]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/pdp11/pdp11.h
rtl.h (STORE_FLAG_VALUE): Remove default definition from here.
[thirdparty/gcc.git] / gcc / config / pdp11 / pdp11.h
1 /* Definitions of target machine for GNU compiler, for the pdp-11
2 Copyright (C) 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Michael K. Gschwind (mike@vlsivie.tuwien.ac.at).
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #define CONSTANT_POOL_BEFORE_FUNCTION 0
24
25 /* check whether load_fpu_reg or not */
26 #define LOAD_FPU_REG_P(x) ((x)>=8 && (x)<=11)
27 #define NO_LOAD_FPU_REG_P(x) ((x)==12 || (x)==13)
28 #define FPU_REG_P(x) (LOAD_FPU_REG_P(x) || NO_LOAD_FPU_REG_P(x))
29 #define CPU_REG_P(x) ((x)<8)
30
31 /* Names to predefine in the preprocessor for this target machine. */
32
33 #define TARGET_CPU_CPP_BUILTINS() \
34 do \
35 { \
36 builtin_define_std ("pdp11"); \
37 } \
38 while (0)
39
40 /* Print subsidiary information on the compiler version in use. */
41 #define TARGET_VERSION fprintf (stderr, " (pdp11)");
42
43
44 /* Generate DBX debugging information. */
45
46 /* #define DBX_DEBUGGING_INFO */
47
48 /* Run-time compilation parameters selecting different hardware subsets.
49 */
50
51 extern int target_flags;
52
53 /* Macro to define tables used to set the flags.
54 This is a list in braces of triplets in braces,
55 each triplet being { "NAME", VALUE, DOC }
56 where VALUE is the bits to set or minus the bits to clear and DOC
57 is the documentation for --help (NULL if intentionally undocumented).
58 An empty string NAME is used to identify the default VALUE. */
59
60 #define TARGET_SWITCHES \
61 { { "fpu", 1, N_("Use hardware floating point") }, \
62 { "soft-float", -1, N_("Do not use hardware floating point") }, \
63 /* return float result in ac0 */ \
64 { "ac0", 2, N_("Return floating point results in ac0") }, \
65 { "no-ac0", -2, N_("Return floating point results in memory") }, \
66 /* is 11/40 */ \
67 { "40", 4, N_("Generate code for an 11/40") }, \
68 { "no-40", -4, "" }, \
69 /* is 11/45 */ \
70 { "45", 8, N_("Generate code for an 11/45") }, \
71 { "no-45", -8, "" }, \
72 /* is 11/10 */ \
73 { "10", -12, N_("Generate code for an 11/10") }, \
74 /* use movstrhi for bcopy */ \
75 { "bcopy", 16, NULL }, \
76 { "bcopy-builtin", -16, NULL }, \
77 /* use 32 bit for int */ \
78 { "int32", 32, N_("Use 32 bit int") }, \
79 { "no-int16", 32, N_("Use 32 bit int") }, \
80 { "int16", -32, N_("Use 16 bit int") }, \
81 { "no-int32", -32, N_("Use 16 bit int") }, \
82 /* use 32 bit for float */ \
83 { "float32", 64, N_("Use 32 bit float") }, \
84 { "no-float64", 64, N_("Use 32 bit float") }, \
85 { "float64", -64, N_("Use 64 bit float") }, \
86 { "no-float32", -64, N_("Use 64 bit float") }, \
87 /* allow abshi pattern? - can trigger "optimizations" which make code SLOW! */\
88 { "abshi", 128, NULL }, \
89 { "no-abshi", -128, NULL }, \
90 /* is branching expensive - on a PDP, it's actually really cheap */ \
91 /* this is just to play around and check what code gcc generates */ \
92 { "branch-expensive", 256, NULL }, \
93 { "branch-cheap", -256, NULL }, \
94 /* split instruction and data memory? */ \
95 { "split", 1024, N_("Target has split I&D") }, \
96 { "no-split", -1024, N_("Target does not have split I&D") }, \
97 /* UNIX assembler syntax? */ \
98 { "unix-asm", 2048, N_("Use UNIX assembler syntax") }, \
99 { "dec-asm", -2048, N_("Use DEC assembler syntax") }, \
100 /* default */ \
101 { "", TARGET_DEFAULT, NULL} \
102 }
103
104 #define TARGET_DEFAULT (1 | 8 | 128 | TARGET_UNIX_ASM_DEFAULT)
105
106 #define TARGET_FPU (target_flags & 1)
107 #define TARGET_SOFT_FLOAT (!TARGET_FPU)
108
109 #define TARGET_AC0 ((target_flags & 2) && TARGET_FPU)
110 #define TARGET_NO_AC0 (! TARGET_AC0)
111
112 #define TARGET_45 (target_flags & 8)
113 #define TARGET_40_PLUS ((target_flags & 4) || (target_flags & 8))
114 #define TARGET_10 (! TARGET_40_PLUS)
115
116 #define TARGET_BCOPY_BUILTIN (! (target_flags & 16))
117
118 #define TARGET_INT16 (! TARGET_INT32)
119 #define TARGET_INT32 (target_flags & 32)
120
121 #define TARGET_FLOAT32 (target_flags & 64)
122 #define TARGET_FLOAT64 (! TARGET_FLOAT32)
123
124 #define TARGET_ABSHI_BUILTIN (target_flags & 128)
125
126 #define TARGET_BRANCH_EXPENSIVE (target_flags & 256)
127 #define TARGET_BRANCH_CHEAP (!TARGET_BRANCH_EXPENSIVE)
128
129 #define TARGET_SPLIT (target_flags & 1024)
130 #define TARGET_NOSPLIT (! TARGET_SPLIT)
131
132 #define TARGET_UNIX_ASM (target_flags & 2048)
133 #define TARGET_UNIX_ASM_DEFAULT 0
134
135 #define ASSEMBLER_DIALECT (TARGET_UNIX_ASM ? 1 : 0)
136
137 \f
138
139 /* TYPE SIZES */
140 #define SHORT_TYPE_SIZE 16
141 #define INT_TYPE_SIZE (TARGET_INT16 ? 16 : 32)
142 #define LONG_TYPE_SIZE 32
143 #define LONG_LONG_TYPE_SIZE 64
144
145 /* if we set FLOAT_TYPE_SIZE to 32, we could have the benefit
146 of saving core for huge arrays - the definitions are
147 already in md - but floats can never reside in
148 an FPU register - we keep the FPU in double float mode
149 all the time !! */
150 #define FLOAT_TYPE_SIZE (TARGET_FLOAT32 ? 32 : 64)
151 #define DOUBLE_TYPE_SIZE 64
152 #define LONG_DOUBLE_TYPE_SIZE 64
153
154 /* machine types from ansi */
155 #define SIZE_TYPE "unsigned int" /* definition of size_t */
156 #define WCHAR_TYPE "int" /* or long int???? */
157 #define WCHAR_TYPE_SIZE 16
158
159 #define PTRDIFF_TYPE "int"
160
161 /* target machine storage layout */
162
163 /* Define this if most significant bit is lowest numbered
164 in instructions that operate on numbered bit-fields. */
165 #define BITS_BIG_ENDIAN 0
166
167 /* Define this if most significant byte of a word is the lowest numbered. */
168 #define BYTES_BIG_ENDIAN 0
169
170 /* Define this if most significant word of a multiword number is numbered. */
171 #define WORDS_BIG_ENDIAN 1
172
173 /* Width of a word, in units (bytes).
174
175 UNITS OR BYTES - seems like units */
176 #define UNITS_PER_WORD 2
177
178 /* Maximum sized of reasonable data type
179 DImode or Dfmode ...*/
180 #define MAX_FIXED_MODE_SIZE 64
181
182 /* Allocation boundary (in *bits*) for storing pointers in memory. */
183 #define POINTER_BOUNDARY 16
184
185 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
186 #define PARM_BOUNDARY 16
187
188 /* Boundary (in *bits*) on which stack pointer should be aligned. */
189 #define STACK_BOUNDARY 16
190
191 /* Allocation boundary (in *bits*) for the code of a function. */
192 #define FUNCTION_BOUNDARY 16
193
194 /* Alignment of field after `int : 0' in a structure. */
195 #define EMPTY_FIELD_BOUNDARY 16
196
197 /* No data type wants to be aligned rounder than this. */
198 #define BIGGEST_ALIGNMENT 16
199
200 /* Define this if move instructions will actually fail to work
201 when given unaligned data. */
202 #define STRICT_ALIGNMENT 1
203 \f
204 /* Standard register usage. */
205
206 /* Number of actual hardware registers.
207 The hardware registers are assigned numbers for the compiler
208 from 0 to just below FIRST_PSEUDO_REGISTER.
209 All registers that the compiler knows about must be given numbers,
210 even those that are not normally considered general registers.
211
212 we have 8 integer registers, plus 6 float
213 (don't use scratch float !) */
214
215 #define FIRST_PSEUDO_REGISTER 14
216
217 /* 1 for registers that have pervasive standard uses
218 and are not available for the register allocator.
219
220 On the pdp, these are:
221 Reg 7 = pc;
222 reg 6 = sp;
223 reg 5 = fp; not necessarily!
224 */
225
226 /* don't let them touch fp regs for the time being !*/
227
228 #define FIXED_REGISTERS \
229 {0, 0, 0, 0, 0, 0, 1, 1, \
230 0, 0, 0, 0, 0, 0 }
231
232
233
234 /* 1 for registers not available across function calls.
235 These must include the FIXED_REGISTERS and also any
236 registers that can be used without being saved.
237 The latter must include the registers where values are returned
238 and the register where structure-value addresses are passed.
239 Aside from that, you can include as many other registers as you like. */
240
241 /* don't know about fp */
242 #define CALL_USED_REGISTERS \
243 {1, 1, 0, 0, 0, 0, 1, 1, \
244 0, 0, 0, 0, 0, 0 }
245
246
247 /* Make sure everything's fine if we *don't* have an FPU.
248 This assumes that putting a register in fixed_regs will keep the
249 compiler's mitts completely off it. We don't bother to zero it out
250 of register classes. Also fix incompatible register naming with
251 the UNIX assembler.
252 */
253 #define CONDITIONAL_REGISTER_USAGE \
254 { \
255 int i; \
256 HARD_REG_SET x; \
257 if (!TARGET_FPU) \
258 { \
259 COPY_HARD_REG_SET (x, reg_class_contents[(int)FPU_REGS]); \
260 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
261 if (TEST_HARD_REG_BIT (x, i)) \
262 fixed_regs[i] = call_used_regs[i] = 1; \
263 } \
264 \
265 if (TARGET_AC0) \
266 call_used_regs[8] = 1; \
267 if (TARGET_UNIX_ASM) \
268 { \
269 /* Change names of FPU registers for the UNIX assembler. */ \
270 reg_names[8] = "fr0"; \
271 reg_names[9] = "fr1"; \
272 reg_names[10] = "fr2"; \
273 reg_names[11] = "fr3"; \
274 reg_names[12] = "fr4"; \
275 reg_names[13] = "fr5"; \
276 } \
277 }
278
279 /* Return number of consecutive hard regs needed starting at reg REGNO
280 to hold something of mode MODE.
281 This is ordinarily the length in words of a value of mode MODE
282 but can be less for certain modes in special long registers.
283 */
284
285 #define HARD_REGNO_NREGS(REGNO, MODE) \
286 ((REGNO < 8)? \
287 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
288 :1)
289
290
291 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
292 On the pdp, the cpu registers can hold any mode - check alignment
293
294 FPU can only hold DF - simplifies life!
295 */
296 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
297 (((REGNO) < 8)? \
298 ((GET_MODE_BITSIZE(MODE) <= 16) \
299 || (GET_MODE_BITSIZE(MODE) == 32 && !((REGNO) & 1))) \
300 :(MODE) == DFmode)
301
302
303 /* Value is 1 if it is a good idea to tie two pseudo registers
304 when one has mode MODE1 and one has mode MODE2.
305 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
306 for any hard reg, then this must be 0 for correct output. */
307 #define MODES_TIEABLE_P(MODE1, MODE2) 0
308
309 /* Specify the registers used for certain standard purposes.
310 The values of these macros are register numbers. */
311
312 /* the pdp11 pc overloaded on a register that the compiler knows about. */
313 #define PC_REGNUM 7
314
315 /* Register to use for pushing function arguments. */
316 #define STACK_POINTER_REGNUM 6
317
318 /* Base register for access to local variables of the function. */
319 #define FRAME_POINTER_REGNUM 5
320
321 /* Value should be nonzero if functions must have frame pointers.
322 Zero means the frame pointer need not be set up (and parms
323 may be accessed via the stack pointer) in functions that seem suitable.
324 This is computed in `reload', in reload1.c.
325 */
326
327 #define FRAME_POINTER_REQUIRED 0
328
329 /* Base register for access to arguments of the function. */
330 #define ARG_POINTER_REGNUM 5
331
332 /* Register in which static-chain is passed to a function. */
333 /* ??? - i don't want to give up a reg for this! */
334 #define STATIC_CHAIN_REGNUM 4
335
336 /* Register in which address to store a structure value
337 is passed to a function.
338 let's make it an invisible first argument!!! */
339
340 #define STRUCT_VALUE 0
341
342 \f
343 /* Define the classes of registers for register constraints in the
344 machine description. Also define ranges of constants.
345
346 One of the classes must always be named ALL_REGS and include all hard regs.
347 If there is more than one class, another class must be named NO_REGS
348 and contain no registers.
349
350 The name GENERAL_REGS must be the name of a class (or an alias for
351 another name such as ALL_REGS). This is the class of registers
352 that is allowed by "g" or "r" in a register constraint.
353 Also, registers outside this class are allocated only when
354 instructions express preferences for them.
355
356 The classes must be numbered in nondecreasing order; that is,
357 a larger-numbered class must never be contained completely
358 in a smaller-numbered class.
359
360 For any two classes, it is very desirable that there be another
361 class that represents their union. */
362
363 /* The pdp has a couple of classes:
364
365 MUL_REGS are used for odd numbered regs, to use in 16 bit multiplication
366 (even numbered do 32 bit multiply)
367 LMUL_REGS long multiply registers (even numbered regs )
368 (don't need them, all 32 bit regs are even numbered!)
369 GENERAL_REGS is all cpu
370 LOAD_FPU_REGS is the first four cpu regs, they are easier to load
371 NO_LOAD_FPU_REGS is ac4 and ac5, currently - difficult to load them
372 FPU_REGS is all fpu regs
373 */
374
375 enum reg_class { NO_REGS, MUL_REGS, GENERAL_REGS, LOAD_FPU_REGS, NO_LOAD_FPU_REGS, FPU_REGS, ALL_REGS, LIM_REG_CLASSES };
376
377 #define N_REG_CLASSES (int) LIM_REG_CLASSES
378
379 /* have to allow this till cmpsi/tstsi are fixed in a better way !! */
380 #define SMALL_REGISTER_CLASSES 1
381
382 /* Since GENERAL_REGS is the same class as ALL_REGS,
383 don't give it a different class number; just make it an alias. */
384
385 /* #define GENERAL_REGS ALL_REGS */
386
387 /* Give names of register classes as strings for dump file. */
388
389 #define REG_CLASS_NAMES {"NO_REGS", "MUL_REGS", "GENERAL_REGS", "LOAD_FPU_REGS", "NO_LOAD_FPU_REGS", "FPU_REGS", "ALL_REGS" }
390
391 /* Define which registers fit in which classes.
392 This is an initializer for a vector of HARD_REG_SET
393 of length N_REG_CLASSES. */
394
395 #define REG_CLASS_CONTENTS {{0}, {0x00aa}, {0x00ff}, {0x0f00}, {0x3000}, {0x3f00}, {0x3fff}}
396
397 /* The same information, inverted:
398 Return the class number of the smallest class containing
399 reg number REGNO. This could be a conditional expression
400 or could index an array. */
401
402 #define REGNO_REG_CLASS(REGNO) \
403 ((REGNO)>=8?((REGNO)<=11?LOAD_FPU_REGS:NO_LOAD_FPU_REGS):(((REGNO)&1)?MUL_REGS:GENERAL_REGS))
404
405
406 /* The class value for index registers, and the one for base regs. */
407 #define INDEX_REG_CLASS GENERAL_REGS
408 #define BASE_REG_CLASS GENERAL_REGS
409
410 /* Get reg_class from a letter such as appears in the machine description. */
411
412 #define REG_CLASS_FROM_LETTER(C) \
413 ((C) == 'f' ? FPU_REGS : \
414 ((C) == 'd' ? MUL_REGS : \
415 ((C) == 'a' ? LOAD_FPU_REGS : NO_REGS)))
416
417
418 /* The letters I, J, K, L and M in a register constraint string
419 can be used to stand for particular ranges of immediate operands.
420 This macro defines what the ranges are.
421 C is the letter, and VALUE is a constant value.
422 Return 1 if VALUE is in the range specified by C.
423
424 I bits 31-16 0000
425 J bits 15-00 0000
426 K completely random 32 bit
427 L,M,N -1,1,0 respectively
428 O where doing shifts in sequence is faster than
429 one big shift
430 */
431
432 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
433 ((C) == 'I' ? ((VALUE) & 0xffff0000) == 0 \
434 : (C) == 'J' ? ((VALUE) & 0x0000ffff) == 0 \
435 : (C) == 'K' ? (((VALUE) & 0xffff0000) != 0 \
436 && ((VALUE) & 0x0000ffff) != 0) \
437 : (C) == 'L' ? ((VALUE) == 1) \
438 : (C) == 'M' ? ((VALUE) == -1) \
439 : (C) == 'N' ? ((VALUE) == 0) \
440 : (C) == 'O' ? (abs(VALUE) >1 && abs(VALUE) <= 4) \
441 : 0)
442
443 /* Similar, but for floating constants, and defining letters G and H.
444 Here VALUE is the CONST_DOUBLE rtx itself. */
445
446 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
447 ((C) == 'G' && XINT (VALUE, 0) == 0 && XINT (VALUE, 1) == 0)
448
449
450 /* Letters in the range `Q' through `U' may be defined in a
451 machine-dependent fashion to stand for arbitrary operand types.
452 The machine description macro `EXTRA_CONSTRAINT' is passed the
453 operand as its first argument and the constraint letter as its
454 second operand.
455
456 `Q' is for memory references using take more than 1 instruction.
457 `R' is for memory references which take 1 word for the instruction. */
458
459 #define EXTRA_CONSTRAINT(OP,CODE) \
460 ((GET_CODE (OP) != MEM) ? 0 \
461 : !legitimate_address_p (GET_MODE (OP), XEXP (OP, 0)) ? 0 \
462 : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
463 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
464 : 0)
465
466 /* Given an rtx X being reloaded into a reg required to be
467 in class CLASS, return the class of reg to actually use.
468 In general this is just CLASS; but on some machines
469 in some cases it is preferable to use a more restrictive class.
470
471 loading is easier into LOAD_FPU_REGS than FPU_REGS! */
472
473 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
474 (((CLASS) != FPU_REGS)?(CLASS):LOAD_FPU_REGS)
475
476 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,x) \
477 (((CLASS) == NO_LOAD_FPU_REGS && !(REG_P(x) && LOAD_FPU_REG_P(REGNO(x))))?LOAD_FPU_REGS:NO_REGS)
478
479 /* Return the maximum number of consecutive registers
480 needed to represent mode MODE in a register of class CLASS. */
481 #define CLASS_MAX_NREGS(CLASS, MODE) \
482 ((CLASS == GENERAL_REGS || CLASS == MUL_REGS)? \
483 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD): \
484 1 \
485 )
486
487 \f
488 /* Stack layout; function entry, exit and calling. */
489
490 /* Define this if pushing a word on the stack
491 makes the stack pointer a smaller address. */
492 #define STACK_GROWS_DOWNWARD
493
494 /* Define this if the nominal address of the stack frame
495 is at the high-address end of the local variables;
496 that is, each additional local variable allocated
497 goes at a more negative offset in the frame.
498 */
499 #define FRAME_GROWS_DOWNWARD
500
501 /* Offset within stack frame to start allocating local variables at.
502 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
503 first local allocated. Otherwise, it is the offset to the BEGINNING
504 of the first local allocated. */
505 #define STARTING_FRAME_OFFSET 0
506
507 /* If we generate an insn to push BYTES bytes,
508 this says how many the stack pointer really advances by.
509 On the pdp11, the stack is on an even boundary */
510 #define PUSH_ROUNDING(BYTES) ((BYTES + 1) & ~1)
511
512 /* current_first_parm_offset stores the # of registers pushed on the
513 stack */
514 extern int current_first_parm_offset;
515
516 /* Offset of first parameter from the argument pointer register value.
517 For the pdp11, this is nonzero to account for the return address.
518 1 - return address
519 2 - frame pointer (always saved, even when not used!!!!)
520 -- chnage some day !!!:q!
521
522 */
523 #define FIRST_PARM_OFFSET(FNDECL) 4
524
525 /* Value is 1 if returning from a function call automatically
526 pops the arguments described by the number-of-args field in the call.
527 FUNDECL is the declaration node of the function (as a tree),
528 FUNTYPE is the data type of the function (as a tree),
529 or for a library call it is an identifier node for the subroutine name. */
530
531 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
532
533 /* Define how to find the value returned by a function.
534 VALTYPE is the data type of the value (as a tree).
535 If the precise function being called is known, FUNC is its FUNCTION_DECL;
536 otherwise, FUNC is 0. */
537 #define BASE_RETURN_VALUE_REG(MODE) \
538 ((MODE) == DFmode ? 8 : 0)
539
540 /* On the pdp11 the value is found in R0 (or ac0???
541 not without FPU!!!! ) */
542
543 #define FUNCTION_VALUE(VALTYPE, FUNC) \
544 gen_rtx_REG (TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
545
546 /* and the called function leaves it in the first register.
547 Difference only on machines with register windows. */
548
549 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
550 gen_rtx_REG (TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
551
552 /* Define how to find the value returned by a library function
553 assuming the value has mode MODE. */
554
555 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, BASE_RETURN_VALUE_REG(MODE))
556
557 /* 1 if N is a possible register number for a function value
558 as seen by the caller.
559 On the pdp, the first "output" reg is the only register thus used.
560
561 maybe ac0 ? - as option someday! */
562
563 #define FUNCTION_VALUE_REGNO_P(N) (((N) == 0) || (TARGET_AC0 && (N) == 8))
564
565 /* should probably return DImode and DFmode in memory,lest
566 we fill up all regs!
567
568 have to, else we crash - exception: maybe return result in
569 ac0 if DFmode and FPU present - compatibility problem with
570 libraries for non-floating point ...
571 */
572
573 #define RETURN_IN_MEMORY(TYPE) \
574 (TYPE_MODE(TYPE) == DImode || (TYPE_MODE(TYPE) == DFmode && ! TARGET_AC0))
575
576
577 /* 1 if N is a possible register number for function argument passing.
578 - not used on pdp */
579
580 #define FUNCTION_ARG_REGNO_P(N) 0
581 \f
582 /* Define a data type for recording info about an argument list
583 during the scan of that argument list. This data type should
584 hold all necessary information about the function itself
585 and about the args processed so far, enough to enable macros
586 such as FUNCTION_ARG to determine where the next arg should go.
587
588 */
589
590 #define CUMULATIVE_ARGS int
591
592 /* Initialize a variable CUM of type CUMULATIVE_ARGS
593 for a call to a function whose data type is FNTYPE.
594 For a library call, FNTYPE is 0.
595
596 ...., the offset normally starts at 0, but starts at 1 word
597 when the function gets a structure-value-address as an
598 invisible first argument. */
599
600 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
601 ((CUM) = 0)
602
603 /* Update the data in CUM to advance over an argument
604 of mode MODE and data type TYPE.
605 (TYPE is null for libcalls where that information may not be available.)
606
607 */
608
609
610 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
611 ((CUM) += ((MODE) != BLKmode \
612 ? (GET_MODE_SIZE (MODE)) \
613 : (int_size_in_bytes (TYPE))))
614
615 /* Determine where to put an argument to a function.
616 Value is zero to push the argument on the stack,
617 or a hard register in which to store the argument.
618
619 MODE is the argument's machine mode.
620 TYPE is the data type of the argument (as a tree).
621 This is null for libcalls where that information may
622 not be available.
623 CUM is a variable of type CUMULATIVE_ARGS which gives info about
624 the preceding args and about the function being called.
625 NAMED is nonzero if this argument is a named parameter
626 (otherwise it is an extra parameter matching an ellipsis). */
627
628 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
629
630 /* Define where a function finds its arguments.
631 This would be different from FUNCTION_ARG if we had register windows. */
632 /*
633 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
634 FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
635 */
636
637 /* For an arg passed partly in registers and partly in memory,
638 this is the number of registers used.
639 For args passed entirely in registers or entirely in memory, zero. */
640
641 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
642
643 /* Output assembler code to FILE to increment profiler label # LABELNO
644 for profiling a function entry. */
645
646 #define FUNCTION_PROFILER(FILE, LABELNO) \
647 abort ();
648
649 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
650 the stack pointer does not matter. The value is tested only in
651 functions that have frame pointers.
652 No definition is equivalent to always zero. */
653
654 extern int may_call_alloca;
655
656 #define EXIT_IGNORE_STACK 1
657
658 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) \
659 { \
660 int offset, regno; \
661 offset = get_frame_size(); \
662 for (regno = 0; regno < 8; regno++) \
663 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
664 offset += 2; \
665 for (regno = 8; regno < 14; regno++) \
666 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
667 offset += 8; \
668 /* offset -= 2; no fp on stack frame */ \
669 (DEPTH_VAR) = offset; \
670 }
671
672 \f
673 /* Addressing modes, and classification of registers for them. */
674
675 #define HAVE_POST_INCREMENT 1
676
677 #define HAVE_PRE_DECREMENT 1
678
679 /* Macros to check register numbers against specific register classes. */
680
681 /* These assume that REGNO is a hard or pseudo reg number.
682 They give nonzero only if REGNO is a hard reg of the suitable class
683 or a pseudo reg currently allocated to a suitable hard reg.
684 Since they use reg_renumber, they are safe only once reg_renumber
685 has been allocated, which happens in local-alloc.c. */
686
687 #define REGNO_OK_FOR_INDEX_P(REGNO) \
688 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
689 #define REGNO_OK_FOR_BASE_P(REGNO) \
690 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
691
692 /* Now macros that check whether X is a register and also,
693 strictly, whether it is in a specified class.
694 */
695
696
697 \f
698 /* Maximum number of registers that can appear in a valid memory address. */
699
700 #define MAX_REGS_PER_ADDRESS 2
701
702 /* Recognize any constant value that is a valid address. */
703
704 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
705
706 /* Nonzero if the constant value X is a legitimate general operand.
707 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
708
709 #define LEGITIMATE_CONSTANT_P(X) (TARGET_FPU? 1: !(GET_CODE(X) == CONST_DOUBLE))
710
711 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
712 and check its validity for a certain class.
713 We have two alternate definitions for each of them.
714 The usual definition accepts all pseudo regs; the other rejects
715 them unless they have been allocated suitable hard regs.
716 The symbol REG_OK_STRICT causes the latter definition to be used.
717
718 Most source files want to accept pseudo regs in the hope that
719 they will get allocated to the class that the insn wants them to be in.
720 Source files for reload pass need to be strict.
721 After reload, it makes no difference, since pseudo regs have
722 been eliminated by then. */
723
724 #ifndef REG_OK_STRICT
725
726 /* Nonzero if X is a hard reg that can be used as an index
727 or if it is a pseudo reg. */
728 #define REG_OK_FOR_INDEX_P(X) (1)
729 /* Nonzero if X is a hard reg that can be used as a base reg
730 or if it is a pseudo reg. */
731 #define REG_OK_FOR_BASE_P(X) (1)
732
733 #else
734
735 /* Nonzero if X is a hard reg that can be used as an index. */
736 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
737 /* Nonzero if X is a hard reg that can be used as a base reg. */
738 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
739
740 #endif
741 \f
742 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
743 that is a valid memory address for an instruction.
744 The MODE argument is the machine mode for the MEM expression
745 that wants to use this address.
746
747 */
748
749 #define GO_IF_LEGITIMATE_ADDRESS(mode, operand, ADDR) \
750 { \
751 rtx xfoob; \
752 \
753 /* accept (R0) */ \
754 if (GET_CODE (operand) == REG \
755 && REG_OK_FOR_BASE_P(operand)) \
756 goto ADDR; \
757 \
758 /* accept @#address */ \
759 if (CONSTANT_ADDRESS_P (operand)) \
760 goto ADDR; \
761 \
762 /* accept X(R0) */ \
763 if (GET_CODE (operand) == PLUS \
764 && GET_CODE (XEXP (operand, 0)) == REG \
765 && REG_OK_FOR_BASE_P (XEXP (operand, 0)) \
766 && CONSTANT_ADDRESS_P (XEXP (operand, 1))) \
767 goto ADDR; \
768 \
769 /* accept -(R0) */ \
770 if (GET_CODE (operand) == PRE_DEC \
771 && GET_CODE (XEXP (operand, 0)) == REG \
772 && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
773 goto ADDR; \
774 \
775 /* accept (R0)+ */ \
776 if (GET_CODE (operand) == POST_INC \
777 && GET_CODE (XEXP (operand, 0)) == REG \
778 && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
779 goto ADDR; \
780 \
781 /* accept -(SP) -- which uses PRE_MODIFY for byte mode */ \
782 if (GET_CODE (operand) == PRE_MODIFY \
783 && GET_CODE (XEXP (operand, 0)) == REG \
784 && REGNO (XEXP (operand, 0)) == 6 \
785 && GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS \
786 && GET_CODE (XEXP (xfoob, 0)) == REG \
787 && REGNO (XEXP (xfoob, 0)) == 6 \
788 && CONSTANT_P (XEXP (xfoob, 1)) \
789 && INTVAL (XEXP (xfoob,1)) == -2) \
790 goto ADDR; \
791 \
792 /* accept (SP)+ -- which uses POST_MODIFY for byte mode */ \
793 if (GET_CODE (operand) == POST_MODIFY \
794 && GET_CODE (XEXP (operand, 0)) == REG \
795 && REGNO (XEXP (operand, 0)) == 6 \
796 && GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS \
797 && GET_CODE (XEXP (xfoob, 0)) == REG \
798 && REGNO (XEXP (xfoob, 0)) == 6 \
799 && CONSTANT_P (XEXP (xfoob, 1)) \
800 && INTVAL (XEXP (xfoob,1)) == 2) \
801 goto ADDR; \
802 \
803 \
804 /* handle another level of indirection ! */ \
805 if (GET_CODE(operand) != MEM) \
806 goto fail; \
807 \
808 xfoob = XEXP (operand, 0); \
809 \
810 /* (MEM:xx (MEM:xx ())) is not valid for SI, DI and currently */ \
811 /* also forbidden for float, because we have to handle this */ \
812 /* in output_move_double and/or output_move_quad() - we could */ \
813 /* do it, but currently it's not worth it!!! */ \
814 /* now that DFmode cannot go into CPU register file, */ \
815 /* maybe I should allow float ... */ \
816 /* but then I have to handle memory-to-memory moves in movdf ?? */ \
817 \
818 if (GET_MODE_BITSIZE(mode) > 16) \
819 goto fail; \
820 \
821 /* accept @(R0) - which is @0(R0) */ \
822 if (GET_CODE (xfoob) == REG \
823 && REG_OK_FOR_BASE_P(xfoob)) \
824 goto ADDR; \
825 \
826 /* accept @address */ \
827 if (CONSTANT_ADDRESS_P (xfoob)) \
828 goto ADDR; \
829 \
830 /* accept @X(R0) */ \
831 if (GET_CODE (xfoob) == PLUS \
832 && GET_CODE (XEXP (xfoob, 0)) == REG \
833 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0)) \
834 && CONSTANT_ADDRESS_P (XEXP (xfoob, 1))) \
835 goto ADDR; \
836 \
837 /* accept @-(R0) */ \
838 if (GET_CODE (xfoob) == PRE_DEC \
839 && GET_CODE (XEXP (xfoob, 0)) == REG \
840 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
841 goto ADDR; \
842 \
843 /* accept @(R0)+ */ \
844 if (GET_CODE (xfoob) == POST_INC \
845 && GET_CODE (XEXP (xfoob, 0)) == REG \
846 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
847 goto ADDR; \
848 \
849 /* anything else is invalid */ \
850 fail: ; \
851 }
852
853 \f
854 /* Try machine-dependent ways of modifying an illegitimate address
855 to be legitimate. If we find one, return the new, valid address.
856 This macro is used in only one place: `memory_address' in explow.c.
857
858 OLDX is the address as it was before break_out_memory_refs was called.
859 In some cases it is useful to look at this to decide what needs to be done.
860
861 MODE and WIN are passed so that this macro can use
862 GO_IF_LEGITIMATE_ADDRESS.
863
864 It is always safe for this macro to do nothing. It exists to recognize
865 opportunities to optimize the output. */
866
867 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
868
869
870 /* Go to LABEL if ADDR (a legitimate address expression)
871 has an effect that depends on the machine mode it is used for.
872 On the pdp this is for predec/postinc */
873
874 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
875 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
876 goto LABEL; \
877 }
878
879 \f
880 /* Specify the machine mode that this machine uses
881 for the index in the tablejump instruction. */
882 #define CASE_VECTOR_MODE HImode
883
884 /* Define this if a raw index is all that is needed for a
885 `tablejump' insn. */
886 #define CASE_TAKES_INDEX_RAW
887
888 /* Define as C expression which evaluates to nonzero if the tablejump
889 instruction expects the table to contain offsets from the address of the
890 table.
891 Do not define this if the table should contain absolute addresses. */
892 /* #define CASE_VECTOR_PC_RELATIVE 1 */
893
894 /* Define this as 1 if `char' should by default be signed; else as 0. */
895 #define DEFAULT_SIGNED_CHAR 1
896
897 /* Max number of bytes we can move from memory to memory
898 in one reasonably fast instruction.
899 */
900
901 #define MOVE_MAX 2
902
903 /* Nonzero if access to memory by byte is slow and undesirable. -
904 */
905 #define SLOW_BYTE_ACCESS 0
906
907 /* Do not break .stabs pseudos into continuations. */
908 #define DBX_CONTIN_LENGTH 0
909
910 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
911 is done just by pretending it is already truncated. */
912 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
913
914 /* Give a comparison code (EQ, NE etc) and the first operand of a COMPARE,
915 return the mode to be used for the comparison. For floating-point, CCFPmode
916 should be used. */
917
918 #define SELECT_CC_MODE(OP,X,Y) \
919 (GET_MODE_CLASS(GET_MODE(X)) == MODE_FLOAT? CCFPmode : CCmode)
920
921 /* Specify the machine mode that pointers have.
922 After generation of rtl, the compiler makes no further distinction
923 between pointers and any other objects of this machine mode. */
924 #define Pmode HImode
925
926 /* A function address in a call instruction
927 is a word address (for indexing purposes)
928 so give the MEM rtx a word's mode. */
929 #define FUNCTION_MODE HImode
930
931 /* Define this if addresses of constant functions
932 shouldn't be put through pseudo regs where they can be cse'd.
933 Desirable on machines where ordinary constants are expensive
934 but a CALL with constant address is cheap. */
935 /* #define NO_FUNCTION_CSE */
936
937 \f
938 /* cost of moving one register class to another */
939 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
940 register_move_cost (CLASS1, CLASS2)
941
942 /* Tell emit-rtl.c how to initialize special values on a per-function base. */
943 extern int optimize;
944 extern struct rtx_def *cc0_reg_rtx;
945
946 #define CC_STATUS_MDEP rtx
947
948 #define CC_STATUS_MDEP_INIT (cc_status.mdep = 0)
949 \f
950 /* Tell final.c how to eliminate redundant test instructions. */
951
952 /* Here we define machine-dependent flags and fields in cc_status
953 (see `conditions.h'). */
954
955 #define CC_IN_FPU 04000
956
957 /* Do UPDATE_CC if EXP is a set, used in
958 NOTICE_UPDATE_CC
959
960 floats only do compare correctly, else nullify ...
961
962 get cc0 out soon ...
963 */
964
965 /* Store in cc_status the expressions
966 that the condition codes will describe
967 after execution of an instruction whose pattern is EXP.
968 Do not alter them if the instruction would not alter the cc's. */
969
970 #define NOTICE_UPDATE_CC(EXP, INSN) \
971 { if (GET_CODE (EXP) == SET) \
972 { \
973 notice_update_cc_on_set(EXP, INSN); \
974 } \
975 else if (GET_CODE (EXP) == PARALLEL \
976 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
977 { \
978 notice_update_cc_on_set(XVECEXP (EXP, 0, 0), INSN); \
979 } \
980 else if (GET_CODE (EXP) == CALL) \
981 { /* all bets are off */ CC_STATUS_INIT; } \
982 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
983 && cc_status.value2 \
984 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
985 { \
986 printf ("here!\n"); \
987 cc_status.value2 = 0; \
988 } \
989 }
990 \f
991 /* Control the assembler format that we output. */
992
993 /* Output at beginning of assembler file. */
994
995 #if 0
996 #define ASM_FILE_START(FILE) \
997 ( \
998 fprintf (FILE, "\t.data\n"), \
999 fprintf (FILE, "$help$: . = .+8 ; space for tmp moves!\n") \
1000 /* do we need reg def's R0 = %0 etc ??? */ \
1001 )
1002 #else
1003 #define ASM_FILE_START(FILE)
1004 #endif
1005
1006
1007 /* Output to assembler file text saying following lines
1008 may contain character constants, extra white space, comments, etc. */
1009
1010 #define ASM_APP_ON ""
1011
1012 /* Output to assembler file text saying following lines
1013 no longer contain unusual constructs. */
1014
1015 #define ASM_APP_OFF ""
1016
1017 /* Output before read-only data. */
1018
1019 #define TEXT_SECTION_ASM_OP "\t.text\n"
1020
1021 /* Output before writable data. */
1022
1023 #define DATA_SECTION_ASM_OP "\t.data\n"
1024
1025 /* How to refer to registers in assembler output.
1026 This sequence is indexed by compiler's hard-register-number (see above). */
1027
1028 #define REGISTER_NAMES \
1029 {"r0", "r1", "r2", "r3", "r4", "r5", "sp", "pc", \
1030 "ac0", "ac1", "ac2", "ac3", "ac4", "ac5" }
1031
1032 /* Globalizing directive for a label. */
1033 #define GLOBAL_ASM_OP "\t.globl "
1034
1035 /* The prefix to add to user-visible assembler symbols. */
1036
1037 #define USER_LABEL_PREFIX "_"
1038
1039 /* This is how to store into the string LABEL
1040 the symbol_ref name of an internal numbered label where
1041 PREFIX is the class of label and NUM is the number within the class.
1042 This is suitable for output with `assemble_name'. */
1043
1044 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1045 sprintf (LABEL, "*%s_%lu", PREFIX, (unsigned long)(NUM))
1046
1047 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1048 output_ascii (FILE, P, SIZE)
1049
1050 /* This is how to output an element of a case-vector that is absolute. */
1051
1052 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1053 fprintf (FILE, "\t%sL_%d\n", TARGET_UNIX_ASM ? "" : ".word ", VALUE)
1054
1055 /* This is how to output an element of a case-vector that is relative.
1056 Don't define this if it is not supported. */
1057
1058 /* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */
1059
1060 /* This is how to output an assembler line
1061 that says to advance the location counter
1062 to a multiple of 2**LOG bytes.
1063
1064 who needs this????
1065 */
1066
1067 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1068 switch (LOG) \
1069 { \
1070 case 0: \
1071 break; \
1072 case 1: \
1073 fprintf (FILE, "\t.even\n"); \
1074 break; \
1075 default: \
1076 abort (); \
1077 }
1078
1079 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1080 fprintf (FILE, "\t.=.+ %#ho\n", (unsigned short)(SIZE))
1081
1082 /* This says how to output an assembler line
1083 to define a global common symbol. */
1084
1085 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1086 ( fprintf ((FILE), ".globl "), \
1087 assemble_name ((FILE), (NAME)), \
1088 fprintf ((FILE), "\n"), \
1089 assemble_name ((FILE), (NAME)), \
1090 fprintf ((FILE), ": .=.+ %#ho\n", (unsigned short)(ROUNDED)) \
1091 )
1092
1093 /* This says how to output an assembler line
1094 to define a local common symbol. */
1095
1096 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1097 ( assemble_name ((FILE), (NAME)), \
1098 fprintf ((FILE), ":\t.=.+ %#ho\n", (unsigned short)(ROUNDED)))
1099
1100 /* Print operand X (an rtx) in assembler syntax to file FILE.
1101 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1102 For `%' followed by punctuation, CODE is the punctuation and X is null.
1103
1104 */
1105
1106
1107 #define PRINT_OPERAND(FILE, X, CODE) \
1108 { if (CODE == '#') fprintf (FILE, "#"); \
1109 else if (GET_CODE (X) == REG) \
1110 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1111 else if (GET_CODE (X) == MEM) \
1112 output_address (XEXP (X, 0)); \
1113 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != SImode) \
1114 { char buf[30]; \
1115 real_to_decimal (buf, CONST_DOUBLE_REAL_VALUE (X), sizeof (buf), 0, 1); \
1116 fprintf (FILE, "$0F%s", buf); } \
1117 else { putc ('$', FILE); output_addr_const_pdp11 (FILE, X); }}
1118 \f
1119 /* Print a memory address as an operand to reference that memory location. */
1120
1121 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1122 print_operand_address (FILE, ADDR)
1123
1124 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1125 ( \
1126 fprintf (FILE, "\tmov %s, -(sp)\n", reg_names[REGNO]) \
1127 )
1128
1129 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1130 ( \
1131 fprintf (FILE, "\tmov (sp)+, %s\n", reg_names[REGNO]) \
1132 )
1133
1134 /* trampoline - how should i do it in separate i+d ?
1135 have some allocate_trampoline magic???
1136
1137 the following should work for shared I/D: */
1138
1139 /* lets see whether this works as trampoline:
1140 MV #STATIC, $4 0x940Y 0x0000 <- STATIC; Y = STATIC_CHAIN_REGNUM
1141 JMP FUNCTION 0x0058 0x0000 <- FUNCTION
1142 */
1143
1144 #define TRAMPOLINE_TEMPLATE(FILE) \
1145 { \
1146 if (TARGET_SPLIT) \
1147 abort(); \
1148 \
1149 assemble_aligned_integer (2, GEN_INT (0x9400+STATIC_CHAIN_REGNUM)); \
1150 assemble_aligned_integer (2, const0_rtx); \
1151 assemble_aligned_integer (2, GEN_INT(0x0058)); \
1152 assemble_aligned_integer (2, const0_rtx); \
1153 }
1154
1155 #define TRAMPOLINE_SIZE 8
1156 #define TRAMPOLINE_ALIGNMENT 16
1157
1158 /* Emit RTL insns to initialize the variable parts of a trampoline.
1159 FNADDR is an RTX for the address of the function's pure code.
1160 CXT is an RTX for the static chain value for the function. */
1161
1162 #define INITIALIZE_TRAMPOLINE(TRAMP,FNADDR,CXT) \
1163 { \
1164 if (TARGET_SPLIT) \
1165 abort(); \
1166 \
1167 emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 2)), CXT); \
1168 emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 6)), FNADDR); \
1169 }
1170
1171
1172 /* Some machines may desire to change what optimizations are
1173 performed for various optimization levels. This macro, if
1174 defined, is executed once just after the optimization level is
1175 determined and before the remainder of the command options have
1176 been parsed. Values set in this macro are used as the default
1177 values for the other command line options.
1178
1179 LEVEL is the optimization level specified; 2 if -O2 is
1180 specified, 1 if -O is specified, and 0 if neither is specified. */
1181
1182 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
1183 { \
1184 if (LEVEL >= 3) \
1185 { \
1186 if (! SIZE) \
1187 flag_inline_functions = 1; \
1188 flag_omit_frame_pointer = 1; \
1189 /* flag_unroll_loops = 1; */ \
1190 } \
1191 }
1192
1193 /* there is no point in avoiding branches on a pdp,
1194 since branches are really cheap - I just want to find out
1195 how much difference the BRANCH_COST macro makes in code */
1196 #define BRANCH_COST (TARGET_BRANCH_CHEAP ? 0 : 1)
1197
1198
1199 #define COMPARE_FLAG_MODE HImode