]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/pa/pa.h
alpha.c (TARGET_ASM_GLOBALIZE_LABEL): Define for unicosmk.
[thirdparty/gcc.git] / gcc / config / pa / pa.h
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6 Software Science at the University of Utah.
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 enum cmp_type /* comparison type */
26 {
27 CMP_SI, /* compare integers */
28 CMP_SF, /* compare single precision floats */
29 CMP_DF, /* compare double precision floats */
30 CMP_MAX /* max comparison type */
31 };
32
33 /* For long call handling. */
34 extern unsigned int total_code_bytes;
35
36 /* Which processor to schedule for. */
37
38 enum processor_type
39 {
40 PROCESSOR_700,
41 PROCESSOR_7100,
42 PROCESSOR_7100LC,
43 PROCESSOR_7200,
44 PROCESSOR_7300,
45 PROCESSOR_8000
46 };
47
48 /* For -mschedule= option. */
49 extern const char *pa_cpu_string;
50 extern enum processor_type pa_cpu;
51
52 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
53
54 /* Which architecture to generate code for. */
55
56 enum architecture_type
57 {
58 ARCHITECTURE_10,
59 ARCHITECTURE_11,
60 ARCHITECTURE_20
61 };
62
63 struct rtx_def;
64
65 /* For -march= option. */
66 extern const char *pa_arch_string;
67 extern enum architecture_type pa_arch;
68
69 /* Print subsidiary information on the compiler version in use. */
70
71 #define TARGET_VERSION fputs (" (hppa)", stderr);
72
73 /* Run-time compilation parameters selecting different hardware subsets. */
74
75 extern int target_flags;
76
77 /* compile code for HP-PA 1.1 ("Snake") */
78
79 #define MASK_PA_11 1
80
81 #ifndef TARGET_PA_11
82 #define TARGET_PA_11 (target_flags & MASK_PA_11)
83 #endif
84
85 /* Disable all FP registers (they all become fixed). This may be necessary
86 for compiling kernels which perform lazy context switching of FP regs.
87 Note if you use this option and try to perform floating point operations
88 the compiler will abort! */
89
90 #define MASK_DISABLE_FPREGS 2
91 #define TARGET_DISABLE_FPREGS (target_flags & MASK_DISABLE_FPREGS)
92
93 /* Generate code which assumes that all space register are equivalent.
94 Triggers aggressive unscaled index addressing and faster
95 builtin_return_address. */
96 #define MASK_NO_SPACE_REGS 4
97 #define TARGET_NO_SPACE_REGS (target_flags & MASK_NO_SPACE_REGS)
98
99 /* Allow unconditional jumps in the delay slots of call instructions. */
100 #define MASK_JUMP_IN_DELAY 8
101 #define TARGET_JUMP_IN_DELAY (target_flags & MASK_JUMP_IN_DELAY)
102
103 /* Disable indexed addressing modes. */
104 #define MASK_DISABLE_INDEXING 32
105 #define TARGET_DISABLE_INDEXING (target_flags & MASK_DISABLE_INDEXING)
106
107 /* Emit code which follows the new portable runtime calling conventions
108 HP wants everyone to use for ELF objects. If at all possible you want
109 to avoid this since it's a performance loss for non-prototyped code.
110
111 Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
112 long-call stubs which is quite expensive. */
113 #define MASK_PORTABLE_RUNTIME 64
114 #define TARGET_PORTABLE_RUNTIME (target_flags & MASK_PORTABLE_RUNTIME)
115
116 /* Emit directives only understood by GAS. This allows parameter
117 relocations to work for static functions. There is no way
118 to make them work the HP assembler at this time. */
119 #define MASK_GAS 128
120 #define TARGET_GAS (target_flags & MASK_GAS)
121
122 /* Emit code for processors which do not have an FPU. */
123 #define MASK_SOFT_FLOAT 256
124 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
125
126 /* Use 3-insn load/store sequences for access to large data segments
127 in shared libraries on hpux10. */
128 #define MASK_LONG_LOAD_STORE 512
129 #define TARGET_LONG_LOAD_STORE (target_flags & MASK_LONG_LOAD_STORE)
130
131 /* Use a faster sequence for indirect calls. This assumes that calls
132 through function pointers will never cross a space boundary, and
133 that the executable is not dynamically linked. Such assumptions
134 are generally safe for building kernels and statically linked
135 executables. Code compiled with this option will fail miserably if
136 the executable is dynamically linked or uses nested functions! */
137 #define MASK_FAST_INDIRECT_CALLS 1024
138 #define TARGET_FAST_INDIRECT_CALLS (target_flags & MASK_FAST_INDIRECT_CALLS)
139
140 /* Generate code with big switch statements to avoid out of range branches
141 occurring within the switch table. */
142 #define MASK_BIG_SWITCH 2048
143 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
144
145
146 /* Generate code for the HPPA 2.0 architecture. TARGET_PA_11 should also be
147 true when this is true. */
148 #define MASK_PA_20 4096
149 #ifndef TARGET_PA_20
150 #define TARGET_PA_20 (target_flags & MASK_PA_20)
151 #endif
152
153 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
154 #ifndef TARGET_64BIT
155 #define TARGET_64BIT 0
156 #endif
157
158 /* Generate code for ELF32 ABI. */
159 #ifndef TARGET_ELF32
160 #define TARGET_ELF32 0
161 #endif
162
163 /* Generate code for SOM 32bit ABI. */
164 #ifndef TARGET_SOM
165 #define TARGET_SOM 0
166 #endif
167
168 /* Macro to define tables used to set the flags.
169 This is a list in braces of pairs in braces,
170 each pair being { "NAME", VALUE }
171 where VALUE is the bits to set or minus the bits to clear.
172 An empty string NAME is used to identify the default VALUE. */
173
174 #define TARGET_SWITCHES \
175 {{"snake", MASK_PA_11, "Generate PA1.1 code"}, \
176 {"nosnake", -(MASK_PA_11 | MASK_PA_20), "Generate PA1.0 code"}, \
177 {"pa-risc-1-0", -(MASK_PA_11 | MASK_PA_20), "Generate PA1.0 code"}, \
178 {"pa-risc-1-1", MASK_PA_11, "Generate PA1.1 code"}, \
179 {"pa-risc-2-0", MASK_PA_20, "Generate PA2.0 code. This option requires binutils 2.10 or later"}, \
180 {"disable-fpregs", MASK_DISABLE_FPREGS, "Disable FP regs"}, \
181 {"no-disable-fpregs", -MASK_DISABLE_FPREGS, "Do not disable FP regs"},\
182 {"no-space-regs", MASK_NO_SPACE_REGS, "Disable space regs"}, \
183 {"space-regs", -MASK_NO_SPACE_REGS, "Do not disable space regs"}, \
184 {"jump-in-delay", MASK_JUMP_IN_DELAY, "Put jumps in call delay slots"},\
185 {"no-jump-in-delay", -MASK_JUMP_IN_DELAY, "Do not put jumps in call delay slots"}, \
186 {"disable-indexing", MASK_DISABLE_INDEXING, "Disable indexed addressing"},\
187 {"no-disable-indexing", -MASK_DISABLE_INDEXING, "Do not disable indexed addressing"},\
188 {"portable-runtime", MASK_PORTABLE_RUNTIME, "Use portable calling conventions"}, \
189 {"no-portable-runtime", -MASK_PORTABLE_RUNTIME, "Do not use portable calling conventions"},\
190 {"gas", MASK_GAS, "Assume code will be assembled by GAS"}, \
191 {"no-gas", -MASK_GAS, "Do not assume code will be assembled by GAS"}, \
192 {"soft-float", MASK_SOFT_FLOAT, "Use software floating point"}, \
193 {"no-soft-float", -MASK_SOFT_FLOAT, "Do not use software floating point"}, \
194 {"long-load-store", MASK_LONG_LOAD_STORE, "Emit long load/store sequences"}, \
195 {"no-long-load-store", -MASK_LONG_LOAD_STORE, "Do not emit long load/store sequences"},\
196 {"fast-indirect-calls", MASK_FAST_INDIRECT_CALLS, "Generate fast indirect calls"},\
197 {"no-fast-indirect-calls", -MASK_FAST_INDIRECT_CALLS, "Do not generate fast indirect calls"},\
198 {"big-switch", MASK_BIG_SWITCH, "Generate code for huge switch statements"}, \
199 {"no-big-switch", -MASK_BIG_SWITCH, "Do not generate code for huge switch statements"}, \
200 {"linker-opt", 0, "Enable linker optimizations"}, \
201 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, NULL}}
202
203 #ifndef TARGET_DEFAULT
204 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY)
205 #endif
206
207 #ifndef TARGET_CPU_DEFAULT
208 #define TARGET_CPU_DEFAULT 0
209 #endif
210
211 #ifndef TARGET_SCHED_DEFAULT
212 #define TARGET_SCHED_DEFAULT "8000"
213 #endif
214
215 #define TARGET_OPTIONS \
216 { \
217 { "schedule=", &pa_cpu_string, "Specify CPU for scheduling purposes" },\
218 { "arch=", &pa_arch_string, "Specify architecture for code generation. Values are 1.0, 1.1, and 2.0. 2.0 requires gas snapshot 19990413 or later." }\
219 }
220
221 /* Specify the dialect of assembler to use. New mnemonics is dialect one
222 and the old mnemonics are dialect zero. */
223 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
224
225 #define OVERRIDE_OPTIONS override_options ()
226
227 /* stabs-in-som is nearly identical to stabs-in-elf. To avoid useless
228 code duplication we simply include this file and override as needed. */
229 #include "dbxelf.h"
230
231 /* We do not have to be compatible with dbx, so we enable gdb extensions
232 by default. */
233 #define DEFAULT_GDB_EXTENSIONS 1
234
235 /* This used to be zero (no max length), but big enums and such can
236 cause huge strings which killed gas.
237
238 We also have to avoid lossage in dbxout.c -- it does not compute the
239 string size accurately, so we are real conservative here. */
240 #undef DBX_CONTIN_LENGTH
241 #define DBX_CONTIN_LENGTH 3000
242
243 /* Only labels should ever begin in column zero. */
244 #define ASM_STABS_OP "\t.stabs\t"
245 #define ASM_STABN_OP "\t.stabn\t"
246
247 /* GDB always assumes the current function's frame begins at the value
248 of the stack pointer upon entry to the current function. Accessing
249 local variables and parameters passed on the stack is done using the
250 base of the frame + an offset provided by GCC.
251
252 For functions which have frame pointers this method works fine;
253 the (frame pointer) == (stack pointer at function entry) and GCC provides
254 an offset relative to the frame pointer.
255
256 This loses for functions without a frame pointer; GCC provides an offset
257 which is relative to the stack pointer after adjusting for the function's
258 frame size. GDB would prefer the offset to be relative to the value of
259 the stack pointer at the function's entry. Yuk! */
260 #define DEBUGGER_AUTO_OFFSET(X) \
261 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
262 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
263
264 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
265 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
266 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
267
268 #define CPP_PA10_SPEC ""
269 #define CPP_PA11_SPEC "-D_PA_RISC1_1 -D__hp9000s700"
270 #define CPP_PA20_SPEC "-D_PA_RISC2_0 -D__hp9000s800"
271 #define CPP_64BIT_SPEC "-D__LP64__"
272
273 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_PA_11) == 0
274 #define CPP_CPU_DEFAULT_SPEC "%(cpp_pa10)"
275 #endif
276
277 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_PA_11) != 0
278 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_PA_20) != 0
279 #define CPP_CPU_DEFAULT_SPEC "%(cpp_pa11) %(cpp_pa20)"
280 #else
281 #define CPP_CPU_DEFAULT_SPEC "%(cpp_pa11)"
282 #endif
283 #endif
284
285 #if TARGET_64BIT
286 #define CPP_64BIT_DEFAULT_SPEC "%(cpp_64bit)"
287 #else
288 #define CPP_64BIT_DEFAULT_SPEC ""
289 #endif
290
291 /* This macro defines names of additional specifications to put in the
292 specs that can be used in various specifications like CC1_SPEC. Its
293 definition is an initializer with a subgrouping for each command option.
294
295 Each subgrouping contains a string constant, that defines the
296 specification name, and a string constant that used by the GNU CC driver
297 program.
298
299 Do not define this macro if it does not need to do anything. */
300
301 #ifndef SUBTARGET_EXTRA_SPECS
302 #define SUBTARGET_EXTRA_SPECS
303 #endif
304
305 #define EXTRA_SPECS \
306 { "cpp_pa10", CPP_PA10_SPEC}, \
307 { "cpp_pa11", CPP_PA11_SPEC}, \
308 { "cpp_pa20", CPP_PA20_SPEC}, \
309 { "cpp_64bit", CPP_64BIT_SPEC}, \
310 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
311 { "cpp_64bit_default", CPP_64BIT_DEFAULT_SPEC }, \
312 SUBTARGET_EXTRA_SPECS
313
314 #define CPP_SPEC "\
315 %{mpa-risc-1-0:%(cpp_pa10)} \
316 %{mpa-risc-1-1:%(cpp_pa11)} \
317 %{msnake:%(cpp_pa11)} \
318 %{mpa-risc-2-0:%(cpp_pa20)} \
319 %{!mpa-risc-1-0:%{!mpa-risc-1-1:%{!mpa-risc-2-0:%{!msnake:%(cpp_cpu_default)}}}} \
320 %{m64bit:%(cpp_64bit)} \
321 %{!m64bit:%(cpp_64bit_default)} \
322 %{!ansi: -D_HPUX_SOURCE -D_HIUX_SOURCE -D__STDC_EXT__ -D_INCLUDE_LONGLONG} \
323 %{threads: -D_REENTRANT -D_DCE_THREADS}"
324
325 #define CPLUSPLUS_CPP_SPEC "\
326 -D_HPUX_SOURCE -D_HIUX_SOURCE -D__STDC_EXT__ -D_INCLUDE_LONGLONG \
327 %{mpa-risc-1-0:%(cpp_pa10)} \
328 %{mpa-risc-1-1:%(cpp_pa11)} \
329 %{msnake:%(cpp_pa11)} \
330 %{mpa-risc-2-0:%(cpp_pa20)} \
331 %{!mpa-risc-1-0:%{!mpa-risc-1-1:%{!mpa-risc-2-0:%{!msnake:%(cpp_cpu_default)}}}} \
332 %{m64bit:%(cpp_64bit)} \
333 %{!m64bit:%(cpp_64bit_default)} \
334 %{threads: -D_REENTRANT -D_DCE_THREADS}"
335
336 /* Defines for a K&R CC */
337
338 #define CC1_SPEC "%{pg:} %{p:}"
339
340 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
341
342 /* We don't want -lg. */
343 #ifndef LIB_SPEC
344 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
345 #endif
346
347 /* This macro defines command-line switches that modify the default
348 target name.
349
350 The definition is be an initializer for an array of structures. Each
351 array element has have three elements: the switch name, one of the
352 enumeration codes ADD or DELETE to indicate whether the string should be
353 inserted or deleted, and the string to be inserted or deleted. */
354 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
355
356 /* Make gcc agree with <machine/ansi.h> */
357
358 #define SIZE_TYPE "unsigned int"
359 #define PTRDIFF_TYPE "int"
360 #define WCHAR_TYPE "unsigned int"
361 #define WCHAR_TYPE_SIZE 32
362
363 /* Show we can debug even without a frame pointer. */
364 #define CAN_DEBUG_WITHOUT_FP
365
366 /* Machine dependent reorg pass. */
367 #define MACHINE_DEPENDENT_REORG(X) pa_reorg(X)
368
369 /* Names to predefine in the preprocessor for this target machine. */
370
371 #define CPP_PREDEFINES "-Dhppa -Dhp9000s800 -D__hp9000s800 -Dhp9k8 -Dunix -Dhp9000 -Dhp800 -Dspectrum -DREVARGV -Asystem=unix -Asystem=bsd -Acpu=hppa -Amachine=hppa"
372 \f
373 /* target machine storage layout */
374
375 /* Define this macro if it is advisable to hold scalars in registers
376 in a wider mode than that declared by the program. In such cases,
377 the value is constrained to be within the bounds of the declared
378 type, but kept valid in the wider mode. The signedness of the
379 extension may differ from that of the type. */
380
381 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
382 if (GET_MODE_CLASS (MODE) == MODE_INT \
383 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
384 (MODE) = word_mode;
385
386 /* Define this if most significant bit is lowest numbered
387 in instructions that operate on numbered bit-fields. */
388 #define BITS_BIG_ENDIAN 1
389
390 /* Define this if most significant byte of a word is the lowest numbered. */
391 /* That is true on the HP-PA. */
392 #define BYTES_BIG_ENDIAN 1
393
394 /* Define this if most significant word of a multiword number is lowest
395 numbered. */
396 #define WORDS_BIG_ENDIAN 1
397
398 #define MAX_BITS_PER_WORD 64
399 #define MAX_LONG_TYPE_SIZE 32
400
401 /* Width of a word, in units (bytes). */
402 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
403 #define MIN_UNITS_PER_WORD 4
404
405 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
406 #define PARM_BOUNDARY BITS_PER_WORD
407
408 /* Largest alignment required for any stack parameter, in bits.
409 Don't define this if it is equal to PARM_BOUNDARY */
410 #define MAX_PARM_BOUNDARY 64
411
412 /* Boundary (in *bits*) on which stack pointer is always aligned;
413 certain optimizations in combine depend on this.
414
415 GCC for the PA always rounds its stacks to a 512bit boundary,
416 but that happens late in the compilation process. */
417 #define STACK_BOUNDARY (TARGET_64BIT ? 128 : 64)
418
419 #define PREFERRED_STACK_BOUNDARY 512
420
421 /* Allocation boundary (in *bits*) for the code of a function. */
422 #define FUNCTION_BOUNDARY (TARGET_64BIT ? 64 : 32)
423
424 /* Alignment of field after `int : 0' in a structure. */
425 #define EMPTY_FIELD_BOUNDARY 32
426
427 /* Every structure's size must be a multiple of this. */
428 #define STRUCTURE_SIZE_BOUNDARY 8
429
430 /* A bitfield declared as `int' forces `int' alignment for the struct. */
431 #define PCC_BITFIELD_TYPE_MATTERS 1
432
433 /* No data type wants to be aligned rounder than this. This is set
434 to 128 bits to allow for lock semaphores in the stack frame.*/
435 #define BIGGEST_ALIGNMENT 128
436
437 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
438 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
439 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
440
441 /* Make arrays of chars word-aligned for the same reasons. */
442 #define DATA_ALIGNMENT(TYPE, ALIGN) \
443 (TREE_CODE (TYPE) == ARRAY_TYPE \
444 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
445 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
446
447
448 /* Set this nonzero if move instructions will actually fail to work
449 when given unaligned data. */
450 #define STRICT_ALIGNMENT 1
451
452 /* Generate calls to memcpy, memcmp and memset. */
453 #define TARGET_MEM_FUNCTIONS
454
455 /* Value is 1 if it is a good idea to tie two pseudo registers
456 when one has mode MODE1 and one has mode MODE2.
457 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
458 for any hard reg, then this must be 0 for correct output. */
459 #define MODES_TIEABLE_P(MODE1, MODE2) \
460 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
461
462 /* Specify the registers used for certain standard purposes.
463 The values of these macros are register numbers. */
464
465 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
466 /* #define PC_REGNUM */
467
468 /* Register to use for pushing function arguments. */
469 #define STACK_POINTER_REGNUM 30
470
471 /* Base register for access to local variables of the function. */
472 #define FRAME_POINTER_REGNUM 3
473
474 /* Value should be nonzero if functions must have frame pointers. */
475 #define FRAME_POINTER_REQUIRED \
476 (current_function_calls_alloca)
477
478 /* C statement to store the difference between the frame pointer
479 and the stack pointer values immediately after the function prologue.
480
481 Note, we always pretend that this is a leaf function because if
482 it's not, there's no point in trying to eliminate the
483 frame pointer. If it is a leaf function, we guessed right! */
484 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
485 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
486
487 /* Base register for access to arguments of the function. */
488 #define ARG_POINTER_REGNUM 3
489
490 /* Register in which static-chain is passed to a function. */
491 #define STATIC_CHAIN_REGNUM 29
492
493 /* Register which holds offset table for position-independent
494 data references. */
495
496 #define PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? 27 : 19)
497 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
498
499 /* Function to return the rtx used to save the pic offset table register
500 across function calls. */
501 extern struct rtx_def *hppa_pic_save_rtx PARAMS ((void));
502
503 #define DEFAULT_PCC_STRUCT_RETURN 0
504
505 /* SOM ABI says that objects larger than 64 bits are returned in memory.
506 PA64 ABI says that objects larger than 128 bits are returned in memory.
507 Note, int_size_in_bytes can return -1 if the size of the object is
508 variable or larger than the maximum value that can be expressed as
509 a HOST_WIDE_INT. */
510 #define RETURN_IN_MEMORY(TYPE) \
511 ((unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > (TARGET_64BIT ? 16 : 8))
512
513 /* Register in which address to store a structure value
514 is passed to a function. */
515 #define STRUCT_VALUE_REGNUM 28
516
517 /* Describe how we implement __builtin_eh_return. */
518 #define EH_RETURN_DATA_REGNO(N) \
519 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
520 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
521 #define EH_RETURN_HANDLER_RTX \
522 gen_rtx_MEM (word_mode, \
523 gen_rtx_PLUS (word_mode, frame_pointer_rtx, \
524 TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
525
526
527 /* Offset from the argument pointer register value to the top of
528 stack. This is different from FIRST_PARM_OFFSET because of the
529 frame marker. */
530 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
531 \f
532 /* The letters I, J, K, L and M in a register constraint string
533 can be used to stand for particular ranges of immediate operands.
534 This macro defines what the ranges are.
535 C is the letter, and VALUE is a constant value.
536 Return 1 if VALUE is in the range specified by C.
537
538 `I' is used for the 11 bit constants.
539 `J' is used for the 14 bit constants.
540 `K' is used for values that can be moved with a zdepi insn.
541 `L' is used for the 5 bit constants.
542 `M' is used for 0.
543 `N' is used for values with the least significant 11 bits equal to zero
544 and when sign extended from 32 to 64 bits the
545 value does not change.
546 `O' is used for numbers n such that n+1 is a power of 2.
547 */
548
549 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
550 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
551 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
552 : (C) == 'K' ? zdepi_cint_p (VALUE) \
553 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
554 : (C) == 'M' ? (VALUE) == 0 \
555 : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
556 || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) \
557 == (HOST_WIDE_INT) -1 << 31)) \
558 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
559 : (C) == 'P' ? and_mask_p (VALUE) \
560 : 0)
561
562 /* Similar, but for floating or large integer constants, and defining letters
563 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
564
565 For PA, `G' is the floating-point constant zero. `H' is undefined. */
566
567 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
568 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
569 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
570 : 0)
571
572 /* The class value for index registers, and the one for base regs. */
573 #define INDEX_REG_CLASS GENERAL_REGS
574 #define BASE_REG_CLASS GENERAL_REGS
575
576 #define FP_REG_CLASS_P(CLASS) \
577 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
578
579 /* True if register is floating-point. */
580 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
581
582 /* Given an rtx X being reloaded into a reg required to be
583 in class CLASS, return the class of reg to actually use.
584 In general this is just CLASS; but on some machines
585 in some cases it is preferable to use a more restrictive class. */
586 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
587
588 /* Return the register class of a scratch register needed to copy IN into
589 or out of a register in CLASS in MODE. If it can be done directly
590 NO_REGS is returned.
591
592 Avoid doing any work for the common case calls. */
593
594 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
595 ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG \
596 && REGNO (IN) < FIRST_PSEUDO_REGISTER) \
597 ? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
598
599 /* On the PA it is not possible to directly move data between
600 GENERAL_REGS and FP_REGS. */
601 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
602 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
603
604 /* Return the stack location to use for secondary memory needed reloads. */
605 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
606 gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
607
608 \f
609 /* Stack layout; function entry, exit and calling. */
610
611 /* Define this if pushing a word on the stack
612 makes the stack pointer a smaller address. */
613 /* #define STACK_GROWS_DOWNWARD */
614
615 /* Believe it or not. */
616 #define ARGS_GROW_DOWNWARD
617
618 /* Define this if the nominal address of the stack frame
619 is at the high-address end of the local variables;
620 that is, each additional local variable allocated
621 goes at a more negative offset in the frame. */
622 /* #define FRAME_GROWS_DOWNWARD */
623
624 /* Offset within stack frame to start allocating local variables at.
625 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
626 first local allocated. Otherwise, it is the offset to the BEGINNING
627 of the first local allocated. */
628 #define STARTING_FRAME_OFFSET 8
629
630 /* If we generate an insn to push BYTES bytes,
631 this says how many the stack pointer really advances by.
632 On the HP-PA, don't define this because there are no push insns. */
633 /* #define PUSH_ROUNDING(BYTES) */
634
635 /* Offset of first parameter from the argument pointer register value.
636 This value will be negated because the arguments grow down.
637 Also note that on STACK_GROWS_UPWARD machines (such as this one)
638 this is the distance from the frame pointer to the end of the first
639 argument, not it's beginning. To get the real offset of the first
640 argument, the size of the argument must be added. */
641
642 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
643
644 /* When a parameter is passed in a register, stack space is still
645 allocated for it. */
646 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
647
648 /* Define this if the above stack space is to be considered part of the
649 space allocated by the caller. */
650 #define OUTGOING_REG_PARM_STACK_SPACE
651
652 /* Keep the stack pointer constant throughout the function.
653 This is both an optimization and a necessity: longjmp
654 doesn't behave itself when the stack pointer moves within
655 the function! */
656 #define ACCUMULATE_OUTGOING_ARGS 1
657
658 /* The weird HPPA calling conventions require a minimum of 48 bytes on
659 the stack: 16 bytes for register saves, and 32 bytes for magic.
660 This is the difference between the logical top of stack and the
661 actual sp. */
662 #define STACK_POINTER_OFFSET \
663 (TARGET_64BIT ? -(current_function_outgoing_args_size + 16): -32)
664
665 #define STACK_DYNAMIC_OFFSET(FNDECL) \
666 (TARGET_64BIT \
667 ? (STACK_POINTER_OFFSET) \
668 : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
669
670 /* Value is 1 if returning from a function call automatically
671 pops the arguments described by the number-of-args field in the call.
672 FUNDECL is the declaration node of the function (as a tree),
673 FUNTYPE is the data type of the function (as a tree),
674 or for a library call it is an identifier node for the subroutine name. */
675
676 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
677
678 /* Define how to find the value returned by a function.
679 VALTYPE is the data type of the value (as a tree).
680 If the precise function being called is known, FUNC is its FUNCTION_DECL;
681 otherwise, FUNC is 0. */
682
683 /* On the HP-PA the value is found in register(s) 28(-29), unless
684 the mode is SF or DF. Then the value is returned in fr4 (32, ) */
685
686 /* This must perform the same promotions as PROMOTE_MODE, else
687 PROMOTE_FUNCTION_RETURN will not work correctly. */
688 #define FUNCTION_VALUE(VALTYPE, FUNC) \
689 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
690 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
691 || POINTER_TYPE_P (VALTYPE)) \
692 ? word_mode : TYPE_MODE (VALTYPE), \
693 TREE_CODE (VALTYPE) == REAL_TYPE && !TARGET_SOFT_FLOAT ? 32 : 28)
694
695 /* Define how to find the value returned by a library function
696 assuming the value has mode MODE. */
697
698 #define LIBCALL_VALUE(MODE) \
699 gen_rtx_REG (MODE, \
700 (! TARGET_SOFT_FLOAT \
701 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
702
703 /* 1 if N is a possible register number for a function value
704 as seen by the caller. */
705
706 #define FUNCTION_VALUE_REGNO_P(N) \
707 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
708
709 \f
710 /* Define a data type for recording info about an argument list
711 during the scan of that argument list. This data type should
712 hold all necessary information about the function itself
713 and about the args processed so far, enough to enable macros
714 such as FUNCTION_ARG to determine where the next arg should go.
715
716 On the HP-PA, this is a single integer, which is a number of words
717 of arguments scanned so far (including the invisible argument,
718 if any, which holds the structure-value-address).
719 Thus 4 or more means all following args should go on the stack. */
720
721 struct hppa_args {int words, nargs_prototype, indirect; };
722
723 #define CUMULATIVE_ARGS struct hppa_args
724
725 /* Initialize a variable CUM of type CUMULATIVE_ARGS
726 for a call to a function whose data type is FNTYPE.
727 For a library call, FNTYPE is 0. */
728
729 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
730 (CUM).words = 0, \
731 (CUM).indirect = INDIRECT, \
732 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
733 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
734 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
735 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
736 : 0)
737
738
739
740 /* Similar, but when scanning the definition of a procedure. We always
741 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
742
743 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
744 (CUM).words = 0, \
745 (CUM).indirect = 0, \
746 (CUM).nargs_prototype = 1000
747
748 /* Figure out the size in words of the function argument. */
749
750 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
751 ((((MODE) != BLKmode \
752 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
753 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
754
755 /* Update the data in CUM to advance over an argument
756 of mode MODE and data type TYPE.
757 (TYPE is null for libcalls where that information may not be available.) */
758
759 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
760 { (CUM).nargs_prototype--; \
761 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
762 + (((CUM).words & 01) && (TYPE) != 0 \
763 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
764 }
765
766 /* Determine where to put an argument to a function.
767 Value is zero to push the argument on the stack,
768 or a hard register in which to store the argument.
769
770 MODE is the argument's machine mode.
771 TYPE is the data type of the argument (as a tree).
772 This is null for libcalls where that information may
773 not be available.
774 CUM is a variable of type CUMULATIVE_ARGS which gives info about
775 the preceding args and about the function being called.
776 NAMED is nonzero if this argument is a named parameter
777 (otherwise it is an extra parameter matching an ellipsis).
778
779 On the HP-PA the first four words of args are normally in registers
780 and the rest are pushed. But any arg that won't entirely fit in regs
781 is pushed.
782
783 Arguments passed in registers are either 1 or 2 words long.
784
785 The caller must make a distinction between calls to explicitly named
786 functions and calls through pointers to functions -- the conventions
787 are different! Calls through pointers to functions only use general
788 registers for the first four argument words.
789
790 Of course all this is different for the portable runtime model
791 HP wants everyone to use for ELF. Ugh. Here's a quick description
792 of how it's supposed to work.
793
794 1) callee side remains unchanged. It expects integer args to be
795 in the integer registers, float args in the float registers and
796 unnamed args in integer registers.
797
798 2) caller side now depends on if the function being called has
799 a prototype in scope (rather than if it's being called indirectly).
800
801 2a) If there is a prototype in scope, then arguments are passed
802 according to their type (ints in integer registers, floats in float
803 registers, unnamed args in integer registers.
804
805 2b) If there is no prototype in scope, then floating point arguments
806 are passed in both integer and float registers. egad.
807
808 FYI: The portable parameter passing conventions are almost exactly like
809 the standard parameter passing conventions on the RS6000. That's why
810 you'll see lots of similar code in rs6000.h. */
811
812 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
813
814 /* Do not expect to understand this without reading it several times. I'm
815 tempted to try and simply it, but I worry about breaking something. */
816
817 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
818 function_arg (&CUM, MODE, TYPE, NAMED, 0)
819
820 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
821 function_arg (&CUM, MODE, TYPE, NAMED, 1)
822
823 /* For an arg passed partly in registers and partly in memory,
824 this is the number of registers used.
825 For args passed entirely in registers or entirely in memory, zero. */
826
827 /* For PA32 there are never split arguments. PA64, on the other hand, can
828 pass arguments partially in registers and partially in memory. */
829 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
830 (TARGET_64BIT ? function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED) : 0)
831
832 /* If defined, a C expression that gives the alignment boundary, in
833 bits, of an argument with the specified mode and type. If it is
834 not defined, `PARM_BOUNDARY' is used for all arguments. */
835
836 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
837 (((TYPE) != 0) \
838 ? ((integer_zerop (TYPE_SIZE (TYPE)) \
839 || ! TREE_CONSTANT (TYPE_SIZE (TYPE))) \
840 ? BITS_PER_UNIT \
841 : (((int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) \
842 / UNITS_PER_WORD) * BITS_PER_WORD) \
843 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
844 ? PARM_BOUNDARY : GET_MODE_ALIGNMENT(MODE)))
845
846 /* Arguments larger than eight bytes are passed by invisible reference */
847
848 /* PA64 does not pass anything by invisible reference. */
849 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
850 (TARGET_64BIT \
851 ? 0 \
852 : (((TYPE) && int_size_in_bytes (TYPE) > 8) \
853 || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
854
855 /* PA64 does not pass anything by invisible reference.
856 This should be undef'ed for 64bit, but we'll see if this works. The
857 problem is that we can't test TARGET_64BIT from the preprocessor. */
858 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
859 (TARGET_64BIT \
860 ? 0 \
861 : (((TYPE) && int_size_in_bytes (TYPE) > 8) \
862 || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
863
864 \f
865 extern GTY(()) rtx hppa_compare_op0;
866 extern GTY(()) rtx hppa_compare_op1;
867 extern enum cmp_type hppa_branch_type;
868
869 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
870 pa_asm_output_mi_thunk (FILE, THUNK_FNDECL, DELTA, FUNCTION)
871
872 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
873 as assembly via FUNCTION_PROFILER. Just output a local label.
874 We can't use the function label because the GAS SOM target can't
875 handle the difference of a global symbol and a local symbol. */
876
877 #ifndef FUNC_BEGIN_PROLOG_LABEL
878 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
879 #endif
880
881 #define FUNCTION_PROFILER(FILE, LABEL) \
882 ASM_OUTPUT_INTERNAL_LABEL (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
883
884 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
885 void hppa_profile_hook PARAMS ((int label_no));
886
887 /* The profile counter if emitted must come before the prologue. */
888 #define PROFILE_BEFORE_PROLOGUE 1
889
890 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
891 the stack pointer does not matter. The value is tested only in
892 functions that have frame pointers.
893 No definition is equivalent to always zero. */
894
895 extern int may_call_alloca;
896
897 #define EXIT_IGNORE_STACK \
898 (get_frame_size () != 0 \
899 || current_function_calls_alloca || current_function_outgoing_args_size)
900
901 /* Output assembler code for a block containing the constant parts
902 of a trampoline, leaving space for the variable parts.\
903
904 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
905 and then branches to the specified routine.
906
907 This code template is copied from text segment to stack location
908 and then patched with INITIALIZE_TRAMPOLINE to contain
909 valid values, and then entered as a subroutine.
910
911 It is best to keep this as small as possible to avoid having to
912 flush multiple lines in the cache. */
913
914 #define TRAMPOLINE_TEMPLATE(FILE) \
915 { \
916 if (! TARGET_64BIT) \
917 { \
918 fputs ("\tldw 36(%r22),%r21\n", FILE); \
919 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
920 if (ASSEMBLER_DIALECT == 0) \
921 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
922 else \
923 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
924 fputs ("\tldw 4(%r21),%r19\n", FILE); \
925 fputs ("\tldw 0(%r21),%r21\n", FILE); \
926 fputs ("\tldsid (%r21),%r1\n", FILE); \
927 fputs ("\tmtsp %r1,%sr0\n", FILE); \
928 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
929 fputs ("\tldw 40(%r22),%r29\n", FILE); \
930 fputs ("\t.word 0\n", FILE); \
931 fputs ("\t.word 0\n", FILE); \
932 fputs ("\t.word 0\n", FILE); \
933 fputs ("\t.word 0\n", FILE); \
934 } \
935 else \
936 { \
937 fputs ("\t.dword 0\n", FILE); \
938 fputs ("\t.dword 0\n", FILE); \
939 fputs ("\t.dword 0\n", FILE); \
940 fputs ("\t.dword 0\n", FILE); \
941 fputs ("\tmfia %r31\n", FILE); \
942 fputs ("\tldd 24(%r31),%r1\n", FILE); \
943 fputs ("\tldd 24(%r1),%r27\n", FILE); \
944 fputs ("\tldd 16(%r1),%r1\n", FILE); \
945 fputs ("\tbve (%r1)\n", FILE); \
946 fputs ("\tldd 32(%r31),%r31\n", FILE); \
947 fputs ("\t.dword 0 ; fptr\n", FILE); \
948 fputs ("\t.dword 0 ; static link\n", FILE); \
949 } \
950 }
951
952 /* Length in units of the trampoline for entering a nested function.
953
954 Flush the cache entries corresponding to the first and last addresses
955 of the trampoline. This is necessary as the trampoline may cross two
956 cache lines.
957
958 If the code part of the trampoline ever grows to > 32 bytes, then it
959 will become necessary to hack on the cacheflush pattern in pa.md. */
960
961 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
962
963 /* Emit RTL insns to initialize the variable parts of a trampoline.
964 FNADDR is an RTX for the address of the function's pure code.
965 CXT is an RTX for the static chain value for the function.
966
967 Move the function address to the trampoline template at offset 36.
968 Move the static chain value to trampoline template at offset 40.
969 Move the trampoline address to trampoline template at offset 44.
970 Move r19 to trampoline template at offset 48. The latter two
971 words create a plabel for the indirect call to the trampoline. */
972
973 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
974 { \
975 if (! TARGET_64BIT) \
976 { \
977 rtx start_addr, end_addr; \
978 \
979 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
980 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
981 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
982 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
983 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
984 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (TRAMP)); \
985 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
986 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), \
987 gen_rtx_REG (Pmode, 19)); \
988 /* fdc and fic only use registers for the address to flush, \
989 they do not accept integer displacements. */ \
990 start_addr = force_reg (Pmode, (TRAMP)); \
991 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
992 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
993 end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
994 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
995 gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
996 } \
997 else \
998 { \
999 rtx start_addr, end_addr; \
1000 \
1001 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
1002 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
1003 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
1004 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
1005 /* Create a fat pointer for the trampoline. */ \
1006 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1007 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1008 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), end_addr); \
1009 end_addr = gen_rtx_REG (Pmode, 27); \
1010 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1011 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), end_addr); \
1012 /* fdc and fic only use registers for the address to flush, \
1013 they do not accept integer displacements. */ \
1014 start_addr = force_reg (Pmode, (TRAMP)); \
1015 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1016 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
1017 end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
1018 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
1019 gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
1020 } \
1021 }
1022
1023 /* Perform any machine-specific adjustment in the address of the trampoline.
1024 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1025 Adjust the trampoline address to point to the plabel at offset 44. */
1026
1027 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1028 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1029
1030 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
1031 reference the 4 integer arg registers and 4 fp arg registers.
1032 Ordinarily they are not call used registers, but they are for
1033 _builtin_saveregs, so we must make this explicit. */
1034
1035 #define EXPAND_BUILTIN_SAVEREGS() hppa_builtin_saveregs ()
1036
1037 /* Implement `va_start' for varargs and stdarg. */
1038
1039 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1040 hppa_va_start (valist, nextarg)
1041
1042 /* Implement `va_arg'. */
1043
1044 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1045 hppa_va_arg (valist, type)
1046 \f
1047 /* Addressing modes, and classification of registers for them.
1048
1049 Using autoincrement addressing modes on PA8000 class machines is
1050 not profitable. */
1051
1052 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1053 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1054
1055 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1056 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1057
1058 /* Macros to check register numbers against specific register classes. */
1059
1060 /* These assume that REGNO is a hard or pseudo reg number.
1061 They give nonzero only if REGNO is a hard reg of the suitable class
1062 or a pseudo reg currently allocated to a suitable hard reg.
1063 Since they use reg_renumber, they are safe only once reg_renumber
1064 has been allocated, which happens in local-alloc.c. */
1065
1066 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1067 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1068 #define REGNO_OK_FOR_BASE_P(REGNO) \
1069 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1070 #define REGNO_OK_FOR_FP_P(REGNO) \
1071 (FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO]))
1072
1073 /* Now macros that check whether X is a register and also,
1074 strictly, whether it is in a specified class.
1075
1076 These macros are specific to the HP-PA, and may be used only
1077 in code for printing assembler insns and in conditions for
1078 define_optimization. */
1079
1080 /* 1 if X is an fp register. */
1081
1082 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1083 \f
1084 /* Maximum number of registers that can appear in a valid memory address. */
1085
1086 #define MAX_REGS_PER_ADDRESS 2
1087
1088 /* Recognize any constant value that is a valid address except
1089 for symbolic addresses. We get better CSE by rejecting them
1090 here and allowing hppa_legitimize_address to break them up. We
1091 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1092
1093 #define CONSTANT_ADDRESS_P(X) \
1094 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1095 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1096 || GET_CODE (X) == HIGH) \
1097 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1098
1099 /* Include all constant integers and constant doubles, but not
1100 floating-point, except for floating-point zero.
1101
1102 Reject LABEL_REFs if we're not using gas or the new HP assembler.
1103
1104 ?!? For now also reject CONST_DOUBLES in 64bit mode. This will need
1105 further work. */
1106 #ifndef NEW_HP_ASSEMBLER
1107 #define NEW_HP_ASSEMBLER 0
1108 #endif
1109 #define LEGITIMATE_CONSTANT_P(X) \
1110 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1111 || (X) == CONST0_RTX (GET_MODE (X))) \
1112 && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF) \
1113 && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE) \
1114 && !(TARGET_64BIT && GET_CODE (X) == CONST_INT \
1115 && !(HOST_BITS_PER_WIDE_INT <= 32 \
1116 || (INTVAL (X) >= (HOST_WIDE_INT) -32 << 31 \
1117 && INTVAL (X) < (HOST_WIDE_INT) 32 << 31) \
1118 || cint_ok_for_move (INTVAL (X)))) \
1119 && !function_label_operand (X, VOIDmode))
1120
1121 /* Subroutine for EXTRA_CONSTRAINT.
1122
1123 Return 1 iff OP is a pseudo which did not get a hard register and
1124 we are running the reload pass. */
1125
1126 #define IS_RELOADING_PSEUDO_P(OP) \
1127 ((reload_in_progress \
1128 && GET_CODE (OP) == REG \
1129 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1130 && reg_renumber [REGNO (OP)] < 0))
1131
1132 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1133
1134 For the HPPA, `Q' means that this is a memory operand but not a
1135 symbolic memory operand. Note that an unassigned pseudo register
1136 is such a memory operand. Needed because reload will generate
1137 these things in insns and then not re-recognize the insns, causing
1138 constrain_operands to fail.
1139
1140 `R' is used for scaled indexed addresses.
1141
1142 `S' is the constant 31.
1143
1144 `T' is for fp loads and stores. */
1145 #define EXTRA_CONSTRAINT(OP, C) \
1146 ((C) == 'Q' ? \
1147 (IS_RELOADING_PSEUDO_P (OP) \
1148 || (GET_CODE (OP) == MEM \
1149 && (memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1150 || reload_in_progress) \
1151 && ! symbolic_memory_operand (OP, VOIDmode) \
1152 && !(GET_CODE (XEXP (OP, 0)) == PLUS \
1153 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1154 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT))))\
1155 : ((C) == 'R' ? \
1156 (GET_CODE (OP) == MEM \
1157 && GET_CODE (XEXP (OP, 0)) == PLUS \
1158 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT \
1159 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT) \
1160 && (move_operand (OP, GET_MODE (OP)) \
1161 || memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1162 || reload_in_progress)) \
1163 : ((C) == 'T' ? \
1164 (GET_CODE (OP) == MEM \
1165 /* Using DFmode forces only short displacements \
1166 to be recognized as valid in reg+d addresses. \
1167 However, this is not necessary for PA2.0 since\
1168 it has long FP loads/stores. */ \
1169 && memory_address_p ((TARGET_PA_20 \
1170 ? GET_MODE (OP) \
1171 : DFmode), \
1172 XEXP (OP, 0)) \
1173 && !(GET_CODE (XEXP (OP, 0)) == LO_SUM \
1174 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1175 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0))\
1176 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC\
1177 && GET_MODE (XEXP (OP, 0)) == Pmode) \
1178 && !(GET_CODE (XEXP (OP, 0)) == PLUS \
1179 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1180 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT)))\
1181 : ((C) == 'U' ? \
1182 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) \
1183 : ((C) == 'A' ? \
1184 (GET_CODE (OP) == MEM \
1185 && GET_CODE (XEXP (OP, 0)) == LO_SUM \
1186 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1187 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0)) \
1188 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC \
1189 && GET_MODE (XEXP (OP, 0)) == Pmode) \
1190 : ((C) == 'S' ? \
1191 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) : 0))))))
1192
1193
1194 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1195 and check its validity for a certain class.
1196 We have two alternate definitions for each of them.
1197 The usual definition accepts all pseudo regs; the other rejects
1198 them unless they have been allocated suitable hard regs.
1199 The symbol REG_OK_STRICT causes the latter definition to be used.
1200
1201 Most source files want to accept pseudo regs in the hope that
1202 they will get allocated to the class that the insn wants them to be in.
1203 Source files for reload pass need to be strict.
1204 After reload, it makes no difference, since pseudo regs have
1205 been eliminated by then. */
1206
1207 #ifndef REG_OK_STRICT
1208
1209 /* Nonzero if X is a hard reg that can be used as an index
1210 or if it is a pseudo reg. */
1211 #define REG_OK_FOR_INDEX_P(X) \
1212 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1213 /* Nonzero if X is a hard reg that can be used as a base reg
1214 or if it is a pseudo reg. */
1215 #define REG_OK_FOR_BASE_P(X) \
1216 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1217
1218 #else
1219
1220 /* Nonzero if X is a hard reg that can be used as an index. */
1221 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1222 /* Nonzero if X is a hard reg that can be used as a base reg. */
1223 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1224
1225 #endif
1226 \f
1227 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1228 that is a valid memory address for an instruction.
1229 The MODE argument is the machine mode for the MEM expression
1230 that wants to use this address.
1231
1232 On the HP-PA, the actual legitimate addresses must be
1233 REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
1234 But we can treat a SYMBOL_REF as legitimate if it is part of this
1235 function's constant-pool, because such addresses can actually
1236 be output as REG+SMALLINT.
1237
1238 Note we only allow 5 bit immediates for access to a constant address;
1239 doing so avoids losing for loading/storing a FP register at an address
1240 which will not fit in 5 bits. */
1241
1242 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1243 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1244
1245 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1246 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1247
1248 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1249 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1250
1251 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1252 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1253
1254 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1255 { \
1256 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1257 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1258 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1259 && REG_P (XEXP (X, 0)) \
1260 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1261 goto ADDR; \
1262 else if (GET_CODE (X) == PLUS) \
1263 { \
1264 rtx base = 0, index = 0; \
1265 if (REG_P (XEXP (X, 0)) \
1266 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1267 base = XEXP (X, 0), index = XEXP (X, 1); \
1268 else if (REG_P (XEXP (X, 1)) \
1269 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1270 base = XEXP (X, 1), index = XEXP (X, 0); \
1271 if (base != 0) \
1272 if (GET_CODE (index) == CONST_INT \
1273 && ((INT_14_BITS (index) \
1274 && (TARGET_SOFT_FLOAT \
1275 || (TARGET_PA_20 \
1276 && ((MODE == SFmode \
1277 && (INTVAL (index) % 4) == 0)\
1278 || (MODE == DFmode \
1279 && (INTVAL (index) % 8) == 0)))\
1280 || ((MODE) != SFmode && (MODE) != DFmode))) \
1281 || INT_5_BITS (index))) \
1282 goto ADDR; \
1283 if (! TARGET_SOFT_FLOAT \
1284 && ! TARGET_DISABLE_INDEXING \
1285 && base \
1286 && ((MODE) == SFmode || (MODE) == DFmode) \
1287 && GET_CODE (index) == MULT \
1288 && GET_CODE (XEXP (index, 0)) == REG \
1289 && REG_OK_FOR_BASE_P (XEXP (index, 0)) \
1290 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1291 && INTVAL (XEXP (index, 1)) == ((MODE) == SFmode ? 4 : 8))\
1292 goto ADDR; \
1293 } \
1294 else if (GET_CODE (X) == LO_SUM \
1295 && GET_CODE (XEXP (X, 0)) == REG \
1296 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1297 && CONSTANT_P (XEXP (X, 1)) \
1298 && (TARGET_SOFT_FLOAT \
1299 /* We can allow symbolic LO_SUM addresses\
1300 for PA2.0. */ \
1301 || (TARGET_PA_20 \
1302 && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1303 || ((MODE) != SFmode \
1304 && (MODE) != DFmode))) \
1305 goto ADDR; \
1306 else if (GET_CODE (X) == LO_SUM \
1307 && GET_CODE (XEXP (X, 0)) == SUBREG \
1308 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1309 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1310 && CONSTANT_P (XEXP (X, 1)) \
1311 && (TARGET_SOFT_FLOAT \
1312 /* We can allow symbolic LO_SUM addresses\
1313 for PA2.0. */ \
1314 || (TARGET_PA_20 \
1315 && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1316 || ((MODE) != SFmode \
1317 && (MODE) != DFmode))) \
1318 goto ADDR; \
1319 else if (GET_CODE (X) == LABEL_REF \
1320 || (GET_CODE (X) == CONST_INT \
1321 && INT_5_BITS (X))) \
1322 goto ADDR; \
1323 /* Needed for -fPIC */ \
1324 else if (GET_CODE (X) == LO_SUM \
1325 && GET_CODE (XEXP (X, 0)) == REG \
1326 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1327 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1328 && (TARGET_SOFT_FLOAT \
1329 || TARGET_PA_20 \
1330 || ((MODE) != SFmode \
1331 && (MODE) != DFmode))) \
1332 goto ADDR; \
1333 }
1334
1335 /* Look for machine dependent ways to make the invalid address AD a
1336 valid address.
1337
1338 For the PA, transform:
1339
1340 memory(X + <large int>)
1341
1342 into:
1343
1344 if (<large int> & mask) >= 16
1345 Y = (<large int> & ~mask) + mask + 1 Round up.
1346 else
1347 Y = (<large int> & ~mask) Round down.
1348 Z = X + Y
1349 memory (Z + (<large int> - Y));
1350
1351 This makes reload inheritance and reload_cse work better since Z
1352 can be reused.
1353
1354 There may be more opportunities to improve code with this hook. */
1355 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1356 do { \
1357 int offset, newoffset, mask; \
1358 rtx new, temp = NULL_RTX; \
1359 \
1360 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1361 ? (TARGET_PA_20 ? 0x3fff : 0x1f) : 0x3fff); \
1362 \
1363 if (optimize \
1364 && GET_CODE (AD) == PLUS) \
1365 temp = simplify_binary_operation (PLUS, Pmode, \
1366 XEXP (AD, 0), XEXP (AD, 1)); \
1367 \
1368 new = temp ? temp : AD; \
1369 \
1370 if (optimize \
1371 && GET_CODE (new) == PLUS \
1372 && GET_CODE (XEXP (new, 0)) == REG \
1373 && GET_CODE (XEXP (new, 1)) == CONST_INT) \
1374 { \
1375 offset = INTVAL (XEXP ((new), 1)); \
1376 \
1377 /* Choose rounding direction. Round up if we are >= halfway. */ \
1378 if ((offset & mask) >= ((mask + 1) / 2)) \
1379 newoffset = (offset & ~mask) + mask + 1; \
1380 else \
1381 newoffset = offset & ~mask; \
1382 \
1383 if (newoffset != 0 \
1384 && VAL_14_BITS_P (newoffset)) \
1385 { \
1386 \
1387 temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \
1388 GEN_INT (newoffset)); \
1389 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1390 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1391 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1392 (OPNUM), (TYPE)); \
1393 goto WIN; \
1394 } \
1395 } \
1396 } while (0)
1397
1398
1399
1400 \f
1401 /* Try machine-dependent ways of modifying an illegitimate address
1402 to be legitimate. If we find one, return the new, valid address.
1403 This macro is used in only one place: `memory_address' in explow.c.
1404
1405 OLDX is the address as it was before break_out_memory_refs was called.
1406 In some cases it is useful to look at this to decide what needs to be done.
1407
1408 MODE and WIN are passed so that this macro can use
1409 GO_IF_LEGITIMATE_ADDRESS.
1410
1411 It is always safe for this macro to do nothing. It exists to recognize
1412 opportunities to optimize the output. */
1413
1414 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1415 { rtx orig_x = (X); \
1416 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1417 if ((X) != orig_x && memory_address_p (MODE, X)) \
1418 goto WIN; }
1419
1420 /* Go to LABEL if ADDR (a legitimate address expression)
1421 has an effect that depends on the machine mode it is used for. */
1422
1423 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1424 if (GET_CODE (ADDR) == PRE_DEC \
1425 || GET_CODE (ADDR) == POST_DEC \
1426 || GET_CODE (ADDR) == PRE_INC \
1427 || GET_CODE (ADDR) == POST_INC) \
1428 goto LABEL
1429 \f
1430 #define TARGET_ASM_SELECT_SECTION pa_select_section
1431
1432 /* Define this macro if references to a symbol must be treated
1433 differently depending on something about the variable or
1434 function named by the symbol (such as what section it is in).
1435
1436 The macro definition, if any, is executed immediately after the
1437 rtl for DECL or other node is created.
1438 The value of the rtl will be a `mem' whose address is a
1439 `symbol_ref'.
1440
1441 The usual thing for this macro to do is to a flag in the
1442 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1443 name string in the `symbol_ref' (if one bit is not enough
1444 information).
1445
1446 On the HP-PA we use this to indicate if a symbol is in text or
1447 data space. Also, function labels need special treatment. */
1448
1449 #define TEXT_SPACE_P(DECL)\
1450 (TREE_CODE (DECL) == FUNCTION_DECL \
1451 || (TREE_CODE (DECL) == VAR_DECL \
1452 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1453 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1454 && !flag_pic) \
1455 || (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'c' \
1456 && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
1457
1458 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1459
1460 /* Specify the machine mode that this machine uses
1461 for the index in the tablejump instruction. */
1462 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? TImode : DImode)
1463
1464 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
1465 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1466
1467 /* Define this as 1 if `char' should by default be signed; else as 0. */
1468 #define DEFAULT_SIGNED_CHAR 1
1469
1470 /* Max number of bytes we can move from memory to memory
1471 in one reasonably fast instruction. */
1472 #define MOVE_MAX 8
1473
1474 /* Higher than the default as we prefer to use simple move insns
1475 (better scheduling and delay slot filling) and because our
1476 built-in block move is really a 2X unrolled loop.
1477
1478 Believe it or not, this has to be big enough to allow for copying all
1479 arguments passed in registers to avoid infinite recursion during argument
1480 setup for a function call. Why? Consider how we copy the stack slots
1481 reserved for parameters when they may be trashed by a call. */
1482 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1483
1484 /* Define if operations between registers always perform the operation
1485 on the full register even if a narrower mode is specified. */
1486 #define WORD_REGISTER_OPERATIONS
1487
1488 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1489 will either zero-extend or sign-extend. The value of this macro should
1490 be the code that says which one of the two operations is implicitly
1491 done, NIL if none. */
1492 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1493
1494 /* Nonzero if access to memory by bytes is slow and undesirable. */
1495 #define SLOW_BYTE_ACCESS 1
1496
1497 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1498 is done just by pretending it is already truncated. */
1499 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1500
1501 /* We assume that the store-condition-codes instructions store 0 for false
1502 and some other value for true. This is the value stored for true. */
1503
1504 #define STORE_FLAG_VALUE 1
1505
1506 /* When a prototype says `char' or `short', really pass an `int'. */
1507 #define PROMOTE_PROTOTYPES 1
1508 #define PROMOTE_FUNCTION_RETURN 1
1509
1510 /* Specify the machine mode that pointers have.
1511 After generation of rtl, the compiler makes no further distinction
1512 between pointers and any other objects of this machine mode. */
1513 #define Pmode word_mode
1514
1515 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1516 return the mode to be used for the comparison. For floating-point, CCFPmode
1517 should be used. CC_NOOVmode should be used when the first operand is a
1518 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1519 needed. */
1520 #define SELECT_CC_MODE(OP,X,Y) \
1521 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1522
1523 /* A function address in a call instruction
1524 is a byte address (for indexing purposes)
1525 so give the MEM rtx a byte's mode. */
1526 #define FUNCTION_MODE SImode
1527
1528 /* Define this if addresses of constant functions
1529 shouldn't be put through pseudo regs where they can be cse'd.
1530 Desirable on machines where ordinary constants are expensive
1531 but a CALL with constant address is cheap. */
1532 #define NO_FUNCTION_CSE
1533
1534 /* Define this to be nonzero if shift instructions ignore all but the low-order
1535 few bits. */
1536 #define SHIFT_COUNT_TRUNCATED 1
1537
1538 /* Compute the cost of computing a constant rtl expression RTX
1539 whose rtx-code is CODE. The body of this macro is a portion
1540 of a switch statement. If the code is computed here,
1541 return it with a return statement. Otherwise, break from the switch. */
1542
1543 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1544 case CONST_INT: \
1545 if (INTVAL (RTX) == 0) return 0; \
1546 if (INT_14_BITS (RTX)) return 1; \
1547 case HIGH: \
1548 return 2; \
1549 case CONST: \
1550 case LABEL_REF: \
1551 case SYMBOL_REF: \
1552 return 4; \
1553 case CONST_DOUBLE: \
1554 if ((RTX == CONST0_RTX (DFmode) || RTX == CONST0_RTX (SFmode)) \
1555 && OUTER_CODE != SET) \
1556 return 0; \
1557 else \
1558 return 8;
1559
1560 #define ADDRESS_COST(RTX) \
1561 (GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
1562
1563 /* Compute extra cost of moving data between one register class
1564 and another.
1565
1566 Make moves from SAR so expensive they should never happen. We used to
1567 have 0xffff here, but that generates overflow in rare cases.
1568
1569 Copies involving a FP register and a non-FP register are relatively
1570 expensive because they must go through memory.
1571
1572 Other copies are reasonably cheap. */
1573 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1574 (CLASS1 == SHIFT_REGS ? 0x100 \
1575 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1576 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1577 : 2)
1578
1579
1580 /* Provide the costs of a rtl expression. This is in the body of a
1581 switch on CODE. The purpose for the cost of MULT is to encourage
1582 `synth_mult' to find a synthetic multiply when reasonable. */
1583
1584 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1585 case MULT: \
1586 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1587 return COSTS_N_INSNS (3); \
1588 return (TARGET_PA_11 && ! TARGET_DISABLE_FPREGS && ! TARGET_SOFT_FLOAT) \
1589 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (20); \
1590 case DIV: \
1591 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1592 return COSTS_N_INSNS (14); \
1593 case UDIV: \
1594 case MOD: \
1595 case UMOD: \
1596 return COSTS_N_INSNS (60); \
1597 case PLUS: /* this includes shNadd insns */ \
1598 case MINUS: \
1599 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1600 return COSTS_N_INSNS (3); \
1601 return COSTS_N_INSNS (1); \
1602 case ASHIFT: \
1603 case ASHIFTRT: \
1604 case LSHIFTRT: \
1605 return COSTS_N_INSNS (1);
1606
1607 /* Adjust the cost of branches. */
1608 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1609
1610 /* Handling the special cases is going to get too complicated for a macro,
1611 just call `pa_adjust_insn_length' to do the real work. */
1612 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1613 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1614
1615 /* Millicode insns are actually function calls with some special
1616 constraints on arguments and register usage.
1617
1618 Millicode calls always expect their arguments in the integer argument
1619 registers, and always return their result in %r29 (ret1). They
1620 are expected to clobber their arguments, %r1, %r29, and the return
1621 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1622
1623 This macro tells reorg that the references to arguments and
1624 millicode calls do not appear to happen until after the millicode call.
1625 This allows reorg to put insns which set the argument registers into the
1626 delay slot of the millicode call -- thus they act more like traditional
1627 CALL_INSNs.
1628
1629 Note we can not consider side effects of the insn to be delayed because
1630 the branch and link insn will clobber the return pointer. If we happened
1631 to use the return pointer in the delay slot of the call, then we lose.
1632
1633 get_attr_type will try to recognize the given insn, so make sure to
1634 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1635 in particular. */
1636 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1637
1638 \f
1639 /* Control the assembler format that we output. */
1640
1641 /* Output to assembler file text saying following lines
1642 may contain character constants, extra white space, comments, etc. */
1643
1644 #define ASM_APP_ON ""
1645
1646 /* Output to assembler file text saying following lines
1647 no longer contain unusual constructs. */
1648
1649 #define ASM_APP_OFF ""
1650
1651 /* Output deferred plabels at the end of the file. */
1652
1653 #define ASM_FILE_END(FILE) output_deferred_plabels (FILE)
1654
1655 /* This is how to output the definition of a user-level label named NAME,
1656 such as the label on a static function or variable NAME. */
1657
1658 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1659 do { assemble_name (FILE, NAME); \
1660 fputc ('\n', FILE); } while (0)
1661
1662 /* This is how to output a reference to a user-level label named NAME.
1663 `assemble_name' uses this. */
1664
1665 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1666 fprintf ((FILE), "%s", (NAME) + (FUNCTION_NAME_P (NAME) ? 1 : 0))
1667
1668 /* This is how to output an internal numbered label where
1669 PREFIX is the class of label and NUM is the number within the class. */
1670
1671 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1672 {fprintf (FILE, "%c$%s%04d\n", (PREFIX)[0], (PREFIX) + 1, NUM);}
1673
1674 /* This is how to store into the string LABEL
1675 the symbol_ref name of an internal numbered label where
1676 PREFIX is the class of label and NUM is the number within the class.
1677 This is suitable for output with `assemble_name'. */
1678
1679 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1680 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1681
1682 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1683
1684 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1685 output_ascii ((FILE), (P), (SIZE))
1686
1687 /* This is how to output an element of a case-vector that is absolute.
1688 Note that this method makes filling these branch delay slots
1689 impossible. */
1690
1691 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1692 if (TARGET_BIG_SWITCH) \
1693 fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldil LR'L$%04d,%%r1\n\tbe RR'L$%04d(%%sr4,%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE, VALUE); \
1694 else \
1695 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1696
1697 /* Jump tables are executable code and live in the TEXT section on the PA. */
1698 #define JUMP_TABLES_IN_TEXT_SECTION 1
1699
1700 /* This is how to output an element of a case-vector that is relative.
1701 This must be defined correctly as it is used when generating PIC code.
1702
1703 I believe it safe to use the same definition as ASM_OUTPUT_ADDR_VEC_ELT
1704 on the PA since ASM_OUTPUT_ADDR_VEC_ELT uses pc-relative jump instructions
1705 rather than a table of absolute addresses. */
1706
1707 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1708 if (TARGET_BIG_SWITCH) \
1709 fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldw T'L$%04d(%%r19),%%r1\n\tbv %%r0(%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE); \
1710 else \
1711 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1712
1713 /* This is how to output an assembler line
1714 that says to advance the location counter
1715 to a multiple of 2**LOG bytes. */
1716
1717 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1718 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1719
1720 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1721 fprintf (FILE, "\t.blockz %d\n", (SIZE))
1722
1723 /* This says how to output an assembler line to define a global common symbol
1724 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1725
1726 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED) \
1727 { bss_section (); \
1728 assemble_name ((FILE), (NAME)); \
1729 fputs ("\t.comm ", (FILE)); \
1730 fprintf ((FILE), "%d\n", MAX ((SIZE), ((ALIGNED) / BITS_PER_UNIT)));}
1731
1732 /* This says how to output an assembler line to define a local common symbol
1733 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1734
1735 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1736 { bss_section (); \
1737 fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT)); \
1738 assemble_name ((FILE), (NAME)); \
1739 fprintf ((FILE), "\n\t.block %d\n", (SIZE));}
1740
1741 /* Store in OUTPUT a string (made with alloca) containing
1742 an assembler-name for a local static variable named NAME.
1743 LABELNO is an integer which is different for each call. */
1744
1745 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1746 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
1747 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1748
1749 /* All HP assemblers use "!" to separate logical lines. */
1750 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1751
1752 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1753 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1754
1755 /* Print operand X (an rtx) in assembler syntax to file FILE.
1756 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1757 For `%' followed by punctuation, CODE is the punctuation and X is null.
1758
1759 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1760 and an immediate zero should be represented as `r0'.
1761
1762 Several % codes are defined:
1763 O an operation
1764 C compare conditions
1765 N extract conditions
1766 M modifier to handle preincrement addressing for memory refs.
1767 F modifier to handle preincrement addressing for fp memory refs */
1768
1769 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1770
1771 \f
1772 /* Print a memory address as an operand to reference that memory location. */
1773
1774 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1775 { register rtx addr = ADDR; \
1776 register rtx base; \
1777 int offset; \
1778 switch (GET_CODE (addr)) \
1779 { \
1780 case REG: \
1781 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1782 break; \
1783 case PLUS: \
1784 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1785 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
1786 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1787 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
1788 else \
1789 abort (); \
1790 fprintf (FILE, "%d(%s)", offset, reg_names [REGNO (base)]); \
1791 break; \
1792 case LO_SUM: \
1793 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1794 fputs ("R'", FILE); \
1795 else if (flag_pic == 0) \
1796 fputs ("RR'", FILE); \
1797 else \
1798 fputs ("RT'", FILE); \
1799 output_global_address (FILE, XEXP (addr, 1), 0); \
1800 fputs ("(", FILE); \
1801 output_operand (XEXP (addr, 0), 0); \
1802 fputs (")", FILE); \
1803 break; \
1804 case CONST_INT: \
1805 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr)); \
1806 fprintf (FILE, "(%%r0)"); \
1807 break; \
1808 default: \
1809 output_addr_const (FILE, addr); \
1810 }}
1811
1812 \f
1813 /* Find the return address associated with the frame given by
1814 FRAMEADDR. */
1815 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1816 (return_addr_rtx (COUNT, FRAMEADDR))
1817
1818 /* Used to mask out junk bits from the return address, such as
1819 processor state, interrupt status, condition codes and the like. */
1820 #define MASK_RETURN_ADDR \
1821 /* The privilege level is in the two low order bits, mask em out \
1822 of the return address. */ \
1823 (GEN_INT (-4))
1824
1825 /* The number of Pmode words for the setjmp buffer. */
1826 #define JMP_BUF_SIZE 50
1827
1828 /* Only direct calls to static functions are allowed to be sibling (tail)
1829 call optimized.
1830
1831 This restriction is necessary because some linker generated stubs will
1832 store return pointers into rp' in some cases which might clobber a
1833 live value already in rp'.
1834
1835 In a sibcall the current function and the target function share stack
1836 space. Thus if the path to the current function and the path to the
1837 target function save a value in rp', they save the value into the
1838 same stack slot, which has undesirable consequences.
1839
1840 Because of the deferred binding nature of shared libraries any function
1841 with external scope could be in a different load module and thus require
1842 rp' to be saved when calling that function. So sibcall optimizations
1843 can only be safe for static function.
1844
1845 Note that GCC never needs return value relocations, so we don't have to
1846 worry about static calls with return value relocations (which require
1847 saving rp').
1848
1849 It is safe to perform a sibcall optimization when the target function
1850 will never return. */
1851 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1852 (DECL \
1853 && ! TARGET_PORTABLE_RUNTIME \
1854 && ! TARGET_64BIT \
1855 && ! TREE_PUBLIC (DECL))
1856
1857 #define PREDICATE_CODES \
1858 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
1859 {"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT, \
1860 CONST_DOUBLE, CONST, HIGH, CONSTANT_P_RTX}}, \
1861 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
1862 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1863 {"reg_before_reload_operand", {REG, MEM}}, \
1864 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1865 {"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, MEM, CONST_INT, \
1866 CONST_DOUBLE}}, \
1867 {"move_operand", {SUBREG, REG, CONSTANT_P_RTX, CONST_INT, MEM}}, \
1868 {"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}}, \
1869 {"pic_label_operand", {LABEL_REF, CONST}}, \
1870 {"fp_reg_operand", {REG}}, \
1871 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1872 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
1873 {"pre_cint_operand", {CONST_INT}}, \
1874 {"post_cint_operand", {CONST_INT}}, \
1875 {"arith_double_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1876 {"ireg_or_int5_operand", {CONST_INT, REG}}, \
1877 {"int5_operand", {CONST_INT}}, \
1878 {"uint5_operand", {CONST_INT}}, \
1879 {"int11_operand", {CONST_INT}}, \
1880 {"uint32_operand", {CONST_INT, \
1881 HOST_BITS_PER_WIDE_INT > 32 ? 0 : CONST_DOUBLE}}, \
1882 {"arith5_operand", {SUBREG, REG, CONST_INT}}, \
1883 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1884 {"ior_operand", {CONST_INT}}, \
1885 {"lhs_lshift_cint_operand", {CONST_INT}}, \
1886 {"lhs_lshift_operand", {SUBREG, REG, CONST_INT}}, \
1887 {"arith32_operand", {SUBREG, REG, CONST_INT}}, \
1888 {"pc_or_label_operand", {PC, LABEL_REF}}, \
1889 {"plus_xor_ior_operator", {PLUS, XOR, IOR}}, \
1890 {"shadd_operand", {CONST_INT}}, \
1891 {"basereg_operand", {REG}}, \
1892 {"div_operand", {REG, CONST_INT}}, \
1893 {"ireg_operand", {REG}}, \
1894 {"cmpib_comparison_operator", {EQ, NE, LT, LE, LEU, \
1895 GT, GTU, GE}}, \
1896 {"movb_comparison_operator", {EQ, NE, LT, GE}},