]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/pdp11/pdp11.h
host-hpux.c: Change copyright header to refer to version 3 of the GNU General Public...
[thirdparty/gcc.git] / gcc / config / pdp11 / pdp11.h
1 /* Definitions of target machine for GNU compiler, for the pdp-11
2 Copyright (C) 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004, 2005,
3 2006, 2007 Free Software Foundation, Inc.
4 Contributed by Michael K. Gschwind (mike@vlsivie.tuwien.ac.at).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #define CONSTANT_POOL_BEFORE_FUNCTION 0
23
24 /* check whether load_fpu_reg or not */
25 #define LOAD_FPU_REG_P(x) ((x)>=8 && (x)<=11)
26 #define NO_LOAD_FPU_REG_P(x) ((x)==12 || (x)==13)
27 #define FPU_REG_P(x) (LOAD_FPU_REG_P(x) || NO_LOAD_FPU_REG_P(x))
28 #define CPU_REG_P(x) ((x)<8)
29
30 /* Names to predefine in the preprocessor for this target machine. */
31
32 #define TARGET_CPU_CPP_BUILTINS() \
33 do \
34 { \
35 builtin_define_std ("pdp11"); \
36 } \
37 while (0)
38
39 /* Print subsidiary information on the compiler version in use. */
40 #define TARGET_VERSION fprintf (stderr, " (pdp11)");
41
42
43 /* Generate DBX debugging information. */
44
45 /* #define DBX_DEBUGGING_INFO */
46
47 #define TARGET_40_PLUS (TARGET_40 || TARGET_45)
48 #define TARGET_10 (! TARGET_40_PLUS)
49
50 #define TARGET_UNIX_ASM_DEFAULT 0
51
52 #define ASSEMBLER_DIALECT (TARGET_UNIX_ASM ? 1 : 0)
53
54 \f
55
56 /* TYPE SIZES */
57 #define SHORT_TYPE_SIZE 16
58 #define INT_TYPE_SIZE (TARGET_INT16 ? 16 : 32)
59 #define LONG_TYPE_SIZE 32
60 #define LONG_LONG_TYPE_SIZE 64
61
62 /* if we set FLOAT_TYPE_SIZE to 32, we could have the benefit
63 of saving core for huge arrays - the definitions are
64 already in md - but floats can never reside in
65 an FPU register - we keep the FPU in double float mode
66 all the time !! */
67 #define FLOAT_TYPE_SIZE (TARGET_FLOAT32 ? 32 : 64)
68 #define DOUBLE_TYPE_SIZE 64
69 #define LONG_DOUBLE_TYPE_SIZE 64
70
71 /* machine types from ansi */
72 #define SIZE_TYPE "unsigned int" /* definition of size_t */
73 #define WCHAR_TYPE "int" /* or long int???? */
74 #define WCHAR_TYPE_SIZE 16
75
76 #define PTRDIFF_TYPE "int"
77
78 /* target machine storage layout */
79
80 /* Define this if most significant bit is lowest numbered
81 in instructions that operate on numbered bit-fields. */
82 #define BITS_BIG_ENDIAN 0
83
84 /* Define this if most significant byte of a word is the lowest numbered. */
85 #define BYTES_BIG_ENDIAN 0
86
87 /* Define this if most significant word of a multiword number is first. */
88 #define WORDS_BIG_ENDIAN 1
89
90 /* Define that floats are in VAX order, not high word first as for ints. */
91 #define FLOAT_WORDS_BIG_ENDIAN 0
92
93 /* Width of a word, in units (bytes).
94
95 UNITS OR BYTES - seems like units */
96 #define UNITS_PER_WORD 2
97
98 /* This machine doesn't use IEEE floats. */
99 /* Because the pdp11 (at least Unix) convention for 32-bit ints is
100 big endian, opposite for what you need for float, the vax float
101 conversion routines aren't actually used directly. But the underlying
102 format is indeed the vax/pdp11 float format. */
103 #define TARGET_FLOAT_FORMAT VAX_FLOAT_FORMAT
104
105 extern const struct real_format pdp11_f_format;
106 extern const struct real_format pdp11_d_format;
107
108 /* Maximum sized of reasonable data type
109 DImode or Dfmode ...*/
110 #define MAX_FIXED_MODE_SIZE 64
111
112 /* Allocation boundary (in *bits*) for storing pointers in memory. */
113 #define POINTER_BOUNDARY 16
114
115 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
116 #define PARM_BOUNDARY 16
117
118 /* Boundary (in *bits*) on which stack pointer should be aligned. */
119 #define STACK_BOUNDARY 16
120
121 /* Allocation boundary (in *bits*) for the code of a function. */
122 #define FUNCTION_BOUNDARY 16
123
124 /* Alignment of field after `int : 0' in a structure. */
125 #define EMPTY_FIELD_BOUNDARY 16
126
127 /* No data type wants to be aligned rounder than this. */
128 #define BIGGEST_ALIGNMENT 16
129
130 /* Define this if move instructions will actually fail to work
131 when given unaligned data. */
132 #define STRICT_ALIGNMENT 1
133 \f
134 /* Standard register usage. */
135
136 /* Number of actual hardware registers.
137 The hardware registers are assigned numbers for the compiler
138 from 0 to just below FIRST_PSEUDO_REGISTER.
139 All registers that the compiler knows about must be given numbers,
140 even those that are not normally considered general registers.
141
142 we have 8 integer registers, plus 6 float
143 (don't use scratch float !) */
144
145 #define FIRST_PSEUDO_REGISTER 14
146
147 /* 1 for registers that have pervasive standard uses
148 and are not available for the register allocator.
149
150 On the pdp, these are:
151 Reg 7 = pc;
152 reg 6 = sp;
153 reg 5 = fp; not necessarily!
154 */
155
156 /* don't let them touch fp regs for the time being !*/
157
158 #define FIXED_REGISTERS \
159 {0, 0, 0, 0, 0, 0, 1, 1, \
160 0, 0, 0, 0, 0, 0 }
161
162
163
164 /* 1 for registers not available across function calls.
165 These must include the FIXED_REGISTERS and also any
166 registers that can be used without being saved.
167 The latter must include the registers where values are returned
168 and the register where structure-value addresses are passed.
169 Aside from that, you can include as many other registers as you like. */
170
171 /* don't know about fp */
172 #define CALL_USED_REGISTERS \
173 {1, 1, 0, 0, 0, 0, 1, 1, \
174 0, 0, 0, 0, 0, 0 }
175
176
177 /* Make sure everything's fine if we *don't* have an FPU.
178 This assumes that putting a register in fixed_regs will keep the
179 compiler's mitts completely off it. We don't bother to zero it out
180 of register classes. Also fix incompatible register naming with
181 the UNIX assembler.
182 */
183 #define CONDITIONAL_REGISTER_USAGE \
184 { \
185 int i; \
186 HARD_REG_SET x; \
187 if (!TARGET_FPU) \
188 { \
189 COPY_HARD_REG_SET (x, reg_class_contents[(int)FPU_REGS]); \
190 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
191 if (TEST_HARD_REG_BIT (x, i)) \
192 fixed_regs[i] = call_used_regs[i] = 1; \
193 } \
194 \
195 if (TARGET_AC0) \
196 call_used_regs[8] = 1; \
197 if (TARGET_UNIX_ASM) \
198 { \
199 /* Change names of FPU registers for the UNIX assembler. */ \
200 reg_names[8] = "fr0"; \
201 reg_names[9] = "fr1"; \
202 reg_names[10] = "fr2"; \
203 reg_names[11] = "fr3"; \
204 reg_names[12] = "fr4"; \
205 reg_names[13] = "fr5"; \
206 } \
207 }
208
209 /* Return number of consecutive hard regs needed starting at reg REGNO
210 to hold something of mode MODE.
211 This is ordinarily the length in words of a value of mode MODE
212 but can be less for certain modes in special long registers.
213 */
214
215 #define HARD_REGNO_NREGS(REGNO, MODE) \
216 ((REGNO < 8)? \
217 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
218 :1)
219
220
221 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
222 On the pdp, the cpu registers can hold any mode - check alignment
223
224 FPU can only hold DF - simplifies life!
225 */
226 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
227 (((REGNO) < 8)? \
228 ((GET_MODE_BITSIZE(MODE) <= 16) \
229 || (GET_MODE_BITSIZE(MODE) == 32 && !((REGNO) & 1))) \
230 :(MODE) == DFmode)
231
232
233 /* Value is 1 if it is a good idea to tie two pseudo registers
234 when one has mode MODE1 and one has mode MODE2.
235 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
236 for any hard reg, then this must be 0 for correct output. */
237 #define MODES_TIEABLE_P(MODE1, MODE2) 0
238
239 /* Specify the registers used for certain standard purposes.
240 The values of these macros are register numbers. */
241
242 /* the pdp11 pc overloaded on a register that the compiler knows about. */
243 #define PC_REGNUM 7
244
245 /* Register to use for pushing function arguments. */
246 #define STACK_POINTER_REGNUM 6
247
248 /* Base register for access to local variables of the function. */
249 #define FRAME_POINTER_REGNUM 5
250
251 /* Value should be nonzero if functions must have frame pointers.
252 Zero means the frame pointer need not be set up (and parms
253 may be accessed via the stack pointer) in functions that seem suitable.
254 This is computed in `reload', in reload1.c.
255 */
256
257 #define FRAME_POINTER_REQUIRED 0
258
259 /* Base register for access to arguments of the function. */
260 #define ARG_POINTER_REGNUM 5
261
262 /* Register in which static-chain is passed to a function. */
263 /* ??? - i don't want to give up a reg for this! */
264 #define STATIC_CHAIN_REGNUM 4
265 \f
266 /* Define the classes of registers for register constraints in the
267 machine description. Also define ranges of constants.
268
269 One of the classes must always be named ALL_REGS and include all hard regs.
270 If there is more than one class, another class must be named NO_REGS
271 and contain no registers.
272
273 The name GENERAL_REGS must be the name of a class (or an alias for
274 another name such as ALL_REGS). This is the class of registers
275 that is allowed by "g" or "r" in a register constraint.
276 Also, registers outside this class are allocated only when
277 instructions express preferences for them.
278
279 The classes must be numbered in nondecreasing order; that is,
280 a larger-numbered class must never be contained completely
281 in a smaller-numbered class.
282
283 For any two classes, it is very desirable that there be another
284 class that represents their union. */
285
286 /* The pdp has a couple of classes:
287
288 MUL_REGS are used for odd numbered regs, to use in 16-bit multiplication
289 (even numbered do 32-bit multiply)
290 LMUL_REGS long multiply registers (even numbered regs )
291 (don't need them, all 32-bit regs are even numbered!)
292 GENERAL_REGS is all cpu
293 LOAD_FPU_REGS is the first four cpu regs, they are easier to load
294 NO_LOAD_FPU_REGS is ac4 and ac5, currently - difficult to load them
295 FPU_REGS is all fpu regs
296 */
297
298 enum reg_class { NO_REGS, MUL_REGS, GENERAL_REGS, LOAD_FPU_REGS, NO_LOAD_FPU_REGS, FPU_REGS, ALL_REGS, LIM_REG_CLASSES };
299
300 #define N_REG_CLASSES (int) LIM_REG_CLASSES
301
302 /* have to allow this till cmpsi/tstsi are fixed in a better way !! */
303 #define SMALL_REGISTER_CLASSES 1
304
305 /* Since GENERAL_REGS is the same class as ALL_REGS,
306 don't give it a different class number; just make it an alias. */
307
308 /* #define GENERAL_REGS ALL_REGS */
309
310 /* Give names of register classes as strings for dump file. */
311
312 #define REG_CLASS_NAMES {"NO_REGS", "MUL_REGS", "GENERAL_REGS", "LOAD_FPU_REGS", "NO_LOAD_FPU_REGS", "FPU_REGS", "ALL_REGS" }
313
314 /* Define which registers fit in which classes.
315 This is an initializer for a vector of HARD_REG_SET
316 of length N_REG_CLASSES. */
317
318 #define REG_CLASS_CONTENTS {{0}, {0x00aa}, {0x00ff}, {0x0f00}, {0x3000}, {0x3f00}, {0x3fff}}
319
320 /* The same information, inverted:
321 Return the class number of the smallest class containing
322 reg number REGNO. This could be a conditional expression
323 or could index an array. */
324
325 #define REGNO_REG_CLASS(REGNO) \
326 ((REGNO)>=8?((REGNO)<=11?LOAD_FPU_REGS:NO_LOAD_FPU_REGS):(((REGNO)&1)?MUL_REGS:GENERAL_REGS))
327
328
329 /* The class value for index registers, and the one for base regs. */
330 #define INDEX_REG_CLASS GENERAL_REGS
331 #define BASE_REG_CLASS GENERAL_REGS
332
333 /* Get reg_class from a letter such as appears in the machine description. */
334
335 #define REG_CLASS_FROM_LETTER(C) \
336 ((C) == 'f' ? FPU_REGS : \
337 ((C) == 'd' ? MUL_REGS : \
338 ((C) == 'a' ? LOAD_FPU_REGS : NO_REGS)))
339
340
341 /* The letters I, J, K, L and M in a register constraint string
342 can be used to stand for particular ranges of immediate operands.
343 This macro defines what the ranges are.
344 C is the letter, and VALUE is a constant value.
345 Return 1 if VALUE is in the range specified by C.
346
347 I bits 31-16 0000
348 J bits 15-00 0000
349 K completely random 32 bit
350 L,M,N -1,1,0 respectively
351 O where doing shifts in sequence is faster than
352 one big shift
353 */
354
355 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
356 ((C) == 'I' ? ((VALUE) & 0xffff0000) == 0 \
357 : (C) == 'J' ? ((VALUE) & 0x0000ffff) == 0 \
358 : (C) == 'K' ? (((VALUE) & 0xffff0000) != 0 \
359 && ((VALUE) & 0x0000ffff) != 0) \
360 : (C) == 'L' ? ((VALUE) == 1) \
361 : (C) == 'M' ? ((VALUE) == -1) \
362 : (C) == 'N' ? ((VALUE) == 0) \
363 : (C) == 'O' ? (abs(VALUE) >1 && abs(VALUE) <= 4) \
364 : 0)
365
366 /* Similar, but for floating constants, and defining letters G and H.
367 Here VALUE is the CONST_DOUBLE rtx itself. */
368
369 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
370 ((C) == 'G' && XINT (VALUE, 0) == 0 && XINT (VALUE, 1) == 0)
371
372
373 /* Letters in the range `Q' through `U' may be defined in a
374 machine-dependent fashion to stand for arbitrary operand types.
375 The machine description macro `EXTRA_CONSTRAINT' is passed the
376 operand as its first argument and the constraint letter as its
377 second operand.
378
379 `Q' is for memory references that require an extra word after the opcode.
380 `R' is for memory references which are encoded within the opcode. */
381
382 #define EXTRA_CONSTRAINT(OP,CODE) \
383 ((GET_CODE (OP) != MEM) ? 0 \
384 : !legitimate_address_p (GET_MODE (OP), XEXP (OP, 0)) ? 0 \
385 : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
386 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
387 : 0)
388
389 /* Given an rtx X being reloaded into a reg required to be
390 in class CLASS, return the class of reg to actually use.
391 In general this is just CLASS; but on some machines
392 in some cases it is preferable to use a more restrictive class.
393
394 loading is easier into LOAD_FPU_REGS than FPU_REGS! */
395
396 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
397 (((CLASS) != FPU_REGS)?(CLASS):LOAD_FPU_REGS)
398
399 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,x) \
400 (((CLASS) == NO_LOAD_FPU_REGS && !(REG_P(x) && LOAD_FPU_REG_P(REGNO(x))))?LOAD_FPU_REGS:NO_REGS)
401
402 /* Return the maximum number of consecutive registers
403 needed to represent mode MODE in a register of class CLASS. */
404 #define CLASS_MAX_NREGS(CLASS, MODE) \
405 ((CLASS == GENERAL_REGS || CLASS == MUL_REGS)? \
406 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD): \
407 1 \
408 )
409
410 \f
411 /* Stack layout; function entry, exit and calling. */
412
413 /* Define this if pushing a word on the stack
414 makes the stack pointer a smaller address. */
415 #define STACK_GROWS_DOWNWARD
416
417 /* Define this to nonzero if the nominal address of the stack frame
418 is at the high-address end of the local variables;
419 that is, each additional local variable allocated
420 goes at a more negative offset in the frame.
421 */
422 #define FRAME_GROWS_DOWNWARD 1
423
424 /* Offset within stack frame to start allocating local variables at.
425 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
426 first local allocated. Otherwise, it is the offset to the BEGINNING
427 of the first local allocated. */
428 #define STARTING_FRAME_OFFSET 0
429
430 /* If we generate an insn to push BYTES bytes,
431 this says how many the stack pointer really advances by.
432 On the pdp11, the stack is on an even boundary */
433 #define PUSH_ROUNDING(BYTES) ((BYTES + 1) & ~1)
434
435 /* current_first_parm_offset stores the # of registers pushed on the
436 stack */
437 extern int current_first_parm_offset;
438
439 /* Offset of first parameter from the argument pointer register value.
440 For the pdp11, this is nonzero to account for the return address.
441 1 - return address
442 2 - frame pointer (always saved, even when not used!!!!)
443 -- change some day !!!:q!
444
445 */
446 #define FIRST_PARM_OFFSET(FNDECL) 4
447
448 /* Value is 1 if returning from a function call automatically
449 pops the arguments described by the number-of-args field in the call.
450 FUNDECL is the declaration node of the function (as a tree),
451 FUNTYPE is the data type of the function (as a tree),
452 or for a library call it is an identifier node for the subroutine name. */
453
454 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
455
456 /* Define how to find the value returned by a function.
457 VALTYPE is the data type of the value (as a tree).
458 If the precise function being called is known, FUNC is its FUNCTION_DECL;
459 otherwise, FUNC is 0. */
460 #define BASE_RETURN_VALUE_REG(MODE) \
461 ((MODE) == DFmode ? 8 : 0)
462
463 /* On the pdp11 the value is found in R0 (or ac0???
464 not without FPU!!!! ) */
465
466 #define FUNCTION_VALUE(VALTYPE, FUNC) \
467 gen_rtx_REG (TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
468
469 /* and the called function leaves it in the first register.
470 Difference only on machines with register windows. */
471
472 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
473 gen_rtx_REG (TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
474
475 /* Define how to find the value returned by a library function
476 assuming the value has mode MODE. */
477
478 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, BASE_RETURN_VALUE_REG(MODE))
479
480 /* 1 if N is a possible register number for a function value
481 as seen by the caller.
482 On the pdp, the first "output" reg is the only register thus used.
483
484 maybe ac0 ? - as option someday! */
485
486 #define FUNCTION_VALUE_REGNO_P(N) (((N) == 0) || (TARGET_AC0 && (N) == 8))
487
488 /* 1 if N is a possible register number for function argument passing.
489 - not used on pdp */
490
491 #define FUNCTION_ARG_REGNO_P(N) 0
492 \f
493 /* Define a data type for recording info about an argument list
494 during the scan of that argument list. This data type should
495 hold all necessary information about the function itself
496 and about the args processed so far, enough to enable macros
497 such as FUNCTION_ARG to determine where the next arg should go.
498
499 */
500
501 #define CUMULATIVE_ARGS int
502
503 /* Initialize a variable CUM of type CUMULATIVE_ARGS
504 for a call to a function whose data type is FNTYPE.
505 For a library call, FNTYPE is 0.
506
507 ...., the offset normally starts at 0, but starts at 1 word
508 when the function gets a structure-value-address as an
509 invisible first argument. */
510
511 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
512 ((CUM) = 0)
513
514 /* Update the data in CUM to advance over an argument
515 of mode MODE and data type TYPE.
516 (TYPE is null for libcalls where that information may not be available.)
517
518 */
519
520
521 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
522 ((CUM) += ((MODE) != BLKmode \
523 ? (GET_MODE_SIZE (MODE)) \
524 : (int_size_in_bytes (TYPE))))
525
526 /* Determine where to put an argument to a function.
527 Value is zero to push the argument on the stack,
528 or a hard register in which to store the argument.
529
530 MODE is the argument's machine mode.
531 TYPE is the data type of the argument (as a tree).
532 This is null for libcalls where that information may
533 not be available.
534 CUM is a variable of type CUMULATIVE_ARGS which gives info about
535 the preceding args and about the function being called.
536 NAMED is nonzero if this argument is a named parameter
537 (otherwise it is an extra parameter matching an ellipsis). */
538
539 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
540
541 /* Define where a function finds its arguments.
542 This would be different from FUNCTION_ARG if we had register windows. */
543 /*
544 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
545 FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
546 */
547
548 /* Output assembler code to FILE to increment profiler label # LABELNO
549 for profiling a function entry. */
550
551 #define FUNCTION_PROFILER(FILE, LABELNO) \
552 gcc_unreachable ();
553
554 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
555 the stack pointer does not matter. The value is tested only in
556 functions that have frame pointers.
557 No definition is equivalent to always zero. */
558
559 extern int may_call_alloca;
560
561 #define EXIT_IGNORE_STACK 1
562
563 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) \
564 { \
565 int offset, regno; \
566 offset = get_frame_size(); \
567 for (regno = 0; regno < 8; regno++) \
568 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno]) \
569 offset += 2; \
570 for (regno = 8; regno < 14; regno++) \
571 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno]) \
572 offset += 8; \
573 /* offset -= 2; no fp on stack frame */ \
574 (DEPTH_VAR) = offset; \
575 }
576
577 \f
578 /* Addressing modes, and classification of registers for them. */
579
580 #define HAVE_POST_INCREMENT 1
581
582 #define HAVE_PRE_DECREMENT 1
583
584 /* Macros to check register numbers against specific register classes. */
585
586 /* These assume that REGNO is a hard or pseudo reg number.
587 They give nonzero only if REGNO is a hard reg of the suitable class
588 or a pseudo reg currently allocated to a suitable hard reg.
589 Since they use reg_renumber, they are safe only once reg_renumber
590 has been allocated, which happens in local-alloc.c. */
591
592 #define REGNO_OK_FOR_INDEX_P(REGNO) \
593 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
594 #define REGNO_OK_FOR_BASE_P(REGNO) \
595 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
596
597 /* Now macros that check whether X is a register and also,
598 strictly, whether it is in a specified class.
599 */
600
601
602 \f
603 /* Maximum number of registers that can appear in a valid memory address. */
604
605 #define MAX_REGS_PER_ADDRESS 1
606
607 /* Recognize any constant value that is a valid address. */
608
609 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
610
611 /* Nonzero if the constant value X is a legitimate general operand.
612 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
613
614 #define LEGITIMATE_CONSTANT_P(X) \
615 (GET_CODE (X) != CONST_DOUBLE || legitimate_const_double_p (X))
616
617 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
618 and check its validity for a certain class.
619 We have two alternate definitions for each of them.
620 The usual definition accepts all pseudo regs; the other rejects
621 them unless they have been allocated suitable hard regs.
622 The symbol REG_OK_STRICT causes the latter definition to be used.
623
624 Most source files want to accept pseudo regs in the hope that
625 they will get allocated to the class that the insn wants them to be in.
626 Source files for reload pass need to be strict.
627 After reload, it makes no difference, since pseudo regs have
628 been eliminated by then. */
629
630 #ifndef REG_OK_STRICT
631
632 /* Nonzero if X is a hard reg that can be used as an index
633 or if it is a pseudo reg. */
634 #define REG_OK_FOR_INDEX_P(X) (1)
635 /* Nonzero if X is a hard reg that can be used as a base reg
636 or if it is a pseudo reg. */
637 #define REG_OK_FOR_BASE_P(X) (1)
638
639 #else
640
641 /* Nonzero if X is a hard reg that can be used as an index. */
642 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
643 /* Nonzero if X is a hard reg that can be used as a base reg. */
644 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
645
646 #endif
647 \f
648 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
649 that is a valid memory address for an instruction.
650 The MODE argument is the machine mode for the MEM expression
651 that wants to use this address.
652
653 */
654
655 #define GO_IF_LEGITIMATE_ADDRESS(mode, operand, ADDR) \
656 { \
657 rtx xfoob; \
658 \
659 /* accept (R0) */ \
660 if (GET_CODE (operand) == REG \
661 && REG_OK_FOR_BASE_P(operand)) \
662 goto ADDR; \
663 \
664 /* accept @#address */ \
665 if (CONSTANT_ADDRESS_P (operand)) \
666 goto ADDR; \
667 \
668 /* accept X(R0) */ \
669 if (GET_CODE (operand) == PLUS \
670 && GET_CODE (XEXP (operand, 0)) == REG \
671 && REG_OK_FOR_BASE_P (XEXP (operand, 0)) \
672 && CONSTANT_ADDRESS_P (XEXP (operand, 1))) \
673 goto ADDR; \
674 \
675 /* accept -(R0) */ \
676 if (GET_CODE (operand) == PRE_DEC \
677 && GET_CODE (XEXP (operand, 0)) == REG \
678 && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
679 goto ADDR; \
680 \
681 /* accept (R0)+ */ \
682 if (GET_CODE (operand) == POST_INC \
683 && GET_CODE (XEXP (operand, 0)) == REG \
684 && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
685 goto ADDR; \
686 \
687 /* accept -(SP) -- which uses PRE_MODIFY for byte mode */ \
688 if (GET_CODE (operand) == PRE_MODIFY \
689 && GET_CODE (XEXP (operand, 0)) == REG \
690 && REGNO (XEXP (operand, 0)) == 6 \
691 && GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS \
692 && GET_CODE (XEXP (xfoob, 0)) == REG \
693 && REGNO (XEXP (xfoob, 0)) == 6 \
694 && CONSTANT_P (XEXP (xfoob, 1)) \
695 && INTVAL (XEXP (xfoob,1)) == -2) \
696 goto ADDR; \
697 \
698 /* accept (SP)+ -- which uses POST_MODIFY for byte mode */ \
699 if (GET_CODE (operand) == POST_MODIFY \
700 && GET_CODE (XEXP (operand, 0)) == REG \
701 && REGNO (XEXP (operand, 0)) == 6 \
702 && GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS \
703 && GET_CODE (XEXP (xfoob, 0)) == REG \
704 && REGNO (XEXP (xfoob, 0)) == 6 \
705 && CONSTANT_P (XEXP (xfoob, 1)) \
706 && INTVAL (XEXP (xfoob,1)) == 2) \
707 goto ADDR; \
708 \
709 \
710 /* handle another level of indirection ! */ \
711 if (GET_CODE(operand) != MEM) \
712 goto fail; \
713 \
714 xfoob = XEXP (operand, 0); \
715 \
716 /* (MEM:xx (MEM:xx ())) is not valid for SI, DI and currently */ \
717 /* also forbidden for float, because we have to handle this */ \
718 /* in output_move_double and/or output_move_quad() - we could */ \
719 /* do it, but currently it's not worth it!!! */ \
720 /* now that DFmode cannot go into CPU register file, */ \
721 /* maybe I should allow float ... */ \
722 /* but then I have to handle memory-to-memory moves in movdf ?? */ \
723 \
724 if (GET_MODE_BITSIZE(mode) > 16) \
725 goto fail; \
726 \
727 /* accept @(R0) - which is @0(R0) */ \
728 if (GET_CODE (xfoob) == REG \
729 && REG_OK_FOR_BASE_P(xfoob)) \
730 goto ADDR; \
731 \
732 /* accept @address */ \
733 if (CONSTANT_ADDRESS_P (xfoob)) \
734 goto ADDR; \
735 \
736 /* accept @X(R0) */ \
737 if (GET_CODE (xfoob) == PLUS \
738 && GET_CODE (XEXP (xfoob, 0)) == REG \
739 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0)) \
740 && CONSTANT_ADDRESS_P (XEXP (xfoob, 1))) \
741 goto ADDR; \
742 \
743 /* accept @-(R0) */ \
744 if (GET_CODE (xfoob) == PRE_DEC \
745 && GET_CODE (XEXP (xfoob, 0)) == REG \
746 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
747 goto ADDR; \
748 \
749 /* accept @(R0)+ */ \
750 if (GET_CODE (xfoob) == POST_INC \
751 && GET_CODE (XEXP (xfoob, 0)) == REG \
752 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
753 goto ADDR; \
754 \
755 /* anything else is invalid */ \
756 fail: ; \
757 }
758
759 \f
760 /* Go to LABEL if ADDR (a legitimate address expression)
761 has an effect that depends on the machine mode it is used for.
762 On the pdp this is for predec/postinc, and this is now treated
763 generically in recog.c. */
764
765 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
766
767 \f
768 /* Specify the machine mode that this machine uses
769 for the index in the tablejump instruction. */
770 #define CASE_VECTOR_MODE HImode
771
772 /* Define this if a raw index is all that is needed for a
773 `tablejump' insn. */
774 #define CASE_TAKES_INDEX_RAW
775
776 /* Define this as 1 if `char' should by default be signed; else as 0. */
777 #define DEFAULT_SIGNED_CHAR 1
778
779 /* Max number of bytes we can move from memory to memory
780 in one reasonably fast instruction.
781 */
782
783 #define MOVE_MAX 2
784
785 /* Nonzero if access to memory by byte is slow and undesirable. -
786 */
787 #define SLOW_BYTE_ACCESS 0
788
789 /* Do not break .stabs pseudos into continuations. */
790 #define DBX_CONTIN_LENGTH 0
791
792 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
793 is done just by pretending it is already truncated. */
794 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
795
796 /* Give a comparison code (EQ, NE etc) and the first operand of a COMPARE,
797 return the mode to be used for the comparison. For floating-point, CCFPmode
798 should be used. */
799
800 #define SELECT_CC_MODE(OP,X,Y) \
801 (GET_MODE_CLASS(GET_MODE(X)) == MODE_FLOAT? CCFPmode : CCmode)
802
803 /* Specify the machine mode that pointers have.
804 After generation of rtl, the compiler makes no further distinction
805 between pointers and any other objects of this machine mode. */
806 #define Pmode HImode
807
808 /* A function address in a call instruction
809 is a word address (for indexing purposes)
810 so give the MEM rtx a word's mode. */
811 #define FUNCTION_MODE HImode
812
813 /* Define this if addresses of constant functions
814 shouldn't be put through pseudo regs where they can be cse'd.
815 Desirable on machines where ordinary constants are expensive
816 but a CALL with constant address is cheap. */
817 /* #define NO_FUNCTION_CSE */
818
819 \f
820 /* cost of moving one register class to another */
821 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
822 register_move_cost (CLASS1, CLASS2)
823
824 /* Tell emit-rtl.c how to initialize special values on a per-function base. */
825 extern int optimize;
826 extern struct rtx_def *cc0_reg_rtx;
827
828 #define CC_STATUS_MDEP rtx
829
830 #define CC_STATUS_MDEP_INIT (cc_status.mdep = 0)
831 \f
832 /* Tell final.c how to eliminate redundant test instructions. */
833
834 /* Here we define machine-dependent flags and fields in cc_status
835 (see `conditions.h'). */
836
837 #define CC_IN_FPU 04000
838
839 /* Do UPDATE_CC if EXP is a set, used in
840 NOTICE_UPDATE_CC
841
842 floats only do compare correctly, else nullify ...
843
844 get cc0 out soon ...
845 */
846
847 /* Store in cc_status the expressions
848 that the condition codes will describe
849 after execution of an instruction whose pattern is EXP.
850 Do not alter them if the instruction would not alter the cc's. */
851
852 #define NOTICE_UPDATE_CC(EXP, INSN) \
853 { if (GET_CODE (EXP) == SET) \
854 { \
855 notice_update_cc_on_set(EXP, INSN); \
856 } \
857 else if (GET_CODE (EXP) == PARALLEL \
858 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
859 { \
860 notice_update_cc_on_set(XVECEXP (EXP, 0, 0), INSN); \
861 } \
862 else if (GET_CODE (EXP) == CALL) \
863 { /* all bets are off */ CC_STATUS_INIT; } \
864 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
865 && cc_status.value2 \
866 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
867 { \
868 printf ("here!\n"); \
869 cc_status.value2 = 0; \
870 } \
871 }
872 \f
873 /* Control the assembler format that we output. */
874
875 /* Output to assembler file text saying following lines
876 may contain character constants, extra white space, comments, etc. */
877
878 #define ASM_APP_ON ""
879
880 /* Output to assembler file text saying following lines
881 no longer contain unusual constructs. */
882
883 #define ASM_APP_OFF ""
884
885 /* Output before read-only data. */
886
887 #define TEXT_SECTION_ASM_OP "\t.text\n"
888
889 /* Output before writable data. */
890
891 #define DATA_SECTION_ASM_OP "\t.data\n"
892
893 /* How to refer to registers in assembler output.
894 This sequence is indexed by compiler's hard-register-number (see above). */
895
896 #define REGISTER_NAMES \
897 {"r0", "r1", "r2", "r3", "r4", "r5", "sp", "pc", \
898 "ac0", "ac1", "ac2", "ac3", "ac4", "ac5" }
899
900 /* Globalizing directive for a label. */
901 #define GLOBAL_ASM_OP "\t.globl "
902
903 /* The prefix to add to user-visible assembler symbols. */
904
905 #define USER_LABEL_PREFIX "_"
906
907 /* This is how to store into the string LABEL
908 the symbol_ref name of an internal numbered label where
909 PREFIX is the class of label and NUM is the number within the class.
910 This is suitable for output with `assemble_name'. */
911
912 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
913 sprintf (LABEL, "*%s_%lu", PREFIX, (unsigned long)(NUM))
914
915 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
916 output_ascii (FILE, P, SIZE)
917
918 /* This is how to output an element of a case-vector that is absolute. */
919
920 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
921 fprintf (FILE, "\t%sL_%d\n", TARGET_UNIX_ASM ? "" : ".word ", VALUE)
922
923 /* This is how to output an element of a case-vector that is relative.
924 Don't define this if it is not supported. */
925
926 /* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */
927
928 /* This is how to output an assembler line
929 that says to advance the location counter
930 to a multiple of 2**LOG bytes.
931
932 who needs this????
933 */
934
935 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
936 switch (LOG) \
937 { \
938 case 0: \
939 break; \
940 case 1: \
941 fprintf (FILE, "\t.even\n"); \
942 break; \
943 default: \
944 gcc_unreachable (); \
945 }
946
947 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
948 fprintf (FILE, "\t.=.+ %#ho\n", (unsigned short)(SIZE))
949
950 /* This says how to output an assembler line
951 to define a global common symbol. */
952
953 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
954 ( fprintf ((FILE), ".globl "), \
955 assemble_name ((FILE), (NAME)), \
956 fprintf ((FILE), "\n"), \
957 assemble_name ((FILE), (NAME)), \
958 fprintf ((FILE), ": .=.+ %#ho\n", (unsigned short)(ROUNDED)) \
959 )
960
961 /* This says how to output an assembler line
962 to define a local common symbol. */
963
964 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
965 ( assemble_name ((FILE), (NAME)), \
966 fprintf ((FILE), ":\t.=.+ %#ho\n", (unsigned short)(ROUNDED)))
967
968 /* Print operand X (an rtx) in assembler syntax to file FILE.
969 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
970 For `%' followed by punctuation, CODE is the punctuation and X is null.
971
972 */
973
974
975 #define PRINT_OPERAND(FILE, X, CODE) \
976 { if (CODE == '#') fprintf (FILE, "#"); \
977 else if (GET_CODE (X) == REG) \
978 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
979 else if (GET_CODE (X) == MEM) \
980 output_address (XEXP (X, 0)); \
981 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != SImode) \
982 { REAL_VALUE_TYPE r; \
983 long sval[2]; \
984 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
985 REAL_VALUE_TO_TARGET_DOUBLE (r, sval); \
986 fprintf (FILE, "$%#o", sval[0] >> 16); } \
987 else { putc ('$', FILE); output_addr_const_pdp11 (FILE, X); }}
988 \f
989 /* Print a memory address as an operand to reference that memory location. */
990
991 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
992 print_operand_address (FILE, ADDR)
993
994 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
995 ( \
996 fprintf (FILE, "\tmov %s, -(sp)\n", reg_names[REGNO]) \
997 )
998
999 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1000 ( \
1001 fprintf (FILE, "\tmov (sp)+, %s\n", reg_names[REGNO]) \
1002 )
1003
1004 /* trampoline - how should i do it in separate i+d ?
1005 have some allocate_trampoline magic???
1006
1007 the following should work for shared I/D: */
1008
1009 /* lets see whether this works as trampoline:
1010 MV #STATIC, $4 0x940Y 0x0000 <- STATIC; Y = STATIC_CHAIN_REGNUM
1011 JMP FUNCTION 0x0058 0x0000 <- FUNCTION
1012 */
1013
1014 #define TRAMPOLINE_TEMPLATE(FILE) \
1015 { \
1016 gcc_assert (!TARGET_SPLIT); \
1017 \
1018 assemble_aligned_integer (2, GEN_INT (0x9400+STATIC_CHAIN_REGNUM)); \
1019 assemble_aligned_integer (2, const0_rtx); \
1020 assemble_aligned_integer (2, GEN_INT(0x0058)); \
1021 assemble_aligned_integer (2, const0_rtx); \
1022 }
1023
1024 #define TRAMPOLINE_SIZE 8
1025 #define TRAMPOLINE_ALIGNMENT 16
1026
1027 /* Emit RTL insns to initialize the variable parts of a trampoline.
1028 FNADDR is an RTX for the address of the function's pure code.
1029 CXT is an RTX for the static chain value for the function. */
1030
1031 #define INITIALIZE_TRAMPOLINE(TRAMP,FNADDR,CXT) \
1032 { \
1033 gcc_assert (!TARGET_SPLIT); \
1034 \
1035 emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 2)), CXT); \
1036 emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 6)), FNADDR); \
1037 }
1038
1039
1040 /* Some machines may desire to change what optimizations are
1041 performed for various optimization levels. This macro, if
1042 defined, is executed once just after the optimization level is
1043 determined and before the remainder of the command options have
1044 been parsed. Values set in this macro are used as the default
1045 values for the other command line options.
1046
1047 LEVEL is the optimization level specified; 2 if -O2 is
1048 specified, 1 if -O is specified, and 0 if neither is specified. */
1049
1050 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
1051 { \
1052 if (LEVEL >= 3) \
1053 { \
1054 flag_omit_frame_pointer = 1; \
1055 /* flag_unroll_loops = 1; */ \
1056 } \
1057 }
1058
1059 /* there is no point in avoiding branches on a pdp,
1060 since branches are really cheap - I just want to find out
1061 how much difference the BRANCH_COST macro makes in code */
1062 #define BRANCH_COST (TARGET_BRANCH_CHEAP ? 0 : 1)
1063
1064
1065 #define COMPARE_FLAG_MODE HImode