]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/nds32/nds32.h
[NDS32] Add new function nds32_cpu_cpp_builtins and use it for TARGET_CPU_CPP_BUILTINS.
[thirdparty/gcc.git] / gcc / config / nds32 / nds32.h
1 /* Definitions of target machine of Andes NDS32 cpu for GNU compiler
2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
3 Contributed by Andes Technology Corporation.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* ------------------------------------------------------------------------ */
23
24 /* The following are auxiliary macros or structure declarations
25 that are used all over the nds32.c and nds32.h. */
26
27 /* Use SYMBOL_FLAG_MACH_DEP to define our own symbol_ref flag.
28 It is used in nds32_encode_section_info() to store flag in symbol_ref
29 in case the symbol should be placed in .rodata section.
30 So that we can check it in nds32_legitimate_address_p(). */
31 #define NDS32_SYMBOL_FLAG_RODATA \
32 (SYMBOL_FLAG_MACH_DEP << 0)
33 #define NDS32_SYMBOL_REF_RODATA_P(x) \
34 ((SYMBOL_REF_FLAGS (x) & NDS32_SYMBOL_FLAG_RODATA) != 0)
35
36 /* Computing the Length of an Insn. */
37 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
38 (LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
39
40 /* Check instruction LS-37-FP-implied form.
41 Note: actually its immediate range is imm9u
42 since it is used for lwi37/swi37 instructions. */
43 #define NDS32_LS_37_FP_P(rt, ra, imm) \
44 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
45 && REGNO (ra) == FP_REGNUM \
46 && satisfies_constraint_Iu09 (imm))
47
48 /* Check instruction LS-37-SP-implied form.
49 Note: actually its immediate range is imm9u
50 since it is used for lwi37/swi37 instructions. */
51 #define NDS32_LS_37_SP_P(rt, ra, imm) \
52 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
53 && REGNO (ra) == SP_REGNUM \
54 && satisfies_constraint_Iu09 (imm))
55
56
57 /* Check load/store instruction form : Rt3, Ra3, imm3u. */
58 #define NDS32_LS_333_P(rt, ra, imm, mode) nds32_ls_333_p (rt, ra, imm, mode)
59
60 /* Check load/store instruction form : Rt4, Ra5, const_int_0.
61 Note: no need to check ra because Ra5 means it covers all registers. */
62 #define NDS32_LS_450_P(rt, ra, imm) \
63 ((imm == const0_rtx) \
64 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
65 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
66
67 /* Check instruction RRI-333-form. */
68 #define NDS32_RRI_333_P(rt, ra, imm) \
69 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
70 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
71 && satisfies_constraint_Iu03 (imm))
72
73 /* Check instruction RI-45-form. */
74 #define NDS32_RI_45_P(rt, ra, imm) \
75 (REGNO (rt) == REGNO (ra) \
76 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
77 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS) \
78 && satisfies_constraint_Iu05 (imm))
79
80
81 /* Check instruction RR-33-form. */
82 #define NDS32_RR_33_P(rt, ra) \
83 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
84 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS)
85
86 /* Check instruction RRR-333-form. */
87 #define NDS32_RRR_333_P(rt, ra, rb) \
88 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
89 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
90 && REGNO_REG_CLASS (REGNO (rb)) == LOW_REGS)
91
92 /* Check instruction RR-45-form.
93 Note: no need to check rb because Rb5 means it covers all registers. */
94 #define NDS32_RR_45_P(rt, ra, rb) \
95 (REGNO (rt) == REGNO (ra) \
96 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
97 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
98
99 /* Classifies address type to distinguish 16-bit/32-bit format. */
100 enum nds32_16bit_address_type
101 {
102 /* [reg]: 45 format address. */
103 ADDRESS_REG,
104 /* [lo_reg + imm3u]: 333 format address. */
105 ADDRESS_LO_REG_IMM3U,
106 /* post_inc [lo_reg + imm3u]: 333 format address. */
107 ADDRESS_POST_INC_LO_REG_IMM3U,
108 /* [$fp + imm7u]: fp imply address. */
109 ADDRESS_FP_IMM7U,
110 /* [$sp + imm7u]: sp imply address. */
111 ADDRESS_SP_IMM7U,
112 /* Other address format. */
113 ADDRESS_NOT_16BIT_FORMAT
114 };
115
116
117 /* ------------------------------------------------------------------------ */
118
119 /* Define maximum numbers of registers for passing arguments. */
120 #define NDS32_MAX_GPR_REGS_FOR_ARGS 6
121
122 /* Define the register number for first argument. */
123 #define NDS32_GPR_ARG_FIRST_REGNUM 0
124
125 /* Define the register number for return value. */
126 #define NDS32_GPR_RET_FIRST_REGNUM 0
127
128 /* Define the first integer register number. */
129 #define NDS32_FIRST_GPR_REGNUM 0
130 /* Define the last integer register number. */
131 #define NDS32_LAST_GPR_REGNUM 31
132
133 /* Define double word alignment bits. */
134 #define NDS32_DOUBLE_WORD_ALIGNMENT 64
135
136 /* Define alignment checking macros for convenience. */
137 #define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
138 #define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
139 #define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
140
141 /* Get alignment according to mode or type information.
142 When 'type' is nonnull, there is no need to look at 'mode'. */
143 #define NDS32_MODE_TYPE_ALIGN(mode, type) \
144 (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
145
146 /* Round X up to the nearest double word. */
147 #define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
148
149
150 /* This macro is used to calculate the numbers of registers for
151 containing 'size' bytes of the argument.
152 The size of a register is a word in nds32 target.
153 So we use UNITS_PER_WORD to do the calculation. */
154 #define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
155 ((mode == BLKmode) \
156 ? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
157 : ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
158
159 /* This macro is used to return the register number for passing argument.
160 We need to obey the following rules:
161 1. If it is required MORE THAN one register,
162 we need to further check if it really needs to be
163 aligned on double words.
164 a) If double word alignment is necessary,
165 the register number must be even value.
166 b) Otherwise, the register number can be odd or even value.
167 2. If it is required ONLY one register,
168 the register number can be odd or even value. */
169 #define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
170 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
171 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
172 ? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
173 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
174 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
175
176 /* This macro is to check if there are still available registers
177 for passing argument, which must be entirely in registers. */
178 #define NDS32_ARG_ENTIRE_IN_GPR_REG_P(reg_offset, mode, type) \
179 ((NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
180 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
181 <= (NDS32_GPR_ARG_FIRST_REGNUM \
182 + NDS32_MAX_GPR_REGS_FOR_ARGS))
183
184 /* This macro is to check if there are still available registers
185 for passing argument, either entirely in registers or partially
186 in registers. */
187 #define NDS32_ARG_PARTIAL_IN_GPR_REG_P(reg_offset, mode, type) \
188 (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
189 < NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
190
191 /* This macro is to check if the register is required to be saved on stack.
192 If call_used_regs[regno] == 0, regno is the callee-saved register.
193 If df_regs_ever_live_p(regno) == true, it is used in the current function.
194 As long as the register satisfies both criteria above,
195 it is required to be saved. */
196 #define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
197 ((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
198
199 /* ------------------------------------------------------------------------ */
200
201 /* A C structure for machine-specific, per-function data.
202 This is added to the cfun structure. */
203 struct GTY(()) machine_function
204 {
205 /* Number of bytes allocated on the stack for variadic args
206 if we want to push them into stack as pretend arguments by ourself. */
207 int va_args_size;
208 /* Number of bytes reserved on the stack for
209 local and temporary variables. */
210 int local_size;
211 /* Number of bytes allocated on the stack for outgoing arguments. */
212 int out_args_size;
213
214 /* Number of bytes on the stack for saving $fp. */
215 int fp_size;
216 /* Number of bytes on the stack for saving $gp. */
217 int gp_size;
218 /* Number of bytes on the stack for saving $lp. */
219 int lp_size;
220
221 /* Number of bytes on the stack for saving general purpose
222 callee-saved registers. */
223 int callee_saved_gpr_regs_size;
224
225 /* The padding bytes in callee-saved area may be required. */
226 int callee_saved_area_gpr_padding_bytes;
227
228 /* The first required general purpose callee-saved register. */
229 int callee_saved_first_gpr_regno;
230 /* The last required general purpose callee-saved register. */
231 int callee_saved_last_gpr_regno;
232
233 /* The padding bytes in varargs area may be required. */
234 int va_args_area_padding_bytes;
235
236 /* The first required register that should be saved on stack for va_args. */
237 int va_args_first_regno;
238 /* The last required register that should be saved on stack for va_args. */
239 int va_args_last_regno;
240
241 /* Indicate that whether this function needs
242 prologue/epilogue code generation. */
243 int naked_p;
244 /* Indicate that whether this function
245 uses fp_as_gp optimization. */
246 int fp_as_gp_p;
247 };
248
249 /* A C structure that contains the arguments information. */
250 typedef struct
251 {
252 unsigned int gpr_offset;
253 } nds32_cumulative_args;
254
255 /* ------------------------------------------------------------------------ */
256
257 /* The following we define C-ISR related stuff.
258 In nds32 architecture, we have 73 vectors for interrupt/exception.
259 For each vector (except for vector 0, which is used for reset behavior),
260 we allow users to set its register saving scheme and interrupt level. */
261
262 /* There are 73 vectors in nds32 architecture.
263 0 for reset handler,
264 1-8 for exception handler,
265 and 9-72 for interrupt handler.
266 We use an array, which is defined in nds32.c, to record
267 essential information for each vector. */
268 #define NDS32_N_ISR_VECTORS 73
269
270 /* Define possible isr category. */
271 enum nds32_isr_category
272 {
273 NDS32_ISR_NONE,
274 NDS32_ISR_INTERRUPT,
275 NDS32_ISR_EXCEPTION,
276 NDS32_ISR_RESET
277 };
278
279 /* Define isr register saving scheme. */
280 enum nds32_isr_save_reg
281 {
282 NDS32_SAVE_ALL,
283 NDS32_PARTIAL_SAVE
284 };
285
286 /* Define isr nested type. */
287 enum nds32_isr_nested_type
288 {
289 NDS32_NESTED,
290 NDS32_NOT_NESTED,
291 NDS32_NESTED_READY
292 };
293
294 /* Define structure to record isr information.
295 The isr vector array 'isr_vectors[]' with this structure
296 is defined in nds32.c. */
297 struct nds32_isr_info
298 {
299 /* The field to identify isr category.
300 It should be set to NDS32_ISR_NONE by default.
301 If user specifies a function as isr by using attribute,
302 this field will be set accordingly. */
303 enum nds32_isr_category category;
304
305 /* A string for the applied function name.
306 It should be set to empty string by default. */
307 char func_name[100];
308
309 /* The register saving scheme.
310 It should be set to NDS32_PARTIAL_SAVE by default
311 unless user specifies attribute to change it. */
312 enum nds32_isr_save_reg save_reg;
313
314 /* The nested type.
315 It should be set to NDS32_NOT_NESTED by default
316 unless user specifies attribute to change it. */
317 enum nds32_isr_nested_type nested_type;
318
319 /* Total vectors.
320 The total vectors = interrupt + exception numbers + reset.
321 It should be set to 0 by default.
322 This field is ONLY used in NDS32_ISR_RESET category. */
323 unsigned int total_n_vectors;
324
325 /* A string for nmi handler name.
326 It should be set to empty string by default.
327 This field is ONLY used in NDS32_ISR_RESET category. */
328 char nmi_name[100];
329
330 /* A string for warm handler name.
331 It should be set to empty string by default.
332 This field is ONLY used in NDS32_ISR_RESET category. */
333 char warm_name[100];
334 };
335
336 /* ------------------------------------------------------------------------ */
337
338 /* Define code for all nds32 builtins. */
339 enum nds32_builtins
340 {
341 NDS32_BUILTIN_ISYNC,
342 NDS32_BUILTIN_ISB,
343 NDS32_BUILTIN_MFSR,
344 NDS32_BUILTIN_MFUSR,
345 NDS32_BUILTIN_MTSR,
346 NDS32_BUILTIN_MTUSR,
347 NDS32_BUILTIN_SETGIE_EN,
348 NDS32_BUILTIN_SETGIE_DIS,
349 NDS32_BUILTIN_FFB,
350 NDS32_BUILTIN_FFMISM,
351 NDS32_BUILTIN_FLMISM,
352 NDS32_BUILTIN_UALOAD_HW,
353 NDS32_BUILTIN_UALOAD_W,
354 NDS32_BUILTIN_UALOAD_DW,
355 NDS32_BUILTIN_UASTORE_HW,
356 NDS32_BUILTIN_UASTORE_W,
357 NDS32_BUILTIN_UASTORE_DW,
358 NDS32_BUILTIN_COUNT
359 };
360
361 /* ------------------------------------------------------------------------ */
362
363 #define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
364 #define TARGET_ISA_V3 (nds32_arch_option == ARCH_V3)
365 #define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
366
367 #define TARGET_CMODEL_SMALL \
368 (nds32_cmodel_option == CMODEL_SMALL)
369 #define TARGET_CMODEL_MEDIUM \
370 (nds32_cmodel_option == CMODEL_MEDIUM)
371 #define TARGET_CMODEL_LARGE \
372 (nds32_cmodel_option == CMODEL_LARGE)
373
374 /* When -mcmodel=small or -mcmodel=medium,
375 compiler may generate gp-base instruction directly. */
376 #define TARGET_GP_DIRECT \
377 (nds32_cmodel_option == CMODEL_SMALL\
378 || nds32_cmodel_option == CMODEL_MEDIUM)
379
380 #define TARGET_SOFT_FLOAT 1
381 #define TARGET_HARD_FLOAT 0
382
383 /* ------------------------------------------------------------------------ */
384 \f
385 /* Controlling the Compilation Driver. */
386
387 #define OPTION_DEFAULT_SPECS \
388 {"arch", "%{!march=*:-march=%(VALUE)}" }
389
390 #define CC1_SPEC \
391 ""
392
393 #define ASM_SPEC \
394 " %{mbig-endian:-EB} %{mlittle-endian:-EL}"
395
396 /* If user issues -mrelax, we need to pass '--relax' to linker. */
397 #define LINK_SPEC \
398 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
399 " %{mrelax:--relax}"
400
401 #define LIB_SPEC \
402 " -lc -lgloss"
403
404 /* The option -mno-ctor-dtor can disable constructor/destructor feature
405 by applying different crt stuff. In the convention, crt0.o is the
406 startup file without constructor/destructor;
407 crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o are the
408 startup files with constructor/destructor.
409 Note that crt0.o, crt1.o, crti.o, and crtn.o are provided
410 by newlib/mculib/glibc/ublic, while crtbegin.o and crtend.o are
411 currently provided by GCC for nds32 target.
412
413 For nds32 target so far:
414 If -mno-ctor-dtor, we are going to link
415 "crt0.o [user objects]".
416 If general cases, we are going to link
417 "crt1.o crtbegin1.o [user objects] crtend1.o". */
418 #define STARTFILE_SPEC \
419 " %{!mno-ctor-dtor:crt1.o%s;:crt0.o%s}" \
420 " %{!mno-ctor-dtor:crtbegin1.o%s}"
421 #define ENDFILE_SPEC \
422 " %{!mno-ctor-dtor:crtend1.o%s}"
423
424 /* The TARGET_BIG_ENDIAN_DEFAULT is defined if we
425 configure gcc with --target=nds32be-* setting.
426 Check gcc/config.gcc for more information. */
427 #ifdef TARGET_BIG_ENDIAN_DEFAULT
428 # define NDS32_ENDIAN_DEFAULT "mbig-endian"
429 #else
430 # define NDS32_ENDIAN_DEFAULT "mlittle-endian"
431 #endif
432
433 /* Currently we only have elf toolchain,
434 where -mcmodel=medium is always the default. */
435 #define NDS32_CMODEL_DEFAULT "mcmodel=medium"
436
437 #define MULTILIB_DEFAULTS \
438 { NDS32_ENDIAN_DEFAULT, NDS32_CMODEL_DEFAULT }
439
440 \f
441 /* Run-time Target Specification. */
442
443 #define TARGET_CPU_CPP_BUILTINS() \
444 nds32_cpu_cpp_builtins (pfile)
445
446 \f
447 /* Defining Data Structures for Per-function Information. */
448
449 /* This macro is called once per function,
450 before generation of any RTL has begun. */
451 #define INIT_EXPANDERS nds32_init_expanders ()
452
453 \f
454 /* Storage Layout. */
455
456 #define BITS_BIG_ENDIAN 0
457
458 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
459
460 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
461
462 #define UNITS_PER_WORD 4
463
464 #define PROMOTE_MODE(m, unsignedp, type) \
465 if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
466 { \
467 (m) = SImode; \
468 }
469
470 #define PARM_BOUNDARY 32
471
472 #define STACK_BOUNDARY 64
473
474 #define FUNCTION_BOUNDARY 32
475
476 #define BIGGEST_ALIGNMENT 64
477
478 #define EMPTY_FIELD_BOUNDARY 32
479
480 #define STRUCTURE_SIZE_BOUNDARY 8
481
482 #define STRICT_ALIGNMENT 1
483
484 #define PCC_BITFIELD_TYPE_MATTERS 1
485
486 \f
487 /* Layout of Source Language Data Types. */
488
489 #define INT_TYPE_SIZE 32
490 #define SHORT_TYPE_SIZE 16
491 #define LONG_TYPE_SIZE 32
492 #define LONG_LONG_TYPE_SIZE 64
493
494 #define FLOAT_TYPE_SIZE 32
495 #define DOUBLE_TYPE_SIZE 64
496 #define LONG_DOUBLE_TYPE_SIZE 64
497
498 #define DEFAULT_SIGNED_CHAR 1
499
500 #define SIZE_TYPE "long unsigned int"
501 #define PTRDIFF_TYPE "long int"
502 #define WCHAR_TYPE "short unsigned int"
503 #define WCHAR_TYPE_SIZE 16
504
505 \f
506 /* Register Usage. */
507
508 /* Number of actual hardware registers.
509 The hardware registers are assigned numbers for the compiler
510 from 0 to just below FIRST_PSEUDO_REGISTER.
511 All registers that the compiler knows about must be given numbers,
512 even those that are not normally considered general registers. */
513 #define FIRST_PSEUDO_REGISTER 101
514
515 /* An initializer that says which registers are used for fixed
516 purposes all throughout the compiled code and are therefore
517 not available for general allocation.
518
519 $r28 : $fp
520 $r29 : $gp
521 $r30 : $lp
522 $r31 : $sp
523
524 caller-save registers: $r0 ~ $r5, $r16 ~ $r23
525 callee-save registers: $r6 ~ $r10, $r11 ~ $r14
526
527 reserved for assembler : $r15
528 reserved for other use : $r24, $r25, $r26, $r27 */
529 #define FIXED_REGISTERS \
530 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
531 0, 0, 0, 0, 0, 0, 0, 0, \
532 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
533 0, 0, 0, 0, 0, 0, 0, 1, \
534 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
535 0, 0, 0, 0, 0, 0, 0, 0, \
536 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
537 1, 1, 1, 1, 0, 1, 0, 1, \
538 /* AP FP Reserved.................... */ \
539 1, 1, 1, 1, 1, 1, 1, 1, \
540 /* Reserved............................... */ \
541 1, 1, 1, 1, 1, 1, 1, 1, \
542 /* Reserved............................... */ \
543 1, 1, 1, 1, 1, 1, 1, 1, \
544 /* Reserved............................... */ \
545 1, 1, 1, 1, 1, 1, 1, 1, \
546 /* Reserved............................... */ \
547 1, 1, 1, 1, 1, 1, 1, 1, \
548 /* Reserved............................... */ \
549 1, 1, 1, 1, 1, 1, 1, 1, \
550 /* Reserved............................... */ \
551 1, 1, 1, 1, 1, 1, 1, 1, \
552 /* Reserved............................... */ \
553 1, 1, 1, 1, 1, 1, 1, 1, \
554 /* Reserved............................... */ \
555 1, 1, 1, 1, 1 \
556 }
557
558 /* Identifies the registers that are not available for
559 general allocation of values that must live across
560 function calls -- so they are caller-save registers.
561
562 0 : callee-save registers
563 1 : caller-save registers */
564 #define CALL_USED_REGISTERS \
565 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
566 1, 1, 1, 1, 1, 1, 0, 0, \
567 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
568 0, 0, 0, 0, 0, 0, 0, 1, \
569 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
570 1, 1, 1, 1, 1, 1, 1, 1, \
571 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
572 1, 1, 1, 1, 0, 1, 0, 1, \
573 /* AP FP Reserved.................... */ \
574 1, 1, 1, 1, 1, 1, 1, 1, \
575 /* Reserved............................... */ \
576 1, 1, 1, 1, 1, 1, 1, 1, \
577 /* Reserved............................... */ \
578 1, 1, 1, 1, 1, 1, 1, 1, \
579 /* Reserved............................... */ \
580 1, 1, 1, 1, 1, 1, 1, 1, \
581 /* Reserved............................... */ \
582 1, 1, 1, 1, 1, 1, 1, 1, \
583 /* Reserved............................... */ \
584 1, 1, 1, 1, 1, 1, 1, 1, \
585 /* Reserved............................... */ \
586 1, 1, 1, 1, 1, 1, 1, 1, \
587 /* Reserved............................... */ \
588 1, 1, 1, 1, 1, 1, 1, 1, \
589 /* Reserved............................... */ \
590 1, 1, 1, 1, 1 \
591 }
592
593 /* In nds32 target, we have three levels of registers:
594 LOW_COST_REGS : $r0 ~ $r7
595 MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
596 HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
597 #define REG_ALLOC_ORDER \
598 { 0, 1, 2, 3, 4, 5, 6, 7, \
599 16, 17, 18, 19, 9, 10, 11, 12, \
600 13, 14, 8, 15, 20, 21, 22, 23, \
601 24, 25, 26, 27, 28, 29, 30, 31, \
602 32, 33, 34, 35, 36, 37, 38, 39, \
603 40, 41, 42, 43, 44, 45, 46, 47, \
604 48, 49, 50, 51, 52, 53, 54, 55, \
605 56, 57, 58, 59, 60, 61, 62, 63, \
606 64, 65, 66, 67, 68, 69, 70, 71, \
607 72, 73, 74, 75, 76, 77, 78, 79, \
608 80, 81, 82, 83, 84, 85, 86, 87, \
609 88, 89, 90, 91, 92, 93, 94, 95, \
610 96, 97, 98, 99, 100, \
611 }
612
613 /* Tell IRA to use the order we define rather than messing it up with its
614 own cost calculations. */
615 #define HONOR_REG_ALLOC_ORDER optimize_size
616
617 \f
618 /* Register Classes. */
619
620 /* In nds32 target, we have three levels of registers:
621 Low cost regsiters : $r0 ~ $r7
622 Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
623 High cost registers : $r12 ~ $r14, $r20 ~ $r31
624
625 In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
626 so that it provides more chance to use low cost registers. */
627 enum reg_class
628 {
629 NO_REGS,
630 R5_REG,
631 R8_REG,
632 R15_TA_REG,
633 STACK_REG,
634 FRAME_POINTER_REG,
635 LOW_REGS,
636 MIDDLE_REGS,
637 HIGH_REGS,
638 GENERAL_REGS,
639 FRAME_REGS,
640 ALL_REGS,
641 LIM_REG_CLASSES
642 };
643
644 #define N_REG_CLASSES (int) LIM_REG_CLASSES
645
646 #define REG_CLASS_NAMES \
647 { \
648 "NO_REGS", \
649 "R5_REG", \
650 "R8_REG", \
651 "R15_TA_REG", \
652 "STACK_REG", \
653 "FRAME_POINTER_REG", \
654 "LOW_REGS", \
655 "MIDDLE_REGS", \
656 "HIGH_REGS", \
657 "GENERAL_REGS", \
658 "FRAME_REGS", \
659 "ALL_REGS" \
660 }
661
662 #define REG_CLASS_CONTENTS \
663 { /* NO_REGS */ \
664 {0x00000000, 0x00000000, 0x00000000, 0x00000000}, \
665 /* R5_REG : 5 */ \
666 {0x00000020, 0x00000000, 0x00000000, 0x00000000}, \
667 /* R8_REG : 8 */ \
668 {0x00000100, 0x00000000, 0x00000000, 0x00000000}, \
669 /* R15_TA_REG : 15 */ \
670 {0x00008000, 0x00000000, 0x00000000, 0x00000000}, \
671 /* STACK_REG : 31 */ \
672 {0x80000000, 0x00000000, 0x00000000, 0x00000000}, \
673 /* FRAME_POINTER_REG : 28 */ \
674 {0x10000000, 0x00000000, 0x00000000, 0x00000000}, \
675 /* LOW_REGS : 0-7 */ \
676 {0x000000ff, 0x00000000, 0x00000000, 0x00000000}, \
677 /* MIDDLE_REGS : 0-11, 16-19 */ \
678 {0x000f0fff, 0x00000000, 0x00000000, 0x00000000}, \
679 /* HIGH_REGS : 12-14, 20-31 */ \
680 {0xfff07000, 0x00000000, 0x00000000, 0x00000000}, \
681 /* GENERAL_REGS : 0-31 */ \
682 {0xffffffff, 0x00000000, 0x00000000, 0x00000000}, \
683 /* FRAME_REGS : 32, 33 */ \
684 {0x00000000, 0x00000003, 0x00000000, 0x00000000}, \
685 /* ALL_REGS : 0-100 */ \
686 {0xffffffff, 0xffffffff, 0xffffffff, 0x0000001f} \
687 }
688
689 #define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
690
691 #define BASE_REG_CLASS GENERAL_REGS
692 #define INDEX_REG_CLASS GENERAL_REGS
693
694 /* Return nonzero if it is suitable for use as a
695 base register in operand addresses.
696 So far, we return nonzero only if "num" is a hard reg
697 of the suitable class or a pseudo register which is
698 allocated to a suitable hard reg. */
699 #define REGNO_OK_FOR_BASE_P(num) \
700 ((num) < 32 || (unsigned) reg_renumber[num] < 32)
701
702 /* Return nonzero if it is suitable for use as a
703 index register in operand addresses.
704 So far, we return nonzero only if "num" is a hard reg
705 of the suitable class or a pseudo register which is
706 allocated to a suitable hard reg.
707 The difference between an index register and a base register is that
708 the index register may be scaled. */
709 #define REGNO_OK_FOR_INDEX_P(num) \
710 ((num) < 32 || (unsigned) reg_renumber[num] < 32)
711
712 \f
713 /* Obsolete Macros for Defining Constraints. */
714
715 \f
716 /* Stack Layout and Calling Conventions. */
717
718 #define STACK_GROWS_DOWNWARD 1
719
720 #define FRAME_GROWS_DOWNWARD 1
721
722 #define STACK_POINTER_OFFSET 0
723
724 #define FIRST_PARM_OFFSET(fundecl) \
725 (NDS32_DOUBLE_WORD_ALIGN_P (crtl->args.pretend_args_size) ? 0 : 4)
726
727 #define RETURN_ADDR_RTX(count, frameaddr) \
728 nds32_return_addr_rtx (count, frameaddr)
729
730 /* A C expression whose value is RTL representing the location
731 of the incoming return address at the beginning of any function
732 before the prologue.
733 If this RTL is REG, you should also define
734 DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
735 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
736 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
737
738 #define STACK_POINTER_REGNUM SP_REGNUM
739
740 #define FRAME_POINTER_REGNUM 33
741
742 #define HARD_FRAME_POINTER_REGNUM FP_REGNUM
743
744 #define ARG_POINTER_REGNUM 32
745
746 #define STATIC_CHAIN_REGNUM 16
747
748 #define ELIMINABLE_REGS \
749 { { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
750 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
751 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
752 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
753
754 #define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
755 (offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
756
757 #define ACCUMULATE_OUTGOING_ARGS 1
758
759 #define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
760
761 #define CUMULATIVE_ARGS nds32_cumulative_args
762
763 #define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
764 nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
765
766 /* The REGNO is an unsigned integer but NDS32_GPR_ARG_FIRST_REGNUM may be 0.
767 We better cast REGNO into signed integer so that we can avoid
768 'comparison of unsigned expression >= 0 is always true' warning. */
769 #define FUNCTION_ARG_REGNO_P(regno) \
770 (((int) regno - NDS32_GPR_ARG_FIRST_REGNUM >= 0) \
771 && ((int) regno - NDS32_GPR_ARG_FIRST_REGNUM < NDS32_MAX_GPR_REGS_FOR_ARGS))
772
773 #define DEFAULT_PCC_STRUCT_RETURN 0
774
775 /* EXIT_IGNORE_STACK should be nonzero if, when returning
776 from a function, the stack pointer does not matter.
777 The value is tested only in functions that have frame pointers.
778 In nds32 target, the function epilogue recovers the
779 stack pointer from the frame. */
780 #define EXIT_IGNORE_STACK 1
781
782 #define FUNCTION_PROFILER(file, labelno) \
783 fprintf (file, "/* profiler %d */", (labelno))
784
785 \f
786 /* Implementing the Varargs Macros. */
787
788 \f
789 /* Trampolines for Nested Functions. */
790
791 /* Giving A-function and B-function,
792 if B-function wants to call A-function's nested function,
793 we need to fill trampoline code into A-function's stack
794 so that B-function can execute the code in stack to indirectly
795 jump to (like 'trampoline' action) desired nested function.
796
797 The trampoline code for nds32 target must contains following parts:
798
799 1. instructions (4 * 4 = 16 bytes):
800 get $pc first
801 load chain_value to static chain register via $pc
802 load nested function address to $r15 via $pc
803 jump to desired nested function via $r15
804 2. data (4 * 2 = 8 bytes):
805 chain_value
806 nested function address
807
808 Please check nds32.c implementation for more information. */
809 #define TRAMPOLINE_SIZE 24
810
811 /* Because all instructions/data in trampoline template are 4-byte size,
812 we set trampoline alignment 8*4=32 bits. */
813 #define TRAMPOLINE_ALIGNMENT 32
814
815 \f
816 /* Implicit Calls to Library Routines. */
817
818 \f
819 /* Addressing Modes. */
820
821 /* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
822 #define HAVE_POST_INCREMENT 1
823 /* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
824 #define HAVE_POST_DECREMENT 1
825
826 /* We have "LWI.bi Rt, [Ra], imm" instruction form. */
827 #define HAVE_POST_MODIFY_DISP 1
828 /* We have "LW.bi Rt, [Ra], Rb" instruction form. */
829 #define HAVE_POST_MODIFY_REG 1
830
831 #define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
832
833 #define MAX_REGS_PER_ADDRESS 2
834
835 \f
836 /* Anchored Addresses. */
837
838 \f
839 /* Condition Code Status. */
840
841 \f
842 /* Describing Relative Costs of Operations. */
843
844 /* A C expression for the cost of a branch instruction.
845 A value of 1 is the default;
846 other values are interpreted relative to that. */
847 #define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 0)
848
849 #define SLOW_BYTE_ACCESS 1
850
851 #define NO_FUNCTION_CSE 1
852
853 \f
854 /* Adjusting the Instruction Scheduler. */
855
856 \f
857 /* Dividing the Output into Sections (Texts, Data, . . . ). */
858
859 #define TEXT_SECTION_ASM_OP "\t.text"
860 #define DATA_SECTION_ASM_OP "\t.data"
861
862 /* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
863 So we use '.section .bss' alternatively. */
864 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
865
866 /* Define this macro to be an expression with a nonzero value if jump tables
867 (for tablejump insns) should be output in the text section,
868 along with the assembler instructions.
869 Otherwise, the readonly data section is used. */
870 #define JUMP_TABLES_IN_TEXT_SECTION 1
871
872 \f
873 /* Position Independent Code. */
874
875 #define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
876
877 \f
878 /* Defining the Output Assembler Language. */
879
880 #define ASM_COMMENT_START "!"
881
882 #define ASM_APP_ON "! #APP"
883
884 #define ASM_APP_OFF "! #NO_APP\n"
885
886 #define ASM_OUTPUT_LABELREF(stream, name) \
887 asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
888
889 #define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
890 assemble_name (stream, XSTR (sym, 0))
891
892 #define ASM_OUTPUT_LABEL_REF(stream, buf) \
893 assemble_name (stream, buf)
894
895 #define LOCAL_LABEL_PREFIX "."
896
897 #define REGISTER_NAMES \
898 { "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
899 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
900 "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
901 "$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
902 "$AP", "$SFP", "NA", "NA", "NA", "NA", "NA", "NA", \
903 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
904 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
905 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
906 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
907 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
908 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
909 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
910 "NA", "NA", "NA", "NA", "NA" \
911 }
912
913 /* Output normal jump table entry. */
914 #define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
915 asm_fprintf (stream, "\t.word\t%LL%d\n", value)
916
917 /* Output pc relative jump table entry. */
918 #define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
919 do \
920 { \
921 switch (GET_MODE (body)) \
922 { \
923 case E_QImode: \
924 asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
925 break; \
926 case E_HImode: \
927 asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
928 break; \
929 case E_SImode: \
930 asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
931 break; \
932 default: \
933 gcc_unreachable(); \
934 } \
935 } while (0)
936
937 /* We have to undef it first because elfos.h formerly define it
938 check gcc/config.gcc and gcc/config/elfos.h for more information. */
939 #undef ASM_OUTPUT_CASE_LABEL
940 #define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
941 do \
942 { \
943 asm_fprintf (stream, "\t! Jump Table Begin\n"); \
944 (*targetm.asm_out.internal_label) (stream, prefix, num); \
945 } while (0)
946
947 #define ASM_OUTPUT_CASE_END(stream, num, table) \
948 do \
949 { \
950 /* Because our jump table is in text section, \
951 we need to make sure 2-byte alignment after \
952 the jump table for instructions fetch. */ \
953 if (GET_MODE (PATTERN (table)) == QImode) \
954 ASM_OUTPUT_ALIGN (stream, 1); \
955 asm_fprintf (stream, "\t! Jump Table End\n"); \
956 } while (0)
957
958 /* This macro is not documented yet.
959 But we do need it to make jump table vector aligned. */
960 #define ADDR_VEC_ALIGN(JUMPTABLE) 2
961
962 #define DWARF2_UNWIND_INFO 1
963
964 #define JUMP_ALIGN(x) \
965 (align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
966
967 #define LOOP_ALIGN(x) \
968 (align_loops_log ? align_loops_log : nds32_target_alignment (x))
969
970 #define LABEL_ALIGN(x) \
971 (align_labels_log ? align_labels_log : nds32_target_alignment (x))
972
973 #define ASM_OUTPUT_ALIGN(stream, power) \
974 fprintf (stream, "\t.align\t%d\n", power)
975
976 \f
977 /* Controlling Debugging Information Format. */
978
979 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
980
981 #define DWARF2_DEBUGGING_INFO 1
982
983 #define DWARF2_ASM_LINE_DEBUG_INFO 1
984
985 \f
986 /* Cross Compilation and Floating Point. */
987
988 \f
989 /* Mode Switching Instructions. */
990
991 \f
992 /* Defining target-specific uses of __attribute__. */
993
994 \f
995 /* Emulating TLS. */
996
997 \f
998 /* Defining coprocessor specifics for MIPS targets. */
999
1000 \f
1001 /* Parameters for Precompiled Header Validity Checking. */
1002
1003 \f
1004 /* C++ ABI parameters. */
1005
1006 \f
1007 /* Adding support for named address spaces. */
1008
1009 \f
1010 /* Miscellaneous Parameters. */
1011
1012 /* This is the machine mode that elements of a jump-table should have. */
1013 #define CASE_VECTOR_MODE Pmode
1014
1015 /* Return the preferred mode for and addr_diff_vec when the mininum
1016 and maximum offset are known. */
1017 #define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
1018 ((min_offset < 0 || max_offset >= 0x2000 ) ? SImode \
1019 : (max_offset >= 100) ? HImode \
1020 : QImode)
1021
1022 /* Generate pc relative jump table when -fpic or -Os. */
1023 #define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
1024
1025 /* Define this macro if operations between registers with integral mode
1026 smaller than a word are always performed on the entire register. */
1027 #define WORD_REGISTER_OPERATIONS 1
1028
1029 /* A C expression indicating when insns that read memory in mem_mode,
1030 an integral mode narrower than a word, set the bits outside of mem_mode
1031 to be either the sign-extension or the zero-extension of the data read. */
1032 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1033
1034 /* The maximum number of bytes that a single instruction can move quickly
1035 between memory and registers or between two memory locations. */
1036 #define MOVE_MAX 4
1037
1038 /* A C expression that is nonzero if on this machine the number of bits
1039 actually used for the count of a shift operation is equal to the number
1040 of bits needed to represent the size of the object being shifted. */
1041 #define SHIFT_COUNT_TRUNCATED 1
1042
1043 /* A C expression describing the value returned by a comparison operator with
1044 an integral mode and stored by a store-flag instruction ('cstoremode4')
1045 when the condition is true. */
1046 #define STORE_FLAG_VALUE 1
1047
1048 /* An alias for the machine mode for pointers. */
1049 #define Pmode SImode
1050
1051 /* An alias for the machine mode used for memory references to functions
1052 being called, in call RTL expressions. */
1053 #define FUNCTION_MODE SImode
1054
1055 /* ------------------------------------------------------------------------ */