]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/pa/pa.h
tm.texi (IS_ASM_LOGICAL_LINE_SEPARATOR): Document new argument.
[thirdparty/gcc.git] / gcc / config / pa / pa.h
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6 Software Science at the University of Utah.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 enum cmp_type /* comparison type */
25 {
26 CMP_SI, /* compare integers */
27 CMP_SF, /* compare single precision floats */
28 CMP_DF, /* compare double precision floats */
29 CMP_MAX /* max comparison type */
30 };
31
32 /* For long call handling. */
33 extern unsigned long total_code_bytes;
34
35 /* Which processor to schedule for. */
36
37 enum processor_type
38 {
39 PROCESSOR_700,
40 PROCESSOR_7100,
41 PROCESSOR_7100LC,
42 PROCESSOR_7200,
43 PROCESSOR_7300,
44 PROCESSOR_8000
45 };
46
47 /* For -mschedule= option. */
48 extern enum processor_type pa_cpu;
49
50 /* For -munix= option. */
51 extern int flag_pa_unix;
52
53 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
54
55 /* Print subsidiary information on the compiler version in use. */
56
57 #define TARGET_VERSION fputs (" (hppa)", stderr);
58
59 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
60
61 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
62 #ifndef TARGET_64BIT
63 #define TARGET_64BIT 0
64 #endif
65
66 /* Generate code for ELF32 ABI. */
67 #ifndef TARGET_ELF32
68 #define TARGET_ELF32 0
69 #endif
70
71 /* Generate code for SOM 32bit ABI. */
72 #ifndef TARGET_SOM
73 #define TARGET_SOM 0
74 #endif
75
76 /* HP-UX UNIX features. */
77 #ifndef TARGET_HPUX
78 #define TARGET_HPUX 0
79 #endif
80
81 /* HP-UX 10.10 UNIX 95 features. */
82 #ifndef TARGET_HPUX_10_10
83 #define TARGET_HPUX_10_10 0
84 #endif
85
86 /* HP-UX 11.* features (11.00, 11.11, 11.23, etc.) */
87 #ifndef TARGET_HPUX_11
88 #define TARGET_HPUX_11 0
89 #endif
90
91 /* HP-UX 11i multibyte and UNIX 98 extensions. */
92 #ifndef TARGET_HPUX_11_11
93 #define TARGET_HPUX_11_11 0
94 #endif
95
96 /* The following three defines are potential target switches. The current
97 defines are optimal given the current capabilities of GAS and GNU ld. */
98
99 /* Define to a C expression evaluating to true to use long absolute calls.
100 Currently, only the HP assembler and SOM linker support long absolute
101 calls. They are used only in non-pic code. */
102 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
103
104 /* Define to a C expression evaluating to true to use long pic symbol
105 difference calls. This is a call variant similar to the long pic
106 pc-relative call. Long pic symbol difference calls are only used with
107 the HP SOM linker. Currently, only the HP assembler supports these
108 calls. GAS doesn't allow an arbitrary difference of two symbols. */
109 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
110
111 /* Define to a C expression evaluating to true to use long pic
112 pc-relative calls. Long pic pc-relative calls are only used with
113 GAS. Currently, they are usable for calls within a module but
114 not for external calls. */
115 #define TARGET_LONG_PIC_PCREL_CALL 0
116
117 /* Define to a C expression evaluating to true to use SOM secondary
118 definition symbols for weak support. Linker support for secondary
119 definition symbols is buggy prior to HP-UX 11.X. */
120 #define TARGET_SOM_SDEF 0
121
122 /* Define to a C expression evaluating to true to save the entry value
123 of SP in the current frame marker. This is normally unnecessary.
124 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
125 HP compilers don't use this flag but it is supported by the assembler.
126 We set this flag to indicate that register %r3 has been saved at the
127 start of the frame. Thus, when the HP unwind library is used, we
128 need to generate additional code to save SP into the frame marker. */
129 #define TARGET_HPUX_UNWIND_LIBRARY 0
130
131 #ifndef TARGET_DEFAULT
132 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
133 #endif
134
135 #ifndef TARGET_CPU_DEFAULT
136 #define TARGET_CPU_DEFAULT 0
137 #endif
138
139 #ifndef TARGET_SCHED_DEFAULT
140 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
141 #endif
142
143 /* Support for a compile-time default CPU, et cetera. The rules are:
144 --with-schedule is ignored if -mschedule is specified.
145 --with-arch is ignored if -march is specified. */
146 #define OPTION_DEFAULT_SPECS \
147 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
148 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
149
150 /* Specify the dialect of assembler to use. New mnemonics is dialect one
151 and the old mnemonics are dialect zero. */
152 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
153
154 #define OVERRIDE_OPTIONS override_options ()
155
156 /* Override some settings from dbxelf.h. */
157
158 /* We do not have to be compatible with dbx, so we enable gdb extensions
159 by default. */
160 #define DEFAULT_GDB_EXTENSIONS 1
161
162 /* This used to be zero (no max length), but big enums and such can
163 cause huge strings which killed gas.
164
165 We also have to avoid lossage in dbxout.c -- it does not compute the
166 string size accurately, so we are real conservative here. */
167 #undef DBX_CONTIN_LENGTH
168 #define DBX_CONTIN_LENGTH 3000
169
170 /* GDB always assumes the current function's frame begins at the value
171 of the stack pointer upon entry to the current function. Accessing
172 local variables and parameters passed on the stack is done using the
173 base of the frame + an offset provided by GCC.
174
175 For functions which have frame pointers this method works fine;
176 the (frame pointer) == (stack pointer at function entry) and GCC provides
177 an offset relative to the frame pointer.
178
179 This loses for functions without a frame pointer; GCC provides an offset
180 which is relative to the stack pointer after adjusting for the function's
181 frame size. GDB would prefer the offset to be relative to the value of
182 the stack pointer at the function's entry. Yuk! */
183 #define DEBUGGER_AUTO_OFFSET(X) \
184 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
185 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
186
187 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
188 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
189 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
190
191 #define TARGET_CPU_CPP_BUILTINS() \
192 do { \
193 builtin_assert("cpu=hppa"); \
194 builtin_assert("machine=hppa"); \
195 builtin_define("__hppa"); \
196 builtin_define("__hppa__"); \
197 if (TARGET_PA_20) \
198 builtin_define("_PA_RISC2_0"); \
199 else if (TARGET_PA_11) \
200 builtin_define("_PA_RISC1_1"); \
201 else \
202 builtin_define("_PA_RISC1_0"); \
203 } while (0)
204
205 /* An old set of OS defines for various BSD-like systems. */
206 #define TARGET_OS_CPP_BUILTINS() \
207 do \
208 { \
209 builtin_define_std ("REVARGV"); \
210 builtin_define_std ("hp800"); \
211 builtin_define_std ("hp9000"); \
212 builtin_define_std ("hp9k8"); \
213 if (!c_dialect_cxx () && !flag_iso) \
214 builtin_define ("hppa"); \
215 builtin_define_std ("spectrum"); \
216 builtin_define_std ("unix"); \
217 builtin_assert ("system=bsd"); \
218 builtin_assert ("system=unix"); \
219 } \
220 while (0)
221
222 #define CC1_SPEC "%{pg:} %{p:}"
223
224 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
225
226 /* We don't want -lg. */
227 #ifndef LIB_SPEC
228 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
229 #endif
230
231 /* This macro defines command-line switches that modify the default
232 target name.
233
234 The definition is be an initializer for an array of structures. Each
235 array element has have three elements: the switch name, one of the
236 enumeration codes ADD or DELETE to indicate whether the string should be
237 inserted or deleted, and the string to be inserted or deleted. */
238 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
239
240 /* Make gcc agree with <machine/ansi.h> */
241
242 #define SIZE_TYPE "unsigned int"
243 #define PTRDIFF_TYPE "int"
244 #define WCHAR_TYPE "unsigned int"
245 #define WCHAR_TYPE_SIZE 32
246
247 /* Show we can debug even without a frame pointer. */
248 #define CAN_DEBUG_WITHOUT_FP
249 \f
250 /* target machine storage layout */
251 typedef struct machine_function GTY(())
252 {
253 /* Flag indicating that a .NSUBSPA directive has been output for
254 this function. */
255 int in_nsubspa;
256 } machine_function;
257
258 /* Define this macro if it is advisable to hold scalars in registers
259 in a wider mode than that declared by the program. In such cases,
260 the value is constrained to be within the bounds of the declared
261 type, but kept valid in the wider mode. The signedness of the
262 extension may differ from that of the type. */
263
264 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
265 if (GET_MODE_CLASS (MODE) == MODE_INT \
266 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
267 (MODE) = word_mode;
268
269 /* Define this if most significant bit is lowest numbered
270 in instructions that operate on numbered bit-fields. */
271 #define BITS_BIG_ENDIAN 1
272
273 /* Define this if most significant byte of a word is the lowest numbered. */
274 /* That is true on the HP-PA. */
275 #define BYTES_BIG_ENDIAN 1
276
277 /* Define this if most significant word of a multiword number is lowest
278 numbered. */
279 #define WORDS_BIG_ENDIAN 1
280
281 #define MAX_BITS_PER_WORD 64
282
283 /* Width of a word, in units (bytes). */
284 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
285
286 /* Minimum number of units in a word. If this is undefined, the default
287 is UNITS_PER_WORD. Otherwise, it is the constant value that is the
288 smallest value that UNITS_PER_WORD can have at run-time.
289
290 FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
291 building of various TImode routines in libgcc. The HP runtime
292 specification doesn't provide the alignment requirements and calling
293 conventions for TImode variables. */
294 #define MIN_UNITS_PER_WORD 4
295
296 /* The widest floating point format supported by the hardware. Note that
297 setting this influences some Ada floating point type sizes, currently
298 required for GNAT to operate properly. */
299 #define WIDEST_HARDWARE_FP_SIZE 64
300
301 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
302 #define PARM_BOUNDARY BITS_PER_WORD
303
304 /* Largest alignment required for any stack parameter, in bits.
305 Don't define this if it is equal to PARM_BOUNDARY */
306 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
307
308 /* Boundary (in *bits*) on which stack pointer is always aligned;
309 certain optimizations in combine depend on this.
310
311 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
312 the stack on the 32 and 64-bit ports, respectively. However, we
313 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
314 in main. Thus, we treat the former as the preferred alignment. */
315 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
316 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
317
318 /* Allocation boundary (in *bits*) for the code of a function. */
319 #define FUNCTION_BOUNDARY BITS_PER_WORD
320
321 /* Alignment of field after `int : 0' in a structure. */
322 #define EMPTY_FIELD_BOUNDARY 32
323
324 /* Every structure's size must be a multiple of this. */
325 #define STRUCTURE_SIZE_BOUNDARY 8
326
327 /* A bit-field declared as `int' forces `int' alignment for the struct. */
328 #define PCC_BITFIELD_TYPE_MATTERS 1
329
330 /* No data type wants to be aligned rounder than this. */
331 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
332
333 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
334 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
335 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
336
337 /* Make arrays of chars word-aligned for the same reasons. */
338 #define DATA_ALIGNMENT(TYPE, ALIGN) \
339 (TREE_CODE (TYPE) == ARRAY_TYPE \
340 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
341 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
342
343 /* Set this nonzero if move instructions will actually fail to work
344 when given unaligned data. */
345 #define STRICT_ALIGNMENT 1
346
347 /* Value is 1 if it is a good idea to tie two pseudo registers
348 when one has mode MODE1 and one has mode MODE2.
349 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
350 for any hard reg, then this must be 0 for correct output. */
351 #define MODES_TIEABLE_P(MODE1, MODE2) \
352 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
353
354 /* Specify the registers used for certain standard purposes.
355 The values of these macros are register numbers. */
356
357 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
358 /* #define PC_REGNUM */
359
360 /* Register to use for pushing function arguments. */
361 #define STACK_POINTER_REGNUM 30
362
363 /* Base register for access to local variables of the function. */
364 #define FRAME_POINTER_REGNUM 3
365
366 /* Value should be nonzero if functions must have frame pointers. */
367 #define FRAME_POINTER_REQUIRED \
368 (current_function_calls_alloca)
369
370 /* Don't allow hard registers to be renamed into r2 unless r2
371 is already live or already being saved (due to eh). */
372
373 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
374 ((NEW_REG) != 2 || df_regs_ever_live_p (2) || current_function_calls_eh_return)
375
376 /* C statement to store the difference between the frame pointer
377 and the stack pointer values immediately after the function prologue.
378
379 Note, we always pretend that this is a leaf function because if
380 it's not, there's no point in trying to eliminate the
381 frame pointer. If it is a leaf function, we guessed right! */
382 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
383 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
384
385 /* Base register for access to arguments of the function. */
386 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
387
388 /* Register in which static-chain is passed to a function. */
389 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
390
391 /* Register used to address the offset table for position-independent
392 data references. */
393 #define PIC_OFFSET_TABLE_REGNUM \
394 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
395
396 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
397
398 /* Function to return the rtx used to save the pic offset table register
399 across function calls. */
400 extern struct rtx_def *hppa_pic_save_rtx (void);
401
402 #define DEFAULT_PCC_STRUCT_RETURN 0
403
404 /* Register in which address to store a structure value
405 is passed to a function. */
406 #define PA_STRUCT_VALUE_REGNUM 28
407
408 /* Describe how we implement __builtin_eh_return. */
409 #define EH_RETURN_DATA_REGNO(N) \
410 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
411 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
412 #define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
413
414 /* Offset from the frame pointer register value to the top of stack. */
415 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
416
417 /* A C expression whose value is RTL representing the location of the
418 incoming return address at the beginning of any function, before the
419 prologue. You only need to define this macro if you want to support
420 call frame debugging information like that provided by DWARF 2. */
421 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
422 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
423
424 /* A C expression whose value is an integer giving a DWARF 2 column
425 number that may be used as an alternate return column. This should
426 be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
427 register, but an alternate column needs to be used for signal frames.
428
429 Column 0 is not used but unfortunately its register size is set to
430 4 bytes (sizeof CCmode) so it can't be used on 64-bit targets. */
431 #define DWARF_ALT_FRAME_RETURN_COLUMN FIRST_PSEUDO_REGISTER
432
433 /* This macro chooses the encoding of pointers embedded in the exception
434 handling sections. If at all possible, this should be defined such
435 that the exception handling section will not require dynamic relocations,
436 and so may be read-only.
437
438 Because the HP assembler auto aligns, it is necessary to use
439 DW_EH_PE_aligned. It's not possible to make the data read-only
440 on the HP-UX SOM port since the linker requires fixups for label
441 differences in different sections to be word aligned. However,
442 the SOM linker can do unaligned fixups for absolute pointers.
443 We also need aligned pointers for global and function pointers.
444
445 Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
446 fixups, the runtime doesn't have a consistent relationship between
447 text and data for dynamically loaded objects. Thus, it's not possible
448 to use pc-relative encoding for pointers on this target. It may be
449 possible to use segment relative encodings but GAS doesn't currently
450 have a mechanism to generate these encodings. For other targets, we
451 use pc-relative encoding for pointers. If the pointer might require
452 dynamic relocation, we make it indirect. */
453 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
454 (TARGET_GAS && !TARGET_HPUX \
455 ? (DW_EH_PE_pcrel \
456 | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0) \
457 | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)) \
458 : (!TARGET_GAS || (GLOBAL) || (CODE) == 2 \
459 ? DW_EH_PE_aligned : DW_EH_PE_absptr))
460
461 /* Handle special EH pointer encodings. Absolute, pc-relative, and
462 indirect are handled automatically. We output pc-relative, and
463 indirect pc-relative ourself since we need some special magic to
464 generate pc-relative relocations, and to handle indirect function
465 pointers. */
466 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
467 do { \
468 if (((ENCODING) & 0x70) == DW_EH_PE_pcrel) \
469 { \
470 fputs (integer_asm_op (SIZE, FALSE), FILE); \
471 if ((ENCODING) & DW_EH_PE_indirect) \
472 output_addr_const (FILE, get_deferred_plabel (ADDR)); \
473 else \
474 assemble_name (FILE, XSTR ((ADDR), 0)); \
475 fputs ("+8-$PIC_pcrel$0", FILE); \
476 goto DONE; \
477 } \
478 } while (0)
479 \f
480
481 /* The class value for index registers, and the one for base regs. */
482 #define INDEX_REG_CLASS GENERAL_REGS
483 #define BASE_REG_CLASS GENERAL_REGS
484
485 #define FP_REG_CLASS_P(CLASS) \
486 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
487
488 /* True if register is floating-point. */
489 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
490
491 /* Given an rtx X being reloaded into a reg required to be
492 in class CLASS, return the class of reg to actually use.
493 In general this is just CLASS; but on some machines
494 in some cases it is preferable to use a more restrictive class. */
495 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
496
497 #define MAYBE_FP_REG_CLASS_P(CLASS) \
498 reg_classes_intersect_p ((CLASS), FP_REGS)
499
500 /* On the PA it is not possible to directly move data between
501 GENERAL_REGS and FP_REGS. On the 32-bit port, we use the
502 location at SP-16. We don't expose this location in the RTL to
503 avoid scheduling related problems. For example, the store and
504 load could be separated by a call to a pure or const function
505 which has no frame and uses SP-16. */
506 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
507 (TARGET_64BIT \
508 && (MAYBE_FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2) \
509 || MAYBE_FP_REG_CLASS_P (CLASS2) != FP_REG_CLASS_P (CLASS1)))
510
511 \f
512 /* Stack layout; function entry, exit and calling. */
513
514 /* Define this if pushing a word on the stack
515 makes the stack pointer a smaller address. */
516 /* #define STACK_GROWS_DOWNWARD */
517
518 /* Believe it or not. */
519 #define ARGS_GROW_DOWNWARD
520
521 /* Define this to nonzero if the nominal address of the stack frame
522 is at the high-address end of the local variables;
523 that is, each additional local variable allocated
524 goes at a more negative offset in the frame. */
525 #define FRAME_GROWS_DOWNWARD 0
526
527 /* Offset within stack frame to start allocating local variables at.
528 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
529 first local allocated. Otherwise, it is the offset to the BEGINNING
530 of the first local allocated.
531
532 On the 32-bit ports, we reserve one slot for the previous frame
533 pointer and one fill slot. The fill slot is for compatibility
534 with HP compiled programs. On the 64-bit ports, we reserve one
535 slot for the previous frame pointer. */
536 #define STARTING_FRAME_OFFSET 8
537
538 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
539 of the stack. The default is to align it to STACK_BOUNDARY. */
540 #define STACK_ALIGNMENT_NEEDED 0
541
542 /* If we generate an insn to push BYTES bytes,
543 this says how many the stack pointer really advances by.
544 On the HP-PA, don't define this because there are no push insns. */
545 /* #define PUSH_ROUNDING(BYTES) */
546
547 /* Offset of first parameter from the argument pointer register value.
548 This value will be negated because the arguments grow down.
549 Also note that on STACK_GROWS_UPWARD machines (such as this one)
550 this is the distance from the frame pointer to the end of the first
551 argument, not it's beginning. To get the real offset of the first
552 argument, the size of the argument must be added. */
553
554 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
555
556 /* When a parameter is passed in a register, stack space is still
557 allocated for it. */
558 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
559
560 /* Define this if the above stack space is to be considered part of the
561 space allocated by the caller. */
562 #define OUTGOING_REG_PARM_STACK_SPACE 1
563
564 /* Keep the stack pointer constant throughout the function.
565 This is both an optimization and a necessity: longjmp
566 doesn't behave itself when the stack pointer moves within
567 the function! */
568 #define ACCUMULATE_OUTGOING_ARGS 1
569
570 /* The weird HPPA calling conventions require a minimum of 48 bytes on
571 the stack: 16 bytes for register saves, and 32 bytes for magic.
572 This is the difference between the logical top of stack and the
573 actual sp.
574
575 On the 64-bit port, the HP C compiler allocates a 48-byte frame
576 marker, although the runtime documentation only describes a 16
577 byte marker. For compatibility, we allocate 48 bytes. */
578 #define STACK_POINTER_OFFSET \
579 (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32)
580
581 #define STACK_DYNAMIC_OFFSET(FNDECL) \
582 (TARGET_64BIT \
583 ? (STACK_POINTER_OFFSET) \
584 : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
585
586 /* Value is 1 if returning from a function call automatically
587 pops the arguments described by the number-of-args field in the call.
588 FUNDECL is the declaration node of the function (as a tree),
589 FUNTYPE is the data type of the function (as a tree),
590 or for a library call it is an identifier node for the subroutine name. */
591
592 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
593
594 /* Define how to find the value returned by a function.
595 VALTYPE is the data type of the value (as a tree).
596 If the precise function being called is known, FUNC is its FUNCTION_DECL;
597 otherwise, FUNC is 0. */
598
599 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
600
601 /* Define how to find the value returned by a library function
602 assuming the value has mode MODE. */
603
604 #define LIBCALL_VALUE(MODE) \
605 gen_rtx_REG (MODE, \
606 (! TARGET_SOFT_FLOAT \
607 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
608
609 /* 1 if N is a possible register number for a function value
610 as seen by the caller. */
611
612 #define FUNCTION_VALUE_REGNO_P(N) \
613 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
614
615 \f
616 /* Define a data type for recording info about an argument list
617 during the scan of that argument list. This data type should
618 hold all necessary information about the function itself
619 and about the args processed so far, enough to enable macros
620 such as FUNCTION_ARG to determine where the next arg should go.
621
622 On the HP-PA, the WORDS field holds the number of words
623 of arguments scanned so far (including the invisible argument,
624 if any, which holds the structure-value-address). Thus, 4 or
625 more means all following args should go on the stack.
626
627 The INCOMING field tracks whether this is an "incoming" or
628 "outgoing" argument.
629
630 The INDIRECT field indicates whether this is is an indirect
631 call or not.
632
633 The NARGS_PROTOTYPE field indicates that an argument does not
634 have a prototype when it less than or equal to 0. */
635
636 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
637
638 #define CUMULATIVE_ARGS struct hppa_args
639
640 /* Initialize a variable CUM of type CUMULATIVE_ARGS
641 for a call to a function whose data type is FNTYPE.
642 For a library call, FNTYPE is 0. */
643
644 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
645 (CUM).words = 0, \
646 (CUM).incoming = 0, \
647 (CUM).indirect = (FNTYPE) && !(FNDECL), \
648 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
649 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
650 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
651 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
652 : 0)
653
654
655
656 /* Similar, but when scanning the definition of a procedure. We always
657 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
658
659 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
660 (CUM).words = 0, \
661 (CUM).incoming = 1, \
662 (CUM).indirect = 0, \
663 (CUM).nargs_prototype = 1000
664
665 /* Figure out the size in words of the function argument. The size
666 returned by this macro should always be greater than zero because
667 we pass variable and zero sized objects by reference. */
668
669 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
670 ((((MODE) != BLKmode \
671 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
672 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
673
674 /* Update the data in CUM to advance over an argument
675 of mode MODE and data type TYPE.
676 (TYPE is null for libcalls where that information may not be available.) */
677
678 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
679 { (CUM).nargs_prototype--; \
680 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
681 + (((CUM).words & 01) && (TYPE) != 0 \
682 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
683 }
684
685 /* Determine where to put an argument to a function.
686 Value is zero to push the argument on the stack,
687 or a hard register in which to store the argument.
688
689 MODE is the argument's machine mode.
690 TYPE is the data type of the argument (as a tree).
691 This is null for libcalls where that information may
692 not be available.
693 CUM is a variable of type CUMULATIVE_ARGS which gives info about
694 the preceding args and about the function being called.
695 NAMED is nonzero if this argument is a named parameter
696 (otherwise it is an extra parameter matching an ellipsis).
697
698 On the HP-PA the first four words of args are normally in registers
699 and the rest are pushed. But any arg that won't entirely fit in regs
700 is pushed.
701
702 Arguments passed in registers are either 1 or 2 words long.
703
704 The caller must make a distinction between calls to explicitly named
705 functions and calls through pointers to functions -- the conventions
706 are different! Calls through pointers to functions only use general
707 registers for the first four argument words.
708
709 Of course all this is different for the portable runtime model
710 HP wants everyone to use for ELF. Ugh. Here's a quick description
711 of how it's supposed to work.
712
713 1) callee side remains unchanged. It expects integer args to be
714 in the integer registers, float args in the float registers and
715 unnamed args in integer registers.
716
717 2) caller side now depends on if the function being called has
718 a prototype in scope (rather than if it's being called indirectly).
719
720 2a) If there is a prototype in scope, then arguments are passed
721 according to their type (ints in integer registers, floats in float
722 registers, unnamed args in integer registers.
723
724 2b) If there is no prototype in scope, then floating point arguments
725 are passed in both integer and float registers. egad.
726
727 FYI: The portable parameter passing conventions are almost exactly like
728 the standard parameter passing conventions on the RS6000. That's why
729 you'll see lots of similar code in rs6000.h. */
730
731 /* If defined, a C expression which determines whether, and in which
732 direction, to pad out an argument with extra space. */
733 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
734
735 /* Specify padding for the last element of a block move between registers
736 and memory.
737
738 The 64-bit runtime specifies that objects need to be left justified
739 (i.e., the normal justification for a big endian target). The 32-bit
740 runtime specifies right justification for objects smaller than 64 bits.
741 We use a DImode register in the parallel for 5 to 7 byte structures
742 so that there is only one element. This allows the object to be
743 correctly padded. */
744 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
745 function_arg_padding ((MODE), (TYPE))
746
747 /* Do not expect to understand this without reading it several times. I'm
748 tempted to try and simply it, but I worry about breaking something. */
749
750 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
751 function_arg (&CUM, MODE, TYPE, NAMED)
752
753 /* If defined, a C expression that gives the alignment boundary, in
754 bits, of an argument with the specified mode and type. If it is
755 not defined, `PARM_BOUNDARY' is used for all arguments. */
756
757 /* Arguments larger than one word are double word aligned. */
758
759 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
760 (((TYPE) \
761 ? (integer_zerop (TYPE_SIZE (TYPE)) \
762 || !TREE_CONSTANT (TYPE_SIZE (TYPE)) \
763 || int_size_in_bytes (TYPE) <= UNITS_PER_WORD) \
764 : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD) \
765 ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
766
767 \f
768 extern GTY(()) rtx hppa_compare_op0;
769 extern GTY(()) rtx hppa_compare_op1;
770 extern enum cmp_type hppa_branch_type;
771
772 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
773 as assembly via FUNCTION_PROFILER. Just output a local label.
774 We can't use the function label because the GAS SOM target can't
775 handle the difference of a global symbol and a local symbol. */
776
777 #ifndef FUNC_BEGIN_PROLOG_LABEL
778 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
779 #endif
780
781 #define FUNCTION_PROFILER(FILE, LABEL) \
782 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
783
784 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
785 void hppa_profile_hook (int label_no);
786
787 /* The profile counter if emitted must come before the prologue. */
788 #define PROFILE_BEFORE_PROLOGUE 1
789
790 /* We never want final.c to emit profile counters. When profile
791 counters are required, we have to defer emitting them to the end
792 of the current file. */
793 #define NO_PROFILE_COUNTERS 1
794
795 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
796 the stack pointer does not matter. The value is tested only in
797 functions that have frame pointers.
798 No definition is equivalent to always zero. */
799
800 extern int may_call_alloca;
801
802 #define EXIT_IGNORE_STACK \
803 (get_frame_size () != 0 \
804 || current_function_calls_alloca || current_function_outgoing_args_size)
805
806 /* Output assembler code for a block containing the constant parts
807 of a trampoline, leaving space for the variable parts.\
808
809 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
810 and then branches to the specified routine.
811
812 This code template is copied from text segment to stack location
813 and then patched with INITIALIZE_TRAMPOLINE to contain
814 valid values, and then entered as a subroutine.
815
816 It is best to keep this as small as possible to avoid having to
817 flush multiple lines in the cache. */
818
819 #define TRAMPOLINE_TEMPLATE(FILE) \
820 { \
821 if (!TARGET_64BIT) \
822 { \
823 fputs ("\tldw 36(%r22),%r21\n", FILE); \
824 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
825 if (ASSEMBLER_DIALECT == 0) \
826 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
827 else \
828 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
829 fputs ("\tldw 4(%r21),%r19\n", FILE); \
830 fputs ("\tldw 0(%r21),%r21\n", FILE); \
831 if (TARGET_PA_20) \
832 { \
833 fputs ("\tbve (%r21)\n", FILE); \
834 fputs ("\tldw 40(%r22),%r29\n", FILE); \
835 fputs ("\t.word 0\n", FILE); \
836 fputs ("\t.word 0\n", FILE); \
837 } \
838 else \
839 { \
840 fputs ("\tldsid (%r21),%r1\n", FILE); \
841 fputs ("\tmtsp %r1,%sr0\n", FILE); \
842 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
843 fputs ("\tldw 40(%r22),%r29\n", FILE); \
844 } \
845 fputs ("\t.word 0\n", FILE); \
846 fputs ("\t.word 0\n", FILE); \
847 fputs ("\t.word 0\n", FILE); \
848 fputs ("\t.word 0\n", FILE); \
849 } \
850 else \
851 { \
852 fputs ("\t.dword 0\n", FILE); \
853 fputs ("\t.dword 0\n", FILE); \
854 fputs ("\t.dword 0\n", FILE); \
855 fputs ("\t.dword 0\n", FILE); \
856 fputs ("\tmfia %r31\n", FILE); \
857 fputs ("\tldd 24(%r31),%r1\n", FILE); \
858 fputs ("\tldd 24(%r1),%r27\n", FILE); \
859 fputs ("\tldd 16(%r1),%r1\n", FILE); \
860 fputs ("\tbve (%r1)\n", FILE); \
861 fputs ("\tldd 32(%r31),%r31\n", FILE); \
862 fputs ("\t.dword 0 ; fptr\n", FILE); \
863 fputs ("\t.dword 0 ; static link\n", FILE); \
864 } \
865 }
866
867 /* Length in units of the trampoline for entering a nested function. */
868
869 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
870
871 /* Length in units of the trampoline instruction code. */
872
873 #define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
874
875 /* Minimum length of a cache line. A length of 16 will work on all
876 PA-RISC processors. All PA 1.1 processors have a cache line of
877 32 bytes. Most but not all PA 2.0 processors have a cache line
878 of 64 bytes. As cache flushes are expensive and we don't support
879 PA 1.0, we use a minimum length of 32. */
880
881 #define MIN_CACHELINE_SIZE 32
882
883 /* Emit RTL insns to initialize the variable parts of a trampoline.
884 FNADDR is an RTX for the address of the function's pure code.
885 CXT is an RTX for the static chain value for the function.
886
887 Move the function address to the trampoline template at offset 36.
888 Move the static chain value to trampoline template at offset 40.
889 Move the trampoline address to trampoline template at offset 44.
890 Move r19 to trampoline template at offset 48. The latter two
891 words create a plabel for the indirect call to the trampoline.
892
893 A similar sequence is used for the 64-bit port but the plabel is
894 at the beginning of the trampoline.
895
896 Finally, the cache entries for the trampoline code are flushed.
897 This is necessary to ensure that the trampoline instruction sequence
898 is written to memory prior to any attempts at prefetching the code
899 sequence. */
900
901 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
902 { \
903 rtx start_addr = gen_reg_rtx (Pmode); \
904 rtx end_addr = gen_reg_rtx (Pmode); \
905 rtx line_length = gen_reg_rtx (Pmode); \
906 rtx tmp; \
907 \
908 if (!TARGET_64BIT) \
909 { \
910 tmp = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
911 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
912 tmp = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
913 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
914 \
915 /* Create a fat pointer for the trampoline. */ \
916 tmp = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
917 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP)); \
918 tmp = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
919 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
920 gen_rtx_REG (Pmode, 19)); \
921 \
922 /* fdc and fic only use registers for the address to flush, \
923 they do not accept integer displacements. We align the \
924 start and end addresses to the beginning of their respective \
925 cache lines to minimize the number of lines flushed. */ \
926 tmp = force_reg (Pmode, (TRAMP)); \
927 emit_insn (gen_andsi3 (start_addr, tmp, \
928 GEN_INT (-MIN_CACHELINE_SIZE))); \
929 tmp = force_reg (Pmode, \
930 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
931 emit_insn (gen_andsi3 (end_addr, tmp, \
932 GEN_INT (-MIN_CACHELINE_SIZE))); \
933 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
934 emit_insn (gen_dcacheflush (start_addr, end_addr, line_length)); \
935 emit_insn (gen_icacheflush (start_addr, end_addr, line_length, \
936 gen_reg_rtx (Pmode), \
937 gen_reg_rtx (Pmode))); \
938 } \
939 else \
940 { \
941 tmp = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
942 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
943 tmp = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
944 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
945 \
946 /* Create a fat pointer for the trampoline. */ \
947 tmp = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
948 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
949 force_reg (Pmode, plus_constant ((TRAMP), 32))); \
950 tmp = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
951 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
952 gen_rtx_REG (Pmode, 27)); \
953 \
954 /* fdc and fic only use registers for the address to flush, \
955 they do not accept integer displacements. We align the \
956 start and end addresses to the beginning of their respective \
957 cache lines to minimize the number of lines flushed. */ \
958 tmp = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
959 emit_insn (gen_anddi3 (start_addr, tmp, \
960 GEN_INT (-MIN_CACHELINE_SIZE))); \
961 tmp = force_reg (Pmode, \
962 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
963 emit_insn (gen_anddi3 (end_addr, tmp, \
964 GEN_INT (-MIN_CACHELINE_SIZE))); \
965 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
966 emit_insn (gen_dcacheflush (start_addr, end_addr, line_length)); \
967 emit_insn (gen_icacheflush (start_addr, end_addr, line_length, \
968 gen_reg_rtx (Pmode), \
969 gen_reg_rtx (Pmode))); \
970 } \
971 }
972
973 /* Perform any machine-specific adjustment in the address of the trampoline.
974 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
975 Adjust the trampoline address to point to the plabel at offset 44. */
976
977 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
978 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
979
980 /* Implement `va_start' for varargs and stdarg. */
981
982 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
983 hppa_va_start (valist, nextarg)
984 \f
985 /* Addressing modes, and classification of registers for them.
986
987 Using autoincrement addressing modes on PA8000 class machines is
988 not profitable. */
989
990 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
991 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
992
993 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
994 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
995
996 /* Macros to check register numbers against specific register classes. */
997
998 /* The following macros assume that X is a hard or pseudo reg number.
999 They give nonzero only if X is a hard reg of the suitable class
1000 or a pseudo reg currently allocated to a suitable hard reg.
1001 Since they use reg_renumber, they are safe only once reg_renumber
1002 has been allocated, which happens in local-alloc.c. */
1003
1004 #define REGNO_OK_FOR_INDEX_P(X) \
1005 ((X) && ((X) < 32 \
1006 || (X >= FIRST_PSEUDO_REGISTER \
1007 && reg_renumber \
1008 && (unsigned) reg_renumber[X] < 32)))
1009 #define REGNO_OK_FOR_BASE_P(X) \
1010 ((X) && ((X) < 32 \
1011 || (X >= FIRST_PSEUDO_REGISTER \
1012 && reg_renumber \
1013 && (unsigned) reg_renumber[X] < 32)))
1014 #define REGNO_OK_FOR_FP_P(X) \
1015 (FP_REGNO_P (X) \
1016 || (X >= FIRST_PSEUDO_REGISTER \
1017 && reg_renumber \
1018 && FP_REGNO_P (reg_renumber[X])))
1019
1020 /* Now macros that check whether X is a register and also,
1021 strictly, whether it is in a specified class.
1022
1023 These macros are specific to the HP-PA, and may be used only
1024 in code for printing assembler insns and in conditions for
1025 define_optimization. */
1026
1027 /* 1 if X is an fp register. */
1028
1029 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1030 \f
1031 /* Maximum number of registers that can appear in a valid memory address. */
1032
1033 #define MAX_REGS_PER_ADDRESS 2
1034
1035 /* Non-TLS symbolic references. */
1036 #define PA_SYMBOL_REF_TLS_P(RTX) \
1037 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
1038
1039 /* Recognize any constant value that is a valid address except
1040 for symbolic addresses. We get better CSE by rejecting them
1041 here and allowing hppa_legitimize_address to break them up. We
1042 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1043
1044 #define CONSTANT_ADDRESS_P(X) \
1045 ((GET_CODE (X) == LABEL_REF \
1046 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X)) \
1047 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1048 || GET_CODE (X) == HIGH) \
1049 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1050
1051 /* A C expression that is nonzero if we are using the new HP assembler. */
1052
1053 #ifndef NEW_HP_ASSEMBLER
1054 #define NEW_HP_ASSEMBLER 0
1055 #endif
1056
1057 /* The macros below define the immediate range for CONST_INTS on
1058 the 64-bit port. Constants in this range can be loaded in three
1059 instructions using a ldil/ldo/depdi sequence. Constants outside
1060 this range are forced to the constant pool prior to reload. */
1061
1062 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
1063 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
1064 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
1065 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
1066
1067 /* A C expression that is nonzero if X is a legitimate constant for an
1068 immediate operand.
1069
1070 We include all constant integers and constant doubles, but not
1071 floating-point, except for floating-point zero. We reject LABEL_REFs
1072 if we're not using gas or the new HP assembler.
1073
1074 In 64-bit mode, we reject CONST_DOUBLES. We also reject CONST_INTS
1075 that need more than three instructions to load prior to reload. This
1076 limit is somewhat arbitrary. It takes three instructions to load a
1077 CONST_INT from memory but two are memory accesses. It may be better
1078 to increase the allowed range for CONST_INTS. We may also be able
1079 to handle CONST_DOUBLES. */
1080
1081 #define LEGITIMATE_CONSTANT_P(X) \
1082 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1083 || (X) == CONST0_RTX (GET_MODE (X))) \
1084 && (NEW_HP_ASSEMBLER \
1085 || TARGET_GAS \
1086 || GET_CODE (X) != LABEL_REF) \
1087 && (!TARGET_64BIT \
1088 || GET_CODE (X) != CONST_DOUBLE) \
1089 && (!TARGET_64BIT \
1090 || HOST_BITS_PER_WIDE_INT <= 32 \
1091 || GET_CODE (X) != CONST_INT \
1092 || reload_in_progress \
1093 || reload_completed \
1094 || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X)) \
1095 || cint_ok_for_move (INTVAL (X))) \
1096 && !function_label_operand (X, VOIDmode))
1097
1098 /* Target flags set on a symbol_ref. */
1099
1100 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output. */
1101 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
1102 #define SYMBOL_REF_REFERENCED_P(RTX) \
1103 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
1104
1105 /* Defines for constraints.md. */
1106
1107 /* Return 1 iff OP is a scaled or unscaled index address. */
1108 #define IS_INDEX_ADDR_P(OP) \
1109 (GET_CODE (OP) == PLUS \
1110 && GET_MODE (OP) == Pmode \
1111 && (GET_CODE (XEXP (OP, 0)) == MULT \
1112 || GET_CODE (XEXP (OP, 1)) == MULT \
1113 || (REG_P (XEXP (OP, 0)) \
1114 && REG_P (XEXP (OP, 1)))))
1115
1116 /* Return 1 iff OP is a LO_SUM DLT address. */
1117 #define IS_LO_SUM_DLT_ADDR_P(OP) \
1118 (GET_CODE (OP) == LO_SUM \
1119 && GET_MODE (OP) == Pmode \
1120 && REG_P (XEXP (OP, 0)) \
1121 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
1122 && GET_CODE (XEXP (OP, 1)) == UNSPEC)
1123
1124 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1125 and check its validity for a certain class.
1126 We have two alternate definitions for each of them.
1127 The usual definition accepts all pseudo regs; the other rejects
1128 them unless they have been allocated suitable hard regs.
1129 The symbol REG_OK_STRICT causes the latter definition to be used.
1130
1131 Most source files want to accept pseudo regs in the hope that
1132 they will get allocated to the class that the insn wants them to be in.
1133 Source files for reload pass need to be strict.
1134 After reload, it makes no difference, since pseudo regs have
1135 been eliminated by then. */
1136
1137 #ifndef REG_OK_STRICT
1138
1139 /* Nonzero if X is a hard reg that can be used as an index
1140 or if it is a pseudo reg. */
1141 #define REG_OK_FOR_INDEX_P(X) \
1142 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1143 /* Nonzero if X is a hard reg that can be used as a base reg
1144 or if it is a pseudo reg. */
1145 #define REG_OK_FOR_BASE_P(X) \
1146 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1147
1148 #else
1149
1150 /* Nonzero if X is a hard reg that can be used as an index. */
1151 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1152 /* Nonzero if X is a hard reg that can be used as a base reg. */
1153 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1154
1155 #endif
1156 \f
1157 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1158 valid memory address for an instruction. The MODE argument is the
1159 machine mode for the MEM expression that wants to use this address.
1160
1161 On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
1162 REG+REG, and REG+(REG*SCALE). The indexed address forms are only
1163 available with floating point loads and stores, and integer loads.
1164 We get better code by allowing indexed addresses in the initial
1165 RTL generation.
1166
1167 The acceptance of indexed addresses as legitimate implies that we
1168 must provide patterns for doing indexed integer stores, or the move
1169 expanders must force the address of an indexed store to a register.
1170 We have adopted the latter approach.
1171
1172 Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
1173 the base register is a valid pointer for indexed instructions.
1174 On targets that have non-equivalent space registers, we have to
1175 know at the time of assembler output which register in a REG+REG
1176 pair is the base register. The REG_POINTER flag is sometimes lost
1177 in reload and the following passes, so it can't be relied on during
1178 code generation. Thus, we either have to canonicalize the order
1179 of the registers in REG+REG indexed addresses, or treat REG+REG
1180 addresses separately and provide patterns for both permutations.
1181
1182 The latter approach requires several hundred additional lines of
1183 code in pa.md. The downside to canonicalizing is that a PLUS
1184 in the wrong order can't combine to form to make a scaled indexed
1185 memory operand. As we won't need to canonicalize the operands if
1186 the REG_POINTER lossage can be fixed, it seems better canonicalize.
1187
1188 We initially break out scaled indexed addresses in canonical order
1189 in emit_move_sequence. LEGITIMIZE_ADDRESS also canonicalizes
1190 scaled indexed addresses during RTL generation. However, fold_rtx
1191 has its own opinion on how the operands of a PLUS should be ordered.
1192 If one of the operands is equivalent to a constant, it will make
1193 that operand the second operand. As the base register is likely to
1194 be equivalent to a SYMBOL_REF, we have made it the second operand.
1195
1196 GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1197 operands are in the order INDEX+BASE on targets with non-equivalent
1198 space registers, and in any order on targets with equivalent space
1199 registers. It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1200
1201 We treat a SYMBOL_REF as legitimate if it is part of the current
1202 function's constant-pool, because such addresses can actually be
1203 output as REG+SMALLINT.
1204
1205 Note we only allow 5-bit immediates for access to a constant address;
1206 doing so avoids losing for loading/storing a FP register at an address
1207 which will not fit in 5 bits. */
1208
1209 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1210 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1211
1212 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1213 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1214
1215 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1216 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1217
1218 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1219 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1220
1221 #if HOST_BITS_PER_WIDE_INT > 32
1222 #define VAL_32_BITS_P(X) \
1223 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \
1224 < (unsigned HOST_WIDE_INT) 2 << 31)
1225 #else
1226 #define VAL_32_BITS_P(X) 1
1227 #endif
1228 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1229
1230 /* These are the modes that we allow for scaled indexing. */
1231 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1232 ((TARGET_64BIT && (MODE) == DImode) \
1233 || (MODE) == SImode \
1234 || (MODE) == HImode \
1235 || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1236
1237 /* These are the modes that we allow for unscaled indexing. */
1238 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1239 ((TARGET_64BIT && (MODE) == DImode) \
1240 || (MODE) == SImode \
1241 || (MODE) == HImode \
1242 || (MODE) == QImode \
1243 || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1244
1245 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1246 { \
1247 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1248 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1249 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1250 && REG_P (XEXP (X, 0)) \
1251 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1252 goto ADDR; \
1253 else if (GET_CODE (X) == PLUS) \
1254 { \
1255 rtx base = 0, index = 0; \
1256 if (REG_P (XEXP (X, 1)) \
1257 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1258 base = XEXP (X, 1), index = XEXP (X, 0); \
1259 else if (REG_P (XEXP (X, 0)) \
1260 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1261 base = XEXP (X, 0), index = XEXP (X, 1); \
1262 if (base \
1263 && GET_CODE (index) == CONST_INT \
1264 && ((INT_14_BITS (index) \
1265 && (((MODE) != DImode \
1266 && (MODE) != SFmode \
1267 && (MODE) != DFmode) \
1268 /* The base register for DImode loads and stores \
1269 with long displacements must be aligned because \
1270 the lower three bits in the displacement are \
1271 assumed to be zero. */ \
1272 || ((MODE) == DImode \
1273 && (!TARGET_64BIT \
1274 || (INTVAL (index) % 8) == 0)) \
1275 /* Similarly, the base register for SFmode/DFmode \
1276 loads and stores with long displacements must \
1277 be aligned. \
1278 \
1279 FIXME: the ELF32 linker clobbers the LSB of \
1280 the FP register number in PA 2.0 floating-point \
1281 insns with long displacements. This is because \
1282 R_PARISC_DPREL14WR and other relocations like \
1283 it are not supported. For now, we reject long \
1284 displacements on this target. */ \
1285 || (((MODE) == SFmode || (MODE) == DFmode) \
1286 && (TARGET_SOFT_FLOAT \
1287 || (TARGET_PA_20 \
1288 && !TARGET_ELF32 \
1289 && (INTVAL (index) \
1290 % GET_MODE_SIZE (MODE)) == 0))))) \
1291 || INT_5_BITS (index))) \
1292 goto ADDR; \
1293 if (!TARGET_DISABLE_INDEXING \
1294 /* Only accept the "canonical" INDEX+BASE operand order \
1295 on targets with non-equivalent space registers. */ \
1296 && (TARGET_NO_SPACE_REGS \
1297 ? (base && REG_P (index)) \
1298 : (base == XEXP (X, 1) && REG_P (index) \
1299 && (reload_completed \
1300 || (reload_in_progress && HARD_REGISTER_P (base)) \
1301 || REG_POINTER (base)) \
1302 && (reload_completed \
1303 || (reload_in_progress && HARD_REGISTER_P (index)) \
1304 || !REG_POINTER (index)))) \
1305 && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE) \
1306 && REG_OK_FOR_INDEX_P (index) \
1307 && borx_reg_operand (base, Pmode) \
1308 && borx_reg_operand (index, Pmode)) \
1309 goto ADDR; \
1310 if (!TARGET_DISABLE_INDEXING \
1311 && base \
1312 && GET_CODE (index) == MULT \
1313 && MODE_OK_FOR_SCALED_INDEXING_P (MODE) \
1314 && REG_P (XEXP (index, 0)) \
1315 && GET_MODE (XEXP (index, 0)) == Pmode \
1316 && REG_OK_FOR_INDEX_P (XEXP (index, 0)) \
1317 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1318 && INTVAL (XEXP (index, 1)) \
1319 == (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
1320 && borx_reg_operand (base, Pmode)) \
1321 goto ADDR; \
1322 } \
1323 else if (GET_CODE (X) == LO_SUM \
1324 && GET_CODE (XEXP (X, 0)) == REG \
1325 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1326 && CONSTANT_P (XEXP (X, 1)) \
1327 && (TARGET_SOFT_FLOAT \
1328 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1329 || (TARGET_PA_20 \
1330 && !TARGET_ELF32 \
1331 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1332 || ((MODE) != SFmode \
1333 && (MODE) != DFmode))) \
1334 goto ADDR; \
1335 else if (GET_CODE (X) == LO_SUM \
1336 && GET_CODE (XEXP (X, 0)) == SUBREG \
1337 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG \
1338 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0))) \
1339 && CONSTANT_P (XEXP (X, 1)) \
1340 && (TARGET_SOFT_FLOAT \
1341 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1342 || (TARGET_PA_20 \
1343 && !TARGET_ELF32 \
1344 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1345 || ((MODE) != SFmode \
1346 && (MODE) != DFmode))) \
1347 goto ADDR; \
1348 else if (GET_CODE (X) == LABEL_REF \
1349 || (GET_CODE (X) == CONST_INT \
1350 && INT_5_BITS (X))) \
1351 goto ADDR; \
1352 /* Needed for -fPIC */ \
1353 else if (GET_CODE (X) == LO_SUM \
1354 && GET_CODE (XEXP (X, 0)) == REG \
1355 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1356 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1357 && (TARGET_SOFT_FLOAT \
1358 || (TARGET_PA_20 && !TARGET_ELF32) \
1359 || ((MODE) != SFmode \
1360 && (MODE) != DFmode))) \
1361 goto ADDR; \
1362 }
1363
1364 /* Look for machine dependent ways to make the invalid address AD a
1365 valid address.
1366
1367 For the PA, transform:
1368
1369 memory(X + <large int>)
1370
1371 into:
1372
1373 if (<large int> & mask) >= 16
1374 Y = (<large int> & ~mask) + mask + 1 Round up.
1375 else
1376 Y = (<large int> & ~mask) Round down.
1377 Z = X + Y
1378 memory (Z + (<large int> - Y));
1379
1380 This makes reload inheritance and reload_cse work better since Z
1381 can be reused.
1382
1383 There may be more opportunities to improve code with this hook. */
1384 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1385 do { \
1386 long offset, newoffset, mask; \
1387 rtx new, temp = NULL_RTX; \
1388 \
1389 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1390 ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff); \
1391 \
1392 if (optimize && GET_CODE (AD) == PLUS) \
1393 temp = simplify_binary_operation (PLUS, Pmode, \
1394 XEXP (AD, 0), XEXP (AD, 1)); \
1395 \
1396 new = temp ? temp : AD; \
1397 \
1398 if (optimize \
1399 && GET_CODE (new) == PLUS \
1400 && GET_CODE (XEXP (new, 0)) == REG \
1401 && GET_CODE (XEXP (new, 1)) == CONST_INT) \
1402 { \
1403 offset = INTVAL (XEXP ((new), 1)); \
1404 \
1405 /* Choose rounding direction. Round up if we are >= halfway. */ \
1406 if ((offset & mask) >= ((mask + 1) / 2)) \
1407 newoffset = (offset & ~mask) + mask + 1; \
1408 else \
1409 newoffset = offset & ~mask; \
1410 \
1411 /* Ensure that long displacements are aligned. */ \
1412 if (!VAL_5_BITS_P (newoffset) \
1413 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1414 newoffset &= ~(GET_MODE_SIZE (MODE) -1); \
1415 \
1416 if (newoffset != 0 && VAL_14_BITS_P (newoffset)) \
1417 { \
1418 temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \
1419 GEN_INT (newoffset)); \
1420 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1421 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1422 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1423 (OPNUM), (TYPE)); \
1424 goto WIN; \
1425 } \
1426 } \
1427 } while (0)
1428
1429
1430
1431 \f
1432 /* Try machine-dependent ways of modifying an illegitimate address
1433 to be legitimate. If we find one, return the new, valid address.
1434 This macro is used in only one place: `memory_address' in explow.c.
1435
1436 OLDX is the address as it was before break_out_memory_refs was called.
1437 In some cases it is useful to look at this to decide what needs to be done.
1438
1439 MODE and WIN are passed so that this macro can use
1440 GO_IF_LEGITIMATE_ADDRESS.
1441
1442 It is always safe for this macro to do nothing. It exists to recognize
1443 opportunities to optimize the output. */
1444
1445 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1446 { rtx orig_x = (X); \
1447 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1448 if ((X) != orig_x && memory_address_p (MODE, X)) \
1449 goto WIN; }
1450
1451 /* Go to LABEL if ADDR (a legitimate address expression)
1452 has an effect that depends on the machine mode it is used for. */
1453
1454 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1455 \f
1456 #define TARGET_ASM_SELECT_SECTION pa_select_section
1457
1458 /* Return a nonzero value if DECL has a section attribute. */
1459 #define IN_NAMED_SECTION_P(DECL) \
1460 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1461 && DECL_SECTION_NAME (DECL) != NULL_TREE)
1462
1463 /* Define this macro if references to a symbol must be treated
1464 differently depending on something about the variable or
1465 function named by the symbol (such as what section it is in).
1466
1467 The macro definition, if any, is executed immediately after the
1468 rtl for DECL or other node is created.
1469 The value of the rtl will be a `mem' whose address is a
1470 `symbol_ref'.
1471
1472 The usual thing for this macro to do is to a flag in the
1473 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1474 name string in the `symbol_ref' (if one bit is not enough
1475 information).
1476
1477 On the HP-PA we use this to indicate if a symbol is in text or
1478 data space. Also, function labels need special treatment. */
1479
1480 #define TEXT_SPACE_P(DECL)\
1481 (TREE_CODE (DECL) == FUNCTION_DECL \
1482 || (TREE_CODE (DECL) == VAR_DECL \
1483 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1484 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1485 && !flag_pic) \
1486 || CONSTANT_CLASS_P (DECL))
1487
1488 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1489
1490 /* Specify the machine mode that this machine uses for the index in the
1491 tablejump instruction. For small tables, an element consists of a
1492 ia-relative branch and its delay slot. When -mbig-switch is specified,
1493 we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1494 for both 32 and 64-bit pic code. */
1495 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1496
1497 /* Jump tables must be 32-bit aligned, no matter the size of the element. */
1498 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1499
1500 /* Define this as 1 if `char' should by default be signed; else as 0. */
1501 #define DEFAULT_SIGNED_CHAR 1
1502
1503 /* Max number of bytes we can move from memory to memory
1504 in one reasonably fast instruction. */
1505 #define MOVE_MAX 8
1506
1507 /* Higher than the default as we prefer to use simple move insns
1508 (better scheduling and delay slot filling) and because our
1509 built-in block move is really a 2X unrolled loop.
1510
1511 Believe it or not, this has to be big enough to allow for copying all
1512 arguments passed in registers to avoid infinite recursion during argument
1513 setup for a function call. Why? Consider how we copy the stack slots
1514 reserved for parameters when they may be trashed by a call. */
1515 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1516
1517 /* Define if operations between registers always perform the operation
1518 on the full register even if a narrower mode is specified. */
1519 #define WORD_REGISTER_OPERATIONS
1520
1521 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1522 will either zero-extend or sign-extend. The value of this macro should
1523 be the code that says which one of the two operations is implicitly
1524 done, UNKNOWN if none. */
1525 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1526
1527 /* Nonzero if access to memory by bytes is slow and undesirable. */
1528 #define SLOW_BYTE_ACCESS 1
1529
1530 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1531 is done just by pretending it is already truncated. */
1532 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1533
1534 /* Specify the machine mode that pointers have.
1535 After generation of rtl, the compiler makes no further distinction
1536 between pointers and any other objects of this machine mode. */
1537 #define Pmode word_mode
1538
1539 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1540 return the mode to be used for the comparison. For floating-point, CCFPmode
1541 should be used. CC_NOOVmode should be used when the first operand is a
1542 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1543 needed. */
1544 #define SELECT_CC_MODE(OP,X,Y) \
1545 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1546
1547 /* A function address in a call instruction
1548 is a byte address (for indexing purposes)
1549 so give the MEM rtx a byte's mode. */
1550 #define FUNCTION_MODE SImode
1551
1552 /* Define this if addresses of constant functions
1553 shouldn't be put through pseudo regs where they can be cse'd.
1554 Desirable on machines where ordinary constants are expensive
1555 but a CALL with constant address is cheap. */
1556 #define NO_FUNCTION_CSE
1557
1558 /* Define this to be nonzero if shift instructions ignore all but the low-order
1559 few bits. */
1560 #define SHIFT_COUNT_TRUNCATED 1
1561
1562 /* Compute extra cost of moving data between one register class
1563 and another.
1564
1565 Make moves from SAR so expensive they should never happen. We used to
1566 have 0xffff here, but that generates overflow in rare cases.
1567
1568 Copies involving a FP register and a non-FP register are relatively
1569 expensive because they must go through memory.
1570
1571 Other copies are reasonably cheap. */
1572 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1573 (CLASS1 == SHIFT_REGS ? 0x100 \
1574 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1575 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1576 : 2)
1577
1578 /* Adjust the cost of branches. */
1579 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1580
1581 /* Handling the special cases is going to get too complicated for a macro,
1582 just call `pa_adjust_insn_length' to do the real work. */
1583 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1584 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1585
1586 /* Millicode insns are actually function calls with some special
1587 constraints on arguments and register usage.
1588
1589 Millicode calls always expect their arguments in the integer argument
1590 registers, and always return their result in %r29 (ret1). They
1591 are expected to clobber their arguments, %r1, %r29, and the return
1592 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1593
1594 This macro tells reorg that the references to arguments and
1595 millicode calls do not appear to happen until after the millicode call.
1596 This allows reorg to put insns which set the argument registers into the
1597 delay slot of the millicode call -- thus they act more like traditional
1598 CALL_INSNs.
1599
1600 Note we cannot consider side effects of the insn to be delayed because
1601 the branch and link insn will clobber the return pointer. If we happened
1602 to use the return pointer in the delay slot of the call, then we lose.
1603
1604 get_attr_type will try to recognize the given insn, so make sure to
1605 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1606 in particular. */
1607 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1608
1609 \f
1610 /* Control the assembler format that we output. */
1611
1612 /* A C string constant describing how to begin a comment in the target
1613 assembler language. The compiler assumes that the comment will end at
1614 the end of the line. */
1615
1616 #define ASM_COMMENT_START ";"
1617
1618 /* Output to assembler file text saying following lines
1619 may contain character constants, extra white space, comments, etc. */
1620
1621 #define ASM_APP_ON ""
1622
1623 /* Output to assembler file text saying following lines
1624 no longer contain unusual constructs. */
1625
1626 #define ASM_APP_OFF ""
1627
1628 /* This is how to output the definition of a user-level label named NAME,
1629 such as the label on a static function or variable NAME. */
1630
1631 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1632 do { \
1633 assemble_name ((FILE), (NAME)); \
1634 if (TARGET_GAS) \
1635 fputs (":\n", (FILE)); \
1636 else \
1637 fputc ('\n', (FILE)); \
1638 } while (0)
1639
1640 /* This is how to output a reference to a user-level label named NAME.
1641 `assemble_name' uses this. */
1642
1643 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1644 do { \
1645 const char *xname = (NAME); \
1646 if (FUNCTION_NAME_P (NAME)) \
1647 xname += 1; \
1648 if (xname[0] == '*') \
1649 xname += 1; \
1650 else \
1651 fputs (user_label_prefix, FILE); \
1652 fputs (xname, FILE); \
1653 } while (0)
1654
1655 /* This how we output the symbol_ref X. */
1656
1657 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1658 do { \
1659 SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED; \
1660 assemble_name (FILE, XSTR (X, 0)); \
1661 } while (0)
1662
1663 /* This is how to store into the string LABEL
1664 the symbol_ref name of an internal numbered label where
1665 PREFIX is the class of label and NUM is the number within the class.
1666 This is suitable for output with `assemble_name'. */
1667
1668 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1669 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1670
1671 /* Output the definition of a compiler-generated label named NAME. */
1672
1673 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1674 do { \
1675 assemble_name_raw ((FILE), (NAME)); \
1676 if (TARGET_GAS) \
1677 fputs (":\n", (FILE)); \
1678 else \
1679 fputc ('\n', (FILE)); \
1680 } while (0)
1681
1682 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1683
1684 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1685 output_ascii ((FILE), (P), (SIZE))
1686
1687 /* Jump tables are always placed in the text section. Technically, it
1688 is possible to put them in the readonly data section when -mbig-switch
1689 is specified. This has the benefit of getting the table out of .text
1690 and reducing branch lengths as a result. The downside is that an
1691 additional insn (addil) is needed to access the table when generating
1692 PIC code. The address difference table also has to use 32-bit
1693 pc-relative relocations. Currently, GAS does not support these
1694 relocations, although it is easily modified to do this operation.
1695 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1696 when using ELF GAS. A simple difference can be used when using
1697 SOM GAS or the HP assembler. The final downside is GDB complains
1698 about the nesting of the label for the table when debugging. */
1699
1700 #define JUMP_TABLES_IN_TEXT_SECTION 1
1701
1702 /* This is how to output an element of a case-vector that is absolute. */
1703
1704 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1705 if (TARGET_BIG_SWITCH) \
1706 fprintf (FILE, "\t.word L$%04d\n", VALUE); \
1707 else \
1708 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1709
1710 /* This is how to output an element of a case-vector that is relative.
1711 Since we always place jump tables in the text section, the difference
1712 is absolute and requires no relocation. */
1713
1714 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1715 if (TARGET_BIG_SWITCH) \
1716 fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL); \
1717 else \
1718 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1719
1720 /* This is how to output an assembler line that says to advance the
1721 location counter to a multiple of 2**LOG bytes. */
1722
1723 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1724 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1725
1726 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1727 fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1728 (unsigned HOST_WIDE_INT)(SIZE))
1729
1730 /* This says how to output an assembler line to define an uninitialized
1731 global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1732 This macro exists to properly support languages like C++ which do not
1733 have common data. */
1734
1735 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1736 pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1737
1738 /* This says how to output an assembler line to define a global common symbol
1739 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1740
1741 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1742 pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1743
1744 /* This says how to output an assembler line to define a local common symbol
1745 with size SIZE (in bytes) and alignment ALIGN (in bits). This macro
1746 controls how the assembler definitions of uninitialized static variables
1747 are output. */
1748
1749 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1750 pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1751
1752
1753 #define ASM_PN_FORMAT "%s___%lu"
1754
1755 /* All HP assemblers use "!" to separate logical lines. */
1756 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
1757
1758 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1759 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1760
1761 /* Print operand X (an rtx) in assembler syntax to file FILE.
1762 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1763 For `%' followed by punctuation, CODE is the punctuation and X is null.
1764
1765 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1766 and an immediate zero should be represented as `r0'.
1767
1768 Several % codes are defined:
1769 O an operation
1770 C compare conditions
1771 N extract conditions
1772 M modifier to handle preincrement addressing for memory refs.
1773 F modifier to handle preincrement addressing for fp memory refs */
1774
1775 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1776
1777 \f
1778 /* Print a memory address as an operand to reference that memory location. */
1779
1780 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1781 { rtx addr = ADDR; \
1782 switch (GET_CODE (addr)) \
1783 { \
1784 case REG: \
1785 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1786 break; \
1787 case PLUS: \
1788 gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT); \
1789 fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)), \
1790 reg_names [REGNO (XEXP (addr, 0))]); \
1791 break; \
1792 case LO_SUM: \
1793 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1794 fputs ("R'", FILE); \
1795 else if (flag_pic == 0) \
1796 fputs ("RR'", FILE); \
1797 else \
1798 fputs ("RT'", FILE); \
1799 output_global_address (FILE, XEXP (addr, 1), 0); \
1800 fputs ("(", FILE); \
1801 output_operand (XEXP (addr, 0), 0); \
1802 fputs (")", FILE); \
1803 break; \
1804 case CONST_INT: \
1805 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
1806 break; \
1807 default: \
1808 output_addr_const (FILE, addr); \
1809 }}
1810
1811 \f
1812 /* Find the return address associated with the frame given by
1813 FRAMEADDR. */
1814 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1815 (return_addr_rtx (COUNT, FRAMEADDR))
1816
1817 /* Used to mask out junk bits from the return address, such as
1818 processor state, interrupt status, condition codes and the like. */
1819 #define MASK_RETURN_ADDR \
1820 /* The privilege level is in the two low order bits, mask em out \
1821 of the return address. */ \
1822 (GEN_INT (-4))
1823
1824 /* The number of Pmode words for the setjmp buffer. */
1825 #define JMP_BUF_SIZE 50
1826
1827 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1828 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1829 "__canonicalize_funcptr_for_compare"
1830
1831 #ifdef HAVE_AS_TLS
1832 #undef TARGET_HAVE_TLS
1833 #define TARGET_HAVE_TLS true
1834 #endif