]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/nds32/nds32.h
[NDS32] Refine ADJUST_INSN_LENGTH implementation.
[thirdparty/gcc.git] / gcc / config / nds32 / nds32.h
1 /* Definitions of target machine of Andes NDS32 cpu for GNU compiler
2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
3 Contributed by Andes Technology Corporation.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* ------------------------------------------------------------------------ */
23
24 /* The following are auxiliary macros or structure declarations
25 that are used all over the nds32.c and nds32.h. */
26
27 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
28 (LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
29
30 /* Use SYMBOL_FLAG_MACH_DEP to define our own symbol_ref flag.
31 It is used in nds32_encode_section_info() to store flag in symbol_ref
32 in case the symbol should be placed in .rodata section.
33 So that we can check it in nds32_legitimate_address_p(). */
34 #define NDS32_SYMBOL_FLAG_RODATA \
35 (SYMBOL_FLAG_MACH_DEP << 0)
36 #define NDS32_SYMBOL_REF_RODATA_P(x) \
37 ((SYMBOL_REF_FLAGS (x) & NDS32_SYMBOL_FLAG_RODATA) != 0)
38
39 /* Classifies expand result for expand helper function. */
40 enum nds32_expand_result_type
41 {
42 EXPAND_DONE,
43 EXPAND_FAIL,
44 EXPAND_CREATE_TEMPLATE
45 };
46
47 /* Check instruction LS-37-FP-implied form.
48 Note: actually its immediate range is imm9u
49 since it is used for lwi37/swi37 instructions. */
50 #define NDS32_LS_37_FP_P(rt, ra, imm) \
51 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
52 && REGNO (ra) == FP_REGNUM \
53 && satisfies_constraint_Iu09 (imm))
54
55 /* Check instruction LS-37-SP-implied form.
56 Note: actually its immediate range is imm9u
57 since it is used for lwi37/swi37 instructions. */
58 #define NDS32_LS_37_SP_P(rt, ra, imm) \
59 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
60 && REGNO (ra) == SP_REGNUM \
61 && satisfies_constraint_Iu09 (imm))
62
63
64 /* Check load/store instruction form : Rt3, Ra3, imm3u. */
65 #define NDS32_LS_333_P(rt, ra, imm, mode) nds32_ls_333_p (rt, ra, imm, mode)
66
67 /* Check load/store instruction form : Rt4, Ra5, const_int_0.
68 Note: no need to check ra because Ra5 means it covers all registers. */
69 #define NDS32_LS_450_P(rt, ra, imm) \
70 ((imm == const0_rtx) \
71 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
72 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
73
74 /* Check instruction RRI-333-form. */
75 #define NDS32_RRI_333_P(rt, ra, imm) \
76 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
77 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
78 && satisfies_constraint_Iu03 (imm))
79
80 /* Check instruction RI-45-form. */
81 #define NDS32_RI_45_P(rt, ra, imm) \
82 (REGNO (rt) == REGNO (ra) \
83 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
84 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS) \
85 && satisfies_constraint_Iu05 (imm))
86
87
88 /* Check instruction RR-33-form. */
89 #define NDS32_RR_33_P(rt, ra) \
90 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
91 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS)
92
93 /* Check instruction RRR-333-form. */
94 #define NDS32_RRR_333_P(rt, ra, rb) \
95 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
96 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
97 && REGNO_REG_CLASS (REGNO (rb)) == LOW_REGS)
98
99 /* Check instruction RR-45-form.
100 Note: no need to check rb because Rb5 means it covers all registers. */
101 #define NDS32_RR_45_P(rt, ra, rb) \
102 (REGNO (rt) == REGNO (ra) \
103 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
104 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
105
106 /* Classifies address type to distinguish 16-bit/32-bit format. */
107 enum nds32_16bit_address_type
108 {
109 /* [reg]: 45 format address. */
110 ADDRESS_REG,
111 /* [lo_reg + imm3u]: 333 format address. */
112 ADDRESS_LO_REG_IMM3U,
113 /* post_inc [lo_reg + imm3u]: 333 format address. */
114 ADDRESS_POST_INC_LO_REG_IMM3U,
115 /* post_modify [lo_reg + imm3u]: 333 format address. */
116 ADDRESS_POST_MODIFY_LO_REG_IMM3U,
117 /* [$r8 + imm7u]: r8 imply address. */
118 ADDRESS_R8_IMM7U,
119 /* [$fp + imm7u]: fp imply address. */
120 ADDRESS_FP_IMM7U,
121 /* [$sp + imm7u]: sp imply address. */
122 ADDRESS_SP_IMM7U,
123 /* Other address format. */
124 ADDRESS_NOT_16BIT_FORMAT
125 };
126
127
128 /* ------------------------------------------------------------------------ */
129
130 /* Define maximum numbers of registers for passing arguments. */
131 #define NDS32_MAX_GPR_REGS_FOR_ARGS 6
132 #define NDS32_MAX_FPR_REGS_FOR_ARGS 6
133
134 /* Define the register number for first argument. */
135 #define NDS32_GPR_ARG_FIRST_REGNUM 0
136 #define NDS32_FPR_ARG_FIRST_REGNUM 34
137
138 /* Define the register number for return value. */
139 #define NDS32_GPR_RET_FIRST_REGNUM 0
140 #define NDS32_FPR_RET_FIRST_REGNUM 34
141
142 /* Define the first integer register number. */
143 #define NDS32_FIRST_GPR_REGNUM 0
144 /* Define the last integer register number. */
145 #define NDS32_LAST_GPR_REGNUM 31
146
147 #define NDS32_FIRST_CALLEE_SAVE_GPR_REGNUM 6
148 #define NDS32_LAST_CALLEE_SAVE_GPR_REGNUM \
149 (TARGET_REDUCED_REGS ? 10 : 14)
150
151 /* Define the floating-point number of registers. */
152 #define NDS32_FLOAT_REGISTER_NUMBER \
153 (((nds32_fp_regnum == NDS32_CONFIG_FPU_0) \
154 || (nds32_fp_regnum == NDS32_CONFIG_FPU_4)) ? 8 \
155 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_1) \
156 || (nds32_fp_regnum == NDS32_CONFIG_FPU_5)) ? 16 \
157 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_2) \
158 || (nds32_fp_regnum == NDS32_CONFIG_FPU_6)) ? 32 \
159 : ((nds32_fp_regnum == NDS32_CONFIG_FPU_3) \
160 || (nds32_fp_regnum == NDS32_CONFIG_FPU_7)) ? 64 \
161 : 32)
162
163 #define NDS32_EXT_FPU_DOT_E (nds32_fp_regnum >= 4)
164
165 /* Define the first floating-point register number. */
166 #define NDS32_FIRST_FPR_REGNUM 34
167 /* Define the last floating-point register number. */
168 #define NDS32_LAST_FPR_REGNUM \
169 (NDS32_FIRST_FPR_REGNUM + NDS32_FLOAT_REGISTER_NUMBER - 1)
170
171
172 #define NDS32_IS_EXT_FPR_REGNUM(regno) \
173 (((regno) >= NDS32_FIRST_FPR_REGNUM + 32) \
174 && ((regno) < NDS32_FIRST_FPR_REGNUM + 64))
175
176 #define NDS32_IS_FPR_REGNUM(regno) \
177 (((regno) >= NDS32_FIRST_FPR_REGNUM) \
178 && ((regno) <= NDS32_LAST_FPR_REGNUM))
179
180 #define NDS32_FPR_REGNO_OK_FOR_SINGLE(regno) \
181 ((regno) <= NDS32_LAST_FPR_REGNUM)
182
183 #define NDS32_FPR_REGNO_OK_FOR_DOUBLE(regno) \
184 ((((regno) - NDS32_FIRST_FPR_REGNUM) & 1) == 0)
185
186 #define NDS32_IS_GPR_REGNUM(regno) \
187 (((regno) <= NDS32_LAST_GPR_REGNUM))
188
189 /* Define double word alignment bits. */
190 #define NDS32_DOUBLE_WORD_ALIGNMENT 64
191
192 /* Define alignment checking macros for convenience. */
193 #define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
194 #define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
195 #define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
196
197 /* Get alignment according to mode or type information.
198 When 'type' is nonnull, there is no need to look at 'mode'. */
199 #define NDS32_MODE_TYPE_ALIGN(mode, type) \
200 (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
201
202 /* Round X up to the nearest double word. */
203 #define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
204
205
206 /* This macro is used to calculate the numbers of registers for
207 containing 'size' bytes of the argument.
208 The size of a register is a word in nds32 target.
209 So we use UNITS_PER_WORD to do the calculation. */
210 #define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
211 ((mode == BLKmode) \
212 ? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
213 : ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
214
215 /* This macro is used to return the register number for passing argument.
216 We need to obey the following rules:
217 1. If it is required MORE THAN one register,
218 we need to further check if it really needs to be
219 aligned on double words.
220 a) If double word alignment is necessary,
221 the register number must be even value.
222 b) Otherwise, the register number can be odd or even value.
223 2. If it is required ONLY one register,
224 the register number can be odd or even value. */
225 #define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
226 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
227 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
228 ? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
229 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
230 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
231
232 #define NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG(reg_offset, mode, type) \
233 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
234 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
235 ? (((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM + 1) & ~1) \
236 : ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM)) \
237 : ((reg_offset) + NDS32_FPR_ARG_FIRST_REGNUM))
238
239 /* These two macros are to check if there are still available registers
240 for passing argument, which must be entirely in registers. */
241 #define NDS32_ARG_ENTIRE_IN_GPR_REG_P(reg_offset, mode, type) \
242 ((NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
243 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
244 <= (NDS32_GPR_ARG_FIRST_REGNUM \
245 + NDS32_MAX_GPR_REGS_FOR_ARGS))
246
247 #define NDS32_ARG_ENTIRE_IN_FPR_REG_P(reg_offset, mode, type) \
248 ((NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
249 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
250 <= (NDS32_FPR_ARG_FIRST_REGNUM \
251 + NDS32_MAX_FPR_REGS_FOR_ARGS))
252
253 /* These two macros are to check if there are still available registers
254 for passing argument, either entirely in registers or partially
255 in registers. */
256 #define NDS32_ARG_PARTIAL_IN_GPR_REG_P(reg_offset, mode, type) \
257 (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
258 < NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
259
260 #define NDS32_ARG_PARTIAL_IN_FPR_REG_P(reg_offset, mode, type) \
261 (NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (reg_offset, mode, type) \
262 < NDS32_FPR_ARG_FIRST_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS)
263
264 /* This macro is to check if the register is required to be saved on stack.
265 If call_used_regs[regno] == 0, regno is the callee-saved register.
266 If df_regs_ever_live_p(regno) == true, it is used in the current function.
267 As long as the register satisfies both criteria above,
268 it is required to be saved. */
269 #define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
270 ((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
271
272 /* This macro is to check if the push25/pop25 are available to be used
273 for code generation. Because pop25 also performs return behavior,
274 the instructions may not be available for some cases.
275 If we want to use push25/pop25, all the following conditions must
276 be satisfied:
277 1. TARGET_V3PUSH is set.
278 2. Current function is not an ISR function.
279 3. Current function is not a variadic function.*/
280 #define NDS32_V3PUSH_AVAILABLE_P \
281 (TARGET_V3PUSH \
282 && !nds32_isr_function_p (current_function_decl) \
283 && (cfun->machine->va_args_size == 0))
284
285 /* ------------------------------------------------------------------------ */
286
287 /* A C structure for machine-specific, per-function data.
288 This is added to the cfun structure. */
289 struct GTY(()) machine_function
290 {
291 /* Number of bytes allocated on the stack for variadic args
292 if we want to push them into stack as pretend arguments by ourself. */
293 int va_args_size;
294 /* Number of bytes reserved on the stack for
295 local and temporary variables. */
296 int local_size;
297 /* Number of bytes allocated on the stack for outgoing arguments. */
298 int out_args_size;
299
300 /* Number of bytes on the stack for saving $fp. */
301 int fp_size;
302 /* Number of bytes on the stack for saving $gp. */
303 int gp_size;
304 /* Number of bytes on the stack for saving $lp. */
305 int lp_size;
306
307 /* Number of bytes on the stack for saving general purpose
308 callee-saved registers. */
309 int callee_saved_gpr_regs_size;
310
311 /* Number of bytes on the stack for saving floating-point
312 callee-saved registers. */
313 int callee_saved_fpr_regs_size;
314
315 /* The padding bytes in callee-saved area may be required. */
316 int callee_saved_area_gpr_padding_bytes;
317
318 /* The first required general purpose callee-saved register. */
319 int callee_saved_first_gpr_regno;
320 /* The last required general purpose callee-saved register. */
321 int callee_saved_last_gpr_regno;
322
323 /* The first required floating-point callee-saved register. */
324 int callee_saved_first_fpr_regno;
325 /* The last required floating-point callee-saved register. */
326 int callee_saved_last_fpr_regno;
327
328 /* The padding bytes in varargs area may be required. */
329 int va_args_area_padding_bytes;
330
331 /* The first required register that should be saved on stack for va_args. */
332 int va_args_first_regno;
333 /* The last required register that should be saved on stack for va_args. */
334 int va_args_last_regno;
335
336 /* Indicate that whether this function needs
337 prologue/epilogue code generation. */
338 int naked_p;
339 /* Indicate that whether this function
340 uses fp_as_gp optimization. */
341 int fp_as_gp_p;
342 };
343
344 /* A C structure that contains the arguments information. */
345 typedef struct
346 {
347 unsigned int gpr_offset;
348 unsigned int fpr_offset;
349 } nds32_cumulative_args;
350
351 /* ------------------------------------------------------------------------ */
352
353 /* The following we define C-ISR related stuff.
354 In nds32 architecture, we have 73 vectors for interrupt/exception.
355 For each vector (except for vector 0, which is used for reset behavior),
356 we allow users to set its register saving scheme and interrupt level. */
357
358 /* There are 73 vectors in nds32 architecture.
359 0 for reset handler,
360 1-8 for exception handler,
361 and 9-72 for interrupt handler.
362 We use an array, which is defined in nds32.c, to record
363 essential information for each vector. */
364 #define NDS32_N_ISR_VECTORS 73
365
366 /* Define possible isr category. */
367 enum nds32_isr_category
368 {
369 NDS32_ISR_NONE,
370 NDS32_ISR_INTERRUPT,
371 NDS32_ISR_EXCEPTION,
372 NDS32_ISR_RESET
373 };
374
375 /* Define isr register saving scheme. */
376 enum nds32_isr_save_reg
377 {
378 NDS32_SAVE_ALL,
379 NDS32_PARTIAL_SAVE
380 };
381
382 /* Define isr nested type. */
383 enum nds32_isr_nested_type
384 {
385 NDS32_NESTED,
386 NDS32_NOT_NESTED,
387 NDS32_NESTED_READY
388 };
389
390 /* Define structure to record isr information.
391 The isr vector array 'isr_vectors[]' with this structure
392 is defined in nds32.c. */
393 struct nds32_isr_info
394 {
395 /* The field to identify isr category.
396 It should be set to NDS32_ISR_NONE by default.
397 If user specifies a function as isr by using attribute,
398 this field will be set accordingly. */
399 enum nds32_isr_category category;
400
401 /* A string for the applied function name.
402 It should be set to empty string by default. */
403 char func_name[100];
404
405 /* The register saving scheme.
406 It should be set to NDS32_PARTIAL_SAVE by default
407 unless user specifies attribute to change it. */
408 enum nds32_isr_save_reg save_reg;
409
410 /* The nested type.
411 It should be set to NDS32_NOT_NESTED by default
412 unless user specifies attribute to change it. */
413 enum nds32_isr_nested_type nested_type;
414
415 /* Total vectors.
416 The total vectors = interrupt + exception numbers + reset.
417 It should be set to 0 by default.
418 This field is ONLY used in NDS32_ISR_RESET category. */
419 unsigned int total_n_vectors;
420
421 /* A string for nmi handler name.
422 It should be set to empty string by default.
423 This field is ONLY used in NDS32_ISR_RESET category. */
424 char nmi_name[100];
425
426 /* A string for warm handler name.
427 It should be set to empty string by default.
428 This field is ONLY used in NDS32_ISR_RESET category. */
429 char warm_name[100];
430 };
431
432 /* ------------------------------------------------------------------------ */
433
434 /* Define code for all nds32 builtins. */
435 enum nds32_builtins
436 {
437 NDS32_BUILTIN_ISYNC,
438 NDS32_BUILTIN_ISB,
439 NDS32_BUILTIN_MFSR,
440 NDS32_BUILTIN_MFUSR,
441 NDS32_BUILTIN_MTSR,
442 NDS32_BUILTIN_MTUSR,
443 NDS32_BUILTIN_SETGIE_EN,
444 NDS32_BUILTIN_SETGIE_DIS,
445 NDS32_BUILTIN_FFB,
446 NDS32_BUILTIN_FFMISM,
447 NDS32_BUILTIN_FLMISM,
448 NDS32_BUILTIN_UALOAD_HW,
449 NDS32_BUILTIN_UALOAD_W,
450 NDS32_BUILTIN_UALOAD_DW,
451 NDS32_BUILTIN_UASTORE_HW,
452 NDS32_BUILTIN_UASTORE_W,
453 NDS32_BUILTIN_UASTORE_DW,
454 NDS32_BUILTIN_COUNT
455 };
456
457 /* ------------------------------------------------------------------------ */
458
459 #define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
460
461 #define TARGET_ISA_V3 \
462 (nds32_arch_option == ARCH_V3 \
463 || nds32_arch_option == ARCH_V3F \
464 || nds32_arch_option == ARCH_V3S)
465 #define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
466
467 #define TARGET_CMODEL_SMALL \
468 (nds32_cmodel_option == CMODEL_SMALL)
469 #define TARGET_CMODEL_MEDIUM \
470 (nds32_cmodel_option == CMODEL_MEDIUM)
471 #define TARGET_CMODEL_LARGE \
472 (nds32_cmodel_option == CMODEL_LARGE)
473
474 /* When -mcmodel=small or -mcmodel=medium,
475 compiler may generate gp-base instruction directly. */
476 #define TARGET_GP_DIRECT \
477 (nds32_cmodel_option == CMODEL_SMALL\
478 || nds32_cmodel_option == CMODEL_MEDIUM)
479
480
481 /* Run-time Target Specification. */
482 #define TARGET_SOFT_FLOAT (nds32_abi == NDS32_ABI_V2)
483 /* Use hardware floating point calling convention. */
484 #define TARGET_HARD_FLOAT (nds32_abi == NDS32_ABI_V2_FP_PLUS)
485
486 /* Record arch version in TARGET_ARCH_DEFAULT. 0 means soft ABI,
487 1 means hard ABI and using full floating-point instruction,
488 2 means hard ABI and only using single-precision floating-point
489 instruction */
490 #if TARGET_ARCH_DEFAULT == 1
491 # define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
492 # define TARGET_DEFAULT_FPU_ISA MASK_FPU_DOUBLE | MASK_FPU_SINGLE
493 # define TARGET_DEFAULT_FPU_FMA 0
494 #else
495 # if TARGET_ARCH_DEFAULT == 2
496 # define TARGET_DEFAULT_ABI NDS32_ABI_V2_FP_PLUS
497 # define TARGET_DEFAULT_FPU_ISA MASK_FPU_SINGLE
498 # define TARGET_DEFAULT_FPU_FMA 0
499 # else
500 # define TARGET_DEFAULT_ABI NDS32_ABI_V2
501 # define TARGET_DEFAULT_FPU_ISA 0
502 # define TARGET_DEFAULT_FPU_FMA 0
503 # endif
504 #endif
505
506 #define TARGET_CONFIG_FPU_DEFAULT NDS32_CONFIG_FPU_2
507 /* ------------------------------------------------------------------------ */
508 \f
509 /* Controlling the Compilation Driver. */
510
511 #define OPTION_DEFAULT_SPECS \
512 {"arch", " %{!march=*:-march=%(VALUE)}" \
513 " %{march=v3f:%{!mfloat-abi=*:-mfloat-abi=hard}" \
514 " %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}" \
515 " %{!mno-ext-fpu-dp:%{!mext-fpu-dp:-mext-fpu-dp}}}" \
516 " %{march=v3s:%{!mfloat-abi=*:-mfloat-abi=hard}" \
517 " %{!mno-ext-fpu-sp:%{!mext-fpu-sp:-mext-fpu-sp}}}" }, \
518 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }
519
520 #define CC1_SPEC \
521 ""
522
523 #define ASM_SPEC \
524 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
525 " %{march=*:-march=%*}" \
526 " %{mabi=*:-mabi=v%*}" \
527 " %{mconfig-fpu=*:-mfpu-freg=%*}" \
528 " %{mext-fpu-mac:-mmac}" \
529 " %{mno-ext-fpu-mac:-mno-mac}" \
530 " %{mext-fpu-sp:-mfpu-sp-ext}" \
531 " %{mno-ext-fpu-sp:-mno-fpu-sp-ext}" \
532 " %{mext-fpu-dp:-mfpu-dp-ext}" \
533 " %{mno-ext-fpu-sp:-mno-fpu-dp-ext}"
534
535 /* If user issues -mrelax, we need to pass '--relax' to linker. */
536 #define LINK_SPEC \
537 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
538 " %{mrelax:--relax}"
539
540 #define LIB_SPEC \
541 " -lc -lgloss"
542
543 /* The option -mno-ctor-dtor can disable constructor/destructor feature
544 by applying different crt stuff. In the convention, crt0.o is the
545 startup file without constructor/destructor;
546 crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o are the
547 startup files with constructor/destructor.
548 Note that crt0.o, crt1.o, crti.o, and crtn.o are provided
549 by newlib/mculib/glibc/ublic, while crtbegin.o and crtend.o are
550 currently provided by GCC for nds32 target.
551
552 For nds32 target so far:
553 If -mno-ctor-dtor, we are going to link
554 "crt0.o [user objects]".
555 If general cases, we are going to link
556 "crt1.o crtbegin1.o [user objects] crtend1.o". */
557 #define STARTFILE_SPEC \
558 " %{!mno-ctor-dtor:crt1.o%s;:crt0.o%s}" \
559 " %{!mno-ctor-dtor:crtbegin1.o%s}"
560 #define ENDFILE_SPEC \
561 " %{!mno-ctor-dtor:crtend1.o%s}"
562
563 /* The TARGET_BIG_ENDIAN_DEFAULT is defined if we
564 configure gcc with --target=nds32be-* setting.
565 Check gcc/config.gcc for more information. */
566 #ifdef TARGET_BIG_ENDIAN_DEFAULT
567 # define NDS32_ENDIAN_DEFAULT "mbig-endian"
568 #else
569 # define NDS32_ENDIAN_DEFAULT "mlittle-endian"
570 #endif
571
572 /* Currently we only have elf toolchain,
573 where -mcmodel=medium is always the default. */
574 #define NDS32_CMODEL_DEFAULT "mcmodel=medium"
575
576 #define MULTILIB_DEFAULTS \
577 { NDS32_ENDIAN_DEFAULT, NDS32_CMODEL_DEFAULT }
578
579 \f
580 /* Run-time Target Specification. */
581
582 #define TARGET_CPU_CPP_BUILTINS() \
583 nds32_cpu_cpp_builtins (pfile)
584
585 \f
586 /* Defining Data Structures for Per-function Information. */
587
588 /* This macro is called once per function,
589 before generation of any RTL has begun. */
590 #define INIT_EXPANDERS nds32_init_expanders ()
591
592 \f
593 /* Storage Layout. */
594
595 #define BITS_BIG_ENDIAN 0
596
597 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
598
599 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
600
601 #define UNITS_PER_WORD 4
602
603 #define PROMOTE_MODE(m, unsignedp, type) \
604 if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
605 { \
606 (m) = SImode; \
607 }
608
609 #define PARM_BOUNDARY 32
610
611 #define STACK_BOUNDARY 64
612
613 #define FUNCTION_BOUNDARY 32
614
615 #define BIGGEST_ALIGNMENT 64
616
617 #define EMPTY_FIELD_BOUNDARY 32
618
619 #define STRUCTURE_SIZE_BOUNDARY 8
620
621 #define STRICT_ALIGNMENT 1
622
623 #define PCC_BITFIELD_TYPE_MATTERS 1
624
625 \f
626 /* Layout of Source Language Data Types. */
627
628 #define INT_TYPE_SIZE 32
629 #define SHORT_TYPE_SIZE 16
630 #define LONG_TYPE_SIZE 32
631 #define LONG_LONG_TYPE_SIZE 64
632
633 #define FLOAT_TYPE_SIZE 32
634 #define DOUBLE_TYPE_SIZE 64
635 #define LONG_DOUBLE_TYPE_SIZE 64
636
637 #define DEFAULT_SIGNED_CHAR 1
638
639 #define SIZE_TYPE "long unsigned int"
640 #define PTRDIFF_TYPE "long int"
641 #define WCHAR_TYPE "unsigned int"
642 #define WCHAR_TYPE_SIZE 32
643
644 \f
645 /* Register Usage. */
646
647 /* Number of actual hardware registers.
648 The hardware registers are assigned numbers for the compiler
649 from 0 to just below FIRST_PSEUDO_REGISTER.
650 All registers that the compiler knows about must be given numbers,
651 even those that are not normally considered general registers. */
652 #define FIRST_PSEUDO_REGISTER 101
653
654 /* An initializer that says which registers are used for fixed
655 purposes all throughout the compiled code and are therefore
656 not available for general allocation.
657
658 $r28 : $fp
659 $r29 : $gp
660 $r30 : $lp
661 $r31 : $sp
662
663 caller-save registers: $r0 ~ $r5, $r16 ~ $r23, $fs0 ~ $fs5, $fs22 ~ $fs47
664 callee-save registers: $r6 ~ $r10, $r11 ~ $r14, $fs6 ~ $fs21, $fs48 ~ $fs63
665
666 reserved for assembler : $r15
667 reserved for other use : $r24, $r25, $r26, $r27 */
668 #define FIXED_REGISTERS \
669 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
670 0, 0, 0, 0, 0, 0, 0, 0, \
671 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
672 0, 0, 0, 0, 0, 0, 0, 1, \
673 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
674 0, 0, 0, 0, 0, 0, 0, 0, \
675 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
676 1, 1, 1, 1, 0, 1, 0, 1, \
677 /* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
678 1, 1, 1, 1, 1, 1, 1, 1, \
679 /* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
680 1, 1, 1, 1, 1, 1, 1, 1, \
681 /* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
682 1, 1, 1, 1, 1, 1, 1, 1, \
683 /* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
684 1, 1, 1, 1, 1, 1, 1, 1, \
685 /* fs30 fs31 fd16 fd17 fd18 */ \
686 1, 1, 1, 1, 1, 1, 1, 1, \
687 /* fd19 fd20 fd21 fd22 */ \
688 1, 1, 1, 1, 1, 1, 1, 1, \
689 /* fd23 fd24 fd25 fd26 */ \
690 1, 1, 1, 1, 1, 1, 1, 1, \
691 /* fd27 fd28 fd29 fd30 */ \
692 1, 1, 1, 1, 1, 1, 1, 1, \
693 /* fd31 Reserved..................... */ \
694 1, 1, 1, 1, 1 \
695 }
696
697 /* Identifies the registers that are not available for
698 general allocation of values that must live across
699 function calls -- so they are caller-save registers.
700
701 0 : callee-save registers
702 1 : caller-save registers */
703 #define CALL_USED_REGISTERS \
704 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
705 1, 1, 1, 1, 1, 1, 0, 0, \
706 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
707 0, 0, 0, 0, 0, 0, 0, 1, \
708 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
709 1, 1, 1, 1, 1, 1, 1, 1, \
710 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
711 1, 1, 1, 1, 0, 1, 0, 1, \
712 /* AP FP fs0 fs1 fs2 fs3 fs4 fs5 */ \
713 1, 1, 1, 1, 1, 1, 1, 1, \
714 /* fs6 fs7 fs8 fs9 fs10 fs11 fs12 fs13 */ \
715 1, 1, 1, 1, 1, 1, 1, 1, \
716 /* fs14 fs15 fs16 fs17 fs18 fs19 fs20 fs21 */ \
717 1, 1, 1, 1, 1, 1, 1, 1, \
718 /* fs22 fs23 fs24 fs25 fs26 fs27 fs28 fs29 */ \
719 1, 1, 1, 1, 1, 1, 1, 1, \
720 /* fs30 fs31 fd16 fd17 fd18 */ \
721 1, 1, 1, 1, 1, 1, 1, 1, \
722 /* fd19 fd20 fd21 fd22 */ \
723 1, 1, 1, 1, 1, 1, 1, 1, \
724 /* fd23 fd24 fd25 fd26 */ \
725 1, 1, 1, 1, 1, 1, 1, 1, \
726 /* fd27 fd28 fd29 fd30 */ \
727 1, 1, 1, 1, 1, 1, 1, 1, \
728 /* fd31 Reserved..................... */ \
729 1, 1, 1, 1, 1 \
730 }
731
732 /* In nds32 target, we have three levels of registers:
733 LOW_COST_REGS : $r0 ~ $r7
734 MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
735 HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
736 #define REG_ALLOC_ORDER \
737 { 0, 1, 2, 3, 4, 5, 6, 7, \
738 16, 17, 18, 19, 9, 10, 11, 12, \
739 13, 14, 8, 15, 20, 21, 22, 23, \
740 24, 25, 26, 27, 28, 29, 30, 31, \
741 32, 33, 34, 35, 36, 37, 38, 39, \
742 40, 41, 42, 43, 44, 45, 46, 47, \
743 48, 49, 50, 51, 52, 53, 54, 55, \
744 56, 57, 58, 59, 60, 61, 62, 63, \
745 64, 65, 66, 67, 68, 69, 70, 71, \
746 72, 73, 74, 75, 76, 77, 78, 79, \
747 80, 81, 82, 83, 84, 85, 86, 87, \
748 88, 89, 90, 91, 92, 93, 94, 95, \
749 96, 97, 98, 99, 100, \
750 }
751
752 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
753 to be rearranged based on optimizing for speed or size. */
754 #define ADJUST_REG_ALLOC_ORDER nds32_adjust_reg_alloc_order ()
755
756 /* Tell IRA to use the order we define rather than messing it up with its
757 own cost calculations. */
758 #define HONOR_REG_ALLOC_ORDER optimize_size
759
760 \f
761 /* Register Classes. */
762
763 /* In nds32 target, we have three levels of registers:
764 Low cost regsiters : $r0 ~ $r7
765 Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
766 High cost registers : $r12 ~ $r14, $r20 ~ $r31
767
768 In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
769 so that it provides more chance to use low cost registers. */
770 enum reg_class
771 {
772 NO_REGS,
773 R5_REG,
774 R8_REG,
775 R15_TA_REG,
776 STACK_REG,
777 FRAME_POINTER_REG,
778 LOW_REGS,
779 MIDDLE_REGS,
780 HIGH_REGS,
781 GENERAL_REGS,
782 FRAME_REGS,
783 FP_REGS,
784 ALL_REGS,
785 LIM_REG_CLASSES
786 };
787
788 #define N_REG_CLASSES (int) LIM_REG_CLASSES
789
790 #define REG_CLASS_NAMES \
791 { \
792 "NO_REGS", \
793 "R5_REG", \
794 "R8_REG", \
795 "R15_TA_REG", \
796 "STACK_REG", \
797 "FRAME_POINTER_REG", \
798 "LOW_REGS", \
799 "MIDDLE_REGS", \
800 "HIGH_REGS", \
801 "GENERAL_REGS", \
802 "FRAME_REGS", \
803 "FP_REGS", \
804 "ALL_REGS" \
805 }
806
807 #define REG_CLASS_CONTENTS \
808 { /* NO_REGS */ \
809 {0x00000000, 0x00000000, 0x00000000, 0x00000000}, \
810 /* R5_REG : 5 */ \
811 {0x00000020, 0x00000000, 0x00000000, 0x00000000}, \
812 /* R8_REG : 8 */ \
813 {0x00000100, 0x00000000, 0x00000000, 0x00000000}, \
814 /* R15_TA_REG : 15 */ \
815 {0x00008000, 0x00000000, 0x00000000, 0x00000000}, \
816 /* STACK_REG : 31 */ \
817 {0x80000000, 0x00000000, 0x00000000, 0x00000000}, \
818 /* FRAME_POINTER_REG : 28 */ \
819 {0x10000000, 0x00000000, 0x00000000, 0x00000000}, \
820 /* LOW_REGS : 0-7 */ \
821 {0x000000ff, 0x00000000, 0x00000000, 0x00000000}, \
822 /* MIDDLE_REGS : 0-11, 16-19 */ \
823 {0x000f0fff, 0x00000000, 0x00000000, 0x00000000}, \
824 /* HIGH_REGS : 12-14, 20-31 */ \
825 {0xfff07000, 0x00000000, 0x00000000, 0x00000000}, \
826 /* GENERAL_REGS : 0-31 */ \
827 {0xffffffff, 0x00000000, 0x00000000, 0x00000000}, \
828 /* FRAME_REGS : 32, 33 */ \
829 {0x00000000, 0x00000003, 0x00000000, 0x00000000}, \
830 /* FP_REGS : 34-98 */ \
831 {0x00000000, 0xfffffffc, 0xffffffff, 0x00000003}, \
832 /* ALL_REGS : 0-100 */ \
833 {0xffffffff, 0xffffffff, 0xffffffff, 0x0000001f} \
834 }
835
836 #define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
837
838 #define BASE_REG_CLASS GENERAL_REGS
839 #define INDEX_REG_CLASS GENERAL_REGS
840
841 #define TEST_REGNO(R, TEST, VALUE) \
842 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
843
844 /* Return nonzero if it is suitable for use as a
845 base register in operand addresses.
846 So far, we return nonzero only if "num" is a hard reg
847 of the suitable class or a pseudo register which is
848 allocated to a suitable hard reg. */
849 #define REGNO_OK_FOR_BASE_P(num) \
850 (TEST_REGNO (num, <, 32) \
851 || TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
852 || TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
853
854 /* Return nonzero if it is suitable for use as a
855 index register in operand addresses.
856 So far, we return nonzero only if "num" is a hard reg
857 of the suitable class or a pseudo register which is
858 allocated to a suitable hard reg.
859 The difference between an index register and a base register is that
860 the index register may be scaled. */
861 #define REGNO_OK_FOR_INDEX_P(num) \
862 (TEST_REGNO (num, <, 32) \
863 || TEST_REGNO (num, ==, FRAME_POINTER_REGNUM) \
864 || TEST_REGNO (num, ==, ARG_POINTER_REGNUM))
865
866 \f
867 /* Obsolete Macros for Defining Constraints. */
868
869 \f
870 /* Stack Layout and Calling Conventions. */
871
872 #define STACK_GROWS_DOWNWARD 1
873
874 #define FRAME_GROWS_DOWNWARD 1
875
876 #define STACK_POINTER_OFFSET 0
877
878 #define FIRST_PARM_OFFSET(fundecl) \
879 (NDS32_DOUBLE_WORD_ALIGN_P (crtl->args.pretend_args_size) ? 0 : 4)
880
881 #define RETURN_ADDR_RTX(count, frameaddr) \
882 nds32_return_addr_rtx (count, frameaddr)
883
884 /* A C expression whose value is RTL representing the location
885 of the incoming return address at the beginning of any function
886 before the prologue.
887 If this RTL is REG, you should also define
888 DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
889 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
890 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
891
892 #define DBX_REGISTER_NUMBER(REGNO) nds32_dbx_register_number (REGNO)
893
894 #define STACK_POINTER_REGNUM SP_REGNUM
895
896 #define FRAME_POINTER_REGNUM 33
897
898 #define HARD_FRAME_POINTER_REGNUM FP_REGNUM
899
900 #define ARG_POINTER_REGNUM 32
901
902 #define STATIC_CHAIN_REGNUM 16
903
904 #define ELIMINABLE_REGS \
905 { { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
906 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
907 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
908 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
909
910 #define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
911 (offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
912
913 #define ACCUMULATE_OUTGOING_ARGS 1
914
915 #define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
916
917 #define CUMULATIVE_ARGS nds32_cumulative_args
918
919 #define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
920 nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
921
922 #define FUNCTION_ARG_REGNO_P(regno) \
923 (IN_RANGE ((regno), NDS32_FIRST_GPR_REGNUM, NDS32_MAX_GPR_REGS_FOR_ARGS - 1) \
924 || ((TARGET_FPU_SINGLE || TARGET_FPU_DOUBLE) \
925 && IN_RANGE ((regno), NDS32_FPR_ARG_FIRST_REGNUM, \
926 NDS32_FIRST_FPR_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS - 1)))
927
928 #define DEFAULT_PCC_STRUCT_RETURN 0
929
930 /* EXIT_IGNORE_STACK should be nonzero if, when returning
931 from a function, the stack pointer does not matter.
932 The value is tested only in functions that have frame pointers.
933 In nds32 target, the function epilogue recovers the
934 stack pointer from the frame. */
935 #define EXIT_IGNORE_STACK 1
936
937 #define FUNCTION_PROFILER(file, labelno) \
938 fprintf (file, "/* profiler %d */\n", (labelno))
939
940 #define PROFILE_HOOK(LABEL) \
941 { \
942 rtx fun, lp; \
943 lp = get_hard_reg_initial_val (Pmode, LP_REGNUM); \
944 fun = gen_rtx_SYMBOL_REF (Pmode, "_mcount"); \
945 emit_library_call (fun, LCT_NORMAL, VOIDmode, lp, Pmode); \
946 }
947
948 \f
949 /* Implementing the Varargs Macros. */
950
951 \f
952 /* Trampolines for Nested Functions. */
953
954 /* Giving A-function and B-function,
955 if B-function wants to call A-function's nested function,
956 we need to fill trampoline code into A-function's stack
957 so that B-function can execute the code in stack to indirectly
958 jump to (like 'trampoline' action) desired nested function.
959
960 The trampoline code for nds32 target must contains following parts:
961
962 1. instructions (4 * 4 = 16 bytes):
963 get $pc first
964 load chain_value to static chain register via $pc
965 load nested function address to $r15 via $pc
966 jump to desired nested function via $r15
967 2. data (4 * 2 = 8 bytes):
968 chain_value
969 nested function address
970
971 Please check nds32.c implementation for more information. */
972 #define TRAMPOLINE_SIZE 24
973
974 /* Because all instructions/data in trampoline template are 4-byte size,
975 we set trampoline alignment 8*4=32 bits. */
976 #define TRAMPOLINE_ALIGNMENT 32
977
978 \f
979 /* Implicit Calls to Library Routines. */
980
981 \f
982 /* Addressing Modes. */
983
984 /* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
985 #define HAVE_POST_INCREMENT 1
986 /* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
987 #define HAVE_POST_DECREMENT 1
988
989 /* We have "LWI.bi Rt, [Ra], imm" instruction form. */
990 #define HAVE_POST_MODIFY_DISP 1
991 /* We have "LW.bi Rt, [Ra], Rb" instruction form. */
992 #define HAVE_POST_MODIFY_REG 1
993
994 #define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
995
996 #define MAX_REGS_PER_ADDRESS 3
997
998 \f
999 /* Anchored Addresses. */
1000
1001 \f
1002 /* Condition Code Status. */
1003
1004 \f
1005 /* Describing Relative Costs of Operations. */
1006
1007 /* A C expression for the cost of a branch instruction.
1008 A value of 1 is the default;
1009 other values are interpreted relative to that. */
1010 #define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 1)
1011
1012 /* Override BRANCH_COST heuristic which empirically produces worse
1013 performance for removing short circuiting from the logical ops. */
1014 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1015
1016 #define SLOW_BYTE_ACCESS 1
1017
1018 #define NO_FUNCTION_CSE 1
1019
1020 \f
1021 /* Adjusting the Instruction Scheduler. */
1022
1023 \f
1024 /* Dividing the Output into Sections (Texts, Data, . . . ). */
1025
1026 #define TEXT_SECTION_ASM_OP "\t.text"
1027 #define DATA_SECTION_ASM_OP "\t.data"
1028
1029 /* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
1030 So we use '.section .bss' alternatively. */
1031 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1032
1033 /* Define this macro to be an expression with a nonzero value if jump tables
1034 (for tablejump insns) should be output in the text section,
1035 along with the assembler instructions.
1036 Otherwise, the readonly data section is used. */
1037 #define JUMP_TABLES_IN_TEXT_SECTION 1
1038
1039 \f
1040 /* Position Independent Code. */
1041
1042 #define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
1043
1044 \f
1045 /* Defining the Output Assembler Language. */
1046
1047 #define ASM_COMMENT_START "!"
1048
1049 #define ASM_APP_ON "! #APP"
1050
1051 #define ASM_APP_OFF "! #NO_APP\n"
1052
1053 #define ASM_OUTPUT_LABELREF(stream, name) \
1054 asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
1055
1056 #define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
1057 assemble_name (stream, XSTR (sym, 0))
1058
1059 #define ASM_OUTPUT_LABEL_REF(stream, buf) \
1060 assemble_name (stream, buf)
1061
1062 #define LOCAL_LABEL_PREFIX "."
1063
1064 #define REGISTER_NAMES \
1065 { "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
1066 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
1067 "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
1068 "$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
1069 "$AP", "$SFP", "$fs0", "$fs1", "$fs2", "$fs3", "$fs4", "$fs5", \
1070 "$fs6", "$fs7", "$fs8", "$fs9", "$fs10","$fs11","$fs12","$fs13",\
1071 "$fs14","$fs15","$fs16","$fs17","$fs18","$fs19","$fs20","$fs21",\
1072 "$fs22","$fs23","$fs24","$fs25","$fs26","$fs27","$fs28","$fs29",\
1073 "$fs30","$fs31","$fs32","$fs33","$fs34","$fs35","$fs36","$fs37",\
1074 "$fs38","$fs39","$fs40","$fs41","$fs42","$fs43","$fs44","$fs45",\
1075 "$fs46","$fs47","$fs48","$fs49","$fs50","$fs51","$fs52","$fs53",\
1076 "$fs54","$fs55","$fs56","$fs57","$fs58","$fs59","$fs60","$fs61",\
1077 "$fs62","$fs63", "LB", "LE", "LC" \
1078 }
1079
1080 #define ADDITIONAL_REGISTER_NAMES \
1081 { \
1082 {"$r15", 15}, \
1083 {"$r28", 28}, {"$r29", 29}, {"$r30", 30}, {"$r31", 31}, \
1084 {"$a0", 0}, {"$a1", 1}, {"$a2", 2}, \
1085 {"$a3", 3}, {"$a4", 4}, {"$a5", 5}, \
1086 {"$s0", 6}, {"$s1", 7}, {"$s2", 8}, {"$s3", 9}, \
1087 {"$s4", 10}, {"$s5", 11}, {"$s6", 12}, {"$s7", 13}, \
1088 {"$s8", 14}, \
1089 {"$t0", 16}, {"$t1", 17}, {"$t2", 18}, {"$t3", 19}, \
1090 {"$t4", 20}, {"$t5", 21}, {"$t6", 22}, {"$t7", 23}, \
1091 {"$t8", 24}, {"$t9", 25}, \
1092 {"$p0", 26}, {"$p1", 27}, \
1093 {"$h0", 0}, {"$h1", 1}, {"$h2", 2}, {"$h3", 3}, \
1094 {"$h4", 4}, {"$h5", 5}, {"$h6", 6}, {"$h7", 7}, \
1095 {"$h8", 8}, {"$h9", 9}, {"$h10", 10}, {"$h11", 11}, \
1096 {"$h12", 16}, {"$h13", 17}, {"$h14", 18}, {"$h15", 19}, \
1097 {"$o0", 0}, {"$o1", 1}, {"$o2", 2}, {"$o3", 3}, \
1098 {"$o4", 4}, {"$o5", 5}, {"$o6", 6}, {"$o7", 7}, \
1099 }
1100
1101 #define OVERLAPPING_REGISTER_NAMES \
1102 { \
1103 {"$fd0", NDS32_FIRST_FPR_REGNUM + 0, 2}, \
1104 {"$fd1", NDS32_FIRST_FPR_REGNUM + 2, 2}, \
1105 {"$fd2", NDS32_FIRST_FPR_REGNUM + 4, 2}, \
1106 {"$fd3", NDS32_FIRST_FPR_REGNUM + 6, 2}, \
1107 {"$fd4", NDS32_FIRST_FPR_REGNUM + 8, 2}, \
1108 {"$fd5", NDS32_FIRST_FPR_REGNUM + 10, 2}, \
1109 {"$fd6", NDS32_FIRST_FPR_REGNUM + 12, 2}, \
1110 {"$fd7", NDS32_FIRST_FPR_REGNUM + 14, 2}, \
1111 {"$fd8", NDS32_FIRST_FPR_REGNUM + 16, 2}, \
1112 {"$fd9", NDS32_FIRST_FPR_REGNUM + 18, 2}, \
1113 {"$fd10", NDS32_FIRST_FPR_REGNUM + 20, 2}, \
1114 {"$fd11", NDS32_FIRST_FPR_REGNUM + 22, 2}, \
1115 {"$fd12", NDS32_FIRST_FPR_REGNUM + 24, 2}, \
1116 {"$fd13", NDS32_FIRST_FPR_REGNUM + 26, 2}, \
1117 {"$fd14", NDS32_FIRST_FPR_REGNUM + 28, 2}, \
1118 {"$fd15", NDS32_FIRST_FPR_REGNUM + 30, 2}, \
1119 {"$fd16", NDS32_FIRST_FPR_REGNUM + 32, 2}, \
1120 {"$fd17", NDS32_FIRST_FPR_REGNUM + 34, 2}, \
1121 {"$fd18", NDS32_FIRST_FPR_REGNUM + 36, 2}, \
1122 {"$fd19", NDS32_FIRST_FPR_REGNUM + 38, 2}, \
1123 {"$fd20", NDS32_FIRST_FPR_REGNUM + 40, 2}, \
1124 {"$fd21", NDS32_FIRST_FPR_REGNUM + 42, 2}, \
1125 {"$fd22", NDS32_FIRST_FPR_REGNUM + 44, 2}, \
1126 {"$fd23", NDS32_FIRST_FPR_REGNUM + 46, 2}, \
1127 {"$fd24", NDS32_FIRST_FPR_REGNUM + 48, 2}, \
1128 {"$fd25", NDS32_FIRST_FPR_REGNUM + 50, 2}, \
1129 {"$fd26", NDS32_FIRST_FPR_REGNUM + 52, 2}, \
1130 {"$fd27", NDS32_FIRST_FPR_REGNUM + 54, 2}, \
1131 {"$fd28", NDS32_FIRST_FPR_REGNUM + 56, 2}, \
1132 {"$fd29", NDS32_FIRST_FPR_REGNUM + 58, 2}, \
1133 {"$fd30", NDS32_FIRST_FPR_REGNUM + 60, 2}, \
1134 {"$fd31", NDS32_FIRST_FPR_REGNUM + 62, 2}, \
1135 }
1136
1137 /* Output normal jump table entry. */
1138 #define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
1139 asm_fprintf (stream, "\t.word\t%LL%d\n", value)
1140
1141 /* Output pc relative jump table entry. */
1142 #define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
1143 do \
1144 { \
1145 switch (GET_MODE (body)) \
1146 { \
1147 case E_QImode: \
1148 asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
1149 break; \
1150 case E_HImode: \
1151 asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
1152 break; \
1153 case E_SImode: \
1154 asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
1155 break; \
1156 default: \
1157 gcc_unreachable(); \
1158 } \
1159 } while (0)
1160
1161 /* We have to undef it first because elfos.h formerly define it
1162 check gcc/config.gcc and gcc/config/elfos.h for more information. */
1163 #undef ASM_OUTPUT_CASE_LABEL
1164 #define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
1165 do \
1166 { \
1167 asm_fprintf (stream, "\t! Jump Table Begin\n"); \
1168 (*targetm.asm_out.internal_label) (stream, prefix, num); \
1169 } while (0)
1170
1171 #define ASM_OUTPUT_CASE_END(stream, num, table) \
1172 do \
1173 { \
1174 /* Because our jump table is in text section, \
1175 we need to make sure 2-byte alignment after \
1176 the jump table for instructions fetch. */ \
1177 if (GET_MODE (PATTERN (table)) == QImode) \
1178 ASM_OUTPUT_ALIGN (stream, 1); \
1179 asm_fprintf (stream, "\t! Jump Table End\n"); \
1180 } while (0)
1181
1182 /* This macro is not documented yet.
1183 But we do need it to make jump table vector aligned. */
1184 #define ADDR_VEC_ALIGN(JUMPTABLE) 2
1185
1186 #define DWARF2_UNWIND_INFO 1
1187
1188 #define JUMP_ALIGN(x) \
1189 (align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
1190
1191 #define LOOP_ALIGN(x) \
1192 (align_loops_log ? align_loops_log : nds32_target_alignment (x))
1193
1194 #define LABEL_ALIGN(x) \
1195 (align_labels_log ? align_labels_log : nds32_target_alignment (x))
1196
1197 #define ASM_OUTPUT_ALIGN(stream, power) \
1198 fprintf (stream, "\t.align\t%d\n", power)
1199
1200 \f
1201 /* Controlling Debugging Information Format. */
1202
1203 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1204
1205 #define DWARF2_DEBUGGING_INFO 1
1206
1207 #define DWARF2_ASM_LINE_DEBUG_INFO 1
1208
1209 \f
1210 /* Cross Compilation and Floating Point. */
1211
1212 \f
1213 /* Mode Switching Instructions. */
1214
1215 \f
1216 /* Defining target-specific uses of __attribute__. */
1217
1218 \f
1219 /* Emulating TLS. */
1220
1221 \f
1222 /* Defining coprocessor specifics for MIPS targets. */
1223
1224 \f
1225 /* Parameters for Precompiled Header Validity Checking. */
1226
1227 \f
1228 /* C++ ABI parameters. */
1229
1230 \f
1231 /* Adding support for named address spaces. */
1232
1233 \f
1234 /* Miscellaneous Parameters. */
1235
1236 /* This is the machine mode that elements of a jump-table should have. */
1237 #define CASE_VECTOR_MODE Pmode
1238
1239 /* Return the preferred mode for and addr_diff_vec when the mininum
1240 and maximum offset are known. */
1241 #define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
1242 ((min_offset < 0 || max_offset >= 0x2000 ) ? SImode \
1243 : (max_offset >= 100) ? HImode \
1244 : QImode)
1245
1246 /* Generate pc relative jump table when -fpic or -Os. */
1247 #define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
1248
1249 /* Define this macro if operations between registers with integral mode
1250 smaller than a word are always performed on the entire register. */
1251 #define WORD_REGISTER_OPERATIONS 1
1252
1253 /* A C expression indicating when insns that read memory in mem_mode,
1254 an integral mode narrower than a word, set the bits outside of mem_mode
1255 to be either the sign-extension or the zero-extension of the data read. */
1256 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1257
1258 /* The maximum number of bytes that a single instruction can move quickly
1259 between memory and registers or between two memory locations. */
1260 #define MOVE_MAX 4
1261
1262 /* A C expression that is nonzero if on this machine the number of bits
1263 actually used for the count of a shift operation is equal to the number
1264 of bits needed to represent the size of the object being shifted. */
1265 #define SHIFT_COUNT_TRUNCATED 1
1266
1267 /* A C expression describing the value returned by a comparison operator with
1268 an integral mode and stored by a store-flag instruction ('cstoremode4')
1269 when the condition is true. */
1270 #define STORE_FLAG_VALUE 1
1271
1272 /* A C expression that indicates whether the architecture defines a value for
1273 clz or ctz with a zero operand. In nds32 clz for 0 result 32 is defined
1274 in ISA spec */
1275 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
1276
1277 /* An alias for the machine mode for pointers. */
1278 #define Pmode SImode
1279
1280 /* An alias for the machine mode used for memory references to functions
1281 being called, in call RTL expressions. */
1282 #define FUNCTION_MODE SImode
1283
1284 /* ------------------------------------------------------------------------ */