]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/powerpcspe/powerpcspe.h
Turn HARD_REGNO_MODE_OK into a target hook
[thirdparty/gcc.git] / gcc / config / powerpcspe / powerpcspe.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
28
29 #ifndef RS6000_OPTS_H
30 #include "config/powerpcspe/powerpcspe-opts.h"
31 #endif
32
33 /* Definitions for the object file format. These are set at
34 compile-time. */
35
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_PEF 3
39 #define OBJECT_MACHO 4
40
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
45
46 #ifndef TARGET_AIX
47 #define TARGET_AIX 0
48 #endif
49
50 #ifndef TARGET_AIX_OS
51 #define TARGET_AIX_OS 0
52 #endif
53
54 /* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56 #define DOT_SYMBOLS 1
57
58 /* Default string to use for cpu if not specified. */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
61 #endif
62
63 /* If configured for PPC405, support PPC405CR Erratum77. */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66 #else
67 #define PPC405_ERRATUM77 0
68 #endif
69
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
72 #endif
73
74 #ifdef HAVE_AS_POPCNTB
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
76 #else
77 #define ASM_CPU_POWER5_SPEC "-mpower4"
78 #endif
79
80 #ifdef HAVE_AS_DFP
81 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82 #else
83 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84 #endif
85
86 #ifdef HAVE_AS_POPCNTD
87 #define ASM_CPU_POWER7_SPEC "-mpower7"
88 #else
89 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90 #endif
91
92 #ifdef HAVE_AS_POWER8
93 #define ASM_CPU_POWER8_SPEC "-mpower8"
94 #else
95 #define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
96 #endif
97
98 #ifdef HAVE_AS_POWER9
99 #define ASM_CPU_POWER9_SPEC "-mpower9"
100 #else
101 #define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
102 #endif
103
104 #ifdef HAVE_AS_DCI
105 #define ASM_CPU_476_SPEC "-m476"
106 #else
107 #define ASM_CPU_476_SPEC "-mpower4"
108 #endif
109
110 /* Common ASM definitions used by ASM_SPEC among the various targets for
111 handling -mcpu=xxx switches. There is a parallel list in driver-powerpcspe.c to
112 provide the default assembler options if the user uses -mcpu=native, so if
113 you make changes here, make them also there. */
114 #define ASM_CPU_SPEC \
115 "%{!mcpu*: \
116 %{mpowerpc64*: -mppc64} \
117 %{!mpowerpc64*: %(asm_default)}} \
118 %{mcpu=native: %(asm_cpu_native)} \
119 %{mcpu=cell: -mcell} \
120 %{mcpu=power3: -mppc64} \
121 %{mcpu=power4: -mpower4} \
122 %{mcpu=power5: %(asm_cpu_power5)} \
123 %{mcpu=power5+: %(asm_cpu_power5)} \
124 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
125 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
126 %{mcpu=power7: %(asm_cpu_power7)} \
127 %{mcpu=power8: %(asm_cpu_power8)} \
128 %{mcpu=power9: %(asm_cpu_power9)} \
129 %{mcpu=a2: -ma2} \
130 %{mcpu=powerpc: -mppc} \
131 %{mcpu=powerpc64le: %(asm_cpu_power8)} \
132 %{mcpu=rs64a: -mppc64} \
133 %{mcpu=401: -mppc} \
134 %{mcpu=403: -m403} \
135 %{mcpu=405: -m405} \
136 %{mcpu=405fp: -m405} \
137 %{mcpu=440: -m440} \
138 %{mcpu=440fp: -m440} \
139 %{mcpu=464: -m440} \
140 %{mcpu=464fp: -m440} \
141 %{mcpu=476: %(asm_cpu_476)} \
142 %{mcpu=476fp: %(asm_cpu_476)} \
143 %{mcpu=505: -mppc} \
144 %{mcpu=601: -m601} \
145 %{mcpu=602: -mppc} \
146 %{mcpu=603: -mppc} \
147 %{mcpu=603e: -mppc} \
148 %{mcpu=ec603e: -mppc} \
149 %{mcpu=604: -mppc} \
150 %{mcpu=604e: -mppc} \
151 %{mcpu=620: -mppc64} \
152 %{mcpu=630: -mppc64} \
153 %{mcpu=740: -mppc} \
154 %{mcpu=750: -mppc} \
155 %{mcpu=G3: -mppc} \
156 %{mcpu=7400: -mppc -maltivec} \
157 %{mcpu=7450: -mppc -maltivec} \
158 %{mcpu=G4: -mppc -maltivec} \
159 %{mcpu=801: -mppc} \
160 %{mcpu=821: -mppc} \
161 %{mcpu=823: -mppc} \
162 %{mcpu=860: -mppc} \
163 %{mcpu=970: -mpower4 -maltivec} \
164 %{mcpu=G5: -mpower4 -maltivec} \
165 %{mcpu=8540: -me500} \
166 %{mcpu=8548: -me500} \
167 %{mcpu=e300c2: -me300} \
168 %{mcpu=e300c3: -me300} \
169 %{mcpu=e500mc: -me500mc} \
170 %{mcpu=e500mc64: -me500mc64} \
171 %{mcpu=e5500: -me5500} \
172 %{mcpu=e6500: -me6500} \
173 %{maltivec: -maltivec} \
174 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
175 %{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
176 -many"
177
178 #define CPP_DEFAULT_SPEC ""
179
180 #define ASM_DEFAULT_SPEC ""
181
182 /* This macro defines names of additional specifications to put in the specs
183 that can be used in various specifications like CC1_SPEC. Its definition
184 is an initializer with a subgrouping for each command option.
185
186 Each subgrouping contains a string constant, that defines the
187 specification name, and a string constant that used by the GCC driver
188 program.
189
190 Do not define this macro if it does not need to do anything. */
191
192 #define SUBTARGET_EXTRA_SPECS
193
194 #define EXTRA_SPECS \
195 { "cpp_default", CPP_DEFAULT_SPEC }, \
196 { "asm_cpu", ASM_CPU_SPEC }, \
197 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
198 { "asm_default", ASM_DEFAULT_SPEC }, \
199 { "cc1_cpu", CC1_CPU_SPEC }, \
200 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
201 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
202 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
203 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
204 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
205 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
206 SUBTARGET_EXTRA_SPECS
207
208 /* -mcpu=native handling only makes sense with compiler running on
209 an PowerPC chip. If changing this condition, also change
210 the condition in driver-powerpcspe.c. */
211 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
212 /* In driver-powerpcspe.c. */
213 extern const char *host_detect_local_cpu (int argc, const char **argv);
214 #define EXTRA_SPEC_FUNCTIONS \
215 { "local_cpu_detect", host_detect_local_cpu },
216 #define HAVE_LOCAL_CPU_DETECT
217 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
218
219 #else
220 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
221 #endif
222
223 #ifndef CC1_CPU_SPEC
224 #ifdef HAVE_LOCAL_CPU_DETECT
225 #define CC1_CPU_SPEC \
226 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
227 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
228 #else
229 #define CC1_CPU_SPEC ""
230 #endif
231 #endif
232
233 /* Architecture type. */
234
235 /* Define TARGET_MFCRF if the target assembler does not support the
236 optional field operand for mfcr. */
237
238 #ifndef HAVE_AS_MFCRF
239 #undef TARGET_MFCRF
240 #define TARGET_MFCRF 0
241 #endif
242
243 /* Define TARGET_POPCNTB if the target assembler does not support the
244 popcount byte instruction. */
245
246 #ifndef HAVE_AS_POPCNTB
247 #undef TARGET_POPCNTB
248 #define TARGET_POPCNTB 0
249 #endif
250
251 /* Define TARGET_FPRND if the target assembler does not support the
252 fp rounding instructions. */
253
254 #ifndef HAVE_AS_FPRND
255 #undef TARGET_FPRND
256 #define TARGET_FPRND 0
257 #endif
258
259 /* Define TARGET_CMPB if the target assembler does not support the
260 cmpb instruction. */
261
262 #ifndef HAVE_AS_CMPB
263 #undef TARGET_CMPB
264 #define TARGET_CMPB 0
265 #endif
266
267 /* Define TARGET_MFPGPR if the target assembler does not support the
268 mffpr and mftgpr instructions. */
269
270 #ifndef HAVE_AS_MFPGPR
271 #undef TARGET_MFPGPR
272 #define TARGET_MFPGPR 0
273 #endif
274
275 /* Define TARGET_DFP if the target assembler does not support decimal
276 floating point instructions. */
277 #ifndef HAVE_AS_DFP
278 #undef TARGET_DFP
279 #define TARGET_DFP 0
280 #endif
281
282 /* Define TARGET_POPCNTD if the target assembler does not support the
283 popcount word and double word instructions. */
284
285 #ifndef HAVE_AS_POPCNTD
286 #undef TARGET_POPCNTD
287 #define TARGET_POPCNTD 0
288 #endif
289
290 /* Define the ISA 2.07 flags as 0 if the target assembler does not support the
291 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
292 instructions. */
293
294 #ifndef HAVE_AS_POWER8
295 #undef TARGET_DIRECT_MOVE
296 #undef TARGET_CRYPTO
297 #undef TARGET_HTM
298 #undef TARGET_P8_VECTOR
299 #define TARGET_DIRECT_MOVE 0
300 #define TARGET_CRYPTO 0
301 #define TARGET_HTM 0
302 #define TARGET_P8_VECTOR 0
303 #endif
304
305 /* Define the ISA 3.0 flags as 0 if the target assembler does not support
306 Power9 instructions. Allow -mpower9-fusion, since it does not add new
307 instructions. Allow -misel, since it predates ISA 3.0 and does
308 not require any Power9 features. */
309
310 #ifndef HAVE_AS_POWER9
311 #undef TARGET_FLOAT128_HW
312 #undef TARGET_MODULO
313 #undef TARGET_P9_VECTOR
314 #undef TARGET_P9_MINMAX
315 #undef TARGET_P9_DFORM_SCALAR
316 #undef TARGET_P9_DFORM_VECTOR
317 #undef TARGET_P9_MISC
318 #define TARGET_FLOAT128_HW 0
319 #define TARGET_MODULO 0
320 #define TARGET_P9_VECTOR 0
321 #define TARGET_P9_MINMAX 0
322 #define TARGET_P9_DFORM_SCALAR 0
323 #define TARGET_P9_DFORM_VECTOR 0
324 #define TARGET_P9_MISC 0
325 #endif
326
327 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
328 not, generate the lwsync code as an integer constant. */
329 #ifdef HAVE_AS_LWSYNC
330 #define TARGET_LWSYNC_INSTRUCTION 1
331 #else
332 #define TARGET_LWSYNC_INSTRUCTION 0
333 #endif
334
335 /* Define TARGET_TLS_MARKERS if the target assembler does not support
336 arg markers for __tls_get_addr calls. */
337 #ifndef HAVE_AS_TLS_MARKERS
338 #undef TARGET_TLS_MARKERS
339 #define TARGET_TLS_MARKERS 0
340 #else
341 #define TARGET_TLS_MARKERS tls_markers
342 #endif
343
344 #ifndef TARGET_SECURE_PLT
345 #define TARGET_SECURE_PLT 0
346 #endif
347
348 #ifndef TARGET_CMODEL
349 #define TARGET_CMODEL CMODEL_SMALL
350 #endif
351
352 #define TARGET_32BIT (! TARGET_64BIT)
353
354 #ifndef HAVE_AS_TLS
355 #define HAVE_AS_TLS 0
356 #endif
357
358 #ifndef TARGET_LINK_STACK
359 #define TARGET_LINK_STACK 0
360 #endif
361
362 #ifndef SET_TARGET_LINK_STACK
363 #define SET_TARGET_LINK_STACK(X) do { } while (0)
364 #endif
365
366 #ifndef TARGET_FLOAT128_ENABLE_TYPE
367 #define TARGET_FLOAT128_ENABLE_TYPE 0
368 #endif
369
370 /* Return 1 for a symbol ref for a thread-local storage symbol. */
371 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
372 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
373
374 #ifdef IN_LIBGCC2
375 /* For libgcc2 we make sure this is a compile time constant */
376 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
377 #undef TARGET_POWERPC64
378 #define TARGET_POWERPC64 1
379 #else
380 #undef TARGET_POWERPC64
381 #define TARGET_POWERPC64 0
382 #endif
383 #else
384 /* The option machinery will define this. */
385 #endif
386
387 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
388
389 /* FPU operations supported.
390 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
391 also test TARGET_HARD_FLOAT. */
392 #define TARGET_SINGLE_FLOAT 1
393 #define TARGET_DOUBLE_FLOAT 1
394 #define TARGET_SINGLE_FPU 0
395 #define TARGET_SIMPLE_FPU 0
396 #define TARGET_XILINX_FPU 0
397
398 /* Recast the processor type to the cpu attribute. */
399 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
400
401 /* Define generic processor types based upon current deployment. */
402 #define PROCESSOR_COMMON PROCESSOR_PPC601
403 #define PROCESSOR_POWERPC PROCESSOR_PPC604
404 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
405
406 /* Define the default processor. This is overridden by other tm.h files. */
407 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
408 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
409
410 /* Specify the dialect of assembler to use. Only new mnemonics are supported
411 starting with GCC 4.8, i.e. just one dialect, but for backwards
412 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
413 defined. */
414 #define ASSEMBLER_DIALECT 1
415
416 /* Debug support */
417 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
418 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
419 #define MASK_DEBUG_REG 0x04 /* debug register handling */
420 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
421 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
422 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
423 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
424 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
425 | MASK_DEBUG_ARG \
426 | MASK_DEBUG_REG \
427 | MASK_DEBUG_ADDR \
428 | MASK_DEBUG_COST \
429 | MASK_DEBUG_TARGET \
430 | MASK_DEBUG_BUILTIN)
431
432 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
433 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
434 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
435 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
436 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
437 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
438 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
439
440 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
441 long double format that uses a pair of doubles, or IEEE 128-bit floating
442 point. KFmode was added as a way to represent IEEE 128-bit floating point,
443 even if the default for long double is the IBM long double format.
444 Similarly IFmode is the IBM long double format even if the default is IEEE
445 128-bit. Don't allow IFmode if -msoft-float. */
446 #define FLOAT128_IEEE_P(MODE) \
447 ((TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
448 || ((MODE) == KFmode) || ((MODE) == KCmode))
449
450 #define FLOAT128_IBM_P(MODE) \
451 ((!TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
452 || (TARGET_HARD_FLOAT && TARGET_FPRS \
453 && ((MODE) == IFmode || (MODE) == ICmode)))
454
455 /* Helper macros to say whether a 128-bit floating point type can go in a
456 single vector register, or whether it needs paired scalar values. */
457 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
458
459 #define FLOAT128_2REG_P(MODE) \
460 (FLOAT128_IBM_P (MODE) \
461 || ((MODE) == TDmode) \
462 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
463
464 /* Return true for floating point that does not use a vector register. */
465 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
466 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
467
468 /* Describe the vector unit used for arithmetic operations. */
469 extern enum rs6000_vector rs6000_vector_unit[];
470
471 #define VECTOR_UNIT_NONE_P(MODE) \
472 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
473
474 #define VECTOR_UNIT_VSX_P(MODE) \
475 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
476
477 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
478 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
479
480 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
481 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
482
483 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
484 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
485 (int)VECTOR_VSX, \
486 (int)VECTOR_P8_VECTOR))
487
488 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
489 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
490 compatible, so allow it as well, rather than changing all of the uses of the
491 macro. */
492 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
493 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
494 (int)VECTOR_ALTIVEC, \
495 (int)VECTOR_P8_VECTOR))
496
497 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
498 same unit as the vector unit we are using, but we may want to migrate to
499 using VSX style loads even for types handled by altivec. */
500 extern enum rs6000_vector rs6000_vector_mem[];
501
502 #define VECTOR_MEM_NONE_P(MODE) \
503 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
504
505 #define VECTOR_MEM_VSX_P(MODE) \
506 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
507
508 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
509 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
510
511 #define VECTOR_MEM_ALTIVEC_P(MODE) \
512 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
513
514 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
515 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
516 (int)VECTOR_VSX, \
517 (int)VECTOR_P8_VECTOR))
518
519 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
520 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
521 (int)VECTOR_ALTIVEC, \
522 (int)VECTOR_P8_VECTOR))
523
524 /* Return the alignment of a given vector type, which is set based on the
525 vector unit use. VSX for instance can load 32 or 64 bit aligned words
526 without problems, while Altivec requires 128-bit aligned vectors. */
527 extern int rs6000_vector_align[];
528
529 #define VECTOR_ALIGN(MODE) \
530 ((rs6000_vector_align[(MODE)] != 0) \
531 ? rs6000_vector_align[(MODE)] \
532 : (int)GET_MODE_BITSIZE ((MODE)))
533
534 /* Determine the element order to use for vector instructions. By
535 default we use big-endian element order when targeting big-endian,
536 and little-endian element order when targeting little-endian. For
537 programs being ported from BE Power to LE Power, it can sometimes
538 be useful to use big-endian element order when targeting little-endian.
539 This is set via -maltivec=be, for example. */
540 #define VECTOR_ELT_ORDER_BIG \
541 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
542
543 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
544 with scalar instructions. */
545 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
546
547 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
548 with the ISA 3.0 MFVSRLD instructions. */
549 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
550
551 /* Alignment options for fields in structures for sub-targets following
552 AIX-like ABI.
553 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
554 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
555
556 Override the macro definitions when compiling libobjc to avoid undefined
557 reference to rs6000_alignment_flags due to library's use of GCC alignment
558 macros which use the macros below. */
559
560 #ifndef IN_TARGET_LIBS
561 #define MASK_ALIGN_POWER 0x00000000
562 #define MASK_ALIGN_NATURAL 0x00000001
563 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
564 #else
565 #define TARGET_ALIGN_NATURAL 0
566 #endif
567
568 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
569 #define TARGET_IEEEQUAD rs6000_ieeequad
570 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
571 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
572
573 #define TARGET_SPE_ABI 0
574 #define TARGET_SPE 0
575 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
576 #define TARGET_FPRS 1
577 #define TARGET_E500_SINGLE 0
578 #define TARGET_E500_DOUBLE 0
579 #define CHECK_E500_OPTIONS do { } while (0)
580
581 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
582 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
583 XILINX. */
584 #define TARGET_FCFID (TARGET_POWERPC64 \
585 || TARGET_PPC_GPOPT /* 970/power4 */ \
586 || TARGET_POPCNTB /* ISA 2.02 */ \
587 || TARGET_CMPB /* ISA 2.05 */ \
588 || TARGET_POPCNTD /* ISA 2.06 */ \
589 || TARGET_XILINX_FPU)
590
591 #define TARGET_FCTIDZ TARGET_FCFID
592 #define TARGET_STFIWX TARGET_PPC_GFXOPT
593 #define TARGET_LFIWAX TARGET_CMPB
594 #define TARGET_LFIWZX TARGET_POPCNTD
595 #define TARGET_FCFIDS TARGET_POPCNTD
596 #define TARGET_FCFIDU TARGET_POPCNTD
597 #define TARGET_FCFIDUS TARGET_POPCNTD
598 #define TARGET_FCTIDUZ TARGET_POPCNTD
599 #define TARGET_FCTIWUZ TARGET_POPCNTD
600 #define TARGET_CTZ TARGET_MODULO
601 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
602 #define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
603
604 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
605 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
606 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
607 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
608 && TARGET_POWERPC64)
609 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
610 && TARGET_UPPER_REGS_DI && TARGET_POWERPC64)
611
612
613 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
614 #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
615 #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
616
617 /* This wants to be set for p8 and newer. On p7, overlapping unaligned
618 loads are slow. */
619 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
620
621 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
622 in power7, so conditionalize them on p8 features. TImode syncs need quad
623 memory support. */
624 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
625 || TARGET_QUAD_MEMORY_ATOMIC \
626 || TARGET_DIRECT_MOVE)
627
628 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
629
630 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
631 to allocate the SDmode stack slot to get the value into the proper location
632 in the register. */
633 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
634
635 /* ISA 3.0 has new min/max functions that don't need fast math that are being
636 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
637 answers if the arguments are not in the normal range. */
638 #define TARGET_MINMAX_SF (TARGET_SF_FPR && TARGET_PPC_GFXOPT \
639 && (TARGET_P9_MINMAX || !flag_trapping_math))
640
641 #define TARGET_MINMAX_DF (TARGET_DF_FPR && TARGET_PPC_GFXOPT \
642 && (TARGET_P9_MINMAX || !flag_trapping_math))
643
644 /* In switching from using target_flags to using rs6000_isa_flags, the options
645 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
646 OPTION_MASK_<xxx> back into MASK_<xxx>. */
647 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
648 #define MASK_CMPB OPTION_MASK_CMPB
649 #define MASK_CRYPTO OPTION_MASK_CRYPTO
650 #define MASK_DFP OPTION_MASK_DFP
651 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
652 #define MASK_DLMZB OPTION_MASK_DLMZB
653 #define MASK_EABI OPTION_MASK_EABI
654 #define MASK_FLOAT128_TYPE OPTION_MASK_FLOAT128_TYPE
655 #define MASK_FPRND OPTION_MASK_FPRND
656 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
657 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
658 #define MASK_HTM OPTION_MASK_HTM
659 #define MASK_ISEL OPTION_MASK_ISEL
660 #define MASK_MFCRF OPTION_MASK_MFCRF
661 #define MASK_MFPGPR OPTION_MASK_MFPGPR
662 #define MASK_MULHW OPTION_MASK_MULHW
663 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
664 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
665 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
666 #define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
667 #define MASK_P9_MISC OPTION_MASK_P9_MISC
668 #define MASK_POPCNTB OPTION_MASK_POPCNTB
669 #define MASK_POPCNTD OPTION_MASK_POPCNTD
670 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
671 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
672 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
673 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
674 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
675 #define MASK_STRING OPTION_MASK_STRING
676 #define MASK_UPDATE OPTION_MASK_UPDATE
677 #define MASK_VSX OPTION_MASK_VSX
678 #define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
679
680 #ifndef IN_LIBGCC2
681 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
682 #endif
683
684 #ifdef TARGET_64BIT
685 #define MASK_64BIT OPTION_MASK_64BIT
686 #endif
687
688 #ifdef TARGET_LITTLE_ENDIAN
689 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
690 #endif
691
692 #ifdef TARGET_REGNAMES
693 #define MASK_REGNAMES OPTION_MASK_REGNAMES
694 #endif
695
696 #ifdef TARGET_PROTOTYPE
697 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
698 #endif
699
700 #ifdef TARGET_MODULO
701 #define RS6000_BTM_MODULO OPTION_MASK_MODULO
702 #endif
703
704
705 /* For power systems, we want to enable Altivec and VSX builtins even if the
706 user did not use -maltivec or -mvsx to allow the builtins to be used inside
707 of #pragma GCC target or the target attribute to change the code level for a
708 given system. The SPE and Paired builtins are only enabled if you configure
709 the compiler for those builtins, and those machines don't support altivec or
710 VSX. */
711
712 #define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
713 && ((TARGET_POWERPC64 \
714 || TARGET_PPC_GPOPT /* 970/power4 */ \
715 || TARGET_POPCNTB /* ISA 2.02 */ \
716 || TARGET_CMPB /* ISA 2.05 */ \
717 || TARGET_POPCNTD /* ISA 2.06 */ \
718 || TARGET_ALTIVEC \
719 || TARGET_VSX \
720 || TARGET_HARD_FLOAT)))
721
722 /* E500 cores only support plain "sync", not lwsync. */
723 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
724 || rs6000_cpu == PROCESSOR_PPC8548)
725
726
727 /* Whether SF/DF operations are supported on the E500. */
728 #define TARGET_SF_SPE (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT \
729 && !TARGET_FPRS)
730
731 #define TARGET_DF_SPE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
732 && !TARGET_FPRS && TARGET_E500_DOUBLE)
733
734 /* Whether SF/DF operations are supported by the normal floating point unit
735 (or the vector/scalar unit). */
736 #define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
737 && TARGET_SINGLE_FLOAT)
738
739 #define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
740 && TARGET_DOUBLE_FLOAT)
741
742 /* Whether SF/DF operations are supported by any hardware. */
743 #define TARGET_SF_INSN (TARGET_SF_FPR || TARGET_SF_SPE)
744 #define TARGET_DF_INSN (TARGET_DF_FPR || TARGET_DF_SPE)
745
746 /* Which machine supports the various reciprocal estimate instructions. */
747 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
748 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
749
750 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
751 && TARGET_DOUBLE_FLOAT \
752 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
753
754 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
755 && TARGET_PPC_GFXOPT && TARGET_FPRS \
756 && TARGET_SINGLE_FLOAT)
757
758 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
759 && TARGET_DOUBLE_FLOAT \
760 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
761
762 /* Conditions to allow TOC fusion for loading/storing integers. */
763 #define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
764 && TARGET_TOC_FUSION \
765 && (TARGET_CMODEL != CMODEL_SMALL) \
766 && TARGET_POWERPC64)
767
768 /* Conditions to allow TOC fusion for loading/storing floating point. */
769 #define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
770 && TARGET_TOC_FUSION \
771 && (TARGET_CMODEL != CMODEL_SMALL) \
772 && TARGET_POWERPC64 \
773 && TARGET_HARD_FLOAT \
774 && TARGET_FPRS \
775 && TARGET_SINGLE_FLOAT \
776 && TARGET_DOUBLE_FLOAT)
777
778 /* Macro to say whether we can do optimizations where we need to do parts of
779 the calculation in 64-bit GPRs and then is transfered to the vector
780 registers. Do not allow -maltivec=be for these optimizations, because it
781 adds to the complexity of the code. */
782 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
783 && TARGET_P8_VECTOR \
784 && TARGET_POWERPC64 \
785 && TARGET_UPPER_REGS_DI \
786 && (rs6000_altivec_element_order != 2))
787
788 /* Whether the various reciprocal divide/square root estimate instructions
789 exist, and whether we should automatically generate code for the instruction
790 by default. */
791 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
792 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
793 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
794 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
795
796 extern unsigned char rs6000_recip_bits[];
797
798 #define RS6000_RECIP_HAVE_RE_P(MODE) \
799 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
800
801 #define RS6000_RECIP_AUTO_RE_P(MODE) \
802 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
803
804 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
805 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
806
807 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
808 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
809
810 /* The default CPU for TARGET_OPTION_OVERRIDE. */
811 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
812
813 /* Target pragma. */
814 #define REGISTER_TARGET_PRAGMAS() do { \
815 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
816 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
817 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
818 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
819 } while (0)
820
821 /* Target #defines. */
822 #define TARGET_CPU_CPP_BUILTINS() \
823 rs6000_cpu_cpp_builtins (pfile)
824
825 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
826 we're compiling for. Some configurations may need to override it. */
827 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
828 do \
829 { \
830 if (BYTES_BIG_ENDIAN) \
831 { \
832 builtin_define ("__BIG_ENDIAN__"); \
833 builtin_define ("_BIG_ENDIAN"); \
834 builtin_assert ("machine=bigendian"); \
835 } \
836 else \
837 { \
838 builtin_define ("__LITTLE_ENDIAN__"); \
839 builtin_define ("_LITTLE_ENDIAN"); \
840 builtin_assert ("machine=littleendian"); \
841 } \
842 } \
843 while (0)
844 \f
845 /* Target machine storage layout. */
846
847 /* Define this macro if it is advisable to hold scalars in registers
848 in a wider mode than that declared by the program. In such cases,
849 the value is constrained to be within the bounds of the declared
850 type, but kept valid in the wider mode. The signedness of the
851 extension may differ from that of the type. */
852
853 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
854 if (GET_MODE_CLASS (MODE) == MODE_INT \
855 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
856 (MODE) = TARGET_32BIT ? SImode : DImode;
857
858 /* Define this if most significant bit is lowest numbered
859 in instructions that operate on numbered bit-fields. */
860 /* That is true on RS/6000. */
861 #define BITS_BIG_ENDIAN 1
862
863 /* Define this if most significant byte of a word is the lowest numbered. */
864 /* That is true on RS/6000. */
865 #define BYTES_BIG_ENDIAN 1
866
867 /* Define this if most significant word of a multiword number is lowest
868 numbered.
869
870 For RS/6000 we can decide arbitrarily since there are no machine
871 instructions for them. Might as well be consistent with bits and bytes. */
872 #define WORDS_BIG_ENDIAN 1
873
874 /* This says that for the IBM long double the larger magnitude double
875 comes first. It's really a two element double array, and arrays
876 don't index differently between little- and big-endian. */
877 #define LONG_DOUBLE_LARGE_FIRST 1
878
879 #define MAX_BITS_PER_WORD 64
880
881 /* Width of a word, in units (bytes). */
882 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
883 #ifdef IN_LIBGCC2
884 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
885 #else
886 #define MIN_UNITS_PER_WORD 4
887 #endif
888 #define UNITS_PER_FP_WORD 8
889 #define UNITS_PER_ALTIVEC_WORD 16
890 #define UNITS_PER_VSX_WORD 16
891 #define UNITS_PER_SPE_WORD 8
892 #define UNITS_PER_PAIRED_WORD 8
893
894 /* Type used for ptrdiff_t, as a string used in a declaration. */
895 #define PTRDIFF_TYPE "int"
896
897 /* Type used for size_t, as a string used in a declaration. */
898 #define SIZE_TYPE "long unsigned int"
899
900 /* Type used for wchar_t, as a string used in a declaration. */
901 #define WCHAR_TYPE "short unsigned int"
902
903 /* Width of wchar_t in bits. */
904 #define WCHAR_TYPE_SIZE 16
905
906 /* A C expression for the size in bits of the type `short' on the
907 target machine. If you don't define this, the default is half a
908 word. (If this would be less than one storage unit, it is
909 rounded up to one unit.) */
910 #define SHORT_TYPE_SIZE 16
911
912 /* A C expression for the size in bits of the type `int' on the
913 target machine. If you don't define this, the default is one
914 word. */
915 #define INT_TYPE_SIZE 32
916
917 /* A C expression for the size in bits of the type `long' on the
918 target machine. If you don't define this, the default is one
919 word. */
920 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
921
922 /* A C expression for the size in bits of the type `long long' on the
923 target machine. If you don't define this, the default is two
924 words. */
925 #define LONG_LONG_TYPE_SIZE 64
926
927 /* A C expression for the size in bits of the type `float' on the
928 target machine. If you don't define this, the default is one
929 word. */
930 #define FLOAT_TYPE_SIZE 32
931
932 /* A C expression for the size in bits of the type `double' on the
933 target machine. If you don't define this, the default is two
934 words. */
935 #define DOUBLE_TYPE_SIZE 64
936
937 /* A C expression for the size in bits of the type `long double' on
938 the target machine. If you don't define this, the default is two
939 words. */
940 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
941
942 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
943 #define WIDEST_HARDWARE_FP_SIZE 64
944
945 /* Width in bits of a pointer.
946 See also the macro `Pmode' defined below. */
947 extern unsigned rs6000_pointer_size;
948 #define POINTER_SIZE rs6000_pointer_size
949
950 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
951 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
952
953 /* Boundary (in *bits*) on which stack pointer should be aligned. */
954 #define STACK_BOUNDARY \
955 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
956 ? 64 : 128)
957
958 /* Allocation boundary (in *bits*) for the code of a function. */
959 #define FUNCTION_BOUNDARY 32
960
961 /* No data type wants to be aligned rounder than this. */
962 #define BIGGEST_ALIGNMENT 128
963
964 /* Alignment of field after `int : 0' in a structure. */
965 #define EMPTY_FIELD_BOUNDARY 32
966
967 /* Every structure's size must be a multiple of this. */
968 #define STRUCTURE_SIZE_BOUNDARY 8
969
970 /* A bit-field declared as `int' forces `int' alignment for the struct. */
971 #define PCC_BITFIELD_TYPE_MATTERS 1
972
973 enum data_align { align_abi, align_opt, align_both };
974
975 /* A C expression to compute the alignment for a variables in the
976 local store. TYPE is the data type, and ALIGN is the alignment
977 that the object would ordinarily have. */
978 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
979 rs6000_data_alignment (TYPE, ALIGN, align_both)
980
981 /* Make strings word-aligned so strcpy from constants will be faster. */
982 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
983 (TREE_CODE (EXP) == STRING_CST \
984 && (STRICT_ALIGNMENT || !optimize_size) \
985 && (ALIGN) < BITS_PER_WORD \
986 ? BITS_PER_WORD \
987 : (ALIGN))
988
989 /* Make arrays of chars word-aligned for the same reasons. */
990 #define DATA_ALIGNMENT(TYPE, ALIGN) \
991 rs6000_data_alignment (TYPE, ALIGN, align_opt)
992
993 /* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
994 64 bits. */
995 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
996 rs6000_data_alignment (TYPE, ALIGN, align_abi)
997
998 /* Nonzero if move instructions will actually fail to work
999 when given unaligned data. */
1000 #define STRICT_ALIGNMENT 0
1001
1002 /* Define this macro to be the value 1 if unaligned accesses have a cost
1003 many times greater than aligned accesses, for example if they are
1004 emulated in a trap handler. */
1005 /* Altivec vector memory instructions simply ignore the low bits; SPE vector
1006 memory instructions trap on unaligned accesses; VSX memory instructions are
1007 aligned to 4 or 8 bytes. */
1008 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
1009 (STRICT_ALIGNMENT \
1010 || (!TARGET_EFFICIENT_UNALIGNED_VSX \
1011 && ((SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) && (ALIGN) < 32) \
1012 || ((VECTOR_MODE_P (MODE) || FLOAT128_VECTOR_P (MODE)) \
1013 && (int) (ALIGN) < VECTOR_ALIGN (MODE)))))
1014
1015 \f
1016 /* Standard register usage. */
1017
1018 /* Number of actual hardware registers.
1019 The hardware registers are assigned numbers for the compiler
1020 from 0 to just below FIRST_PSEUDO_REGISTER.
1021 All registers that the compiler knows about must be given numbers,
1022 even those that are not normally considered general registers.
1023
1024 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
1025 a count register, a link register, and 8 condition register fields,
1026 which we view here as separate registers. AltiVec adds 32 vector
1027 registers and a VRsave register.
1028
1029 In addition, the difference between the frame and argument pointers is
1030 a function of the number of registers saved, so we need to have a
1031 register for AP that will later be eliminated in favor of SP or FP.
1032 This is a normal register, but it is fixed.
1033
1034 We also create a pseudo register for float/int conversions, that will
1035 really represent the memory location used. It is represented here as
1036 a register, in order to work around problems in allocating stack storage
1037 in inline functions.
1038
1039 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
1040 pointer, which is eventually eliminated in favor of SP or FP.
1041
1042 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
1043
1044 #define FIRST_PSEUDO_REGISTER 149
1045
1046 /* This must be included for pre gcc 3.0 glibc compatibility. */
1047 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
1048
1049 /* True if register is an SPE High register. */
1050 #define SPE_HIGH_REGNO_P(N) \
1051 ((N) >= FIRST_SPE_HIGH_REGNO && (N) <= LAST_SPE_HIGH_REGNO)
1052
1053 /* SPE high registers added as hard regs.
1054 The sfp register and 3 HTM registers
1055 aren't included in DWARF_FRAME_REGISTERS. */
1056 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
1057
1058 /* The SPE has an additional 32 synthetic registers, with DWARF debug
1059 info numbering for these registers starting at 1200. While eh_frame
1060 register numbering need not be the same as the debug info numbering,
1061 we choose to number these regs for eh_frame at 1200 too.
1062
1063 We must map them here to avoid huge unwinder tables mostly consisting
1064 of unused space. */
1065 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
1066 ((r) >= 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
1067
1068 /* Use standard DWARF numbering for DWARF debugging information. */
1069 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
1070
1071 /* Use gcc hard register numbering for eh_frame. */
1072 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
1073
1074 /* Map register numbers held in the call frame info that gcc has
1075 collected using DWARF_FRAME_REGNUM to those that should be output in
1076 .debug_frame and .eh_frame. */
1077 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1078 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
1079
1080 /* 1 for registers that have pervasive standard uses
1081 and are not available for the register allocator.
1082
1083 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
1084 as a local register; for all other OS's r2 is the TOC pointer.
1085
1086 On System V implementations, r13 is fixed and not available for use. */
1087
1088 #define FIXED_REGISTERS \
1089 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
1090 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1091 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1092 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1093 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
1094 /* AltiVec registers. */ \
1095 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1096 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1097 1, 1 \
1098 , 1, 1, 1, 1, 1, 1, \
1099 /* SPE High registers. */ \
1100 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1101 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1102 }
1103
1104 /* 1 for registers not available across function calls.
1105 These must include the FIXED_REGISTERS and also any
1106 registers that can be used without being saved.
1107 The latter must include the registers where values are returned
1108 and the register where structure-value addresses are passed.
1109 Aside from that, you can include as many other registers as you like. */
1110
1111 #define CALL_USED_REGISTERS \
1112 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1113 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1114 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1115 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1116 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1117 /* AltiVec registers. */ \
1118 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1119 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1120 1, 1 \
1121 , 1, 1, 1, 1, 1, 1, \
1122 /* SPE High registers. */ \
1123 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1124 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1125 }
1126
1127 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1128 the entire set of `FIXED_REGISTERS' be included.
1129 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1130 This macro is optional. If not specified, it defaults to the value
1131 of `CALL_USED_REGISTERS'. */
1132
1133 #define CALL_REALLY_USED_REGISTERS \
1134 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1135 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1136 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1137 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1138 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1139 /* AltiVec registers. */ \
1140 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1141 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1142 0, 0 \
1143 , 0, 0, 0, 0, 0, 0, \
1144 /* SPE High registers. */ \
1145 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1146 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
1147 }
1148
1149 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
1150
1151 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
1152 #define FIRST_SAVED_FP_REGNO (14+32)
1153 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
1154
1155 /* List the order in which to allocate registers. Each register must be
1156 listed once, even those in FIXED_REGISTERS.
1157
1158 We allocate in the following order:
1159 fp0 (not saved or used for anything)
1160 fp13 - fp2 (not saved; incoming fp arg registers)
1161 fp1 (not saved; return value)
1162 fp31 - fp14 (saved; order given to save least number)
1163 cr7, cr5 (not saved or special)
1164 cr6 (not saved, but used for vector operations)
1165 cr1 (not saved, but used for FP operations)
1166 cr0 (not saved, but used for arithmetic operations)
1167 cr4, cr3, cr2 (saved)
1168 r9 (not saved; best for TImode)
1169 r10, r8-r4 (not saved; highest first for less conflict with params)
1170 r3 (not saved; return value register)
1171 r11 (not saved; later alloc to help shrink-wrap)
1172 r0 (not saved; cannot be base reg)
1173 r31 - r13 (saved; order given to save least number)
1174 r12 (not saved; if used for DImode or DFmode would use r13)
1175 ctr (not saved; when we have the choice ctr is better)
1176 lr (saved)
1177 r1, r2, ap, ca (fixed)
1178 v0 - v1 (not saved or used for anything)
1179 v13 - v3 (not saved; incoming vector arg registers)
1180 v2 (not saved; incoming vector arg reg; return value)
1181 v19 - v14 (not saved or used for anything)
1182 v31 - v20 (saved; order given to save least number)
1183 vrsave, vscr (fixed)
1184 spe_acc, spefscr (fixed)
1185 sfp (fixed)
1186 tfhar (fixed)
1187 tfiar (fixed)
1188 texasr (fixed)
1189 */
1190
1191 #if FIXED_R2 == 1
1192 #define MAYBE_R2_AVAILABLE
1193 #define MAYBE_R2_FIXED 2,
1194 #else
1195 #define MAYBE_R2_AVAILABLE 2,
1196 #define MAYBE_R2_FIXED
1197 #endif
1198
1199 #if FIXED_R13 == 1
1200 #define EARLY_R12 12,
1201 #define LATE_R12
1202 #else
1203 #define EARLY_R12
1204 #define LATE_R12 12,
1205 #endif
1206
1207 #define REG_ALLOC_ORDER \
1208 {32, \
1209 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1210 /* not use fr14 which is a saved register. */ \
1211 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
1212 33, \
1213 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1214 50, 49, 48, 47, 46, \
1215 75, 73, 74, 69, 68, 72, 71, 70, \
1216 MAYBE_R2_AVAILABLE \
1217 9, 10, 8, 7, 6, 5, 4, \
1218 3, EARLY_R12 11, 0, \
1219 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
1220 18, 17, 16, 15, 14, 13, LATE_R12 \
1221 66, 65, \
1222 1, MAYBE_R2_FIXED 67, 76, \
1223 /* AltiVec registers. */ \
1224 77, 78, \
1225 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1226 79, \
1227 96, 95, 94, 93, 92, 91, \
1228 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1229 109, 110, \
1230 111, 112, 113, 114, 115, 116, \
1231 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, \
1232 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, \
1233 141, 142, 143, 144, 145, 146, 147, 148 \
1234 }
1235
1236 /* True if register is floating-point. */
1237 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1238
1239 /* True if register is a condition register. */
1240 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1241
1242 /* True if register is a condition register, but not cr0. */
1243 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1244
1245 /* True if register is an integer register. */
1246 #define INT_REGNO_P(N) \
1247 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1248
1249 /* SPE SIMD registers are just the GPRs. */
1250 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1251
1252 /* PAIRED SIMD registers are just the FPRs. */
1253 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1254
1255 /* True if register is the CA register. */
1256 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1257
1258 /* True if register is an AltiVec register. */
1259 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1260
1261 /* True if register is a VSX register. */
1262 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1263
1264 /* Alternate name for any vector register supporting floating point, no matter
1265 which instruction set(s) are available. */
1266 #define VFLOAT_REGNO_P(N) \
1267 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1268
1269 /* Alternate name for any vector register supporting integer, no matter which
1270 instruction set(s) are available. */
1271 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1272
1273 /* Alternate name for any vector register supporting logical operations, no
1274 matter which instruction set(s) are available. Allow GPRs as well as the
1275 vector registers. */
1276 #define VLOGICAL_REGNO_P(N) \
1277 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1278 || (TARGET_VSX && FP_REGNO_P (N))) \
1279
1280 /* Return number of consecutive hard regs needed starting at reg REGNO
1281 to hold something of mode MODE. */
1282
1283 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1284
1285 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1286 enough space to account for vectors in FP regs. However, TFmode/TDmode
1287 should not use VSX instructions to do a caller save. */
1288 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1289 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
1290 ? (MODE) \
1291 : TARGET_VSX \
1292 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1293 && FP_REGNO_P (REGNO) \
1294 ? V2DFmode \
1295 : TARGET_E500_DOUBLE && (MODE) == SImode \
1296 ? SImode \
1297 : TARGET_E500_DOUBLE && ((MODE) == VOIDmode || (MODE) == DFmode) \
1298 ? DFmode \
1299 : !TARGET_E500_DOUBLE && FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
1300 ? DFmode \
1301 : !TARGET_E500_DOUBLE && (MODE) == TDmode && FP_REGNO_P (REGNO) \
1302 ? DImode \
1303 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1304
1305 #define VSX_VECTOR_MODE(MODE) \
1306 ((MODE) == V4SFmode \
1307 || (MODE) == V2DFmode) \
1308
1309 /* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1310 really a vector, but we want to treat it as a vector for moves, and
1311 such. */
1312
1313 #define ALTIVEC_VECTOR_MODE(MODE) \
1314 ((MODE) == V16QImode \
1315 || (MODE) == V8HImode \
1316 || (MODE) == V4SFmode \
1317 || (MODE) == V4SImode \
1318 || FLOAT128_VECTOR_P (MODE))
1319
1320 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1321 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1322 || (MODE) == V2DImode || (MODE) == V1TImode)
1323
1324 #define SPE_VECTOR_MODE(MODE) \
1325 ((MODE) == V4HImode \
1326 || (MODE) == V2SFmode \
1327 || (MODE) == V1DImode \
1328 || (MODE) == V2SImode)
1329
1330 #define PAIRED_VECTOR_MODE(MODE) \
1331 ((MODE) == V2SFmode)
1332
1333 /* Value is 1 if it is a good idea to tie two pseudo registers
1334 when one has mode MODE1 and one has mode MODE2.
1335 If TARGET_HARD_REGNO_MODE_OK could produce different values for MODE1
1336 and MODE2, for any hard reg, then this must be 0 for correct output.
1337
1338 PTImode cannot tie with other modes because PTImode is restricted to even
1339 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
1340 57744).
1341
1342 Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
1343 128-bit floating point on VSX systems ties with other vectors. */
1344 #define MODES_TIEABLE_P(MODE1, MODE2) \
1345 ((MODE1) == PTImode \
1346 ? (MODE2) == PTImode \
1347 : (MODE2) == PTImode \
1348 ? 0 \
1349 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1350 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1351 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1352 ? 0 \
1353 : SCALAR_FLOAT_MODE_P (MODE1) \
1354 ? SCALAR_FLOAT_MODE_P (MODE2) \
1355 : SCALAR_FLOAT_MODE_P (MODE2) \
1356 ? 0 \
1357 : GET_MODE_CLASS (MODE1) == MODE_CC \
1358 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1359 : GET_MODE_CLASS (MODE2) == MODE_CC \
1360 ? 0 \
1361 : SPE_VECTOR_MODE (MODE1) \
1362 ? SPE_VECTOR_MODE (MODE2) \
1363 : SPE_VECTOR_MODE (MODE2) \
1364 ? 0 \
1365 : 1)
1366
1367 /* Post-reload, we can't use any new AltiVec registers, as we already
1368 emitted the vrsave mask. */
1369
1370 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1371 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1372
1373 /* Specify the cost of a branch insn; roughly the number of extra insns that
1374 should be added to avoid a branch.
1375
1376 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1377 unscheduled conditional branch. */
1378
1379 #define BRANCH_COST(speed_p, predictable_p) 3
1380
1381 /* Override BRANCH_COST heuristic which empirically produces worse
1382 performance for removing short circuiting from the logical ops. */
1383
1384 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1385
1386 /* A fixed register used at epilogue generation to address SPE registers
1387 with negative offsets. The 64-bit load/store instructions on the SPE
1388 only take positive offsets (and small ones at that), so we need to
1389 reserve a register for consing up negative offsets. */
1390
1391 #define FIXED_SCRATCH 0
1392
1393 /* Specify the registers used for certain standard purposes.
1394 The values of these macros are register numbers. */
1395
1396 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1397 /* #define PC_REGNUM */
1398
1399 /* Register to use for pushing function arguments. */
1400 #define STACK_POINTER_REGNUM 1
1401
1402 /* Base register for access to local variables of the function. */
1403 #define HARD_FRAME_POINTER_REGNUM 31
1404
1405 /* Base register for access to local variables of the function. */
1406 #define FRAME_POINTER_REGNUM 113
1407
1408 /* Base register for access to arguments of the function. */
1409 #define ARG_POINTER_REGNUM 67
1410
1411 /* Place to put static chain when calling a function that requires it. */
1412 #define STATIC_CHAIN_REGNUM 11
1413
1414 /* Base register for access to thread local storage variables. */
1415 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1416
1417 \f
1418 /* Define the classes of registers for register constraints in the
1419 machine description. Also define ranges of constants.
1420
1421 One of the classes must always be named ALL_REGS and include all hard regs.
1422 If there is more than one class, another class must be named NO_REGS
1423 and contain no registers.
1424
1425 The name GENERAL_REGS must be the name of a class (or an alias for
1426 another name such as ALL_REGS). This is the class of registers
1427 that is allowed by "g" or "r" in a register constraint.
1428 Also, registers outside this class are allocated only when
1429 instructions express preferences for them.
1430
1431 The classes must be numbered in nondecreasing order; that is,
1432 a larger-numbered class must never be contained completely
1433 in a smaller-numbered class.
1434
1435 For any two classes, it is very desirable that there be another
1436 class that represents their union. */
1437
1438 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1439 condition registers, plus three special registers, CTR, and the link
1440 register. AltiVec adds a vector register class. VSX registers overlap the
1441 FPR registers and the Altivec registers.
1442
1443 However, r0 is special in that it cannot be used as a base register.
1444 So make a class for registers valid as base registers.
1445
1446 Also, cr0 is the only condition code register that can be used in
1447 arithmetic insns, so make a separate class for it. */
1448
1449 enum reg_class
1450 {
1451 NO_REGS,
1452 BASE_REGS,
1453 GENERAL_REGS,
1454 FLOAT_REGS,
1455 ALTIVEC_REGS,
1456 VSX_REGS,
1457 VRSAVE_REGS,
1458 VSCR_REGS,
1459 SPE_ACC_REGS,
1460 SPEFSCR_REGS,
1461 SPR_REGS,
1462 NON_SPECIAL_REGS,
1463 LINK_REGS,
1464 CTR_REGS,
1465 LINK_OR_CTR_REGS,
1466 SPECIAL_REGS,
1467 SPEC_OR_GEN_REGS,
1468 CR0_REGS,
1469 CR_REGS,
1470 NON_FLOAT_REGS,
1471 CA_REGS,
1472 SPE_HIGH_REGS,
1473 ALL_REGS,
1474 LIM_REG_CLASSES
1475 };
1476
1477 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1478
1479 /* Give names of register classes as strings for dump file. */
1480
1481 #define REG_CLASS_NAMES \
1482 { \
1483 "NO_REGS", \
1484 "BASE_REGS", \
1485 "GENERAL_REGS", \
1486 "FLOAT_REGS", \
1487 "ALTIVEC_REGS", \
1488 "VSX_REGS", \
1489 "VRSAVE_REGS", \
1490 "VSCR_REGS", \
1491 "SPE_ACC_REGS", \
1492 "SPEFSCR_REGS", \
1493 "SPR_REGS", \
1494 "NON_SPECIAL_REGS", \
1495 "LINK_REGS", \
1496 "CTR_REGS", \
1497 "LINK_OR_CTR_REGS", \
1498 "SPECIAL_REGS", \
1499 "SPEC_OR_GEN_REGS", \
1500 "CR0_REGS", \
1501 "CR_REGS", \
1502 "NON_FLOAT_REGS", \
1503 "CA_REGS", \
1504 "SPE_HIGH_REGS", \
1505 "ALL_REGS" \
1506 }
1507
1508 /* Define which registers fit in which classes.
1509 This is an initializer for a vector of HARD_REG_SET
1510 of length N_REG_CLASSES. */
1511
1512 #define REG_CLASS_CONTENTS \
1513 { \
1514 /* NO_REGS. */ \
1515 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1516 /* BASE_REGS. */ \
1517 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1518 /* GENERAL_REGS. */ \
1519 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1520 /* FLOAT_REGS. */ \
1521 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, \
1522 /* ALTIVEC_REGS. */ \
1523 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff, 0x00000000 }, \
1524 /* VSX_REGS. */ \
1525 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff, 0x00000000 }, \
1526 /* VRSAVE_REGS. */ \
1527 { 0x00000000, 0x00000000, 0x00000000, 0x00002000, 0x00000000 }, \
1528 /* VSCR_REGS. */ \
1529 { 0x00000000, 0x00000000, 0x00000000, 0x00004000, 0x00000000 }, \
1530 /* SPE_ACC_REGS. */ \
1531 { 0x00000000, 0x00000000, 0x00000000, 0x00008000, 0x00000000 }, \
1532 /* SPEFSCR_REGS. */ \
1533 { 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00000000 }, \
1534 /* SPR_REGS. */ \
1535 { 0x00000000, 0x00000000, 0x00000000, 0x00040000, 0x00000000 }, \
1536 /* NON_SPECIAL_REGS. */ \
1537 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000, 0x00000000 }, \
1538 /* LINK_REGS. */ \
1539 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000 }, \
1540 /* CTR_REGS. */ \
1541 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000 }, \
1542 /* LINK_OR_CTR_REGS. */ \
1543 { 0x00000000, 0x00000000, 0x00000006, 0x00000000, 0x00000000 }, \
1544 /* SPECIAL_REGS. */ \
1545 { 0x00000000, 0x00000000, 0x00000006, 0x00002000, 0x00000000 }, \
1546 /* SPEC_OR_GEN_REGS. */ \
1547 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000, 0x00000000 }, \
1548 /* CR0_REGS. */ \
1549 { 0x00000000, 0x00000000, 0x00000010, 0x00000000, 0x00000000 }, \
1550 /* CR_REGS. */ \
1551 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000, 0x00000000 }, \
1552 /* NON_FLOAT_REGS. */ \
1553 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000, 0x00000000 }, \
1554 /* CA_REGS. */ \
1555 { 0x00000000, 0x00000000, 0x00001000, 0x00000000, 0x00000000 }, \
1556 /* SPE_HIGH_REGS. */ \
1557 { 0x00000000, 0x00000000, 0x00000000, 0xffe00000, 0x001fffff }, \
1558 /* ALL_REGS. */ \
1559 { 0xffffffff, 0xffffffff, 0xfffffffe, 0xffe7ffff, 0x001fffff } \
1560 }
1561
1562 /* The same information, inverted:
1563 Return the class number of the smallest class containing
1564 reg number REGNO. This could be a conditional expression
1565 or could index an array. */
1566
1567 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1568
1569 #define REGNO_REG_CLASS(REGNO) \
1570 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1571 rs6000_regno_regclass[(REGNO)])
1572
1573 /* Register classes for various constraints that are based on the target
1574 switches. */
1575 enum r6000_reg_class_enum {
1576 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1577 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1578 RS6000_CONSTRAINT_v, /* Altivec registers */
1579 RS6000_CONSTRAINT_wa, /* Any VSX register */
1580 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
1581 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1582 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
1583 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1584 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
1585 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1586 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1587 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1588 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
1589 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
1590 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
1591 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
1592 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1593 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
1594 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1595 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1596 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
1597 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1598 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1599 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
1600 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1601 RS6000_CONSTRAINT_wy, /* VSX register for SF */
1602 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
1603 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
1604 RS6000_CONSTRAINT_wH, /* Altivec register for 32-bit integers. */
1605 RS6000_CONSTRAINT_wI, /* VSX register for 32-bit integers. */
1606 RS6000_CONSTRAINT_wJ, /* VSX register for 8/16-bit integers. */
1607 RS6000_CONSTRAINT_wK, /* Altivec register for 16/32-bit integers. */
1608 RS6000_CONSTRAINT_MAX
1609 };
1610
1611 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1612
1613 /* The class value for index registers, and the one for base regs. */
1614 #define INDEX_REG_CLASS GENERAL_REGS
1615 #define BASE_REG_CLASS BASE_REGS
1616
1617 /* Return whether a given register class can hold VSX objects. */
1618 #define VSX_REG_CLASS_P(CLASS) \
1619 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1620
1621 /* Return whether a given register class targets general purpose registers. */
1622 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1623
1624 /* Given an rtx X being reloaded into a reg required to be
1625 in class CLASS, return the class of reg to actually use.
1626 In general this is just CLASS; but on some machines
1627 in some cases it is preferable to use a more restrictive class.
1628
1629 On the RS/6000, we have to return NO_REGS when we want to reload a
1630 floating-point CONST_DOUBLE to force it to be copied to memory.
1631
1632 We also don't want to reload integer values into floating-point
1633 registers if we can at all help it. In fact, this can
1634 cause reload to die, if it tries to generate a reload of CTR
1635 into a FP register and discovers it doesn't have the memory location
1636 required.
1637
1638 ??? Would it be a good idea to have reload do the converse, that is
1639 try to reload floating modes into FP registers if possible?
1640 */
1641
1642 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1643 rs6000_preferred_reload_class_ptr (X, CLASS)
1644
1645 /* Return the register class of a scratch register needed to copy IN into
1646 or out of a register in CLASS in MODE. If it can be done directly,
1647 NO_REGS is returned. */
1648
1649 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1650 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1651
1652 /* If we are copying between FP or AltiVec registers and anything
1653 else, we need a memory location. The exception is when we are
1654 targeting ppc64 and the move to/from fpr to gpr instructions
1655 are available.*/
1656
1657 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1658 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1659
1660 /* For cpus that cannot load/store SDmode values from the 64-bit
1661 FP registers without using a full 64-bit load/store, we need
1662 to allocate a full 64-bit stack slot for them. */
1663
1664 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1665 rs6000_secondary_memory_needed_rtx (MODE)
1666
1667 /* Specify the mode to be used for memory when a secondary memory
1668 location is needed. For cpus that cannot load/store SDmode values
1669 from the 64-bit FP registers without using a full 64-bit
1670 load/store, we need a wider mode. */
1671 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1672 rs6000_secondary_memory_needed_mode (MODE)
1673
1674 /* Return the maximum number of consecutive registers
1675 needed to represent mode MODE in a register of class CLASS.
1676
1677 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1678 a single reg is enough for two words, unless we have VSX, where the FP
1679 registers can hold 128 bits. */
1680 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1681
1682 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1683
1684 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1685 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1686
1687 /* Stack layout; function entry, exit and calling. */
1688
1689 /* Define this if pushing a word on the stack
1690 makes the stack pointer a smaller address. */
1691 #define STACK_GROWS_DOWNWARD 1
1692
1693 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1694 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1695
1696 /* Define this to nonzero if the nominal address of the stack frame
1697 is at the high-address end of the local variables;
1698 that is, each additional local variable allocated
1699 goes at a more negative offset in the frame.
1700
1701 On the RS/6000, we grow upwards, from the area after the outgoing
1702 arguments. */
1703 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1704 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1705
1706 /* Size of the fixed area on the stack */
1707 #define RS6000_SAVE_AREA \
1708 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1709 << (TARGET_64BIT ? 1 : 0))
1710
1711 /* Stack offset for toc save slot. */
1712 #define RS6000_TOC_SAVE_SLOT \
1713 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1714
1715 /* Align an address */
1716 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1717
1718 /* Offset within stack frame to start allocating local variables at.
1719 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1720 first local allocated. Otherwise, it is the offset to the BEGINNING
1721 of the first local allocated.
1722
1723 On the RS/6000, the frame pointer is the same as the stack pointer,
1724 except for dynamic allocations. So we start after the fixed area and
1725 outgoing parameter area.
1726
1727 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1728 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1729 sizes of the fixed area and the parameter area must be a multiple of
1730 STACK_BOUNDARY. */
1731
1732 #define STARTING_FRAME_OFFSET \
1733 (FRAME_GROWS_DOWNWARD \
1734 ? 0 \
1735 : (cfun->calls_alloca \
1736 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1737 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1738 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1739 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1740 + RS6000_SAVE_AREA)))
1741
1742 /* Offset from the stack pointer register to an item dynamically
1743 allocated on the stack, e.g., by `alloca'.
1744
1745 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1746 length of the outgoing arguments. The default is correct for most
1747 machines. See `function.c' for details.
1748
1749 This value must be a multiple of STACK_BOUNDARY (hard coded in
1750 `emit-rtl.c'). */
1751 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1752 RS6000_ALIGN (crtl->outgoing_args_size + STACK_POINTER_OFFSET, \
1753 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1754
1755 /* If we generate an insn to push BYTES bytes,
1756 this says how many the stack pointer really advances by.
1757 On RS/6000, don't define this because there are no push insns. */
1758 /* #define PUSH_ROUNDING(BYTES) */
1759
1760 /* Offset of first parameter from the argument pointer register value.
1761 On the RS/6000, we define the argument pointer to the start of the fixed
1762 area. */
1763 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1764
1765 /* Offset from the argument pointer register value to the top of
1766 stack. This is different from FIRST_PARM_OFFSET because of the
1767 register save area. */
1768 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1769
1770 /* Define this if stack space is still allocated for a parameter passed
1771 in a register. The value is the number of bytes allocated to this
1772 area. */
1773 #define REG_PARM_STACK_SPACE(FNDECL) \
1774 rs6000_reg_parm_stack_space ((FNDECL), false)
1775
1776 /* Define this macro if space guaranteed when compiling a function body
1777 is different to space required when making a call, a situation that
1778 can arise with K&R style function definitions. */
1779 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1780 rs6000_reg_parm_stack_space ((FNDECL), true)
1781
1782 /* Define this if the above stack space is to be considered part of the
1783 space allocated by the caller. */
1784 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1785
1786 /* This is the difference between the logical top of stack and the actual sp.
1787
1788 For the RS/6000, sp points past the fixed area. */
1789 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1790
1791 /* Define this if the maximum size of all the outgoing args is to be
1792 accumulated and pushed during the prologue. The amount can be
1793 found in the variable crtl->outgoing_args_size. */
1794 #define ACCUMULATE_OUTGOING_ARGS 1
1795
1796 /* Define how to find the value returned by a library function
1797 assuming the value has mode MODE. */
1798
1799 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1800
1801 /* DRAFT_V4_STRUCT_RET defaults off. */
1802 #define DRAFT_V4_STRUCT_RET 0
1803
1804 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1805 #define DEFAULT_PCC_STRUCT_RETURN 0
1806
1807 /* Mode of stack savearea.
1808 FUNCTION is VOIDmode because calling convention maintains SP.
1809 BLOCK needs Pmode for SP.
1810 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1811 #define STACK_SAVEAREA_MODE(LEVEL) \
1812 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1813 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1814
1815 /* Minimum and maximum general purpose registers used to hold arguments. */
1816 #define GP_ARG_MIN_REG 3
1817 #define GP_ARG_MAX_REG 10
1818 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1819
1820 /* Minimum and maximum floating point registers used to hold arguments. */
1821 #define FP_ARG_MIN_REG 33
1822 #define FP_ARG_AIX_MAX_REG 45
1823 #define FP_ARG_V4_MAX_REG 40
1824 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1825 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1826 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1827
1828 /* Minimum and maximum AltiVec registers used to hold arguments. */
1829 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1830 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1831 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1832
1833 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1834 #define AGGR_ARG_NUM_REG 8
1835
1836 /* Return registers */
1837 #define GP_ARG_RETURN GP_ARG_MIN_REG
1838 #define FP_ARG_RETURN FP_ARG_MIN_REG
1839 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1840 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1841 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1842 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1843 ? (ALTIVEC_ARG_RETURN \
1844 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1845 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1846
1847 /* Flags for the call/call_value rtl operations set up by function_arg */
1848 #define CALL_NORMAL 0x00000000 /* no special processing */
1849 /* Bits in 0x00000001 are unused. */
1850 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1851 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1852 #define CALL_LONG 0x00000008 /* always call indirect */
1853 #define CALL_LIBCALL 0x00000010 /* libcall */
1854
1855 /* We don't have prologue and epilogue functions to save/restore
1856 everything for most ABIs. */
1857 #define WORLD_SAVE_P(INFO) 0
1858
1859 /* 1 if N is a possible register number for a function value
1860 as seen by the caller.
1861
1862 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1863 #define FUNCTION_VALUE_REGNO_P(N) \
1864 ((N) == GP_ARG_RETURN \
1865 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
1866 && TARGET_HARD_FLOAT && TARGET_FPRS) \
1867 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
1868 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1869
1870 /* 1 if N is a possible register number for function argument passing.
1871 On RS/6000, these are r3-r10 and fp1-fp13.
1872 On AltiVec, v2 - v13 are used for passing vectors. */
1873 #define FUNCTION_ARG_REGNO_P(N) \
1874 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1875 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
1876 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1877 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
1878 && TARGET_HARD_FLOAT && TARGET_FPRS))
1879 \f
1880 /* Define a data type for recording info about an argument list
1881 during the scan of that argument list. This data type should
1882 hold all necessary information about the function itself
1883 and about the args processed so far, enough to enable macros
1884 such as FUNCTION_ARG to determine where the next arg should go.
1885
1886 On the RS/6000, this is a structure. The first element is the number of
1887 total argument words, the second is used to store the next
1888 floating-point register number, and the third says how many more args we
1889 have prototype types for.
1890
1891 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1892 the next available GP register, `fregno' is the next available FP
1893 register, and `words' is the number of words used on the stack.
1894
1895 The varargs/stdarg support requires that this structure's size
1896 be a multiple of sizeof(int). */
1897
1898 typedef struct rs6000_args
1899 {
1900 int words; /* # words used for passing GP registers */
1901 int fregno; /* next available FP register */
1902 int vregno; /* next available AltiVec register */
1903 int nargs_prototype; /* # args left in the current prototype */
1904 int prototype; /* Whether a prototype was defined */
1905 int stdarg; /* Whether function is a stdarg function. */
1906 int call_cookie; /* Do special things for this call */
1907 int sysv_gregno; /* next available GP register */
1908 int intoffset; /* running offset in struct (darwin64) */
1909 int use_stack; /* any part of struct on stack (darwin64) */
1910 int floats_in_gpr; /* count of SFmode floats taking up
1911 GPR space (darwin64) */
1912 int named; /* false for varargs params */
1913 int escapes; /* if function visible outside tu */
1914 int libcall; /* If this is a compiler generated call. */
1915 } CUMULATIVE_ARGS;
1916
1917 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1918 for a call to a function whose data type is FNTYPE.
1919 For a library call, FNTYPE is 0. */
1920
1921 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1922 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1923 N_NAMED_ARGS, FNDECL, VOIDmode)
1924
1925 /* Similar, but when scanning the definition of a procedure. We always
1926 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1927
1928 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1929 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1930 1000, current_function_decl, VOIDmode)
1931
1932 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1933
1934 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1935 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1936 0, NULL_TREE, MODE)
1937
1938 /* If defined, a C expression which determines whether, and in which
1939 direction, to pad out an argument with extra space. The value
1940 should be of type `enum direction': either `upward' to pad above
1941 the argument, `downward' to pad below, or `none' to inhibit
1942 padding. */
1943
1944 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1945
1946 #define PAD_VARARGS_DOWN \
1947 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1948
1949 /* Output assembler code to FILE to increment profiler label # LABELNO
1950 for profiling a function entry. */
1951
1952 #define FUNCTION_PROFILER(FILE, LABELNO) \
1953 output_function_profiler ((FILE), (LABELNO));
1954
1955 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1956 the stack pointer does not matter. No definition is equivalent to
1957 always zero.
1958
1959 On the RS/6000, this is nonzero because we can restore the stack from
1960 its backpointer, which we maintain. */
1961 #define EXIT_IGNORE_STACK 1
1962
1963 /* Define this macro as a C expression that is nonzero for registers
1964 that are used by the epilogue or the return' pattern. The stack
1965 and frame pointer registers are already be assumed to be used as
1966 needed. */
1967
1968 #define EPILOGUE_USES(REGNO) \
1969 ((reload_completed && (REGNO) == LR_REGNO) \
1970 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1971 || (crtl->calls_eh_return \
1972 && TARGET_AIX \
1973 && (REGNO) == 2))
1974
1975 \f
1976 /* Length in units of the trampoline for entering a nested function. */
1977
1978 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1979 \f
1980 /* Definitions for __builtin_return_address and __builtin_frame_address.
1981 __builtin_return_address (0) should give link register (LR_REGNO), enable
1982 this. */
1983 /* This should be uncommented, so that the link register is used, but
1984 currently this would result in unmatched insns and spilling fixed
1985 registers so we'll leave it for another day. When these problems are
1986 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1987 (mrs) */
1988 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1989
1990 /* Number of bytes into the frame return addresses can be found. See
1991 rs6000_stack_info in powerpcspe.c for more information on how the different
1992 abi's store the return address. */
1993 #define RETURN_ADDRESS_OFFSET \
1994 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1995
1996 /* The current return address is in link register (65). The return address
1997 of anything farther back is accessed normally at an offset of 8 from the
1998 frame pointer. */
1999 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2000 (rs6000_return_addr (COUNT, FRAME))
2001
2002 \f
2003 /* Definitions for register eliminations.
2004
2005 We have two registers that can be eliminated on the RS/6000. First, the
2006 frame pointer register can often be eliminated in favor of the stack
2007 pointer register. Secondly, the argument pointer register can always be
2008 eliminated; it is replaced with either the stack or frame pointer.
2009
2010 In addition, we use the elimination mechanism to see if r30 is needed
2011 Initially we assume that it isn't. If it is, we spill it. This is done
2012 by making it an eliminable register. We replace it with itself so that
2013 if it isn't needed, then existing uses won't be modified. */
2014
2015 /* This is an array of structures. Each structure initializes one pair
2016 of eliminable registers. The "from" register number is given first,
2017 followed by "to". Eliminations of the same "from" register are listed
2018 in order of preference. */
2019 #define ELIMINABLE_REGS \
2020 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2021 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2022 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
2023 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2024 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
2025 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
2026
2027 /* Define the offset between two registers, one to be eliminated, and the other
2028 its replacement, at the start of a routine. */
2029 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2030 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
2031 \f
2032 /* Addressing modes, and classification of registers for them. */
2033
2034 #define HAVE_PRE_DECREMENT 1
2035 #define HAVE_PRE_INCREMENT 1
2036 #define HAVE_PRE_MODIFY_DISP 1
2037 #define HAVE_PRE_MODIFY_REG 1
2038
2039 /* Macros to check register numbers against specific register classes. */
2040
2041 /* These assume that REGNO is a hard or pseudo reg number.
2042 They give nonzero only if REGNO is a hard reg of the suitable class
2043 or a pseudo reg currently allocated to a suitable hard reg.
2044 Since they use reg_renumber, they are safe only once reg_renumber
2045 has been allocated, which happens in reginfo.c during register
2046 allocation. */
2047
2048 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2049 ((REGNO) < FIRST_PSEUDO_REGISTER \
2050 ? (REGNO) <= 31 || (REGNO) == 67 \
2051 || (REGNO) == FRAME_POINTER_REGNUM \
2052 : (reg_renumber[REGNO] >= 0 \
2053 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
2054 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
2055
2056 #define REGNO_OK_FOR_BASE_P(REGNO) \
2057 ((REGNO) < FIRST_PSEUDO_REGISTER \
2058 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
2059 || (REGNO) == FRAME_POINTER_REGNUM \
2060 : (reg_renumber[REGNO] > 0 \
2061 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
2062 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
2063
2064 /* Nonzero if X is a hard reg that can be used as an index
2065 or if it is a pseudo reg in the non-strict case. */
2066 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2067 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
2068 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
2069
2070 /* Nonzero if X is a hard reg that can be used as a base reg
2071 or if it is a pseudo reg in the non-strict case. */
2072 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2073 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
2074 || REGNO_OK_FOR_BASE_P (REGNO (X)))
2075
2076 \f
2077 /* Maximum number of registers that can appear in a valid memory address. */
2078
2079 #define MAX_REGS_PER_ADDRESS 2
2080
2081 /* Recognize any constant value that is a valid address. */
2082
2083 #define CONSTANT_ADDRESS_P(X) \
2084 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2085 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
2086 || GET_CODE (X) == HIGH)
2087
2088 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
2089 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
2090 && EASY_VECTOR_15((n) >> 1) \
2091 && ((n) & 1) == 0)
2092
2093 #define EASY_VECTOR_MSB(n,mode) \
2094 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
2095 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
2096
2097 \f
2098 /* Try a machine-dependent way of reloading an illegitimate address
2099 operand. If we find one, push the reload and jump to WIN. This
2100 macro is used in only one place: `find_reloads_address' in reload.c.
2101
2102 Implemented on rs6000 by rs6000_legitimize_reload_address.
2103 Note that (X) is evaluated twice; this is safe in current usage. */
2104
2105 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2106 do { \
2107 int win; \
2108 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
2109 (int)(TYPE), (IND_LEVELS), &win); \
2110 if ( win ) \
2111 goto WIN; \
2112 } while (0)
2113
2114 #define FIND_BASE_TERM rs6000_find_base_term
2115 \f
2116 /* The register number of the register used to address a table of
2117 static data addresses in memory. In some cases this register is
2118 defined by a processor's "application binary interface" (ABI).
2119 When this macro is defined, RTL is generated for this register
2120 once, as with the stack pointer and frame pointer registers. If
2121 this macro is not defined, it is up to the machine-dependent files
2122 to allocate such a register (if necessary). */
2123
2124 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2125 #define PIC_OFFSET_TABLE_REGNUM \
2126 (TARGET_TOC ? TOC_REGISTER \
2127 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
2128 : INVALID_REGNUM)
2129
2130 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2131
2132 /* Define this macro if the register defined by
2133 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2134 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
2135
2136 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2137
2138 /* A C expression that is nonzero if X is a legitimate immediate
2139 operand on the target machine when generating position independent
2140 code. You can assume that X satisfies `CONSTANT_P', so you need
2141 not check this. You can also assume FLAG_PIC is true, so you need
2142 not check it either. You need not define this macro if all
2143 constants (including `SYMBOL_REF') can be immediate operands when
2144 generating position independent code. */
2145
2146 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2147 \f
2148 /* Define this if some processing needs to be done immediately before
2149 emitting code for an insn. */
2150
2151 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
2152 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
2153
2154 /* Specify the machine mode that this machine uses
2155 for the index in the tablejump instruction. */
2156 #define CASE_VECTOR_MODE SImode
2157
2158 /* Define as C expression which evaluates to nonzero if the tablejump
2159 instruction expects the table to contain offsets from the address of the
2160 table.
2161 Do not define this if the table should contain absolute addresses. */
2162 #define CASE_VECTOR_PC_RELATIVE 1
2163
2164 /* Define this as 1 if `char' should by default be signed; else as 0. */
2165 #define DEFAULT_SIGNED_CHAR 0
2166
2167 /* An integer expression for the size in bits of the largest integer machine
2168 mode that should actually be used. */
2169
2170 /* Allow pairs of registers to be used, which is the intent of the default. */
2171 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2172
2173 /* Max number of bytes we can move from memory to memory
2174 in one reasonably fast instruction. */
2175 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2176 #define MAX_MOVE_MAX 8
2177
2178 /* Nonzero if access to memory by bytes is no faster than for words.
2179 Also nonzero if doing byte operations (specifically shifts) in registers
2180 is undesirable. */
2181 #define SLOW_BYTE_ACCESS 1
2182
2183 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2184 will either zero-extend or sign-extend. The value of this macro should
2185 be the code that says which one of the two operations is implicitly
2186 done, UNKNOWN if none. */
2187 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2188
2189 /* Define if loading short immediate values into registers sign extends. */
2190 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
2191 \f
2192 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2193 is done just by pretending it is already truncated. */
2194 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2195
2196 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
2197 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2198 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
2199
2200 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
2201 zero. The hardware instructions added in Power9 and the sequences using
2202 popcount return 32 or 64. */
2203 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2204 (TARGET_CTZ || TARGET_POPCNTD \
2205 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
2206 : ((VALUE) = -1, 2))
2207
2208 /* Specify the machine mode that pointers have.
2209 After generation of rtl, the compiler makes no further distinction
2210 between pointers and any other objects of this machine mode. */
2211 extern scalar_int_mode rs6000_pmode;
2212 #define Pmode rs6000_pmode
2213
2214 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
2215 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2216
2217 /* Mode of a function address in a call instruction (for indexing purposes).
2218 Doesn't matter on RS/6000. */
2219 #define FUNCTION_MODE SImode
2220
2221 /* Define this if addresses of constant functions
2222 shouldn't be put through pseudo regs where they can be cse'd.
2223 Desirable on machines where ordinary constants are expensive
2224 but a CALL with constant address is cheap. */
2225 #define NO_FUNCTION_CSE 1
2226
2227 /* Define this to be nonzero if shift instructions ignore all but the low-order
2228 few bits.
2229
2230 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2231 have been dropped from the PowerPC architecture. */
2232 #define SHIFT_COUNT_TRUNCATED 0
2233
2234 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2235 should be adjusted to reflect any required changes. This macro is used when
2236 there is some systematic length adjustment required that would be difficult
2237 to express in the length attribute. */
2238
2239 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2240
2241 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2242 COMPARE, return the mode to be used for the comparison. For
2243 floating-point, CCFPmode should be used. CCUNSmode should be used
2244 for unsigned comparisons. CCEQmode should be used when we are
2245 doing an inequality comparison on the result of a
2246 comparison. CCmode should be used in all other cases. */
2247
2248 #define SELECT_CC_MODE(OP,X,Y) \
2249 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2250 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2251 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2252 ? CCEQmode : CCmode))
2253
2254 /* Can the condition code MODE be safely reversed? This is safe in
2255 all cases on this port, because at present it doesn't use the
2256 trapping FP comparisons (fcmpo). */
2257 #define REVERSIBLE_CC_MODE(MODE) 1
2258
2259 /* Given a condition code and a mode, return the inverse condition. */
2260 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2261
2262 \f
2263 /* Control the assembler format that we output. */
2264
2265 /* A C string constant describing how to begin a comment in the target
2266 assembler language. The compiler assumes that the comment will end at
2267 the end of the line. */
2268 #define ASM_COMMENT_START " #"
2269
2270 /* Flag to say the TOC is initialized */
2271 extern int toc_initialized;
2272
2273 /* Macro to output a special constant pool entry. Go to WIN if we output
2274 it. Otherwise, it is written the usual way.
2275
2276 On the RS/6000, toc entries are handled this way. */
2277
2278 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2279 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2280 { \
2281 output_toc (FILE, X, LABELNO, MODE); \
2282 goto WIN; \
2283 } \
2284 }
2285
2286 #ifdef HAVE_GAS_WEAK
2287 #define RS6000_WEAK 1
2288 #else
2289 #define RS6000_WEAK 0
2290 #endif
2291
2292 #if RS6000_WEAK
2293 /* Used in lieu of ASM_WEAKEN_LABEL. */
2294 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2295 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
2296 #endif
2297
2298 #if HAVE_GAS_WEAKREF
2299 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2300 do \
2301 { \
2302 fputs ("\t.weakref\t", (FILE)); \
2303 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2304 fputs (", ", (FILE)); \
2305 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2306 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2307 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2308 { \
2309 fputs ("\n\t.weakref\t.", (FILE)); \
2310 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2311 fputs (", .", (FILE)); \
2312 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2313 } \
2314 fputc ('\n', (FILE)); \
2315 } while (0)
2316 #endif
2317
2318 /* This implements the `alias' attribute. */
2319 #undef ASM_OUTPUT_DEF_FROM_DECLS
2320 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2321 do \
2322 { \
2323 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2324 const char *name = IDENTIFIER_POINTER (TARGET); \
2325 if (TREE_CODE (DECL) == FUNCTION_DECL \
2326 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2327 { \
2328 if (TREE_PUBLIC (DECL)) \
2329 { \
2330 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2331 { \
2332 fputs ("\t.globl\t.", FILE); \
2333 RS6000_OUTPUT_BASENAME (FILE, alias); \
2334 putc ('\n', FILE); \
2335 } \
2336 } \
2337 else if (TARGET_XCOFF) \
2338 { \
2339 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2340 { \
2341 fputs ("\t.lglobl\t.", FILE); \
2342 RS6000_OUTPUT_BASENAME (FILE, alias); \
2343 putc ('\n', FILE); \
2344 fputs ("\t.lglobl\t", FILE); \
2345 RS6000_OUTPUT_BASENAME (FILE, alias); \
2346 putc ('\n', FILE); \
2347 } \
2348 } \
2349 fputs ("\t.set\t.", FILE); \
2350 RS6000_OUTPUT_BASENAME (FILE, alias); \
2351 fputs (",.", FILE); \
2352 RS6000_OUTPUT_BASENAME (FILE, name); \
2353 fputc ('\n', FILE); \
2354 } \
2355 ASM_OUTPUT_DEF (FILE, alias, name); \
2356 } \
2357 while (0)
2358
2359 #define TARGET_ASM_FILE_START rs6000_file_start
2360
2361 /* Output to assembler file text saying following lines
2362 may contain character constants, extra white space, comments, etc. */
2363
2364 #define ASM_APP_ON ""
2365
2366 /* Output to assembler file text saying following lines
2367 no longer contain unusual constructs. */
2368
2369 #define ASM_APP_OFF ""
2370
2371 /* How to refer to registers in assembler output.
2372 This sequence is indexed by compiler's hard-register-number (see above). */
2373
2374 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2375
2376 #define REGISTER_NAMES \
2377 { \
2378 &rs6000_reg_names[ 0][0], /* r0 */ \
2379 &rs6000_reg_names[ 1][0], /* r1 */ \
2380 &rs6000_reg_names[ 2][0], /* r2 */ \
2381 &rs6000_reg_names[ 3][0], /* r3 */ \
2382 &rs6000_reg_names[ 4][0], /* r4 */ \
2383 &rs6000_reg_names[ 5][0], /* r5 */ \
2384 &rs6000_reg_names[ 6][0], /* r6 */ \
2385 &rs6000_reg_names[ 7][0], /* r7 */ \
2386 &rs6000_reg_names[ 8][0], /* r8 */ \
2387 &rs6000_reg_names[ 9][0], /* r9 */ \
2388 &rs6000_reg_names[10][0], /* r10 */ \
2389 &rs6000_reg_names[11][0], /* r11 */ \
2390 &rs6000_reg_names[12][0], /* r12 */ \
2391 &rs6000_reg_names[13][0], /* r13 */ \
2392 &rs6000_reg_names[14][0], /* r14 */ \
2393 &rs6000_reg_names[15][0], /* r15 */ \
2394 &rs6000_reg_names[16][0], /* r16 */ \
2395 &rs6000_reg_names[17][0], /* r17 */ \
2396 &rs6000_reg_names[18][0], /* r18 */ \
2397 &rs6000_reg_names[19][0], /* r19 */ \
2398 &rs6000_reg_names[20][0], /* r20 */ \
2399 &rs6000_reg_names[21][0], /* r21 */ \
2400 &rs6000_reg_names[22][0], /* r22 */ \
2401 &rs6000_reg_names[23][0], /* r23 */ \
2402 &rs6000_reg_names[24][0], /* r24 */ \
2403 &rs6000_reg_names[25][0], /* r25 */ \
2404 &rs6000_reg_names[26][0], /* r26 */ \
2405 &rs6000_reg_names[27][0], /* r27 */ \
2406 &rs6000_reg_names[28][0], /* r28 */ \
2407 &rs6000_reg_names[29][0], /* r29 */ \
2408 &rs6000_reg_names[30][0], /* r30 */ \
2409 &rs6000_reg_names[31][0], /* r31 */ \
2410 \
2411 &rs6000_reg_names[32][0], /* fr0 */ \
2412 &rs6000_reg_names[33][0], /* fr1 */ \
2413 &rs6000_reg_names[34][0], /* fr2 */ \
2414 &rs6000_reg_names[35][0], /* fr3 */ \
2415 &rs6000_reg_names[36][0], /* fr4 */ \
2416 &rs6000_reg_names[37][0], /* fr5 */ \
2417 &rs6000_reg_names[38][0], /* fr6 */ \
2418 &rs6000_reg_names[39][0], /* fr7 */ \
2419 &rs6000_reg_names[40][0], /* fr8 */ \
2420 &rs6000_reg_names[41][0], /* fr9 */ \
2421 &rs6000_reg_names[42][0], /* fr10 */ \
2422 &rs6000_reg_names[43][0], /* fr11 */ \
2423 &rs6000_reg_names[44][0], /* fr12 */ \
2424 &rs6000_reg_names[45][0], /* fr13 */ \
2425 &rs6000_reg_names[46][0], /* fr14 */ \
2426 &rs6000_reg_names[47][0], /* fr15 */ \
2427 &rs6000_reg_names[48][0], /* fr16 */ \
2428 &rs6000_reg_names[49][0], /* fr17 */ \
2429 &rs6000_reg_names[50][0], /* fr18 */ \
2430 &rs6000_reg_names[51][0], /* fr19 */ \
2431 &rs6000_reg_names[52][0], /* fr20 */ \
2432 &rs6000_reg_names[53][0], /* fr21 */ \
2433 &rs6000_reg_names[54][0], /* fr22 */ \
2434 &rs6000_reg_names[55][0], /* fr23 */ \
2435 &rs6000_reg_names[56][0], /* fr24 */ \
2436 &rs6000_reg_names[57][0], /* fr25 */ \
2437 &rs6000_reg_names[58][0], /* fr26 */ \
2438 &rs6000_reg_names[59][0], /* fr27 */ \
2439 &rs6000_reg_names[60][0], /* fr28 */ \
2440 &rs6000_reg_names[61][0], /* fr29 */ \
2441 &rs6000_reg_names[62][0], /* fr30 */ \
2442 &rs6000_reg_names[63][0], /* fr31 */ \
2443 \
2444 &rs6000_reg_names[64][0], /* was mq */ \
2445 &rs6000_reg_names[65][0], /* lr */ \
2446 &rs6000_reg_names[66][0], /* ctr */ \
2447 &rs6000_reg_names[67][0], /* ap */ \
2448 \
2449 &rs6000_reg_names[68][0], /* cr0 */ \
2450 &rs6000_reg_names[69][0], /* cr1 */ \
2451 &rs6000_reg_names[70][0], /* cr2 */ \
2452 &rs6000_reg_names[71][0], /* cr3 */ \
2453 &rs6000_reg_names[72][0], /* cr4 */ \
2454 &rs6000_reg_names[73][0], /* cr5 */ \
2455 &rs6000_reg_names[74][0], /* cr6 */ \
2456 &rs6000_reg_names[75][0], /* cr7 */ \
2457 \
2458 &rs6000_reg_names[76][0], /* ca */ \
2459 \
2460 &rs6000_reg_names[77][0], /* v0 */ \
2461 &rs6000_reg_names[78][0], /* v1 */ \
2462 &rs6000_reg_names[79][0], /* v2 */ \
2463 &rs6000_reg_names[80][0], /* v3 */ \
2464 &rs6000_reg_names[81][0], /* v4 */ \
2465 &rs6000_reg_names[82][0], /* v5 */ \
2466 &rs6000_reg_names[83][0], /* v6 */ \
2467 &rs6000_reg_names[84][0], /* v7 */ \
2468 &rs6000_reg_names[85][0], /* v8 */ \
2469 &rs6000_reg_names[86][0], /* v9 */ \
2470 &rs6000_reg_names[87][0], /* v10 */ \
2471 &rs6000_reg_names[88][0], /* v11 */ \
2472 &rs6000_reg_names[89][0], /* v12 */ \
2473 &rs6000_reg_names[90][0], /* v13 */ \
2474 &rs6000_reg_names[91][0], /* v14 */ \
2475 &rs6000_reg_names[92][0], /* v15 */ \
2476 &rs6000_reg_names[93][0], /* v16 */ \
2477 &rs6000_reg_names[94][0], /* v17 */ \
2478 &rs6000_reg_names[95][0], /* v18 */ \
2479 &rs6000_reg_names[96][0], /* v19 */ \
2480 &rs6000_reg_names[97][0], /* v20 */ \
2481 &rs6000_reg_names[98][0], /* v21 */ \
2482 &rs6000_reg_names[99][0], /* v22 */ \
2483 &rs6000_reg_names[100][0], /* v23 */ \
2484 &rs6000_reg_names[101][0], /* v24 */ \
2485 &rs6000_reg_names[102][0], /* v25 */ \
2486 &rs6000_reg_names[103][0], /* v26 */ \
2487 &rs6000_reg_names[104][0], /* v27 */ \
2488 &rs6000_reg_names[105][0], /* v28 */ \
2489 &rs6000_reg_names[106][0], /* v29 */ \
2490 &rs6000_reg_names[107][0], /* v30 */ \
2491 &rs6000_reg_names[108][0], /* v31 */ \
2492 &rs6000_reg_names[109][0], /* vrsave */ \
2493 &rs6000_reg_names[110][0], /* vscr */ \
2494 &rs6000_reg_names[111][0], /* spe_acc */ \
2495 &rs6000_reg_names[112][0], /* spefscr */ \
2496 &rs6000_reg_names[113][0], /* sfp */ \
2497 &rs6000_reg_names[114][0], /* tfhar */ \
2498 &rs6000_reg_names[115][0], /* tfiar */ \
2499 &rs6000_reg_names[116][0], /* texasr */ \
2500 \
2501 &rs6000_reg_names[117][0], /* SPE rh0. */ \
2502 &rs6000_reg_names[118][0], /* SPE rh1. */ \
2503 &rs6000_reg_names[119][0], /* SPE rh2. */ \
2504 &rs6000_reg_names[120][0], /* SPE rh3. */ \
2505 &rs6000_reg_names[121][0], /* SPE rh4. */ \
2506 &rs6000_reg_names[122][0], /* SPE rh5. */ \
2507 &rs6000_reg_names[123][0], /* SPE rh6. */ \
2508 &rs6000_reg_names[124][0], /* SPE rh7. */ \
2509 &rs6000_reg_names[125][0], /* SPE rh8. */ \
2510 &rs6000_reg_names[126][0], /* SPE rh9. */ \
2511 &rs6000_reg_names[127][0], /* SPE rh10. */ \
2512 &rs6000_reg_names[128][0], /* SPE rh11. */ \
2513 &rs6000_reg_names[129][0], /* SPE rh12. */ \
2514 &rs6000_reg_names[130][0], /* SPE rh13. */ \
2515 &rs6000_reg_names[131][0], /* SPE rh14. */ \
2516 &rs6000_reg_names[132][0], /* SPE rh15. */ \
2517 &rs6000_reg_names[133][0], /* SPE rh16. */ \
2518 &rs6000_reg_names[134][0], /* SPE rh17. */ \
2519 &rs6000_reg_names[135][0], /* SPE rh18. */ \
2520 &rs6000_reg_names[136][0], /* SPE rh19. */ \
2521 &rs6000_reg_names[137][0], /* SPE rh20. */ \
2522 &rs6000_reg_names[138][0], /* SPE rh21. */ \
2523 &rs6000_reg_names[139][0], /* SPE rh22. */ \
2524 &rs6000_reg_names[140][0], /* SPE rh22. */ \
2525 &rs6000_reg_names[141][0], /* SPE rh24. */ \
2526 &rs6000_reg_names[142][0], /* SPE rh25. */ \
2527 &rs6000_reg_names[143][0], /* SPE rh26. */ \
2528 &rs6000_reg_names[144][0], /* SPE rh27. */ \
2529 &rs6000_reg_names[145][0], /* SPE rh28. */ \
2530 &rs6000_reg_names[146][0], /* SPE rh29. */ \
2531 &rs6000_reg_names[147][0], /* SPE rh30. */ \
2532 &rs6000_reg_names[148][0], /* SPE rh31. */ \
2533 }
2534
2535 /* Table of additional register names to use in user input. */
2536
2537 #define ADDITIONAL_REGISTER_NAMES \
2538 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2539 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2540 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2541 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2542 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2543 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2544 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2545 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2546 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2547 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2548 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2549 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2550 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2551 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2552 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2553 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2554 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2555 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2556 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2557 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2558 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2559 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2560 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2561 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2562 {"vrsave", 109}, {"vscr", 110}, \
2563 {"spe_acc", 111}, {"spefscr", 112}, \
2564 /* no additional names for: lr, ctr, ap */ \
2565 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2566 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2567 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2568 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2569 {"xer", 76}, \
2570 /* VSX registers overlaid on top of FR, Altivec registers */ \
2571 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2572 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2573 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2574 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2575 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2576 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2577 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2578 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2579 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2580 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2581 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2582 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2583 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2584 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2585 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2586 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2587 /* Transactional Memory Facility (HTM) Registers. */ \
2588 {"tfhar", 114}, {"tfiar", 115}, {"texasr", 116}, \
2589 /* SPE high registers. */ \
2590 {"rh0", 117}, {"rh1", 118}, {"rh2", 119}, {"rh3", 120}, \
2591 {"rh4", 121}, {"rh5", 122}, {"rh6", 123}, {"rh7", 124}, \
2592 {"rh8", 125}, {"rh9", 126}, {"rh10", 127}, {"rh11", 128}, \
2593 {"rh12", 129}, {"rh13", 130}, {"rh14", 131}, {"rh15", 132}, \
2594 {"rh16", 133}, {"rh17", 134}, {"rh18", 135}, {"rh19", 136}, \
2595 {"rh20", 137}, {"rh21", 138}, {"rh22", 139}, {"rh23", 140}, \
2596 {"rh24", 141}, {"rh25", 142}, {"rh26", 143}, {"rh27", 144}, \
2597 {"rh28", 145}, {"rh29", 146}, {"rh30", 147}, {"rh31", 148}, \
2598 }
2599
2600 /* This is how to output an element of a case-vector that is relative. */
2601
2602 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2603 do { char buf[100]; \
2604 fputs ("\t.long ", FILE); \
2605 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2606 assemble_name (FILE, buf); \
2607 putc ('-', FILE); \
2608 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2609 assemble_name (FILE, buf); \
2610 putc ('\n', FILE); \
2611 } while (0)
2612
2613 /* This is how to output an assembler line
2614 that says to advance the location counter
2615 to a multiple of 2**LOG bytes. */
2616
2617 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2618 if ((LOG) != 0) \
2619 fprintf (FILE, "\t.align %d\n", (LOG))
2620
2621 /* How to align the given loop. */
2622 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2623
2624 /* Alignment guaranteed by __builtin_malloc. */
2625 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2626 However, specifying the stronger guarantee currently leads to
2627 a regression in SPEC CPU2006 437.leslie3d. The stronger
2628 guarantee should be implemented here once that's fixed. */
2629 #define MALLOC_ABI_ALIGNMENT (64)
2630
2631 /* Pick up the return address upon entry to a procedure. Used for
2632 dwarf2 unwind information. This also enables the table driven
2633 mechanism. */
2634
2635 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2636 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2637
2638 /* Describe how we implement __builtin_eh_return. */
2639 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2640 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2641
2642 /* Print operand X (an rtx) in assembler syntax to file FILE.
2643 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2644 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2645
2646 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2647
2648 /* Define which CODE values are valid. */
2649
2650 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2651
2652 /* Print a memory address as an operand to reference that memory location. */
2653
2654 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2655
2656 /* For switching between functions with different target attributes. */
2657 #define SWITCHABLE_TARGET 1
2658
2659 /* uncomment for disabling the corresponding default options */
2660 /* #define MACHINE_no_sched_interblock */
2661 /* #define MACHINE_no_sched_speculative */
2662 /* #define MACHINE_no_sched_speculative_load */
2663
2664 /* General flags. */
2665 extern int frame_pointer_needed;
2666
2667 /* Classification of the builtin functions as to which switches enable the
2668 builtin, and what attributes it should have. We used to use the target
2669 flags macros, but we've run out of bits, so we now map the options into new
2670 settings used here. */
2671
2672 /* Builtin attributes. */
2673 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2674 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2675 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2676 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2677 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2678 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2679 #define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2680 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2681 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2682
2683 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2684 #define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2685 modifies global state. */
2686 #define RS6000_BTC_PURE 0x00000200 /* reads global
2687 state/mem and does
2688 not modify global state. */
2689 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2690 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2691
2692 /* Miscellaneous information. */
2693 #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2694 #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
2695 #define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2696 #define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
2697 #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
2698
2699 /* Convenience macros to document the instruction type. */
2700 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2701 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2702
2703 /* Builtin targets. For now, we reuse the masks for those options that are in
2704 target flags, and pick three random bits for SPE, paired and ldbl128 which
2705 aren't in target_flags. */
2706 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2707 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2708 #define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */
2709 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2710 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2711 #define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
2712 #define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
2713 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2714 #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
2715 #define RS6000_BTM_SPE MASK_STRING /* E500 */
2716 #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2717 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2718 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2719 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2720 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2721 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2722 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2723 #define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
2724 #define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
2725 #define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
2726 #define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
2727 #define RS6000_BTM_FLOAT128 MASK_FLOAT128_TYPE /* IEEE 128-bit float. */
2728
2729 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2730 | RS6000_BTM_VSX \
2731 | RS6000_BTM_P8_VECTOR \
2732 | RS6000_BTM_P9_VECTOR \
2733 | RS6000_BTM_P9_MISC \
2734 | RS6000_BTM_MODULO \
2735 | RS6000_BTM_CRYPTO \
2736 | RS6000_BTM_FRE \
2737 | RS6000_BTM_FRES \
2738 | RS6000_BTM_FRSQRTE \
2739 | RS6000_BTM_FRSQRTES \
2740 | RS6000_BTM_HTM \
2741 | RS6000_BTM_POPCNTD \
2742 | RS6000_BTM_CELL \
2743 | RS6000_BTM_DFP \
2744 | RS6000_BTM_HARD_FLOAT \
2745 | RS6000_BTM_LDBL128 \
2746 | RS6000_BTM_FLOAT128)
2747
2748 /* Define builtin enum index. */
2749
2750 #undef RS6000_BUILTIN_0
2751 #undef RS6000_BUILTIN_1
2752 #undef RS6000_BUILTIN_2
2753 #undef RS6000_BUILTIN_3
2754 #undef RS6000_BUILTIN_A
2755 #undef RS6000_BUILTIN_D
2756 #undef RS6000_BUILTIN_E
2757 #undef RS6000_BUILTIN_H
2758 #undef RS6000_BUILTIN_P
2759 #undef RS6000_BUILTIN_Q
2760 #undef RS6000_BUILTIN_S
2761 #undef RS6000_BUILTIN_X
2762
2763 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2764 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2765 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2766 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2767 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2768 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2769 #define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2770 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2771 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2772 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2773 #define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2774 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2775
2776 enum rs6000_builtins
2777 {
2778 #include "powerpcspe-builtin.def"
2779
2780 RS6000_BUILTIN_COUNT
2781 };
2782
2783 #undef RS6000_BUILTIN_0
2784 #undef RS6000_BUILTIN_1
2785 #undef RS6000_BUILTIN_2
2786 #undef RS6000_BUILTIN_3
2787 #undef RS6000_BUILTIN_A
2788 #undef RS6000_BUILTIN_D
2789 #undef RS6000_BUILTIN_E
2790 #undef RS6000_BUILTIN_H
2791 #undef RS6000_BUILTIN_P
2792 #undef RS6000_BUILTIN_Q
2793 #undef RS6000_BUILTIN_S
2794 #undef RS6000_BUILTIN_X
2795
2796 enum rs6000_builtin_type_index
2797 {
2798 RS6000_BTI_NOT_OPAQUE,
2799 RS6000_BTI_opaque_V2SI,
2800 RS6000_BTI_opaque_V2SF,
2801 RS6000_BTI_opaque_p_V2SI,
2802 RS6000_BTI_opaque_V4SI,
2803 RS6000_BTI_V16QI,
2804 RS6000_BTI_V1TI,
2805 RS6000_BTI_V2SI,
2806 RS6000_BTI_V2SF,
2807 RS6000_BTI_V2DI,
2808 RS6000_BTI_V2DF,
2809 RS6000_BTI_V4HI,
2810 RS6000_BTI_V4SI,
2811 RS6000_BTI_V4SF,
2812 RS6000_BTI_V8HI,
2813 RS6000_BTI_unsigned_V16QI,
2814 RS6000_BTI_unsigned_V1TI,
2815 RS6000_BTI_unsigned_V8HI,
2816 RS6000_BTI_unsigned_V4SI,
2817 RS6000_BTI_unsigned_V2DI,
2818 RS6000_BTI_bool_char, /* __bool char */
2819 RS6000_BTI_bool_short, /* __bool short */
2820 RS6000_BTI_bool_int, /* __bool int */
2821 RS6000_BTI_bool_long, /* __bool long */
2822 RS6000_BTI_pixel, /* __pixel */
2823 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2824 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2825 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2826 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2827 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2828 RS6000_BTI_long, /* long_integer_type_node */
2829 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2830 RS6000_BTI_long_long, /* long_long_integer_type_node */
2831 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2832 RS6000_BTI_INTQI, /* intQI_type_node */
2833 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2834 RS6000_BTI_INTHI, /* intHI_type_node */
2835 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2836 RS6000_BTI_INTSI, /* intSI_type_node */
2837 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2838 RS6000_BTI_INTDI, /* intDI_type_node */
2839 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2840 RS6000_BTI_INTTI, /* intTI_type_node */
2841 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2842 RS6000_BTI_float, /* float_type_node */
2843 RS6000_BTI_double, /* double_type_node */
2844 RS6000_BTI_long_double, /* long_double_type_node */
2845 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2846 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2847 RS6000_BTI_void, /* void_type_node */
2848 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2849 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
2850 RS6000_BTI_const_str, /* pointer to const char * */
2851 RS6000_BTI_MAX
2852 };
2853
2854
2855 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2856 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2857 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2858 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2859 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2860 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2861 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2862 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2863 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2864 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2865 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2866 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2867 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2868 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2869 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2870 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2871 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2872 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2873 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2874 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2875 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2876 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2877 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2878 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2879 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2880 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2881 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2882 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2883 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2884
2885 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2886 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2887 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2888 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2889 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2890 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2891 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2892 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2893 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2894 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2895 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2896 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2897 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2898 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2899 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2900 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2901 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2902 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2903 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2904 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2905 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2906 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2907 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2908
2909 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2910 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2911
2912 #define TARGET_SUPPORTS_WIDE_INT 1
2913
2914 #if (GCC_VERSION >= 3000)
2915 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2916 #endif