]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/riscv/riscv.h
PR target/97682 - Fix to reuse t1 register between call address and epilogue.
[thirdparty/gcc.git] / gcc / config / riscv / riscv.h
1 /* Definition of RISC-V target for GNU compiler.
2 Copyright (C) 2011-2020 Free Software Foundation, Inc.
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_RISCV_H
23 #define GCC_RISCV_H
24
25 #include "config/riscv/riscv-opts.h"
26
27 /* Target CPU builtins. */
28 #define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
29
30 /* Target CPU versions for D. */
31 #define TARGET_D_CPU_VERSIONS riscv_d_target_versions
32
33 /* Default target_flags if no switches are specified */
34
35 #ifndef TARGET_DEFAULT
36 #define TARGET_DEFAULT 0
37 #endif
38
39 #ifndef RISCV_TUNE_STRING_DEFAULT
40 #define RISCV_TUNE_STRING_DEFAULT "rocket"
41 #endif
42
43 extern const char *riscv_expand_arch (int argc, const char **argv);
44 extern const char *riscv_expand_arch_from_cpu (int argc, const char **argv);
45 extern const char *riscv_default_mtune (int argc, const char **argv);
46
47 # define EXTRA_SPEC_FUNCTIONS \
48 { "riscv_expand_arch", riscv_expand_arch }, \
49 { "riscv_expand_arch_from_cpu", riscv_expand_arch_from_cpu }, \
50 { "riscv_default_mtune", riscv_default_mtune },
51
52 /* Support for a compile-time default CPU, et cetera. The rules are:
53 --with-arch is ignored if -march or -mcpu is specified.
54 --with-abi is ignored if -mabi is specified.
55 --with-tune is ignored if -mtune or -mcpu is specified.
56
57 But using default -march/-mtune value if -mcpu don't have valid option. */
58 #define OPTION_DEFAULT_SPECS \
59 {"tune", "%{!mtune=*:" \
60 " %{!mcpu=*:-mtune=%(VALUE)}" \
61 " %{mcpu=*:-mtune=%:riscv_default_mtune(%* %(VALUE))}}" }, \
62 {"arch", "%{!march=*:" \
63 " %{!mcpu=*:-march=%(VALUE)}" \
64 " %{mcpu=*:%:riscv_expand_arch_from_cpu(%* %(VALUE))}}" }, \
65 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
66
67 #ifdef IN_LIBGCC2
68 #undef TARGET_64BIT
69 /* Make this compile time constant for libgcc2 */
70 #define TARGET_64BIT (__riscv_xlen == 64)
71 #endif /* IN_LIBGCC2 */
72
73 #undef ASM_SPEC
74 #define ASM_SPEC "\
75 %(subtarget_asm_debugging_spec) \
76 %{" FPIE_OR_FPIC_SPEC ":-fpic} \
77 %{march=*} \
78 %{mabi=*} \
79 %(subtarget_asm_spec)"
80
81 #undef DRIVER_SELF_SPECS
82 #define DRIVER_SELF_SPECS \
83 "%{march=*:%:riscv_expand_arch(%*)} " \
84 "%{!march=*:%{mcpu=*:%:riscv_expand_arch_from_cpu(%*)}} "
85
86 #define TARGET_DEFAULT_CMODEL CM_MEDLOW
87
88 #define LOCAL_LABEL_PREFIX "."
89 #define USER_LABEL_PREFIX ""
90
91 /* Offsets recorded in opcodes are a multiple of this alignment factor.
92 The default for this in 64-bit mode is 8, which causes problems with
93 SFmode register saves. */
94 #define DWARF_CIE_DATA_ALIGNMENT -4
95
96 /* The mapping from gcc register number to DWARF 2 CFA column number. */
97 #define DWARF_FRAME_REGNUM(REGNO) \
98 (GP_REG_P (REGNO) || FP_REG_P (REGNO) ? REGNO : INVALID_REGNUM)
99
100 /* The DWARF 2 CFA column which tracks the return address. */
101 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
102 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
103
104 /* Describe how we implement __builtin_eh_return. */
105 #define EH_RETURN_DATA_REGNO(N) \
106 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
107
108 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
109
110 /* Target machine storage layout */
111
112 #define BITS_BIG_ENDIAN 0
113 #define BYTES_BIG_ENDIAN 0
114 #define WORDS_BIG_ENDIAN 0
115
116 #define MAX_BITS_PER_WORD 64
117
118 /* Width of a word, in units (bytes). */
119 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
120 #ifndef IN_LIBGCC2
121 #define MIN_UNITS_PER_WORD 4
122 #endif
123
124 /* The `Q' extension is not yet supported. */
125 #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
126
127 /* The largest type that can be passed in floating-point registers. */
128 #define UNITS_PER_FP_ARG \
129 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
130 || riscv_abi == ABI_LP64) \
131 ? 0 \
132 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
133
134 /* Set the sizes of the core types. */
135 #define SHORT_TYPE_SIZE 16
136 #define INT_TYPE_SIZE 32
137 #define LONG_LONG_TYPE_SIZE 64
138 #define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
139 #define LONG_TYPE_SIZE POINTER_SIZE
140
141 #define FLOAT_TYPE_SIZE 32
142 #define DOUBLE_TYPE_SIZE 64
143 #define LONG_DOUBLE_TYPE_SIZE 128
144
145 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
146 #define PARM_BOUNDARY BITS_PER_WORD
147
148 /* Allocation boundary (in *bits*) for the code of a function. */
149 #define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32)
150
151 /* The smallest supported stack boundary the calling convention supports. */
152 #define STACK_BOUNDARY \
153 (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 2 * BITS_PER_WORD)
154
155 /* The ABI stack alignment. */
156 #define ABI_STACK_BOUNDARY (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 128)
157
158 /* There is no point aligning anything to a rounder boundary than this. */
159 #define BIGGEST_ALIGNMENT 128
160
161 /* The user-level ISA permits unaligned accesses, but they are not required
162 of the privileged architecture. */
163 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
164
165 /* Define this if you wish to imitate the way many other C compilers
166 handle alignment of bitfields and the structures that contain
167 them.
168
169 The behavior is that the type written for a bit-field (`int',
170 `short', or other integer type) imposes an alignment for the
171 entire structure, as if the structure really did contain an
172 ordinary field of that type. In addition, the bit-field is placed
173 within the structure so that it would fit within such a field,
174 not crossing a boundary for it.
175
176 Thus, on most machines, a bit-field whose type is written as `int'
177 would not cross a four-byte boundary, and would force four-byte
178 alignment for the whole structure. (The alignment used may not
179 be four bytes; it is controlled by the other alignment
180 parameters.)
181
182 If the macro is defined, its definition should be a C expression;
183 a nonzero value for the expression enables this behavior. */
184
185 #define PCC_BITFIELD_TYPE_MATTERS 1
186
187 /* An integer expression for the size in bits of the largest integer machine
188 mode that should actually be used. We allow pairs of registers. */
189 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
190
191 /* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */
192 #define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \
193 (((COND) && ((ALIGN) < BITS_PER_WORD) \
194 && (TREE_CODE (TYPE) == ARRAY_TYPE \
195 || TREE_CODE (TYPE) == UNION_TYPE \
196 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
197
198 /* If defined, a C expression to compute the alignment for a static
199 variable. TYPE is the data type, and ALIGN is the alignment that
200 the object would ordinarily have. The value of this macro is used
201 instead of that alignment to align the object.
202
203 If this macro is not defined, then ALIGN is used.
204
205 One use of this macro is to increase alignment of medium-size
206 data to make it all fit in fewer cache lines. Another is to
207 cause character arrays to be word-aligned so that `strcpy' calls
208 that copy constants to character arrays can be done inline. */
209
210 #define DATA_ALIGNMENT(TYPE, ALIGN) \
211 RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \
212 TYPE, ALIGN)
213
214 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
215 character arrays to be word-aligned so that `strcpy' calls that copy
216 constants to character arrays can be done inline, and 'strcmp' can be
217 optimised to use word loads. */
218 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
219 RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
220
221 /* Define if operations between registers always perform the operation
222 on the full register even if a narrower mode is specified. */
223 #define WORD_REGISTER_OPERATIONS 1
224
225 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
226 moves. All other references are zero extended. */
227 #define LOAD_EXTEND_OP(MODE) \
228 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
229
230 /* Define this macro if it is advisable to hold scalars in registers
231 in a wider mode than that declared by the program. In such cases,
232 the value is constrained to be within the bounds of the declared
233 type, but kept valid in the wider mode. The signedness of the
234 extension may differ from that of the type. */
235
236 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
237 if (GET_MODE_CLASS (MODE) == MODE_INT \
238 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
239 { \
240 if ((MODE) == SImode) \
241 (UNSIGNEDP) = 0; \
242 (MODE) = word_mode; \
243 }
244
245 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
246 Extensions of pointers to word_mode must be signed. */
247 #define POINTERS_EXTEND_UNSIGNED false
248
249 /* Define if loading short immediate values into registers sign extends. */
250 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
251
252 /* Standard register usage. */
253
254 /* Number of hardware registers. We have:
255
256 - 32 integer registers
257 - 32 floating point registers
258 - 2 fake registers:
259 - ARG_POINTER_REGNUM
260 - FRAME_POINTER_REGNUM */
261
262 #define FIRST_PSEUDO_REGISTER 66
263
264 /* x0, sp, gp, and tp are fixed. */
265
266 #define FIXED_REGISTERS \
267 { /* General registers. */ \
268 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
269 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
270 /* Floating-point registers. */ \
271 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
272 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
273 /* Others. */ \
274 1, 1 \
275 }
276
277 /* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
278 The call RTLs themselves clobber ra. */
279
280 #define CALL_USED_REGISTERS \
281 { /* General registers. */ \
282 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
283 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
284 /* Floating-point registers. */ \
285 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
286 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
287 /* Others. */ \
288 1, 1 \
289 }
290
291 /* Select a register mode required for caller save of hard regno REGNO.
292 Contrary to what is documented, the default is not the smallest suitable
293 mode but the largest suitable mode for the given (REGNO, NREGS) pair and
294 it quickly creates paradoxical subregs that can be problematic. */
295 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
296 ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
297
298 /* Internal macros to classify an ISA register's type. */
299
300 #define GP_REG_FIRST 0
301 #define GP_REG_LAST (TARGET_RVE ? 15 : 31)
302 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
303
304 #define FP_REG_FIRST 32
305 #define FP_REG_LAST 63
306 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
307
308 /* The DWARF 2 CFA column which tracks the return address from a
309 signal handler context. This means that to maintain backwards
310 compatibility, no hard register can be assigned this column if it
311 would need to be handled by the DWARF unwinder. */
312 #define DWARF_ALT_FRAME_RETURN_COLUMN 64
313
314 #define GP_REG_P(REGNO) \
315 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
316 #define FP_REG_P(REGNO) \
317 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
318
319 /* True when REGNO is in SIBCALL_REGS set. */
320 #define SIBCALL_REG_P(REGNO) \
321 TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO)
322
323 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
324
325 /* Use s0 as the frame pointer if it is so requested. */
326 #define HARD_FRAME_POINTER_REGNUM 8
327 #define STACK_POINTER_REGNUM 2
328 #define THREAD_POINTER_REGNUM 4
329
330 /* These two registers don't really exist: they get eliminated to either
331 the stack or hard frame pointer. */
332 #define ARG_POINTER_REGNUM 64
333 #define FRAME_POINTER_REGNUM 65
334
335 /* Register in which static-chain is passed to a function. */
336 #define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
337
338 /* Registers used as temporaries in prologue/epilogue code.
339
340 The prologue registers mustn't conflict with any
341 incoming arguments, the static chain pointer, or the frame pointer.
342 The epilogue temporary mustn't conflict with the return registers,
343 the frame pointer, the EH stack adjustment, or the EH data registers. */
344
345 #define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST)
346 #define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
347
348 #define RISCV_CALL_ADDRESS_TEMP_REGNUM (GP_TEMP_FIRST + 1)
349 #define RISCV_CALL_ADDRESS_TEMP(MODE) \
350 gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_TEMP_REGNUM)
351
352 #define MCOUNT_NAME "_mcount"
353
354 #define NO_PROFILE_COUNTERS 1
355
356 /* Emit rtl for profiling. Output assembler code to FILE
357 to call "_mcount" for profiling a function entry. */
358 #define PROFILE_HOOK(LABEL) \
359 { \
360 rtx fun, ra; \
361 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
362 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
363 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
364 }
365
366 /* All the work done in PROFILE_HOOK, but still required. */
367 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
368
369 /* Define this macro if it is as good or better to call a constant
370 function address than to call an address kept in a register. */
371 #define NO_FUNCTION_CSE 1
372
373 /* Define the classes of registers for register constraints in the
374 machine description. Also define ranges of constants.
375
376 One of the classes must always be named ALL_REGS and include all hard regs.
377 If there is more than one class, another class must be named NO_REGS
378 and contain no registers.
379
380 The name GENERAL_REGS must be the name of a class (or an alias for
381 another name such as ALL_REGS). This is the class of registers
382 that is allowed by "g" or "r" in a register constraint.
383 Also, registers outside this class are allocated only when
384 instructions express preferences for them.
385
386 The classes must be numbered in nondecreasing order; that is,
387 a larger-numbered class must never be contained completely
388 in a smaller-numbered class.
389
390 For any two classes, it is very desirable that there be another
391 class that represents their union. */
392
393 enum reg_class
394 {
395 NO_REGS, /* no registers in set */
396 SIBCALL_REGS, /* registers used by indirect sibcalls */
397 JALR_REGS, /* registers used by indirect calls */
398 GR_REGS, /* integer registers */
399 FP_REGS, /* floating-point registers */
400 FRAME_REGS, /* arg pointer and frame pointer */
401 ALL_REGS, /* all registers */
402 LIM_REG_CLASSES /* max value + 1 */
403 };
404
405 #define N_REG_CLASSES (int) LIM_REG_CLASSES
406
407 #define GENERAL_REGS GR_REGS
408
409 /* An initializer containing the names of the register classes as C
410 string constants. These names are used in writing some of the
411 debugging dumps. */
412
413 #define REG_CLASS_NAMES \
414 { \
415 "NO_REGS", \
416 "SIBCALL_REGS", \
417 "JALR_REGS", \
418 "GR_REGS", \
419 "FP_REGS", \
420 "FRAME_REGS", \
421 "ALL_REGS" \
422 }
423
424 /* An initializer containing the contents of the register classes,
425 as integers which are bit masks. The Nth integer specifies the
426 contents of class N. The way the integer MASK is interpreted is
427 that register R is in the class if `MASK & (1 << R)' is 1.
428
429 When the machine has more than 32 registers, an integer does not
430 suffice. Then the integers are replaced by sub-initializers,
431 braced groupings containing several integers. Each
432 sub-initializer must be suitable as an initializer for the type
433 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
434
435 #define REG_CLASS_CONTENTS \
436 { \
437 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
438 { 0xf003fcc0, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
439 { 0xffffffc0, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
440 { 0xffffffff, 0x00000000, 0x00000000 }, /* GR_REGS */ \
441 { 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \
442 { 0x00000000, 0x00000000, 0x00000003 }, /* FRAME_REGS */ \
443 { 0xffffffff, 0xffffffff, 0x00000003 } /* ALL_REGS */ \
444 }
445
446 /* A C expression whose value is a register class containing hard
447 register REGNO. In general there is more that one such class;
448 choose a class which is "minimal", meaning that no smaller class
449 also contains the register. */
450
451 #define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
452
453 /* A macro whose definition is the name of the class to which a
454 valid base register must belong. A base register is one used in
455 an address which is the register value plus a displacement. */
456
457 #define BASE_REG_CLASS GR_REGS
458
459 /* A macro whose definition is the name of the class to which a
460 valid index register must belong. An index register is one used
461 in an address where its value is either multiplied by a scale
462 factor or added to another register (as well as added to a
463 displacement). */
464
465 #define INDEX_REG_CLASS NO_REGS
466
467 /* We generally want to put call-clobbered registers ahead of
468 call-saved ones. (IRA expects this.) */
469
470 #define REG_ALLOC_ORDER \
471 { \
472 /* Call-clobbered GPRs. */ \
473 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
474 /* Call-saved GPRs. */ \
475 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
476 /* GPRs that can never be exposed to the register allocator. */ \
477 0, 2, 3, 4, \
478 /* Call-clobbered FPRs. */ \
479 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
480 60, 61, 62, 63, \
481 /* Call-saved FPRs. */ \
482 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
483 /* None of the remaining classes have defined call-saved \
484 registers. */ \
485 64, 65 \
486 }
487
488 /* True if VALUE is a signed 12-bit number. */
489
490 #define SMALL_OPERAND(VALUE) \
491 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
492
493 /* True if VALUE can be loaded into a register using LUI. */
494
495 #define LUI_OPERAND(VALUE) \
496 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
497 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
498
499 /* Stack layout; function entry, exit and calling. */
500
501 #define STACK_GROWS_DOWNWARD 1
502
503 #define FRAME_GROWS_DOWNWARD 1
504
505 #define RETURN_ADDR_RTX riscv_return_addr
506
507 #define ELIMINABLE_REGS \
508 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
509 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
510 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
511 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
512
513 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
514 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
515
516 /* Allocate stack space for arguments at the beginning of each function. */
517 #define ACCUMULATE_OUTGOING_ARGS 1
518
519 /* The argument pointer always points to the first argument. */
520 #define FIRST_PARM_OFFSET(FNDECL) 0
521
522 #define REG_PARM_STACK_SPACE(FNDECL) 0
523
524 /* Define this if it is the responsibility of the caller to
525 allocate the area reserved for arguments passed in registers.
526 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
527 of this macro is to determine whether the space is included in
528 `crtl->outgoing_args_size'. */
529 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
530
531 #define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
532
533 /* Symbolic macros for the registers used to return integer and floating
534 point values. */
535
536 #define GP_RETURN GP_ARG_FIRST
537 #define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
538
539 #define MAX_ARGS_IN_REGISTERS (riscv_abi == ABI_ILP32E ? 6 : 8)
540
541 /* Symbolic macros for the first/last argument registers. */
542
543 #define GP_ARG_FIRST (GP_REG_FIRST + 10)
544 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
545 #define GP_TEMP_FIRST (GP_REG_FIRST + 5)
546 #define FP_ARG_FIRST (FP_REG_FIRST + 10)
547 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
548
549 #define CALLEE_SAVED_REG_NUMBER(REGNO) \
550 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
551 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
552
553 #define LIBCALL_VALUE(MODE) \
554 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
555
556 #define FUNCTION_VALUE(VALTYPE, FUNC) \
557 riscv_function_value (VALTYPE, FUNC, VOIDmode)
558
559 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
560
561 /* 1 if N is a possible register number for function argument passing.
562 We have no FP argument registers when soft-float. */
563
564 /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
565 #define FUNCTION_ARG_REGNO_P(N) \
566 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
567 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
568
569 typedef struct {
570 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
571 unsigned int num_gprs;
572
573 /* Number of floating-point registers used so far, likewise. */
574 unsigned int num_fprs;
575 } CUMULATIVE_ARGS;
576
577 /* Initialize a variable CUM of type CUMULATIVE_ARGS
578 for a call to a function whose data type is FNTYPE.
579 For a library call, FNTYPE is 0. */
580
581 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
582 memset (&(CUM), 0, sizeof (CUM))
583
584 #define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
585
586 /* Align based on stack boundary, which might have been set by the user. */
587 #define RISCV_STACK_ALIGN(LOC) \
588 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
589
590 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
591 the stack pointer does not matter. The value is tested only in
592 functions that have frame pointers.
593 No definition is equivalent to always zero. */
594
595 #define EXIT_IGNORE_STACK 1
596
597
598 /* Trampolines are a block of code followed by two pointers. */
599
600 #define TRAMPOLINE_CODE_SIZE 16
601 #define TRAMPOLINE_SIZE \
602 ((Pmode == SImode) \
603 ? TRAMPOLINE_CODE_SIZE \
604 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
605 #define TRAMPOLINE_ALIGNMENT POINTER_SIZE
606
607 /* Addressing modes, and classification of registers for them. */
608
609 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
610 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
611 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
612
613 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
614 and check its validity for a certain class.
615 We have two alternate definitions for each of them.
616 The usual definition accepts all pseudo regs; the other rejects them all.
617 The symbol REG_OK_STRICT causes the latter definition to be used.
618
619 Most source files want to accept pseudo regs in the hope that
620 they will get allocated to the class that the insn wants them to be in.
621 Some source files that are used after register allocation
622 need to be strict. */
623
624 #ifndef REG_OK_STRICT
625 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
626 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
627 #else
628 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
629 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
630 #endif
631
632 #define REG_OK_FOR_INDEX_P(X) 0
633
634 /* Maximum number of registers that can appear in a valid memory address. */
635
636 #define MAX_REGS_PER_ADDRESS 1
637
638 #define CONSTANT_ADDRESS_P(X) \
639 (CONSTANT_P (X) && memory_address_p (SImode, X))
640
641 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
642 'the start of the function that this code is output in'. */
643
644 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
645 do { \
646 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
647 asm_fprintf ((FILE), "%U%s", \
648 XSTR (XEXP (DECL_RTL (current_function_decl), \
649 0), 0)); \
650 else \
651 asm_fprintf ((FILE), "%U%s", (NAME)); \
652 } while (0)
653
654 #define JUMP_TABLES_IN_TEXT_SECTION 0
655 #define CASE_VECTOR_MODE SImode
656 #define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
657
658 /* The load-address macro is used for PC-relative addressing of symbols
659 that bind locally. Don't use it for symbols that should be addressed
660 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
661 currently results in more opportunities for linker relaxation. */
662 #define USE_LOAD_ADDRESS_MACRO(sym) \
663 (!TARGET_EXPLICIT_RELOCS && \
664 ((flag_pic \
665 && ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
666 || ((GET_CODE (sym) == CONST) \
667 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
668 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))) \
669 || riscv_cmodel == CM_MEDANY))
670
671 /* Define this as 1 if `char' should by default be signed; else as 0. */
672 #define DEFAULT_SIGNED_CHAR 0
673
674 #define MOVE_MAX UNITS_PER_WORD
675 #define MAX_MOVE_MAX 8
676
677 /* The SPARC port says:
678 Nonzero if access to memory by bytes is slow and undesirable.
679 For RISC chips, it means that access to memory by bytes is no
680 better than access by words when possible, so grab a whole word
681 and maybe make use of that. */
682 #define SLOW_BYTE_ACCESS 1
683
684 /* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
685 in the md file instead. */
686 #define SHIFT_COUNT_TRUNCATED 0
687
688 /* Specify the machine mode that pointers have.
689 After generation of rtl, the compiler makes no further distinction
690 between pointers and any other objects of this machine mode. */
691
692 #define Pmode word_mode
693
694 /* Give call MEMs SImode since it is the "most permissive" mode
695 for both 32-bit and 64-bit targets. */
696
697 #define FUNCTION_MODE SImode
698
699 /* A C expression for the cost of a branch instruction. A value of 2
700 seems to minimize code size. */
701
702 #define BRANCH_COST(speed_p, predictable_p) \
703 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
704
705 /* True if the target optimizes short forward branches around integer
706 arithmetic instructions into predicated operations, e.g., for
707 conditional-move operations. The macro assumes that all branch
708 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
709 support this feature. The macro further assumes that any integer
710 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
711 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
712 counterparts, including C.MV and C.LI) can be in the branch shadow. */
713
714 #define TARGET_SFB_ALU (riscv_microarchitecture == sifive_7)
715
716 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
717
718 /* Control the assembler format that we output. */
719
720 /* Output to assembler file text saying following lines
721 may contain character constants, extra white space, comments, etc. */
722
723 #ifndef ASM_APP_ON
724 #define ASM_APP_ON " #APP\n"
725 #endif
726
727 /* Output to assembler file text saying following lines
728 no longer contain unusual constructs. */
729
730 #ifndef ASM_APP_OFF
731 #define ASM_APP_OFF " #NO_APP\n"
732 #endif
733
734 #define REGISTER_NAMES \
735 { "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
736 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
737 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
738 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
739 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
740 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
741 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
742 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
743 "arg", "frame", }
744
745 #define ADDITIONAL_REGISTER_NAMES \
746 { \
747 { "x0", 0 + GP_REG_FIRST }, \
748 { "x1", 1 + GP_REG_FIRST }, \
749 { "x2", 2 + GP_REG_FIRST }, \
750 { "x3", 3 + GP_REG_FIRST }, \
751 { "x4", 4 + GP_REG_FIRST }, \
752 { "x5", 5 + GP_REG_FIRST }, \
753 { "x6", 6 + GP_REG_FIRST }, \
754 { "x7", 7 + GP_REG_FIRST }, \
755 { "x8", 8 + GP_REG_FIRST }, \
756 { "x9", 9 + GP_REG_FIRST }, \
757 { "x10", 10 + GP_REG_FIRST }, \
758 { "x11", 11 + GP_REG_FIRST }, \
759 { "x12", 12 + GP_REG_FIRST }, \
760 { "x13", 13 + GP_REG_FIRST }, \
761 { "x14", 14 + GP_REG_FIRST }, \
762 { "x15", 15 + GP_REG_FIRST }, \
763 { "x16", 16 + GP_REG_FIRST }, \
764 { "x17", 17 + GP_REG_FIRST }, \
765 { "x18", 18 + GP_REG_FIRST }, \
766 { "x19", 19 + GP_REG_FIRST }, \
767 { "x20", 20 + GP_REG_FIRST }, \
768 { "x21", 21 + GP_REG_FIRST }, \
769 { "x22", 22 + GP_REG_FIRST }, \
770 { "x23", 23 + GP_REG_FIRST }, \
771 { "x24", 24 + GP_REG_FIRST }, \
772 { "x25", 25 + GP_REG_FIRST }, \
773 { "x26", 26 + GP_REG_FIRST }, \
774 { "x27", 27 + GP_REG_FIRST }, \
775 { "x28", 28 + GP_REG_FIRST }, \
776 { "x29", 29 + GP_REG_FIRST }, \
777 { "x30", 30 + GP_REG_FIRST }, \
778 { "x31", 31 + GP_REG_FIRST }, \
779 { "f0", 0 + FP_REG_FIRST }, \
780 { "f1", 1 + FP_REG_FIRST }, \
781 { "f2", 2 + FP_REG_FIRST }, \
782 { "f3", 3 + FP_REG_FIRST }, \
783 { "f4", 4 + FP_REG_FIRST }, \
784 { "f5", 5 + FP_REG_FIRST }, \
785 { "f6", 6 + FP_REG_FIRST }, \
786 { "f7", 7 + FP_REG_FIRST }, \
787 { "f8", 8 + FP_REG_FIRST }, \
788 { "f9", 9 + FP_REG_FIRST }, \
789 { "f10", 10 + FP_REG_FIRST }, \
790 { "f11", 11 + FP_REG_FIRST }, \
791 { "f12", 12 + FP_REG_FIRST }, \
792 { "f13", 13 + FP_REG_FIRST }, \
793 { "f14", 14 + FP_REG_FIRST }, \
794 { "f15", 15 + FP_REG_FIRST }, \
795 { "f16", 16 + FP_REG_FIRST }, \
796 { "f17", 17 + FP_REG_FIRST }, \
797 { "f18", 18 + FP_REG_FIRST }, \
798 { "f19", 19 + FP_REG_FIRST }, \
799 { "f20", 20 + FP_REG_FIRST }, \
800 { "f21", 21 + FP_REG_FIRST }, \
801 { "f22", 22 + FP_REG_FIRST }, \
802 { "f23", 23 + FP_REG_FIRST }, \
803 { "f24", 24 + FP_REG_FIRST }, \
804 { "f25", 25 + FP_REG_FIRST }, \
805 { "f26", 26 + FP_REG_FIRST }, \
806 { "f27", 27 + FP_REG_FIRST }, \
807 { "f28", 28 + FP_REG_FIRST }, \
808 { "f29", 29 + FP_REG_FIRST }, \
809 { "f30", 30 + FP_REG_FIRST }, \
810 { "f31", 31 + FP_REG_FIRST }, \
811 }
812
813 /* Globalizing directive for a label. */
814 #define GLOBAL_ASM_OP "\t.globl\t"
815
816 /* This is how to store into the string LABEL
817 the symbol_ref name of an internal numbered label where
818 PREFIX is the class of label and NUM is the number within the class.
819 This is suitable for output with `assemble_name'. */
820
821 #undef ASM_GENERATE_INTERNAL_LABEL
822 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
823 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
824
825 /* This is how to output an element of a case-vector that is absolute. */
826
827 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
828 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
829
830 /* This is how to output an element of a PIC case-vector. */
831
832 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
833 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
834 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
835
836 /* This is how to output an assembler line
837 that says to advance the location counter
838 to a multiple of 2**LOG bytes. */
839
840 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
841 fprintf (STREAM, "\t.align\t%d\n", (LOG))
842
843 /* Define the strings to put out for each section in the object file. */
844 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
845 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
846 #define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
847 #define BSS_SECTION_ASM_OP "\t.bss"
848 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
849 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
850
851 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
852 do \
853 { \
854 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
855 reg_names[STACK_POINTER_REGNUM], \
856 reg_names[STACK_POINTER_REGNUM], \
857 TARGET_64BIT ? "sd" : "sw", \
858 reg_names[REGNO], \
859 reg_names[STACK_POINTER_REGNUM]); \
860 } \
861 while (0)
862
863 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
864 do \
865 { \
866 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
867 TARGET_64BIT ? "ld" : "lw", \
868 reg_names[REGNO], \
869 reg_names[STACK_POINTER_REGNUM], \
870 reg_names[STACK_POINTER_REGNUM], \
871 reg_names[STACK_POINTER_REGNUM]); \
872 } \
873 while (0)
874
875 #define ASM_COMMENT_START "#"
876
877 #undef SIZE_TYPE
878 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
879
880 #undef PTRDIFF_TYPE
881 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
882
883 /* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
884
885 #define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
886
887 /* The maximum number of bytes that can be copied by a straight-line
888 cpymemsi implementation. */
889
890 #define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
891
892 /* If a memory-to-memory move would take MOVE_RATIO or more simple
893 move-instruction pairs, we will do a cpymem or libcall instead.
894 Do not use move_by_pieces at all when strict alignment is not
895 in effect but the target has slow unaligned accesses; in this
896 case, cpymem or libcall is more efficient. */
897
898 #define MOVE_RATIO(speed) \
899 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
900 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
901 CLEAR_RATIO (speed) / 2)
902
903 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
904 of the length of a memset call, but use the default otherwise. */
905
906 #define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
907
908 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
909 optimizing for size adjust the ratio to account for the overhead of
910 loading the constant and replicating it across the word. */
911
912 #define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
913
914 #ifndef USED_FOR_TARGET
915 extern const enum reg_class riscv_regno_to_class[];
916 extern bool riscv_slow_unaligned_access_p;
917 extern unsigned riscv_stack_boundary;
918 #endif
919
920 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
921 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
922
923 #define XLEN_SPEC \
924 "%{march=rv32*:32}" \
925 "%{march=rv64*:64}" \
926
927 #define ABI_SPEC \
928 "%{mabi=ilp32:ilp32}" \
929 "%{mabi=ilp32e:ilp32e}" \
930 "%{mabi=ilp32f:ilp32f}" \
931 "%{mabi=ilp32d:ilp32d}" \
932 "%{mabi=lp64:lp64}" \
933 "%{mabi=lp64f:lp64f}" \
934 "%{mabi=lp64d:lp64d}" \
935
936 /* ISA constants needed for code generation. */
937 #define OPCODE_LW 0x2003
938 #define OPCODE_LD 0x3003
939 #define OPCODE_AUIPC 0x17
940 #define OPCODE_JALR 0x67
941 #define OPCODE_LUI 0x37
942 #define OPCODE_ADDI 0x13
943 #define SHIFT_RD 7
944 #define SHIFT_RS1 15
945 #define SHIFT_IMM 20
946 #define IMM_BITS 12
947 #define C_S_BITS 5
948 #define C_SxSP_BITS 6
949
950 #define IMM_REACH (1LL << IMM_BITS)
951 #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
952 #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
953
954 #define SWSP_REACH (4LL << C_SxSP_BITS)
955 #define SDSP_REACH (8LL << C_SxSP_BITS)
956
957 /* This is the maximum value that can be represented in a compressed load/store
958 offset (an unsigned 5-bit value scaled by 4). */
959 #define CSW_MAX_OFFSET (((4LL << C_S_BITS) - 1) & ~3)
960
961 /* Called from RISCV_REORG, this is defined in riscv-sr.c. */
962
963 extern void riscv_remove_unneeded_save_restore_calls (void);
964
965 #define HARD_REGNO_RENAME_OK(FROM, TO) riscv_hard_regno_rename_ok (FROM, TO)
966
967 #endif /* ! GCC_RISCV_H */