]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10300/mn10300.h
[multiple changes]
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef ASM_SPEC
24 #undef LIB_SPEC
25 #undef ENDFILE_SPEC
26 #undef LINK_SPEC
27 #define LINK_SPEC "%{mrelax:--relax}"
28 #undef STARTFILE_SPEC
29 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
30
31 /* Names to predefine in the preprocessor for this target machine. */
32
33 #define TARGET_CPU_CPP_BUILTINS() \
34 do \
35 { \
36 builtin_define ("__mn10300__"); \
37 builtin_define ("__MN10300__"); \
38 builtin_assert ("cpu=mn10300"); \
39 builtin_assert ("machine=mn10300"); \
40 \
41 if (TARGET_AM34) \
42 { \
43 builtin_define ("__AM33__=4"); \
44 builtin_define ("__AM34__"); \
45 } \
46 else if (TARGET_AM33_2) \
47 { \
48 builtin_define ("__AM33__=2"); \
49 builtin_define ("__AM33_2__"); \
50 } \
51 else if (TARGET_AM33) \
52 builtin_define ("__AM33__=1"); \
53 \
54 builtin_define (TARGET_ALLOW_LIW ? \
55 "__LIW__" : "__NO_LIW__");\
56 \
57 } \
58 while (0)
59
60 #ifndef MN10300_OPTS_H
61 #include "config/mn10300/mn10300-opts.h"
62 #endif
63
64 extern enum processor_type mn10300_tune_cpu;
65
66 #define TARGET_AM33 (mn10300_processor >= PROCESSOR_AM33)
67 #define TARGET_AM33_2 (mn10300_processor >= PROCESSOR_AM33_2)
68 #define TARGET_AM34 (mn10300_processor >= PROCESSOR_AM34)
69
70 #ifndef PROCESSOR_DEFAULT
71 #define PROCESSOR_DEFAULT PROCESSOR_MN10300
72 #endif
73
74 /* Print subsidiary information on the compiler version in use. */
75
76 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
77
78 \f
79 /* Target machine storage layout */
80
81 /* Define this if most significant bit is lowest numbered
82 in instructions that operate on numbered bit-fields.
83 This is not true on the Matsushita MN1003. */
84 #define BITS_BIG_ENDIAN 0
85
86 /* Define this if most significant byte of a word is the lowest numbered. */
87 /* This is not true on the Matsushita MN10300. */
88 #define BYTES_BIG_ENDIAN 0
89
90 /* Define this if most significant word of a multiword number is lowest
91 numbered.
92 This is not true on the Matsushita MN10300. */
93 #define WORDS_BIG_ENDIAN 0
94
95 /* Width of a word, in units (bytes). */
96 #define UNITS_PER_WORD 4
97
98 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
99 #define PARM_BOUNDARY 32
100
101 /* The stack goes in 32-bit lumps. */
102 #define STACK_BOUNDARY 32
103
104 /* Allocation boundary (in *bits*) for the code of a function.
105 8 is the minimum boundary; it's unclear if bigger alignments
106 would improve performance. */
107 #define FUNCTION_BOUNDARY 8
108
109 /* No data type wants to be aligned rounder than this. */
110 #define BIGGEST_ALIGNMENT 32
111
112 /* Alignment of field after `int : 0' in a structure. */
113 #define EMPTY_FIELD_BOUNDARY 32
114
115 /* Define this if move instructions will actually fail to work
116 when given unaligned data. */
117 #define STRICT_ALIGNMENT 1
118
119 /* Define this as 1 if `char' should by default be signed; else as 0. */
120 #define DEFAULT_SIGNED_CHAR 0
121
122 #undef SIZE_TYPE
123 #define SIZE_TYPE "unsigned int"
124
125 #undef PTRDIFF_TYPE
126 #define PTRDIFF_TYPE "int"
127
128 #undef WCHAR_TYPE
129 #define WCHAR_TYPE "long int"
130
131 #undef WCHAR_TYPE_SIZE
132 #define WCHAR_TYPE_SIZE BITS_PER_WORD
133 \f
134 /* Standard register usage. */
135
136 /* Number of actual hardware registers.
137 The hardware registers are assigned numbers for the compiler
138 from 0 to just below FIRST_PSEUDO_REGISTER.
139
140 All registers that the compiler knows about must be given numbers,
141 even those that are not normally considered general registers. */
142
143 #define FIRST_PSEUDO_REGISTER 52
144
145 /* Specify machine-specific register numbers. The commented out entries
146 are defined in mn10300.md. */
147 #define FIRST_DATA_REGNUM 0
148 #define LAST_DATA_REGNUM 3
149 #define FIRST_ADDRESS_REGNUM 4
150 /* #define PIC_REG 6 */
151 #define LAST_ADDRESS_REGNUM 8
152 /* #define SP_REG 9 */
153 #define FIRST_EXTENDED_REGNUM 10
154 #define LAST_EXTENDED_REGNUM 17
155 #define FIRST_FP_REGNUM 18
156 #define LAST_FP_REGNUM 49
157 /* #define MDR_REG 50 */
158 /* #define CC_REG 51 */
159 #define FIRST_ARGUMENT_REGNUM 0
160
161 /* Specify the registers used for certain standard purposes.
162 The values of these macros are register numbers. */
163
164 /* Register to use for pushing function arguments. */
165 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1)
166
167 /* Base register for access to local variables of the function. */
168 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM - 1)
169
170 /* Base register for access to arguments of the function. This
171 is a fake register and will be eliminated into either the frame
172 pointer or stack pointer. */
173 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
174
175 /* Register in which static-chain is passed to a function. */
176 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1)
177
178 /* 1 for registers that have pervasive standard uses
179 and are not available for the register allocator. */
180
181 #define FIXED_REGISTERS \
182 { 0, 0, 0, 0, /* data regs */ \
183 0, 0, 0, 0, /* addr regs */ \
184 1, /* arg reg */ \
185 1, /* sp reg */ \
186 0, 0, 0, 0, 0, 0, 0, 0, /* extended regs */ \
187 0, 0, /* fp regs (18-19) */ \
188 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (20-29) */ \
189 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (30-39) */ \
190 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (40-49) */ \
191 0, /* mdr reg */ \
192 1 /* cc reg */ \
193 }
194
195 /* 1 for registers not available across function calls.
196 These must include the FIXED_REGISTERS and also any
197 registers that can be used without being saved.
198 The latter must include the registers where values are returned
199 and the register where structure-value addresses are passed.
200 Aside from that, you can include as many other registers as you
201 like. */
202
203 #define CALL_USED_REGISTERS \
204 { 1, 1, 0, 0, /* data regs */ \
205 1, 1, 0, 0, /* addr regs */ \
206 1, /* arg reg */ \
207 1, /* sp reg */ \
208 1, 1, 1, 1, 0, 0, 0, 0, /* extended regs */ \
209 1, 1, /* fp regs (18-19) */ \
210 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, /* fp regs (20-29) */ \
211 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, /* fp regs (30-39) */ \
212 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* fp regs (40-49) */ \
213 1, /* mdr reg */ \
214 1 /* cc reg */ \
215 }
216
217 /* Note: The definition of CALL_REALLY_USED_REGISTERS is not
218 redundant. It is needed when compiling in PIC mode because
219 the a2 register becomes fixed (and hence must be marked as
220 call_used) but in order to preserve the ABI it is not marked
221 as call_really_used. */
222 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
223
224 #define REG_ALLOC_ORDER \
225 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
226 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
227 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 50, 51 \
228 }
229
230 /* Return number of consecutive hard regs needed starting at reg REGNO
231 to hold something of mode MODE.
232
233 This is ordinarily the length in words of a value of mode MODE
234 but can be less for certain modes in special long registers. */
235
236 #define HARD_REGNO_NREGS(REGNO, MODE) \
237 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
238
239 /* Value is 1 if hard register REGNO can hold a value of machine-mode
240 MODE. */
241 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
242 mn10300_hard_regno_mode_ok ((REGNO), (MODE))
243
244 /* Value is 1 if it is a good idea to tie two pseudo registers
245 when one has mode MODE1 and one has mode MODE2.
246 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
247 for any hard reg, then this must be 0 for correct output. */
248 #define MODES_TIEABLE_P(MODE1, MODE2) \
249 mn10300_modes_tieable ((MODE1), (MODE2))
250
251 /* 4 data, and effectively 3 address registers is small as far as I'm
252 concerned. */
253 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
254 \f
255 /* Define the classes of registers for register constraints in the
256 machine description. Also define ranges of constants.
257
258 One of the classes must always be named ALL_REGS and include all hard regs.
259 If there is more than one class, another class must be named NO_REGS
260 and contain no registers.
261
262 The name GENERAL_REGS must be the name of a class (or an alias for
263 another name such as ALL_REGS). This is the class of registers
264 that is allowed by "g" or "r" in a register constraint.
265 Also, registers outside this class are allocated only when
266 instructions express preferences for them.
267
268 The classes must be numbered in nondecreasing order; that is,
269 a larger-numbered class must never be contained completely
270 in a smaller-numbered class.
271
272 For any two classes, it is very desirable that there be another
273 class that represents their union. */
274
275 enum reg_class
276 {
277 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, SP_OR_ADDRESS_REGS,
278 EXTENDED_REGS, FP_REGS, FP_ACC_REGS, CC_REGS, MDR_REGS,
279 GENERAL_REGS, SP_OR_GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
280 };
281
282 #define N_REG_CLASSES (int) LIM_REG_CLASSES
283
284 /* Give names of register classes as strings for dump file. */
285
286 #define REG_CLASS_NAMES \
287 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", "SP_REGS", "SP_OR_ADDRESS_REGS", \
288 "EXTENDED_REGS", "FP_REGS", "FP_ACC_REGS", "CC_REGS", "MDR_REGS", \
289 "GENERAL_REGS", "SP_OR_GENERAL_REGS", "ALL_REGS", "LIM_REGS" \
290 }
291
292 /* Define which registers fit in which classes.
293 This is an initializer for a vector of HARD_REG_SET
294 of length N_REG_CLASSES. */
295
296 #define REG_CLASS_CONTENTS \
297 { { 0, 0 }, /* No regs */ \
298 { 0x0000000f, 0 }, /* DATA_REGS */ \
299 { 0x000001f0, 0 }, /* ADDRESS_REGS */ \
300 { 0x00000200, 0 }, /* SP_REGS */ \
301 { 0x000003f0, 0 }, /* SP_OR_ADDRESS_REGS */ \
302 { 0x0003fc00, 0 }, /* EXTENDED_REGS */ \
303 { 0xfffc0000, 0x3ffff },/* FP_REGS */ \
304 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
305 { 0x00000000, 0x80000 },/* CC_REGS */ \
306 { 0x00000000, 0x40000 },/* MDR_REGS */ \
307 { 0x0003fdff, 0 }, /* GENERAL_REGS */ \
308 { 0x0003ffff, 0 }, /* SP_OR_GENERAL_REGS */ \
309 { 0xffffffff, 0xfffff } /* ALL_REGS */ \
310 }
311
312 /* The same information, inverted:
313 Return the class number of the smallest class containing
314 reg number REGNO. This could be a conditional expression
315 or could index an array. */
316
317 #define REGNO_REG_CLASS(REGNO) \
318 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
319 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
320 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
321 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
322 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
323 (REGNO) == MDR_REG ? MDR_REGS : \
324 (REGNO) == CC_REG ? CC_REGS : \
325 NO_REGS)
326
327 /* The class value for index registers, and the one for base regs. */
328 #define INDEX_REG_CLASS \
329 (TARGET_AM33 ? GENERAL_REGS : DATA_REGS)
330 #define BASE_REG_CLASS \
331 (TARGET_AM33 ? SP_OR_GENERAL_REGS : SP_OR_ADDRESS_REGS)
332
333 /* Macros to check register numbers against specific register classes. */
334
335 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
336 and check its validity for a certain class.
337 We have two alternate definitions for each of them.
338 The usual definition accepts all pseudo regs; the other rejects
339 them unless they have been allocated suitable hard regs.
340 The symbol REG_OK_STRICT causes the latter definition to be used.
341
342 Most source files want to accept pseudo regs in the hope that
343 they will get allocated to the class that the insn wants them to be in.
344 Source files for reload pass need to be strict.
345 After reload, it makes no difference, since pseudo regs have
346 been eliminated by then. */
347
348 /* These assume that REGNO is a hard or pseudo reg number.
349 They give nonzero only if REGNO is a hard reg of the suitable class
350 or a pseudo reg currently allocated to a suitable hard reg.
351 Since they use reg_renumber, they are safe only once reg_renumber
352 has been allocated, which happens in local-alloc.c. */
353
354 #ifndef REG_OK_STRICT
355 # define REG_STRICT 0
356 #else
357 # define REG_STRICT 1
358 #endif
359
360 #define REGNO_DATA_P(regno, strict) \
361 mn10300_regno_in_class_p (regno, DATA_REGS, strict)
362 #define REGNO_ADDRESS_P(regno, strict) \
363 mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
364 #define REGNO_EXTENDED_P(regno, strict) \
365 mn10300_regno_in_class_p (regno, EXTENDED_REGS, strict)
366 #define REGNO_GENERAL_P(regno, strict) \
367 mn10300_regno_in_class_p (regno, GENERAL_REGS, strict)
368
369 #define REGNO_STRICT_OK_FOR_BASE_P(regno, strict) \
370 mn10300_regno_in_class_p (regno, BASE_REG_CLASS, strict)
371 #define REGNO_OK_FOR_BASE_P(regno) \
372 (REGNO_STRICT_OK_FOR_BASE_P ((regno), REG_STRICT))
373 #define REG_OK_FOR_BASE_P(X) \
374 (REGNO_OK_FOR_BASE_P (REGNO (X)))
375
376 #define REGNO_STRICT_OK_FOR_BIT_BASE_P(regno, strict) \
377 mn10300_regno_in_class_p (regno, ADDRESS_REGS, strict)
378 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
379 (REGNO_STRICT_OK_FOR_BIT_BASE_P ((regno), REG_STRICT))
380 #define REG_OK_FOR_BIT_BASE_P(X) \
381 (REGNO_OK_FOR_BIT_BASE_P (REGNO (X)))
382
383 #define REGNO_STRICT_OK_FOR_INDEX_P(regno, strict) \
384 mn10300_regno_in_class_p (regno, INDEX_REG_CLASS, strict)
385 #define REGNO_OK_FOR_INDEX_P(regno) \
386 (REGNO_STRICT_OK_FOR_INDEX_P ((regno), REG_STRICT))
387 #define REG_OK_FOR_INDEX_P(X) \
388 (REGNO_OK_FOR_INDEX_P (REGNO (X)))
389
390 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
391 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
392
393 /* Return the maximum number of consecutive registers
394 needed to represent mode MODE in a register of class CLASS. */
395
396 #define CLASS_MAX_NREGS(CLASS, MODE) \
397 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
398
399 /* A class that contains registers which the compiler must always
400 access in a mode that is the same size as the mode in which it
401 loaded the register. */
402 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
403
404 /* Return 1 if VALUE is in the range specified. */
405
406 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
407 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
408
409 \f
410 /* Stack layout; function entry, exit and calling. */
411
412 /* Define this if pushing a word on the stack
413 makes the stack pointer a smaller address. */
414
415 #define STACK_GROWS_DOWNWARD
416
417 /* Define this to nonzero if the nominal address of the stack frame
418 is at the high-address end of the local variables;
419 that is, each additional local variable allocated
420 goes at a more negative offset in the frame. */
421
422 #define FRAME_GROWS_DOWNWARD 1
423
424 /* Offset within stack frame to start allocating local variables at.
425 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
426 first local allocated. Otherwise, it is the offset to the BEGINNING
427 of the first local allocated. */
428
429 #define STARTING_FRAME_OFFSET 0
430
431 /* Offset of first parameter from the argument pointer register value. */
432 /* Is equal to the size of the saved fp + pc, even if an fp isn't
433 saved since the value is used before we know. */
434
435 #define FIRST_PARM_OFFSET(FNDECL) 4
436
437 /* But the CFA is at the arg pointer directly, not at the first argument. */
438 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
439
440 #define ELIMINABLE_REGS \
441 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
442 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
443 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
444
445 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
446 OFFSET = mn10300_initial_offset (FROM, TO)
447
448 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
449 for a register flushback area. */
450 #define REG_PARM_STACK_SPACE(DECL) 8
451 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
452 #define ACCUMULATE_OUTGOING_ARGS 1
453
454 /* So we can allocate space for return pointers once for the function
455 instead of around every call. */
456 #define STACK_POINTER_OFFSET 4
457
458 /* 1 if N is a possible register number for function argument passing.
459 On the MN10300, d0 and d1 are used in this way. */
460
461 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
462
463 \f
464 /* Define a data type for recording info about an argument list
465 during the scan of that argument list. This data type should
466 hold all necessary information about the function itself
467 and about the args processed so far, enough to enable macros
468 such as FUNCTION_ARG to determine where the next arg should go.
469
470 On the MN10300, this is a single integer, which is a number of bytes
471 of arguments scanned so far. */
472
473 #define CUMULATIVE_ARGS struct cum_arg
474
475 struct cum_arg
476 {
477 int nbytes;
478 };
479
480 /* Initialize a variable CUM of type CUMULATIVE_ARGS
481 for a call to a function whose data type is FNTYPE.
482 For a library call, FNTYPE is 0.
483
484 On the MN10300, the offset starts at 0. */
485
486 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
487 ((CUM).nbytes = 0)
488
489 #define FUNCTION_VALUE_REGNO_P(N) mn10300_function_value_regno_p (N)
490
491 #define DEFAULT_PCC_STRUCT_RETURN 0
492
493 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
494 the stack pointer does not matter. The value is tested only in
495 functions that have frame pointers.
496 No definition is equivalent to always zero. */
497
498 #define EXIT_IGNORE_STACK 1
499
500 /* Output assembler code to FILE to increment profiler label # LABELNO
501 for profiling a function entry. */
502
503 #define FUNCTION_PROFILER(FILE, LABELNO) ;
504
505 /* Length in units of the trampoline for entering a nested function. */
506
507 #define TRAMPOLINE_SIZE 16
508 #define TRAMPOLINE_ALIGNMENT 32
509
510 /* A C expression whose value is RTL representing the value of the return
511 address for the frame COUNT steps up from the current frame.
512
513 On the mn10300, the return address is not at a constant location
514 due to the frame layout. Luckily, it is at a constant offset from
515 the argument pointer, so we define RETURN_ADDR_RTX to return a
516 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
517 with a reference to the stack/frame pointer + an appropriate offset. */
518
519 #define RETURN_ADDR_RTX(COUNT, FRAME) \
520 ((COUNT == 0) \
521 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
522 : (rtx) 0)
523
524 /* The return address is saved both in the stack and in MDR. Using
525 the stack location is handiest for what unwinding needs. */
526 #define INCOMING_RETURN_ADDR_RTX \
527 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
528 \f
529 /* Maximum number of registers that can appear in a valid memory address. */
530
531 #define MAX_REGS_PER_ADDRESS 2
532
533 \f
534 /* We have post-increments. */
535 #define HAVE_POST_INCREMENT TARGET_AM33
536 #define HAVE_POST_MODIFY_DISP TARGET_AM33
537
538 /* ... But we don't want to use them for block moves. Small offsets are
539 just as effective, at least for inline block move sizes, and appears
540 to produce cleaner code. */
541 #define USE_LOAD_POST_INCREMENT(M) 0
542 #define USE_STORE_POST_INCREMENT(M) 0
543
544 /* Accept either REG or SUBREG where a register is valid. */
545
546 #define RTX_OK_FOR_BASE_P(X, strict) \
547 ((REG_P (X) && REGNO_STRICT_OK_FOR_BASE_P (REGNO (X), \
548 (strict))) \
549 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
550 && REGNO_STRICT_OK_FOR_BASE_P (REGNO (SUBREG_REG (X)), \
551 (strict))))
552
553 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_L,WIN) \
554 do { \
555 rtx new_x = mn10300_legitimize_reload_address (X, MODE, OPNUM, TYPE, IND_L); \
556 if (new_x) \
557 { \
558 X = new_x; \
559 goto WIN; \
560 } \
561 } while (0)
562 \f
563
564 /* Nonzero if the constant value X is a legitimate general operand.
565 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
566 #define LEGITIMATE_CONSTANT_P(X) mn10300_legitimate_constant_p (X)
567
568 /* Zero if this needs fixing up to become PIC. */
569
570 #define LEGITIMATE_PIC_OPERAND_P(X) \
571 mn10300_legitimate_pic_operand_p (X)
572
573 /* Register to hold the addressing base for
574 position independent code access to data items. */
575 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
576
577 /* The name of the pseudo-symbol representing the Global Offset Table. */
578 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
579
580 #define SYMBOLIC_CONST_P(X) \
581 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
582 && ! LEGITIMATE_PIC_OPERAND_P (X))
583
584 /* Non-global SYMBOL_REFs have SYMBOL_REF_FLAG enabled. */
585 #define MN10300_GLOBAL_P(X) (! SYMBOL_REF_FLAG (X))
586 \f
587 #define SELECT_CC_MODE(OP, X, Y) mn10300_select_cc_mode (OP, X, Y)
588 #define REVERSIBLE_CC_MODE(MODE) 0
589 \f
590 /* Nonzero if access to memory by bytes or half words is no faster
591 than accessing full words. */
592 #define SLOW_BYTE_ACCESS 1
593
594 #define NO_FUNCTION_CSE
595
596 /* According expr.c, a value of around 6 should minimize code size, and
597 for the MN10300 series, that's our primary concern. */
598 #define MOVE_RATIO(speed) 6
599
600 #define TEXT_SECTION_ASM_OP "\t.section .text"
601 #define DATA_SECTION_ASM_OP "\t.section .data"
602 #define BSS_SECTION_ASM_OP "\t.section .bss"
603
604 #define ASM_COMMENT_START "#"
605
606 /* Output to assembler file text saying following lines
607 may contain character constants, extra white space, comments, etc. */
608
609 #define ASM_APP_ON "#APP\n"
610
611 /* Output to assembler file text saying following lines
612 no longer contain unusual constructs. */
613
614 #define ASM_APP_OFF "#NO_APP\n"
615
616 #undef USER_LABEL_PREFIX
617 #define USER_LABEL_PREFIX "_"
618
619 /* This says how to output the assembler to define a global
620 uninitialized but not common symbol.
621 Try to use asm_output_bss to implement this macro. */
622
623 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
624 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
625
626 /* Globalizing directive for a label. */
627 #define GLOBAL_ASM_OP "\t.global "
628
629 /* This is how to output a reference to a user-level label named NAME.
630 `assemble_name' uses this. */
631
632 #undef ASM_OUTPUT_LABELREF
633 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
634 asm_fprintf (FILE, "%U%s", (*targetm.strip_name_encoding) (NAME))
635
636 /* This is how we tell the assembler that two symbols have the same value. */
637
638 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
639 do \
640 { \
641 assemble_name (FILE, NAME1); \
642 fputs (" = ", FILE); \
643 assemble_name (FILE, NAME2); \
644 fputc ('\n', FILE); \
645 } \
646 while (0)
647
648 /* How to refer to registers in assembler output.
649 This sequence is indexed by compiler's hard-register-number (see above). */
650
651 #define REGISTER_NAMES \
652 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
653 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
654 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
655 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
656 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
657 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
658 , "mdr", "EPSW" \
659 }
660
661 #define ADDITIONAL_REGISTER_NAMES \
662 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
663 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
664 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
665 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
666 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
667 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
668 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
669 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
670 , {"cc", CC_REG} \
671 }
672
673 /* Print an instruction operand X on file FILE.
674 look in mn10300.c for details */
675
676 #define PRINT_OPERAND(FILE, X, CODE) \
677 mn10300_print_operand (FILE, X, CODE)
678
679 /* Print a memory operand whose address is X, on file FILE.
680 This uses a function in output-vax.c. */
681
682 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
683 mn10300_print_operand_address (FILE, ADDR)
684
685 /* This is how to output an element of a case-vector that is absolute. */
686
687 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
688 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
689
690 /* This is how to output an element of a case-vector that is relative. */
691
692 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
693 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
694
695 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
696 if ((LOG) != 0) \
697 fprintf (FILE, "\t.align %d\n", (LOG))
698
699 /* We don't have to worry about dbx compatibility for the mn10300. */
700 #define DEFAULT_GDB_EXTENSIONS 1
701
702 /* Use dwarf2 debugging info by default. */
703 #undef PREFERRED_DEBUGGING_TYPE
704 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
705 #define DWARF2_DEBUGGING_INFO 1
706 #define DWARF2_ASM_LINE_DEBUG_INFO 1
707
708 /* Specify the machine mode that this machine uses
709 for the index in the tablejump instruction. */
710 #define CASE_VECTOR_MODE Pmode
711
712 /* Define if operations between registers always perform the operation
713 on the full register even if a narrower mode is specified. */
714 #define WORD_REGISTER_OPERATIONS
715
716 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
717
718 /* This flag, if defined, says the same insns that convert to a signed fixnum
719 also convert validly to an unsigned one. */
720 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
721
722 /* Max number of bytes we can move from memory to memory
723 in one reasonably fast instruction. */
724 #define MOVE_MAX 4
725
726 /* Define if shifts truncate the shift count
727 which implies one can omit a sign-extension or zero-extension
728 of a shift count. */
729 #define SHIFT_COUNT_TRUNCATED 1
730
731 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
732 is done just by pretending it is already truncated. */
733 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
734
735 /* Specify the machine mode that pointers have.
736 After generation of rtl, the compiler makes no further distinction
737 between pointers and any other objects of this machine mode. */
738 #define Pmode SImode
739
740 /* A function address in a call instruction
741 is a byte address (for indexing purposes)
742 so give the MEM rtx a byte's mode. */
743 #define FUNCTION_MODE QImode
744
745 /* The assembler op to get a word. */
746
747 #define FILE_ASM_OP "\t.file\n"
748