]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10300/mn10300.h
Make-lang.in, [...]: Update copyright years.
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 #undef ASM_SPEC
25 #undef LIB_SPEC
26 #undef ENDFILE_SPEC
27 #undef LINK_SPEC
28 #define LINK_SPEC "%{mrelax:--relax}"
29 #undef STARTFILE_SPEC
30 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
31
32 /* Names to predefine in the preprocessor for this target machine. */
33
34 #define TARGET_CPU_CPP_BUILTINS() \
35 do \
36 { \
37 builtin_define ("__mn10300__"); \
38 builtin_define ("__MN10300__"); \
39 builtin_assert ("cpu=mn10300"); \
40 builtin_assert ("machine=mn10300"); \
41 } \
42 while (0)
43
44 #define CPP_SPEC "%{mam33:-D__AM33__} %{mam33-2:-D__AM33__=2 -D__AM33_2__}"
45
46 extern GTY(()) int mn10300_unspec_int_label_counter;
47
48 enum processor_type {
49 PROCESSOR_MN10300,
50 PROCESSOR_AM33,
51 PROCESSOR_AM33_2
52 };
53
54 extern enum processor_type mn10300_processor;
55
56 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
57 #define TARGET_AM33_2 (mn10300_processor == PROCESSOR_AM33_2)
58
59 #ifndef PROCESSOR_DEFAULT
60 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
61 #endif
62
63 #define OVERRIDE_OPTIONS mn10300_override_options ()
64
65 /* Print subsidiary information on the compiler version in use. */
66
67 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
68
69 \f
70 /* Target machine storage layout */
71
72 /* Define this if most significant bit is lowest numbered
73 in instructions that operate on numbered bit-fields.
74 This is not true on the Matsushita MN1003. */
75 #define BITS_BIG_ENDIAN 0
76
77 /* Define this if most significant byte of a word is the lowest numbered. */
78 /* This is not true on the Matsushita MN10300. */
79 #define BYTES_BIG_ENDIAN 0
80
81 /* Define this if most significant word of a multiword number is lowest
82 numbered.
83 This is not true on the Matsushita MN10300. */
84 #define WORDS_BIG_ENDIAN 0
85
86 /* Width of a word, in units (bytes). */
87 #define UNITS_PER_WORD 4
88
89 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
90 #define PARM_BOUNDARY 32
91
92 /* The stack goes in 32-bit lumps. */
93 #define STACK_BOUNDARY 32
94
95 /* Allocation boundary (in *bits*) for the code of a function.
96 8 is the minimum boundary; it's unclear if bigger alignments
97 would improve performance. */
98 #define FUNCTION_BOUNDARY 8
99
100 /* No data type wants to be aligned rounder than this. */
101 #define BIGGEST_ALIGNMENT 32
102
103 /* Alignment of field after `int : 0' in a structure. */
104 #define EMPTY_FIELD_BOUNDARY 32
105
106 /* Define this if move instructions will actually fail to work
107 when given unaligned data. */
108 #define STRICT_ALIGNMENT 1
109
110 /* Define this as 1 if `char' should by default be signed; else as 0. */
111 #define DEFAULT_SIGNED_CHAR 0
112 \f
113 /* Standard register usage. */
114
115 /* Number of actual hardware registers.
116 The hardware registers are assigned numbers for the compiler
117 from 0 to just below FIRST_PSEUDO_REGISTER.
118
119 All registers that the compiler knows about must be given numbers,
120 even those that are not normally considered general registers. */
121
122 #define FIRST_PSEUDO_REGISTER 50
123
124 /* Specify machine-specific register numbers. */
125 #define FIRST_DATA_REGNUM 0
126 #define LAST_DATA_REGNUM 3
127 #define FIRST_ADDRESS_REGNUM 4
128 #define LAST_ADDRESS_REGNUM 8
129 #define FIRST_EXTENDED_REGNUM 10
130 #define LAST_EXTENDED_REGNUM 17
131 #define FIRST_FP_REGNUM 18
132 #define LAST_FP_REGNUM 49
133 #define FIRST_ARGUMENT_REGNUM 0
134
135 /* Specify the registers used for certain standard purposes.
136 The values of these macros are register numbers. */
137
138 /* Register to use for pushing function arguments. */
139 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM+1)
140
141 /* Base register for access to local variables of the function. */
142 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM-1)
143
144 /* Base register for access to arguments of the function. This
145 is a fake register and will be eliminated into either the frame
146 pointer or stack pointer. */
147 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
148
149 /* Register in which static-chain is passed to a function. */
150 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM+1)
151
152 /* 1 for registers that have pervasive standard uses
153 and are not available for the register allocator. */
154
155 #define FIXED_REGISTERS \
156 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
157 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
158 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
159 }
160
161 /* 1 for registers not available across function calls.
162 These must include the FIXED_REGISTERS and also any
163 registers that can be used without being saved.
164 The latter must include the registers where values are returned
165 and the register where structure-value addresses are passed.
166 Aside from that, you can include as many other registers as you
167 like. */
168
169 #define CALL_USED_REGISTERS \
170 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
171 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
172 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
173 }
174
175 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
176 redundant. It is needed when compiling in PIC mode because
177 the a2 register becomes fixed (and hence must be marked as
178 call_used) but in order to preserve the ABI it is not marked
179 as call_really_used. */
180 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
181
182 #define REG_ALLOC_ORDER \
183 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
184 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
185 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 \
186 }
187
188 #define CONDITIONAL_REGISTER_USAGE \
189 { \
190 unsigned int i; \
191 \
192 if (!TARGET_AM33) \
193 { \
194 for (i = FIRST_EXTENDED_REGNUM; \
195 i <= LAST_EXTENDED_REGNUM; i++) \
196 fixed_regs[i] = call_used_regs[i] = 1; \
197 } \
198 if (!TARGET_AM33_2) \
199 { \
200 for (i = FIRST_FP_REGNUM; \
201 i <= LAST_FP_REGNUM; \
202 i++) \
203 fixed_regs[i] = call_used_regs[i] = 1; \
204 } \
205 if (flag_pic) \
206 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = \
207 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;\
208 }
209
210 /* Return number of consecutive hard regs needed starting at reg REGNO
211 to hold something of mode MODE.
212
213 This is ordinarily the length in words of a value of mode MODE
214 but can be less for certain modes in special long registers. */
215
216 #define HARD_REGNO_NREGS(REGNO, MODE) \
217 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
218
219 /* Value is 1 if hard register REGNO can hold a value of machine-mode
220 MODE. */
221
222 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
223 ((REGNO_REG_CLASS (REGNO) == DATA_REGS \
224 || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
225 || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
226 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
227 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
228
229 /* Value is 1 if it is a good idea to tie two pseudo registers
230 when one has mode MODE1 and one has mode MODE2.
231 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
232 for any hard reg, then this must be 0 for correct output. */
233 #define MODES_TIEABLE_P(MODE1, MODE2) \
234 (TARGET_AM33 \
235 || MODE1 == MODE2 \
236 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
237
238 /* 4 data, and effectively 3 address registers is small as far as I'm
239 concerned. */
240 #define SMALL_REGISTER_CLASSES 1
241 \f
242 /* Define the classes of registers for register constraints in the
243 machine description. Also define ranges of constants.
244
245 One of the classes must always be named ALL_REGS and include all hard regs.
246 If there is more than one class, another class must be named NO_REGS
247 and contain no registers.
248
249 The name GENERAL_REGS must be the name of a class (or an alias for
250 another name such as ALL_REGS). This is the class of registers
251 that is allowed by "g" or "r" in a register constraint.
252 Also, registers outside this class are allocated only when
253 instructions express preferences for them.
254
255 The classes must be numbered in nondecreasing order; that is,
256 a larger-numbered class must never be contained completely
257 in a smaller-numbered class.
258
259 For any two classes, it is very desirable that there be another
260 class that represents their union. */
261
262 enum reg_class {
263 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
264 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
265 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
266 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
267 FP_REGS, FP_ACC_REGS,
268 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
269 };
270
271 #define N_REG_CLASSES (int) LIM_REG_CLASSES
272
273 /* Give names of register classes as strings for dump file. */
274
275 #define REG_CLASS_NAMES \
276 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
277 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
278 "EXTENDED_REGS", \
279 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
280 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
281 "FP_REGS", "FP_ACC_REGS", \
282 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
283
284 /* Define which registers fit in which classes.
285 This is an initializer for a vector of HARD_REG_SET
286 of length N_REG_CLASSES. */
287
288 #define REG_CLASS_CONTENTS \
289 { { 0, 0 }, /* No regs */ \
290 { 0x0000f, 0 }, /* DATA_REGS */ \
291 { 0x001f0, 0 }, /* ADDRESS_REGS */ \
292 { 0x00200, 0 }, /* SP_REGS */ \
293 { 0x001ff, 0 }, /* DATA_OR_ADDRESS_REGS */\
294 { 0x003f0, 0 }, /* SP_OR_ADDRESS_REGS */\
295 { 0x3fc00, 0 }, /* EXTENDED_REGS */ \
296 { 0x3fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \
297 { 0x3fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \
298 { 0x3fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \
299 { 0x3fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
300 { 0xfffc0000, 0x3ffff }, /* FP_REGS */ \
301 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
302 { 0x3fdff, 0 }, /* GENERAL_REGS */ \
303 { 0xffffffff, 0x3ffff } /* ALL_REGS */ \
304 }
305
306 /* The following macro defines cover classes for Integrated Register
307 Allocator. Cover classes is a set of non-intersected register
308 classes covering all hard registers used for register allocation
309 purpose. Any move between two registers of a cover class should be
310 cheaper than load or store of the registers. The macro value is
311 array of register classes with LIM_REG_CLASSES used as the end
312 marker. */
313
314 #define IRA_COVER_CLASSES \
315 { \
316 GENERAL_REGS, FP_REGS, LIM_REG_CLASSES \
317 }
318
319 /* The same information, inverted:
320 Return the class number of the smallest class containing
321 reg number REGNO. This could be a conditional expression
322 or could index an array. */
323
324 #define REGNO_REG_CLASS(REGNO) \
325 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
326 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
327 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
328 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
329 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
330 NO_REGS)
331
332 /* The class value for index registers, and the one for base regs. */
333 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
334 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
335
336 /* Macros to check register numbers against specific register classes. */
337
338 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
339 and check its validity for a certain class.
340 We have two alternate definitions for each of them.
341 The usual definition accepts all pseudo regs; the other rejects
342 them unless they have been allocated suitable hard regs.
343 The symbol REG_OK_STRICT causes the latter definition to be used.
344
345 Most source files want to accept pseudo regs in the hope that
346 they will get allocated to the class that the insn wants them to be in.
347 Source files for reload pass need to be strict.
348 After reload, it makes no difference, since pseudo regs have
349 been eliminated by then. */
350
351 /* These assume that REGNO is a hard or pseudo reg number.
352 They give nonzero only if REGNO is a hard reg of the suitable class
353 or a pseudo reg currently allocated to a suitable hard reg.
354 Since they use reg_renumber, they are safe only once reg_renumber
355 has been allocated, which happens in local-alloc.c. */
356
357 #ifndef REG_OK_STRICT
358 # define REG_STRICT 0
359 #else
360 # define REG_STRICT 1
361 #endif
362
363 # define REGNO_IN_RANGE_P(regno,min,max,strict) \
364 (IN_RANGE ((regno), (min), (max)) \
365 || ((strict) \
366 ? (reg_renumber \
367 && reg_renumber[(regno)] >= (min) \
368 && reg_renumber[(regno)] <= (max)) \
369 : (regno) >= FIRST_PSEUDO_REGISTER))
370
371 #define REGNO_DATA_P(regno, strict) \
372 (REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM, \
373 (strict)))
374 #define REGNO_ADDRESS_P(regno, strict) \
375 (REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM, \
376 (strict)))
377 #define REGNO_SP_P(regno, strict) \
378 (REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, \
379 (strict)))
380 #define REGNO_EXTENDED_P(regno, strict) \
381 (REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM, \
382 (strict)))
383 #define REGNO_AM33_P(regno, strict) \
384 (REGNO_DATA_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)) \
385 || REGNO_EXTENDED_P ((regno), (strict)))
386 #define REGNO_FP_P(regno, strict) \
387 (REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM, (strict)))
388
389 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
390 (REGNO_SP_P ((regno), (strict)) \
391 || REGNO_ADDRESS_P ((regno), (strict)) \
392 || REGNO_EXTENDED_P ((regno), (strict)))
393 #define REGNO_OK_FOR_BASE_P(regno) \
394 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
395 #define REG_OK_FOR_BASE_P(X) \
396 (REGNO_OK_FOR_BASE_P (REGNO (X)))
397
398 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
399 (REGNO_SP_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)))
400 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
401 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
402 #define REG_OK_FOR_BIT_BASE_P(X) \
403 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
404
405 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
406 (REGNO_DATA_P ((regno), (strict)) || REGNO_EXTENDED_P ((regno), (strict)))
407 #define REGNO_OK_FOR_INDEX_P(regno) \
408 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
409 #define REG_OK_FOR_INDEX_P(X) \
410 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
411
412 /* Given an rtx X being reloaded into a reg required to be
413 in class CLASS, return the class of reg to actually use.
414 In general this is just CLASS; but on some machines
415 in some cases it is preferable to use a more restrictive class. */
416
417 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
418 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
419 ? ADDRESS_OR_EXTENDED_REGS \
420 : (GET_CODE (X) == MEM \
421 || (GET_CODE (X) == REG \
422 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
423 || (GET_CODE (X) == SUBREG \
424 && GET_CODE (SUBREG_REG (X)) == REG \
425 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
426 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
427 : (CLASS)))
428
429 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
430 (X == stack_pointer_rtx && CLASS != SP_REGS \
431 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
432
433 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
434 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
435
436 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
437 mn10300_secondary_reload_class(CLASS,MODE,IN)
438
439 /* Return the maximum number of consecutive registers
440 needed to represent mode MODE in a register of class CLASS. */
441
442 #define CLASS_MAX_NREGS(CLASS, MODE) \
443 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
444
445 /* A class that contains registers which the compiler must always
446 access in a mode that is the same size as the mode in which it
447 loaded the register. */
448 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
449
450 /* Return 1 if VALUE is in the range specified. */
451
452 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
453 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
454
455 \f
456 /* Stack layout; function entry, exit and calling. */
457
458 /* Define this if pushing a word on the stack
459 makes the stack pointer a smaller address. */
460
461 #define STACK_GROWS_DOWNWARD
462
463 /* Define this to nonzero if the nominal address of the stack frame
464 is at the high-address end of the local variables;
465 that is, each additional local variable allocated
466 goes at a more negative offset in the frame. */
467
468 #define FRAME_GROWS_DOWNWARD 1
469
470 /* Offset within stack frame to start allocating local variables at.
471 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
472 first local allocated. Otherwise, it is the offset to the BEGINNING
473 of the first local allocated. */
474
475 #define STARTING_FRAME_OFFSET 0
476
477 /* Offset of first parameter from the argument pointer register value. */
478 /* Is equal to the size of the saved fp + pc, even if an fp isn't
479 saved since the value is used before we know. */
480
481 #define FIRST_PARM_OFFSET(FNDECL) 4
482
483 #define ELIMINABLE_REGS \
484 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
485 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
486 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
487
488 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
489 OFFSET = initial_offset (FROM, TO)
490
491 /* We can debug without frame pointers on the mn10300, so eliminate
492 them whenever possible. */
493 #define CAN_DEBUG_WITHOUT_FP
494
495 /* Value is the number of bytes of arguments automatically
496 popped when returning from a subroutine call.
497 FUNDECL is the declaration node of the function (as a tree),
498 FUNTYPE is the data type of the function (as a tree),
499 or for a library call it is an identifier node for the subroutine name.
500 SIZE is the number of bytes of arguments passed on the stack. */
501
502 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
503
504 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
505 for a register flushback area. */
506 #define REG_PARM_STACK_SPACE(DECL) 8
507 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
508 #define ACCUMULATE_OUTGOING_ARGS 1
509
510 /* So we can allocate space for return pointers once for the function
511 instead of around every call. */
512 #define STACK_POINTER_OFFSET 4
513
514 /* 1 if N is a possible register number for function argument passing.
515 On the MN10300, d0 and d1 are used in this way. */
516
517 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
518
519 \f
520 /* Define a data type for recording info about an argument list
521 during the scan of that argument list. This data type should
522 hold all necessary information about the function itself
523 and about the args processed so far, enough to enable macros
524 such as FUNCTION_ARG to determine where the next arg should go.
525
526 On the MN10300, this is a single integer, which is a number of bytes
527 of arguments scanned so far. */
528
529 #define CUMULATIVE_ARGS struct cum_arg
530 struct cum_arg {int nbytes; };
531
532 /* Initialize a variable CUM of type CUMULATIVE_ARGS
533 for a call to a function whose data type is FNTYPE.
534 For a library call, FNTYPE is 0.
535
536 On the MN10300, the offset starts at 0. */
537
538 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
539 ((CUM).nbytes = 0)
540
541 /* Update the data in CUM to advance over an argument
542 of mode MODE and data type TYPE.
543 (TYPE is null for libcalls where that information may not be available.) */
544
545 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
546 ((CUM).nbytes += ((MODE) != BLKmode \
547 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
548 : (int_size_in_bytes (TYPE) + 3) & ~3))
549
550 /* Define where to put the arguments to a function.
551 Value is zero to push the argument on the stack,
552 or a hard register in which to store the argument.
553
554 MODE is the argument's machine mode.
555 TYPE is the data type of the argument (as a tree).
556 This is null for libcalls where that information may
557 not be available.
558 CUM is a variable of type CUMULATIVE_ARGS which gives info about
559 the preceding args and about the function being called.
560 NAMED is nonzero if this argument is a named parameter
561 (otherwise it is an extra parameter matching an ellipsis). */
562
563 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
564 function_arg (&CUM, MODE, TYPE, NAMED)
565
566 #define FUNCTION_VALUE_REGNO_P(N) mn10300_function_value_regno_p (N)
567
568 #define DEFAULT_PCC_STRUCT_RETURN 0
569
570 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
571 the stack pointer does not matter. The value is tested only in
572 functions that have frame pointers.
573 No definition is equivalent to always zero. */
574
575 #define EXIT_IGNORE_STACK 1
576
577 /* Output assembler code to FILE to increment profiler label # LABELNO
578 for profiling a function entry. */
579
580 #define FUNCTION_PROFILER(FILE, LABELNO) ;
581
582 /* Length in units of the trampoline for entering a nested function. */
583
584 #define TRAMPOLINE_SIZE 0x1b
585
586 #define TRAMPOLINE_ALIGNMENT 32
587
588 /* A C expression whose value is RTL representing the value of the return
589 address for the frame COUNT steps up from the current frame.
590
591 On the mn10300, the return address is not at a constant location
592 due to the frame layout. Luckily, it is at a constant offset from
593 the argument pointer, so we define RETURN_ADDR_RTX to return a
594 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
595 with a reference to the stack/frame pointer + an appropriate offset. */
596
597 #define RETURN_ADDR_RTX(COUNT, FRAME) \
598 ((COUNT == 0) \
599 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
600 : (rtx) 0)
601 \f
602 /* Maximum number of registers that can appear in a valid memory address. */
603
604 #define MAX_REGS_PER_ADDRESS 2
605
606 \f
607 #define HAVE_POST_INCREMENT (TARGET_AM33)
608
609 /* Accept either REG or SUBREG where a register is valid. */
610
611 #define RTX_OK_FOR_BASE_P(X, strict) \
612 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
613 (strict))) \
614 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
615 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
616 (strict))))
617
618 \f
619
620 /* Nonzero if the constant value X is a legitimate general operand.
621 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
622
623 #define LEGITIMATE_CONSTANT_P(X) 1
624
625 /* Zero if this needs fixing up to become PIC. */
626
627 #define LEGITIMATE_PIC_OPERAND_P(X) (legitimate_pic_operand_p (X))
628
629 /* Register to hold the addressing base for
630 position independent code access to data items. */
631 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
632
633 /* The name of the pseudo-symbol representing the Global Offset Table. */
634 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
635
636 #define SYMBOLIC_CONST_P(X) \
637 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
638 && ! LEGITIMATE_PIC_OPERAND_P (X))
639
640 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
641 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
642
643 /* Recognize machine-specific patterns that may appear within
644 constants. Used for PIC-specific UNSPECs. */
645 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
646 do \
647 if (GET_CODE (X) == UNSPEC) \
648 { \
649 switch (XINT ((X), 1)) \
650 { \
651 case UNSPEC_INT_LABEL: \
652 asm_fprintf ((STREAM), ".%LLIL" HOST_WIDE_INT_PRINT_DEC, \
653 INTVAL (XVECEXP ((X), 0, 0))); \
654 break; \
655 case UNSPEC_PIC: \
656 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
657 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
658 break; \
659 case UNSPEC_GOT: \
660 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
661 fputs ("@GOT", (STREAM)); \
662 break; \
663 case UNSPEC_GOTOFF: \
664 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
665 fputs ("@GOTOFF", (STREAM)); \
666 break; \
667 case UNSPEC_PLT: \
668 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
669 fputs ("@PLT", (STREAM)); \
670 break; \
671 case UNSPEC_GOTSYM_OFF: \
672 assemble_name (STREAM, GOT_SYMBOL_NAME); \
673 fputs ("-(", STREAM); \
674 output_addr_const (STREAM, XVECEXP (X, 0, 0)); \
675 fputs ("-.)", STREAM); \
676 break; \
677 default: \
678 goto FAIL; \
679 } \
680 break; \
681 } \
682 else \
683 goto FAIL; \
684 while (0)
685 \f
686 /* Tell final.c how to eliminate redundant test instructions. */
687
688 /* Here we define machine-dependent flags and fields in cc_status
689 (see `conditions.h'). No extra ones are needed for the VAX. */
690
691 /* Store in cc_status the expressions
692 that the condition codes will describe
693 after execution of an instruction whose pattern is EXP.
694 Do not alter them if the instruction would not alter the cc's. */
695
696 #define CC_OVERFLOW_UNUSABLE 0x200
697 #define CC_NO_CARRY CC_NO_OVERFLOW
698 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
699
700 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
701 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
702 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
703 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
704 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
705 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
706 ! TARGET_AM33 ? 6 : \
707 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
708 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
709 (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
710 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
711 4)
712
713 /* Nonzero if access to memory by bytes or half words is no faster
714 than accessing full words. */
715 #define SLOW_BYTE_ACCESS 1
716
717 #define NO_FUNCTION_CSE
718
719 /* According expr.c, a value of around 6 should minimize code size, and
720 for the MN10300 series, that's our primary concern. */
721 #define MOVE_RATIO(speed) 6
722
723 #define TEXT_SECTION_ASM_OP "\t.section .text"
724 #define DATA_SECTION_ASM_OP "\t.section .data"
725 #define BSS_SECTION_ASM_OP "\t.section .bss"
726
727 #define ASM_COMMENT_START "#"
728
729 /* Output to assembler file text saying following lines
730 may contain character constants, extra white space, comments, etc. */
731
732 #define ASM_APP_ON "#APP\n"
733
734 /* Output to assembler file text saying following lines
735 no longer contain unusual constructs. */
736
737 #define ASM_APP_OFF "#NO_APP\n"
738
739 #undef USER_LABEL_PREFIX
740 #define USER_LABEL_PREFIX "_"
741
742 /* This says how to output the assembler to define a global
743 uninitialized but not common symbol.
744 Try to use asm_output_bss to implement this macro. */
745
746 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
747 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
748
749 /* Globalizing directive for a label. */
750 #define GLOBAL_ASM_OP "\t.global "
751
752 /* This is how to output a reference to a user-level label named NAME.
753 `assemble_name' uses this. */
754
755 #undef ASM_OUTPUT_LABELREF
756 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
757 asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
758
759 #define ASM_PN_FORMAT "%s___%lu"
760
761 /* This is how we tell the assembler that two symbols have the same value. */
762
763 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
764 do { assemble_name(FILE, NAME1); \
765 fputs(" = ", FILE); \
766 assemble_name(FILE, NAME2); \
767 fputc('\n', FILE); } while (0)
768
769
770 /* How to refer to registers in assembler output.
771 This sequence is indexed by compiler's hard-register-number (see above). */
772
773 #define REGISTER_NAMES \
774 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
775 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
776 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
777 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
778 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
779 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
780 }
781
782 #define ADDITIONAL_REGISTER_NAMES \
783 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
784 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
785 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
786 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
787 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
788 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
789 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
790 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
791 }
792
793 /* Print an instruction operand X on file FILE.
794 look in mn10300.c for details */
795
796 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
797
798 /* Print a memory operand whose address is X, on file FILE.
799 This uses a function in output-vax.c. */
800
801 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
802
803 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
804 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
805
806 /* This is how to output an element of a case-vector that is absolute. */
807
808 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
809 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
810
811 /* This is how to output an element of a case-vector that is relative. */
812
813 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
814 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
815
816 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
817 if ((LOG) != 0) \
818 fprintf (FILE, "\t.align %d\n", (LOG))
819
820 /* We don't have to worry about dbx compatibility for the mn10300. */
821 #define DEFAULT_GDB_EXTENSIONS 1
822
823 /* Use dwarf2 debugging info by default. */
824 #undef PREFERRED_DEBUGGING_TYPE
825 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
826
827 #define DWARF2_ASM_LINE_DEBUG_INFO 1
828
829 /* GDB always assumes the current function's frame begins at the value
830 of the stack pointer upon entry to the current function. Accessing
831 local variables and parameters passed on the stack is done using the
832 base of the frame + an offset provided by GCC.
833
834 For functions which have frame pointers this method works fine;
835 the (frame pointer) == (stack pointer at function entry) and GCC provides
836 an offset relative to the frame pointer.
837
838 This loses for functions without a frame pointer; GCC provides an offset
839 which is relative to the stack pointer after adjusting for the function's
840 frame size. GDB would prefer the offset to be relative to the value of
841 the stack pointer at the function's entry. Yuk! */
842 #define DEBUGGER_AUTO_OFFSET(X) \
843 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
844 + (frame_pointer_needed \
845 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
846
847 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
848 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
849 + (frame_pointer_needed \
850 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
851
852 /* Specify the machine mode that this machine uses
853 for the index in the tablejump instruction. */
854 #define CASE_VECTOR_MODE Pmode
855
856 /* Define if operations between registers always perform the operation
857 on the full register even if a narrower mode is specified. */
858 #define WORD_REGISTER_OPERATIONS
859
860 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
861
862 /* This flag, if defined, says the same insns that convert to a signed fixnum
863 also convert validly to an unsigned one. */
864 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
865
866 /* Max number of bytes we can move from memory to memory
867 in one reasonably fast instruction. */
868 #define MOVE_MAX 4
869
870 /* Define if shifts truncate the shift count
871 which implies one can omit a sign-extension or zero-extension
872 of a shift count. */
873 #define SHIFT_COUNT_TRUNCATED 1
874
875 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
876 is done just by pretending it is already truncated. */
877 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
878
879 /* Specify the machine mode that pointers have.
880 After generation of rtl, the compiler makes no further distinction
881 between pointers and any other objects of this machine mode. */
882 #define Pmode SImode
883
884 /* A function address in a call instruction
885 is a byte address (for indexing purposes)
886 so give the MEM rtx a byte's mode. */
887 #define FUNCTION_MODE QImode
888
889 /* The assembler op to get a word. */
890
891 #define FILE_ASM_OP "\t.file\n"
892
893 typedef struct mn10300_cc_status_mdep
894 {
895 int fpCC;
896 }
897 cc_status_mdep;
898
899 #define CC_STATUS_MDEP cc_status_mdep
900
901 #define CC_STATUS_MDEP_INIT (cc_status.mdep.fpCC = 0)