]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/nds32/nds32.h
[NDS32] New option -malways-align and -malign-functions.
[thirdparty/gcc.git] / gcc / config / nds32 / nds32.h
1 /* Definitions of target machine of Andes NDS32 cpu for GNU compiler
2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
3 Contributed by Andes Technology Corporation.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* ------------------------------------------------------------------------ */
23
24 /* The following are auxiliary macros or structure declarations
25 that are used all over the nds32.c and nds32.h. */
26
27 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
28 (LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
29
30 /* Use SYMBOL_FLAG_MACH_DEP to define our own symbol_ref flag.
31 It is used in nds32_encode_section_info() to store flag in symbol_ref
32 in case the symbol should be placed in .rodata section.
33 So that we can check it in nds32_legitimate_address_p(). */
34 #define NDS32_SYMBOL_FLAG_RODATA \
35 (SYMBOL_FLAG_MACH_DEP << 0)
36 #define NDS32_SYMBOL_REF_RODATA_P(x) \
37 ((SYMBOL_REF_FLAGS (x) & NDS32_SYMBOL_FLAG_RODATA) != 0)
38
39 /* Classifies expand result for expand helper function. */
40 enum nds32_expand_result_type
41 {
42 EXPAND_DONE,
43 EXPAND_FAIL,
44 EXPAND_CREATE_TEMPLATE
45 };
46
47 /* Classifies address type to distinguish 16-bit/32-bit format. */
48 enum nds32_16bit_address_type
49 {
50 /* [reg]: 45 format address. */
51 ADDRESS_REG,
52 /* [lo_reg + imm3u]: 333 format address. */
53 ADDRESS_LO_REG_IMM3U,
54 /* post_inc [lo_reg + imm3u]: 333 format address. */
55 ADDRESS_POST_INC_LO_REG_IMM3U,
56 /* post_modify [lo_reg + imm3u]: 333 format address. */
57 ADDRESS_POST_MODIFY_LO_REG_IMM3U,
58 /* [$r8 + imm7u]: r8 imply address. */
59 ADDRESS_R8_IMM7U,
60 /* [$fp + imm7u]: fp imply address. */
61 ADDRESS_FP_IMM7U,
62 /* [$sp + imm7u]: sp imply address. */
63 ADDRESS_SP_IMM7U,
64 /* Other address format. */
65 ADDRESS_NOT_16BIT_FORMAT
66 };
67
68
69 /* ------------------------------------------------------------------------ */
70
71 /* Define maximum numbers of registers for passing arguments. */
72 #define NDS32_MAX_GPR_REGS_FOR_ARGS 6
73 #define NDS32_MAX_FPR_REGS_FOR_ARGS 6
74
75 /* Define the register number for first argument. */
76 #define NDS32_GPR_ARG_FIRST_REGNUM 0
77 #define NDS32_FPR_ARG_FIRST_REGNUM 34
78
79 /* Define the register number for return value. */
80 #define NDS32_GPR_RET_FIRST_REGNUM 0
81 #define NDS32_FPR_RET_FIRST_REGNUM 34
82
83 /* Define the first integer register number. */
84 #define NDS32_FIRST_GPR_REGNUM 0
85 /* Define the last integer register number. */
86 #define NDS32_LAST_GPR_REGNUM 31
87
88 #define NDS32_FIRST_CALLEE_SAVE_GPR_REGNUM 6
89 #define NDS32_LAST_CALLEE_SAVE_GPR_REGNUM \
90 (TARGET_REDUCED_REGS ? 10 : 14)
91
92 /* Define the floating-point number of registers. */
93 #define NDS32_FLOAT_REGISTER_NUMBER \
94 (((nds32_fp_regnum == NDS32_CONFIG_FPU_0) \
95 || (nds32_fp_regnum == NDS32_CONFIG_FPU_4)) ? 8 \
96 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_1) \
97 || (nds32_fp_regnum == NDS32_CONFIG_FPU_5)) ? 16 \
98 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_2) \
99 || (nds32_fp_regnum == NDS32_CONFIG_FPU_6)) ? 32 \
100 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_3) \
101 || (nds32_fp_regnum == NDS32_CONFIG_FPU_7)) ? 64 \
102 : 32)
103
104 #define NDS32_EXT_FPU_DOT_E (nds32_fp_regnum >= 4)
105
106 /* Define the first floating-point register number. */
107 #define NDS32_FIRST_FPR_REGNUM 34
108 /* Define the last floating-point register number. */
109 #define NDS32_LAST_FPR_REGNUM \
110 (NDS32_FIRST_FPR_REGNUM + NDS32_FLOAT_REGISTER_NUMBER - 1)
111
112
113 #define NDS32_IS_EXT_FPR_REGNUM(regno) \
114 (((regno) >= NDS32_FIRST_FPR_REGNUM + 32) \
115 && ((regno) < NDS32_FIRST_FPR_REGNUM + 64))
116
117 #define NDS32_IS_FPR_REGNUM(regno) \
118 (((regno) >= NDS32_FIRST_FPR_REGNUM) \
119 && ((regno) <= NDS32_LAST_FPR_REGNUM))
120
121 #define NDS32_FPR_REGNO_OK_FOR_SINGLE(regno) \
122 ((regno) <= NDS32_LAST_FPR_REGNUM)
123
124 #define NDS32_FPR_REGNO_OK_FOR_DOUBLE(regno) \
125 ((((regno) - NDS32_FIRST_FPR_REGNUM) & 1) == 0)
126
127 #define NDS32_IS_GPR_REGNUM(regno) \
128 (((regno) <= NDS32_LAST_GPR_REGNUM))
129
130 /* Define double word alignment bits. */
131 #define NDS32_DOUBLE_WORD_ALIGNMENT 64
132
133 /* Define alignment checking macros for convenience. */
134 #define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
135 #define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
136 #define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
137
138 /* Determine whether we would like to have code generation strictly aligned.
139 We set it strictly aligned when -malways-align is enabled.
140 Check gcc/common/config/nds32/nds32-common.c for the optimizations that
141 apply -malways-align. */
142 #define NDS32_ALIGN_P() (TARGET_ALWAYS_ALIGN)
143 /* Get alignment according to mode or type information.
144 When 'type' is nonnull, there is no need to look at 'mode'. */
145 #define NDS32_MODE_TYPE_ALIGN(mode, type) \
146 (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
147
148 /* Round X up to the nearest double word. */
149 #define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
150
151
152 /* This macro is used to calculate the numbers of registers for
153 containing 'size' bytes of the argument.
154 The size of a register is a word in nds32 target.
155 So we use UNITS_PER_WORD to do the calculation. */
156 #define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
157 ((mode == BLKmode) \
158 ? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
159 : ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
160
161 /* This macro is used to return the register number for passing argument.
162 We need to obey the following rules:
163 1. If it is required MORE THAN one register,
164 we need to further check if it really needs to be
165 aligned on double words.
166 a) If double word alignment is necessary,
167 the register number must be even value.
168 b) Otherwise, the register number can be odd or even value.
169 2. If it is required ONLY one register,
170 the register number can be odd or even value. */
171 #define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
172 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
173 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
174 ? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
175 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
176 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
177
178 #define NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG(reg_offset, mode, type) \
179 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
180 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
181 ? (((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM + 1) & ~1) \
182 : ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM)) \
183 : ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM))
184
185 /* These two macros are to check if there are still available registers
186 for passing argument, which must be entirely in registers. */
187 #define NDS32_ARG_ENTIRE_IN_GPR_REG_P(reg_offset, mode, type) \
188 ((NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
189 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
190 <= (NDS32_GPR_ARG_FIRST_REGNUM \
191 + NDS32_MAX_GPR_REGS_FOR_ARGS))
192
193 #define NDS32_ARG_ENTIRE_IN_FPR_REG_P(reg_offset, mode, type) \
194 ((NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
195 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
196 <= (NDS32_FPR_ARG_FIRST_REGNUM \
197 + NDS32_MAX_FPR_REGS_FOR_ARGS))
198
199 /* These two macros are to check if there are still available registers
200 for passing argument, either entirely in registers or partially
201 in registers. */
202 #define NDS32_ARG_PARTIAL_IN_GPR_REG_P(reg_offset, mode, type) \
203 (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
204 < NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
205
206 #define NDS32_ARG_PARTIAL_IN_FPR_REG_P(reg_offset, mode, type) \
207 (NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
208 < NDS32_FPR_ARG_FIRST_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS)
209
210 /* This macro is to check if the register is required to be saved on stack.
211 If call_used_regs[regno] == 0, regno is the callee-saved register.
212 If df_regs_ever_live_p(regno) == true, it is used in the current function.
213 As long as the register satisfies both criteria above,
214 it is required to be saved. */
215 #define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
216 ((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
217
218 /* This macro is to check if the push25/pop25 are available to be used
219 for code generation. Because pop25 also performs return behavior,
220 the instructions may not be available for some cases.
221 If we want to use push25/pop25, all the following conditions must
222 be satisfied:
223 1. TARGET_V3PUSH is set.
224 2. Current function is not an ISR function.
225 3. Current function is not a variadic function.*/
226 #define NDS32_V3PUSH_AVAILABLE_P \
227 (TARGET_V3PUSH \
228 && !nds32_isr_function_p (current_function_decl) \
229 && (cfun->machine->va_args_size == 0))
230
231 /* ------------------------------------------------------------------------ */
232
233 /* A C structure for machine-specific, per-function data.
234 This is added to the cfun structure. */
235 struct GTY(()) machine_function
236 {
237 /* Number of bytes allocated on the stack for variadic args
238 if we want to push them into stack as pretend arguments by ourself. */
239 int va_args_size;
240 /* Number of bytes reserved on the stack for
241 local and temporary variables. */
242 int local_size;
243 /* Number of bytes allocated on the stack for outgoing arguments. */
244 int out_args_size;
245
246 /* Number of bytes on the stack for saving $fp. */
247 int fp_size;
248 /* Number of bytes on the stack for saving $gp. */
249 int gp_size;
250 /* Number of bytes on the stack for saving $lp. */
251 int lp_size;
252
253 /* Number of bytes on the stack for saving general purpose
254 callee-saved registers. */
255 int callee_saved_gpr_regs_size;
256
257 /* Number of bytes on the stack for saving floating-point
258 callee-saved registers. */
259 int callee_saved_fpr_regs_size;
260
261 /* The padding bytes in callee-saved area may be required. */
262 int callee_saved_area_gpr_padding_bytes;
263
264 /* The first required general purpose callee-saved register. */
265 int callee_saved_first_gpr_regno;
266 /* The last required general purpose callee-saved register. */
267 int callee_saved_last_gpr_regno;
268
269 /* The first required floating-point callee-saved register. */
270 int callee_saved_first_fpr_regno;
271 /* The last required floating-point callee-saved register. */
272 int callee_saved_last_fpr_regno;
273
274 /* The padding bytes in varargs area may be required. */
275 int va_args_area_padding_bytes;
276
277 /* The first required register that should be saved on stack for va_args. */
278 int va_args_first_regno;
279 /* The last required register that should be saved on stack for va_args. */
280 int va_args_last_regno;
281
282 /* Number of bytes on the stack for saving exception handling registers. */
283 int eh_return_data_regs_size;
284 /* The first register of passing exception handling information. */
285 int eh_return_data_first_regno;
286 /* The last register of passing exception handling information. */
287 int eh_return_data_last_regno;
288
289 /* Indicate that whether this function
290 calls __builtin_eh_return. */
291 int use_eh_return_p;
292
293 /* Indicate that whether this function needs
294 prologue/epilogue code generation. */
295 int naked_p;
296 /* Indicate that whether this function
297 uses fp_as_gp optimization. */
298 int fp_as_gp_p;
299 };
300
301 /* A C structure that contains the arguments information. */
302 typedef struct
303 {
304 unsigned int gpr_offset;
305 unsigned int fpr_offset;
306 } nds32_cumulative_args;
307
308 /* ------------------------------------------------------------------------ */
309
310 /* The following we define C-ISR related stuff.
311 In nds32 architecture, we have 73 vectors for interrupt/exception.
312 For each vector (except for vector 0, which is used for reset behavior),
313 we allow users to set its register saving scheme and interrupt level. */
314
315 /* There are 73 vectors in nds32 architecture.
316 0 for reset handler,
317 1-8 for exception handler,
318 and 9-72 for interrupt handler.
319 We use an array, which is defined in nds32.c, to record
320 essential information for each vector. */
321 #define NDS32_N_ISR_VECTORS 73
322
323 /* Define possible isr category. */
324 enum nds32_isr_category
325 {
326 NDS32_ISR_NONE,
327 NDS32_ISR_INTERRUPT,
328 NDS32_ISR_EXCEPTION,
329 NDS32_ISR_RESET
330 };
331
332 /* Define isr register saving scheme. */
333 enum nds32_isr_save_reg
334 {
335 NDS32_SAVE_ALL,
336 NDS32_PARTIAL_SAVE
337 };
338
339 /* Define isr nested type. */
340 enum nds32_isr_nested_type
341 {
342 NDS32_NESTED,
343 NDS32_NOT_NESTED,
344 NDS32_NESTED_READY
345 };
346
347 /* Define structure to record isr information.
348 The isr vector array 'isr_vectors[]' with this structure
349 is defined in nds32.c. */
350 struct nds32_isr_info
351 {
352 /* The field to identify isr category.
353 It should be set to NDS32_ISR_NONE by default.
354 If user specifies a function as isr by using attribute,
355 this field will be set accordingly. */
356 enum nds32_isr_category category;
357
358 /* A string for the applied function name.
359 It should be set to empty string by default. */
360 char func_name[100];
361
362 /* The register saving scheme.
363 It should be set to NDS32_PARTIAL_SAVE by default
364 unless user specifies attribute to change it. */
365 enum nds32_isr_save_reg save_reg;
366
367 /* The nested type.
368 It should be set to NDS32_NOT_NESTED by default
369 unless user specifies attribute to change it. */
370 enum nds32_isr_nested_type nested_type;
371
372 /* Total vectors.
373 The total vectors = interrupt + exception numbers + reset.
374 It should be set to 0 by default.
375 This field is ONLY used in NDS32_ISR_RESET category. */
376 unsigned int total_n_vectors;
377
378 /* A string for nmi handler name.
379 It should be set to empty string by default.
380 This field is ONLY used in NDS32_ISR_RESET category. */
381 char nmi_name[100];
382
383 /* A string for warm handler name.
384 It should be set to empty string by default.
385 This field is ONLY used in NDS32_ISR_RESET category. */
386 char warm_name[100];
387 };
388
389 /* ------------------------------------------------------------------------ */
390
391 /* Define code for all nds32 builtins. */
392 enum nds32_builtins
393 {
394 NDS32_BUILTIN_ISYNC,
395 NDS32_BUILTIN_ISB,
396 NDS32_BUILTIN_DSB,
397 NDS32_BUILTIN_MSYNC_ALL,
398 NDS32_BUILTIN_MSYNC_STORE,
399 NDS32_BUILTIN_MFSR,
400 NDS32_BUILTIN_MFUSR,
401 NDS32_BUILTIN_MTSR,
402 NDS32_BUILTIN_MTSR_ISB,
403 NDS32_BUILTIN_MTSR_DSB,
404 NDS32_BUILTIN_MTUSR,
405 NDS32_BUILTIN_SETGIE_EN,
406 NDS32_BUILTIN_SETGIE_DIS,
407 NDS32_BUILTIN_FMFCFG,
408 NDS32_BUILTIN_FMFCSR,
409 NDS32_BUILTIN_FMTCSR,
410 NDS32_BUILTIN_FCPYNSS,
411 NDS32_BUILTIN_FCPYSS,
412 NDS32_BUILTIN_FCPYNSD,
413 NDS32_BUILTIN_FCPYSD,
414 NDS32_BUILTIN_ABS,
415 NDS32_BUILTIN_AVE,
416 NDS32_BUILTIN_BCLR,
417 NDS32_BUILTIN_BSET,
418 NDS32_BUILTIN_BTGL,
419 NDS32_BUILTIN_BTST,
420 NDS32_BUILTIN_CLIP,
421 NDS32_BUILTIN_CLIPS,
422 NDS32_BUILTIN_CLZ,
423 NDS32_BUILTIN_CLO,
424 NDS32_BUILTIN_MAX,
425 NDS32_BUILTIN_MIN,
426 NDS32_BUILTIN_PBSAD,
427 NDS32_BUILTIN_PBSADA,
428 NDS32_BUILTIN_BSE,
429 NDS32_BUILTIN_BSP,
430 NDS32_BUILTIN_FFB,
431 NDS32_BUILTIN_FFMISM,
432 NDS32_BUILTIN_FLMISM,
433
434 NDS32_BUILTIN_ROTR,
435 NDS32_BUILTIN_SVA,
436 NDS32_BUILTIN_SVS,
437 NDS32_BUILTIN_WSBH,
438 NDS32_BUILTIN_JR_ITOFF,
439 NDS32_BUILTIN_JR_TOFF,
440 NDS32_BUILTIN_JRAL_ITON,
441 NDS32_BUILTIN_JRAL_TON,
442 NDS32_BUILTIN_RET_ITOFF,
443 NDS32_BUILTIN_RET_TOFF,
444 NDS32_BUILTIN_STANDBY_NO_WAKE_GRANT,
445 NDS32_BUILTIN_STANDBY_WAKE_GRANT,
446 NDS32_BUILTIN_STANDBY_WAKE_DONE,
447 NDS32_BUILTIN_TEQZ,
448 NDS32_BUILTIN_TNEZ,
449 NDS32_BUILTIN_TRAP,
450 NDS32_BUILTIN_SETEND_BIG,
451 NDS32_BUILTIN_SETEND_LITTLE,
452 NDS32_BUILTIN_SYSCALL,
453 NDS32_BUILTIN_BREAK,
454 NDS32_BUILTIN_NOP,
455 NDS32_BUILTIN_SCHE_BARRIER,
456 NDS32_BUILTIN_GET_CURRENT_SP,
457 NDS32_BUILTIN_SET_CURRENT_SP,
458 NDS32_BUILTIN_RETURN_ADDRESS,
459 NDS32_BUILTIN_LLW,
460 NDS32_BUILTIN_LWUP,
461 NDS32_BUILTIN_LBUP,
462 NDS32_BUILTIN_SCW,
463 NDS32_BUILTIN_SWUP,
464 NDS32_BUILTIN_SBUP,
465 NDS32_BUILTIN_CCTL_VA_LCK,
466 NDS32_BUILTIN_CCTL_IDX_WBINVAL,
467 NDS32_BUILTIN_CCTL_VA_WBINVAL_L1,
468 NDS32_BUILTIN_CCTL_VA_WBINVAL_LA,
469 NDS32_BUILTIN_CCTL_IDX_READ,
470 NDS32_BUILTIN_CCTL_IDX_WRITE,
471 NDS32_BUILTIN_CCTL_L1D_INVALALL,
472 NDS32_BUILTIN_CCTL_L1D_WBALL_ALVL,
473 NDS32_BUILTIN_CCTL_L1D_WBALL_ONE_LVL,
474 NDS32_BUILTIN_DPREF_QW,
475 NDS32_BUILTIN_DPREF_HW,
476 NDS32_BUILTIN_DPREF_W,
477 NDS32_BUILTIN_DPREF_DW,
478 NDS32_BUILTIN_TLBOP_TRD,
479 NDS32_BUILTIN_TLBOP_TWR,
480 NDS32_BUILTIN_TLBOP_RWR,
481 NDS32_BUILTIN_TLBOP_RWLK,
482 NDS32_BUILTIN_TLBOP_UNLK,
483 NDS32_BUILTIN_TLBOP_PB,
484 NDS32_BUILTIN_TLBOP_INV,
485 NDS32_BUILTIN_TLBOP_FLUA,
486 NDS32_BUILTIN_UALOAD_HW,
487 NDS32_BUILTIN_UALOAD_W,
488 NDS32_BUILTIN_UALOAD_DW,
489 NDS32_BUILTIN_UASTORE_HW,
490 NDS32_BUILTIN_UASTORE_W,
491 NDS32_BUILTIN_UASTORE_DW,
492 NDS32_BUILTIN_COUNT
493 };
494
495 /* ------------------------------------------------------------------------ */
496
497 #define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
498
499 #define TARGET_ISA_V3 \
500 (nds32_arch_option == ARCH_V3 \
501 || nds32_arch_option == ARCH_V3F \
502 || nds32_arch_option == ARCH_V3S)
503 #define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
504
505 #define TARGET_CMODEL_SMALL \
506 (nds32_cmodel_option == CMODEL_SMALL)
507 #define TARGET_CMODEL_MEDIUM \
508 (nds32_cmodel_option == CMODEL_MEDIUM)
509 #define TARGET_CMODEL_LARGE \
510 (nds32_cmodel_option == CMODEL_LARGE)
511
512 /* When -mcmodel=small or -mcmodel=medium,
513 compiler may generate gp-base instruction directly. */
514 #define TARGET_GP_DIRECT \
515 (nds32_cmodel_option == CMODEL_SMALL\
516 || nds32_cmodel_option == CMODEL_MEDIUM)
517
518
519 /* Run-time Target Specification. */
520 #define TARGET_SOFT_FLOAT (nds32_abi == NDS32_ABI_V2)
521 /* Use hardware floating point calling convention. */
522 #define TARGET_HARD_FLOAT (nds32_abi == NDS32_ABI_V2_FP_PLUS)
523
524 /* Record arch version in TARGET_ARCH_DEFAULT. 0 means soft ABI,
525 1 means hard ABI and using full floating-point instruction,
526 2 means hard ABI and only using single-precision floating-point
527 instruction */
528 #if TARGET_ARCH_DEFAULT == 1
529 # define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
530 # define TARGET_DEFAULT_FPU_ISA MASK_FPU_DOUBLE | MASK_FPU_SINGLE
531 # define TARGET_DEFAULT_FPU_FMA 0
532 #else
533 # if TARGET_ARCH_DEFAULT == 2
534 # define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
535 # define TARGET_DEFAULT_FPU_ISA MASK_FPU_SINGLE
536 # define TARGET_DEFAULT_FPU_FMA 0
537 # else
538 # define TARGET_DEFAULT_ABI NDS32_ABI_V2
539 # define TARGET_DEFAULT_FPU_ISA 0
540 # define TARGET_DEFAULT_FPU_FMA 0
541 # endif
542 #endif
543
544 #define TARGET_CONFIG_FPU_DEFAULT NDS32_CONFIG_FPU_2
545 /* ------------------------------------------------------------------------ */
546 \f
547 /* Controlling the Compilation Driver. */
548
549 #define OPTION_DEFAULT_SPECS \
550 {"arch", " %{!march=*:-march=%(VALUE)}" \
551 " %{march=v3f:%{!mfloat-abi=*:-mfloat-abi=hard}" \
552 " %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}" \
553 " %{!mno-ext-fpu-dp:%{!mext-fpu-dp:-mext-fpu-dp}}}" \
554 " %{march=v3s:%{!mfloat-abi=*:-mfloat-abi=hard}" \
555 " %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}}" }, \
556 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }
557
558 #define CC1_SPEC \
559 ""
560
561 #define ASM_SPEC \
562 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
563 " %{march=*:-march=%*}" \
564 " %{mabi=*:-mabi=v%*}" \
565 " %{mconfig-fpu=*:-mfpu-freg=%*}" \
566 " %{mext-fpu-mac:-mmac}" \
567 " %{mno-ext-fpu-mac:-mno-mac}" \
568 " %{mext-fpu-sp:-mfpu-sp-ext}" \
569 " %{mno-ext-fpu-sp:-mno-fpu-sp-ext}" \
570 " %{mext-fpu-dp:-mfpu-dp-ext}" \
571 " %{mno-ext-fpu-sp:-mno-fpu-dp-ext}"
572
573 /* If user issues -mrelax, we need to pass '--relax' to linker. */
574 #define LINK_SPEC \
575 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
576 " %{mrelax:--relax}"
577
578 #define LIB_SPEC \
579 " -lc -lgloss"
580
581 /* The option -mno-ctor-dtor can disable constructor/destructor feature
582 by applying different crt stuff. In the convention, crt0.o is the
583 startup file without constructor/destructor;
584 crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o are the
585 startup files with constructor/destructor.
586 Note that crt0.o, crt1.o, crti.o, and crtn.o are provided
587 by newlib/mculib/glibc/ublic, while crtbegin.o and crtend.o are
588 currently provided by GCC for nds32 target.
589
590 For nds32 target so far:
591 If -mno-ctor-dtor, we are going to link
592 "crt0.o [user objects]".
593 If general cases, we are going to link
594 "crt1.o crtbegin1.o [user objects] crtend1.o". */
595 #define STARTFILE_SPEC \
596 " %{!mno-ctor-dtor:crt1.o%s;:crt0.o%s}" \
597 " %{!mno-ctor-dtor:crtbegin1.o%s}"
598 #define ENDFILE_SPEC \
599 " %{!mno-ctor-dtor:crtend1.o%s}"
600
601 /* The TARGET_BIG_ENDIAN_DEFAULT is defined if we
602 configure gcc with --target=nds32be-* setting.
603 Check gcc/config.gcc for more information. */
604 #ifdef TARGET_BIG_ENDIAN_DEFAULT
605 # define NDS32_ENDIAN_DEFAULT "mbig-endian"
606 #else
607 # define NDS32_ENDIAN_DEFAULT "mlittle-endian"
608 #endif
609
610 /* Currently we only have elf toolchain,
611 where -mcmodel=medium is always the default. */
612 #define NDS32_CMODEL_DEFAULT "mcmodel=medium"
613
614 #define MULTILIB_DEFAULTS \
615 { NDS32_ENDIAN_DEFAULT, NDS32_CMODEL_DEFAULT }
616
617 \f
618 /* Run-time Target Specification. */
619
620 #define TARGET_CPU_CPP_BUILTINS() \
621 nds32_cpu_cpp_builtins (pfile)
622
623 \f
624 /* Defining Data Structures for Per-function Information. */
625
626 /* This macro is called once per function,
627 before generation of any RTL has begun. */
628 #define INIT_EXPANDERS nds32_init_expanders ()
629
630 \f
631 /* Storage Layout. */
632
633 #define BITS_BIG_ENDIAN 0
634
635 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
636
637 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
638
639 #define UNITS_PER_WORD 4
640
641 #define PROMOTE_MODE(m, unsignedp, type) \
642 if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
643 { \
644 (m) = SImode; \
645 }
646
647 #define PARM_BOUNDARY 32
648
649 #define STACK_BOUNDARY 64
650
651 #define FUNCTION_BOUNDARY \
652 ((NDS32_ALIGN_P () || TARGET_ALIGN_FUNCTION) ? 32 : 16)
653
654 #define BIGGEST_ALIGNMENT 64
655
656 #define EMPTY_FIELD_BOUNDARY 32
657
658 #define STRUCTURE_SIZE_BOUNDARY 8
659
660 #define STRICT_ALIGNMENT 1
661
662 #define PCC_BITFIELD_TYPE_MATTERS 1
663
664 \f
665 /* Layout of Source Language Data Types. */
666
667 #define INT_TYPE_SIZE 32
668 #define SHORT_TYPE_SIZE 16
669 #define LONG_TYPE_SIZE 32
670 #define LONG_LONG_TYPE_SIZE 64
671
672 #define FLOAT_TYPE_SIZE 32
673 #define DOUBLE_TYPE_SIZE 64
674 #define LONG_DOUBLE_TYPE_SIZE 64
675
676 #define DEFAULT_SIGNED_CHAR 1
677
678 #define SIZE_TYPE "long unsigned int"
679 #define PTRDIFF_TYPE "long int"
680 #define WCHAR_TYPE "unsigned int"
681 #define WCHAR_TYPE_SIZE 32
682
683 \f
684 /* Register Usage. */
685
686 /* Number of actual hardware registers.
687 The hardware registers are assigned numbers for the compiler
688 from 0 to just below FIRST_PSEUDO_REGISTER.
689 All registers that the compiler knows about must be given numbers,
690 even those that are not normally considered general registers. */
691 #define FIRST_PSEUDO_REGISTER 101
692
693 /* An initializer that says which registers are used for fixed
694 purposes all throughout the compiled code and are therefore
695 not available for general allocation.
696
697 $r28 : $fp
698 $r29 : $gp
699 $r30 : $lp
700 $r31 : $sp
701
702 caller-save registers: $r0 ~ $r5, $r16 ~ $r23, $fs0 ~ $fs5, $fs22 ~ $fs47
703 callee-save registers: $r6 ~ $r10, $r11 ~ $r14, $fs6 ~ $fs21, $fs48 ~ $fs63
704
705 reserved for assembler : $r15
706 reserved for other use : $r24, $r25, $r26, $r27 */
707 #define FIXED_REGISTERS \
708 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
709 0, 0, 0, 0, 0, 0, 0, 0, \
710 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
711 0, 0, 0, 0, 0, 0, 0, 1, \
712 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
713 0, 0, 0, 0, 0, 0, 0, 0, \
714 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
715 1, 1, 1, 1, 0, 1, 0, 1, \
716 /* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
717 1, 1, 1, 1, 1, 1, 1, 1, \
718 /* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
719 1, 1, 1, 1, 1, 1, 1, 1, \
720 /* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
721 1, 1, 1, 1, 1, 1, 1, 1, \
722 /* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
723 1, 1, 1, 1, 1, 1, 1, 1, \
724 /* fs30 fs31 fd16 fd17 fd18 */ \
725 1, 1, 1, 1, 1, 1, 1, 1, \
726 /* fd19 fd20 fd21 fd22 */ \
727 1, 1, 1, 1, 1, 1, 1, 1, \
728 /* fd23 fd24 fd25 fd26 */ \
729 1, 1, 1, 1, 1, 1, 1, 1, \
730 /* fd27 fd28 fd29 fd30 */ \
731 1, 1, 1, 1, 1, 1, 1, 1, \
732 /* fd31 Reserved..................... */ \
733 1, 1, 1, 1, 1 \
734 }
735
736 /* Identifies the registers that are not available for
737 general allocation of values that must live across
738 function calls -- so they are caller-save registers.
739
740 0 : callee-save registers
741 1 : caller-save registers */
742 #define CALL_USED_REGISTERS \
743 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
744 1, 1, 1, 1, 1, 1, 0, 0, \
745 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
746 0, 0, 0, 0, 0, 0, 0, 1, \
747 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
748 1, 1, 1, 1, 1, 1, 1, 1, \
749 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
750 1, 1, 1, 1, 0, 1, 0, 1, \
751 /* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
752 1, 1, 1, 1, 1, 1, 1, 1, \
753 /* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
754 1, 1, 1, 1, 1, 1, 1, 1, \
755 /* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
756 1, 1, 1, 1, 1, 1, 1, 1, \
757 /* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
758 1, 1, 1, 1, 1, 1, 1, 1, \
759 /* fs30 fs31 fd16 fd17 fd18 */ \
760 1, 1, 1, 1, 1, 1, 1, 1, \
761 /* fd19 fd20 fd21 fd22 */ \
762 1, 1, 1, 1, 1, 1, 1, 1, \
763 /* fd23 fd24 fd25 fd26 */ \
764 1, 1, 1, 1, 1, 1, 1, 1, \
765 /* fd27 fd28 fd29 fd30 */ \
766 1, 1, 1, 1, 1, 1, 1, 1, \
767 /* fd31 Reserved..................... */ \
768 1, 1, 1, 1, 1 \
769 }
770
771 /* In nds32 target, we have three levels of registers:
772 LOW_COST_REGS : $r0 ~ $r7
773 MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
774 HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
775 #define REG_ALLOC_ORDER \
776 { 0, 1, 2, 3, 4, 5, 6, 7, \
777 16, 17, 18, 19, 9, 10, 11, 12, \
778 13, 14, 8, 15, 20, 21, 22, 23, \
779 24, 25, 26, 27, 28, 29, 30, 31, \
780 32, 33, 34, 35, 36, 37, 38, 39, \
781 40, 41, 42, 43, 44, 45, 46, 47, \
782 48, 49, 50, 51, 52, 53, 54, 55, \
783 56, 57, 58, 59, 60, 61, 62, 63, \
784 64, 65, 66, 67, 68, 69, 70, 71, \
785 72, 73, 74, 75, 76, 77, 78, 79, \
786 80, 81, 82, 83, 84, 85, 86, 87, \
787 88, 89, 90, 91, 92, 93, 94, 95, \
788 96, 97, 98, 99, 100, \
789 }
790
791 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
792 to be rearranged based on optimizing for speed or size. */
793 #define ADJUST_REG_ALLOC_ORDER nds32_adjust_reg_alloc_order ()
794
795 /* Tell IRA to use the order we define rather than messing it up with its
796 own cost calculations. */
797 #define HONOR_REG_ALLOC_ORDER optimize_size
798
799 \f
800 /* Register Classes. */
801
802 /* In nds32 target, we have three levels of registers:
803 Low cost regsiters : $r0 ~ $r7
804 Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
805 High cost registers : $r12 ~ $r14, $r20 ~ $r31
806
807 In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
808 so that it provides more chance to use low cost registers. */
809 enum reg_class
810 {
811 NO_REGS,
812 R5_REG,
813 R8_REG,
814 R15_TA_REG,
815 STACK_REG,
816 FRAME_POINTER_REG,
817 LOW_REGS,
818 MIDDLE_REGS,
819 HIGH_REGS,
820 GENERAL_REGS,
821 FRAME_REGS,
822 FP_REGS,
823 ALL_REGS,
824 LIM_REG_CLASSES
825 };
826
827 #define N_REG_CLASSES (int) LIM_REG_CLASSES
828
829 #define REG_CLASS_NAMES \
830 { \
831 "NO_REGS", \
832 "R5_REG", \
833 "R8_REG", \
834 "R15_TA_REG", \
835 "STACK_REG", \
836 "FRAME_POINTER_REG", \
837 "LOW_REGS", \
838 "MIDDLE_REGS", \
839 "HIGH_REGS", \
840 "GENERAL_REGS", \
841 "FRAME_REGS", \
842 "FP_REGS", \
843 "ALL_REGS" \
844 }
845
846 #define REG_CLASS_CONTENTS \
847 { /* NO_REGS */ \
848 {0x00000000, 0x00000000, 0x00000000, 0x00000000}, \
849 /* R5_REG : 5 */ \
850 {0x00000020, 0x00000000, 0x00000000, 0x00000000}, \
851 /* R8_REG : 8 */ \
852 {0x00000100, 0x00000000, 0x00000000, 0x00000000}, \
853 /* R15_TA_REG : 15 */ \
854 {0x00008000, 0x00000000, 0x00000000, 0x00000000}, \
855 /* STACK_REG : 31 */ \
856 {0x80000000, 0x00000000, 0x00000000, 0x00000000}, \
857 /* FRAME_POINTER_REG : 28 */ \
858 {0x10000000, 0x00000000, 0x00000000, 0x00000000}, \
859 /* LOW_REGS : 0-7 */ \
860 {0x000000ff, 0x00000000, 0x00000000, 0x00000000}, \
861 /* MIDDLE_REGS : 0-11, 16-19 */ \
862 {0x000f0fff, 0x00000000, 0x00000000, 0x00000000}, \
863 /* HIGH_REGS : 12-14, 20-31 */ \
864 {0xfff07000, 0x00000000, 0x00000000, 0x00000000}, \
865 /* GENERAL_REGS : 0-31 */ \
866 {0xffffffff, 0x00000000, 0x00000000, 0x00000000}, \
867 /* FRAME_REGS : 32, 33 */ \
868 {0x00000000, 0x00000003, 0x00000000, 0x00000000}, \
869 /* FP_REGS : 34-98 */ \
870 {0x00000000, 0xfffffffc, 0xffffffff, 0x00000003}, \
871 /* ALL_REGS : 0-100 */ \
872 {0xffffffff, 0xffffffff, 0xffffffff, 0x0000001f} \
873 }
874
875 #define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
876
877 #define BASE_REG_CLASS GENERAL_REGS
878 #define INDEX_REG_CLASS GENERAL_REGS
879
880 #define TEST_REGNO(R, TEST, VALUE) \
881 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
882
883 /* Return nonzero if it is suitable for use as a
884 base register in operand addresses.
885 So far, we return nonzero only if "num" is a hard reg
886 of the suitable class or a pseudo register which is
887 allocated to a suitable hard reg. */
888 #define REGNO_OK_FOR_BASE_P(num) \
889 (TEST_REGNO (num, <, 32) \
890 || TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
891 || TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
892
893 /* Return nonzero if it is suitable for use as a
894 index register in operand addresses.
895 So far, we return nonzero only if "num" is a hard reg
896 of the suitable class or a pseudo register which is
897 allocated to a suitable hard reg.
898 The difference between an index register and a base register is that
899 the index register may be scaled. */
900 #define REGNO_OK_FOR_INDEX_P(num) \
901 (TEST_REGNO (num, <, 32) \
902 || TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
903 || TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
904
905 \f
906 /* Obsolete Macros for Defining Constraints. */
907
908 \f
909 /* Stack Layout and Calling Conventions. */
910
911 #define STACK_GROWS_DOWNWARD 1
912
913 #define FRAME_GROWS_DOWNWARD 1
914
915 #define STACK_POINTER_OFFSET 0
916
917 #define FIRST_PARM_OFFSET(fundecl) \
918 (NDS32_DOUBLE_WORD_ALIGN_P (crtl->args.pretend_args_size) ? 0 : 4)
919
920 /* A C expression whose value is RTL representing the address in a stack frame
921 where the pointer to the caller's frame is stored. */
922 #define DYNAMIC_CHAIN_ADDRESS(frameaddr) \
923 nds32_dynamic_chain_address (frameaddr)
924
925 #define RETURN_ADDR_RTX(count, frameaddr) \
926 nds32_return_addr_rtx (count, frameaddr)
927
928 /* A C expression whose value is RTL representing the location
929 of the incoming return address at the beginning of any function
930 before the prologue.
931 If this RTL is REG, you should also define
932 DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
933 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
934 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
935
936 /* Use $r0 $r1 to pass exception handling information. */
937 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N) : INVALID_REGNUM)
938 /* The register $r2 that represents a location in which to store a stack
939 adjustment to be applied before function return.
940 This is used to unwind the stack to an exception handler's call frame. */
941 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
942
943 #define DBX_REGISTER_NUMBER(REGNO) nds32_dbx_register_number (REGNO)
944
945 #define STACK_POINTER_REGNUM SP_REGNUM
946
947 #define FRAME_POINTER_REGNUM 33
948
949 #define HARD_FRAME_POINTER_REGNUM FP_REGNUM
950
951 #define ARG_POINTER_REGNUM 32
952
953 #define STATIC_CHAIN_REGNUM 16
954
955 #define ELIMINABLE_REGS \
956 { { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
957 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
958 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
959 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
960
961 #define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
962 (offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
963
964 #define ACCUMULATE_OUTGOING_ARGS 1
965
966 #define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
967
968 #define CUMULATIVE_ARGS nds32_cumulative_args
969
970 #define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
971 nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
972
973 #define FUNCTION_ARG_REGNO_P(regno) \
974 (IN_RANGE ((regno), NDS32_FIRST_GPR_REGNUM, NDS32_MAX_GPR_REGS_FOR_ARGS - 1) \
975 || ((TARGET_FPU_SINGLE || TARGET_FPU_DOUBLE) \
976 && IN_RANGE ((regno), NDS32_FPR_ARG_FIRST_REGNUM, \
977 NDS32_FIRST_FPR_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS - 1)))
978
979 #define DEFAULT_PCC_STRUCT_RETURN 0
980
981 /* EXIT_IGNORE_STACK should be nonzero if, when returning
982 from a function, the stack pointer does not matter.
983 The value is tested only in functions that have frame pointers.
984 In nds32 target, the function epilogue recovers the
985 stack pointer from the frame. */
986 #define EXIT_IGNORE_STACK 1
987
988 #define FUNCTION_PROFILER(file, labelno) \
989 fprintf (file, "/* profiler %d */\n", (labelno))
990
991 #define PROFILE_HOOK(LABEL) \
992 { \
993 rtx fun, lp; \
994 lp = get_hard_reg_initial_val (Pmode, LP_REGNUM); \
995 fun = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); \
996 emit_library_call (fun, LCT_NORMAL, VOIDmode, lp, Pmode); \
997 }
998
999 \f
1000 /* Implementing the Varargs Macros. */
1001
1002 \f
1003 /* Trampolines for Nested Functions. */
1004
1005 /* Giving A-function and B-function,
1006 if B-function wants to call A-function's nested function,
1007 we need to fill trampoline code into A-function's stack
1008 so that B-function can execute the code in stack to indirectly
1009 jump to (like 'trampoline' action) desired nested function.
1010
1011 The trampoline code for nds32 target must contains following parts:
1012
1013 1. instructions (4 * 4 = 16 bytes):
1014 get $pc first
1015 load chain_value to static chain register via $pc
1016 load nested function address to $r15 via $pc
1017 jump to desired nested function via $r15
1018 2. data (4 * 2 = 8 bytes):
1019 chain_value
1020 nested function address
1021
1022 Please check nds32.c implementation for more information. */
1023 #define TRAMPOLINE_SIZE 24
1024
1025 /* Because all instructions/data in trampoline template are 4-byte size,
1026 we set trampoline alignment 8*4=32 bits. */
1027 #define TRAMPOLINE_ALIGNMENT 32
1028
1029 \f
1030 /* Implicit Calls to Library Routines. */
1031
1032 \f
1033 /* Addressing Modes. */
1034
1035 /* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
1036 #define HAVE_POST_INCREMENT 1
1037 /* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
1038 #define HAVE_POST_DECREMENT 1
1039
1040 /* We have "LWI.bi Rt, [Ra], imm" instruction form. */
1041 #define HAVE_POST_MODIFY_DISP 1
1042 /* We have "LW.bi Rt, [Ra], Rb" instruction form. */
1043 #define HAVE_POST_MODIFY_REG 1
1044
1045 #define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
1046
1047 #define MAX_REGS_PER_ADDRESS 3
1048
1049 \f
1050 /* Anchored Addresses. */
1051
1052 \f
1053 /* Condition Code Status. */
1054
1055 \f
1056 /* Describing Relative Costs of Operations. */
1057
1058 /* A C expression for the cost of a branch instruction.
1059 A value of 1 is the default;
1060 other values are interpreted relative to that. */
1061 #define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 1)
1062
1063 /* Override BRANCH_COST heuristic which empirically produces worse
1064 performance for removing short circuiting from the logical ops. */
1065 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1066
1067 #define SLOW_BYTE_ACCESS 1
1068
1069 #define NO_FUNCTION_CSE 1
1070
1071 \f
1072 /* Adjusting the Instruction Scheduler. */
1073
1074 \f
1075 /* Dividing the Output into Sections (Texts, Data, . . . ). */
1076
1077 #define TEXT_SECTION_ASM_OP "\t.text"
1078 #define DATA_SECTION_ASM_OP "\t.data"
1079
1080 /* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
1081 So we use '.section .bss' alternatively. */
1082 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1083
1084 /* Define this macro to be an expression with a nonzero value if jump tables
1085 (for tablejump insns) should be output in the text section,
1086 along with the assembler instructions.
1087 Otherwise, the readonly data section is used. */
1088 #define JUMP_TABLES_IN_TEXT_SECTION 1
1089
1090 \f
1091 /* Position Independent Code. */
1092
1093 #define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
1094
1095 \f
1096 /* Defining the Output Assembler Language. */
1097
1098 #define ASM_COMMENT_START "!"
1099
1100 #define ASM_APP_ON "! #APP"
1101
1102 #define ASM_APP_OFF "! #NO_APP\n"
1103
1104 #define ASM_OUTPUT_LABELREF(stream, name) \
1105 asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
1106
1107 #define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
1108 assemble_name (stream, XSTR (sym, 0))
1109
1110 #define ASM_OUTPUT_LABEL_REF(stream, buf) \
1111 assemble_name (stream, buf)
1112
1113 #define LOCAL_LABEL_PREFIX "."
1114
1115 #define REGISTER_NAMES \
1116 { "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
1117 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
1118 "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
1119 "$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
1120 "$AP", "$SFP", "$fs0", "$fs1", "$fs2", "$fs3", "$fs4", "$fs5", \
1121 "$fs6", "$fs7", "$fs8", "$fs9", "$fs10","$fs11","$fs12","$fs13",\
1122 "$fs14","$fs15","$fs16","$fs17","$fs18","$fs19","$fs20","$fs21",\
1123 "$fs22","$fs23","$fs24","$fs25","$fs26","$fs27","$fs28","$fs29",\
1124 "$fs30","$fs31","$fs32","$fs33","$fs34","$fs35","$fs36","$fs37",\
1125 "$fs38","$fs39","$fs40","$fs41","$fs42","$fs43","$fs44","$fs45",\
1126 "$fs46","$fs47","$fs48","$fs49","$fs50","$fs51","$fs52","$fs53",\
1127 "$fs54","$fs55","$fs56","$fs57","$fs58","$fs59","$fs60","$fs61",\
1128 "$fs62","$fs63", "LB", "LE", "LC" \
1129 }
1130
1131 #define ADDITIONAL_REGISTER_NAMES \
1132 { \
1133 {"$r15", 15}, \
1134 {"$r28", 28}, {"$r29", 29}, {"$r30", 30}, {"$r31", 31}, \
1135 {"$a0", 0}, {"$a1", 1}, {"$a2", 2}, \
1136 {"$a3", 3}, {"$a4", 4}, {"$a5", 5}, \
1137 {"$s0", 6}, {"$s1", 7}, {"$s2", 8}, {"$s3", 9}, \
1138 {"$s4", 10}, {"$s5", 11}, {"$s6", 12}, {"$s7", 13}, \
1139 {"$s8", 14}, \
1140 {"$t0", 16}, {"$t1", 17}, {"$t2", 18}, {"$t3", 19}, \
1141 {"$t4", 20}, {"$t5", 21}, {"$t6", 22}, {"$t7", 23}, \
1142 {"$t8", 24}, {"$t9", 25}, \
1143 {"$p0", 26}, {"$p1", 27}, \
1144 {"$h0", 0}, {"$h1", 1}, {"$h2", 2}, {"$h3", 3}, \
1145 {"$h4", 4}, {"$h5", 5}, {"$h6", 6}, {"$h7", 7}, \
1146 {"$h8", 8}, {"$h9", 9}, {"$h10", 10}, {"$h11", 11}, \
1147 {"$h12", 16}, {"$h13", 17}, {"$h14", 18}, {"$h15", 19}, \
1148 {"$o0", 0}, {"$o1", 1}, {"$o2", 2}, {"$o3", 3}, \
1149 {"$o4", 4}, {"$o5", 5}, {"$o6", 6}, {"$o7", 7}, \
1150 }
1151
1152 #define OVERLAPPING_REGISTER_NAMES \
1153 { \
1154 {"$fd0", NDS32_FIRST_FPR_REGNUM + 0, 2}, \
1155 {"$fd1", NDS32_FIRST_FPR_REGNUM + 2, 2}, \
1156 {"$fd2", NDS32_FIRST_FPR_REGNUM + 4, 2}, \
1157 {"$fd3", NDS32_FIRST_FPR_REGNUM + 6, 2}, \
1158 {"$fd4", NDS32_FIRST_FPR_REGNUM + 8, 2}, \
1159 {"$fd5", NDS32_FIRST_FPR_REGNUM + 10, 2}, \
1160 {"$fd6", NDS32_FIRST_FPR_REGNUM + 12, 2}, \
1161 {"$fd7", NDS32_FIRST_FPR_REGNUM + 14, 2}, \
1162 {"$fd8", NDS32_FIRST_FPR_REGNUM + 16, 2}, \
1163 {"$fd9", NDS32_FIRST_FPR_REGNUM + 18, 2}, \
1164 {"$fd10", NDS32_FIRST_FPR_REGNUM + 20, 2}, \
1165 {"$fd11", NDS32_FIRST_FPR_REGNUM + 22, 2}, \
1166 {"$fd12", NDS32_FIRST_FPR_REGNUM + 24, 2}, \
1167 {"$fd13", NDS32_FIRST_FPR_REGNUM + 26, 2}, \
1168 {"$fd14", NDS32_FIRST_FPR_REGNUM + 28, 2}, \
1169 {"$fd15", NDS32_FIRST_FPR_REGNUM + 30, 2}, \
1170 {"$fd16", NDS32_FIRST_FPR_REGNUM + 32, 2}, \
1171 {"$fd17", NDS32_FIRST_FPR_REGNUM + 34, 2}, \
1172 {"$fd18", NDS32_FIRST_FPR_REGNUM + 36, 2}, \
1173 {"$fd19", NDS32_FIRST_FPR_REGNUM + 38, 2}, \
1174 {"$fd20", NDS32_FIRST_FPR_REGNUM + 40, 2}, \
1175 {"$fd21", NDS32_FIRST_FPR_REGNUM + 42, 2}, \
1176 {"$fd22", NDS32_FIRST_FPR_REGNUM + 44, 2}, \
1177 {"$fd23", NDS32_FIRST_FPR_REGNUM + 46, 2}, \
1178 {"$fd24", NDS32_FIRST_FPR_REGNUM + 48, 2}, \
1179 {"$fd25", NDS32_FIRST_FPR_REGNUM + 50, 2}, \
1180 {"$fd26", NDS32_FIRST_FPR_REGNUM + 52, 2}, \
1181 {"$fd27", NDS32_FIRST_FPR_REGNUM + 54, 2}, \
1182 {"$fd28", NDS32_FIRST_FPR_REGNUM + 56, 2}, \
1183 {"$fd29", NDS32_FIRST_FPR_REGNUM + 58, 2}, \
1184 {"$fd30", NDS32_FIRST_FPR_REGNUM + 60, 2}, \
1185 {"$fd31", NDS32_FIRST_FPR_REGNUM + 62, 2}, \
1186 }
1187
1188 /* Output normal jump table entry. */
1189 #define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
1190 asm_fprintf (stream, "\t.word\t%LL%d\n", value)
1191
1192 /* Output pc relative jump table entry. */
1193 #define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
1194 do \
1195 { \
1196 switch (GET_MODE (body)) \
1197 { \
1198 case E_QImode: \
1199 asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
1200 break; \
1201 case E_HImode: \
1202 asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
1203 break; \
1204 case E_SImode: \
1205 asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
1206 break; \
1207 default: \
1208 gcc_unreachable(); \
1209 } \
1210 } while (0)
1211
1212 /* We have to undef it first because elfos.h formerly define it
1213 check gcc/config.gcc and gcc/config/elfos.h for more information. */
1214 #undef ASM_OUTPUT_CASE_LABEL
1215 #define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
1216 do \
1217 { \
1218 asm_fprintf (stream, "\t! Jump Table Begin\n"); \
1219 (*targetm.asm_out.internal_label) (stream, prefix, num); \
1220 } while (0)
1221
1222 #define ASM_OUTPUT_CASE_END(stream, num, table) \
1223 do \
1224 { \
1225 /* Because our jump table is in text section, \
1226 we need to make sure 2-byte alignment after \
1227 the jump table for instructions fetch. */ \
1228 if (GET_MODE (PATTERN (table)) == QImode) \
1229 ASM_OUTPUT_ALIGN (stream, 1); \
1230 asm_fprintf (stream, "\t! Jump Table End\n"); \
1231 } while (0)
1232
1233 /* This macro is not documented yet.
1234 But we do need it to make jump table vector aligned. */
1235 #define ADDR_VEC_ALIGN(JUMPTABLE) 2
1236
1237 #define DWARF2_UNWIND_INFO 1
1238
1239 #define JUMP_ALIGN(x) \
1240 (align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
1241
1242 #define LOOP_ALIGN(x) \
1243 (align_loops_log ? align_loops_log : nds32_target_alignment (x))
1244
1245 #define LABEL_ALIGN(x) \
1246 (align_labels_log ? align_labels_log : nds32_target_alignment (x))
1247
1248 #define ASM_OUTPUT_ALIGN(stream, power) \
1249 fprintf (stream, "\t.align\t%d\n", power)
1250
1251 \f
1252 /* Controlling Debugging Information Format. */
1253
1254 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1255
1256 #define DWARF2_DEBUGGING_INFO 1
1257
1258 #define DWARF2_ASM_LINE_DEBUG_INFO 1
1259
1260 \f
1261 /* Cross Compilation and Floating Point. */
1262
1263 \f
1264 /* Mode Switching Instructions. */
1265
1266 \f
1267 /* Defining target-specific uses of __attribute__. */
1268
1269 \f
1270 /* Emulating TLS. */
1271
1272 \f
1273 /* Defining coprocessor specifics for MIPS targets. */
1274
1275 \f
1276 /* Parameters for Precompiled Header Validity Checking. */
1277
1278 \f
1279 /* C++ ABI parameters. */
1280
1281 \f
1282 /* Adding support for named address spaces. */
1283
1284 \f
1285 /* Miscellaneous Parameters. */
1286
1287 /* This is the machine mode that elements of a jump-table should have. */
1288 #define CASE_VECTOR_MODE Pmode
1289
1290 /* Return the preferred mode for and addr_diff_vec when the mininum
1291 and maximum offset are known. */
1292 #define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
1293 ((min_offset < 0 || max_offset >= 0x2000 ) ? SImode \
1294 : (max_offset >= 100) ? HImode \
1295 : QImode)
1296
1297 /* Generate pc relative jump table when -fpic or -Os. */
1298 #define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
1299
1300 /* Define this macro if operations between registers with integral mode
1301 smaller than a word are always performed on the entire register. */
1302 #define WORD_REGISTER_OPERATIONS 1
1303
1304 /* A C expression indicating when insns that read memory in mem_mode,
1305 an integral mode narrower than a word, set the bits outside of mem_mode
1306 to be either the sign-extension or the zero-extension of the data read. */
1307 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1308
1309 /* The maximum number of bytes that a single instruction can move quickly
1310 between memory and registers or between two memory locations. */
1311 #define MOVE_MAX 4
1312
1313 /* A C expression that is nonzero if on this machine the number of bits
1314 actually used for the count of a shift operation is equal to the number
1315 of bits needed to represent the size of the object being shifted. */
1316 #define SHIFT_COUNT_TRUNCATED 1
1317
1318 /* A C expression describing the value returned by a comparison operator with
1319 an integral mode and stored by a store-flag instruction ('cstoremode4')
1320 when the condition is true. */
1321 #define STORE_FLAG_VALUE 1
1322
1323 /* A C expression that indicates whether the architecture defines a value for
1324 clz or ctz with a zero operand. In nds32 clz for 0 result 32 is defined
1325 in ISA spec */
1326 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
1327
1328 /* An alias for the machine mode for pointers. */
1329 #define Pmode SImode
1330
1331 /* An alias for the machine mode used for memory references to functions
1332 being called, in call RTL expressions. */
1333 #define FUNCTION_MODE SImode
1334
1335 /* ------------------------------------------------------------------------ */