]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/pa/pa.h
alpha.c (alpha_start_function): Use switch_to_section.
[thirdparty/gcc.git] / gcc / config / pa / pa.h
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6 Software Science at the University of Utah.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 enum cmp_type /* comparison type */
26 {
27 CMP_SI, /* compare integers */
28 CMP_SF, /* compare single precision floats */
29 CMP_DF, /* compare double precision floats */
30 CMP_MAX /* max comparison type */
31 };
32
33 /* For long call handling. */
34 extern unsigned long total_code_bytes;
35
36 /* Which processor to schedule for. */
37
38 enum processor_type
39 {
40 PROCESSOR_700,
41 PROCESSOR_7100,
42 PROCESSOR_7100LC,
43 PROCESSOR_7200,
44 PROCESSOR_7300,
45 PROCESSOR_8000
46 };
47
48 /* For -mschedule= option. */
49 extern enum processor_type pa_cpu;
50
51 /* For -munix= option. */
52 extern int flag_pa_unix;
53
54 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
55
56 /* Print subsidiary information on the compiler version in use. */
57
58 #define TARGET_VERSION fputs (" (hppa)", stderr);
59
60 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
61
62 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
63 #ifndef TARGET_64BIT
64 #define TARGET_64BIT 0
65 #endif
66
67 /* Generate code for ELF32 ABI. */
68 #ifndef TARGET_ELF32
69 #define TARGET_ELF32 0
70 #endif
71
72 /* Generate code for SOM 32bit ABI. */
73 #ifndef TARGET_SOM
74 #define TARGET_SOM 0
75 #endif
76
77 /* HP-UX UNIX features. */
78 #ifndef TARGET_HPUX
79 #define TARGET_HPUX 0
80 #endif
81
82 /* HP-UX 10.10 UNIX 95 features. */
83 #ifndef TARGET_HPUX_10_10
84 #define TARGET_HPUX_10_10 0
85 #endif
86
87 /* HP-UX 11i multibyte and UNIX 98 extensions. */
88 #ifndef TARGET_HPUX_11_11
89 #define TARGET_HPUX_11_11 0
90 #endif
91
92 /* The following three defines are potential target switches. The current
93 defines are optimal given the current capabilities of GAS and GNU ld. */
94
95 /* Define to a C expression evaluating to true to use long absolute calls.
96 Currently, only the HP assembler and SOM linker support long absolute
97 calls. They are used only in non-pic code. */
98 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
99
100 /* Define to a C expression evaluating to true to use long pic symbol
101 difference calls. This is a call variant similar to the long pic
102 pc-relative call. Long pic symbol difference calls are only used with
103 the HP SOM linker. Currently, only the HP assembler supports these
104 calls. GAS doesn't allow an arbitrary difference of two symbols. */
105 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
106
107 /* Define to a C expression evaluating to true to use long pic
108 pc-relative calls. Long pic pc-relative calls are only used with
109 GAS. Currently, they are usable for calls within a module but
110 not for external calls. */
111 #define TARGET_LONG_PIC_PCREL_CALL 0
112
113 /* Define to a C expression evaluating to true to use SOM secondary
114 definition symbols for weak support. Linker support for secondary
115 definition symbols is buggy prior to HP-UX 11.X. */
116 #define TARGET_SOM_SDEF 0
117
118 /* Define to a C expression evaluating to true to save the entry value
119 of SP in the current frame marker. This is normally unnecessary.
120 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
121 HP compilers don't use this flag but it is supported by the assembler.
122 We set this flag to indicate that register %r3 has been saved at the
123 start of the frame. Thus, when the HP unwind library is used, we
124 need to generate additional code to save SP into the frame marker. */
125 #define TARGET_HPUX_UNWIND_LIBRARY 0
126
127 #ifndef TARGET_DEFAULT
128 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
129 #endif
130
131 #ifndef TARGET_CPU_DEFAULT
132 #define TARGET_CPU_DEFAULT 0
133 #endif
134
135 #ifndef TARGET_SCHED_DEFAULT
136 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
137 #endif
138
139 /* Support for a compile-time default CPU, et cetera. The rules are:
140 --with-schedule is ignored if -mschedule is specified.
141 --with-arch is ignored if -march is specified. */
142 #define OPTION_DEFAULT_SPECS \
143 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
144 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
145
146 /* Specify the dialect of assembler to use. New mnemonics is dialect one
147 and the old mnemonics are dialect zero. */
148 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
149
150 #define OVERRIDE_OPTIONS override_options ()
151
152 /* Override some settings from dbxelf.h. */
153
154 /* We do not have to be compatible with dbx, so we enable gdb extensions
155 by default. */
156 #define DEFAULT_GDB_EXTENSIONS 1
157
158 /* This used to be zero (no max length), but big enums and such can
159 cause huge strings which killed gas.
160
161 We also have to avoid lossage in dbxout.c -- it does not compute the
162 string size accurately, so we are real conservative here. */
163 #undef DBX_CONTIN_LENGTH
164 #define DBX_CONTIN_LENGTH 3000
165
166 /* GDB always assumes the current function's frame begins at the value
167 of the stack pointer upon entry to the current function. Accessing
168 local variables and parameters passed on the stack is done using the
169 base of the frame + an offset provided by GCC.
170
171 For functions which have frame pointers this method works fine;
172 the (frame pointer) == (stack pointer at function entry) and GCC provides
173 an offset relative to the frame pointer.
174
175 This loses for functions without a frame pointer; GCC provides an offset
176 which is relative to the stack pointer after adjusting for the function's
177 frame size. GDB would prefer the offset to be relative to the value of
178 the stack pointer at the function's entry. Yuk! */
179 #define DEBUGGER_AUTO_OFFSET(X) \
180 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
181 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
182
183 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
184 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
185 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
186
187 #define TARGET_CPU_CPP_BUILTINS() \
188 do { \
189 builtin_assert("cpu=hppa"); \
190 builtin_assert("machine=hppa"); \
191 builtin_define("__hppa"); \
192 builtin_define("__hppa__"); \
193 if (TARGET_PA_20) \
194 builtin_define("_PA_RISC2_0"); \
195 else if (TARGET_PA_11) \
196 builtin_define("_PA_RISC1_1"); \
197 else \
198 builtin_define("_PA_RISC1_0"); \
199 } while (0)
200
201 /* An old set of OS defines for various BSD-like systems. */
202 #define TARGET_OS_CPP_BUILTINS() \
203 do \
204 { \
205 builtin_define_std ("REVARGV"); \
206 builtin_define_std ("hp800"); \
207 builtin_define_std ("hp9000"); \
208 builtin_define_std ("hp9k8"); \
209 if (!c_dialect_cxx () && !flag_iso) \
210 builtin_define ("hppa"); \
211 builtin_define_std ("spectrum"); \
212 builtin_define_std ("unix"); \
213 builtin_assert ("system=bsd"); \
214 builtin_assert ("system=unix"); \
215 } \
216 while (0)
217
218 #define CC1_SPEC "%{pg:} %{p:}"
219
220 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
221
222 /* We don't want -lg. */
223 #ifndef LIB_SPEC
224 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
225 #endif
226
227 /* This macro defines command-line switches that modify the default
228 target name.
229
230 The definition is be an initializer for an array of structures. Each
231 array element has have three elements: the switch name, one of the
232 enumeration codes ADD or DELETE to indicate whether the string should be
233 inserted or deleted, and the string to be inserted or deleted. */
234 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
235
236 /* Make gcc agree with <machine/ansi.h> */
237
238 #define SIZE_TYPE "unsigned int"
239 #define PTRDIFF_TYPE "int"
240 #define WCHAR_TYPE "unsigned int"
241 #define WCHAR_TYPE_SIZE 32
242
243 /* Show we can debug even without a frame pointer. */
244 #define CAN_DEBUG_WITHOUT_FP
245 \f
246 /* target machine storage layout */
247 typedef struct machine_function GTY(())
248 {
249 /* Flag indicating that a .NSUBSPA directive has been output for
250 this function. */
251 int in_nsubspa;
252 } machine_function;
253
254 /* Define this macro if it is advisable to hold scalars in registers
255 in a wider mode than that declared by the program. In such cases,
256 the value is constrained to be within the bounds of the declared
257 type, but kept valid in the wider mode. The signedness of the
258 extension may differ from that of the type. */
259
260 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
261 if (GET_MODE_CLASS (MODE) == MODE_INT \
262 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
263 (MODE) = word_mode;
264
265 /* Define this if most significant bit is lowest numbered
266 in instructions that operate on numbered bit-fields. */
267 #define BITS_BIG_ENDIAN 1
268
269 /* Define this if most significant byte of a word is the lowest numbered. */
270 /* That is true on the HP-PA. */
271 #define BYTES_BIG_ENDIAN 1
272
273 /* Define this if most significant word of a multiword number is lowest
274 numbered. */
275 #define WORDS_BIG_ENDIAN 1
276
277 #define MAX_BITS_PER_WORD 64
278
279 /* Width of a word, in units (bytes). */
280 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
281
282 /* Minimum number of units in a word. If this is undefined, the default
283 is UNITS_PER_WORD. Otherwise, it is the constant value that is the
284 smallest value that UNITS_PER_WORD can have at run-time.
285
286 FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
287 building of various TImode routines in libgcc. The HP runtime
288 specification doesn't provide the alignment requirements and calling
289 conventions for TImode variables. */
290 #define MIN_UNITS_PER_WORD 4
291
292 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
293 #define PARM_BOUNDARY BITS_PER_WORD
294
295 /* Largest alignment required for any stack parameter, in bits.
296 Don't define this if it is equal to PARM_BOUNDARY */
297 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
298
299 /* Boundary (in *bits*) on which stack pointer is always aligned;
300 certain optimizations in combine depend on this.
301
302 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
303 the stack on the 32 and 64-bit ports, respectively. However, we
304 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
305 in main. Thus, we treat the former as the preferred alignment. */
306 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
307 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
308
309 /* Allocation boundary (in *bits*) for the code of a function. */
310 #define FUNCTION_BOUNDARY BITS_PER_WORD
311
312 /* Alignment of field after `int : 0' in a structure. */
313 #define EMPTY_FIELD_BOUNDARY 32
314
315 /* Every structure's size must be a multiple of this. */
316 #define STRUCTURE_SIZE_BOUNDARY 8
317
318 /* A bit-field declared as `int' forces `int' alignment for the struct. */
319 #define PCC_BITFIELD_TYPE_MATTERS 1
320
321 /* No data type wants to be aligned rounder than this. */
322 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
323
324 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
325 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
326 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
327
328 /* Make arrays of chars word-aligned for the same reasons. */
329 #define DATA_ALIGNMENT(TYPE, ALIGN) \
330 (TREE_CODE (TYPE) == ARRAY_TYPE \
331 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
332 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
333
334 /* Set this nonzero if move instructions will actually fail to work
335 when given unaligned data. */
336 #define STRICT_ALIGNMENT 1
337
338 /* Value is 1 if it is a good idea to tie two pseudo registers
339 when one has mode MODE1 and one has mode MODE2.
340 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
341 for any hard reg, then this must be 0 for correct output. */
342 #define MODES_TIEABLE_P(MODE1, MODE2) \
343 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
344
345 /* Specify the registers used for certain standard purposes.
346 The values of these macros are register numbers. */
347
348 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
349 /* #define PC_REGNUM */
350
351 /* Register to use for pushing function arguments. */
352 #define STACK_POINTER_REGNUM 30
353
354 /* Base register for access to local variables of the function. */
355 #define FRAME_POINTER_REGNUM 3
356
357 /* Value should be nonzero if functions must have frame pointers. */
358 #define FRAME_POINTER_REQUIRED \
359 (current_function_calls_alloca)
360
361 /* Don't allow hard registers to be renamed into r2 unless r2
362 is already live or already being saved (due to eh). */
363
364 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
365 ((NEW_REG) != 2 || regs_ever_live[2] || current_function_calls_eh_return)
366
367 /* C statement to store the difference between the frame pointer
368 and the stack pointer values immediately after the function prologue.
369
370 Note, we always pretend that this is a leaf function because if
371 it's not, there's no point in trying to eliminate the
372 frame pointer. If it is a leaf function, we guessed right! */
373 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
374 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
375
376 /* Base register for access to arguments of the function. */
377 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
378
379 /* Register in which static-chain is passed to a function. */
380 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
381
382 /* Register used to address the offset table for position-independent
383 data references. */
384 #define PIC_OFFSET_TABLE_REGNUM \
385 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
386
387 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
388
389 /* Function to return the rtx used to save the pic offset table register
390 across function calls. */
391 extern struct rtx_def *hppa_pic_save_rtx (void);
392
393 #define DEFAULT_PCC_STRUCT_RETURN 0
394
395 /* Register in which address to store a structure value
396 is passed to a function. */
397 #define PA_STRUCT_VALUE_REGNUM 28
398
399 /* Describe how we implement __builtin_eh_return. */
400 #define EH_RETURN_DATA_REGNO(N) \
401 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
402 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
403 #define EH_RETURN_HANDLER_RTX \
404 gen_rtx_MEM (word_mode, \
405 gen_rtx_PLUS (word_mode, frame_pointer_rtx, \
406 TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
407
408 /* Offset from the frame pointer register value to the top of stack. */
409 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
410
411 /* A C expression whose value is RTL representing the location of the
412 incoming return address at the beginning of any function, before the
413 prologue. You only need to define this macro if you want to support
414 call frame debugging information like that provided by DWARF 2. */
415 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
416 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
417
418 /* A C expression whose value is an integer giving a DWARF 2 column
419 number that may be used as an alternate return column. This should
420 be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
421 register, but an alternate column needs to be used for signal frames.
422
423 Column 0 is not used but unfortunately its register size is set to
424 4 bytes (sizeof CCmode) so it can't be used on 64-bit targets. */
425 #define DWARF_ALT_FRAME_RETURN_COLUMN FIRST_PSEUDO_REGISTER
426
427 /* This macro chooses the encoding of pointers embedded in the exception
428 handling sections. If at all possible, this should be defined such
429 that the exception handling section will not require dynamic relocations,
430 and so may be read-only.
431
432 Because the HP assembler auto aligns, it is necessary to use
433 DW_EH_PE_aligned. It's not possible to make the data read-only
434 on the HP-UX SOM port since the linker requires fixups for label
435 differences in different sections to be word aligned. However,
436 the SOM linker can do unaligned fixups for absolute pointers.
437 We also need aligned pointers for global and function pointers.
438
439 Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
440 fixups, the runtime doesn't have a consistent relationship between
441 text and data for dynamically loaded objects. Thus, it's not possible
442 to use pc-relative encoding for pointers on this target. It may be
443 possible to use segment relative encodings but GAS doesn't currently
444 have a mechanism to generate these encodings. For other targets, we
445 use pc-relative encoding for pointers. If the pointer might require
446 dynamic relocation, we make it indirect. */
447 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
448 (TARGET_GAS && !TARGET_HPUX \
449 ? (DW_EH_PE_pcrel \
450 | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0) \
451 | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)) \
452 : (!TARGET_GAS || (GLOBAL) || (CODE) == 2 \
453 ? DW_EH_PE_aligned : DW_EH_PE_absptr))
454
455 /* Handle special EH pointer encodings. Absolute, pc-relative, and
456 indirect are handled automatically. We output pc-relative, and
457 indirect pc-relative ourself since we need some special magic to
458 generate pc-relative relocations, and to handle indirect function
459 pointers. */
460 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
461 do { \
462 if (((ENCODING) & 0x70) == DW_EH_PE_pcrel) \
463 { \
464 fputs (integer_asm_op (SIZE, FALSE), FILE); \
465 if ((ENCODING) & DW_EH_PE_indirect) \
466 output_addr_const (FILE, get_deferred_plabel (ADDR)); \
467 else \
468 assemble_name (FILE, XSTR ((ADDR), 0)); \
469 fputs ("+8-$PIC_pcrel$0", FILE); \
470 goto DONE; \
471 } \
472 } while (0)
473 \f
474 /* The letters I, J, K, L and M in a register constraint string
475 can be used to stand for particular ranges of immediate operands.
476 This macro defines what the ranges are.
477 C is the letter, and VALUE is a constant value.
478 Return 1 if VALUE is in the range specified by C.
479
480 `I' is used for the 11 bit constants.
481 `J' is used for the 14 bit constants.
482 `K' is used for values that can be moved with a zdepi insn.
483 `L' is used for the 5 bit constants.
484 `M' is used for 0.
485 `N' is used for values with the least significant 11 bits equal to zero
486 and when sign extended from 32 to 64 bits the
487 value does not change.
488 `O' is used for numbers n such that n+1 is a power of 2.
489 */
490
491 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
492 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
493 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
494 : (C) == 'K' ? zdepi_cint_p (VALUE) \
495 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
496 : (C) == 'M' ? (VALUE) == 0 \
497 : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
498 || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) \
499 == (HOST_WIDE_INT) -1 << 31)) \
500 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
501 : (C) == 'P' ? and_mask_p (VALUE) \
502 : 0)
503
504 /* Similar, but for floating or large integer constants, and defining letters
505 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
506
507 For PA, `G' is the floating-point constant zero. `H' is undefined. */
508
509 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
510 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
511 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
512 : 0)
513
514 /* The class value for index registers, and the one for base regs. */
515 #define INDEX_REG_CLASS GENERAL_REGS
516 #define BASE_REG_CLASS GENERAL_REGS
517
518 #define FP_REG_CLASS_P(CLASS) \
519 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
520
521 /* True if register is floating-point. */
522 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
523
524 /* Given an rtx X being reloaded into a reg required to be
525 in class CLASS, return the class of reg to actually use.
526 In general this is just CLASS; but on some machines
527 in some cases it is preferable to use a more restrictive class. */
528 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
529
530 #define MAYBE_FP_REG_CLASS_P(CLASS) \
531 reg_classes_intersect_p ((CLASS), FP_REGS)
532
533 /* On the PA it is not possible to directly move data between
534 GENERAL_REGS and FP_REGS. */
535 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
536 (MAYBE_FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2) \
537 || MAYBE_FP_REG_CLASS_P (CLASS2) != FP_REG_CLASS_P (CLASS1))
538
539 /* Return the stack location to use for secondary memory needed reloads. */
540 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
541 gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
542
543 \f
544 /* Stack layout; function entry, exit and calling. */
545
546 /* Define this if pushing a word on the stack
547 makes the stack pointer a smaller address. */
548 /* #define STACK_GROWS_DOWNWARD */
549
550 /* Believe it or not. */
551 #define ARGS_GROW_DOWNWARD
552
553 /* Define this to nonzero if the nominal address of the stack frame
554 is at the high-address end of the local variables;
555 that is, each additional local variable allocated
556 goes at a more negative offset in the frame. */
557 #define FRAME_GROWS_DOWNWARD 0
558
559 /* Offset within stack frame to start allocating local variables at.
560 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
561 first local allocated. Otherwise, it is the offset to the BEGINNING
562 of the first local allocated.
563
564 On the 32-bit ports, we reserve one slot for the previous frame
565 pointer and one fill slot. The fill slot is for compatibility
566 with HP compiled programs. On the 64-bit ports, we reserve one
567 slot for the previous frame pointer. */
568 #define STARTING_FRAME_OFFSET 8
569
570 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
571 of the stack. The default is to align it to STACK_BOUNDARY. */
572 #define STACK_ALIGNMENT_NEEDED 0
573
574 /* If we generate an insn to push BYTES bytes,
575 this says how many the stack pointer really advances by.
576 On the HP-PA, don't define this because there are no push insns. */
577 /* #define PUSH_ROUNDING(BYTES) */
578
579 /* Offset of first parameter from the argument pointer register value.
580 This value will be negated because the arguments grow down.
581 Also note that on STACK_GROWS_UPWARD machines (such as this one)
582 this is the distance from the frame pointer to the end of the first
583 argument, not it's beginning. To get the real offset of the first
584 argument, the size of the argument must be added. */
585
586 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
587
588 /* When a parameter is passed in a register, stack space is still
589 allocated for it. */
590 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
591
592 /* Define this if the above stack space is to be considered part of the
593 space allocated by the caller. */
594 #define OUTGOING_REG_PARM_STACK_SPACE
595
596 /* Keep the stack pointer constant throughout the function.
597 This is both an optimization and a necessity: longjmp
598 doesn't behave itself when the stack pointer moves within
599 the function! */
600 #define ACCUMULATE_OUTGOING_ARGS 1
601
602 /* The weird HPPA calling conventions require a minimum of 48 bytes on
603 the stack: 16 bytes for register saves, and 32 bytes for magic.
604 This is the difference between the logical top of stack and the
605 actual sp.
606
607 On the 64-bit port, the HP C compiler allocates a 48-byte frame
608 marker, although the runtime documentation only describes a 16
609 byte marker. For compatibility, we allocate 48 bytes. */
610 #define STACK_POINTER_OFFSET \
611 (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32)
612
613 #define STACK_DYNAMIC_OFFSET(FNDECL) \
614 (TARGET_64BIT \
615 ? (STACK_POINTER_OFFSET) \
616 : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
617
618 /* Value is 1 if returning from a function call automatically
619 pops the arguments described by the number-of-args field in the call.
620 FUNDECL is the declaration node of the function (as a tree),
621 FUNTYPE is the data type of the function (as a tree),
622 or for a library call it is an identifier node for the subroutine name. */
623
624 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
625
626 /* Define how to find the value returned by a function.
627 VALTYPE is the data type of the value (as a tree).
628 If the precise function being called is known, FUNC is its FUNCTION_DECL;
629 otherwise, FUNC is 0. */
630
631 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
632
633 /* Define how to find the value returned by a library function
634 assuming the value has mode MODE. */
635
636 #define LIBCALL_VALUE(MODE) \
637 gen_rtx_REG (MODE, \
638 (! TARGET_SOFT_FLOAT \
639 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
640
641 /* 1 if N is a possible register number for a function value
642 as seen by the caller. */
643
644 #define FUNCTION_VALUE_REGNO_P(N) \
645 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
646
647 \f
648 /* Define a data type for recording info about an argument list
649 during the scan of that argument list. This data type should
650 hold all necessary information about the function itself
651 and about the args processed so far, enough to enable macros
652 such as FUNCTION_ARG to determine where the next arg should go.
653
654 On the HP-PA, the WORDS field holds the number of words
655 of arguments scanned so far (including the invisible argument,
656 if any, which holds the structure-value-address). Thus, 4 or
657 more means all following args should go on the stack.
658
659 The INCOMING field tracks whether this is an "incoming" or
660 "outgoing" argument.
661
662 The INDIRECT field indicates whether this is is an indirect
663 call or not.
664
665 The NARGS_PROTOTYPE field indicates that an argument does not
666 have a prototype when it less than or equal to 0. */
667
668 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
669
670 #define CUMULATIVE_ARGS struct hppa_args
671
672 /* Initialize a variable CUM of type CUMULATIVE_ARGS
673 for a call to a function whose data type is FNTYPE.
674 For a library call, FNTYPE is 0. */
675
676 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
677 (CUM).words = 0, \
678 (CUM).incoming = 0, \
679 (CUM).indirect = (FNTYPE) && !(FNDECL), \
680 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
681 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
682 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
683 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
684 : 0)
685
686
687
688 /* Similar, but when scanning the definition of a procedure. We always
689 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
690
691 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
692 (CUM).words = 0, \
693 (CUM).incoming = 1, \
694 (CUM).indirect = 0, \
695 (CUM).nargs_prototype = 1000
696
697 /* Figure out the size in words of the function argument. The size
698 returned by this macro should always be greater than zero because
699 we pass variable and zero sized objects by reference. */
700
701 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
702 ((((MODE) != BLKmode \
703 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
704 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
705
706 /* Update the data in CUM to advance over an argument
707 of mode MODE and data type TYPE.
708 (TYPE is null for libcalls where that information may not be available.) */
709
710 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
711 { (CUM).nargs_prototype--; \
712 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
713 + (((CUM).words & 01) && (TYPE) != 0 \
714 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
715 }
716
717 /* Determine where to put an argument to a function.
718 Value is zero to push the argument on the stack,
719 or a hard register in which to store the argument.
720
721 MODE is the argument's machine mode.
722 TYPE is the data type of the argument (as a tree).
723 This is null for libcalls where that information may
724 not be available.
725 CUM is a variable of type CUMULATIVE_ARGS which gives info about
726 the preceding args and about the function being called.
727 NAMED is nonzero if this argument is a named parameter
728 (otherwise it is an extra parameter matching an ellipsis).
729
730 On the HP-PA the first four words of args are normally in registers
731 and the rest are pushed. But any arg that won't entirely fit in regs
732 is pushed.
733
734 Arguments passed in registers are either 1 or 2 words long.
735
736 The caller must make a distinction between calls to explicitly named
737 functions and calls through pointers to functions -- the conventions
738 are different! Calls through pointers to functions only use general
739 registers for the first four argument words.
740
741 Of course all this is different for the portable runtime model
742 HP wants everyone to use for ELF. Ugh. Here's a quick description
743 of how it's supposed to work.
744
745 1) callee side remains unchanged. It expects integer args to be
746 in the integer registers, float args in the float registers and
747 unnamed args in integer registers.
748
749 2) caller side now depends on if the function being called has
750 a prototype in scope (rather than if it's being called indirectly).
751
752 2a) If there is a prototype in scope, then arguments are passed
753 according to their type (ints in integer registers, floats in float
754 registers, unnamed args in integer registers.
755
756 2b) If there is no prototype in scope, then floating point arguments
757 are passed in both integer and float registers. egad.
758
759 FYI: The portable parameter passing conventions are almost exactly like
760 the standard parameter passing conventions on the RS6000. That's why
761 you'll see lots of similar code in rs6000.h. */
762
763 /* If defined, a C expression which determines whether, and in which
764 direction, to pad out an argument with extra space. */
765 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
766
767 /* Specify padding for the last element of a block move between registers
768 and memory.
769
770 The 64-bit runtime specifies that objects need to be left justified
771 (i.e., the normal justification for a big endian target). The 32-bit
772 runtime specifies right justification for objects smaller than 64 bits.
773 We use a DImode register in the parallel for 5 to 7 byte structures
774 so that there is only one element. This allows the object to be
775 correctly padded. */
776 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
777 function_arg_padding ((MODE), (TYPE))
778
779 /* Do not expect to understand this without reading it several times. I'm
780 tempted to try and simply it, but I worry about breaking something. */
781
782 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
783 function_arg (&CUM, MODE, TYPE, NAMED)
784
785 /* If defined, a C expression that gives the alignment boundary, in
786 bits, of an argument with the specified mode and type. If it is
787 not defined, `PARM_BOUNDARY' is used for all arguments. */
788
789 /* Arguments larger than one word are double word aligned. */
790
791 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
792 (((TYPE) \
793 ? (integer_zerop (TYPE_SIZE (TYPE)) \
794 || !TREE_CONSTANT (TYPE_SIZE (TYPE)) \
795 || int_size_in_bytes (TYPE) <= UNITS_PER_WORD) \
796 : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD) \
797 ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
798
799 \f
800 extern GTY(()) rtx hppa_compare_op0;
801 extern GTY(()) rtx hppa_compare_op1;
802 extern enum cmp_type hppa_branch_type;
803
804 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
805 as assembly via FUNCTION_PROFILER. Just output a local label.
806 We can't use the function label because the GAS SOM target can't
807 handle the difference of a global symbol and a local symbol. */
808
809 #ifndef FUNC_BEGIN_PROLOG_LABEL
810 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
811 #endif
812
813 #define FUNCTION_PROFILER(FILE, LABEL) \
814 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
815
816 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
817 void hppa_profile_hook (int label_no);
818
819 /* The profile counter if emitted must come before the prologue. */
820 #define PROFILE_BEFORE_PROLOGUE 1
821
822 /* We never want final.c to emit profile counters. When profile
823 counters are required, we have to defer emitting them to the end
824 of the current file. */
825 #define NO_PROFILE_COUNTERS 1
826
827 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
828 the stack pointer does not matter. The value is tested only in
829 functions that have frame pointers.
830 No definition is equivalent to always zero. */
831
832 extern int may_call_alloca;
833
834 #define EXIT_IGNORE_STACK \
835 (get_frame_size () != 0 \
836 || current_function_calls_alloca || current_function_outgoing_args_size)
837
838 /* Output assembler code for a block containing the constant parts
839 of a trampoline, leaving space for the variable parts.\
840
841 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
842 and then branches to the specified routine.
843
844 This code template is copied from text segment to stack location
845 and then patched with INITIALIZE_TRAMPOLINE to contain
846 valid values, and then entered as a subroutine.
847
848 It is best to keep this as small as possible to avoid having to
849 flush multiple lines in the cache. */
850
851 #define TRAMPOLINE_TEMPLATE(FILE) \
852 { \
853 if (!TARGET_64BIT) \
854 { \
855 fputs ("\tldw 36(%r22),%r21\n", FILE); \
856 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
857 if (ASSEMBLER_DIALECT == 0) \
858 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
859 else \
860 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
861 fputs ("\tldw 4(%r21),%r19\n", FILE); \
862 fputs ("\tldw 0(%r21),%r21\n", FILE); \
863 if (TARGET_PA_20) \
864 { \
865 fputs ("\tbve (%r21)\n", FILE); \
866 fputs ("\tldw 40(%r22),%r29\n", FILE); \
867 fputs ("\t.word 0\n", FILE); \
868 fputs ("\t.word 0\n", FILE); \
869 } \
870 else \
871 { \
872 fputs ("\tldsid (%r21),%r1\n", FILE); \
873 fputs ("\tmtsp %r1,%sr0\n", FILE); \
874 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
875 fputs ("\tldw 40(%r22),%r29\n", FILE); \
876 } \
877 fputs ("\t.word 0\n", FILE); \
878 fputs ("\t.word 0\n", FILE); \
879 fputs ("\t.word 0\n", FILE); \
880 fputs ("\t.word 0\n", FILE); \
881 } \
882 else \
883 { \
884 fputs ("\t.dword 0\n", FILE); \
885 fputs ("\t.dword 0\n", FILE); \
886 fputs ("\t.dword 0\n", FILE); \
887 fputs ("\t.dword 0\n", FILE); \
888 fputs ("\tmfia %r31\n", FILE); \
889 fputs ("\tldd 24(%r31),%r1\n", FILE); \
890 fputs ("\tldd 24(%r1),%r27\n", FILE); \
891 fputs ("\tldd 16(%r1),%r1\n", FILE); \
892 fputs ("\tbve (%r1)\n", FILE); \
893 fputs ("\tldd 32(%r31),%r31\n", FILE); \
894 fputs ("\t.dword 0 ; fptr\n", FILE); \
895 fputs ("\t.dword 0 ; static link\n", FILE); \
896 } \
897 }
898
899 /* Length in units of the trampoline for entering a nested function. */
900
901 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
902
903 /* Length in units of the trampoline instruction code. */
904
905 #define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
906
907 /* Minimum length of a cache line. A length of 16 will work on all
908 PA-RISC processors. All PA 1.1 processors have a cache line of
909 32 bytes. Most but not all PA 2.0 processors have a cache line
910 of 64 bytes. As cache flushes are expensive and we don't support
911 PA 1.0, we use a minimum length of 32. */
912
913 #define MIN_CACHELINE_SIZE 32
914
915 /* Emit RTL insns to initialize the variable parts of a trampoline.
916 FNADDR is an RTX for the address of the function's pure code.
917 CXT is an RTX for the static chain value for the function.
918
919 Move the function address to the trampoline template at offset 36.
920 Move the static chain value to trampoline template at offset 40.
921 Move the trampoline address to trampoline template at offset 44.
922 Move r19 to trampoline template at offset 48. The latter two
923 words create a plabel for the indirect call to the trampoline.
924
925 A similar sequence is used for the 64-bit port but the plabel is
926 at the beginning of the trampoline.
927
928 Finally, the cache entries for the trampoline code are flushed.
929 This is necessary to ensure that the trampoline instruction sequence
930 is written to memory prior to any attempts at prefetching the code
931 sequence. */
932
933 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
934 { \
935 rtx start_addr = gen_reg_rtx (Pmode); \
936 rtx end_addr = gen_reg_rtx (Pmode); \
937 rtx line_length = gen_reg_rtx (Pmode); \
938 rtx tmp; \
939 \
940 if (!TARGET_64BIT) \
941 { \
942 tmp = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
943 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
944 tmp = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
945 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
946 \
947 /* Create a fat pointer for the trampoline. */ \
948 tmp = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
949 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP)); \
950 tmp = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
951 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
952 gen_rtx_REG (Pmode, 19)); \
953 \
954 /* fdc and fic only use registers for the address to flush, \
955 they do not accept integer displacements. We align the \
956 start and end addresses to the beginning of their respective \
957 cache lines to minimize the number of lines flushed. */ \
958 tmp = force_reg (Pmode, (TRAMP)); \
959 emit_insn (gen_andsi3 (start_addr, tmp, \
960 GEN_INT (-MIN_CACHELINE_SIZE))); \
961 tmp = force_reg (Pmode, \
962 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
963 emit_insn (gen_andsi3 (end_addr, tmp, \
964 GEN_INT (-MIN_CACHELINE_SIZE))); \
965 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
966 emit_insn (gen_dcacheflush (start_addr, end_addr, line_length)); \
967 emit_insn (gen_icacheflush (start_addr, end_addr, line_length, \
968 gen_reg_rtx (Pmode), \
969 gen_reg_rtx (Pmode))); \
970 } \
971 else \
972 { \
973 tmp = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
974 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
975 tmp = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
976 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
977 \
978 /* Create a fat pointer for the trampoline. */ \
979 tmp = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
980 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
981 force_reg (Pmode, plus_constant ((TRAMP), 32))); \
982 tmp = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
983 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
984 gen_rtx_REG (Pmode, 27)); \
985 \
986 /* fdc and fic only use registers for the address to flush, \
987 they do not accept integer displacements. We align the \
988 start and end addresses to the beginning of their respective \
989 cache lines to minimize the number of lines flushed. */ \
990 tmp = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
991 emit_insn (gen_anddi3 (start_addr, tmp, \
992 GEN_INT (-MIN_CACHELINE_SIZE))); \
993 tmp = force_reg (Pmode, \
994 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
995 emit_insn (gen_anddi3 (end_addr, tmp, \
996 GEN_INT (-MIN_CACHELINE_SIZE))); \
997 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
998 emit_insn (gen_dcacheflush (start_addr, end_addr, line_length)); \
999 emit_insn (gen_icacheflush (start_addr, end_addr, line_length, \
1000 gen_reg_rtx (Pmode), \
1001 gen_reg_rtx (Pmode))); \
1002 } \
1003 }
1004
1005 /* Perform any machine-specific adjustment in the address of the trampoline.
1006 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1007 Adjust the trampoline address to point to the plabel at offset 44. */
1008
1009 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1010 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1011
1012 /* Implement `va_start' for varargs and stdarg. */
1013
1014 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1015 hppa_va_start (valist, nextarg)
1016 \f
1017 /* Addressing modes, and classification of registers for them.
1018
1019 Using autoincrement addressing modes on PA8000 class machines is
1020 not profitable. */
1021
1022 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1023 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1024
1025 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1026 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1027
1028 /* Macros to check register numbers against specific register classes. */
1029
1030 /* The following macros assume that X is a hard or pseudo reg number.
1031 They give nonzero only if X is a hard reg of the suitable class
1032 or a pseudo reg currently allocated to a suitable hard reg.
1033 Since they use reg_renumber, they are safe only once reg_renumber
1034 has been allocated, which happens in local-alloc.c. */
1035
1036 #define REGNO_OK_FOR_INDEX_P(X) \
1037 ((X) && ((X) < 32 \
1038 || (X >= FIRST_PSEUDO_REGISTER \
1039 && reg_renumber \
1040 && (unsigned) reg_renumber[X] < 32)))
1041 #define REGNO_OK_FOR_BASE_P(X) \
1042 ((X) && ((X) < 32 \
1043 || (X >= FIRST_PSEUDO_REGISTER \
1044 && reg_renumber \
1045 && (unsigned) reg_renumber[X] < 32)))
1046 #define REGNO_OK_FOR_FP_P(X) \
1047 (FP_REGNO_P (X) \
1048 || (X >= FIRST_PSEUDO_REGISTER \
1049 && reg_renumber \
1050 && FP_REGNO_P (reg_renumber[X])))
1051
1052 /* Now macros that check whether X is a register and also,
1053 strictly, whether it is in a specified class.
1054
1055 These macros are specific to the HP-PA, and may be used only
1056 in code for printing assembler insns and in conditions for
1057 define_optimization. */
1058
1059 /* 1 if X is an fp register. */
1060
1061 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1062 \f
1063 /* Maximum number of registers that can appear in a valid memory address. */
1064
1065 #define MAX_REGS_PER_ADDRESS 2
1066
1067 /* Non-TLS symbolic references. */
1068 #define PA_SYMBOL_REF_TLS_P(RTX) \
1069 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
1070
1071 /* Recognize any constant value that is a valid address except
1072 for symbolic addresses. We get better CSE by rejecting them
1073 here and allowing hppa_legitimize_address to break them up. We
1074 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1075
1076 #define CONSTANT_ADDRESS_P(X) \
1077 ((GET_CODE (X) == LABEL_REF \
1078 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X)) \
1079 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1080 || GET_CODE (X) == HIGH) \
1081 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1082
1083 /* A C expression that is nonzero if we are using the new HP assembler. */
1084
1085 #ifndef NEW_HP_ASSEMBLER
1086 #define NEW_HP_ASSEMBLER 0
1087 #endif
1088
1089 /* The macros below define the immediate range for CONST_INTS on
1090 the 64-bit port. Constants in this range can be loaded in three
1091 instructions using a ldil/ldo/depdi sequence. Constants outside
1092 this range are forced to the constant pool prior to reload. */
1093
1094 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
1095 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
1096 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
1097 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
1098
1099 /* A C expression that is nonzero if X is a legitimate constant for an
1100 immediate operand.
1101
1102 We include all constant integers and constant doubles, but not
1103 floating-point, except for floating-point zero. We reject LABEL_REFs
1104 if we're not using gas or the new HP assembler.
1105
1106 In 64-bit mode, we reject CONST_DOUBLES. We also reject CONST_INTS
1107 that need more than three instructions to load prior to reload. This
1108 limit is somewhat arbitrary. It takes three instructions to load a
1109 CONST_INT from memory but two are memory accesses. It may be better
1110 to increase the allowed range for CONST_INTS. We may also be able
1111 to handle CONST_DOUBLES. */
1112
1113 #define LEGITIMATE_CONSTANT_P(X) \
1114 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1115 || (X) == CONST0_RTX (GET_MODE (X))) \
1116 && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF) \
1117 && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE) \
1118 && !(TARGET_64BIT && GET_CODE (X) == CONST_INT \
1119 && !(HOST_BITS_PER_WIDE_INT <= 32 \
1120 || (reload_in_progress || reload_completed) \
1121 || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X)) \
1122 || cint_ok_for_move (INTVAL (X)))) \
1123 && !function_label_operand (X, VOIDmode))
1124
1125 /* Target flags set on a symbol_ref. */
1126
1127 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output. */
1128 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
1129 #define SYMBOL_REF_REFERENCED_P(RTX) \
1130 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
1131
1132 /* Subroutines for EXTRA_CONSTRAINT.
1133
1134 Return 1 iff OP is a pseudo which did not get a hard register and
1135 we are running the reload pass. */
1136 #define IS_RELOADING_PSEUDO_P(OP) \
1137 ((reload_in_progress \
1138 && GET_CODE (OP) == REG \
1139 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1140 && reg_renumber [REGNO (OP)] < 0))
1141
1142 /* Return 1 iff OP is a scaled or unscaled index address. */
1143 #define IS_INDEX_ADDR_P(OP) \
1144 (GET_CODE (OP) == PLUS \
1145 && GET_MODE (OP) == Pmode \
1146 && (GET_CODE (XEXP (OP, 0)) == MULT \
1147 || GET_CODE (XEXP (OP, 1)) == MULT \
1148 || (REG_P (XEXP (OP, 0)) \
1149 && REG_P (XEXP (OP, 1)))))
1150
1151 /* Return 1 iff OP is a LO_SUM DLT address. */
1152 #define IS_LO_SUM_DLT_ADDR_P(OP) \
1153 (GET_CODE (OP) == LO_SUM \
1154 && GET_MODE (OP) == Pmode \
1155 && REG_P (XEXP (OP, 0)) \
1156 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
1157 && GET_CODE (XEXP (OP, 1)) == UNSPEC)
1158
1159 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1160
1161 `A' is a LO_SUM DLT memory operand.
1162
1163 `Q' is any memory operand that isn't a symbolic, indexed or lo_sum
1164 memory operand. Note that an unassigned pseudo register is such a
1165 memory operand. Needed because reload will generate these things
1166 and then not re-recognize the insn, causing constrain_operands to
1167 fail.
1168
1169 `R' is a scaled/unscaled indexed memory operand.
1170
1171 `S' is the constant 31.
1172
1173 `T' is for floating-point loads and stores.
1174
1175 `U' is the constant 63.
1176
1177 `W' is a register indirect memory operand. We could allow short
1178 displacements but GO_IF_LEGITIMATE_ADDRESS can't tell when a
1179 long displacement is valid. This is only used for prefetch
1180 instructions with the `sl' completer. */
1181
1182 #define EXTRA_CONSTRAINT(OP, C) \
1183 ((C) == 'Q' ? \
1184 (IS_RELOADING_PSEUDO_P (OP) \
1185 || (GET_CODE (OP) == MEM \
1186 && (reload_in_progress \
1187 || memory_address_p (GET_MODE (OP), XEXP (OP, 0))) \
1188 && !symbolic_memory_operand (OP, VOIDmode) \
1189 && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)) \
1190 && !IS_INDEX_ADDR_P (XEXP (OP, 0)))) \
1191 : ((C) == 'W' ? \
1192 (GET_CODE (OP) == MEM \
1193 && REG_P (XEXP (OP, 0)) \
1194 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1195 : ((C) == 'A' ? \
1196 (GET_CODE (OP) == MEM \
1197 && IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))) \
1198 : ((C) == 'R' ? \
1199 (GET_CODE (OP) == MEM \
1200 && IS_INDEX_ADDR_P (XEXP (OP, 0))) \
1201 : ((C) == 'T' ? \
1202 (GET_CODE (OP) == MEM \
1203 && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)) \
1204 && !IS_INDEX_ADDR_P (XEXP (OP, 0)) \
1205 /* Floating-point loads and stores are used to load \
1206 integer values as well as floating-point values. \
1207 They don't have the same set of REG+D address modes \
1208 as integer loads and stores. PA 1.x supports only \
1209 short displacements. PA 2.0 supports long displacements \
1210 but the base register needs to be aligned. \
1211 \
1212 The checks in GO_IF_LEGITIMATE_ADDRESS for SFmode and \
1213 DFmode test the validity of an address for use in a \
1214 floating point load or store. So, we use SFmode/DFmode \
1215 to see if the address is valid for a floating-point \
1216 load/store operation. */ \
1217 && memory_address_p ((GET_MODE_SIZE (GET_MODE (OP)) == 4 \
1218 ? SFmode \
1219 : DFmode), \
1220 XEXP (OP, 0))) \
1221 : ((C) == 'S' ? \
1222 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) \
1223 : ((C) == 'U' ? \
1224 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) : 0)))))))
1225
1226
1227 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1228 and check its validity for a certain class.
1229 We have two alternate definitions for each of them.
1230 The usual definition accepts all pseudo regs; the other rejects
1231 them unless they have been allocated suitable hard regs.
1232 The symbol REG_OK_STRICT causes the latter definition to be used.
1233
1234 Most source files want to accept pseudo regs in the hope that
1235 they will get allocated to the class that the insn wants them to be in.
1236 Source files for reload pass need to be strict.
1237 After reload, it makes no difference, since pseudo regs have
1238 been eliminated by then. */
1239
1240 #ifndef REG_OK_STRICT
1241
1242 /* Nonzero if X is a hard reg that can be used as an index
1243 or if it is a pseudo reg. */
1244 #define REG_OK_FOR_INDEX_P(X) \
1245 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1246 /* Nonzero if X is a hard reg that can be used as a base reg
1247 or if it is a pseudo reg. */
1248 #define REG_OK_FOR_BASE_P(X) \
1249 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1250
1251 #else
1252
1253 /* Nonzero if X is a hard reg that can be used as an index. */
1254 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1255 /* Nonzero if X is a hard reg that can be used as a base reg. */
1256 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1257
1258 #endif
1259 \f
1260 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1261 valid memory address for an instruction. The MODE argument is the
1262 machine mode for the MEM expression that wants to use this address.
1263
1264 On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
1265 REG+REG, and REG+(REG*SCALE). The indexed address forms are only
1266 available with floating point loads and stores, and integer loads.
1267 We get better code by allowing indexed addresses in the initial
1268 RTL generation.
1269
1270 The acceptance of indexed addresses as legitimate implies that we
1271 must provide patterns for doing indexed integer stores, or the move
1272 expanders must force the address of an indexed store to a register.
1273 We have adopted the latter approach.
1274
1275 Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
1276 the base register is a valid pointer for indexed instructions.
1277 On targets that have non-equivalent space registers, we have to
1278 know at the time of assembler output which register in a REG+REG
1279 pair is the base register. The REG_POINTER flag is sometimes lost
1280 in reload and the following passes, so it can't be relied on during
1281 code generation. Thus, we either have to canonicalize the order
1282 of the registers in REG+REG indexed addresses, or treat REG+REG
1283 addresses separately and provide patterns for both permutations.
1284
1285 The latter approach requires several hundred additional lines of
1286 code in pa.md. The downside to canonicalizing is that a PLUS
1287 in the wrong order can't combine to form to make a scaled indexed
1288 memory operand. As we won't need to canonicalize the operands if
1289 the REG_POINTER lossage can be fixed, it seems better canonicalize.
1290
1291 We initially break out scaled indexed addresses in canonical order
1292 in emit_move_sequence. LEGITIMIZE_ADDRESS also canonicalizes
1293 scaled indexed addresses during RTL generation. However, fold_rtx
1294 has its own opinion on how the operands of a PLUS should be ordered.
1295 If one of the operands is equivalent to a constant, it will make
1296 that operand the second operand. As the base register is likely to
1297 be equivalent to a SYMBOL_REF, we have made it the second operand.
1298
1299 GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1300 operands are in the order INDEX+BASE on targets with non-equivalent
1301 space registers, and in any order on targets with equivalent space
1302 registers. It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1303
1304 We treat a SYMBOL_REF as legitimate if it is part of the current
1305 function's constant-pool, because such addresses can actually be
1306 output as REG+SMALLINT.
1307
1308 Note we only allow 5 bit immediates for access to a constant address;
1309 doing so avoids losing for loading/storing a FP register at an address
1310 which will not fit in 5 bits. */
1311
1312 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1313 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1314
1315 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1316 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1317
1318 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1319 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1320
1321 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1322 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1323
1324 #if HOST_BITS_PER_WIDE_INT > 32
1325 #define VAL_32_BITS_P(X) \
1326 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \
1327 < (unsigned HOST_WIDE_INT) 2 << 31)
1328 #else
1329 #define VAL_32_BITS_P(X) 1
1330 #endif
1331 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1332
1333 /* These are the modes that we allow for scaled indexing. */
1334 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1335 ((TARGET_64BIT && (MODE) == DImode) \
1336 || (MODE) == SImode \
1337 || (MODE) == HImode \
1338 || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1339
1340 /* These are the modes that we allow for unscaled indexing. */
1341 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1342 ((TARGET_64BIT && (MODE) == DImode) \
1343 || (MODE) == SImode \
1344 || (MODE) == HImode \
1345 || (MODE) == QImode \
1346 || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1347
1348 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1349 { \
1350 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1351 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1352 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1353 && REG_P (XEXP (X, 0)) \
1354 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1355 goto ADDR; \
1356 else if (GET_CODE (X) == PLUS) \
1357 { \
1358 rtx base = 0, index = 0; \
1359 if (REG_P (XEXP (X, 1)) \
1360 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1361 base = XEXP (X, 1), index = XEXP (X, 0); \
1362 else if (REG_P (XEXP (X, 0)) \
1363 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1364 base = XEXP (X, 0), index = XEXP (X, 1); \
1365 if (base \
1366 && GET_CODE (index) == CONST_INT \
1367 && ((INT_14_BITS (index) \
1368 && (((MODE) != DImode \
1369 && (MODE) != SFmode \
1370 && (MODE) != DFmode) \
1371 /* The base register for DImode loads and stores \
1372 with long displacements must be aligned because \
1373 the lower three bits in the displacement are \
1374 assumed to be zero. */ \
1375 || ((MODE) == DImode \
1376 && (!TARGET_64BIT \
1377 || (INTVAL (index) % 8) == 0)) \
1378 /* Similarly, the base register for SFmode/DFmode \
1379 loads and stores with long displacements must \
1380 be aligned. \
1381 \
1382 FIXME: the ELF32 linker clobbers the LSB of \
1383 the FP register number in PA 2.0 floating-point \
1384 insns with long displacements. This is because \
1385 R_PARISC_DPREL14WR and other relocations like \
1386 it are not supported. For now, we reject long \
1387 displacements on this target. */ \
1388 || (((MODE) == SFmode || (MODE) == DFmode) \
1389 && (TARGET_SOFT_FLOAT \
1390 || (TARGET_PA_20 \
1391 && !TARGET_ELF32 \
1392 && (INTVAL (index) \
1393 % GET_MODE_SIZE (MODE)) == 0))))) \
1394 || INT_5_BITS (index))) \
1395 goto ADDR; \
1396 if (!TARGET_DISABLE_INDEXING \
1397 /* Only accept the "canonical" INDEX+BASE operand order \
1398 on targets with non-equivalent space registers. */ \
1399 && (TARGET_NO_SPACE_REGS \
1400 ? (base && REG_P (index)) \
1401 : (base == XEXP (X, 1) && REG_P (index) \
1402 && (reload_completed \
1403 || (reload_in_progress && HARD_REGISTER_P (base)) \
1404 || REG_POINTER (base)) \
1405 && (reload_completed \
1406 || (reload_in_progress && HARD_REGISTER_P (index)) \
1407 || !REG_POINTER (index)))) \
1408 && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE) \
1409 && REG_OK_FOR_INDEX_P (index) \
1410 && borx_reg_operand (base, Pmode) \
1411 && borx_reg_operand (index, Pmode)) \
1412 goto ADDR; \
1413 if (!TARGET_DISABLE_INDEXING \
1414 && base \
1415 && GET_CODE (index) == MULT \
1416 && MODE_OK_FOR_SCALED_INDEXING_P (MODE) \
1417 && REG_P (XEXP (index, 0)) \
1418 && GET_MODE (XEXP (index, 0)) == Pmode \
1419 && REG_OK_FOR_INDEX_P (XEXP (index, 0)) \
1420 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1421 && INTVAL (XEXP (index, 1)) \
1422 == (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
1423 && borx_reg_operand (base, Pmode)) \
1424 goto ADDR; \
1425 } \
1426 else if (GET_CODE (X) == LO_SUM \
1427 && GET_CODE (XEXP (X, 0)) == REG \
1428 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1429 && CONSTANT_P (XEXP (X, 1)) \
1430 && (TARGET_SOFT_FLOAT \
1431 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1432 || (TARGET_PA_20 \
1433 && !TARGET_ELF32 \
1434 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1435 || ((MODE) != SFmode \
1436 && (MODE) != DFmode))) \
1437 goto ADDR; \
1438 else if (GET_CODE (X) == LO_SUM \
1439 && GET_CODE (XEXP (X, 0)) == SUBREG \
1440 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG \
1441 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0))) \
1442 && CONSTANT_P (XEXP (X, 1)) \
1443 && (TARGET_SOFT_FLOAT \
1444 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1445 || (TARGET_PA_20 \
1446 && !TARGET_ELF32 \
1447 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1448 || ((MODE) != SFmode \
1449 && (MODE) != DFmode))) \
1450 goto ADDR; \
1451 else if (GET_CODE (X) == LABEL_REF \
1452 || (GET_CODE (X) == CONST_INT \
1453 && INT_5_BITS (X))) \
1454 goto ADDR; \
1455 /* Needed for -fPIC */ \
1456 else if (GET_CODE (X) == LO_SUM \
1457 && GET_CODE (XEXP (X, 0)) == REG \
1458 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1459 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1460 && (TARGET_SOFT_FLOAT \
1461 || (TARGET_PA_20 && !TARGET_ELF32) \
1462 || ((MODE) != SFmode \
1463 && (MODE) != DFmode))) \
1464 goto ADDR; \
1465 }
1466
1467 /* Look for machine dependent ways to make the invalid address AD a
1468 valid address.
1469
1470 For the PA, transform:
1471
1472 memory(X + <large int>)
1473
1474 into:
1475
1476 if (<large int> & mask) >= 16
1477 Y = (<large int> & ~mask) + mask + 1 Round up.
1478 else
1479 Y = (<large int> & ~mask) Round down.
1480 Z = X + Y
1481 memory (Z + (<large int> - Y));
1482
1483 This makes reload inheritance and reload_cse work better since Z
1484 can be reused.
1485
1486 There may be more opportunities to improve code with this hook. */
1487 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1488 do { \
1489 long offset, newoffset, mask; \
1490 rtx new, temp = NULL_RTX; \
1491 \
1492 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1493 ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff); \
1494 \
1495 if (optimize && GET_CODE (AD) == PLUS) \
1496 temp = simplify_binary_operation (PLUS, Pmode, \
1497 XEXP (AD, 0), XEXP (AD, 1)); \
1498 \
1499 new = temp ? temp : AD; \
1500 \
1501 if (optimize \
1502 && GET_CODE (new) == PLUS \
1503 && GET_CODE (XEXP (new, 0)) == REG \
1504 && GET_CODE (XEXP (new, 1)) == CONST_INT) \
1505 { \
1506 offset = INTVAL (XEXP ((new), 1)); \
1507 \
1508 /* Choose rounding direction. Round up if we are >= halfway. */ \
1509 if ((offset & mask) >= ((mask + 1) / 2)) \
1510 newoffset = (offset & ~mask) + mask + 1; \
1511 else \
1512 newoffset = offset & ~mask; \
1513 \
1514 /* Ensure that long displacements are aligned. */ \
1515 if (!VAL_5_BITS_P (newoffset) \
1516 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1517 newoffset &= ~(GET_MODE_SIZE (MODE) -1); \
1518 \
1519 if (newoffset != 0 && VAL_14_BITS_P (newoffset)) \
1520 { \
1521 temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \
1522 GEN_INT (newoffset)); \
1523 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1524 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1525 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1526 (OPNUM), (TYPE)); \
1527 goto WIN; \
1528 } \
1529 } \
1530 } while (0)
1531
1532
1533
1534 \f
1535 /* Try machine-dependent ways of modifying an illegitimate address
1536 to be legitimate. If we find one, return the new, valid address.
1537 This macro is used in only one place: `memory_address' in explow.c.
1538
1539 OLDX is the address as it was before break_out_memory_refs was called.
1540 In some cases it is useful to look at this to decide what needs to be done.
1541
1542 MODE and WIN are passed so that this macro can use
1543 GO_IF_LEGITIMATE_ADDRESS.
1544
1545 It is always safe for this macro to do nothing. It exists to recognize
1546 opportunities to optimize the output. */
1547
1548 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1549 { rtx orig_x = (X); \
1550 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1551 if ((X) != orig_x && memory_address_p (MODE, X)) \
1552 goto WIN; }
1553
1554 /* Go to LABEL if ADDR (a legitimate address expression)
1555 has an effect that depends on the machine mode it is used for. */
1556
1557 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1558 if (GET_CODE (ADDR) == PRE_DEC \
1559 || GET_CODE (ADDR) == POST_DEC \
1560 || GET_CODE (ADDR) == PRE_INC \
1561 || GET_CODE (ADDR) == POST_INC) \
1562 goto LABEL
1563 \f
1564 #define TARGET_ASM_SELECT_SECTION pa_select_section
1565
1566 /* Return a nonzero value if DECL has a section attribute. */
1567 #define IN_NAMED_SECTION_P(DECL) \
1568 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1569 && DECL_SECTION_NAME (DECL) != NULL_TREE)
1570
1571 /* Define this macro if references to a symbol must be treated
1572 differently depending on something about the variable or
1573 function named by the symbol (such as what section it is in).
1574
1575 The macro definition, if any, is executed immediately after the
1576 rtl for DECL or other node is created.
1577 The value of the rtl will be a `mem' whose address is a
1578 `symbol_ref'.
1579
1580 The usual thing for this macro to do is to a flag in the
1581 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1582 name string in the `symbol_ref' (if one bit is not enough
1583 information).
1584
1585 On the HP-PA we use this to indicate if a symbol is in text or
1586 data space. Also, function labels need special treatment. */
1587
1588 #define TEXT_SPACE_P(DECL)\
1589 (TREE_CODE (DECL) == FUNCTION_DECL \
1590 || (TREE_CODE (DECL) == VAR_DECL \
1591 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1592 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1593 && !flag_pic) \
1594 || CONSTANT_CLASS_P (DECL))
1595
1596 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1597
1598 /* Specify the machine mode that this machine uses for the index in the
1599 tablejump instruction. For small tables, an element consists of a
1600 ia-relative branch and its delay slot. When -mbig-switch is specified,
1601 we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1602 for both 32 and 64-bit pic code. */
1603 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1604
1605 /* Jump tables must be 32-bit aligned, no matter the size of the element. */
1606 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1607
1608 /* Define this as 1 if `char' should by default be signed; else as 0. */
1609 #define DEFAULT_SIGNED_CHAR 1
1610
1611 /* Max number of bytes we can move from memory to memory
1612 in one reasonably fast instruction. */
1613 #define MOVE_MAX 8
1614
1615 /* Higher than the default as we prefer to use simple move insns
1616 (better scheduling and delay slot filling) and because our
1617 built-in block move is really a 2X unrolled loop.
1618
1619 Believe it or not, this has to be big enough to allow for copying all
1620 arguments passed in registers to avoid infinite recursion during argument
1621 setup for a function call. Why? Consider how we copy the stack slots
1622 reserved for parameters when they may be trashed by a call. */
1623 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1624
1625 /* Define if operations between registers always perform the operation
1626 on the full register even if a narrower mode is specified. */
1627 #define WORD_REGISTER_OPERATIONS
1628
1629 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1630 will either zero-extend or sign-extend. The value of this macro should
1631 be the code that says which one of the two operations is implicitly
1632 done, UNKNOWN if none. */
1633 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1634
1635 /* Nonzero if access to memory by bytes is slow and undesirable. */
1636 #define SLOW_BYTE_ACCESS 1
1637
1638 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1639 is done just by pretending it is already truncated. */
1640 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1641
1642 /* Specify the machine mode that pointers have.
1643 After generation of rtl, the compiler makes no further distinction
1644 between pointers and any other objects of this machine mode. */
1645 #define Pmode word_mode
1646
1647 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1648 return the mode to be used for the comparison. For floating-point, CCFPmode
1649 should be used. CC_NOOVmode should be used when the first operand is a
1650 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1651 needed. */
1652 #define SELECT_CC_MODE(OP,X,Y) \
1653 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1654
1655 /* A function address in a call instruction
1656 is a byte address (for indexing purposes)
1657 so give the MEM rtx a byte's mode. */
1658 #define FUNCTION_MODE SImode
1659
1660 /* Define this if addresses of constant functions
1661 shouldn't be put through pseudo regs where they can be cse'd.
1662 Desirable on machines where ordinary constants are expensive
1663 but a CALL with constant address is cheap. */
1664 #define NO_FUNCTION_CSE
1665
1666 /* Define this to be nonzero if shift instructions ignore all but the low-order
1667 few bits. */
1668 #define SHIFT_COUNT_TRUNCATED 1
1669
1670 /* Compute extra cost of moving data between one register class
1671 and another.
1672
1673 Make moves from SAR so expensive they should never happen. We used to
1674 have 0xffff here, but that generates overflow in rare cases.
1675
1676 Copies involving a FP register and a non-FP register are relatively
1677 expensive because they must go through memory.
1678
1679 Other copies are reasonably cheap. */
1680 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1681 (CLASS1 == SHIFT_REGS ? 0x100 \
1682 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1683 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1684 : 2)
1685
1686 /* Adjust the cost of branches. */
1687 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1688
1689 /* Handling the special cases is going to get too complicated for a macro,
1690 just call `pa_adjust_insn_length' to do the real work. */
1691 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1692 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1693
1694 /* Millicode insns are actually function calls with some special
1695 constraints on arguments and register usage.
1696
1697 Millicode calls always expect their arguments in the integer argument
1698 registers, and always return their result in %r29 (ret1). They
1699 are expected to clobber their arguments, %r1, %r29, and the return
1700 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1701
1702 This macro tells reorg that the references to arguments and
1703 millicode calls do not appear to happen until after the millicode call.
1704 This allows reorg to put insns which set the argument registers into the
1705 delay slot of the millicode call -- thus they act more like traditional
1706 CALL_INSNs.
1707
1708 Note we cannot consider side effects of the insn to be delayed because
1709 the branch and link insn will clobber the return pointer. If we happened
1710 to use the return pointer in the delay slot of the call, then we lose.
1711
1712 get_attr_type will try to recognize the given insn, so make sure to
1713 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1714 in particular. */
1715 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1716
1717 \f
1718 /* Control the assembler format that we output. */
1719
1720 /* A C string constant describing how to begin a comment in the target
1721 assembler language. The compiler assumes that the comment will end at
1722 the end of the line. */
1723
1724 #define ASM_COMMENT_START ";"
1725
1726 /* Output to assembler file text saying following lines
1727 may contain character constants, extra white space, comments, etc. */
1728
1729 #define ASM_APP_ON ""
1730
1731 /* Output to assembler file text saying following lines
1732 no longer contain unusual constructs. */
1733
1734 #define ASM_APP_OFF ""
1735
1736 /* This is how to output the definition of a user-level label named NAME,
1737 such as the label on a static function or variable NAME. */
1738
1739 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1740 do { assemble_name (FILE, NAME); \
1741 fputc ('\n', FILE); } while (0)
1742
1743 /* This is how to output a reference to a user-level label named NAME.
1744 `assemble_name' uses this. */
1745
1746 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1747 do { \
1748 const char *xname = (NAME); \
1749 if (FUNCTION_NAME_P (NAME)) \
1750 xname += 1; \
1751 if (xname[0] == '*') \
1752 xname += 1; \
1753 else \
1754 fputs (user_label_prefix, FILE); \
1755 fputs (xname, FILE); \
1756 } while (0)
1757
1758 /* This how we output the symbol_ref X. */
1759
1760 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1761 do { \
1762 SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED; \
1763 assemble_name (FILE, XSTR (X, 0)); \
1764 } while (0)
1765
1766 /* This is how to store into the string LABEL
1767 the symbol_ref name of an internal numbered label where
1768 PREFIX is the class of label and NUM is the number within the class.
1769 This is suitable for output with `assemble_name'. */
1770
1771 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1772 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1773
1774 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1775
1776 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1777 output_ascii ((FILE), (P), (SIZE))
1778
1779 /* Jump tables are always placed in the text section. Technically, it
1780 is possible to put them in the readonly data section when -mbig-switch
1781 is specified. This has the benefit of getting the table out of .text
1782 and reducing branch lengths as a result. The downside is that an
1783 additional insn (addil) is needed to access the table when generating
1784 PIC code. The address difference table also has to use 32-bit
1785 pc-relative relocations. Currently, GAS does not support these
1786 relocations, although it is easily modified to do this operation.
1787 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1788 when using ELF GAS. A simple difference can be used when using
1789 SOM GAS or the HP assembler. The final downside is GDB complains
1790 about the nesting of the label for the table when debugging. */
1791
1792 #define JUMP_TABLES_IN_TEXT_SECTION 1
1793
1794 /* This is how to output an element of a case-vector that is absolute. */
1795
1796 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1797 if (TARGET_BIG_SWITCH) \
1798 fprintf (FILE, "\t.word L$%04d\n", VALUE); \
1799 else \
1800 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1801
1802 /* This is how to output an element of a case-vector that is relative.
1803 Since we always place jump tables in the text section, the difference
1804 is absolute and requires no relocation. */
1805
1806 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1807 if (TARGET_BIG_SWITCH) \
1808 fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL); \
1809 else \
1810 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1811
1812 /* This is how to output an assembler line that says to advance the
1813 location counter to a multiple of 2**LOG bytes. */
1814
1815 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1816 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1817
1818 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1819 fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1820 (unsigned HOST_WIDE_INT)(SIZE))
1821
1822 /* This says how to output an assembler line to define an uninitialized
1823 global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1824 This macro exists to properly support languages like C++ which do not
1825 have common data. */
1826
1827 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1828 pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1829
1830 /* This says how to output an assembler line to define a global common symbol
1831 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1832
1833 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1834 pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1835
1836 /* This says how to output an assembler line to define a local common symbol
1837 with size SIZE (in bytes) and alignment ALIGN (in bits). This macro
1838 controls how the assembler definitions of uninitialized static variables
1839 are output. */
1840
1841 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1842 pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1843
1844
1845 #define ASM_PN_FORMAT "%s___%lu"
1846
1847 /* All HP assemblers use "!" to separate logical lines. */
1848 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1849
1850 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1851 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1852
1853 /* Print operand X (an rtx) in assembler syntax to file FILE.
1854 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1855 For `%' followed by punctuation, CODE is the punctuation and X is null.
1856
1857 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1858 and an immediate zero should be represented as `r0'.
1859
1860 Several % codes are defined:
1861 O an operation
1862 C compare conditions
1863 N extract conditions
1864 M modifier to handle preincrement addressing for memory refs.
1865 F modifier to handle preincrement addressing for fp memory refs */
1866
1867 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1868
1869 \f
1870 /* Print a memory address as an operand to reference that memory location. */
1871
1872 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1873 { rtx addr = ADDR; \
1874 switch (GET_CODE (addr)) \
1875 { \
1876 case REG: \
1877 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1878 break; \
1879 case PLUS: \
1880 gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT); \
1881 fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)), \
1882 reg_names [REGNO (XEXP (addr, 0))]); \
1883 break; \
1884 case LO_SUM: \
1885 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1886 fputs ("R'", FILE); \
1887 else if (flag_pic == 0) \
1888 fputs ("RR'", FILE); \
1889 else \
1890 fputs ("RT'", FILE); \
1891 output_global_address (FILE, XEXP (addr, 1), 0); \
1892 fputs ("(", FILE); \
1893 output_operand (XEXP (addr, 0), 0); \
1894 fputs (")", FILE); \
1895 break; \
1896 case CONST_INT: \
1897 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
1898 break; \
1899 default: \
1900 output_addr_const (FILE, addr); \
1901 }}
1902
1903 \f
1904 /* Find the return address associated with the frame given by
1905 FRAMEADDR. */
1906 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1907 (return_addr_rtx (COUNT, FRAMEADDR))
1908
1909 /* Used to mask out junk bits from the return address, such as
1910 processor state, interrupt status, condition codes and the like. */
1911 #define MASK_RETURN_ADDR \
1912 /* The privilege level is in the two low order bits, mask em out \
1913 of the return address. */ \
1914 (GEN_INT (-4))
1915
1916 /* The number of Pmode words for the setjmp buffer. */
1917 #define JMP_BUF_SIZE 50
1918
1919 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1920 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1921 "__canonicalize_funcptr_for_compare"
1922
1923 #ifdef HAVE_AS_TLS
1924 #undef TARGET_HAVE_TLS
1925 #define TARGET_HAVE_TLS true
1926 #endif