]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/riscv/riscv.h
gcc/riscv: Add a mechanism to remove some calls to _riscv_save_0
[thirdparty/gcc.git] / gcc / config / riscv / riscv.h
1 /* Definition of RISC-V target for GNU compiler.
2 Copyright (C) 2011-2019 Free Software Foundation, Inc.
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_RISCV_H
23 #define GCC_RISCV_H
24
25 #include "config/riscv/riscv-opts.h"
26
27 /* Target CPU builtins. */
28 #define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
29
30 /* Target CPU versions for D. */
31 #define TARGET_D_CPU_VERSIONS riscv_d_target_versions
32
33 /* Default target_flags if no switches are specified */
34
35 #ifndef TARGET_DEFAULT
36 #define TARGET_DEFAULT 0
37 #endif
38
39 #ifndef RISCV_TUNE_STRING_DEFAULT
40 #define RISCV_TUNE_STRING_DEFAULT "rocket"
41 #endif
42
43 /* Support for a compile-time default CPU, et cetera. The rules are:
44 --with-arch is ignored if -march is specified.
45 --with-abi is ignored if -mabi is specified.
46 --with-tune is ignored if -mtune is specified. */
47 #define OPTION_DEFAULT_SPECS \
48 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
49 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
50 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
51
52 #ifdef IN_LIBGCC2
53 #undef TARGET_64BIT
54 /* Make this compile time constant for libgcc2 */
55 #define TARGET_64BIT (__riscv_xlen == 64)
56 #endif /* IN_LIBGCC2 */
57
58 #undef ASM_SPEC
59 #define ASM_SPEC "\
60 %(subtarget_asm_debugging_spec) \
61 %{" FPIE_OR_FPIC_SPEC ":-fpic} \
62 %{march=*} \
63 %{mabi=*} \
64 %(subtarget_asm_spec)"
65
66 #define TARGET_DEFAULT_CMODEL CM_MEDLOW
67
68 #define LOCAL_LABEL_PREFIX "."
69 #define USER_LABEL_PREFIX ""
70
71 /* Offsets recorded in opcodes are a multiple of this alignment factor.
72 The default for this in 64-bit mode is 8, which causes problems with
73 SFmode register saves. */
74 #define DWARF_CIE_DATA_ALIGNMENT -4
75
76 /* The mapping from gcc register number to DWARF 2 CFA column number. */
77 #define DWARF_FRAME_REGNUM(REGNO) \
78 (GP_REG_P (REGNO) || FP_REG_P (REGNO) ? REGNO : INVALID_REGNUM)
79
80 /* The DWARF 2 CFA column which tracks the return address. */
81 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
82 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
83
84 /* Describe how we implement __builtin_eh_return. */
85 #define EH_RETURN_DATA_REGNO(N) \
86 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
87
88 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
89
90 /* Target machine storage layout */
91
92 #define BITS_BIG_ENDIAN 0
93 #define BYTES_BIG_ENDIAN 0
94 #define WORDS_BIG_ENDIAN 0
95
96 #define MAX_BITS_PER_WORD 64
97
98 /* Width of a word, in units (bytes). */
99 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
100 #ifndef IN_LIBGCC2
101 #define MIN_UNITS_PER_WORD 4
102 #endif
103
104 /* The `Q' extension is not yet supported. */
105 #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
106
107 /* The largest type that can be passed in floating-point registers. */
108 #define UNITS_PER_FP_ARG \
109 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
110 || riscv_abi == ABI_LP64) \
111 ? 0 \
112 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
113
114 /* Set the sizes of the core types. */
115 #define SHORT_TYPE_SIZE 16
116 #define INT_TYPE_SIZE 32
117 #define LONG_LONG_TYPE_SIZE 64
118 #define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
119 #define LONG_TYPE_SIZE POINTER_SIZE
120
121 #define FLOAT_TYPE_SIZE 32
122 #define DOUBLE_TYPE_SIZE 64
123 #define LONG_DOUBLE_TYPE_SIZE 128
124
125 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
126 #define PARM_BOUNDARY BITS_PER_WORD
127
128 /* Allocation boundary (in *bits*) for the code of a function. */
129 #define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32)
130
131 /* The smallest supported stack boundary the calling convention supports. */
132 #define STACK_BOUNDARY \
133 (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 2 * BITS_PER_WORD)
134
135 /* The ABI stack alignment. */
136 #define ABI_STACK_BOUNDARY (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 128)
137
138 /* There is no point aligning anything to a rounder boundary than this. */
139 #define BIGGEST_ALIGNMENT 128
140
141 /* The user-level ISA permits unaligned accesses, but they are not required
142 of the privileged architecture. */
143 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
144
145 /* Define this if you wish to imitate the way many other C compilers
146 handle alignment of bitfields and the structures that contain
147 them.
148
149 The behavior is that the type written for a bit-field (`int',
150 `short', or other integer type) imposes an alignment for the
151 entire structure, as if the structure really did contain an
152 ordinary field of that type. In addition, the bit-field is placed
153 within the structure so that it would fit within such a field,
154 not crossing a boundary for it.
155
156 Thus, on most machines, a bit-field whose type is written as `int'
157 would not cross a four-byte boundary, and would force four-byte
158 alignment for the whole structure. (The alignment used may not
159 be four bytes; it is controlled by the other alignment
160 parameters.)
161
162 If the macro is defined, its definition should be a C expression;
163 a nonzero value for the expression enables this behavior. */
164
165 #define PCC_BITFIELD_TYPE_MATTERS 1
166
167 /* An integer expression for the size in bits of the largest integer machine
168 mode that should actually be used. We allow pairs of registers. */
169 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
170
171 /* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */
172 #define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \
173 (((COND) && ((ALIGN) < BITS_PER_WORD) \
174 && (TREE_CODE (TYPE) == ARRAY_TYPE \
175 || TREE_CODE (TYPE) == UNION_TYPE \
176 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
177
178 /* If defined, a C expression to compute the alignment for a static
179 variable. TYPE is the data type, and ALIGN is the alignment that
180 the object would ordinarily have. The value of this macro is used
181 instead of that alignment to align the object.
182
183 If this macro is not defined, then ALIGN is used.
184
185 One use of this macro is to increase alignment of medium-size
186 data to make it all fit in fewer cache lines. Another is to
187 cause character arrays to be word-aligned so that `strcpy' calls
188 that copy constants to character arrays can be done inline. */
189
190 #define DATA_ALIGNMENT(TYPE, ALIGN) \
191 RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \
192 TYPE, ALIGN)
193
194 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
195 character arrays to be word-aligned so that `strcpy' calls that copy
196 constants to character arrays can be done inline, and 'strcmp' can be
197 optimised to use word loads. */
198 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
199 RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
200
201 /* Define if operations between registers always perform the operation
202 on the full register even if a narrower mode is specified. */
203 #define WORD_REGISTER_OPERATIONS 1
204
205 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
206 moves. All other references are zero extended. */
207 #define LOAD_EXTEND_OP(MODE) \
208 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
209
210 /* Define this macro if it is advisable to hold scalars in registers
211 in a wider mode than that declared by the program. In such cases,
212 the value is constrained to be within the bounds of the declared
213 type, but kept valid in the wider mode. The signedness of the
214 extension may differ from that of the type. */
215
216 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
217 if (GET_MODE_CLASS (MODE) == MODE_INT \
218 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
219 { \
220 if ((MODE) == SImode) \
221 (UNSIGNEDP) = 0; \
222 (MODE) = word_mode; \
223 }
224
225 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
226 Extensions of pointers to word_mode must be signed. */
227 #define POINTERS_EXTEND_UNSIGNED false
228
229 /* Define if loading short immediate values into registers sign extends. */
230 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
231
232 /* Standard register usage. */
233
234 /* Number of hardware registers. We have:
235
236 - 32 integer registers
237 - 32 floating point registers
238 - 2 fake registers:
239 - ARG_POINTER_REGNUM
240 - FRAME_POINTER_REGNUM */
241
242 #define FIRST_PSEUDO_REGISTER 66
243
244 /* x0, sp, gp, and tp are fixed. */
245
246 #define FIXED_REGISTERS \
247 { /* General registers. */ \
248 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
249 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
250 /* Floating-point registers. */ \
251 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
252 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
253 /* Others. */ \
254 1, 1 \
255 }
256
257 /* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
258 The call RTLs themselves clobber ra. */
259
260 #define CALL_USED_REGISTERS \
261 { /* General registers. */ \
262 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
263 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
264 /* Floating-point registers. */ \
265 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
266 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
267 /* Others. */ \
268 1, 1 \
269 }
270
271 /* Internal macros to classify an ISA register's type. */
272
273 #define GP_REG_FIRST 0
274 #define GP_REG_LAST (TARGET_RVE ? 15 : 31)
275 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
276
277 #define FP_REG_FIRST 32
278 #define FP_REG_LAST 63
279 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
280
281 /* The DWARF 2 CFA column which tracks the return address from a
282 signal handler context. This means that to maintain backwards
283 compatibility, no hard register can be assigned this column if it
284 would need to be handled by the DWARF unwinder. */
285 #define DWARF_ALT_FRAME_RETURN_COLUMN 64
286
287 #define GP_REG_P(REGNO) \
288 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
289 #define FP_REG_P(REGNO) \
290 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
291
292 /* True when REGNO is in SIBCALL_REGS set. */
293 #define SIBCALL_REG_P(REGNO) \
294 TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO)
295
296 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
297
298 /* Use s0 as the frame pointer if it is so requested. */
299 #define HARD_FRAME_POINTER_REGNUM 8
300 #define STACK_POINTER_REGNUM 2
301 #define THREAD_POINTER_REGNUM 4
302
303 /* These two registers don't really exist: they get eliminated to either
304 the stack or hard frame pointer. */
305 #define ARG_POINTER_REGNUM 64
306 #define FRAME_POINTER_REGNUM 65
307
308 /* Register in which static-chain is passed to a function. */
309 #define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
310
311 /* Registers used as temporaries in prologue/epilogue code.
312
313 The prologue registers mustn't conflict with any
314 incoming arguments, the static chain pointer, or the frame pointer.
315 The epilogue temporary mustn't conflict with the return registers,
316 the frame pointer, the EH stack adjustment, or the EH data registers. */
317
318 #define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST + 1)
319 #define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
320
321 #define MCOUNT_NAME "_mcount"
322
323 #define NO_PROFILE_COUNTERS 1
324
325 /* Emit rtl for profiling. Output assembler code to FILE
326 to call "_mcount" for profiling a function entry. */
327 #define PROFILE_HOOK(LABEL) \
328 { \
329 rtx fun, ra; \
330 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
331 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
332 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
333 }
334
335 /* All the work done in PROFILE_HOOK, but still required. */
336 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
337
338 /* Define this macro if it is as good or better to call a constant
339 function address than to call an address kept in a register. */
340 #define NO_FUNCTION_CSE 1
341
342 /* Define the classes of registers for register constraints in the
343 machine description. Also define ranges of constants.
344
345 One of the classes must always be named ALL_REGS and include all hard regs.
346 If there is more than one class, another class must be named NO_REGS
347 and contain no registers.
348
349 The name GENERAL_REGS must be the name of a class (or an alias for
350 another name such as ALL_REGS). This is the class of registers
351 that is allowed by "g" or "r" in a register constraint.
352 Also, registers outside this class are allocated only when
353 instructions express preferences for them.
354
355 The classes must be numbered in nondecreasing order; that is,
356 a larger-numbered class must never be contained completely
357 in a smaller-numbered class.
358
359 For any two classes, it is very desirable that there be another
360 class that represents their union. */
361
362 enum reg_class
363 {
364 NO_REGS, /* no registers in set */
365 SIBCALL_REGS, /* registers used by indirect sibcalls */
366 JALR_REGS, /* registers used by indirect calls */
367 GR_REGS, /* integer registers */
368 FP_REGS, /* floating-point registers */
369 FRAME_REGS, /* arg pointer and frame pointer */
370 ALL_REGS, /* all registers */
371 LIM_REG_CLASSES /* max value + 1 */
372 };
373
374 #define N_REG_CLASSES (int) LIM_REG_CLASSES
375
376 #define GENERAL_REGS GR_REGS
377
378 /* An initializer containing the names of the register classes as C
379 string constants. These names are used in writing some of the
380 debugging dumps. */
381
382 #define REG_CLASS_NAMES \
383 { \
384 "NO_REGS", \
385 "SIBCALL_REGS", \
386 "JALR_REGS", \
387 "GR_REGS", \
388 "FP_REGS", \
389 "FRAME_REGS", \
390 "ALL_REGS" \
391 }
392
393 /* An initializer containing the contents of the register classes,
394 as integers which are bit masks. The Nth integer specifies the
395 contents of class N. The way the integer MASK is interpreted is
396 that register R is in the class if `MASK & (1 << R)' is 1.
397
398 When the machine has more than 32 registers, an integer does not
399 suffice. Then the integers are replaced by sub-initializers,
400 braced groupings containing several integers. Each
401 sub-initializer must be suitable as an initializer for the type
402 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
403
404 #define REG_CLASS_CONTENTS \
405 { \
406 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
407 { 0xf003fcc0, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
408 { 0xffffffc0, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
409 { 0xffffffff, 0x00000000, 0x00000000 }, /* GR_REGS */ \
410 { 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \
411 { 0x00000000, 0x00000000, 0x00000003 }, /* FRAME_REGS */ \
412 { 0xffffffff, 0xffffffff, 0x00000003 } /* ALL_REGS */ \
413 }
414
415 /* A C expression whose value is a register class containing hard
416 register REGNO. In general there is more that one such class;
417 choose a class which is "minimal", meaning that no smaller class
418 also contains the register. */
419
420 #define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
421
422 /* A macro whose definition is the name of the class to which a
423 valid base register must belong. A base register is one used in
424 an address which is the register value plus a displacement. */
425
426 #define BASE_REG_CLASS GR_REGS
427
428 /* A macro whose definition is the name of the class to which a
429 valid index register must belong. An index register is one used
430 in an address where its value is either multiplied by a scale
431 factor or added to another register (as well as added to a
432 displacement). */
433
434 #define INDEX_REG_CLASS NO_REGS
435
436 /* We generally want to put call-clobbered registers ahead of
437 call-saved ones. (IRA expects this.) */
438
439 #define REG_ALLOC_ORDER \
440 { \
441 /* Call-clobbered GPRs. */ \
442 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
443 /* Call-saved GPRs. */ \
444 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
445 /* GPRs that can never be exposed to the register allocator. */ \
446 0, 2, 3, 4, \
447 /* Call-clobbered FPRs. */ \
448 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
449 60, 61, 62, 63, \
450 /* Call-saved FPRs. */ \
451 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
452 /* None of the remaining classes have defined call-saved \
453 registers. */ \
454 64, 65 \
455 }
456
457 /* True if VALUE is a signed 12-bit number. */
458
459 #define SMALL_OPERAND(VALUE) \
460 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
461
462 /* True if VALUE can be loaded into a register using LUI. */
463
464 #define LUI_OPERAND(VALUE) \
465 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
466 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
467
468 /* Stack layout; function entry, exit and calling. */
469
470 #define STACK_GROWS_DOWNWARD 1
471
472 #define FRAME_GROWS_DOWNWARD 1
473
474 #define RETURN_ADDR_RTX riscv_return_addr
475
476 #define ELIMINABLE_REGS \
477 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
478 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
479 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
480 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
481
482 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
483 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
484
485 /* Allocate stack space for arguments at the beginning of each function. */
486 #define ACCUMULATE_OUTGOING_ARGS 1
487
488 /* The argument pointer always points to the first argument. */
489 #define FIRST_PARM_OFFSET(FNDECL) 0
490
491 #define REG_PARM_STACK_SPACE(FNDECL) 0
492
493 /* Define this if it is the responsibility of the caller to
494 allocate the area reserved for arguments passed in registers.
495 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
496 of this macro is to determine whether the space is included in
497 `crtl->outgoing_args_size'. */
498 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
499
500 #define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
501
502 /* Symbolic macros for the registers used to return integer and floating
503 point values. */
504
505 #define GP_RETURN GP_ARG_FIRST
506 #define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
507
508 #define MAX_ARGS_IN_REGISTERS (riscv_abi == ABI_ILP32E ? 6 : 8)
509
510 /* Symbolic macros for the first/last argument registers. */
511
512 #define GP_ARG_FIRST (GP_REG_FIRST + 10)
513 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
514 #define GP_TEMP_FIRST (GP_REG_FIRST + 5)
515 #define FP_ARG_FIRST (FP_REG_FIRST + 10)
516 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
517
518 #define CALLEE_SAVED_REG_NUMBER(REGNO) \
519 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
520 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
521
522 #define LIBCALL_VALUE(MODE) \
523 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
524
525 #define FUNCTION_VALUE(VALTYPE, FUNC) \
526 riscv_function_value (VALTYPE, FUNC, VOIDmode)
527
528 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
529
530 /* 1 if N is a possible register number for function argument passing.
531 We have no FP argument registers when soft-float. */
532
533 /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
534 #define FUNCTION_ARG_REGNO_P(N) \
535 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
536 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
537
538 typedef struct {
539 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
540 unsigned int num_gprs;
541
542 /* Number of floating-point registers used so far, likewise. */
543 unsigned int num_fprs;
544 } CUMULATIVE_ARGS;
545
546 /* Initialize a variable CUM of type CUMULATIVE_ARGS
547 for a call to a function whose data type is FNTYPE.
548 For a library call, FNTYPE is 0. */
549
550 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
551 memset (&(CUM), 0, sizeof (CUM))
552
553 #define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
554
555 /* Align based on stack boundary, which might have been set by the user. */
556 #define RISCV_STACK_ALIGN(LOC) \
557 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
558
559 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
560 the stack pointer does not matter. The value is tested only in
561 functions that have frame pointers.
562 No definition is equivalent to always zero. */
563
564 #define EXIT_IGNORE_STACK 1
565
566
567 /* Trampolines are a block of code followed by two pointers. */
568
569 #define TRAMPOLINE_CODE_SIZE 16
570 #define TRAMPOLINE_SIZE \
571 ((Pmode == SImode) \
572 ? TRAMPOLINE_CODE_SIZE \
573 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
574 #define TRAMPOLINE_ALIGNMENT POINTER_SIZE
575
576 /* Addressing modes, and classification of registers for them. */
577
578 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
579 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
580 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
581
582 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
583 and check its validity for a certain class.
584 We have two alternate definitions for each of them.
585 The usual definition accepts all pseudo regs; the other rejects them all.
586 The symbol REG_OK_STRICT causes the latter definition to be used.
587
588 Most source files want to accept pseudo regs in the hope that
589 they will get allocated to the class that the insn wants them to be in.
590 Some source files that are used after register allocation
591 need to be strict. */
592
593 #ifndef REG_OK_STRICT
594 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
595 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
596 #else
597 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
598 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
599 #endif
600
601 #define REG_OK_FOR_INDEX_P(X) 0
602
603 /* Maximum number of registers that can appear in a valid memory address. */
604
605 #define MAX_REGS_PER_ADDRESS 1
606
607 #define CONSTANT_ADDRESS_P(X) \
608 (CONSTANT_P (X) && memory_address_p (SImode, X))
609
610 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
611 'the start of the function that this code is output in'. */
612
613 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
614 do { \
615 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
616 asm_fprintf ((FILE), "%U%s", \
617 XSTR (XEXP (DECL_RTL (current_function_decl), \
618 0), 0)); \
619 else \
620 asm_fprintf ((FILE), "%U%s", (NAME)); \
621 } while (0)
622
623 #define JUMP_TABLES_IN_TEXT_SECTION 0
624 #define CASE_VECTOR_MODE SImode
625 #define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
626
627 /* The load-address macro is used for PC-relative addressing of symbols
628 that bind locally. Don't use it for symbols that should be addressed
629 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
630 currently results in more opportunities for linker relaxation. */
631 #define USE_LOAD_ADDRESS_MACRO(sym) \
632 (!TARGET_EXPLICIT_RELOCS && \
633 ((flag_pic \
634 && ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
635 || ((GET_CODE (sym) == CONST) \
636 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
637 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))) \
638 || riscv_cmodel == CM_MEDANY))
639
640 /* Define this as 1 if `char' should by default be signed; else as 0. */
641 #define DEFAULT_SIGNED_CHAR 0
642
643 #define MOVE_MAX UNITS_PER_WORD
644 #define MAX_MOVE_MAX 8
645
646 /* The SPARC port says:
647 Nonzero if access to memory by bytes is slow and undesirable.
648 For RISC chips, it means that access to memory by bytes is no
649 better than access by words when possible, so grab a whole word
650 and maybe make use of that. */
651 #define SLOW_BYTE_ACCESS 1
652
653 /* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
654 in the md file instead. */
655 #define SHIFT_COUNT_TRUNCATED 0
656
657 /* Specify the machine mode that pointers have.
658 After generation of rtl, the compiler makes no further distinction
659 between pointers and any other objects of this machine mode. */
660
661 #define Pmode word_mode
662
663 /* Give call MEMs SImode since it is the "most permissive" mode
664 for both 32-bit and 64-bit targets. */
665
666 #define FUNCTION_MODE SImode
667
668 /* A C expression for the cost of a branch instruction. A value of 2
669 seems to minimize code size. */
670
671 #define BRANCH_COST(speed_p, predictable_p) \
672 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
673
674 /* True if the target optimizes short forward branches around integer
675 arithmetic instructions into predicated operations, e.g., for
676 conditional-move operations. The macro assumes that all branch
677 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
678 support this feature. The macro further assumes that any integer
679 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
680 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
681 counterparts, including C.MV and C.LI) can be in the branch shadow. */
682
683 #define TARGET_SFB_ALU (riscv_microarchitecture == sifive_7)
684
685 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
686
687 /* Control the assembler format that we output. */
688
689 /* Output to assembler file text saying following lines
690 may contain character constants, extra white space, comments, etc. */
691
692 #ifndef ASM_APP_ON
693 #define ASM_APP_ON " #APP\n"
694 #endif
695
696 /* Output to assembler file text saying following lines
697 no longer contain unusual constructs. */
698
699 #ifndef ASM_APP_OFF
700 #define ASM_APP_OFF " #NO_APP\n"
701 #endif
702
703 #define REGISTER_NAMES \
704 { "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
705 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
706 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
707 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
708 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
709 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
710 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
711 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
712 "arg", "frame", }
713
714 #define ADDITIONAL_REGISTER_NAMES \
715 { \
716 { "x0", 0 + GP_REG_FIRST }, \
717 { "x1", 1 + GP_REG_FIRST }, \
718 { "x2", 2 + GP_REG_FIRST }, \
719 { "x3", 3 + GP_REG_FIRST }, \
720 { "x4", 4 + GP_REG_FIRST }, \
721 { "x5", 5 + GP_REG_FIRST }, \
722 { "x6", 6 + GP_REG_FIRST }, \
723 { "x7", 7 + GP_REG_FIRST }, \
724 { "x8", 8 + GP_REG_FIRST }, \
725 { "x9", 9 + GP_REG_FIRST }, \
726 { "x10", 10 + GP_REG_FIRST }, \
727 { "x11", 11 + GP_REG_FIRST }, \
728 { "x12", 12 + GP_REG_FIRST }, \
729 { "x13", 13 + GP_REG_FIRST }, \
730 { "x14", 14 + GP_REG_FIRST }, \
731 { "x15", 15 + GP_REG_FIRST }, \
732 { "x16", 16 + GP_REG_FIRST }, \
733 { "x17", 17 + GP_REG_FIRST }, \
734 { "x18", 18 + GP_REG_FIRST }, \
735 { "x19", 19 + GP_REG_FIRST }, \
736 { "x20", 20 + GP_REG_FIRST }, \
737 { "x21", 21 + GP_REG_FIRST }, \
738 { "x22", 22 + GP_REG_FIRST }, \
739 { "x23", 23 + GP_REG_FIRST }, \
740 { "x24", 24 + GP_REG_FIRST }, \
741 { "x25", 25 + GP_REG_FIRST }, \
742 { "x26", 26 + GP_REG_FIRST }, \
743 { "x27", 27 + GP_REG_FIRST }, \
744 { "x28", 28 + GP_REG_FIRST }, \
745 { "x29", 29 + GP_REG_FIRST }, \
746 { "x30", 30 + GP_REG_FIRST }, \
747 { "x31", 31 + GP_REG_FIRST }, \
748 { "f0", 0 + FP_REG_FIRST }, \
749 { "f1", 1 + FP_REG_FIRST }, \
750 { "f2", 2 + FP_REG_FIRST }, \
751 { "f3", 3 + FP_REG_FIRST }, \
752 { "f4", 4 + FP_REG_FIRST }, \
753 { "f5", 5 + FP_REG_FIRST }, \
754 { "f6", 6 + FP_REG_FIRST }, \
755 { "f7", 7 + FP_REG_FIRST }, \
756 { "f8", 8 + FP_REG_FIRST }, \
757 { "f9", 9 + FP_REG_FIRST }, \
758 { "f10", 10 + FP_REG_FIRST }, \
759 { "f11", 11 + FP_REG_FIRST }, \
760 { "f12", 12 + FP_REG_FIRST }, \
761 { "f13", 13 + FP_REG_FIRST }, \
762 { "f14", 14 + FP_REG_FIRST }, \
763 { "f15", 15 + FP_REG_FIRST }, \
764 { "f16", 16 + FP_REG_FIRST }, \
765 { "f17", 17 + FP_REG_FIRST }, \
766 { "f18", 18 + FP_REG_FIRST }, \
767 { "f19", 19 + FP_REG_FIRST }, \
768 { "f20", 20 + FP_REG_FIRST }, \
769 { "f21", 21 + FP_REG_FIRST }, \
770 { "f22", 22 + FP_REG_FIRST }, \
771 { "f23", 23 + FP_REG_FIRST }, \
772 { "f24", 24 + FP_REG_FIRST }, \
773 { "f25", 25 + FP_REG_FIRST }, \
774 { "f26", 26 + FP_REG_FIRST }, \
775 { "f27", 27 + FP_REG_FIRST }, \
776 { "f28", 28 + FP_REG_FIRST }, \
777 { "f29", 29 + FP_REG_FIRST }, \
778 { "f30", 30 + FP_REG_FIRST }, \
779 { "f31", 31 + FP_REG_FIRST }, \
780 }
781
782 /* Globalizing directive for a label. */
783 #define GLOBAL_ASM_OP "\t.globl\t"
784
785 /* This is how to store into the string LABEL
786 the symbol_ref name of an internal numbered label where
787 PREFIX is the class of label and NUM is the number within the class.
788 This is suitable for output with `assemble_name'. */
789
790 #undef ASM_GENERATE_INTERNAL_LABEL
791 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
792 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
793
794 /* This is how to output an element of a case-vector that is absolute. */
795
796 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
797 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
798
799 /* This is how to output an element of a PIC case-vector. */
800
801 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
802 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
803 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
804
805 /* This is how to output an assembler line
806 that says to advance the location counter
807 to a multiple of 2**LOG bytes. */
808
809 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
810 fprintf (STREAM, "\t.align\t%d\n", (LOG))
811
812 /* Define the strings to put out for each section in the object file. */
813 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
814 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
815 #define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
816 #define BSS_SECTION_ASM_OP "\t.bss"
817 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
818 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
819
820 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
821 do \
822 { \
823 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
824 reg_names[STACK_POINTER_REGNUM], \
825 reg_names[STACK_POINTER_REGNUM], \
826 TARGET_64BIT ? "sd" : "sw", \
827 reg_names[REGNO], \
828 reg_names[STACK_POINTER_REGNUM]); \
829 } \
830 while (0)
831
832 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
833 do \
834 { \
835 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
836 TARGET_64BIT ? "ld" : "lw", \
837 reg_names[REGNO], \
838 reg_names[STACK_POINTER_REGNUM], \
839 reg_names[STACK_POINTER_REGNUM], \
840 reg_names[STACK_POINTER_REGNUM]); \
841 } \
842 while (0)
843
844 #define ASM_COMMENT_START "#"
845
846 #undef SIZE_TYPE
847 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
848
849 #undef PTRDIFF_TYPE
850 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
851
852 /* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
853
854 #define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
855
856 /* The maximum number of bytes that can be copied by a straight-line
857 cpymemsi implementation. */
858
859 #define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
860
861 /* If a memory-to-memory move would take MOVE_RATIO or more simple
862 move-instruction pairs, we will do a cpymem or libcall instead.
863 Do not use move_by_pieces at all when strict alignment is not
864 in effect but the target has slow unaligned accesses; in this
865 case, cpymem or libcall is more efficient. */
866
867 #define MOVE_RATIO(speed) \
868 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
869 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
870 CLEAR_RATIO (speed) / 2)
871
872 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
873 of the length of a memset call, but use the default otherwise. */
874
875 #define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
876
877 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
878 optimizing for size adjust the ratio to account for the overhead of
879 loading the constant and replicating it across the word. */
880
881 #define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
882
883 #ifndef USED_FOR_TARGET
884 extern const enum reg_class riscv_regno_to_class[];
885 extern bool riscv_slow_unaligned_access_p;
886 extern unsigned riscv_stack_boundary;
887 #endif
888
889 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
890 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
891
892 #define XLEN_SPEC \
893 "%{march=rv32*:32}" \
894 "%{march=rv64*:64}" \
895
896 #define ABI_SPEC \
897 "%{mabi=ilp32:ilp32}" \
898 "%{mabi=ilp32e:ilp32e}" \
899 "%{mabi=ilp32f:ilp32f}" \
900 "%{mabi=ilp32d:ilp32d}" \
901 "%{mabi=lp64:lp64}" \
902 "%{mabi=lp64f:lp64f}" \
903 "%{mabi=lp64d:lp64d}" \
904
905 /* ISA constants needed for code generation. */
906 #define OPCODE_LW 0x2003
907 #define OPCODE_LD 0x3003
908 #define OPCODE_AUIPC 0x17
909 #define OPCODE_JALR 0x67
910 #define OPCODE_LUI 0x37
911 #define OPCODE_ADDI 0x13
912 #define SHIFT_RD 7
913 #define SHIFT_RS1 15
914 #define SHIFT_IMM 20
915 #define IMM_BITS 12
916 #define C_SxSP_BITS 6
917
918 #define IMM_REACH (1LL << IMM_BITS)
919 #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
920 #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
921
922 #define SWSP_REACH (4LL << C_SxSP_BITS)
923 #define SDSP_REACH (8LL << C_SxSP_BITS)
924
925 /* Called from RISCV_REORG, this is defined in riscv-sr.c. */
926
927 extern void riscv_remove_unneeded_save_restore_calls (void);
928
929 #endif /* ! GCC_RISCV_H */