]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/nds32/nds32.h
[NDS32] Add strict_aligned_p to machine_function and implement TARGET_EXPAND_TO_RTL_HOOK.
[thirdparty/gcc.git] / gcc / config / nds32 / nds32.h
1 /* Definitions of target machine of Andes NDS32 cpu for GNU compiler
2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
3 Contributed by Andes Technology Corporation.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* ------------------------------------------------------------------------ */
23
24 /* The following are auxiliary macros or structure declarations
25 that are used all over the nds32.c and nds32.h. */
26
27 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
28 (LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
29
30 /* Use SYMBOL_FLAG_MACH_DEP to define our own symbol_ref flag.
31 It is used in nds32_encode_section_info() to store flag in symbol_ref
32 in case the symbol should be placed in .rodata section.
33 So that we can check it in nds32_legitimate_address_p(). */
34 #define NDS32_SYMBOL_FLAG_RODATA \
35 (SYMBOL_FLAG_MACH_DEP << 0)
36 #define NDS32_SYMBOL_REF_RODATA_P(x) \
37 ((SYMBOL_REF_FLAGS (x) & NDS32_SYMBOL_FLAG_RODATA) != 0)
38
39 /* Classifies expand result for expand helper function. */
40 enum nds32_expand_result_type
41 {
42 EXPAND_DONE,
43 EXPAND_FAIL,
44 EXPAND_CREATE_TEMPLATE
45 };
46
47 /* Classifies address type to distinguish 16-bit/32-bit format. */
48 enum nds32_16bit_address_type
49 {
50 /* [reg]: 45 format address. */
51 ADDRESS_REG,
52 /* [lo_reg + imm3u]: 333 format address. */
53 ADDRESS_LO_REG_IMM3U,
54 /* post_inc [lo_reg + imm3u]: 333 format address. */
55 ADDRESS_POST_INC_LO_REG_IMM3U,
56 /* post_modify [lo_reg + imm3u]: 333 format address. */
57 ADDRESS_POST_MODIFY_LO_REG_IMM3U,
58 /* [$r8 + imm7u]: r8 imply address. */
59 ADDRESS_R8_IMM7U,
60 /* [$fp + imm7u]: fp imply address. */
61 ADDRESS_FP_IMM7U,
62 /* [$sp + imm7u]: sp imply address. */
63 ADDRESS_SP_IMM7U,
64 /* Other address format. */
65 ADDRESS_NOT_16BIT_FORMAT
66 };
67
68
69 /* ------------------------------------------------------------------------ */
70
71 /* Define maximum numbers of registers for passing arguments. */
72 #define NDS32_MAX_GPR_REGS_FOR_ARGS 6
73 #define NDS32_MAX_FPR_REGS_FOR_ARGS 6
74
75 /* Define the register number for first argument. */
76 #define NDS32_GPR_ARG_FIRST_REGNUM 0
77 #define NDS32_FPR_ARG_FIRST_REGNUM 34
78
79 /* Define the register number for return value. */
80 #define NDS32_GPR_RET_FIRST_REGNUM 0
81 #define NDS32_FPR_RET_FIRST_REGNUM 34
82
83 /* Define the first integer register number. */
84 #define NDS32_FIRST_GPR_REGNUM 0
85 /* Define the last integer register number. */
86 #define NDS32_LAST_GPR_REGNUM 31
87
88 #define NDS32_FIRST_CALLEE_SAVE_GPR_REGNUM 6
89 #define NDS32_LAST_CALLEE_SAVE_GPR_REGNUM \
90 (TARGET_REDUCED_REGS ? 10 : 14)
91
92 /* Define the floating-point number of registers. */
93 #define NDS32_FLOAT_REGISTER_NUMBER \
94 (((nds32_fp_regnum == NDS32_CONFIG_FPU_0) \
95 || (nds32_fp_regnum == NDS32_CONFIG_FPU_4)) ? 8 \
96 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_1) \
97 || (nds32_fp_regnum == NDS32_CONFIG_FPU_5)) ? 16 \
98 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_2) \
99 || (nds32_fp_regnum == NDS32_CONFIG_FPU_6)) ? 32 \
100 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_3) \
101 || (nds32_fp_regnum == NDS32_CONFIG_FPU_7)) ? 64 \
102 : 32)
103
104 #define NDS32_EXT_FPU_DOT_E (nds32_fp_regnum >= 4)
105
106 /* Define the first floating-point register number. */
107 #define NDS32_FIRST_FPR_REGNUM 34
108 /* Define the last floating-point register number. */
109 #define NDS32_LAST_FPR_REGNUM \
110 (NDS32_FIRST_FPR_REGNUM + NDS32_FLOAT_REGISTER_NUMBER - 1)
111
112
113 #define NDS32_IS_EXT_FPR_REGNUM(regno) \
114 (((regno) >= NDS32_FIRST_FPR_REGNUM + 32) \
115 && ((regno) < NDS32_FIRST_FPR_REGNUM + 64))
116
117 #define NDS32_IS_FPR_REGNUM(regno) \
118 (((regno) >= NDS32_FIRST_FPR_REGNUM) \
119 && ((regno) <= NDS32_LAST_FPR_REGNUM))
120
121 #define NDS32_FPR_REGNO_OK_FOR_SINGLE(regno) \
122 ((regno) <= NDS32_LAST_FPR_REGNUM)
123
124 #define NDS32_FPR_REGNO_OK_FOR_DOUBLE(regno) \
125 ((((regno) - NDS32_FIRST_FPR_REGNUM) & 1) == 0)
126
127 #define NDS32_IS_GPR_REGNUM(regno) \
128 (((regno) <= NDS32_LAST_GPR_REGNUM))
129
130 /* Define double word alignment bits. */
131 #define NDS32_DOUBLE_WORD_ALIGNMENT 64
132
133 /* Define alignment checking macros for convenience. */
134 #define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
135 #define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
136 #define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
137
138 /* Determine whether we would like to have code generation strictly aligned.
139 We set it strictly aligned when -malways-align is enabled.
140 Check gcc/common/config/nds32/nds32-common.c for the optimizations that
141 apply -malways-align. */
142 #define NDS32_ALIGN_P() (TARGET_ALWAYS_ALIGN)
143 /* Get alignment according to mode or type information.
144 When 'type' is nonnull, there is no need to look at 'mode'. */
145 #define NDS32_MODE_TYPE_ALIGN(mode, type) \
146 (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
147
148 /* Round X up to the nearest double word. */
149 #define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
150
151
152 /* This macro is used to calculate the numbers of registers for
153 containing 'size' bytes of the argument.
154 The size of a register is a word in nds32 target.
155 So we use UNITS_PER_WORD to do the calculation. */
156 #define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
157 ((mode == BLKmode) \
158 ? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
159 : ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
160
161 /* This macro is used to return the register number for passing argument.
162 We need to obey the following rules:
163 1. If it is required MORE THAN one register,
164 we need to further check if it really needs to be
165 aligned on double words.
166 a) If double word alignment is necessary,
167 the register number must be even value.
168 b) Otherwise, the register number can be odd or even value.
169 2. If it is required ONLY one register,
170 the register number can be odd or even value. */
171 #define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
172 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
173 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
174 ? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
175 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
176 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
177
178 #define NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG(reg_offset, mode, type) \
179 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
180 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
181 ? (((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM + 1) & ~1) \
182 : ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM)) \
183 : ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM))
184
185 /* These two macros are to check if there are still available registers
186 for passing argument, which must be entirely in registers. */
187 #define NDS32_ARG_ENTIRE_IN_GPR_REG_P(reg_offset, mode, type) \
188 ((NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
189 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
190 <= (NDS32_GPR_ARG_FIRST_REGNUM \
191 + NDS32_MAX_GPR_REGS_FOR_ARGS))
192
193 #define NDS32_ARG_ENTIRE_IN_FPR_REG_P(reg_offset, mode, type) \
194 ((NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
195 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
196 <= (NDS32_FPR_ARG_FIRST_REGNUM \
197 + NDS32_MAX_FPR_REGS_FOR_ARGS))
198
199 /* These two macros are to check if there are still available registers
200 for passing argument, either entirely in registers or partially
201 in registers. */
202 #define NDS32_ARG_PARTIAL_IN_GPR_REG_P(reg_offset, mode, type) \
203 (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
204 < NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
205
206 #define NDS32_ARG_PARTIAL_IN_FPR_REG_P(reg_offset, mode, type) \
207 (NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
208 < NDS32_FPR_ARG_FIRST_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS)
209
210 /* This macro is to check if the register is required to be saved on stack.
211 If call_used_regs[regno] == 0, regno is the callee-saved register.
212 If df_regs_ever_live_p(regno) == true, it is used in the current function.
213 As long as the register satisfies both criteria above,
214 it is required to be saved. */
215 #define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
216 ((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
217
218 /* This macro is to check if the push25/pop25 are available to be used
219 for code generation. Because pop25 also performs return behavior,
220 the instructions may not be available for some cases.
221 If we want to use push25/pop25, all the following conditions must
222 be satisfied:
223 1. TARGET_V3PUSH is set.
224 2. Current function is not an ISR function.
225 3. Current function is not a variadic function.*/
226 #define NDS32_V3PUSH_AVAILABLE_P \
227 (TARGET_V3PUSH \
228 && !nds32_isr_function_p (current_function_decl) \
229 && (cfun->machine->va_args_size == 0))
230
231 /* ------------------------------------------------------------------------ */
232
233 /* A C structure for machine-specific, per-function data.
234 This is added to the cfun structure. */
235 struct GTY(()) machine_function
236 {
237 /* Number of bytes allocated on the stack for variadic args
238 if we want to push them into stack as pretend arguments by ourself. */
239 int va_args_size;
240 /* Number of bytes reserved on the stack for
241 local and temporary variables. */
242 int local_size;
243 /* Number of bytes allocated on the stack for outgoing arguments. */
244 int out_args_size;
245
246 /* Number of bytes on the stack for saving $fp. */
247 int fp_size;
248 /* Number of bytes on the stack for saving $gp. */
249 int gp_size;
250 /* Number of bytes on the stack for saving $lp. */
251 int lp_size;
252
253 /* Number of bytes on the stack for saving general purpose
254 callee-saved registers. */
255 int callee_saved_gpr_regs_size;
256
257 /* Number of bytes on the stack for saving floating-point
258 callee-saved registers. */
259 int callee_saved_fpr_regs_size;
260
261 /* The padding bytes in callee-saved area may be required. */
262 int callee_saved_area_gpr_padding_bytes;
263
264 /* The first required general purpose callee-saved register. */
265 int callee_saved_first_gpr_regno;
266 /* The last required general purpose callee-saved register. */
267 int callee_saved_last_gpr_regno;
268
269 /* The first required floating-point callee-saved register. */
270 int callee_saved_first_fpr_regno;
271 /* The last required floating-point callee-saved register. */
272 int callee_saved_last_fpr_regno;
273
274 /* The padding bytes in varargs area may be required. */
275 int va_args_area_padding_bytes;
276
277 /* The first required register that should be saved on stack for va_args. */
278 int va_args_first_regno;
279 /* The last required register that should be saved on stack for va_args. */
280 int va_args_last_regno;
281
282 /* Number of bytes on the stack for saving exception handling registers. */
283 int eh_return_data_regs_size;
284 /* The first register of passing exception handling information. */
285 int eh_return_data_first_regno;
286 /* The last register of passing exception handling information. */
287 int eh_return_data_last_regno;
288
289 /* Indicate that whether this function
290 calls __builtin_eh_return. */
291 int use_eh_return_p;
292
293 /* Indicate that whether this function needs
294 prologue/epilogue code generation. */
295 int naked_p;
296 /* Indicate that whether this function
297 uses fp_as_gp optimization. */
298 int fp_as_gp_p;
299 /* Indicate that whether this function is under strictly aligned
300 situation for legitimate address checking. This flag informs
301 nds32_legitimate_address_p() how to treat offset alignment:
302 1. The IVOPT phase needs to detect available range for memory access,
303 such as checking [base + 32767] ~ [base + (-32768)].
304 For this case we do not want address to be strictly aligned.
305 2. The rtl lowering and optimization are close to target code.
306 For this case we need address to be strictly aligned. */
307 int strict_aligned_p;
308 };
309
310 /* A C structure that contains the arguments information. */
311 typedef struct
312 {
313 unsigned int gpr_offset;
314 unsigned int fpr_offset;
315 } nds32_cumulative_args;
316
317 /* ------------------------------------------------------------------------ */
318
319 /* The following we define C-ISR related stuff.
320 In nds32 architecture, we have 73 vectors for interrupt/exception.
321 For each vector (except for vector 0, which is used for reset behavior),
322 we allow users to set its register saving scheme and interrupt level. */
323
324 /* There are 73 vectors in nds32 architecture.
325 0 for reset handler,
326 1-8 for exception handler,
327 and 9-72 for interrupt handler.
328 We use an array, which is defined in nds32.c, to record
329 essential information for each vector. */
330 #define NDS32_N_ISR_VECTORS 73
331
332 /* Define possible isr category. */
333 enum nds32_isr_category
334 {
335 NDS32_ISR_NONE,
336 NDS32_ISR_INTERRUPT,
337 NDS32_ISR_EXCEPTION,
338 NDS32_ISR_RESET
339 };
340
341 /* Define isr register saving scheme. */
342 enum nds32_isr_save_reg
343 {
344 NDS32_SAVE_ALL,
345 NDS32_PARTIAL_SAVE
346 };
347
348 /* Define isr nested type. */
349 enum nds32_isr_nested_type
350 {
351 NDS32_NESTED,
352 NDS32_NOT_NESTED,
353 NDS32_NESTED_READY
354 };
355
356 /* Define structure to record isr information.
357 The isr vector array 'isr_vectors[]' with this structure
358 is defined in nds32.c. */
359 struct nds32_isr_info
360 {
361 /* The field to identify isr category.
362 It should be set to NDS32_ISR_NONE by default.
363 If user specifies a function as isr by using attribute,
364 this field will be set accordingly. */
365 enum nds32_isr_category category;
366
367 /* A string for the applied function name.
368 It should be set to empty string by default. */
369 char func_name[100];
370
371 /* The register saving scheme.
372 It should be set to NDS32_PARTIAL_SAVE by default
373 unless user specifies attribute to change it. */
374 enum nds32_isr_save_reg save_reg;
375
376 /* The nested type.
377 It should be set to NDS32_NOT_NESTED by default
378 unless user specifies attribute to change it. */
379 enum nds32_isr_nested_type nested_type;
380
381 /* Total vectors.
382 The total vectors = interrupt + exception numbers + reset.
383 It should be set to 0 by default.
384 This field is ONLY used in NDS32_ISR_RESET category. */
385 unsigned int total_n_vectors;
386
387 /* A string for nmi handler name.
388 It should be set to empty string by default.
389 This field is ONLY used in NDS32_ISR_RESET category. */
390 char nmi_name[100];
391
392 /* A string for warm handler name.
393 It should be set to empty string by default.
394 This field is ONLY used in NDS32_ISR_RESET category. */
395 char warm_name[100];
396 };
397
398 /* ------------------------------------------------------------------------ */
399
400 /* Define code for all nds32 builtins. */
401 enum nds32_builtins
402 {
403 NDS32_BUILTIN_ISYNC,
404 NDS32_BUILTIN_ISB,
405 NDS32_BUILTIN_DSB,
406 NDS32_BUILTIN_MSYNC_ALL,
407 NDS32_BUILTIN_MSYNC_STORE,
408 NDS32_BUILTIN_MFSR,
409 NDS32_BUILTIN_MFUSR,
410 NDS32_BUILTIN_MTSR,
411 NDS32_BUILTIN_MTSR_ISB,
412 NDS32_BUILTIN_MTSR_DSB,
413 NDS32_BUILTIN_MTUSR,
414 NDS32_BUILTIN_SETGIE_EN,
415 NDS32_BUILTIN_SETGIE_DIS,
416 NDS32_BUILTIN_FMFCFG,
417 NDS32_BUILTIN_FMFCSR,
418 NDS32_BUILTIN_FMTCSR,
419 NDS32_BUILTIN_FCPYNSS,
420 NDS32_BUILTIN_FCPYSS,
421 NDS32_BUILTIN_FCPYNSD,
422 NDS32_BUILTIN_FCPYSD,
423 NDS32_BUILTIN_ABS,
424 NDS32_BUILTIN_AVE,
425 NDS32_BUILTIN_BCLR,
426 NDS32_BUILTIN_BSET,
427 NDS32_BUILTIN_BTGL,
428 NDS32_BUILTIN_BTST,
429 NDS32_BUILTIN_CLIP,
430 NDS32_BUILTIN_CLIPS,
431 NDS32_BUILTIN_CLZ,
432 NDS32_BUILTIN_CLO,
433 NDS32_BUILTIN_MAX,
434 NDS32_BUILTIN_MIN,
435 NDS32_BUILTIN_PBSAD,
436 NDS32_BUILTIN_PBSADA,
437 NDS32_BUILTIN_BSE,
438 NDS32_BUILTIN_BSP,
439 NDS32_BUILTIN_FFB,
440 NDS32_BUILTIN_FFMISM,
441 NDS32_BUILTIN_FLMISM,
442
443 NDS32_BUILTIN_ROTR,
444 NDS32_BUILTIN_SVA,
445 NDS32_BUILTIN_SVS,
446 NDS32_BUILTIN_WSBH,
447 NDS32_BUILTIN_JR_ITOFF,
448 NDS32_BUILTIN_JR_TOFF,
449 NDS32_BUILTIN_JRAL_ITON,
450 NDS32_BUILTIN_JRAL_TON,
451 NDS32_BUILTIN_RET_ITOFF,
452 NDS32_BUILTIN_RET_TOFF,
453 NDS32_BUILTIN_STANDBY_NO_WAKE_GRANT,
454 NDS32_BUILTIN_STANDBY_WAKE_GRANT,
455 NDS32_BUILTIN_STANDBY_WAKE_DONE,
456 NDS32_BUILTIN_TEQZ,
457 NDS32_BUILTIN_TNEZ,
458 NDS32_BUILTIN_TRAP,
459 NDS32_BUILTIN_SETEND_BIG,
460 NDS32_BUILTIN_SETEND_LITTLE,
461 NDS32_BUILTIN_SYSCALL,
462 NDS32_BUILTIN_BREAK,
463 NDS32_BUILTIN_NOP,
464 NDS32_BUILTIN_SCHE_BARRIER,
465 NDS32_BUILTIN_GET_CURRENT_SP,
466 NDS32_BUILTIN_SET_CURRENT_SP,
467 NDS32_BUILTIN_RETURN_ADDRESS,
468 NDS32_BUILTIN_LLW,
469 NDS32_BUILTIN_LWUP,
470 NDS32_BUILTIN_LBUP,
471 NDS32_BUILTIN_SCW,
472 NDS32_BUILTIN_SWUP,
473 NDS32_BUILTIN_SBUP,
474 NDS32_BUILTIN_CCTL_VA_LCK,
475 NDS32_BUILTIN_CCTL_IDX_WBINVAL,
476 NDS32_BUILTIN_CCTL_VA_WBINVAL_L1,
477 NDS32_BUILTIN_CCTL_VA_WBINVAL_LA,
478 NDS32_BUILTIN_CCTL_IDX_READ,
479 NDS32_BUILTIN_CCTL_IDX_WRITE,
480 NDS32_BUILTIN_CCTL_L1D_INVALALL,
481 NDS32_BUILTIN_CCTL_L1D_WBALL_ALVL,
482 NDS32_BUILTIN_CCTL_L1D_WBALL_ONE_LVL,
483 NDS32_BUILTIN_DPREF_QW,
484 NDS32_BUILTIN_DPREF_HW,
485 NDS32_BUILTIN_DPREF_W,
486 NDS32_BUILTIN_DPREF_DW,
487 NDS32_BUILTIN_TLBOP_TRD,
488 NDS32_BUILTIN_TLBOP_TWR,
489 NDS32_BUILTIN_TLBOP_RWR,
490 NDS32_BUILTIN_TLBOP_RWLK,
491 NDS32_BUILTIN_TLBOP_UNLK,
492 NDS32_BUILTIN_TLBOP_PB,
493 NDS32_BUILTIN_TLBOP_INV,
494 NDS32_BUILTIN_TLBOP_FLUA,
495 NDS32_BUILTIN_UALOAD_HW,
496 NDS32_BUILTIN_UALOAD_W,
497 NDS32_BUILTIN_UALOAD_DW,
498 NDS32_BUILTIN_UASTORE_HW,
499 NDS32_BUILTIN_UASTORE_W,
500 NDS32_BUILTIN_UASTORE_DW,
501 NDS32_BUILTIN_COUNT
502 };
503
504 /* ------------------------------------------------------------------------ */
505
506 #define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
507
508 #define TARGET_ISA_V3 \
509 (nds32_arch_option == ARCH_V3 \
510 || nds32_arch_option == ARCH_V3F \
511 || nds32_arch_option == ARCH_V3S)
512 #define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
513
514 #define TARGET_PIPELINE_N9 \
515 (nds32_cpu_option == CPU_N9)
516 #define TARGET_PIPELINE_SIMPLE \
517 (nds32_cpu_option == CPU_SIMPLE)
518
519 #define TARGET_CMODEL_SMALL \
520 (nds32_cmodel_option == CMODEL_SMALL)
521 #define TARGET_CMODEL_MEDIUM \
522 (nds32_cmodel_option == CMODEL_MEDIUM)
523 #define TARGET_CMODEL_LARGE \
524 (nds32_cmodel_option == CMODEL_LARGE)
525
526 /* When -mcmodel=small or -mcmodel=medium,
527 compiler may generate gp-base instruction directly. */
528 #define TARGET_GP_DIRECT \
529 (nds32_cmodel_option == CMODEL_SMALL\
530 || nds32_cmodel_option == CMODEL_MEDIUM)
531
532 #define TARGET_MUL_SLOW \
533 (nds32_mul_config == MUL_TYPE_SLOW)
534
535 /* Run-time Target Specification. */
536 #define TARGET_SOFT_FLOAT (nds32_abi == NDS32_ABI_V2)
537 /* Use hardware floating point calling convention. */
538 #define TARGET_HARD_FLOAT (nds32_abi == NDS32_ABI_V2_FP_PLUS)
539
540 /* Record arch version in TARGET_ARCH_DEFAULT. 0 means soft ABI,
541 1 means hard ABI and using full floating-point instruction,
542 2 means hard ABI and only using single-precision floating-point
543 instruction */
544 #if TARGET_ARCH_DEFAULT == 1
545 # define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
546 # define TARGET_DEFAULT_FPU_ISA MASK_FPU_DOUBLE | MASK_FPU_SINGLE
547 # define TARGET_DEFAULT_FPU_FMA 0
548 #else
549 # if TARGET_ARCH_DEFAULT == 2
550 # define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
551 # define TARGET_DEFAULT_FPU_ISA MASK_FPU_SINGLE
552 # define TARGET_DEFAULT_FPU_FMA 0
553 # else
554 # define TARGET_DEFAULT_ABI NDS32_ABI_V2
555 # define TARGET_DEFAULT_FPU_ISA 0
556 # define TARGET_DEFAULT_FPU_FMA 0
557 # endif
558 #endif
559
560 #define TARGET_CONFIG_FPU_DEFAULT NDS32_CONFIG_FPU_2
561 /* ------------------------------------------------------------------------ */
562 \f
563 /* Controlling the Compilation Driver. */
564
565 #define OPTION_DEFAULT_SPECS \
566 {"arch", " %{!march=*:-march=%(VALUE)}" \
567 " %{march=v3f:%{!mfloat-abi=*:-mfloat-abi=hard}" \
568 " %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}" \
569 " %{!mno-ext-fpu-dp:%{!mext-fpu-dp:-mext-fpu-dp}}}" \
570 " %{march=v3s:%{!mfloat-abi=*:-mfloat-abi=hard}" \
571 " %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}}" }, \
572 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
573 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }
574
575 #define CC1_SPEC \
576 ""
577
578 #define ASM_SPEC \
579 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
580 " %{march=*:-march=%*}" \
581 " %{mabi=*:-mabi=v%*}" \
582 " %{mconfig-fpu=*:-mfpu-freg=%*}" \
583 " %{mext-fpu-mac:-mmac}" \
584 " %{mno-ext-fpu-mac:-mno-mac}" \
585 " %{mext-fpu-sp:-mfpu-sp-ext}" \
586 " %{mno-ext-fpu-sp:-mno-fpu-sp-ext}" \
587 " %{mext-fpu-dp:-mfpu-dp-ext}" \
588 " %{mno-ext-fpu-sp:-mno-fpu-dp-ext}"
589
590 /* If user issues -mrelax, we need to pass '--relax' to linker. */
591 #define LINK_SPEC \
592 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
593 " %{mrelax:--relax}"
594
595 #define LIB_SPEC \
596 " -lc -lgloss"
597
598 /* The option -mno-ctor-dtor can disable constructor/destructor feature
599 by applying different crt stuff. In the convention, crt0.o is the
600 startup file without constructor/destructor;
601 crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o are the
602 startup files with constructor/destructor.
603 Note that crt0.o, crt1.o, crti.o, and crtn.o are provided
604 by newlib/mculib/glibc/ublic, while crtbegin.o and crtend.o are
605 currently provided by GCC for nds32 target.
606
607 For nds32 target so far:
608 If -mno-ctor-dtor, we are going to link
609 "crt0.o [user objects]".
610 If general cases, we are going to link
611 "crt1.o crtbegin1.o [user objects] crtend1.o". */
612 #define STARTFILE_SPEC \
613 " %{!mno-ctor-dtor:crt1.o%s;:crt0.o%s}" \
614 " %{!mno-ctor-dtor:crtbegin1.o%s}"
615 #define ENDFILE_SPEC \
616 " %{!mno-ctor-dtor:crtend1.o%s}"
617
618 /* The TARGET_BIG_ENDIAN_DEFAULT is defined if we
619 configure gcc with --target=nds32be-* setting.
620 Check gcc/config.gcc for more information. */
621 #ifdef TARGET_BIG_ENDIAN_DEFAULT
622 # define NDS32_ENDIAN_DEFAULT "mbig-endian"
623 #else
624 # define NDS32_ENDIAN_DEFAULT "mlittle-endian"
625 #endif
626
627 /* Currently we only have elf toolchain,
628 where -mcmodel=medium is always the default. */
629 #define NDS32_CMODEL_DEFAULT "mcmodel=medium"
630
631 #define MULTILIB_DEFAULTS \
632 { NDS32_ENDIAN_DEFAULT, NDS32_CMODEL_DEFAULT }
633
634 \f
635 /* Run-time Target Specification. */
636
637 #define TARGET_CPU_CPP_BUILTINS() \
638 nds32_cpu_cpp_builtins (pfile)
639
640 \f
641 /* Defining Data Structures for Per-function Information. */
642
643 /* This macro is called once per function,
644 before generation of any RTL has begun. */
645 #define INIT_EXPANDERS nds32_init_expanders ()
646
647 \f
648 /* Storage Layout. */
649
650 #define BITS_BIG_ENDIAN 0
651
652 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
653
654 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
655
656 #define UNITS_PER_WORD 4
657
658 #define PROMOTE_MODE(m, unsignedp, type) \
659 if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
660 { \
661 (m) = SImode; \
662 }
663
664 #define PARM_BOUNDARY 32
665
666 #define STACK_BOUNDARY 64
667
668 #define FUNCTION_BOUNDARY \
669 ((NDS32_ALIGN_P () || TARGET_ALIGN_FUNCTION) ? 32 : 16)
670
671 #define BIGGEST_ALIGNMENT 64
672
673 #define EMPTY_FIELD_BOUNDARY 32
674
675 #define STRUCTURE_SIZE_BOUNDARY 8
676
677 #define STRICT_ALIGNMENT 1
678
679 #define PCC_BITFIELD_TYPE_MATTERS 1
680
681 \f
682 /* Layout of Source Language Data Types. */
683
684 #define INT_TYPE_SIZE 32
685 #define SHORT_TYPE_SIZE 16
686 #define LONG_TYPE_SIZE 32
687 #define LONG_LONG_TYPE_SIZE 64
688
689 #define FLOAT_TYPE_SIZE 32
690 #define DOUBLE_TYPE_SIZE 64
691 #define LONG_DOUBLE_TYPE_SIZE 64
692
693 #define DEFAULT_SIGNED_CHAR 1
694
695 #define SIZE_TYPE "long unsigned int"
696 #define PTRDIFF_TYPE "long int"
697 #define WCHAR_TYPE "unsigned int"
698 #define WCHAR_TYPE_SIZE 32
699
700 \f
701 /* Register Usage. */
702
703 /* Number of actual hardware registers.
704 The hardware registers are assigned numbers for the compiler
705 from 0 to just below FIRST_PSEUDO_REGISTER.
706 All registers that the compiler knows about must be given numbers,
707 even those that are not normally considered general registers. */
708 #define FIRST_PSEUDO_REGISTER 101
709
710 /* An initializer that says which registers are used for fixed
711 purposes all throughout the compiled code and are therefore
712 not available for general allocation.
713
714 $r28 : $fp
715 $r29 : $gp
716 $r30 : $lp
717 $r31 : $sp
718
719 caller-save registers: $r0 ~ $r5, $r16 ~ $r23, $fs0 ~ $fs5, $fs22 ~ $fs47
720 callee-save registers: $r6 ~ $r10, $r11 ~ $r14, $fs6 ~ $fs21, $fs48 ~ $fs63
721
722 reserved for assembler : $r15
723 reserved for other use : $r24, $r25, $r26, $r27 */
724 #define FIXED_REGISTERS \
725 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
726 0, 0, 0, 0, 0, 0, 0, 0, \
727 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
728 0, 0, 0, 0, 0, 0, 0, 1, \
729 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
730 0, 0, 0, 0, 0, 0, 0, 0, \
731 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
732 1, 1, 1, 1, 0, 1, 0, 1, \
733 /* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
734 1, 1, 1, 1, 1, 1, 1, 1, \
735 /* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
736 1, 1, 1, 1, 1, 1, 1, 1, \
737 /* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
738 1, 1, 1, 1, 1, 1, 1, 1, \
739 /* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
740 1, 1, 1, 1, 1, 1, 1, 1, \
741 /* fs30 fs31 fd16 fd17 fd18 */ \
742 1, 1, 1, 1, 1, 1, 1, 1, \
743 /* fd19 fd20 fd21 fd22 */ \
744 1, 1, 1, 1, 1, 1, 1, 1, \
745 /* fd23 fd24 fd25 fd26 */ \
746 1, 1, 1, 1, 1, 1, 1, 1, \
747 /* fd27 fd28 fd29 fd30 */ \
748 1, 1, 1, 1, 1, 1, 1, 1, \
749 /* fd31 Reserved..................... */ \
750 1, 1, 1, 1, 1 \
751 }
752
753 /* Identifies the registers that are not available for
754 general allocation of values that must live across
755 function calls -- so they are caller-save registers.
756
757 0 : callee-save registers
758 1 : caller-save registers */
759 #define CALL_USED_REGISTERS \
760 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
761 1, 1, 1, 1, 1, 1, 0, 0, \
762 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
763 0, 0, 0, 0, 0, 0, 0, 1, \
764 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
765 1, 1, 1, 1, 1, 1, 1, 1, \
766 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
767 1, 1, 1, 1, 0, 1, 0, 1, \
768 /* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
769 1, 1, 1, 1, 1, 1, 1, 1, \
770 /* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
771 1, 1, 1, 1, 1, 1, 1, 1, \
772 /* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
773 1, 1, 1, 1, 1, 1, 1, 1, \
774 /* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
775 1, 1, 1, 1, 1, 1, 1, 1, \
776 /* fs30 fs31 fd16 fd17 fd18 */ \
777 1, 1, 1, 1, 1, 1, 1, 1, \
778 /* fd19 fd20 fd21 fd22 */ \
779 1, 1, 1, 1, 1, 1, 1, 1, \
780 /* fd23 fd24 fd25 fd26 */ \
781 1, 1, 1, 1, 1, 1, 1, 1, \
782 /* fd27 fd28 fd29 fd30 */ \
783 1, 1, 1, 1, 1, 1, 1, 1, \
784 /* fd31 Reserved..................... */ \
785 1, 1, 1, 1, 1 \
786 }
787
788 /* In nds32 target, we have three levels of registers:
789 LOW_COST_REGS : $r0 ~ $r7
790 MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
791 HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
792 #define REG_ALLOC_ORDER \
793 { 0, 1, 2, 3, 4, 5, 6, 7, \
794 16, 17, 18, 19, 9, 10, 11, 12, \
795 13, 14, 8, 15, 20, 21, 22, 23, \
796 24, 25, 26, 27, 28, 29, 30, 31, \
797 32, 33, 34, 35, 36, 37, 38, 39, \
798 40, 41, 42, 43, 44, 45, 46, 47, \
799 48, 49, 50, 51, 52, 53, 54, 55, \
800 56, 57, 58, 59, 60, 61, 62, 63, \
801 64, 65, 66, 67, 68, 69, 70, 71, \
802 72, 73, 74, 75, 76, 77, 78, 79, \
803 80, 81, 82, 83, 84, 85, 86, 87, \
804 88, 89, 90, 91, 92, 93, 94, 95, \
805 96, 97, 98, 99, 100, \
806 }
807
808 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
809 to be rearranged based on optimizing for speed or size. */
810 #define ADJUST_REG_ALLOC_ORDER nds32_adjust_reg_alloc_order ()
811
812 /* Tell IRA to use the order we define rather than messing it up with its
813 own cost calculations. */
814 #define HONOR_REG_ALLOC_ORDER optimize_size
815
816 \f
817 /* Register Classes. */
818
819 /* In nds32 target, we have three levels of registers:
820 Low cost regsiters : $r0 ~ $r7
821 Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
822 High cost registers : $r12 ~ $r14, $r20 ~ $r31
823
824 In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
825 so that it provides more chance to use low cost registers. */
826 enum reg_class
827 {
828 NO_REGS,
829 R5_REG,
830 R8_REG,
831 R15_TA_REG,
832 STACK_REG,
833 FRAME_POINTER_REG,
834 LOW_REGS,
835 MIDDLE_REGS,
836 HIGH_REGS,
837 GENERAL_REGS,
838 FRAME_REGS,
839 FP_REGS,
840 ALL_REGS,
841 LIM_REG_CLASSES
842 };
843
844 #define N_REG_CLASSES (int) LIM_REG_CLASSES
845
846 #define REG_CLASS_NAMES \
847 { \
848 "NO_REGS", \
849 "R5_REG", \
850 "R8_REG", \
851 "R15_TA_REG", \
852 "STACK_REG", \
853 "FRAME_POINTER_REG", \
854 "LOW_REGS", \
855 "MIDDLE_REGS", \
856 "HIGH_REGS", \
857 "GENERAL_REGS", \
858 "FRAME_REGS", \
859 "FP_REGS", \
860 "ALL_REGS" \
861 }
862
863 #define REG_CLASS_CONTENTS \
864 { /* NO_REGS */ \
865 {0x00000000, 0x00000000, 0x00000000, 0x00000000}, \
866 /* R5_REG : 5 */ \
867 {0x00000020, 0x00000000, 0x00000000, 0x00000000}, \
868 /* R8_REG : 8 */ \
869 {0x00000100, 0x00000000, 0x00000000, 0x00000000}, \
870 /* R15_TA_REG : 15 */ \
871 {0x00008000, 0x00000000, 0x00000000, 0x00000000}, \
872 /* STACK_REG : 31 */ \
873 {0x80000000, 0x00000000, 0x00000000, 0x00000000}, \
874 /* FRAME_POINTER_REG : 28 */ \
875 {0x10000000, 0x00000000, 0x00000000, 0x00000000}, \
876 /* LOW_REGS : 0-7 */ \
877 {0x000000ff, 0x00000000, 0x00000000, 0x00000000}, \
878 /* MIDDLE_REGS : 0-11, 16-19 */ \
879 {0x000f0fff, 0x00000000, 0x00000000, 0x00000000}, \
880 /* HIGH_REGS : 12-14, 20-31 */ \
881 {0xfff07000, 0x00000000, 0x00000000, 0x00000000}, \
882 /* GENERAL_REGS : 0-31 */ \
883 {0xffffffff, 0x00000000, 0x00000000, 0x00000000}, \
884 /* FRAME_REGS : 32, 33 */ \
885 {0x00000000, 0x00000003, 0x00000000, 0x00000000}, \
886 /* FP_REGS : 34-98 */ \
887 {0x00000000, 0xfffffffc, 0xffffffff, 0x00000003}, \
888 /* ALL_REGS : 0-100 */ \
889 {0xffffffff, 0xffffffff, 0xffffffff, 0x0000001f} \
890 }
891
892 #define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
893
894 #define BASE_REG_CLASS GENERAL_REGS
895 #define INDEX_REG_CLASS GENERAL_REGS
896
897 #define TEST_REGNO(R, TEST, VALUE) \
898 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
899
900 /* Return nonzero if it is suitable for use as a
901 base register in operand addresses.
902 So far, we return nonzero only if "num" is a hard reg
903 of the suitable class or a pseudo register which is
904 allocated to a suitable hard reg. */
905 #define REGNO_OK_FOR_BASE_P(num) \
906 (TEST_REGNO (num, <, 32) \
907 || TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
908 || TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
909
910 /* Return nonzero if it is suitable for use as a
911 index register in operand addresses.
912 So far, we return nonzero only if "num" is a hard reg
913 of the suitable class or a pseudo register which is
914 allocated to a suitable hard reg.
915 The difference between an index register and a base register is that
916 the index register may be scaled. */
917 #define REGNO_OK_FOR_INDEX_P(num) \
918 (TEST_REGNO (num, <, 32) \
919 || TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
920 || TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
921
922 \f
923 /* Obsolete Macros for Defining Constraints. */
924
925 \f
926 /* Stack Layout and Calling Conventions. */
927
928 #define STACK_GROWS_DOWNWARD 1
929
930 #define FRAME_GROWS_DOWNWARD 1
931
932 #define STACK_POINTER_OFFSET 0
933
934 #define FIRST_PARM_OFFSET(fundecl) \
935 (NDS32_DOUBLE_WORD_ALIGN_P (crtl->args.pretend_args_size) ? 0 : 4)
936
937 /* A C expression whose value is RTL representing the address in a stack frame
938 where the pointer to the caller's frame is stored. */
939 #define DYNAMIC_CHAIN_ADDRESS(frameaddr) \
940 nds32_dynamic_chain_address (frameaddr)
941
942 #define RETURN_ADDR_RTX(count, frameaddr) \
943 nds32_return_addr_rtx (count, frameaddr)
944
945 /* A C expression whose value is RTL representing the location
946 of the incoming return address at the beginning of any function
947 before the prologue.
948 If this RTL is REG, you should also define
949 DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
950 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
951 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
952
953 /* Use $r0 $r1 to pass exception handling information. */
954 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N) : INVALID_REGNUM)
955 /* The register $r2 that represents a location in which to store a stack
956 adjustment to be applied before function return.
957 This is used to unwind the stack to an exception handler's call frame. */
958 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
959
960 #define DBX_REGISTER_NUMBER(REGNO) nds32_dbx_register_number (REGNO)
961
962 #define STACK_POINTER_REGNUM SP_REGNUM
963
964 #define FRAME_POINTER_REGNUM 33
965
966 #define HARD_FRAME_POINTER_REGNUM FP_REGNUM
967
968 #define ARG_POINTER_REGNUM 32
969
970 #define STATIC_CHAIN_REGNUM 16
971
972 #define ELIMINABLE_REGS \
973 { { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
974 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
975 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
976 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
977
978 #define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
979 (offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
980
981 #define ACCUMULATE_OUTGOING_ARGS 1
982
983 #define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
984
985 #define CUMULATIVE_ARGS nds32_cumulative_args
986
987 #define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
988 nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
989
990 #define FUNCTION_ARG_REGNO_P(regno) \
991 (IN_RANGE ((regno), NDS32_FIRST_GPR_REGNUM, NDS32_MAX_GPR_REGS_FOR_ARGS - 1) \
992 || ((TARGET_FPU_SINGLE || TARGET_FPU_DOUBLE) \
993 && IN_RANGE ((regno), NDS32_FPR_ARG_FIRST_REGNUM, \
994 NDS32_FIRST_FPR_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS - 1)))
995
996 #define DEFAULT_PCC_STRUCT_RETURN 0
997
998 /* EXIT_IGNORE_STACK should be nonzero if, when returning
999 from a function, the stack pointer does not matter.
1000 The value is tested only in functions that have frame pointers.
1001 In nds32 target, the function epilogue recovers the
1002 stack pointer from the frame. */
1003 #define EXIT_IGNORE_STACK 1
1004
1005 #define FUNCTION_PROFILER(file, labelno) \
1006 fprintf (file, "/* profiler %d */\n", (labelno))
1007
1008 #define PROFILE_HOOK(LABEL) \
1009 { \
1010 rtx fun, lp; \
1011 lp = get_hard_reg_initial_val (Pmode, LP_REGNUM); \
1012 fun = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); \
1013 emit_library_call (fun, LCT_NORMAL, VOIDmode, lp, Pmode); \
1014 }
1015
1016 \f
1017 /* Implementing the Varargs Macros. */
1018
1019 \f
1020 /* Trampolines for Nested Functions. */
1021
1022 /* Giving A-function and B-function,
1023 if B-function wants to call A-function's nested function,
1024 we need to fill trampoline code into A-function's stack
1025 so that B-function can execute the code in stack to indirectly
1026 jump to (like 'trampoline' action) desired nested function.
1027
1028 The trampoline code for nds32 target must contains following parts:
1029
1030 1. instructions (4 * 4 = 16 bytes):
1031 get $pc first
1032 load chain_value to static chain register via $pc
1033 load nested function address to $r15 via $pc
1034 jump to desired nested function via $r15
1035 2. data (4 * 2 = 8 bytes):
1036 chain_value
1037 nested function address
1038
1039 Please check nds32.c implementation for more information. */
1040 #define TRAMPOLINE_SIZE 24
1041
1042 /* Because all instructions/data in trampoline template are 4-byte size,
1043 we set trampoline alignment 8*4=32 bits. */
1044 #define TRAMPOLINE_ALIGNMENT 32
1045
1046 \f
1047 /* Implicit Calls to Library Routines. */
1048
1049 \f
1050 /* Addressing Modes. */
1051
1052 /* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
1053 #define HAVE_POST_INCREMENT 1
1054 /* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
1055 #define HAVE_POST_DECREMENT 1
1056
1057 /* We have "LWI.bi Rt, [Ra], imm" instruction form. */
1058 #define HAVE_POST_MODIFY_DISP 1
1059 /* We have "LW.bi Rt, [Ra], Rb" instruction form. */
1060 #define HAVE_POST_MODIFY_REG 1
1061
1062 #define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
1063
1064 #define MAX_REGS_PER_ADDRESS 3
1065
1066 \f
1067 /* Anchored Addresses. */
1068
1069 \f
1070 /* Condition Code Status. */
1071
1072 \f
1073 /* Describing Relative Costs of Operations. */
1074
1075 /* A C expression for the cost of a branch instruction.
1076 A value of 1 is the default;
1077 other values are interpreted relative to that. */
1078 #define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 1)
1079
1080 /* Override BRANCH_COST heuristic which empirically produces worse
1081 performance for removing short circuiting from the logical ops. */
1082 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1083
1084 #define SLOW_BYTE_ACCESS 1
1085
1086 #define NO_FUNCTION_CSE 1
1087
1088 \f
1089 /* Adjusting the Instruction Scheduler. */
1090
1091 \f
1092 /* Dividing the Output into Sections (Texts, Data, . . . ). */
1093
1094 #define TEXT_SECTION_ASM_OP "\t.text"
1095 #define DATA_SECTION_ASM_OP "\t.data"
1096
1097 /* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
1098 So we use '.section .bss' alternatively. */
1099 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1100
1101 /* Define this macro to be an expression with a nonzero value if jump tables
1102 (for tablejump insns) should be output in the text section,
1103 along with the assembler instructions.
1104 Otherwise, the readonly data section is used. */
1105 #define JUMP_TABLES_IN_TEXT_SECTION 1
1106
1107 \f
1108 /* Position Independent Code. */
1109
1110 #define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
1111
1112 \f
1113 /* Defining the Output Assembler Language. */
1114
1115 #define ASM_COMMENT_START "!"
1116
1117 #define ASM_APP_ON "! #APP"
1118
1119 #define ASM_APP_OFF "! #NO_APP\n"
1120
1121 #define ASM_OUTPUT_LABELREF(stream, name) \
1122 asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
1123
1124 #define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
1125 assemble_name (stream, XSTR (sym, 0))
1126
1127 #define ASM_OUTPUT_LABEL_REF(stream, buf) \
1128 assemble_name (stream, buf)
1129
1130 #define LOCAL_LABEL_PREFIX "."
1131
1132 #define REGISTER_NAMES \
1133 { "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
1134 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
1135 "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
1136 "$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
1137 "$AP", "$SFP", "$fs0", "$fs1", "$fs2", "$fs3", "$fs4", "$fs5", \
1138 "$fs6", "$fs7", "$fs8", "$fs9", "$fs10","$fs11","$fs12","$fs13",\
1139 "$fs14","$fs15","$fs16","$fs17","$fs18","$fs19","$fs20","$fs21",\
1140 "$fs22","$fs23","$fs24","$fs25","$fs26","$fs27","$fs28","$fs29",\
1141 "$fs30","$fs31","$fs32","$fs33","$fs34","$fs35","$fs36","$fs37",\
1142 "$fs38","$fs39","$fs40","$fs41","$fs42","$fs43","$fs44","$fs45",\
1143 "$fs46","$fs47","$fs48","$fs49","$fs50","$fs51","$fs52","$fs53",\
1144 "$fs54","$fs55","$fs56","$fs57","$fs58","$fs59","$fs60","$fs61",\
1145 "$fs62","$fs63", "LB", "LE", "LC" \
1146 }
1147
1148 #define ADDITIONAL_REGISTER_NAMES \
1149 { \
1150 {"$r15", 15}, \
1151 {"$r28", 28}, {"$r29", 29}, {"$r30", 30}, {"$r31", 31}, \
1152 {"$a0", 0}, {"$a1", 1}, {"$a2", 2}, \
1153 {"$a3", 3}, {"$a4", 4}, {"$a5", 5}, \
1154 {"$s0", 6}, {"$s1", 7}, {"$s2", 8}, {"$s3", 9}, \
1155 {"$s4", 10}, {"$s5", 11}, {"$s6", 12}, {"$s7", 13}, \
1156 {"$s8", 14}, \
1157 {"$t0", 16}, {"$t1", 17}, {"$t2", 18}, {"$t3", 19}, \
1158 {"$t4", 20}, {"$t5", 21}, {"$t6", 22}, {"$t7", 23}, \
1159 {"$t8", 24}, {"$t9", 25}, \
1160 {"$p0", 26}, {"$p1", 27}, \
1161 {"$h0", 0}, {"$h1", 1}, {"$h2", 2}, {"$h3", 3}, \
1162 {"$h4", 4}, {"$h5", 5}, {"$h6", 6}, {"$h7", 7}, \
1163 {"$h8", 8}, {"$h9", 9}, {"$h10", 10}, {"$h11", 11}, \
1164 {"$h12", 16}, {"$h13", 17}, {"$h14", 18}, {"$h15", 19}, \
1165 {"$o0", 0}, {"$o1", 1}, {"$o2", 2}, {"$o3", 3}, \
1166 {"$o4", 4}, {"$o5", 5}, {"$o6", 6}, {"$o7", 7}, \
1167 }
1168
1169 #define OVERLAPPING_REGISTER_NAMES \
1170 { \
1171 {"$fd0", NDS32_FIRST_FPR_REGNUM + 0, 2}, \
1172 {"$fd1", NDS32_FIRST_FPR_REGNUM + 2, 2}, \
1173 {"$fd2", NDS32_FIRST_FPR_REGNUM + 4, 2}, \
1174 {"$fd3", NDS32_FIRST_FPR_REGNUM + 6, 2}, \
1175 {"$fd4", NDS32_FIRST_FPR_REGNUM + 8, 2}, \
1176 {"$fd5", NDS32_FIRST_FPR_REGNUM + 10, 2}, \
1177 {"$fd6", NDS32_FIRST_FPR_REGNUM + 12, 2}, \
1178 {"$fd7", NDS32_FIRST_FPR_REGNUM + 14, 2}, \
1179 {"$fd8", NDS32_FIRST_FPR_REGNUM + 16, 2}, \
1180 {"$fd9", NDS32_FIRST_FPR_REGNUM + 18, 2}, \
1181 {"$fd10", NDS32_FIRST_FPR_REGNUM + 20, 2}, \
1182 {"$fd11", NDS32_FIRST_FPR_REGNUM + 22, 2}, \
1183 {"$fd12", NDS32_FIRST_FPR_REGNUM + 24, 2}, \
1184 {"$fd13", NDS32_FIRST_FPR_REGNUM + 26, 2}, \
1185 {"$fd14", NDS32_FIRST_FPR_REGNUM + 28, 2}, \
1186 {"$fd15", NDS32_FIRST_FPR_REGNUM + 30, 2}, \
1187 {"$fd16", NDS32_FIRST_FPR_REGNUM + 32, 2}, \
1188 {"$fd17", NDS32_FIRST_FPR_REGNUM + 34, 2}, \
1189 {"$fd18", NDS32_FIRST_FPR_REGNUM + 36, 2}, \
1190 {"$fd19", NDS32_FIRST_FPR_REGNUM + 38, 2}, \
1191 {"$fd20", NDS32_FIRST_FPR_REGNUM + 40, 2}, \
1192 {"$fd21", NDS32_FIRST_FPR_REGNUM + 42, 2}, \
1193 {"$fd22", NDS32_FIRST_FPR_REGNUM + 44, 2}, \
1194 {"$fd23", NDS32_FIRST_FPR_REGNUM + 46, 2}, \
1195 {"$fd24", NDS32_FIRST_FPR_REGNUM + 48, 2}, \
1196 {"$fd25", NDS32_FIRST_FPR_REGNUM + 50, 2}, \
1197 {"$fd26", NDS32_FIRST_FPR_REGNUM + 52, 2}, \
1198 {"$fd27", NDS32_FIRST_FPR_REGNUM + 54, 2}, \
1199 {"$fd28", NDS32_FIRST_FPR_REGNUM + 56, 2}, \
1200 {"$fd29", NDS32_FIRST_FPR_REGNUM + 58, 2}, \
1201 {"$fd30", NDS32_FIRST_FPR_REGNUM + 60, 2}, \
1202 {"$fd31", NDS32_FIRST_FPR_REGNUM + 62, 2}, \
1203 }
1204
1205 /* Output normal jump table entry. */
1206 #define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
1207 asm_fprintf (stream, "\t.word\t%LL%d\n", value)
1208
1209 /* Output pc relative jump table entry. */
1210 #define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
1211 do \
1212 { \
1213 switch (GET_MODE (body)) \
1214 { \
1215 case E_QImode: \
1216 asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
1217 break; \
1218 case E_HImode: \
1219 asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
1220 break; \
1221 case E_SImode: \
1222 asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
1223 break; \
1224 default: \
1225 gcc_unreachable(); \
1226 } \
1227 } while (0)
1228
1229 /* We have to undef it first because elfos.h formerly define it
1230 check gcc/config.gcc and gcc/config/elfos.h for more information. */
1231 #undef ASM_OUTPUT_CASE_LABEL
1232 #define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
1233 do \
1234 { \
1235 asm_fprintf (stream, "\t! Jump Table Begin\n"); \
1236 (*targetm.asm_out.internal_label) (stream, prefix, num); \
1237 } while (0)
1238
1239 #define ASM_OUTPUT_CASE_END(stream, num, table) \
1240 do \
1241 { \
1242 /* Because our jump table is in text section, \
1243 we need to make sure 2-byte alignment after \
1244 the jump table for instructions fetch. */ \
1245 if (GET_MODE (PATTERN (table)) == QImode) \
1246 ASM_OUTPUT_ALIGN (stream, 1); \
1247 asm_fprintf (stream, "\t! Jump Table End\n"); \
1248 } while (0)
1249
1250 /* This macro is not documented yet.
1251 But we do need it to make jump table vector aligned. */
1252 #define ADDR_VEC_ALIGN(JUMPTABLE) 2
1253
1254 #define DWARF2_UNWIND_INFO 1
1255
1256 #define JUMP_ALIGN(x) \
1257 (align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
1258
1259 #define LOOP_ALIGN(x) \
1260 (align_loops_log ? align_loops_log : nds32_target_alignment (x))
1261
1262 #define LABEL_ALIGN(x) \
1263 (align_labels_log ? align_labels_log : nds32_target_alignment (x))
1264
1265 #define ASM_OUTPUT_ALIGN(stream, power) \
1266 fprintf (stream, "\t.align\t%d\n", power)
1267
1268 \f
1269 /* Controlling Debugging Information Format. */
1270
1271 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1272
1273 #define DWARF2_DEBUGGING_INFO 1
1274
1275 #define DWARF2_ASM_LINE_DEBUG_INFO 1
1276
1277 \f
1278 /* Cross Compilation and Floating Point. */
1279
1280 \f
1281 /* Mode Switching Instructions. */
1282
1283 \f
1284 /* Defining target-specific uses of __attribute__. */
1285
1286 \f
1287 /* Emulating TLS. */
1288
1289 \f
1290 /* Defining coprocessor specifics for MIPS targets. */
1291
1292 \f
1293 /* Parameters for Precompiled Header Validity Checking. */
1294
1295 \f
1296 /* C++ ABI parameters. */
1297
1298 \f
1299 /* Adding support for named address spaces. */
1300
1301 \f
1302 /* Miscellaneous Parameters. */
1303
1304 /* This is the machine mode that elements of a jump-table should have. */
1305 #define CASE_VECTOR_MODE Pmode
1306
1307 /* Return the preferred mode for and addr_diff_vec when the mininum
1308 and maximum offset are known. */
1309 #define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
1310 ((min_offset < 0 || max_offset >= 0x2000 ) ? SImode \
1311 : (max_offset >= 100) ? HImode \
1312 : QImode)
1313
1314 /* Generate pc relative jump table when -fpic or -Os. */
1315 #define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
1316
1317 /* Define this macro if operations between registers with integral mode
1318 smaller than a word are always performed on the entire register. */
1319 #define WORD_REGISTER_OPERATIONS 1
1320
1321 /* A C expression indicating when insns that read memory in mem_mode,
1322 an integral mode narrower than a word, set the bits outside of mem_mode
1323 to be either the sign-extension or the zero-extension of the data read. */
1324 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1325
1326 /* The maximum number of bytes that a single instruction can move quickly
1327 between memory and registers or between two memory locations. */
1328 #define MOVE_MAX 4
1329
1330 /* A C expression that is nonzero if on this machine the number of bits
1331 actually used for the count of a shift operation is equal to the number
1332 of bits needed to represent the size of the object being shifted. */
1333 #define SHIFT_COUNT_TRUNCATED 1
1334
1335 /* A C expression describing the value returned by a comparison operator with
1336 an integral mode and stored by a store-flag instruction ('cstoremode4')
1337 when the condition is true. */
1338 #define STORE_FLAG_VALUE 1
1339
1340 /* A C expression that indicates whether the architecture defines a value for
1341 clz or ctz with a zero operand. In nds32 clz for 0 result 32 is defined
1342 in ISA spec */
1343 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
1344
1345 /* An alias for the machine mode for pointers. */
1346 #define Pmode SImode
1347
1348 /* An alias for the machine mode used for memory references to functions
1349 being called, in call RTL expressions. */
1350 #define FUNCTION_MODE SImode
1351
1352 /* ------------------------------------------------------------------------ */