]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/pdp11/pdp11.h
pdp11.c (register_move_cost): Rename to pdp11_register_move_cost.
[thirdparty/gcc.git] / gcc / config / pdp11 / pdp11.h
1 /* Definitions of target machine for GNU compiler, for the pdp-11
2 Copyright (C) 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004, 2005,
3 2006, 2007, 2008, 2010 Free Software Foundation, Inc.
4 Contributed by Michael K. Gschwind (mike@vlsivie.tuwien.ac.at).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #define CONSTANT_POOL_BEFORE_FUNCTION 0
23
24 /* check whether load_fpu_reg or not */
25 #define LOAD_FPU_REG_P(x) ((x)>=8 && (x)<=11)
26 #define NO_LOAD_FPU_REG_P(x) ((x)==12 || (x)==13)
27 #define FPU_REG_P(x) (LOAD_FPU_REG_P(x) || NO_LOAD_FPU_REG_P(x))
28 #define CPU_REG_P(x) ((x)<8)
29
30 /* Names to predefine in the preprocessor for this target machine. */
31
32 #define TARGET_CPU_CPP_BUILTINS() \
33 do \
34 { \
35 builtin_define_std ("pdp11"); \
36 } \
37 while (0)
38
39 /* Print subsidiary information on the compiler version in use. */
40 #define TARGET_VERSION fprintf (stderr, " (pdp11)");
41
42
43 /* Generate DBX debugging information. */
44
45 /* #define DBX_DEBUGGING_INFO */
46
47 #define TARGET_40_PLUS (TARGET_40 || TARGET_45)
48 #define TARGET_10 (! TARGET_40_PLUS)
49
50 #define TARGET_UNIX_ASM_DEFAULT 0
51
52 #define ASSEMBLER_DIALECT (TARGET_UNIX_ASM ? 1 : 0)
53
54 \f
55
56 /* TYPE SIZES */
57 #define SHORT_TYPE_SIZE 16
58 #define INT_TYPE_SIZE (TARGET_INT16 ? 16 : 32)
59 #define LONG_TYPE_SIZE 32
60 #define LONG_LONG_TYPE_SIZE 64
61
62 /* if we set FLOAT_TYPE_SIZE to 32, we could have the benefit
63 of saving core for huge arrays - the definitions are
64 already in md - but floats can never reside in
65 an FPU register - we keep the FPU in double float mode
66 all the time !! */
67 #define FLOAT_TYPE_SIZE (TARGET_FLOAT32 ? 32 : 64)
68 #define DOUBLE_TYPE_SIZE 64
69 #define LONG_DOUBLE_TYPE_SIZE 64
70
71 /* machine types from ansi */
72 #define SIZE_TYPE "unsigned int" /* definition of size_t */
73 #define WCHAR_TYPE "int" /* or long int???? */
74 #define WCHAR_TYPE_SIZE 16
75
76 #define PTRDIFF_TYPE "int"
77
78 /* target machine storage layout */
79
80 /* Define this if most significant bit is lowest numbered
81 in instructions that operate on numbered bit-fields. */
82 #define BITS_BIG_ENDIAN 0
83
84 /* Define this if most significant byte of a word is the lowest numbered. */
85 #define BYTES_BIG_ENDIAN 0
86
87 /* Define this if most significant word of a multiword number is first. */
88 #define WORDS_BIG_ENDIAN 1
89
90 /* Define that floats are in VAX order, not high word first as for ints. */
91 #define FLOAT_WORDS_BIG_ENDIAN 0
92
93 /* Width of a word, in units (bytes).
94
95 UNITS OR BYTES - seems like units */
96 #define UNITS_PER_WORD 2
97
98 /* This machine doesn't use IEEE floats. */
99 /* Because the pdp11 (at least Unix) convention for 32-bit ints is
100 big endian, opposite for what you need for float, the vax float
101 conversion routines aren't actually used directly. But the underlying
102 format is indeed the vax/pdp11 float format. */
103 extern const struct real_format pdp11_f_format;
104 extern const struct real_format pdp11_d_format;
105
106 /* Maximum sized of reasonable data type
107 DImode or Dfmode ...*/
108 #define MAX_FIXED_MODE_SIZE 64
109
110 /* Allocation boundary (in *bits*) for storing pointers in memory. */
111 #define POINTER_BOUNDARY 16
112
113 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
114 #define PARM_BOUNDARY 16
115
116 /* Boundary (in *bits*) on which stack pointer should be aligned. */
117 #define STACK_BOUNDARY 16
118
119 /* Allocation boundary (in *bits*) for the code of a function. */
120 #define FUNCTION_BOUNDARY 16
121
122 /* Alignment of field after `int : 0' in a structure. */
123 #define EMPTY_FIELD_BOUNDARY 16
124
125 /* No data type wants to be aligned rounder than this. */
126 #define BIGGEST_ALIGNMENT 16
127
128 /* Define this if move instructions will actually fail to work
129 when given unaligned data. */
130 #define STRICT_ALIGNMENT 1
131 \f
132 /* Standard register usage. */
133
134 /* Number of actual hardware registers.
135 The hardware registers are assigned numbers for the compiler
136 from 0 to just below FIRST_PSEUDO_REGISTER.
137 All registers that the compiler knows about must be given numbers,
138 even those that are not normally considered general registers.
139
140 we have 8 integer registers, plus 6 float
141 (don't use scratch float !) */
142
143 #define FIRST_PSEUDO_REGISTER 14
144
145 /* 1 for registers that have pervasive standard uses
146 and are not available for the register allocator.
147
148 On the pdp, these are:
149 Reg 7 = pc;
150 reg 6 = sp;
151 reg 5 = fp; not necessarily!
152 */
153
154 /* don't let them touch fp regs for the time being !*/
155
156 #define FIXED_REGISTERS \
157 {0, 0, 0, 0, 0, 0, 1, 1, \
158 0, 0, 0, 0, 0, 0 }
159
160
161
162 /* 1 for registers not available across function calls.
163 These must include the FIXED_REGISTERS and also any
164 registers that can be used without being saved.
165 The latter must include the registers where values are returned
166 and the register where structure-value addresses are passed.
167 Aside from that, you can include as many other registers as you like. */
168
169 /* don't know about fp */
170 #define CALL_USED_REGISTERS \
171 {1, 1, 0, 0, 0, 0, 1, 1, \
172 0, 0, 0, 0, 0, 0 }
173
174
175 /* Make sure everything's fine if we *don't* have an FPU.
176 This assumes that putting a register in fixed_regs will keep the
177 compiler's mitts completely off it. We don't bother to zero it out
178 of register classes. Also fix incompatible register naming with
179 the UNIX assembler.
180 */
181 #define CONDITIONAL_REGISTER_USAGE \
182 { \
183 int i; \
184 HARD_REG_SET x; \
185 if (!TARGET_FPU) \
186 { \
187 COPY_HARD_REG_SET (x, reg_class_contents[(int)FPU_REGS]); \
188 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
189 if (TEST_HARD_REG_BIT (x, i)) \
190 fixed_regs[i] = call_used_regs[i] = 1; \
191 } \
192 \
193 if (TARGET_AC0) \
194 call_used_regs[8] = 1; \
195 if (TARGET_UNIX_ASM) \
196 { \
197 /* Change names of FPU registers for the UNIX assembler. */ \
198 reg_names[8] = "fr0"; \
199 reg_names[9] = "fr1"; \
200 reg_names[10] = "fr2"; \
201 reg_names[11] = "fr3"; \
202 reg_names[12] = "fr4"; \
203 reg_names[13] = "fr5"; \
204 } \
205 }
206
207 /* Return number of consecutive hard regs needed starting at reg REGNO
208 to hold something of mode MODE.
209 This is ordinarily the length in words of a value of mode MODE
210 but can be less for certain modes in special long registers.
211 */
212
213 #define HARD_REGNO_NREGS(REGNO, MODE) \
214 ((REGNO < 8)? \
215 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
216 :1)
217
218
219 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
220 On the pdp, the cpu registers can hold any mode - check alignment
221
222 FPU can only hold DF - simplifies life!
223 */
224 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
225 (((REGNO) < 8)? \
226 ((GET_MODE_BITSIZE(MODE) <= 16) \
227 || (GET_MODE_BITSIZE(MODE) == 32 && !((REGNO) & 1))) \
228 :(MODE) == DFmode)
229
230
231 /* Value is 1 if it is a good idea to tie two pseudo registers
232 when one has mode MODE1 and one has mode MODE2.
233 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
234 for any hard reg, then this must be 0 for correct output. */
235 #define MODES_TIEABLE_P(MODE1, MODE2) 0
236
237 /* Specify the registers used for certain standard purposes.
238 The values of these macros are register numbers. */
239
240 /* the pdp11 pc overloaded on a register that the compiler knows about. */
241 #define PC_REGNUM 7
242
243 /* Register to use for pushing function arguments. */
244 #define STACK_POINTER_REGNUM 6
245
246 /* Base register for access to local variables of the function. */
247 #define FRAME_POINTER_REGNUM 5
248
249 /* Base register for access to arguments of the function. */
250 #define ARG_POINTER_REGNUM 5
251
252 /* Register in which static-chain is passed to a function. */
253 /* ??? - i don't want to give up a reg for this! */
254 #define STATIC_CHAIN_REGNUM 4
255 \f
256 /* Define the classes of registers for register constraints in the
257 machine description. Also define ranges of constants.
258
259 One of the classes must always be named ALL_REGS and include all hard regs.
260 If there is more than one class, another class must be named NO_REGS
261 and contain no registers.
262
263 The name GENERAL_REGS must be the name of a class (or an alias for
264 another name such as ALL_REGS). This is the class of registers
265 that is allowed by "g" or "r" in a register constraint.
266 Also, registers outside this class are allocated only when
267 instructions express preferences for them.
268
269 The classes must be numbered in nondecreasing order; that is,
270 a larger-numbered class must never be contained completely
271 in a smaller-numbered class.
272
273 For any two classes, it is very desirable that there be another
274 class that represents their union. */
275
276 /* The pdp has a couple of classes:
277
278 MUL_REGS are used for odd numbered regs, to use in 16-bit multiplication
279 (even numbered do 32-bit multiply)
280 LMUL_REGS long multiply registers (even numbered regs )
281 (don't need them, all 32-bit regs are even numbered!)
282 GENERAL_REGS is all cpu
283 LOAD_FPU_REGS is the first four cpu regs, they are easier to load
284 NO_LOAD_FPU_REGS is ac4 and ac5, currently - difficult to load them
285 FPU_REGS is all fpu regs
286 */
287
288 enum reg_class { NO_REGS, MUL_REGS, GENERAL_REGS, LOAD_FPU_REGS, NO_LOAD_FPU_REGS, FPU_REGS, ALL_REGS, LIM_REG_CLASSES };
289
290 #define N_REG_CLASSES (int) LIM_REG_CLASSES
291
292 /* have to allow this till cmpsi/tstsi are fixed in a better way !! */
293 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
294
295 /* Since GENERAL_REGS is the same class as ALL_REGS,
296 don't give it a different class number; just make it an alias. */
297
298 /* #define GENERAL_REGS ALL_REGS */
299
300 /* Give names of register classes as strings for dump file. */
301
302 #define REG_CLASS_NAMES {"NO_REGS", "MUL_REGS", "GENERAL_REGS", "LOAD_FPU_REGS", "NO_LOAD_FPU_REGS", "FPU_REGS", "ALL_REGS" }
303
304 /* Define which registers fit in which classes.
305 This is an initializer for a vector of HARD_REG_SET
306 of length N_REG_CLASSES. */
307
308 #define REG_CLASS_CONTENTS {{0}, {0x00aa}, {0x00ff}, {0x0f00}, {0x3000}, {0x3f00}, {0x3fff}}
309
310 /* The same information, inverted:
311 Return the class number of the smallest class containing
312 reg number REGNO. This could be a conditional expression
313 or could index an array. */
314
315 #define REGNO_REG_CLASS(REGNO) \
316 ((REGNO)>=8?((REGNO)<=11?LOAD_FPU_REGS:NO_LOAD_FPU_REGS):(((REGNO)&1)?MUL_REGS:GENERAL_REGS))
317
318
319 /* The class value for index registers, and the one for base regs. */
320 #define INDEX_REG_CLASS GENERAL_REGS
321 #define BASE_REG_CLASS GENERAL_REGS
322
323 /* Get reg_class from a letter such as appears in the machine description. */
324
325 #define REG_CLASS_FROM_LETTER(C) \
326 ((C) == 'f' ? FPU_REGS : \
327 ((C) == 'd' ? MUL_REGS : \
328 ((C) == 'a' ? LOAD_FPU_REGS : NO_REGS)))
329
330
331 /* The letters I, J, K, L and M in a register constraint string
332 can be used to stand for particular ranges of immediate operands.
333 This macro defines what the ranges are.
334 C is the letter, and VALUE is a constant value.
335 Return 1 if VALUE is in the range specified by C.
336
337 I bits 31-16 0000
338 J bits 15-00 0000
339 K completely random 32 bit
340 L,M,N -1,1,0 respectively
341 O where doing shifts in sequence is faster than
342 one big shift
343 */
344
345 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
346 ((C) == 'I' ? ((VALUE) & 0xffff0000) == 0 \
347 : (C) == 'J' ? ((VALUE) & 0x0000ffff) == 0 \
348 : (C) == 'K' ? (((VALUE) & 0xffff0000) != 0 \
349 && ((VALUE) & 0x0000ffff) != 0) \
350 : (C) == 'L' ? ((VALUE) == 1) \
351 : (C) == 'M' ? ((VALUE) == -1) \
352 : (C) == 'N' ? ((VALUE) == 0) \
353 : (C) == 'O' ? (abs(VALUE) >1 && abs(VALUE) <= 4) \
354 : 0)
355
356 /* Similar, but for floating constants, and defining letters G and H.
357 Here VALUE is the CONST_DOUBLE rtx itself. */
358
359 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
360 ((C) == 'G' && XINT (VALUE, 0) == 0 && XINT (VALUE, 1) == 0)
361
362
363 /* Letters in the range `Q' through `U' may be defined in a
364 machine-dependent fashion to stand for arbitrary operand types.
365 The machine description macro `EXTRA_CONSTRAINT' is passed the
366 operand as its first argument and the constraint letter as its
367 second operand.
368
369 `Q' is for memory references that require an extra word after the opcode.
370 `R' is for memory references which are encoded within the opcode. */
371
372 #define EXTRA_CONSTRAINT(OP,CODE) \
373 ((GET_CODE (OP) != MEM) ? 0 \
374 : !memory_address_p (GET_MODE (OP), XEXP (OP, 0)) ? 0 \
375 : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
376 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
377 : 0)
378
379 /* Given an rtx X being reloaded into a reg required to be
380 in class CLASS, return the class of reg to actually use.
381 In general this is just CLASS; but on some machines
382 in some cases it is preferable to use a more restrictive class.
383
384 loading is easier into LOAD_FPU_REGS than FPU_REGS! */
385
386 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
387 (((CLASS) != FPU_REGS)?(CLASS):LOAD_FPU_REGS)
388
389 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,x) \
390 (((CLASS) == NO_LOAD_FPU_REGS && !(REG_P(x) && LOAD_FPU_REG_P(REGNO(x))))?LOAD_FPU_REGS:NO_REGS)
391
392 /* Return the maximum number of consecutive registers
393 needed to represent mode MODE in a register of class CLASS. */
394 #define CLASS_MAX_NREGS(CLASS, MODE) \
395 ((CLASS == GENERAL_REGS || CLASS == MUL_REGS)? \
396 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD): \
397 1 \
398 )
399
400 \f
401 /* Stack layout; function entry, exit and calling. */
402
403 /* Define this if pushing a word on the stack
404 makes the stack pointer a smaller address. */
405 #define STACK_GROWS_DOWNWARD
406
407 /* Define this to nonzero if the nominal address of the stack frame
408 is at the high-address end of the local variables;
409 that is, each additional local variable allocated
410 goes at a more negative offset in the frame.
411 */
412 #define FRAME_GROWS_DOWNWARD 1
413
414 /* Offset within stack frame to start allocating local variables at.
415 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
416 first local allocated. Otherwise, it is the offset to the BEGINNING
417 of the first local allocated. */
418 #define STARTING_FRAME_OFFSET 0
419
420 /* If we generate an insn to push BYTES bytes,
421 this says how many the stack pointer really advances by.
422 On the pdp11, the stack is on an even boundary */
423 #define PUSH_ROUNDING(BYTES) ((BYTES + 1) & ~1)
424
425 /* current_first_parm_offset stores the # of registers pushed on the
426 stack */
427 extern int current_first_parm_offset;
428
429 /* Offset of first parameter from the argument pointer register value.
430 For the pdp11, this is nonzero to account for the return address.
431 1 - return address
432 2 - frame pointer (always saved, even when not used!!!!)
433 -- change some day !!!:q!
434
435 */
436 #define FIRST_PARM_OFFSET(FNDECL) 4
437
438 /* Define how to find the value returned by a function.
439 VALTYPE is the data type of the value (as a tree).
440 If the precise function being called is known, FUNC is its FUNCTION_DECL;
441 otherwise, FUNC is 0. */
442 #define BASE_RETURN_VALUE_REG(MODE) \
443 ((MODE) == DFmode ? 8 : 0)
444
445 /* 1 if N is a possible register number for function argument passing.
446 - not used on pdp */
447
448 #define FUNCTION_ARG_REGNO_P(N) 0
449 \f
450 /* Define a data type for recording info about an argument list
451 during the scan of that argument list. This data type should
452 hold all necessary information about the function itself
453 and about the args processed so far, enough to enable macros
454 such as FUNCTION_ARG to determine where the next arg should go.
455
456 */
457
458 #define CUMULATIVE_ARGS int
459
460 /* Initialize a variable CUM of type CUMULATIVE_ARGS
461 for a call to a function whose data type is FNTYPE.
462 For a library call, FNTYPE is 0.
463
464 ...., the offset normally starts at 0, but starts at 1 word
465 when the function gets a structure-value-address as an
466 invisible first argument. */
467
468 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
469 ((CUM) = 0)
470
471 /* Update the data in CUM to advance over an argument
472 of mode MODE and data type TYPE.
473 (TYPE is null for libcalls where that information may not be available.)
474
475 */
476
477
478 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
479 ((CUM) += ((MODE) != BLKmode \
480 ? (GET_MODE_SIZE (MODE)) \
481 : (int_size_in_bytes (TYPE))))
482
483 /* Determine where to put an argument to a function.
484 Value is zero to push the argument on the stack,
485 or a hard register in which to store the argument.
486
487 MODE is the argument's machine mode.
488 TYPE is the data type of the argument (as a tree).
489 This is null for libcalls where that information may
490 not be available.
491 CUM is a variable of type CUMULATIVE_ARGS which gives info about
492 the preceding args and about the function being called.
493 NAMED is nonzero if this argument is a named parameter
494 (otherwise it is an extra parameter matching an ellipsis). */
495
496 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
497
498 /* Define where a function finds its arguments.
499 This would be different from FUNCTION_ARG if we had register windows. */
500 /*
501 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
502 FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
503 */
504
505 /* Output assembler code to FILE to increment profiler label # LABELNO
506 for profiling a function entry. */
507
508 #define FUNCTION_PROFILER(FILE, LABELNO) \
509 gcc_unreachable ();
510
511 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
512 the stack pointer does not matter. The value is tested only in
513 functions that have frame pointers.
514 No definition is equivalent to always zero. */
515
516 extern int may_call_alloca;
517
518 #define EXIT_IGNORE_STACK 1
519
520 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) \
521 { \
522 int offset, regno; \
523 offset = get_frame_size(); \
524 for (regno = 0; regno < 8; regno++) \
525 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno]) \
526 offset += 2; \
527 for (regno = 8; regno < 14; regno++) \
528 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno]) \
529 offset += 8; \
530 /* offset -= 2; no fp on stack frame */ \
531 (DEPTH_VAR) = offset; \
532 }
533
534 \f
535 /* Addressing modes, and classification of registers for them. */
536
537 #define HAVE_POST_INCREMENT 1
538
539 #define HAVE_PRE_DECREMENT 1
540
541 /* Macros to check register numbers against specific register classes. */
542
543 /* These assume that REGNO is a hard or pseudo reg number.
544 They give nonzero only if REGNO is a hard reg of the suitable class
545 or a pseudo reg currently allocated to a suitable hard reg.
546 Since they use reg_renumber, they are safe only once reg_renumber
547 has been allocated, which happens in local-alloc.c. */
548
549 #define REGNO_OK_FOR_INDEX_P(REGNO) \
550 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
551 #define REGNO_OK_FOR_BASE_P(REGNO) \
552 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
553
554 /* Now macros that check whether X is a register and also,
555 strictly, whether it is in a specified class.
556 */
557
558
559 \f
560 /* Maximum number of registers that can appear in a valid memory address. */
561
562 #define MAX_REGS_PER_ADDRESS 1
563
564 /* Nonzero if the constant value X is a legitimate general operand.
565 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
566
567 #define LEGITIMATE_CONSTANT_P(X) \
568 (GET_CODE (X) != CONST_DOUBLE || legitimate_const_double_p (X))
569
570 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
571 and check its validity for a certain class.
572 We have two alternate definitions for each of them.
573 The usual definition accepts all pseudo regs; the other rejects
574 them unless they have been allocated suitable hard regs.
575 The symbol REG_OK_STRICT causes the latter definition to be used.
576
577 Most source files want to accept pseudo regs in the hope that
578 they will get allocated to the class that the insn wants them to be in.
579 Source files for reload pass need to be strict.
580 After reload, it makes no difference, since pseudo regs have
581 been eliminated by then. */
582
583 #ifndef REG_OK_STRICT
584
585 /* Nonzero if X is a hard reg that can be used as an index
586 or if it is a pseudo reg. */
587 #define REG_OK_FOR_INDEX_P(X) (1)
588 /* Nonzero if X is a hard reg that can be used as a base reg
589 or if it is a pseudo reg. */
590 #define REG_OK_FOR_BASE_P(X) (1)
591
592 #else
593
594 /* Nonzero if X is a hard reg that can be used as an index. */
595 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
596 /* Nonzero if X is a hard reg that can be used as a base reg. */
597 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
598
599 #endif
600 \f
601 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
602 that is a valid memory address for an instruction.
603 The MODE argument is the machine mode for the MEM expression
604 that wants to use this address.
605
606 */
607
608 #define GO_IF_LEGITIMATE_ADDRESS(mode, operand, ADDR) \
609 { \
610 rtx xfoob; \
611 \
612 /* accept (R0) */ \
613 if (GET_CODE (operand) == REG \
614 && REG_OK_FOR_BASE_P(operand)) \
615 goto ADDR; \
616 \
617 /* accept @#address */ \
618 if (CONSTANT_ADDRESS_P (operand)) \
619 goto ADDR; \
620 \
621 /* accept X(R0) */ \
622 if (GET_CODE (operand) == PLUS \
623 && GET_CODE (XEXP (operand, 0)) == REG \
624 && REG_OK_FOR_BASE_P (XEXP (operand, 0)) \
625 && CONSTANT_ADDRESS_P (XEXP (operand, 1))) \
626 goto ADDR; \
627 \
628 /* accept -(R0) */ \
629 if (GET_CODE (operand) == PRE_DEC \
630 && GET_CODE (XEXP (operand, 0)) == REG \
631 && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
632 goto ADDR; \
633 \
634 /* accept (R0)+ */ \
635 if (GET_CODE (operand) == POST_INC \
636 && GET_CODE (XEXP (operand, 0)) == REG \
637 && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
638 goto ADDR; \
639 \
640 /* accept -(SP) -- which uses PRE_MODIFY for byte mode */ \
641 if (GET_CODE (operand) == PRE_MODIFY \
642 && GET_CODE (XEXP (operand, 0)) == REG \
643 && REGNO (XEXP (operand, 0)) == 6 \
644 && GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS \
645 && GET_CODE (XEXP (xfoob, 0)) == REG \
646 && REGNO (XEXP (xfoob, 0)) == 6 \
647 && CONSTANT_P (XEXP (xfoob, 1)) \
648 && INTVAL (XEXP (xfoob,1)) == -2) \
649 goto ADDR; \
650 \
651 /* accept (SP)+ -- which uses POST_MODIFY for byte mode */ \
652 if (GET_CODE (operand) == POST_MODIFY \
653 && GET_CODE (XEXP (operand, 0)) == REG \
654 && REGNO (XEXP (operand, 0)) == 6 \
655 && GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS \
656 && GET_CODE (XEXP (xfoob, 0)) == REG \
657 && REGNO (XEXP (xfoob, 0)) == 6 \
658 && CONSTANT_P (XEXP (xfoob, 1)) \
659 && INTVAL (XEXP (xfoob,1)) == 2) \
660 goto ADDR; \
661 \
662 \
663 /* handle another level of indirection ! */ \
664 if (GET_CODE(operand) != MEM) \
665 goto fail; \
666 \
667 xfoob = XEXP (operand, 0); \
668 \
669 /* (MEM:xx (MEM:xx ())) is not valid for SI, DI and currently */ \
670 /* also forbidden for float, because we have to handle this */ \
671 /* in output_move_double and/or output_move_quad() - we could */ \
672 /* do it, but currently it's not worth it!!! */ \
673 /* now that DFmode cannot go into CPU register file, */ \
674 /* maybe I should allow float ... */ \
675 /* but then I have to handle memory-to-memory moves in movdf ?? */ \
676 \
677 if (GET_MODE_BITSIZE(mode) > 16) \
678 goto fail; \
679 \
680 /* accept @(R0) - which is @0(R0) */ \
681 if (GET_CODE (xfoob) == REG \
682 && REG_OK_FOR_BASE_P(xfoob)) \
683 goto ADDR; \
684 \
685 /* accept @address */ \
686 if (CONSTANT_ADDRESS_P (xfoob)) \
687 goto ADDR; \
688 \
689 /* accept @X(R0) */ \
690 if (GET_CODE (xfoob) == PLUS \
691 && GET_CODE (XEXP (xfoob, 0)) == REG \
692 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0)) \
693 && CONSTANT_ADDRESS_P (XEXP (xfoob, 1))) \
694 goto ADDR; \
695 \
696 /* accept @-(R0) */ \
697 if (GET_CODE (xfoob) == PRE_DEC \
698 && GET_CODE (XEXP (xfoob, 0)) == REG \
699 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
700 goto ADDR; \
701 \
702 /* accept @(R0)+ */ \
703 if (GET_CODE (xfoob) == POST_INC \
704 && GET_CODE (XEXP (xfoob, 0)) == REG \
705 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
706 goto ADDR; \
707 \
708 /* anything else is invalid */ \
709 fail: ; \
710 }
711
712 \f
713 /* Specify the machine mode that this machine uses
714 for the index in the tablejump instruction. */
715 #define CASE_VECTOR_MODE HImode
716
717 /* Define this if a raw index is all that is needed for a
718 `tablejump' insn. */
719 #define CASE_TAKES_INDEX_RAW
720
721 /* Define this as 1 if `char' should by default be signed; else as 0. */
722 #define DEFAULT_SIGNED_CHAR 1
723
724 /* Max number of bytes we can move from memory to memory
725 in one reasonably fast instruction.
726 */
727
728 #define MOVE_MAX 2
729
730 /* Nonzero if access to memory by byte is slow and undesirable. -
731 */
732 #define SLOW_BYTE_ACCESS 0
733
734 /* Do not break .stabs pseudos into continuations. */
735 #define DBX_CONTIN_LENGTH 0
736
737 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
738 is done just by pretending it is already truncated. */
739 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
740
741 /* Give a comparison code (EQ, NE etc) and the first operand of a COMPARE,
742 return the mode to be used for the comparison. For floating-point, CCFPmode
743 should be used. */
744
745 #define SELECT_CC_MODE(OP,X,Y) \
746 (GET_MODE_CLASS(GET_MODE(X)) == MODE_FLOAT? CCFPmode : CCmode)
747
748 /* Specify the machine mode that pointers have.
749 After generation of rtl, the compiler makes no further distinction
750 between pointers and any other objects of this machine mode. */
751 #define Pmode HImode
752
753 /* A function address in a call instruction
754 is a word address (for indexing purposes)
755 so give the MEM rtx a word's mode. */
756 #define FUNCTION_MODE HImode
757
758 /* Define this if addresses of constant functions
759 shouldn't be put through pseudo regs where they can be cse'd.
760 Desirable on machines where ordinary constants are expensive
761 but a CALL with constant address is cheap. */
762 /* #define NO_FUNCTION_CSE */
763
764 \f
765 /* cost of moving one register class to another */
766 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
767 pdp11_register_move_cost (CLASS1, CLASS2)
768
769 /* Tell emit-rtl.c how to initialize special values on a per-function base. */
770 extern int optimize;
771 extern struct rtx_def *cc0_reg_rtx;
772
773 #define CC_STATUS_MDEP rtx
774
775 #define CC_STATUS_MDEP_INIT (cc_status.mdep = 0)
776 \f
777 /* Tell final.c how to eliminate redundant test instructions. */
778
779 /* Here we define machine-dependent flags and fields in cc_status
780 (see `conditions.h'). */
781
782 #define CC_IN_FPU 04000
783
784 /* Do UPDATE_CC if EXP is a set, used in
785 NOTICE_UPDATE_CC
786
787 floats only do compare correctly, else nullify ...
788
789 get cc0 out soon ...
790 */
791
792 /* Store in cc_status the expressions
793 that the condition codes will describe
794 after execution of an instruction whose pattern is EXP.
795 Do not alter them if the instruction would not alter the cc's. */
796
797 #define NOTICE_UPDATE_CC(EXP, INSN) \
798 { if (GET_CODE (EXP) == SET) \
799 { \
800 notice_update_cc_on_set(EXP, INSN); \
801 } \
802 else if (GET_CODE (EXP) == PARALLEL \
803 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
804 { \
805 notice_update_cc_on_set(XVECEXP (EXP, 0, 0), INSN); \
806 } \
807 else if (GET_CODE (EXP) == CALL) \
808 { /* all bets are off */ CC_STATUS_INIT; } \
809 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
810 && cc_status.value2 \
811 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
812 { \
813 printf ("here!\n"); \
814 cc_status.value2 = 0; \
815 } \
816 }
817 \f
818 /* Control the assembler format that we output. */
819
820 /* Output to assembler file text saying following lines
821 may contain character constants, extra white space, comments, etc. */
822
823 #define ASM_APP_ON ""
824
825 /* Output to assembler file text saying following lines
826 no longer contain unusual constructs. */
827
828 #define ASM_APP_OFF ""
829
830 /* Output before read-only data. */
831
832 #define TEXT_SECTION_ASM_OP "\t.text\n"
833
834 /* Output before writable data. */
835
836 #define DATA_SECTION_ASM_OP "\t.data\n"
837
838 /* How to refer to registers in assembler output.
839 This sequence is indexed by compiler's hard-register-number (see above). */
840
841 #define REGISTER_NAMES \
842 {"r0", "r1", "r2", "r3", "r4", "r5", "sp", "pc", \
843 "ac0", "ac1", "ac2", "ac3", "ac4", "ac5" }
844
845 /* Globalizing directive for a label. */
846 #define GLOBAL_ASM_OP "\t.globl "
847
848 /* The prefix to add to user-visible assembler symbols. */
849
850 #define USER_LABEL_PREFIX "_"
851
852 /* This is how to store into the string LABEL
853 the symbol_ref name of an internal numbered label where
854 PREFIX is the class of label and NUM is the number within the class.
855 This is suitable for output with `assemble_name'. */
856
857 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
858 sprintf (LABEL, "*%s_%lu", PREFIX, (unsigned long)(NUM))
859
860 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
861 output_ascii (FILE, P, SIZE)
862
863 /* This is how to output an element of a case-vector that is absolute. */
864
865 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
866 fprintf (FILE, "\t%sL_%d\n", TARGET_UNIX_ASM ? "" : ".word ", VALUE)
867
868 /* This is how to output an element of a case-vector that is relative.
869 Don't define this if it is not supported. */
870
871 /* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */
872
873 /* This is how to output an assembler line
874 that says to advance the location counter
875 to a multiple of 2**LOG bytes.
876
877 who needs this????
878 */
879
880 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
881 switch (LOG) \
882 { \
883 case 0: \
884 break; \
885 case 1: \
886 fprintf (FILE, "\t.even\n"); \
887 break; \
888 default: \
889 gcc_unreachable (); \
890 }
891
892 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
893 fprintf (FILE, "\t.=.+ %#ho\n", (unsigned short)(SIZE))
894
895 /* This says how to output an assembler line
896 to define a global common symbol. */
897
898 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
899 ( fprintf ((FILE), ".globl "), \
900 assemble_name ((FILE), (NAME)), \
901 fprintf ((FILE), "\n"), \
902 assemble_name ((FILE), (NAME)), \
903 fprintf ((FILE), ": .=.+ %#ho\n", (unsigned short)(ROUNDED)) \
904 )
905
906 /* This says how to output an assembler line
907 to define a local common symbol. */
908
909 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
910 ( assemble_name ((FILE), (NAME)), \
911 fprintf ((FILE), ":\t.=.+ %#ho\n", (unsigned short)(ROUNDED)))
912
913 /* Print operand X (an rtx) in assembler syntax to file FILE.
914 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
915 For `%' followed by punctuation, CODE is the punctuation and X is null.
916
917 */
918
919
920 #define PRINT_OPERAND(FILE, X, CODE) \
921 { if (CODE == '#') fprintf (FILE, "#"); \
922 else if (GET_CODE (X) == REG) \
923 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
924 else if (GET_CODE (X) == MEM) \
925 output_address (XEXP (X, 0)); \
926 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != SImode) \
927 { REAL_VALUE_TYPE r; \
928 long sval[2]; \
929 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
930 REAL_VALUE_TO_TARGET_DOUBLE (r, sval); \
931 fprintf (FILE, "$%#lo", sval[0] >> 16); } \
932 else { putc ('$', FILE); output_addr_const_pdp11 (FILE, X); }}
933 \f
934 /* Print a memory address as an operand to reference that memory location. */
935
936 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
937 print_operand_address (FILE, ADDR)
938
939 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
940 ( \
941 fprintf (FILE, "\tmov %s, -(sp)\n", reg_names[REGNO]) \
942 )
943
944 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
945 ( \
946 fprintf (FILE, "\tmov (sp)+, %s\n", reg_names[REGNO]) \
947 )
948
949 #define TRAMPOLINE_SIZE 8
950 #define TRAMPOLINE_ALIGNMENT 16
951
952 /* Some machines may desire to change what optimizations are
953 performed for various optimization levels. This macro, if
954 defined, is executed once just after the optimization level is
955 determined and before the remainder of the command options have
956 been parsed. Values set in this macro are used as the default
957 values for the other command line options.
958
959 LEVEL is the optimization level specified; 2 if -O2 is
960 specified, 1 if -O is specified, and 0 if neither is specified. */
961
962 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
963 { \
964 flag_finite_math_only = 0; \
965 flag_trapping_math = 0; \
966 flag_signaling_nans = 0; \
967 if (LEVEL >= 3) \
968 { \
969 flag_omit_frame_pointer = 1; \
970 /* flag_unroll_loops = 1; */ \
971 } \
972 }
973
974 /* there is no point in avoiding branches on a pdp,
975 since branches are really cheap - I just want to find out
976 how much difference the BRANCH_COST macro makes in code */
977 #define BRANCH_COST(speed_p, predictable_p) (TARGET_BRANCH_CHEAP ? 0 : 1)
978
979
980 #define COMPARE_FLAG_MODE HImode