_GENERAL_REGS", "ALL_REGS", "LIM_REGS" \
275 }
276
277 /* Define which registers fit in which classes.
278 This is an initializer for a vector of HARD_REG_SET
279 of length N_REG_CLASSES. */
280
281 #define REG_CLASS_CONTENTS \
282 { { 0, 0 }, /* No regs */ \
283 { 0x0000000f, 0 }, /* DATA_REGS */ \
284 { 0x000001f0, 0 }, /* ADDRESS_REGS */ \
285 { 0x00000200, 0 }, /* SP_REGS */ \
286 { 0x000003f0, 0 }, /* SP_OR_ADDRESS_REGS */ \
287 { 0x0003fc00, 0 }, /* EXTENDED_REGS */ \
288 { 0xfffc0000, 0x3ffff },/* FP_REGS */ \
289 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
290 { 0x00000000, 0x80000 },/* CC_REGS */ \
291 { 0x00000000, 0x40000 },/* MDR_REGS */ \
292 { 0x0003fdff, 0 }, /* GENERAL_REGS */ \
293 { 0x0003ffff, 0 }, /* SP_OR_GENERAL_REGS */ \
294 { 0xffffffff, 0xfffff } /* ALL_REGS */ \
295 }
296
297 /* The same information, inverted:
298 Return the class number of the smallest class containing
299 reg number REGNO. This could be a conditional expression
300 or could index an array. */
301
302 #define REGNO_REG_CLASS(REGNO) \
303 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
304 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
305 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
306 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
307 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
308 (REGNO) == MDR_REG ? MDR_REGS : \
309 (REGNO) == CC_REG ? CC_REGS : \
310 NO_REGS)
311
312 /* The class value for index registers, and the one for base regs. */
313 #define INDEX_REG_CLASS \
314 (TARGET_AM33 ? GENERAL_REGS : DATA_REGS)
315 #define BASE_REG_CLASS \
316 (TARGET_AM33 ? SP_OR_GENERAL_REGS : SP_OR_ADDRESS_REGS)
317
318 /* Macros to check register numbers against specific register classes. */
319
320 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
321 and check its validity for a certain class.
322 We have two alternate definitions for each of them.
323 The usual definition accepts all pseudo regs; the other rejects
324 them unless they have been allocated suitable hard regs.
325 The symbol REG_OK_STRICT causes the latter definition to be used.
326
327 Most source files want to accept pseudo regs in the hope that
328 they will get allocated to the class that the insn wants them to be in.
329 Source files for reload pass need to be strict.
330 After reload, it makes no difference, since pseudo regs have
331 been eliminated by then. */
332
333 /* These assume that REGNO is a hard or pseudo reg number.
334 They give nonzero only if REGNO is a hard reg of the suitable class
335 or a pseudo reg currently allocated to a suitable hard reg.
336 Since they use reg_renumber, they are safe only once reg_renumber
337 has been allocated, which happens in reginfo.c during register
338 allocation. */
339
340 #ifndef REG_OK_STRICT
341 # define REG_STRICT 0
342 #else
343 # define REG_STRICT 1
344 #endif
345
346 #define REGNO_DATA_P(regno, strict) \
347 mn10300_regno_in_class_p (regno, DATA_REGS, strict)
348 #define REGNO_ADDRESS_P(regno, strict) \
349 mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
350 #define REGNO_EXTENDED_P(regno, strict) \
351 mn10300_regno_in_class_p (regno, EXTENDED_REGS, strict)
352 #define REGNO_GENERAL_P(regno, strict) \
353 mn10300_regno_in_class_p (regno, GENERAL_REGS, strict)
354
355 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
356 mn10300_regno_in_class_p (regno, BASE_REG_CLASS, strict)
357 #define REGNO_OK_FOR_BASE_P(regno) \
358 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
359 #define REG_OK_FOR_BASE_P(X) \
360 (REGNO_OK_FOR_BASE_P (REGNO (X)))
361
362 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
363 mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
364 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
365 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
366 #define REG_OK_FOR_BIT_BASE_P(X) \
367 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
368
369 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
370 mn10300_regno_in_class_p (regno, INDEX_REG_CLASS, strict)
371 #define REGNO_OK_FOR_INDEX_P(regno) \
372 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
373 #define REG_OK_FOR_INDEX_P(X) \
374 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
375
376 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
377 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
378
379 /* A class that contains registers which the compiler must always
380 access in a mode that is the same size as the mode in which it
381 loaded the register. */
382 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
383
384 /* Return 1 if VALUE is in the range specified. */
385
386 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
387 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
388
389 \f
390 /* Stack layout; function entry, exit and calling. */
391
392 /* Define this if pushing a word on the stack
393 makes the stack pointer a smaller address. */
394
395 #define STACK_GROWS_DOWNWARD 1
396
397 /* Define this to nonzero if the nominal address of the stack frame
398 is at the high-address end of the local variables;
399 that is, each additional local variable allocated
400 goes at a more negative offset in the frame. */
401
402 #define FRAME_GROWS_DOWNWARD 1
403
404 /* Offset within stack frame to start allocating local variables at.
405 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
406 first local allocated. Otherwise, it is the offset to the BEGINNING
407 of the first local allocated. */
408
409 #define STARTING_FRAME_OFFSET 0
410
411 /* Offset of first parameter from the argument pointer register value. */
412 /* Is equal to the size of the saved fp + pc, even if an fp isn't
413 saved since the value is used before we know. */
414
415 #define FIRST_PARM_OFFSET(FNDECL) 4
416
417 /* But the CFA is at the arg pointer directly, not at the first argument. */
418 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
419
420 #define ELIMINABLE_REGS \
421 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
422 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
423 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
424
425 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
426 OFFSET = mn10300_initial_offset (FROM, TO)
427
428 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
429 for a register flushback area. */
430 #define REG_PARM_STACK_SPACE(DECL) 8
431 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
432 #define ACCUMULATE_OUTGOING_ARGS 1
433
434 /* So we can allocate space for return pointers once for the function
435 instead of around every call. */
436 #define STACK_POINTER_OFFSET 4
437
438 /* 1 if N is a possible register number for function argument passing.
439 On the MN10300, d0 and d1 are used in this way. */
440
441 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
442
443 \f
444 /* Define a data type for recording info about an argument list
445 during the scan of that argument list. This data type should
446 hold all necessary information about the function itself
447 and about the args processed so far, enough to enable macros
448 such as FUNCTION_ARG to determine where the next arg should go.
449
450 On the MN10300, this is a single integer, which is a number of bytes
451 of arguments scanned so far. */
452
453 #define CUMULATIVE_ARGS struct cum_arg
454
455 struct cum_arg
456 {
457 int nbytes;
458 };
459
460 /* Initialize a variable CUM of type CUMULATIVE_ARGS
461 for a call to a function whose data type is FNTYPE.
462 For a library call, FNTYPE is 0.
463
464 On the MN10300, the offset starts at 0. */
465
466 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
467 ((CUM).nbytes = 0)
468
469 #define FUNCTION_VALUE_REGNO_P(N) mn10300_function_value_regno_p (N)
470
471 #define DEFAULT_PCC_STRUCT_RETURN 0
472
473 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
474 the stack pointer does not matter. The value is tested only in
475 functions that have frame pointers.
476 No definition is equivalent to always zero. */
477
478 #define EXIT_IGNORE_STACK 1
479
480 /* Output assembler code to FILE to increment profiler label # LABELNO
481 for profiling a function entry. */
482
483 #define FUNCTION_PROFILER(FILE, LABELNO) ;
484
485 /* Length in units of the trampoline for entering a nested function. */
486
487 #define TRAMPOLINE_SIZE 16
488 #define TRAMPOLINE_ALIGNMENT 32
489
490 /* A C expression whose value is RTL representing the value of the return
491 address for the frame COUNT steps up from the current frame.
492
493 On the mn10300, the return address is not at a constant location
494 due to the frame layout. Luckily, it is at a constant offset from
495 the argument pointer, so we define RETURN_ADDR_RTX to return a
496 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
497 with a reference to the stack/frame pointer + an appropriate offset. */
498
499 #define RETURN_ADDR_RTX(COUNT, FRAME) \
500 ((COUNT == 0) \
501 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
502 : (rtx) 0)
503
504 /* The return address is saved both in the stack and in MDR. Using
505 the stack location is handiest for what unwinding needs. */
506 #define INCOMING_RETURN_ADDR_RTX \
507 gen_rtx_MEM (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM))
508 \f
509 /* Maximum number of registers that can appear in a valid memory address. */
510
511 #define MAX_REGS_PER_ADDRESS 2
512
513 \f
514 /* We have post-increments. */
515 #define HAVE_POST_INCREMENT TARGET_AM33
516 #define HAVE_POST_MODIFY_DISP TARGET_AM33
517
518 /* ... But we don't want to use them for block moves. Small offsets are
519 just as effective, at least for inline block move sizes, and appears
520 to produce cleaner code. */
521 #define USE_LOAD_POST_INCREMENT(M) 0
522 #define USE_STORE_POST_INCREMENT(M) 0
523
524 /* Accept either REG or SUBREG where a register is valid. */
525
526 #define RTX_OK_FOR_BASE_P(X, strict) \
527 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
528 (strict))) \
529 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
530 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
531 (strict))))
532
533 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
534 do { \
535 rtx new_x = mn10300_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
536 if (new_x) \
537 { \
538 X = new_x; \
539 goto WIN; \
540 } \
541 } while (0)
542 \f
543
544 /* Zero if this needs fixing up to become PIC. */
545
546 #define LEGITIMATE_PIC_OPERAND_P(X) \
547 mn10300_legitimate_pic_operand_p (X)
548
549 /* Register to hold the addressing base for
550 position independent code access to data items. */
551 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
552
553 /* The name of the pseudo-symbol representing the Global Offset Table. */
554 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
555
556 #define SYMBOLIC_CONST_P(X) \
557 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
558 && ! LEGITIMATE_PIC_OPERAND_P (X))
559
560 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
561 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
562 \f
563 #define SELECT_CC_MODE(OP, X, Y) mn10300_select_cc_mode (OP, X, Y)
564 #define REVERSIBLE_CC_MODE(MODE) 0
565 \f
566 /* Nonzero if access to memory by bytes or half words is no faster
567 than accessing full words. */
568 #define SLOW_BYTE_ACCESS 1
569
570 #define NO_FUNCTION_CSE 1
571
572 /* According expr.c, a value of around 6 should minimize code size, and
573 for the MN10300 series, that's our primary concern. */
574 #define MOVE_RATIO(speed) 6
575
576 #define TEXT_SECTION_ASM_OP "\t.section .text"
577 #define DATA_SECTION_ASM_OP "\t.section .data"
578 #define BSS_SECTION_ASM_OP "\t.section .bss"
579
580 #define ASM_COMMENT_START "#"
581
582 /* Output to assembler file text saying following lines
583 may contain character constants, extra white space, comments, etc. */
584
585 #define ASM_APP_ON "#APP\n"
586
587 /* Output to assembler file text saying following lines
588 no longer contain unusual constructs. */
589
590 #define ASM_APP_OFF "#NO_APP\n"
591
592 #undef USER_LABEL_PREFIX
593 #define USER_LABEL_PREFIX "_"
594
595 /* This says how to output the assembler to define a global
596 uninitialized but not common symbol.
597 Try to use asm_output_bss to implement this macro. */
598
599 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
600 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
601
602 /* Globalizing directive for a label. */
603 #define GLOBAL_ASM_OP "\t.global "
604
605 /* This is how to output a reference to a user-level label named NAME.
606 `assemble_name' uses this. */
607
608 #undef ASM_OUTPUT_LABELREF
609 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
610 asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
611
612 /* This is how we tell the assembler that two symbols have the same value. */
613
614 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
615 do \
616 { \
617 assemble_name (FILE, NAME1); \
618 fputs (" = ", FILE); \
619 assemble_name (FILE, NAME2); \
620 fputc ('\n', FILE); \
621 } \
622 while (0)
623
624 /* How to refer to registers in assembler output.
625 This sequence is indexed by compiler's hard-register-number (see above). */
626
627 #define REGISTER_NAMES \
628 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
629 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
630 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
631 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
632 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
633 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
634 , "mdr", "EPSW" \
635 }
636
637 #define ADDITIONAL_REGISTER_NAMES \
638 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
639 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
640 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
641 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
642 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
643 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
644 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
645 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
646 , {"cc", CC_REG} \
647 }
648
649 /* Print an instruction operand X on file FILE.
650 look in mn10300.c for details */
651
652 #define PRINT_OPERAND(FILE, X, CODE) \
653 mn10300_print_operand (FILE, X, CODE)
654
655 /* Print a memory operand whose address is X, on file FILE.
656 This uses a function in output-vax.c. */
657
658 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
659 mn10300_print_operand_address (FILE, ADDR)
660
661 /* This is how to output an element of a case-vector that is absolute. */
662
663 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
664 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
665
666 /* This is how to output an element of a case-vector that is relative. */
667
668 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
669 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
670
671 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
672 if ((LOG) != 0) \
673 fprintf (FILE, "\t.align %d\n", (LOG))
674
675 /* We don't have to worry about dbx compatibility for the mn10300. */
676 #define DEFAULT_GDB_EXTENSIONS 1
677
678 /* Use dwarf2 debugging info by default. */
679 #undef PREFERRED_DEBUGGING_TYPE
680 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
681 #define DWARF2_DEBUGGING_INFO 1
682 #define DWARF2_ASM_LINE_DEBUG_INFO 1
683
684 /* Specify the machine mode that this machine uses
685 for the index in the tablejump instruction. */
686 #define CASE_VECTOR_MODE Pmode
687
688 /* Define if operations between registers always perform the operation
689 on the full register even if a narrower mode is specified. */
690 #define WORD_REGISTER_OPERATIONS 1
691
692 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
693
694 /* Max number of bytes we can move from memory to memory
695 in one reasonably fast instruction. */
696 #define MOVE_MAX 4
697
698 /* Define if shifts truncate the shift count
699 which implies one can omit a sign-extension or zero-extension
700 of a shift count. */
701 #define SHIFT_COUNT_TRUNCATED 1
702
703 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
704 is done just by pretending it is already truncated. */
705 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
706
707 /* Specify the machine mode that pointers have.
708 After generation of rtl, the compiler makes no further distinction
709 between pointers and any other objects of this machine mode. */
710 #define Pmode SImode
711
712 /* A function address in a call instruction
713 is a byte address (for indexing purposes)
714 so give the MEM rtx a byte's mode. */
715 #define FUNCTION_MODE QImode
716
717 /* The assembler op to get a word. */
718
719 #define FILE_ASM_OP "\t.file\n"
720