]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10300/mn10300.h
invoke.texi: Document -mam34 and -mtune options.
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef ASM_SPEC
24 #undef LIB_SPEC
25 #undef ENDFILE_SPEC
26 #undef LINK_SPEC
27 #define LINK_SPEC "%{mrelax:--relax}"
28 #undef STARTFILE_SPEC
29 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
30
31 /* Names to predefine in the preprocessor for this target machine. */
32
33 #define TARGET_CPU_CPP_BUILTINS() \
34 do \
35 { \
36 builtin_define ("__mn10300__"); \
37 builtin_define ("__MN10300__"); \
38 builtin_assert ("cpu=mn10300"); \
39 builtin_assert ("machine=mn10300"); \
40 \
41 if (TARGET_AM34) \
42 { \
43 builtin_define ("__AM33__=4"); \
44 builtin_define ("__AM34__"); \
45 } \
46 else if (TARGET_AM33_2) \
47 { \
48 builtin_define ("__AM33__=2"); \
49 builtin_define ("__AM33_2__"); \
50 } \
51 else if (TARGET_AM33) \
52 builtin_define ("__AM33__=1"); \
53 } \
54 while (0)
55
56 extern GTY(()) int mn10300_unspec_int_label_counter;
57
58 enum processor_type
59 {
60 PROCESSOR_MN10300,
61 PROCESSOR_AM33,
62 PROCESSOR_AM33_2,
63 PROCESSOR_AM34
64 };
65
66 extern enum processor_type mn10300_processor;
67 extern enum processor_type mn10300_tune_cpu;
68
69 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
70 #define TARGET_AM33_2 (mn10300_processor >= PROCESSOR_AM33_2)
71 #define TARGET_AM34 (mn10300_processor >= PROCESSOR_AM34)
72
73 #ifndef PROCESSOR_DEFAULT
74 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
75 #endif
76
77 /* Print subsidiary information on the compiler version in use. */
78
79 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
80
81 \f
82 /* Target machine storage layout */
83
84 /* Define this if most significant bit is lowest numbered
85 in instructions that operate on numbered bit-fields.
86 This is not true on the Matsushita MN1003. */
87 #define BITS_BIG_ENDIAN 0
88
89 /* Define this if most significant byte of a word is the lowest numbered. */
90 /* This is not true on the Matsushita MN10300. */
91 #define BYTES_BIG_ENDIAN 0
92
93 /* Define this if most significant word of a multiword number is lowest
94 numbered.
95 This is not true on the Matsushita MN10300. */
96 #define WORDS_BIG_ENDIAN 0
97
98 /* Width of a word, in units (bytes). */
99 #define UNITS_PER_WORD 4
100
101 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
102 #define PARM_BOUNDARY 32
103
104 /* The stack goes in 32-bit lumps. */
105 #define STACK_BOUNDARY 32
106
107 /* Allocation boundary (in *bits*) for the code of a function.
108 8 is the minimum boundary; it's unclear if bigger alignments
109 would improve performance. */
110 #define FUNCTION_BOUNDARY 8
111
112 /* No data type wants to be aligned rounder than this. */
113 #define BIGGEST_ALIGNMENT 32
114
115 /* Alignment of field after `int : 0' in a structure. */
116 #define EMPTY_FIELD_BOUNDARY 32
117
118 /* Define this if move instructions will actually fail to work
119 when given unaligned data. */
120 #define STRICT_ALIGNMENT 1
121
122 /* Define this as 1 if `char' should by default be signed; else as 0. */
123 #define DEFAULT_SIGNED_CHAR 0
124 \f
125 /* Standard register usage. */
126
127 /* Number of actual hardware registers.
128 The hardware registers are assigned numbers for the compiler
129 from 0 to just below FIRST_PSEUDO_REGISTER.
130
131 All registers that the compiler knows about must be given numbers,
132 even those that are not normally considered general registers. */
133
134 #define FIRST_PSEUDO_REGISTER 52
135
136 /* Specify machine-specific register numbers. The commented out entries
137 are defined in mn10300.md. */
138 #define FIRST_DATA_REGNUM 0
139 #define LAST_DATA_REGNUM 3
140 #define FIRST_ADDRESS_REGNUM 4
141 /* #define PIC_REG 6 */
142 #define LAST_ADDRESS_REGNUM 8
143 /* #define SP_REG 9 */
144 #define FIRST_EXTENDED_REGNUM 10
145 #define LAST_EXTENDED_REGNUM 17
146 #define FIRST_FP_REGNUM 18
147 #define LAST_FP_REGNUM 49
148 #define MDR_REGNUM 50
149 /* #define CC_REG 51 */
150 #define FIRST_ARGUMENT_REGNUM 0
151
152 /* Specify the registers used for certain standard purposes.
153 The values of these macros are register numbers. */
154
155 /* Register to use for pushing function arguments. */
156 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
157
158 /* Base register for access to local variables of the function. */
159 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
160
161 /* Base register for access to arguments of the function. This
162 is a fake register and will be eliminated into either the frame
163 pointer or stack pointer. */
164 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
165
166 /* Register in which static-chain is passed to a function. */
167 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
168
169 /* 1 for registers that have pervasive standard uses
170 and are not available for the register allocator. */
171
172 #define FIXED_REGISTERS \
173 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
174 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
175 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 \
176 }
177
178 /* 1 for registers not available across function calls.
179 These must include the FIXED_REGISTERS and also any
180 registers that can be used without being saved.
181 The latter must include the registers where values are returned
182 and the register where structure-value addresses are passed.
183 Aside from that, you can include as many other registers as you
184 like. */
185
186 #define CALL_USED_REGISTERS \
187 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
188 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
189 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
190 }
191
192 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
193 redundant. It is needed when compiling in PIC mode because
194 the a2 register becomes fixed (and hence must be marked as
195 call_used) but in order to preserve the ABI it is not marked
196 as call_really_used. */
197 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
198
199 #define REG_ALLOC_ORDER \
200 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
201 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
202 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 51 \
203 }
204
205 #define CONDITIONAL_REGISTER_USAGE \
206 { \
207 unsigned int i; \
208 \
209 if (!TARGET_AM33) \
210 { \
211 for (i = FIRST_EXTENDED_REGNUM; \
212 i <= LAST_EXTENDED_REGNUM; i++) \
213 fixed_regs[i] = call_used_regs[i] = 1; \
214 } \
215 if (!TARGET_AM33_2) \
216 { \
217 for (i = FIRST_FP_REGNUM; \
218 i <= LAST_FP_REGNUM; i++) \
219 fixed_regs[i] = call_used_regs[i] = 1; \
220 } \
221 if (flag_pic) \
222 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = \
223 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;\
224 }
225
226 /* Return number of consecutive hard regs needed starting at reg REGNO
227 to hold something of mode MODE.
228
229 This is ordinarily the length in words of a value of mode MODE
230 but can be less for certain modes in special long registers. */
231
232 #define HARD_REGNO_NREGS(REGNO, MODE) \
233 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
234
235 /* Value is 1 if hard register REGNO can hold a value of machine-mode
236 MODE. */
237 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
238 mn10300_hard_regno_mode_ok ((REGNO), (MODE))
239
240 /* Value is 1 if it is a good idea to tie two pseudo registers
241 when one has mode MODE1 and one has mode MODE2.
242 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
243 for any hard reg, then this must be 0 for correct output. */
244 #define MODES_TIEABLE_P(MODE1, MODE2) \
245 mn10300_modes_tieable ((MODE1), (MODE2))
246
247 /* 4 data, and effectively 3 address registers is small as far as I'm
248 concerned. */
249 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
250 \f
251 /* Define the classes of registers for register constraints in the
252 machine description. Also define ranges of constants.
253
254 One of the classes must always be named ALL_REGS and include all hard regs.
255 If there is more than one class, another class must be named NO_REGS
256 and contain no registers.
257
258 The name GENERAL_REGS must be the name of a class (or an alias for
259 another name such as ALL_REGS). This is the class of registers
260 that is allowed by "g" or "r" in a register constraint.
261 Also, registers outside this class are allocated only when
262 instructions express preferences for them.
263
264 The classes must be numbered in nondecreasing order; that is,
265 a larger-numbered class must never be contained completely
266 in a smaller-numbered class.
267
268 For any two classes, it is very desirable that there be another
269 class that represents their union. */
270
271 enum reg_class
272 {
273 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
274 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
275 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
276 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
277 FP_REGS, FP_ACC_REGS, CC_REGS,
278 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
279 };
280
281 #define N_REG_CLASSES (int) LIM_REG_CLASSES
282
283 /* Give names of register classes as strings for dump file. */
284
285 #define REG_CLASS_NAMES \
286 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
287 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
288 "EXTENDED_REGS", \
289 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
290 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
291 "FP_REGS", "FP_ACC_REGS", "CC_REGS", \
292 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" \
293 }
294
295 /* Define which registers fit in which classes.
296 This is an initializer for a vector of HARD_REG_SET
297 of length N_REG_CLASSES. */
298
299 #define REG_CLASS_CONTENTS \
300 { { 0, 0 }, /* No regs */ \
301 { 0x0000000f, 0 }, /* DATA_REGS */ \
302 { 0x000001f0, 0 }, /* ADDRESS_REGS */ \
303 { 0x00000200, 0 }, /* SP_REGS */ \
304 { 0x000001ff, 0 }, /* DATA_OR_ADDRESS_REGS */ \
305 { 0x000003f0, 0 }, /* SP_OR_ADDRESS_REGS */ \
306 { 0x0003fc00, 0 }, /* EXTENDED_REGS */ \
307 { 0x0003fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \
308 { 0x0003fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \
309 { 0x0003fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \
310 { 0x0003fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
311 { 0xfffc0000, 0x3ffff },/* FP_REGS */ \
312 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
313 { 0x00000000, 0x80000 },/* CC_REGS */ \
314 { 0x0003fdff, 0 }, /* GENERAL_REGS */ \
315 { 0xffffffff, 0xfffff } /* ALL_REGS */ \
316 }
317
318 /* The following macro defines cover classes for Integrated Register
319 Allocator. Cover classes is a set of non-intersected register
320 classes covering all hard registers used for register allocation
321 purpose. Any move between two registers of a cover class should be
322 cheaper than load or store of the registers. The macro value is
323 array of register classes with LIM_REG_CLASSES used as the end
324 marker. */
325
326 #define IRA_COVER_CLASSES \
327 { \
328 GENERAL_REGS, FP_REGS, LIM_REG_CLASSES \
329 }
330
331 /* The same information, inverted:
332 Return the class number of the smallest class containing
333 reg number REGNO. This could be a conditional expression
334 or could index an array. */
335
336 #define REGNO_REG_CLASS(REGNO) \
337 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
338 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
339 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
340 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
341 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
342 (REGNO) == CC_REG ? CC_REGS : \
343 NO_REGS)
344
345 /* The class value for index registers, and the one for base regs. */
346 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
347 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
348
349 /* Macros to check register numbers against specific register classes. */
350
351 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
352 and check its validity for a certain class.
353 We have two alternate definitions for each of them.
354 The usual definition accepts all pseudo regs; the other rejects
355 them unless they have been allocated suitable hard regs.
356 The symbol REG_OK_STRICT causes the latter definition to be used.
357
358 Most source files want to accept pseudo regs in the hope that
359 they will get allocated to the class that the insn wants them to be in.
360 Source files for reload pass need to be strict.
361 After reload, it makes no difference, since pseudo regs have
362 been eliminated by then. */
363
364 /* These assume that REGNO is a hard or pseudo reg number.
365 They give nonzero only if REGNO is a hard reg of the suitable class
366 or a pseudo reg currently allocated to a suitable hard reg.
367 Since they use reg_renumber, they are safe only once reg_renumber
368 has been allocated, which happens in local-alloc.c. */
369
370 #ifndef REG_OK_STRICT
371 # define REG_STRICT 0
372 #else
373 # define REG_STRICT 1
374 #endif
375
376 # define REGNO_IN_RANGE_P(regno,min,max,strict) \
377 (IN_RANGE ((regno), (min), (max)) \
378 || ((strict) \
379 ? (reg_renumber \
380 && reg_renumber[(regno)] >= (min) \
381 && reg_renumber[(regno)] <= (max)) \
382 : (regno) >= FIRST_PSEUDO_REGISTER))
383
384 #define REGNO_DATA_P(regno, strict) \
385 (REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM, \
386 (strict)))
387 #define REGNO_ADDRESS_P(regno, strict) \
388 (REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM, \
389 (strict)))
390 #define REGNO_SP_P(regno, strict) \
391 (REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM, \
392 (strict)))
393 #define REGNO_EXTENDED_P(regno, strict) \
394 (REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM, \
395 (strict)))
396 #define REGNO_AM33_P(regno, strict) \
397 (REGNO_DATA_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)) \
398 || REGNO_EXTENDED_P ((regno), (strict)))
399 #define REGNO_FP_P(regno, strict) \
400 (REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM, (strict)))
401
402 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
403 (REGNO_SP_P ((regno), (strict)) \
404 || REGNO_ADDRESS_P ((regno), (strict)) \
405 || REGNO_EXTENDED_P ((regno), (strict)))
406 #define REGNO_OK_FOR_BASE_P(regno) \
407 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
408 #define REG_OK_FOR_BASE_P(X) \
409 (REGNO_OK_FOR_BASE_P (REGNO (X)))
410
411 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
412 (REGNO_SP_P ((regno), (strict)) || REGNO_ADDRESS_P ((regno), (strict)))
413 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
414 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
415 #define REG_OK_FOR_BIT_BASE_P(X) \
416 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
417
418 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
419 (REGNO_DATA_P ((regno), (strict)) || REGNO_EXTENDED_P ((regno), (strict)))
420 #define REGNO_OK_FOR_INDEX_P(regno) \
421 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
422 #define REG_OK_FOR_INDEX_P(X) \
423 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
424
425 /* Given an rtx X being reloaded into a reg required to be
426 in class CLASS, return the class of reg to actually use.
427 In general this is just CLASS; but on some machines
428 in some cases it is preferable to use a more restrictive class. */
429
430 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
431 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
432 ? ADDRESS_OR_EXTENDED_REGS \
433 : (MEM_P (X) \
434 || (REG_P (X) \
435 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
436 || (GET_CODE (X) == SUBREG \
437 && REG_P (SUBREG_REG (X)) \
438 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
439 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
440 : (CLASS)))
441
442 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
443 (X == stack_pointer_rtx && CLASS != SP_REGS \
444 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
445
446 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
447 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
448
449 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
450 mn10300_secondary_reload_class(CLASS,MODE,IN)
451
452 /* Return the maximum number of consecutive registers
453 needed to represent mode MODE in a register of class CLASS. */
454
455 #define CLASS_MAX_NREGS(CLASS, MODE) \
456 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
457
458 /* A class that contains registers which the compiler must always
459 access in a mode that is the same size as the mode in which it
460 loaded the register. */
461 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
462
463 /* Return 1 if VALUE is in the range specified. */
464
465 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
466 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
467
468 \f
469 /* Stack layout; function entry, exit and calling. */
470
471 /* Define this if pushing a word on the stack
472 makes the stack pointer a smaller address. */
473
474 #define STACK_GROWS_DOWNWARD
475
476 /* Define this to nonzero if the nominal address of the stack frame
477 is at the high-address end of the local variables;
478 that is, each additional local variable allocated
479 goes at a more negative offset in the frame. */
480
481 #define FRAME_GROWS_DOWNWARD 1
482
483 /* Offset within stack frame to start allocating local variables at.
484 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
485 first local allocated. Otherwise, it is the offset to the BEGINNING
486 of the first local allocated. */
487
488 #define STARTING_FRAME_OFFSET 0
489
490 /* Offset of first parameter from the argument pointer register value. */
491 /* Is equal to the size of the saved fp + pc, even if an fp isn't
492 saved since the value is used before we know. */
493
494 #define FIRST_PARM_OFFSET(FNDECL) 4
495
496 #define ELIMINABLE_REGS \
497 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
498 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
499 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
500
501 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
502 OFFSET = mn10300_initial_offset (FROM, TO)
503
504 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
505 for a register flushback area. */
506 #define REG_PARM_STACK_SPACE(DECL) 8
507 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
508 #define ACCUMULATE_OUTGOING_ARGS 1
509
510 /* So we can allocate space for return pointers once for the function
511 instead of around every call. */
512 #define STACK_POINTER_OFFSET 4
513
514 /* 1 if N is a possible register number for function argument passing.
515 On the MN10300, d0 and d1 are used in this way. */
516
517 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
518
519 \f
520 /* Define a data type for recording info about an argument list
521 during the scan of that argument list. This data type should
522 hold all necessary information about the function itself
523 and about the args processed so far, enough to enable macros
524 such as FUNCTION_ARG to determine where the next arg should go.
525
526 On the MN10300, this is a single integer, which is a number of bytes
527 of arguments scanned so far. */
528
529 #define CUMULATIVE_ARGS struct cum_arg
530
531 struct cum_arg
532 {
533 int nbytes;
534 };
535
536 /* Initialize a variable CUM of type CUMULATIVE_ARGS
537 for a call to a function whose data type is FNTYPE.
538 For a library call, FNTYPE is 0.
539
540 On the MN10300, the offset starts at 0. */
541
542 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
543 ((CUM).nbytes = 0)
544
545 #define FUNCTION_VALUE_REGNO_P(N) mn10300_function_value_regno_p (N)
546
547 #define DEFAULT_PCC_STRUCT_RETURN 0
548
549 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
550 the stack pointer does not matter. The value is tested only in
551 functions that have frame pointers.
552 No definition is equivalent to always zero. */
553
554 #define EXIT_IGNORE_STACK 1
555
556 /* Output assembler code to FILE to increment profiler label # LABELNO
557 for profiling a function entry. */
558
559 #define FUNCTION_PROFILER(FILE, LABELNO) ;
560
561 /* Length in units of the trampoline for entering a nested function. */
562
563 #define TRAMPOLINE_SIZE 0x1b
564
565 #define TRAMPOLINE_ALIGNMENT 32
566
567 /* A C expression whose value is RTL representing the value of the return
568 address for the frame COUNT steps up from the current frame.
569
570 On the mn10300, the return address is not at a constant location
571 due to the frame layout. Luckily, it is at a constant offset from
572 the argument pointer, so we define RETURN_ADDR_RTX to return a
573 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
574 with a reference to the stack/frame pointer + an appropriate offset. */
575
576 #define RETURN_ADDR_RTX(COUNT, FRAME) \
577 ((COUNT == 0) \
578 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
579 : (rtx) 0)
580
581 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, MDR_REGNUM)
582 \f
583 /* Maximum number of registers that can appear in a valid memory address. */
584
585 #define MAX_REGS_PER_ADDRESS 2
586
587 \f
588 #define HAVE_POST_INCREMENT (TARGET_AM33)
589
590 /* Accept either REG or SUBREG where a register is valid. */
591
592 #define RTX_OK_FOR_BASE_P(X, strict) \
593 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
594 (strict))) \
595 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
596 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
597 (strict))))
598
599 \f
600
601 /* Nonzero if the constant value X is a legitimate general operand.
602 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
603 #define LEGITIMATE_CONSTANT_P(X) mn10300_legitimate_constant_p (X)
604
605 /* Zero if this needs fixing up to become PIC. */
606
607 #define LEGITIMATE_PIC_OPERAND_P(X) \
608 mn10300_legitimate_pic_operand_p (X)
609
610 /* Register to hold the addressing base for
611 position independent code access to data items. */
612 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
613
614 /* The name of the pseudo-symbol representing the Global Offset Table. */
615 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
616
617 #define SYMBOLIC_CONST_P(X) \
618 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
619 && ! LEGITIMATE_PIC_OPERAND_P (X))
620
621 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
622 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
623
624 /* Recognize machine-specific patterns that may appear within
625 constants. Used for PIC-specific UNSPECs. */
626 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
627 do \
628 if (GET_CODE (X) == UNSPEC) \
629 { \
630 switch (XINT ((X), 1)) \
631 { \
632 case UNSPEC_INT_LABEL: \
633 asm_fprintf ((STREAM), ".%LLIL" HOST_WIDE_INT_PRINT_DEC, \
634 INTVAL (XVECEXP ((X), 0, 0))); \
635 break; \
636 case UNSPEC_PIC: \
637 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
638 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
639 break; \
640 case UNSPEC_GOT: \
641 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
642 fputs ("@GOT", (STREAM)); \
643 break; \
644 case UNSPEC_GOTOFF: \
645 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
646 fputs ("@GOTOFF", (STREAM)); \
647 break; \
648 case UNSPEC_PLT: \
649 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
650 fputs ("@PLT", (STREAM)); \
651 break; \
652 case UNSPEC_GOTSYM_OFF: \
653 assemble_name (STREAM, GOT_SYMBOL_NAME); \
654 fputs ("-(", STREAM); \
655 output_addr_const (STREAM, XVECEXP (X, 0, 0)); \
656 fputs ("-.)", STREAM); \
657 break; \
658 default: \
659 goto FAIL; \
660 } \
661 break; \
662 } \
663 else \
664 goto FAIL; \
665 while (0)
666 \f
667 #define SELECT_CC_MODE(OP, X, Y) mn10300_select_cc_mode (X)
668 #define REVERSIBLE_CC_MODE(MODE) 0
669 \f
670 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
671 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
672 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
673 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
674 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
675 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
676 ! TARGET_AM33 ? 6 : \
677 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
678 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
679 (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
680 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
681 4)
682
683 /* Nonzero if access to memory by bytes or half words is no faster
684 than accessing full words. */
685 #define SLOW_BYTE_ACCESS 1
686
687 #define NO_FUNCTION_CSE
688
689 /* According expr.c, a value of around 6 should minimize code size, and
690 for the MN10300 series, that's our primary concern. */
691 #define MOVE_RATIO(speed) 6
692
693 #define TEXT_SECTION_ASM_OP "\t.section .text"
694 #define DATA_SECTION_ASM_OP "\t.section .data"
695 #define BSS_SECTION_ASM_OP "\t.section .bss"
696
697 #define ASM_COMMENT_START "#"
698
699 /* Output to assembler file text saying following lines
700 may contain character constants, extra white space, comments, etc. */
701
702 #define ASM_APP_ON "#APP\n"
703
704 /* Output to assembler file text saying following lines
705 no longer contain unusual constructs. */
706
707 #define ASM_APP_OFF "#NO_APP\n"
708
709 #undef USER_LABEL_PREFIX
710 #define USER_LABEL_PREFIX "_"
711
712 /* This says how to output the assembler to define a global
713 uninitialized but not common symbol.
714 Try to use asm_output_bss to implement this macro. */
715
716 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
717 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
718
719 /* Globalizing directive for a label. */
720 #define GLOBAL_ASM_OP "\t.global "
721
722 /* This is how to output a reference to a user-level label named NAME.
723 `assemble_name' uses this. */
724
725 #undef ASM_OUTPUT_LABELREF
726 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
727 asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
728
729 #define ASM_PN_FORMAT "%s___%lu"
730
731 /* This is how we tell the assembler that two symbols have the same value. */
732
733 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
734 do \
735 { \
736 assemble_name (FILE, NAME1); \
737 fputs (" = ", FILE); \
738 assemble_name (FILE, NAME2); \
739 fputc ('\n', FILE); \
740 } \
741 while (0)
742
743 /* How to refer to registers in assembler output.
744 This sequence is indexed by compiler's hard-register-number (see above). */
745
746 #define REGISTER_NAMES \
747 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
748 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
749 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
750 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
751 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
752 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
753 , "mdr", "EPSW" \
754 }
755
756 #define ADDITIONAL_REGISTER_NAMES \
757 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
758 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
759 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
760 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
761 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
762 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
763 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
764 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
765 , {"cc", CC_REG} \
766 }
767
768 /* Print an instruction operand X on file FILE.
769 look in mn10300.c for details */
770
771 #define PRINT_OPERAND(FILE, X, CODE) \
772 mn10300_print_operand (FILE, X, CODE)
773
774 /* Print a memory operand whose address is X, on file FILE.
775 This uses a function in output-vax.c. */
776
777 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
778 mn10300_print_operand_address (FILE, ADDR)
779
780 /* This is how to output an element of a case-vector that is absolute. */
781
782 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
783 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
784
785 /* This is how to output an element of a case-vector that is relative. */
786
787 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
788 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
789
790 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
791 if ((LOG) != 0) \
792 fprintf (FILE, "\t.align %d\n", (LOG))
793
794 /* We don't have to worry about dbx compatibility for the mn10300. */
795 #define DEFAULT_GDB_EXTENSIONS 1
796
797 /* Use dwarf2 debugging info by default. */
798 #undef PREFERRED_DEBUGGING_TYPE
799 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
800 #define DWARF2_DEBUGGING_INFO 1
801
802 #define DWARF2_ASM_LINE_DEBUG_INFO 1
803
804 /* GDB always assumes the current function's frame begins at the value
805 of the stack pointer upon entry to the current function. Accessing
806 local variables and parameters passed on the stack is done using the
807 base of the frame + an offset provided by GCC.
808
809 For functions which have frame pointers this method works fine;
810 the (frame pointer) == (stack pointer at function entry) and GCC provides
811 an offset relative to the frame pointer.
812
813 This loses for functions without a frame pointer; GCC provides an offset
814 which is relative to the stack pointer after adjusting for the function's
815 frame size. GDB would prefer the offset to be relative to the value of
816 the stack pointer at the function's entry. Yuk! */
817 #define DEBUGGER_AUTO_OFFSET(X) \
818 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
819 + (frame_pointer_needed \
820 ? 0 : - mn10300_initial_offset (FRAME_POINTER_REGNUM, \
821 STACK_POINTER_REGNUM)))
822
823 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
824 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
825 + (frame_pointer_needed \
826 ? 0 : - mn10300_initial_offset (ARG_POINTER_REGNUM, \
827 STACK_POINTER_REGNUM)))
828
829 /* Specify the machine mode that this machine uses
830 for the index in the tablejump instruction. */
831 #define CASE_VECTOR_MODE Pmode
832
833 /* Define if operations between registers always perform the operation
834 on the full register even if a narrower mode is specified. */
835 #define WORD_REGISTER_OPERATIONS
836
837 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
838
839 /* This flag, if defined, says the same insns that convert to a signed fixnum
840 also convert validly to an unsigned one. */
841 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
842
843 /* Max number of bytes we can move from memory to memory
844 in one reasonably fast instruction. */
845 #define MOVE_MAX 4
846
847 /* Define if shifts truncate the shift count
848 which implies one can omit a sign-extension or zero-extension
849 of a shift count. */
850 #define SHIFT_COUNT_TRUNCATED 1
851
852 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
853 is done just by pretending it is already truncated. */
854 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
855
856 /* Specify the machine mode that pointers have.
857 After generation of rtl, the compiler makes no further distinction
858 between pointers and any other objects of this machine mode. */
859 #define Pmode SImode
860
861 /* A function address in a call instruction
862 is a byte address (for indexing purposes)
863 so give the MEM rtx a byte's mode. */
864 #define FUNCTION_MODE QImode
865
866 /* The assembler op to get a word. */
867
868 #define FILE_ASM_OP "\t.file\n"
869