]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/riscv/riscv.h
RISC-V: Fix the riscv_legitimize_poly_move issue on targets where the minimal VLEN...
[thirdparty/gcc.git] / gcc / config / riscv / riscv.h
1 /* Definition of RISC-V target for GNU compiler.
2 Copyright (C) 2011-2023 Free Software Foundation, Inc.
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_RISCV_H
23 #define GCC_RISCV_H
24
25 #include <stdbool.h>
26 #include "config/riscv/riscv-opts.h"
27
28 /* Target CPU builtins. */
29 #define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
30
31 #ifdef TARGET_BIG_ENDIAN_DEFAULT
32 #define DEFAULT_ENDIAN_SPEC "b"
33 #else
34 #define DEFAULT_ENDIAN_SPEC "l"
35 #endif
36
37 /* Default target_flags if no switches are specified */
38
39 #ifndef TARGET_DEFAULT
40 #define TARGET_DEFAULT 0
41 #endif
42
43 #ifndef RISCV_TUNE_STRING_DEFAULT
44 #define RISCV_TUNE_STRING_DEFAULT "rocket"
45 #endif
46
47 extern const char *riscv_expand_arch (int argc, const char **argv);
48 extern const char *riscv_expand_arch_from_cpu (int argc, const char **argv);
49 extern const char *riscv_default_mtune (int argc, const char **argv);
50 extern const char *riscv_multi_lib_check (int argc, const char **argv);
51
52 # define EXTRA_SPEC_FUNCTIONS \
53 { "riscv_expand_arch", riscv_expand_arch }, \
54 { "riscv_expand_arch_from_cpu", riscv_expand_arch_from_cpu }, \
55 { "riscv_default_mtune", riscv_default_mtune }, \
56 { "riscv_multi_lib_check", riscv_multi_lib_check },
57
58 /* Support for a compile-time default CPU, et cetera. The rules are:
59 --with-arch is ignored if -march or -mcpu is specified.
60 --with-abi is ignored if -mabi is specified.
61 --with-tune is ignored if -mtune or -mcpu is specified.
62 --with-isa-spec is ignored if -misa-spec is specified.
63
64 But using default -march/-mtune value if -mcpu don't have valid option. */
65 #define OPTION_DEFAULT_SPECS \
66 {"tune", "%{!mtune=*:" \
67 " %{!mcpu=*:-mtune=%(VALUE)}" \
68 " %{mcpu=*:-mtune=%:riscv_default_mtune(%* %(VALUE))}}" }, \
69 {"arch", "%{!march=*:" \
70 " %{!mcpu=*:-march=%(VALUE)}" \
71 " %{mcpu=*:%:riscv_expand_arch_from_cpu(%* %(VALUE))}}" }, \
72 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
73 {"isa_spec", "%{!misa-spec=*:-misa-spec=%(VALUE)}" }, \
74
75 #ifdef IN_LIBGCC2
76 #undef TARGET_64BIT
77 /* Make this compile time constant for libgcc2 */
78 #define TARGET_64BIT (__riscv_xlen == 64)
79 #endif /* IN_LIBGCC2 */
80
81 #ifdef HAVE_AS_MISA_SPEC
82 #define ASM_MISA_SPEC "%{misa-spec=*}"
83 #else
84 #define ASM_MISA_SPEC ""
85 #endif
86
87 /* Reference:
88 https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html#Stringizing */
89 #define STRINGIZING(s) __STRINGIZING(s)
90 #define __STRINGIZING(s) #s
91
92 #define MULTILIB_DEFAULTS \
93 {"march=" STRINGIZING (TARGET_RISCV_DEFAULT_ARCH), \
94 "mabi=" STRINGIZING (TARGET_RISCV_DEFAULT_ABI) }
95
96 #undef ASM_SPEC
97 #define ASM_SPEC "\
98 %(subtarget_asm_debugging_spec) \
99 %{" FPIE_OR_FPIC_SPEC ":-fpic} \
100 %{march=*} \
101 %{mabi=*} \
102 %{mno-relax} \
103 %{mbig-endian} \
104 %{mlittle-endian} \
105 %(subtarget_asm_spec)" \
106 ASM_MISA_SPEC
107
108 #undef DRIVER_SELF_SPECS
109 #define DRIVER_SELF_SPECS \
110 "%{march=*:%:riscv_expand_arch(%*)} " \
111 "%{!march=*:%{mcpu=*:%:riscv_expand_arch_from_cpu(%*)}} "
112
113 #define TARGET_DEFAULT_CMODEL CM_MEDLOW
114
115 #define LOCAL_LABEL_PREFIX "."
116 #define USER_LABEL_PREFIX ""
117
118 /* Offsets recorded in opcodes are a multiple of this alignment factor.
119 The default for this in 64-bit mode is 8, which causes problems with
120 SFmode register saves. */
121 #define DWARF_CIE_DATA_ALIGNMENT -4
122
123 /* The mapping from gcc register number to DWARF 2 CFA column number. */
124 #define DWARF_FRAME_REGNUM(REGNO) \
125 (FRM_REG_P (REGNO) ? RISCV_DWARF_FRM \
126 : VXRM_REG_P (REGNO) ? RISCV_DWARF_VXRM \
127 : VL_REG_P (REGNO) ? RISCV_DWARF_VL \
128 : VTYPE_REG_P (REGNO) \
129 ? RISCV_DWARF_VTYPE \
130 : (GP_REG_P (REGNO) || FP_REG_P (REGNO) || V_REG_P (REGNO) \
131 ? REGNO \
132 : INVALID_REGNUM))
133
134 /* The DWARF 2 CFA column which tracks the return address. */
135 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
136 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
137
138 /* Describe how we implement __builtin_eh_return. */
139 #define EH_RETURN_DATA_REGNO(N) \
140 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
141
142 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
143
144 /* Target machine storage layout */
145
146 #define BITS_BIG_ENDIAN 0
147 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
148 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
149
150 #define MAX_BITS_PER_WORD 64
151
152 /* Width of a word, in units (bytes). */
153 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
154 #define BITS_PER_WORD (BITS_PER_UNIT * UNITS_PER_WORD)
155 #ifndef IN_LIBGCC2
156 #define MIN_UNITS_PER_WORD 4
157 #endif
158
159 /* Allows SImode op in builtin overflow pattern, see internal-fn.cc. */
160 #undef TARGET_MIN_ARITHMETIC_PRECISION
161 #define TARGET_MIN_ARITHMETIC_PRECISION riscv_min_arithmetic_precision
162
163 /* The `Q' extension is not yet supported. */
164 #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
165 /* Size per vector register. For VLEN = 32, size = poly (4, 4). Otherwise, size = poly (8, 8). */
166 #define UNITS_PER_V_REG (riscv_vector_chunks * riscv_bytes_per_vector_chunk)
167
168 /* The largest type that can be passed in floating-point registers. */
169 #define UNITS_PER_FP_ARG \
170 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
171 || riscv_abi == ABI_LP64) \
172 ? 0 \
173 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
174
175 /* Set the sizes of the core types. */
176 #define SHORT_TYPE_SIZE 16
177 #define INT_TYPE_SIZE 32
178 #define LONG_LONG_TYPE_SIZE 64
179 #define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
180 #define LONG_TYPE_SIZE POINTER_SIZE
181
182 #define FLOAT_TYPE_SIZE 32
183 #define DOUBLE_TYPE_SIZE 64
184 #define LONG_DOUBLE_TYPE_SIZE 128
185
186 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
187 #define PARM_BOUNDARY BITS_PER_WORD
188
189 /* Allocation boundary (in *bits*) for the code of a function. */
190 #define FUNCTION_BOUNDARY ((TARGET_RVC || TARGET_ZCA) ? 16 : 32)
191
192 /* The smallest supported stack boundary the calling convention supports. */
193 #define STACK_BOUNDARY \
194 (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 2 * BITS_PER_WORD)
195
196 /* The ABI stack alignment. */
197 #define ABI_STACK_BOUNDARY (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 128)
198
199 /* There is no point aligning anything to a rounder boundary than this. */
200 #define BIGGEST_ALIGNMENT 128
201
202 /* The user-level ISA permits unaligned accesses, but they are not required
203 of the privileged architecture. */
204 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
205
206 /* Define this if you wish to imitate the way many other C compilers
207 handle alignment of bitfields and the structures that contain
208 them.
209
210 The behavior is that the type written for a bit-field (`int',
211 `short', or other integer type) imposes an alignment for the
212 entire structure, as if the structure really did contain an
213 ordinary field of that type. In addition, the bit-field is placed
214 within the structure so that it would fit within such a field,
215 not crossing a boundary for it.
216
217 Thus, on most machines, a bit-field whose type is written as `int'
218 would not cross a four-byte boundary, and would force four-byte
219 alignment for the whole structure. (The alignment used may not
220 be four bytes; it is controlled by the other alignment
221 parameters.)
222
223 If the macro is defined, its definition should be a C expression;
224 a nonzero value for the expression enables this behavior. */
225
226 #define PCC_BITFIELD_TYPE_MATTERS 1
227
228 /* An integer expression for the size in bits of the largest integer machine
229 mode that should actually be used. We allow pairs of registers. */
230 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
231
232 /* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */
233 #define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \
234 (((COND) && ((ALIGN) < BITS_PER_WORD) \
235 && (TREE_CODE (TYPE) == ARRAY_TYPE \
236 || TREE_CODE (TYPE) == UNION_TYPE \
237 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
238
239 /* If defined, a C expression to compute the alignment for a static
240 variable. TYPE is the data type, and ALIGN is the alignment that
241 the object would ordinarily have. The value of this macro is used
242 instead of that alignment to align the object.
243
244 If this macro is not defined, then ALIGN is used.
245
246 One use of this macro is to increase alignment of medium-size
247 data to make it all fit in fewer cache lines. Another is to
248 cause character arrays to be word-aligned so that `strcpy' calls
249 that copy constants to character arrays can be done inline. */
250
251 #define DATA_ALIGNMENT(TYPE, ALIGN) \
252 RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \
253 TYPE, ALIGN)
254
255 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
256 character arrays to be word-aligned so that `strcpy' calls that copy
257 constants to character arrays can be done inline, and 'strcmp' can be
258 optimised to use word loads. */
259 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
260 RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
261
262 /* Define if operations between registers always perform the operation
263 on the full register even if a narrower mode is specified. */
264 #define WORD_REGISTER_OPERATIONS 1
265
266 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
267 moves. All other references are zero extended. */
268 #define LOAD_EXTEND_OP(MODE) \
269 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
270
271 /* Define this macro if it is advisable to hold scalars in registers
272 in a wider mode than that declared by the program. In such cases,
273 the value is constrained to be within the bounds of the declared
274 type, but kept valid in the wider mode. The signedness of the
275 extension may differ from that of the type. */
276
277 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
278 if (GET_MODE_CLASS (MODE) == MODE_INT \
279 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
280 { \
281 if ((MODE) == SImode) \
282 (UNSIGNEDP) = 0; \
283 (MODE) = word_mode; \
284 }
285
286 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
287 Extensions of pointers to word_mode must be signed. */
288 #define POINTERS_EXTEND_UNSIGNED false
289
290 /* Define if loading short immediate values into registers sign extends. */
291 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
292
293 /* Standard register usage. */
294
295 /* Number of hardware registers. We have:
296
297 - 32 integer registers
298 - 32 floating point registers
299 - 2 fake registers:
300 - ARG_POINTER_REGNUM
301 - FRAME_POINTER_REGNUM
302 - 1 vl register
303 - 1 vtype register
304 - 30 unused registers for future expansion
305 - 32 vector registers */
306
307 #define FIRST_PSEUDO_REGISTER 128
308
309 /* x0, sp, gp, and tp are fixed. */
310
311 #define FIXED_REGISTERS \
312 { /* General registers. */ \
313 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
314 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
315 /* Floating-point registers. */ \
316 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
317 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
318 /* Others. */ \
319 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
320 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
321 /* Vector registers. */ \
322 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
323 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
324 }
325
326 /* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
327 The call RTLs themselves clobber ra. */
328
329 #define CALL_USED_REGISTERS \
330 { /* General registers. */ \
331 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
332 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
333 /* Floating-point registers. */ \
334 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
335 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
336 /* Others. */ \
337 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
338 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
339 /* Vector registers. */ \
340 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
341 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
342 }
343
344 /* Select a register mode required for caller save of hard regno REGNO.
345 Contrary to what is documented, the default is not the smallest suitable
346 mode but the largest suitable mode for the given (REGNO, NREGS) pair and
347 it quickly creates paradoxical subregs that can be problematic. */
348 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
349 ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
350
351 /* Internal macros to classify an ISA register's type. */
352
353 #define GP_REG_FIRST 0
354 #define GP_REG_LAST (TARGET_RVE ? 15 : 31)
355 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
356
357 #define FP_REG_FIRST 32
358 #define FP_REG_LAST 63
359 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
360
361 #define V_REG_FIRST 96
362 #define V_REG_LAST 127
363 #define V_REG_NUM (V_REG_LAST - V_REG_FIRST + 1)
364
365 /* The DWARF 2 CFA column which tracks the return address from a
366 signal handler context. This means that to maintain backwards
367 compatibility, no hard register can be assigned this column if it
368 would need to be handled by the DWARF unwinder. */
369 #define DWARF_ALT_FRAME_RETURN_COLUMN 64
370
371 #define GP_REG_P(REGNO) \
372 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
373 #define FP_REG_P(REGNO) \
374 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
375 #define V_REG_P(REGNO) \
376 ((unsigned int) ((int) (REGNO) - V_REG_FIRST) < V_REG_NUM)
377 #define VL_REG_P(REGNO) ((REGNO) == VL_REGNUM)
378 #define VTYPE_REG_P(REGNO) ((REGNO) == VTYPE_REGNUM)
379 #define VXRM_REG_P(REGNO) ((REGNO) == VXRM_REGNUM)
380 #define FRM_REG_P(REGNO) ((REGNO) == FRM_REGNUM)
381
382 /* True when REGNO is in SIBCALL_REGS set. */
383 #define SIBCALL_REG_P(REGNO) \
384 TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO)
385
386 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
387
388 /* Use s0 as the frame pointer if it is so requested. */
389 #define HARD_FRAME_POINTER_REGNUM 8
390 #define STACK_POINTER_REGNUM 2
391 #define THREAD_POINTER_REGNUM 4
392
393 /* These two registers don't really exist: they get eliminated to either
394 the stack or hard frame pointer. */
395 #define ARG_POINTER_REGNUM 64
396 #define FRAME_POINTER_REGNUM 65
397
398 /* Define Dwarf for RVV. */
399 #define RISCV_DWARF_FRM (4096 + 0x003)
400 #define RISCV_DWARF_VXRM (4096 + 0x00a)
401 #define RISCV_DWARF_VL (4096 + 0xc20)
402 #define RISCV_DWARF_VTYPE (4096 + 0xc21)
403 #define RISCV_DWARF_VLENB (4096 + 0xc22)
404
405 /* Register in which static-chain is passed to a function. */
406 #define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
407
408 /* Registers used as temporaries in prologue/epilogue code.
409
410 The prologue registers mustn't conflict with any
411 incoming arguments, the static chain pointer, or the frame pointer.
412 The epilogue temporary mustn't conflict with the return registers,
413 the frame pointer, the EH stack adjustment, or the EH data registers. */
414
415 #define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST)
416 #define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
417 #define RISCV_PROLOGUE_TEMP2_REGNUM (GP_TEMP_FIRST + 1)
418 #define RISCV_PROLOGUE_TEMP2(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP2_REGNUM)
419
420 #define RISCV_CALL_ADDRESS_TEMP_REGNUM (GP_TEMP_FIRST + 1)
421 #define RISCV_CALL_ADDRESS_TEMP(MODE) \
422 gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_TEMP_REGNUM)
423
424 #define RETURN_ADDR_MASK (1 << RETURN_ADDR_REGNUM)
425 #define S0_MASK (1 << S0_REGNUM)
426 #define S1_MASK (1 << S1_REGNUM)
427 #define S2_MASK (1 << S2_REGNUM)
428 #define S3_MASK (1 << S3_REGNUM)
429 #define S4_MASK (1 << S4_REGNUM)
430 #define S5_MASK (1 << S5_REGNUM)
431 #define S6_MASK (1 << S6_REGNUM)
432 #define S7_MASK (1 << S7_REGNUM)
433 #define S8_MASK (1 << S8_REGNUM)
434 #define S9_MASK (1 << S9_REGNUM)
435 #define S10_MASK (1 << S10_REGNUM)
436 #define S11_MASK (1 << S11_REGNUM)
437
438 #define MULTI_PUSH_GPR_MASK \
439 (RETURN_ADDR_MASK | S0_MASK | S1_MASK | S2_MASK | S3_MASK | S4_MASK \
440 | S5_MASK | S6_MASK | S7_MASK | S8_MASK | S9_MASK | S10_MASK | S11_MASK)
441 #define ZCMP_MAX_SPIMM 3
442 #define ZCMP_SP_INC_STEP 16
443 #define ZCMP_INVALID_S0S10_SREGS_COUNTS 11
444 #define ZCMP_S0S11_SREGS_COUNTS 12
445 #define ZCMP_MAX_GRP_SLOTS 13
446
447 #define MCOUNT_NAME "_mcount"
448
449 #define NO_PROFILE_COUNTERS 1
450
451 /* Emit rtl for profiling. Output assembler code to FILE
452 to call "_mcount" for profiling a function entry. */
453 #define PROFILE_HOOK(LABEL) \
454 { \
455 rtx fun, ra; \
456 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
457 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
458 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
459 }
460
461 /* All the work done in PROFILE_HOOK, but still required. */
462 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
463
464 /* Define this macro if it is as good or better to call a constant
465 function address than to call an address kept in a register. */
466 #define NO_FUNCTION_CSE 1
467
468 /* Define the classes of registers for register constraints in the
469 machine description. Also define ranges of constants.
470
471 One of the classes must always be named ALL_REGS and include all hard regs.
472 If there is more than one class, another class must be named NO_REGS
473 and contain no registers.
474
475 The name GENERAL_REGS must be the name of a class (or an alias for
476 another name such as ALL_REGS). This is the class of registers
477 that is allowed by "g" or "r" in a register constraint.
478 Also, registers outside this class are allocated only when
479 instructions express preferences for them.
480
481 The classes must be numbered in nondecreasing order; that is,
482 a larger-numbered class must never be contained completely
483 in a smaller-numbered class.
484
485 For any two classes, it is very desirable that there be another
486 class that represents their union. */
487
488 enum reg_class
489 {
490 NO_REGS, /* no registers in set */
491 SIBCALL_REGS, /* registers used by indirect sibcalls */
492 JALR_REGS, /* registers used by indirect calls */
493 GR_REGS, /* integer registers */
494 FP_REGS, /* floating-point registers */
495 FRAME_REGS, /* arg pointer and frame pointer */
496 VM_REGS, /* v0.t registers */
497 VD_REGS, /* vector registers except v0.t */
498 V_REGS, /* vector registers */
499 ALL_REGS, /* all registers */
500 LIM_REG_CLASSES /* max value + 1 */
501 };
502
503 #define N_REG_CLASSES (int) LIM_REG_CLASSES
504
505 #define GENERAL_REGS GR_REGS
506
507 /* An initializer containing the names of the register classes as C
508 string constants. These names are used in writing some of the
509 debugging dumps. */
510
511 #define REG_CLASS_NAMES \
512 { \
513 "NO_REGS", \
514 "SIBCALL_REGS", \
515 "JALR_REGS", \
516 "GR_REGS", \
517 "FP_REGS", \
518 "FRAME_REGS", \
519 "VM_REGS", \
520 "VD_REGS", \
521 "V_REGS", \
522 "ALL_REGS" \
523 }
524
525 /* An initializer containing the contents of the register classes,
526 as integers which are bit masks. The Nth integer specifies the
527 contents of class N. The way the integer MASK is interpreted is
528 that register R is in the class if `MASK & (1 << R)' is 1.
529
530 When the machine has more than 32 registers, an integer does not
531 suffice. Then the integers are replaced by sub-initializers,
532 braced groupings containing several integers. Each
533 sub-initializer must be suitable as an initializer for the type
534 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
535
536 #define REG_CLASS_CONTENTS \
537 { \
538 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
539 { 0xf003fcc0, 0x00000000, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
540 { 0xffffffc0, 0x00000000, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
541 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
542 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FP_REGS */ \
543 { 0x00000000, 0x00000000, 0x00000003, 0x00000000 }, /* FRAME_REGS */ \
544 { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, /* V0_REGS */ \
545 { 0x00000000, 0x00000000, 0x00000000, 0xfffffffe }, /* VNoV0_REGS */ \
546 { 0x00000000, 0x00000000, 0x00000000, 0xffffffff }, /* V_REGS */ \
547 { 0xffffffff, 0xffffffff, 0x00000003, 0xffffffff } /* ALL_REGS */ \
548 }
549
550 /* A C expression whose value is a register class containing hard
551 register REGNO. In general there is more that one such class;
552 choose a class which is "minimal", meaning that no smaller class
553 also contains the register. */
554
555 #define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
556
557 /* A macro whose definition is the name of the class to which a
558 valid base register must belong. A base register is one used in
559 an address which is the register value plus a displacement. */
560
561 #define BASE_REG_CLASS GR_REGS
562
563 /* A macro whose definition is the name of the class to which a
564 valid index register must belong. An index register is one used
565 in an address where its value is either multiplied by a scale
566 factor or added to another register (as well as added to a
567 displacement). */
568
569 #define INDEX_REG_CLASS riscv_index_reg_class()
570
571 /* We generally want to put call-clobbered registers ahead of
572 call-saved ones. (IRA expects this.) */
573
574 #define REG_ALLOC_ORDER \
575 { \
576 /* Call-clobbered GPRs. */ \
577 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
578 /* Call-saved GPRs. */ \
579 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
580 /* GPRs that can never be exposed to the register allocator. */ \
581 0, 2, 3, 4, \
582 /* Call-clobbered FPRs. */ \
583 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
584 60, 61, 62, 63, \
585 /* Call-saved FPRs. */ \
586 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
587 /* v1 ~ v31 vector registers. */ \
588 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, \
589 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, \
590 124, 125, 126, 127, \
591 /* The vector mask register. */ \
592 96, \
593 /* None of the remaining classes have defined call-saved \
594 registers. */ \
595 64, 65, 66, 67 \
596 }
597
598 /* True if VALUE is a signed 12-bit number. */
599
600 #define SMALL_OPERAND(VALUE) \
601 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
602
603 #define POLY_SMALL_OPERAND_P(POLY_VALUE) \
604 (POLY_VALUE.is_constant () ? \
605 SMALL_OPERAND (POLY_VALUE.to_constant ()) : false)
606
607 /* True if VALUE can be loaded into a register using LUI. */
608
609 #define LUI_OPERAND(VALUE) \
610 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
611 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
612
613 /* If this is a single bit mask, then we can load it with bseti. Special
614 handling of SImode 0x80000000 on RV64 is done in riscv_build_integer_1. */
615 #define SINGLE_BIT_MASK_OPERAND(VALUE) \
616 (pow2p_hwi (TARGET_64BIT \
617 ? (VALUE) \
618 : ((VALUE) & ((HOST_WIDE_INT_1U << 32)-1))))
619
620 /* True if VALUE can be represented as an immediate with 1 extra bit
621 set: we check that it is not a SMALL_OPERAND (as this would be true
622 for all small operands) unmodified and turns into a small operand
623 once we clear the top bit. */
624 #define UIMM_EXTRA_BIT_OPERAND(VALUE) \
625 (!SMALL_OPERAND (VALUE) \
626 && SMALL_OPERAND (VALUE & ~(HOST_WIDE_INT_1U << floor_log2 (VALUE))))
627
628 /* Stack layout; function entry, exit and calling. */
629
630 #define STACK_GROWS_DOWNWARD 1
631
632 #define FRAME_GROWS_DOWNWARD 1
633
634 #define RETURN_ADDR_RTX riscv_return_addr
635
636 #define ELIMINABLE_REGS \
637 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
638 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
639 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
640 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
641
642 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
643 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
644
645 /* Allocate stack space for arguments at the beginning of each function. */
646 #define ACCUMULATE_OUTGOING_ARGS 1
647
648 /* The argument pointer always points to the first argument. */
649 #define FIRST_PARM_OFFSET(FNDECL) 0
650
651 #define REG_PARM_STACK_SPACE(FNDECL) 0
652
653 /* Define this if it is the responsibility of the caller to
654 allocate the area reserved for arguments passed in registers.
655 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
656 of this macro is to determine whether the space is included in
657 `crtl->outgoing_args_size'. */
658 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
659
660 #define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
661
662 /* Symbolic macros for the registers used to return integer and floating
663 point values. */
664
665 #define GP_RETURN GP_ARG_FIRST
666 #define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
667
668 #define MAX_ARGS_IN_REGISTERS (riscv_abi == ABI_ILP32E ? 6 : 8)
669
670 #define MAX_ARGS_IN_VECTOR_REGISTERS (16)
671 #define MAX_ARGS_IN_MASK_REGISTERS (1)
672
673 /* Symbolic macros for the first/last argument registers. */
674
675 #define GP_ARG_FIRST (GP_REG_FIRST + 10)
676 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
677 #define GP_TEMP_FIRST (GP_REG_FIRST + 5)
678 #define FP_ARG_FIRST (FP_REG_FIRST + 10)
679 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
680 #define V_ARG_FIRST (V_REG_FIRST + 8)
681 #define V_ARG_LAST (V_ARG_FIRST + MAX_ARGS_IN_VECTOR_REGISTERS - 1)
682
683 #define CALLEE_SAVED_REG_NUMBER(REGNO) \
684 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
685 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
686
687 #define CALLEE_SAVED_FREG_NUMBER(REGNO) CALLEE_SAVED_REG_NUMBER (REGNO - 32)
688
689 #define LIBCALL_VALUE(MODE) \
690 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
691
692 #define FUNCTION_VALUE(VALTYPE, FUNC) \
693 riscv_function_value (VALTYPE, FUNC, VOIDmode)
694
695 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
696
697 /* 1 if N is a possible register number for function argument passing.
698 We have no FP argument registers when soft-float. */
699
700 /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
701 #define FUNCTION_ARG_REGNO_P(N) \
702 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
703 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
704
705 /* Define the standard RISC-V calling convention and variants. */
706
707 enum riscv_cc
708 {
709 RISCV_CC_BASE = 0, /* Base standard RISC-V ABI. */
710 RISCV_CC_V, /* For functions that pass or return values in V registers. */
711 RISCV_CC_UNKNOWN
712 };
713
714 typedef struct {
715 /* The calling convention that current function used. */
716 enum riscv_cc variant_cc;
717
718 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
719 unsigned int num_gprs;
720
721 /* Number of floating-point registers used so far, likewise. */
722 unsigned int num_fprs;
723
724 int rvv_psabi_warning;
725
726 /* Number of mask registers used so far, up to MAX_ARGS_IN_MASK_REGISTERS. */
727 unsigned int num_mrs;
728
729 /* The used state of args in vector registers, true for used by prev arg,
730 initial to false. */
731 bool used_vrs[MAX_ARGS_IN_VECTOR_REGISTERS];
732 } CUMULATIVE_ARGS;
733
734 /* Return riscv calling convention of call_insn. */
735 extern enum riscv_cc get_riscv_cc (const rtx use);
736
737 /* Initialize a variable CUM of type CUMULATIVE_ARGS
738 for a call to a function whose data type is FNTYPE.
739 For a library call, FNTYPE is 0. */
740
741 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
742 riscv_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (INDIRECT), \
743 (N_NAMED_ARGS) != -1)
744
745 #define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
746
747 /* Align based on stack boundary, which might have been set by the user. */
748 #define RISCV_STACK_ALIGN(LOC) \
749 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
750
751 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
752 the stack pointer does not matter. The value is tested only in
753 functions that have frame pointers.
754 No definition is equivalent to always zero. */
755
756 #define EXIT_IGNORE_STACK 1
757
758
759 /* Trampolines are a block of code followed by two pointers. */
760
761 #define TRAMPOLINE_CODE_SIZE 16
762 #define TRAMPOLINE_SIZE \
763 ((Pmode == SImode) \
764 ? TRAMPOLINE_CODE_SIZE \
765 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
766 #define TRAMPOLINE_ALIGNMENT POINTER_SIZE
767
768 /* Addressing modes, and classification of registers for them. */
769
770 #define REGNO_OK_FOR_INDEX_P(REGNO) \
771 riscv_regno_ok_for_index_p (REGNO)
772
773 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
774 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
775
776 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
777 and check its validity for a certain class.
778 We have two alternate definitions for each of them.
779 The usual definition accepts all pseudo regs; the other rejects them all.
780 The symbol REG_OK_STRICT causes the latter definition to be used.
781
782 Most source files want to accept pseudo regs in the hope that
783 they will get allocated to the class that the insn wants them to be in.
784 Some source files that are used after register allocation
785 need to be strict. */
786
787 #ifndef REG_OK_STRICT
788 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
789 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
790 #else
791 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
792 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
793 #endif
794
795 #define REG_OK_FOR_INDEX_P(X) 0
796
797 /* Maximum number of registers that can appear in a valid memory address. */
798
799 #define MAX_REGS_PER_ADDRESS 1
800
801 #define CONSTANT_ADDRESS_P(X) \
802 (CONSTANT_P (X) && memory_address_p (SImode, X))
803
804 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
805 'the start of the function that this code is output in'. */
806
807 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
808 do { \
809 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
810 asm_fprintf ((FILE), "%U%s", \
811 XSTR (XEXP (DECL_RTL (current_function_decl), \
812 0), 0)); \
813 else \
814 asm_fprintf ((FILE), "%U%s", (NAME)); \
815 } while (0)
816
817 #define JUMP_TABLES_IN_TEXT_SECTION 0
818 #define CASE_VECTOR_MODE SImode
819 #define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
820
821 #define LOCAL_SYM_P(sym) \
822 ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
823 || ((GET_CODE (sym) == CONST) \
824 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
825 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))
826
827 /* The load-address macro is used for PC-relative addressing of symbols
828 that bind locally. Don't use it for symbols that should be addressed
829 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
830 currently results in more opportunities for linker relaxation. */
831 #define USE_LOAD_ADDRESS_MACRO(sym) \
832 (!TARGET_EXPLICIT_RELOCS && \
833 ((flag_pic && LOCAL_SYM_P (sym)) || riscv_cmodel == CM_MEDANY))
834
835 /* Define this as 1 if `char' should by default be signed; else as 0. */
836 #define DEFAULT_SIGNED_CHAR 0
837
838 #define MOVE_MAX UNITS_PER_WORD
839 #define MAX_MOVE_MAX 8
840
841 /* The SPARC port says:
842 Nonzero if access to memory by bytes is slow and undesirable.
843 For RISC chips, it means that access to memory by bytes is no
844 better than access by words when possible, so grab a whole word
845 and maybe make use of that. */
846 #define SLOW_BYTE_ACCESS 1
847
848 /* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
849 in the md file instead. */
850 #define SHIFT_COUNT_TRUNCATED 0
851
852 /* Specify the machine mode that pointers have.
853 After generation of rtl, the compiler makes no further distinction
854 between pointers and any other objects of this machine mode. */
855
856 #define Pmode word_mode
857
858 /* Specify the machine mode that registers have. */
859
860 #define Xmode (TARGET_64BIT ? DImode : SImode)
861
862 /* Give call MEMs SImode since it is the "most permissive" mode
863 for both 32-bit and 64-bit targets. */
864
865 #define FUNCTION_MODE SImode
866
867 /* A C expression for the cost of a branch instruction. A value of 2
868 seems to minimize code size. */
869
870 #define BRANCH_COST(speed_p, predictable_p) \
871 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
872
873 /* True if the target optimizes short forward branches around integer
874 arithmetic instructions into predicated operations, e.g., for
875 conditional-move operations. The macro assumes that all branch
876 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
877 support this feature. The macro further assumes that any integer
878 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
879 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
880 counterparts, including C.MV and C.LI) can be in the branch shadow. */
881
882 #define TARGET_SFB_ALU (riscv_microarchitecture == sifive_7)
883
884 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
885
886 /* Control the assembler format that we output. */
887
888 /* Output to assembler file text saying following lines
889 may contain character constants, extra white space, comments, etc. */
890
891 #ifndef ASM_APP_ON
892 #define ASM_APP_ON " #APP\n"
893 #endif
894
895 /* Output to assembler file text saying following lines
896 no longer contain unusual constructs. */
897
898 #ifndef ASM_APP_OFF
899 #define ASM_APP_OFF " #NO_APP\n"
900 #endif
901
902 #define REGISTER_NAMES \
903 { "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
904 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
905 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
906 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
907 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
908 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
909 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
910 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
911 "arg", "frame", "vl", "vtype", "vxrm", "frm", "N/A", "N/A", \
912 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
913 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
914 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
915 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
916 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
917 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
918 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",}
919
920 #define ADDITIONAL_REGISTER_NAMES \
921 { \
922 { "x0", 0 + GP_REG_FIRST }, \
923 { "x1", 1 + GP_REG_FIRST }, \
924 { "x2", 2 + GP_REG_FIRST }, \
925 { "x3", 3 + GP_REG_FIRST }, \
926 { "x4", 4 + GP_REG_FIRST }, \
927 { "x5", 5 + GP_REG_FIRST }, \
928 { "x6", 6 + GP_REG_FIRST }, \
929 { "x7", 7 + GP_REG_FIRST }, \
930 { "x8", 8 + GP_REG_FIRST }, \
931 { "x9", 9 + GP_REG_FIRST }, \
932 { "x10", 10 + GP_REG_FIRST }, \
933 { "x11", 11 + GP_REG_FIRST }, \
934 { "x12", 12 + GP_REG_FIRST }, \
935 { "x13", 13 + GP_REG_FIRST }, \
936 { "x14", 14 + GP_REG_FIRST }, \
937 { "x15", 15 + GP_REG_FIRST }, \
938 { "x16", 16 + GP_REG_FIRST }, \
939 { "x17", 17 + GP_REG_FIRST }, \
940 { "x18", 18 + GP_REG_FIRST }, \
941 { "x19", 19 + GP_REG_FIRST }, \
942 { "x20", 20 + GP_REG_FIRST }, \
943 { "x21", 21 + GP_REG_FIRST }, \
944 { "x22", 22 + GP_REG_FIRST }, \
945 { "x23", 23 + GP_REG_FIRST }, \
946 { "x24", 24 + GP_REG_FIRST }, \
947 { "x25", 25 + GP_REG_FIRST }, \
948 { "x26", 26 + GP_REG_FIRST }, \
949 { "x27", 27 + GP_REG_FIRST }, \
950 { "x28", 28 + GP_REG_FIRST }, \
951 { "x29", 29 + GP_REG_FIRST }, \
952 { "x30", 30 + GP_REG_FIRST }, \
953 { "x31", 31 + GP_REG_FIRST }, \
954 { "f0", 0 + FP_REG_FIRST }, \
955 { "f1", 1 + FP_REG_FIRST }, \
956 { "f2", 2 + FP_REG_FIRST }, \
957 { "f3", 3 + FP_REG_FIRST }, \
958 { "f4", 4 + FP_REG_FIRST }, \
959 { "f5", 5 + FP_REG_FIRST }, \
960 { "f6", 6 + FP_REG_FIRST }, \
961 { "f7", 7 + FP_REG_FIRST }, \
962 { "f8", 8 + FP_REG_FIRST }, \
963 { "f9", 9 + FP_REG_FIRST }, \
964 { "f10", 10 + FP_REG_FIRST }, \
965 { "f11", 11 + FP_REG_FIRST }, \
966 { "f12", 12 + FP_REG_FIRST }, \
967 { "f13", 13 + FP_REG_FIRST }, \
968 { "f14", 14 + FP_REG_FIRST }, \
969 { "f15", 15 + FP_REG_FIRST }, \
970 { "f16", 16 + FP_REG_FIRST }, \
971 { "f17", 17 + FP_REG_FIRST }, \
972 { "f18", 18 + FP_REG_FIRST }, \
973 { "f19", 19 + FP_REG_FIRST }, \
974 { "f20", 20 + FP_REG_FIRST }, \
975 { "f21", 21 + FP_REG_FIRST }, \
976 { "f22", 22 + FP_REG_FIRST }, \
977 { "f23", 23 + FP_REG_FIRST }, \
978 { "f24", 24 + FP_REG_FIRST }, \
979 { "f25", 25 + FP_REG_FIRST }, \
980 { "f26", 26 + FP_REG_FIRST }, \
981 { "f27", 27 + FP_REG_FIRST }, \
982 { "f28", 28 + FP_REG_FIRST }, \
983 { "f29", 29 + FP_REG_FIRST }, \
984 { "f30", 30 + FP_REG_FIRST }, \
985 { "f31", 31 + FP_REG_FIRST }, \
986 }
987
988 /* Globalizing directive for a label. */
989 #define GLOBAL_ASM_OP "\t.globl\t"
990
991 /* This is how to store into the string LABEL
992 the symbol_ref name of an internal numbered label where
993 PREFIX is the class of label and NUM is the number within the class.
994 This is suitable for output with `assemble_name'. */
995
996 #undef ASM_GENERATE_INTERNAL_LABEL
997 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
998 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
999
1000 /* This is how to output an element of a case-vector that is absolute. */
1001
1002 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1003 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
1004
1005 /* This is how to output an element of a PIC case-vector. */
1006
1007 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1008 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
1009 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
1010
1011 /* This is how to output an assembler line
1012 that says to advance the location counter
1013 to a multiple of 2**LOG bytes. */
1014
1015 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
1016 fprintf (STREAM, "\t.align\t%d\n", (LOG))
1017
1018 /* Define the strings to put out for each section in the object file. */
1019 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
1020 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
1021 #define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
1022 #define BSS_SECTION_ASM_OP "\t.bss"
1023 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
1024 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
1025
1026 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
1027 do \
1028 { \
1029 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
1030 reg_names[STACK_POINTER_REGNUM], \
1031 reg_names[STACK_POINTER_REGNUM], \
1032 TARGET_64BIT ? "sd" : "sw", \
1033 reg_names[REGNO], \
1034 reg_names[STACK_POINTER_REGNUM]); \
1035 } \
1036 while (0)
1037
1038 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
1039 do \
1040 { \
1041 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
1042 TARGET_64BIT ? "ld" : "lw", \
1043 reg_names[REGNO], \
1044 reg_names[STACK_POINTER_REGNUM], \
1045 reg_names[STACK_POINTER_REGNUM], \
1046 reg_names[STACK_POINTER_REGNUM]); \
1047 } \
1048 while (0)
1049
1050 #define ASM_COMMENT_START "#"
1051
1052 /* Add output .variant_cc directive for specific function definition. */
1053 #undef ASM_DECLARE_FUNCTION_NAME
1054 #define ASM_DECLARE_FUNCTION_NAME(STR, NAME, DECL) \
1055 riscv_declare_function_name (STR, NAME, DECL)
1056
1057 /* Add output .variant_cc directive for specific alias definition. */
1058 #undef ASM_OUTPUT_DEF_FROM_DECLS
1059 #define ASM_OUTPUT_DEF_FROM_DECLS(STR, DECL, TARGET) \
1060 riscv_asm_output_alias (STR, DECL, TARGET)
1061
1062 /* Add output .variant_cc directive for specific extern function. */
1063 #undef ASM_OUTPUT_EXTERNAL
1064 #define ASM_OUTPUT_EXTERNAL(STR, DECL, NAME) \
1065 riscv_asm_output_external (STR, DECL, NAME)
1066
1067 #undef SIZE_TYPE
1068 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
1069
1070 #undef PTRDIFF_TYPE
1071 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
1072
1073 /* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
1074
1075 #define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
1076
1077 /* The maximum number of bytes that can be copied by a straight-line
1078 cpymemsi implementation. */
1079
1080 #define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
1081
1082 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1083 move-instruction pairs, we will do a cpymem or libcall instead.
1084 Do not use move_by_pieces at all when strict alignment is not
1085 in effect but the target has slow unaligned accesses; in this
1086 case, cpymem or libcall is more efficient. */
1087
1088 #define MOVE_RATIO(speed) \
1089 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
1090 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
1091 CLEAR_RATIO (speed) / 2)
1092
1093 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
1094 of the length of a memset call, but use the default otherwise. */
1095
1096 #define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
1097
1098 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
1099 optimizing for size adjust the ratio to account for the overhead of
1100 loading the constant and replicating it across the word. */
1101
1102 #define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
1103
1104 #ifndef USED_FOR_TARGET
1105 extern const enum reg_class riscv_regno_to_class[];
1106 extern bool riscv_slow_unaligned_access_p;
1107 extern bool riscv_user_wants_strict_align;
1108 extern unsigned riscv_stack_boundary;
1109 extern unsigned riscv_bytes_per_vector_chunk;
1110 extern poly_uint16 riscv_vector_chunks;
1111 extern poly_int64 riscv_v_adjust_nunits (enum machine_mode, int);
1112 extern poly_int64 riscv_v_adjust_nunits (machine_mode, bool, int, int);
1113 extern poly_int64 riscv_v_adjust_precision (enum machine_mode, int);
1114 extern poly_int64 riscv_v_adjust_bytesize (enum machine_mode, int);
1115 /* The number of bits and bytes in a RVV vector. */
1116 #define BITS_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk * 8))
1117 #define BYTES_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk))
1118 #endif
1119
1120 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1121 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
1122
1123 #define XLEN_SPEC \
1124 "%{march=rv32*:32}" \
1125 "%{march=rv64*:64}" \
1126
1127 #define ABI_SPEC \
1128 "%{mabi=ilp32:ilp32}" \
1129 "%{mabi=ilp32e:ilp32e}" \
1130 "%{mabi=ilp32f:ilp32f}" \
1131 "%{mabi=ilp32d:ilp32d}" \
1132 "%{mabi=lp64:lp64}" \
1133 "%{mabi=lp64f:lp64f}" \
1134 "%{mabi=lp64d:lp64d}" \
1135
1136 /* ISA constants needed for code generation. */
1137 #define OPCODE_LW 0x2003
1138 #define OPCODE_LD 0x3003
1139 #define OPCODE_AUIPC 0x17
1140 #define OPCODE_JALR 0x67
1141 #define OPCODE_LUI 0x37
1142 #define OPCODE_ADDI 0x13
1143 #define SHIFT_RD 7
1144 #define SHIFT_RS1 15
1145 #define SHIFT_IMM 20
1146 #define IMM_BITS 12
1147 #define C_S_BITS 5
1148 #define C_SxSP_BITS 6
1149
1150 #define IMM_REACH (1LL << IMM_BITS)
1151 #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
1152 #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
1153
1154 #define SWSP_REACH (4LL << C_SxSP_BITS)
1155 #define SDSP_REACH (8LL << C_SxSP_BITS)
1156
1157 /* This is the maximum value that can be represented in a compressed load/store
1158 offset (an unsigned 5-bit value scaled by 4). */
1159 #define CSW_MAX_OFFSET (((4LL << C_S_BITS) - 1) & ~3)
1160
1161 /* Called from RISCV_REORG, this is defined in riscv-sr.cc. */
1162
1163 extern void riscv_remove_unneeded_save_restore_calls (void);
1164
1165 #define HARD_REGNO_RENAME_OK(FROM, TO) riscv_hard_regno_rename_ok (FROM, TO)
1166
1167 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1168 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1169 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1170 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1171
1172 #define TARGET_SUPPORTS_WIDE_INT 1
1173
1174 #define REGISTER_TARGET_PRAGMAS() riscv_register_pragmas ()
1175
1176 #define REGMODE_NATURAL_SIZE(MODE) riscv_regmode_natural_size (MODE)
1177
1178 #define RISCV_DWARF_VLENB (4096 + 0xc22)
1179
1180 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 1 /* VLENB */)
1181
1182 #define DWARF_REG_TO_UNWIND_COLUMN(REGNO) \
1183 ((REGNO == RISCV_DWARF_VLENB) ? (FIRST_PSEUDO_REGISTER + 1) : REGNO)
1184
1185 /* Like s390, riscv also defined this macro for the vector comparision. Then
1186 the simplify-rtx relational_result will canonicalize the result to the
1187 CONST1_RTX for the simplification. */
1188 #define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
1189
1190 /* Mode switching (Lazy code motion) for RVV rounding mode instructions. */
1191 #define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_VECTOR)
1192 #define NUM_MODES_FOR_MODE_SWITCHING {VXRM_MODE_NONE, riscv_vector::FRM_NONE}
1193
1194
1195 /* The size difference between different RVV modes can be up to 64 times.
1196 e.g. RVVMF64BI vs RVVMF1BI on zvl512b, which is [1, 1] vs [64, 64]. */
1197 #define MAX_POLY_VARIANT 64
1198
1199 #endif /* ! GCC_RISCV_H */