]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/nds32/nds32.h
[NDS32] Implement TARGET_SETUP_INCOMING_VARARGS target hook.
[thirdparty/gcc.git] / gcc / config / nds32 / nds32.h
1 /* Definitions of target machine of Andes NDS32 cpu for GNU compiler
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Andes Technology Corporation.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* ------------------------------------------------------------------------ */
23
24 /* The following are auxiliary macros or structure declarations
25 that are used all over the nds32.c and nds32.h. */
26
27
28 /* Computing the Length of an Insn. */
29 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
30 (LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
31
32 /* Check instruction LS-37-FP-implied form.
33 Note: actually its immediate range is imm9u
34 since it is used for lwi37/swi37 instructions. */
35 #define NDS32_LS_37_FP_P(rt, ra, imm) \
36 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
37 && REGNO (ra) == FP_REGNUM \
38 && satisfies_constraint_Iu09 (imm))
39
40 /* Check instruction LS-37-SP-implied form.
41 Note: actually its immediate range is imm9u
42 since it is used for lwi37/swi37 instructions. */
43 #define NDS32_LS_37_SP_P(rt, ra, imm) \
44 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
45 && REGNO (ra) == SP_REGNUM \
46 && satisfies_constraint_Iu09 (imm))
47
48
49 /* Check load/store instruction form : Rt3, Ra3, imm3u. */
50 #define NDS32_LS_333_P(rt, ra, imm, mode) nds32_ls_333_p (rt, ra, imm, mode)
51
52 /* Check load/store instruction form : Rt4, Ra5, const_int_0.
53 Note: no need to check ra because Ra5 means it covers all registers. */
54 #define NDS32_LS_450_P(rt, ra, imm) \
55 ((imm == const0_rtx) \
56 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
57 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
58
59 /* Check instruction RRI-333-form. */
60 #define NDS32_RRI_333_P(rt, ra, imm) \
61 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
62 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
63 && satisfies_constraint_Iu03 (imm))
64
65 /* Check instruction RI-45-form. */
66 #define NDS32_RI_45_P(rt, ra, imm) \
67 (REGNO (rt) == REGNO (ra) \
68 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
69 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS) \
70 && satisfies_constraint_Iu05 (imm))
71
72
73 /* Check instruction RR-33-form. */
74 #define NDS32_RR_33_P(rt, ra) \
75 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
76 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS)
77
78 /* Check instruction RRR-333-form. */
79 #define NDS32_RRR_333_P(rt, ra, rb) \
80 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
81 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
82 && REGNO_REG_CLASS (REGNO (rb)) == LOW_REGS)
83
84 /* Check instruction RR-45-form.
85 Note: no need to check rb because Rb5 means it covers all registers. */
86 #define NDS32_RR_45_P(rt, ra, rb) \
87 (REGNO (rt) == REGNO (ra) \
88 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
89 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
90
91 /* Classifies address type to distinguish 16-bit/32-bit format. */
92 enum nds32_16bit_address_type
93 {
94 /* [reg]: 45 format address. */
95 ADDRESS_REG,
96 /* [lo_reg + imm3u]: 333 format address. */
97 ADDRESS_LO_REG_IMM3U,
98 /* post_inc [lo_reg + imm3u]: 333 format address. */
99 ADDRESS_POST_INC_LO_REG_IMM3U,
100 /* [$fp + imm7u]: fp imply address. */
101 ADDRESS_FP_IMM7U,
102 /* [$sp + imm7u]: sp imply address. */
103 ADDRESS_SP_IMM7U,
104 /* Other address format. */
105 ADDRESS_NOT_16BIT_FORMAT
106 };
107
108
109 /* ------------------------------------------------------------------------ */
110
111 /* Define maximum numbers of registers for passing arguments. */
112 #define NDS32_MAX_GPR_REGS_FOR_ARGS 6
113
114 /* Define the register number for first argument. */
115 #define NDS32_GPR_ARG_FIRST_REGNUM 0
116
117 /* Define the register number for return value. */
118 #define NDS32_GPR_RET_FIRST_REGNUM 0
119
120 /* Define the first integer register number. */
121 #define NDS32_FIRST_GPR_REGNUM 0
122 /* Define the last integer register number. */
123 #define NDS32_LAST_GPR_REGNUM 31
124
125 /* Define double word alignment bits. */
126 #define NDS32_DOUBLE_WORD_ALIGNMENT 64
127
128 /* Define alignment checking macros for convenience. */
129 #define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
130 #define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
131 #define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
132
133 /* Get alignment according to mode or type information.
134 When 'type' is nonnull, there is no need to look at 'mode'. */
135 #define NDS32_MODE_TYPE_ALIGN(mode, type) \
136 (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
137
138 /* Round X up to the nearest double word. */
139 #define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
140
141
142 /* This macro is used to calculate the numbers of registers for
143 containing 'size' bytes of the argument.
144 The size of a register is a word in nds32 target.
145 So we use UNITS_PER_WORD to do the calculation. */
146 #define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
147 ((mode == BLKmode) \
148 ? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
149 : ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
150
151 /* This macro is used to return the register number for passing argument.
152 We need to obey the following rules:
153 1. If it is required MORE THAN one register,
154 we need to further check if it really needs to be
155 aligned on double words.
156 a) If double word alignment is necessary,
157 the register number must be even value.
158 b) Otherwise, the register number can be odd or even value.
159 2. If it is required ONLY one register,
160 the register number can be odd or even value. */
161 #define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
162 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
163 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
164 ? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
165 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
166 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
167
168 /* This macro is to check if there are still available registers
169 for passing argument. */
170 #define NDS32_ARG_PASS_IN_REG_P(reg_offset, mode, type) \
171 (((reg_offset) < NDS32_MAX_GPR_REGS_FOR_ARGS) \
172 && ((reg_offset) + NDS32_NEED_N_REGS_FOR_ARG (mode, type) \
173 <= NDS32_MAX_GPR_REGS_FOR_ARGS))
174
175 /* This macro is to check if the register is required to be saved on stack.
176 If call_used_regs[regno] == 0, regno is the callee-saved register.
177 If df_regs_ever_live_p(regno) == true, it is used in the current function.
178 As long as the register satisfies both criteria above,
179 it is required to be saved. */
180 #define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
181 ((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
182
183 /* ------------------------------------------------------------------------ */
184
185 /* A C structure for machine-specific, per-function data.
186 This is added to the cfun structure. */
187 struct GTY(()) machine_function
188 {
189 /* Number of bytes allocated on the stack for variadic args
190 if we want to push them into stack as pretend arguments by ourself. */
191 int va_args_size;
192 /* Number of bytes reserved on the stack for
193 local and temporary variables. */
194 int local_size;
195 /* Number of bytes allocated on the stack for outgoing arguments. */
196 int out_args_size;
197
198 /* Number of bytes on the stack for saving $fp. */
199 int fp_size;
200 /* Number of bytes on the stack for saving $gp. */
201 int gp_size;
202 /* Number of bytes on the stack for saving $lp. */
203 int lp_size;
204
205 /* Number of bytes on the stack for saving callee-saved registers. */
206 int callee_saved_regs_size;
207 /* The padding bytes in callee-saved area may be required. */
208 int callee_saved_area_padding_bytes;
209
210 /* The first required callee-saved register. */
211 int callee_saved_regs_first_regno;
212 /* The last required callee-saved register. */
213 int callee_saved_regs_last_regno;
214
215 /* The padding bytes in varargs area may be required. */
216 int va_args_area_padding_bytes;
217
218 /* The first required register that should be saved on stack for va_args. */
219 int va_args_first_regno;
220 /* The last required register that should be saved on stack for va_args. */
221 int va_args_last_regno;
222
223 /* Indicate that whether this function needs
224 prologue/epilogue code generation. */
225 int naked_p;
226 /* Indicate that whether this function
227 uses fp_as_gp optimization. */
228 int fp_as_gp_p;
229 };
230
231 /* A C structure that contains the arguments information. */
232 typedef struct
233 {
234 unsigned int gpr_offset;
235 } nds32_cumulative_args;
236
237 /* ------------------------------------------------------------------------ */
238
239 /* The following we define C-ISR related stuff.
240 In nds32 architecture, we have 73 vectors for interrupt/exception.
241 For each vector (except for vector 0, which is used for reset behavior),
242 we allow users to set its register saving scheme and interrupt level. */
243
244 /* There are 73 vectors in nds32 architecture.
245 0 for reset handler,
246 1-8 for exception handler,
247 and 9-72 for interrupt handler.
248 We use an array, which is defined in nds32.c, to record
249 essential information for each vector. */
250 #define NDS32_N_ISR_VECTORS 73
251
252 /* Define possible isr category. */
253 enum nds32_isr_category
254 {
255 NDS32_ISR_NONE,
256 NDS32_ISR_INTERRUPT,
257 NDS32_ISR_EXCEPTION,
258 NDS32_ISR_RESET
259 };
260
261 /* Define isr register saving scheme. */
262 enum nds32_isr_save_reg
263 {
264 NDS32_SAVE_ALL,
265 NDS32_PARTIAL_SAVE
266 };
267
268 /* Define isr nested type. */
269 enum nds32_isr_nested_type
270 {
271 NDS32_NESTED,
272 NDS32_NOT_NESTED,
273 NDS32_NESTED_READY
274 };
275
276 /* Define structure to record isr information.
277 The isr vector array 'isr_vectors[]' with this structure
278 is defined in nds32.c. */
279 struct nds32_isr_info
280 {
281 /* The field to identify isr category.
282 It should be set to NDS32_ISR_NONE by default.
283 If user specifies a function as isr by using attribute,
284 this field will be set accordingly. */
285 enum nds32_isr_category category;
286
287 /* A string for the applied function name.
288 It should be set to empty string by default. */
289 char func_name[100];
290
291 /* The register saving scheme.
292 It should be set to NDS32_PARTIAL_SAVE by default
293 unless user specifies attribute to change it. */
294 enum nds32_isr_save_reg save_reg;
295
296 /* The nested type.
297 It should be set to NDS32_NOT_NESTED by default
298 unless user specifies attribute to change it. */
299 enum nds32_isr_nested_type nested_type;
300
301 /* Total vectors.
302 The total vectors = interrupt + exception numbers + reset.
303 It should be set to 0 by default.
304 This field is ONLY used in NDS32_ISR_RESET category. */
305 unsigned int total_n_vectors;
306
307 /* A string for nmi handler name.
308 It should be set to empty string by default.
309 This field is ONLY used in NDS32_ISR_RESET category. */
310 char nmi_name[100];
311
312 /* A string for warm handler name.
313 It should be set to empty string by default.
314 This field is ONLY used in NDS32_ISR_RESET category. */
315 char warm_name[100];
316 };
317
318 /* ------------------------------------------------------------------------ */
319
320 /* Define code for all nds32 builtins. */
321 enum nds32_builtins
322 {
323 NDS32_BUILTIN_ISYNC,
324 NDS32_BUILTIN_ISB,
325 NDS32_BUILTIN_MFSR,
326 NDS32_BUILTIN_MFUSR,
327 NDS32_BUILTIN_MTSR,
328 NDS32_BUILTIN_MTUSR,
329 NDS32_BUILTIN_SETGIE_EN,
330 NDS32_BUILTIN_SETGIE_DIS
331 };
332
333 /* ------------------------------------------------------------------------ */
334
335 #define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
336 #define TARGET_ISA_V3 (nds32_arch_option == ARCH_V3)
337 #define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
338
339 #define TARGET_SOFT_FLOAT 1
340 #define TARGET_HARD_FLOAT 0
341
342 /* ------------------------------------------------------------------------ */
343 \f
344 /* Controlling the Compilation Driver. */
345
346 #define OPTION_DEFAULT_SPECS \
347 {"arch", "%{!march=*:-march=%(VALUE)}" }
348
349 #define CC1_SPEC \
350 ""
351
352 #define ASM_SPEC \
353 " %{mbig-endian:-EB} %{mlittle-endian:-EL}"
354
355 /* If user issues -mrelax, -mforce-fp-as-gp, or -mex9,
356 we need to pass '--relax' to linker.
357 Besides, for -mex9, we need to further pass '--mex9'. */
358 #define LINK_SPEC \
359 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
360 " %{mrelax|mforce-fp-as-gp|mex9:--relax}" \
361 " %{mex9:--mex9}"
362
363 #define LIB_SPEC \
364 " -lc -lgloss"
365
366 /* The option -mno-ctor-dtor can disable constructor/destructor feature
367 by applying different crt stuff. In the convention, crt0.o is the
368 startup file without constructor/destructor;
369 crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o are the
370 startup files with constructor/destructor.
371 Note that crt0.o, crt1.o, crti.o, and crtn.o are provided
372 by newlib/mculib/glibc/ublic, while crtbegin.o and crtend.o are
373 currently provided by GCC for nds32 target.
374
375 For nds32 target so far:
376 If -mno-ctor-dtor, we are going to link
377 "crt0.o [user objects]".
378 If general cases, we are going to link
379 "crt1.o crtbegin1.o [user objects] crtend1.o". */
380 #define STARTFILE_SPEC \
381 " %{!mno-ctor-dtor:crt1.o%s;:crt0.o%s}" \
382 " %{!mno-ctor-dtor:crtbegin1.o%s}"
383 #define ENDFILE_SPEC \
384 " %{!mno-ctor-dtor:crtend1.o%s}"
385
386 /* The TARGET_BIG_ENDIAN_DEFAULT is defined if we configure gcc
387 with --target=nds32be-* setting.
388 Check gcc/config.gcc for more information.
389 In addition, currently we only have elf toolchain,
390 where mgp-direct is always the default. */
391 #ifdef TARGET_BIG_ENDIAN_DEFAULT
392 #define MULTILIB_DEFAULTS { "mbig-endian", "mgp-direct" }
393 #else
394 #define MULTILIB_DEFAULTS { "mlittle-endian", "mgp-direct" }
395 #endif
396
397 \f
398 /* Run-time Target Specification. */
399
400 #define TARGET_CPU_CPP_BUILTINS() \
401 do \
402 { \
403 builtin_define ("__nds32__"); \
404 \
405 if (TARGET_ISA_V2) \
406 builtin_define ("__NDS32_ISA_V2__"); \
407 if (TARGET_ISA_V3) \
408 builtin_define ("__NDS32_ISA_V3__"); \
409 if (TARGET_ISA_V3M) \
410 builtin_define ("__NDS32_ISA_V3M__"); \
411 \
412 if (TARGET_BIG_ENDIAN) \
413 builtin_define ("__big_endian__"); \
414 if (TARGET_REDUCED_REGS) \
415 builtin_define ("__NDS32_REDUCED_REGS__"); \
416 if (TARGET_CMOV) \
417 builtin_define ("__NDS32_CMOV__"); \
418 if (TARGET_PERF_EXT) \
419 builtin_define ("__NDS32_PERF_EXT__"); \
420 if (TARGET_16_BIT) \
421 builtin_define ("__NDS32_16_BIT__"); \
422 if (TARGET_GP_DIRECT) \
423 builtin_define ("__NDS32_GP_DIRECT__"); \
424 \
425 builtin_assert ("cpu=nds32"); \
426 builtin_assert ("machine=nds32"); \
427 } while (0)
428
429 \f
430 /* Defining Data Structures for Per-function Information. */
431
432 /* This macro is called once per function,
433 before generation of any RTL has begun. */
434 #define INIT_EXPANDERS nds32_init_expanders ()
435
436 \f
437 /* Storage Layout. */
438
439 #define BITS_BIG_ENDIAN 0
440
441 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
442
443 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
444
445 #define UNITS_PER_WORD 4
446
447 #define PROMOTE_MODE(m, unsignedp, type) \
448 if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
449 { \
450 (m) = SImode; \
451 }
452
453 #define PARM_BOUNDARY 32
454
455 #define STACK_BOUNDARY 64
456
457 #define FUNCTION_BOUNDARY 32
458
459 #define BIGGEST_ALIGNMENT 64
460
461 #define EMPTY_FIELD_BOUNDARY 32
462
463 #define STRUCTURE_SIZE_BOUNDARY 8
464
465 #define STRICT_ALIGNMENT 1
466
467 #define PCC_BITFIELD_TYPE_MATTERS 1
468
469 \f
470 /* Layout of Source Language Data Types. */
471
472 #define INT_TYPE_SIZE 32
473 #define SHORT_TYPE_SIZE 16
474 #define LONG_TYPE_SIZE 32
475 #define LONG_LONG_TYPE_SIZE 64
476
477 #define FLOAT_TYPE_SIZE 32
478 #define DOUBLE_TYPE_SIZE 64
479 #define LONG_DOUBLE_TYPE_SIZE 64
480
481 #define DEFAULT_SIGNED_CHAR 1
482
483 #define SIZE_TYPE "long unsigned int"
484 #define PTRDIFF_TYPE "long int"
485 #define WCHAR_TYPE "short unsigned int"
486 #define WCHAR_TYPE_SIZE 16
487
488 \f
489 /* Register Usage. */
490
491 /* Number of actual hardware registers.
492 The hardware registers are assigned numbers for the compiler
493 from 0 to just below FIRST_PSEUDO_REGISTER.
494 All registers that the compiler knows about must be given numbers,
495 even those that are not normally considered general registers. */
496 #define FIRST_PSEUDO_REGISTER 34
497
498 /* An initializer that says which registers are used for fixed
499 purposes all throughout the compiled code and are therefore
500 not available for general allocation.
501
502 $r28 : $fp
503 $r29 : $gp
504 $r30 : $lp
505 $r31 : $sp
506
507 caller-save registers: $r0 ~ $r5, $r16 ~ $r23
508 callee-save registers: $r6 ~ $r10, $r11 ~ $r14
509
510 reserved for assembler : $r15
511 reserved for other use : $r24, $r25, $r26, $r27 */
512 #define FIXED_REGISTERS \
513 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
514 0, 0, 0, 0, 0, 0, 0, 0, \
515 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
516 0, 0, 0, 0, 0, 0, 0, 1, \
517 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
518 0, 0, 0, 0, 0, 0, 0, 0, \
519 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
520 1, 1, 1, 1, 0, 1, 0, 1, \
521 /* ARG_POINTER:32 */ \
522 1, \
523 /* FRAME_POINTER:33 */ \
524 1 \
525 }
526
527 /* Identifies the registers that are not available for
528 general allocation of values that must live across
529 function calls -- so they are caller-save registers.
530
531 0 : callee-save registers
532 1 : caller-save registers */
533 #define CALL_USED_REGISTERS \
534 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
535 1, 1, 1, 1, 1, 1, 0, 0, \
536 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
537 0, 0, 0, 0, 0, 0, 0, 1, \
538 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
539 1, 1, 1, 1, 1, 1, 1, 1, \
540 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
541 1, 1, 1, 1, 0, 1, 0, 1, \
542 /* ARG_POINTER:32 */ \
543 1, \
544 /* FRAME_POINTER:33 */ \
545 1 \
546 }
547
548 /* In nds32 target, we have three levels of registers:
549 LOW_COST_REGS : $r0 ~ $r7
550 MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
551 HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
552 #define REG_ALLOC_ORDER \
553 { \
554 0, 1, 2, 3, 4, 5, 6, 7, \
555 8, 9, 10, 11, 16, 17, 18, 19, \
556 12, 13, 14, 15, 20, 21, 22, 23, \
557 24, 25, 26, 27, 28, 29, 30, 31, \
558 32, \
559 33 \
560 }
561
562 /* Tell IRA to use the order we define rather than messing it up with its
563 own cost calculations. */
564 #define HONOR_REG_ALLOC_ORDER optimize_size
565
566 /* The number of consecutive hard regs needed starting at
567 reg "regno" for holding a value of mode "mode". */
568 #define HARD_REGNO_NREGS(regno, mode) nds32_hard_regno_nregs (regno, mode)
569
570 /* Value is 1 if hard register "regno" can hold a value
571 of machine-mode "mode". */
572 #define HARD_REGNO_MODE_OK(regno, mode) nds32_hard_regno_mode_ok (regno, mode)
573
574 /* A C expression that is nonzero if a value of mode1
575 is accessible in mode2 without copying.
576 Define this macro to return nonzero in as many cases as possible
577 since doing so will allow GCC to perform better register allocation.
578 We can use general registers to tie QI/HI/SI modes together. */
579 #define MODES_TIEABLE_P(mode1, mode2) \
580 (GET_MODE_CLASS (mode1) == MODE_INT \
581 && GET_MODE_CLASS (mode2) == MODE_INT \
582 && GET_MODE_SIZE (mode1) <= UNITS_PER_WORD \
583 && GET_MODE_SIZE (mode2) <= UNITS_PER_WORD)
584
585 \f
586 /* Register Classes. */
587
588 /* In nds32 target, we have three levels of registers:
589 Low cost regsiters : $r0 ~ $r7
590 Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
591 High cost registers : $r12 ~ $r14, $r20 ~ $r31
592
593 In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
594 so that it provides more chance to use low cost registers. */
595 enum reg_class
596 {
597 NO_REGS,
598 R15_TA_REG,
599 STACK_REG,
600 LOW_REGS,
601 MIDDLE_REGS,
602 HIGH_REGS,
603 GENERAL_REGS,
604 FRAME_REGS,
605 ALL_REGS,
606 LIM_REG_CLASSES
607 };
608
609 #define N_REG_CLASSES (int) LIM_REG_CLASSES
610
611 #define REG_CLASS_NAMES \
612 { \
613 "NO_REGS", \
614 "R15_TA_REG", \
615 "STACK_REG", \
616 "LOW_REGS", \
617 "MIDDLE_REGS", \
618 "HIGH_REGS", \
619 "GENERAL_REGS", \
620 "FRAME_REGS", \
621 "ALL_REGS" \
622 }
623
624 #define REG_CLASS_CONTENTS \
625 { \
626 {0x00000000, 0x00000000}, /* NO_REGS : */ \
627 {0x00008000, 0x00000000}, /* R15_TA_REG : 15 */ \
628 {0x80000000, 0x00000000}, /* STACK_REG : 31 */ \
629 {0x000000ff, 0x00000000}, /* LOW_REGS : 0-7 */ \
630 {0x000f0fff, 0x00000000}, /* MIDDLE_REGS : 0-11, 16-19 */ \
631 {0xfff07000, 0x00000000}, /* HIGH_REGS : 12-14, 20-31 */ \
632 {0xffffffff, 0x00000000}, /* GENERAL_REGS: 0-31 */ \
633 {0x00000000, 0x00000003}, /* FRAME_REGS : 32, 33 */ \
634 {0xffffffff, 0x00000003} /* ALL_REGS : 0-31, 32, 33 */ \
635 }
636
637 #define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
638
639 #define BASE_REG_CLASS GENERAL_REGS
640 #define INDEX_REG_CLASS GENERAL_REGS
641
642 /* Return nonzero if it is suitable for use as a
643 base register in operand addresses.
644 So far, we return nonzero only if "num" is a hard reg
645 of the suitable class or a pseudo register which is
646 allocated to a suitable hard reg. */
647 #define REGNO_OK_FOR_BASE_P(num) \
648 ((num) < 32 || (unsigned) reg_renumber[num] < 32)
649
650 /* Return nonzero if it is suitable for use as a
651 index register in operand addresses.
652 So far, we return nonzero only if "num" is a hard reg
653 of the suitable class or a pseudo register which is
654 allocated to a suitable hard reg.
655 The difference between an index register and a base register is that
656 the index register may be scaled. */
657 #define REGNO_OK_FOR_INDEX_P(num) \
658 ((num) < 32 || (unsigned) reg_renumber[num] < 32)
659
660 \f
661 /* Obsolete Macros for Defining Constraints. */
662
663 \f
664 /* Stack Layout and Calling Conventions. */
665
666 #define STACK_GROWS_DOWNWARD
667
668 #define FRAME_GROWS_DOWNWARD 1
669
670 #define STARTING_FRAME_OFFSET 0
671
672 #define STACK_POINTER_OFFSET 0
673
674 #define FIRST_PARM_OFFSET(fundecl) 0
675
676 #define RETURN_ADDR_RTX(count, frameaddr) \
677 nds32_return_addr_rtx (count, frameaddr)
678
679 /* A C expression whose value is RTL representing the location
680 of the incoming return address at the beginning of any function
681 before the prologue.
682 If this RTL is REG, you should also define
683 DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
684 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
685 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
686
687 #define STACK_POINTER_REGNUM SP_REGNUM
688
689 #define FRAME_POINTER_REGNUM 33
690
691 #define HARD_FRAME_POINTER_REGNUM FP_REGNUM
692
693 #define ARG_POINTER_REGNUM 32
694
695 #define STATIC_CHAIN_REGNUM 16
696
697 #define ELIMINABLE_REGS \
698 { { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
699 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
700 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
701 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
702
703 #define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
704 (offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
705
706 #define ACCUMULATE_OUTGOING_ARGS 1
707
708 #define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
709
710 #define CUMULATIVE_ARGS nds32_cumulative_args
711
712 #define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
713 nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
714
715 /* The REGNO is an unsigned integer but NDS32_GPR_ARG_FIRST_REGNUM may be 0.
716 We better cast REGNO into signed integer so that we can avoid
717 'comparison of unsigned expression >= 0 is always true' warning. */
718 #define FUNCTION_ARG_REGNO_P(regno) \
719 (((int) regno - NDS32_GPR_ARG_FIRST_REGNUM >= 0) \
720 && ((int) regno - NDS32_GPR_ARG_FIRST_REGNUM < NDS32_MAX_GPR_REGS_FOR_ARGS))
721
722 #define DEFAULT_PCC_STRUCT_RETURN 0
723
724 /* EXIT_IGNORE_STACK should be nonzero if, when returning
725 from a function, the stack pointer does not matter.
726 The value is tested only in functions that have frame pointers.
727 In nds32 target, the function epilogue recovers the
728 stack pointer from the frame. */
729 #define EXIT_IGNORE_STACK 1
730
731 #define FUNCTION_PROFILER(file, labelno) \
732 fprintf (file, "/* profiler %d */", (labelno))
733
734 \f
735 /* Implementing the Varargs Macros. */
736
737 \f
738 /* Trampolines for Nested Functions. */
739
740 /* Giving A-function and B-function,
741 if B-function wants to call A-function's nested function,
742 we need to fill trampoline code into A-function's stack
743 so that B-function can execute the code in stack to indirectly
744 jump to (like 'trampoline' action) desired nested function.
745
746 The trampoline code for nds32 target must contains following parts:
747
748 1. instructions (4 * 4 = 16 bytes):
749 get $pc first
750 load chain_value to static chain register via $pc
751 load nested function address to $r15 via $pc
752 jump to desired nested function via $r15
753 2. data (4 * 2 = 8 bytes):
754 chain_value
755 nested function address
756
757 Please check nds32.c implementation for more information. */
758 #define TRAMPOLINE_SIZE 24
759
760 /* Because all instructions/data in trampoline template are 4-byte size,
761 we set trampoline alignment 8*4=32 bits. */
762 #define TRAMPOLINE_ALIGNMENT 32
763
764 \f
765 /* Implicit Calls to Library Routines. */
766
767 \f
768 /* Addressing Modes. */
769
770 /* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
771 #define HAVE_POST_INCREMENT 1
772 /* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
773 #define HAVE_POST_DECREMENT 1
774
775 /* We have "LWI.bi Rt, [Ra], imm" instruction form. */
776 #define HAVE_POST_MODIFY_DISP 1
777 /* We have "LW.bi Rt, [Ra], Rb" instruction form. */
778 #define HAVE_POST_MODIFY_REG 1
779
780 #define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
781
782 #define MAX_REGS_PER_ADDRESS 2
783
784 \f
785 /* Anchored Addresses. */
786
787 \f
788 /* Condition Code Status. */
789
790 \f
791 /* Describing Relative Costs of Operations. */
792
793 /* A C expression for the cost of a branch instruction.
794 A value of 1 is the default;
795 other values are interpreted relative to that. */
796 #define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 0)
797
798 #define SLOW_BYTE_ACCESS 1
799
800 #define NO_FUNCTION_CSE
801
802 \f
803 /* Adjusting the Instruction Scheduler. */
804
805 \f
806 /* Dividing the Output into Sections (Texts, Data, . . . ). */
807
808 #define TEXT_SECTION_ASM_OP "\t.text"
809 #define DATA_SECTION_ASM_OP "\t.data"
810
811 /* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
812 So we use '.section .bss' alternatively. */
813 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
814
815 /* Define this macro to be an expression with a nonzero value if jump tables
816 (for tablejump insns) should be output in the text section,
817 along with the assembler instructions.
818 Otherwise, the readonly data section is used. */
819 #define JUMP_TABLES_IN_TEXT_SECTION 1
820
821 \f
822 /* Position Independent Code. */
823
824 #define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
825
826 \f
827 /* Defining the Output Assembler Language. */
828
829 #define ASM_COMMENT_START "!"
830
831 #define ASM_APP_ON "! #APP"
832
833 #define ASM_APP_OFF "! #NO_APP\n"
834
835 #define ASM_OUTPUT_LABELREF(stream, name) \
836 asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
837
838 #define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
839 assemble_name (stream, XSTR (sym, 0))
840
841 #define ASM_OUTPUT_LABEL_REF(stream, buf) \
842 assemble_name (stream, buf)
843
844 #define LOCAL_LABEL_PREFIX "."
845
846 #define REGISTER_NAMES \
847 { \
848 "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
849 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
850 "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
851 "$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
852 "$AP", \
853 "$SFP" \
854 }
855
856 /* Output normal jump table entry. */
857 #define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
858 asm_fprintf (stream, "\t.word\t%LL%d\n", value)
859
860 /* Output pc relative jump table entry. */
861 #define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
862 do \
863 { \
864 switch (GET_MODE (body)) \
865 { \
866 case QImode: \
867 asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
868 break; \
869 case HImode: \
870 asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
871 break; \
872 case SImode: \
873 asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
874 break; \
875 default: \
876 gcc_unreachable(); \
877 } \
878 } while (0)
879
880 /* We have to undef it first because elfos.h formerly define it
881 check gcc/config.gcc and gcc/config/elfos.h for more information. */
882 #undef ASM_OUTPUT_CASE_LABEL
883 #define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
884 do \
885 { \
886 asm_fprintf (stream, "\t! Jump Table Begin\n"); \
887 (*targetm.asm_out.internal_label) (stream, prefix, num); \
888 } while (0)
889
890 #define ASM_OUTPUT_CASE_END(stream, num, table) \
891 do \
892 { \
893 /* Because our jump table is in text section, \
894 we need to make sure 2-byte alignment after \
895 the jump table for instructions fetch. */ \
896 if (GET_MODE (PATTERN (table)) == QImode) \
897 ASM_OUTPUT_ALIGN (stream, 1); \
898 asm_fprintf (stream, "\t! Jump Table End\n"); \
899 } while (0)
900
901 /* This macro is not documented yet.
902 But we do need it to make jump table vector aligned. */
903 #define ADDR_VEC_ALIGN(JUMPTABLE) 2
904
905 #define DWARF2_UNWIND_INFO 1
906
907 #define JUMP_ALIGN(x) \
908 (align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
909
910 #define LOOP_ALIGN(x) \
911 (align_loops_log ? align_loops_log : nds32_target_alignment (x))
912
913 #define LABEL_ALIGN(x) \
914 (align_labels_log ? align_labels_log : nds32_target_alignment (x))
915
916 #define ASM_OUTPUT_ALIGN(stream, power) \
917 fprintf (stream, "\t.align\t%d\n", power)
918
919 \f
920 /* Controlling Debugging Information Format. */
921
922 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
923
924 #define DWARF2_DEBUGGING_INFO 1
925
926 #define DWARF2_ASM_LINE_DEBUG_INFO 1
927
928 \f
929 /* Cross Compilation and Floating Point. */
930
931 \f
932 /* Mode Switching Instructions. */
933
934 \f
935 /* Defining target-specific uses of __attribute__. */
936
937 \f
938 /* Emulating TLS. */
939
940 \f
941 /* Defining coprocessor specifics for MIPS targets. */
942
943 \f
944 /* Parameters for Precompiled Header Validity Checking. */
945
946 \f
947 /* C++ ABI parameters. */
948
949 \f
950 /* Adding support for named address spaces. */
951
952 \f
953 /* Miscellaneous Parameters. */
954
955 /* This is the machine mode that elements of a jump-table should have. */
956 #define CASE_VECTOR_MODE Pmode
957
958 /* Return the preferred mode for and addr_diff_vec when the mininum
959 and maximum offset are known. */
960 #define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
961 ((min_offset < 0 || max_offset >= 0x2000 ) ? SImode \
962 : (max_offset >= 100) ? HImode \
963 : QImode)
964
965 /* Generate pc relative jump table when -fpic or -Os. */
966 #define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
967
968 /* Define this macro if operations between registers with integral mode
969 smaller than a word are always performed on the entire register. */
970 #define WORD_REGISTER_OPERATIONS
971
972 /* A C expression indicating when insns that read memory in mem_mode,
973 an integral mode narrower than a word, set the bits outside of mem_mode
974 to be either the sign-extension or the zero-extension of the data read. */
975 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
976
977 /* The maximum number of bytes that a single instruction can move quickly
978 between memory and registers or between two memory locations. */
979 #define MOVE_MAX 4
980
981 /* A C expression that is nonzero if on this machine the number of bits
982 actually used for the count of a shift operation is equal to the number
983 of bits needed to represent the size of the object being shifted. */
984 #define SHIFT_COUNT_TRUNCATED 1
985
986 /* A C expression which is nonzero if on this machine it is safe to "convert"
987 an integer of 'inprec' bits to one of 'outprec' bits by merely operating
988 on it as if it had only 'outprec' bits. */
989 #define TRULY_NOOP_TRUNCATION(outprec, inprec) 1
990
991 /* A C expression describing the value returned by a comparison operator with
992 an integral mode and stored by a store-flag instruction ('cstoremode4')
993 when the condition is true. */
994 #define STORE_FLAG_VALUE 1
995
996 /* An alias for the machine mode for pointers. */
997 #define Pmode SImode
998
999 /* An alias for the machine mode used for memory references to functions
1000 being called, in call RTL expressions. */
1001 #define FUNCTION_MODE SImode
1002
1003 /* ------------------------------------------------------------------------ */