]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/riscv/riscv.h
Change references of .c files to .cc files
[thirdparty/gcc.git] / gcc / config / riscv / riscv.h
1 /* Definition of RISC-V target for GNU compiler.
2 Copyright (C) 2011-2022 Free Software Foundation, Inc.
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_RISCV_H
23 #define GCC_RISCV_H
24
25 #include "config/riscv/riscv-opts.h"
26
27 /* Target CPU builtins. */
28 #define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
29
30 /* Target hooks for D language. */
31 #define TARGET_D_CPU_VERSIONS riscv_d_target_versions
32 #define TARGET_D_REGISTER_CPU_TARGET_INFO riscv_d_register_target_info
33
34 #ifdef TARGET_BIG_ENDIAN_DEFAULT
35 #define DEFAULT_ENDIAN_SPEC "b"
36 #else
37 #define DEFAULT_ENDIAN_SPEC "l"
38 #endif
39
40 /* Default target_flags if no switches are specified */
41
42 #ifndef TARGET_DEFAULT
43 #define TARGET_DEFAULT 0
44 #endif
45
46 #ifndef RISCV_TUNE_STRING_DEFAULT
47 #define RISCV_TUNE_STRING_DEFAULT "rocket"
48 #endif
49
50 extern const char *riscv_expand_arch (int argc, const char **argv);
51 extern const char *riscv_expand_arch_from_cpu (int argc, const char **argv);
52 extern const char *riscv_default_mtune (int argc, const char **argv);
53
54 # define EXTRA_SPEC_FUNCTIONS \
55 { "riscv_expand_arch", riscv_expand_arch }, \
56 { "riscv_expand_arch_from_cpu", riscv_expand_arch_from_cpu }, \
57 { "riscv_default_mtune", riscv_default_mtune },
58
59 /* Support for a compile-time default CPU, et cetera. The rules are:
60 --with-arch is ignored if -march or -mcpu is specified.
61 --with-abi is ignored if -mabi is specified.
62 --with-tune is ignored if -mtune or -mcpu is specified.
63
64 But using default -march/-mtune value if -mcpu don't have valid option. */
65 #define OPTION_DEFAULT_SPECS \
66 {"tune", "%{!mtune=*:" \
67 " %{!mcpu=*:-mtune=%(VALUE)}" \
68 " %{mcpu=*:-mtune=%:riscv_default_mtune(%* %(VALUE))}}" }, \
69 {"arch", "%{!march=*:" \
70 " %{!mcpu=*:-march=%(VALUE)}" \
71 " %{mcpu=*:%:riscv_expand_arch_from_cpu(%* %(VALUE))}}" }, \
72 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
73
74 #ifdef IN_LIBGCC2
75 #undef TARGET_64BIT
76 /* Make this compile time constant for libgcc2 */
77 #define TARGET_64BIT (__riscv_xlen == 64)
78 #endif /* IN_LIBGCC2 */
79
80 #ifdef HAVE_AS_MISA_SPEC
81 #define ASM_MISA_SPEC "%{misa-spec=*}"
82 #else
83 #define ASM_MISA_SPEC ""
84 #endif
85
86 /* Reference:
87 https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html#Stringizing */
88 #define STRINGIZING(s) __STRINGIZING(s)
89 #define __STRINGIZING(s) #s
90
91 #define MULTILIB_DEFAULTS \
92 {"march=" STRINGIZING (TARGET_RISCV_DEFAULT_ARCH), \
93 "mabi=" STRINGIZING (TARGET_RISCV_DEFAULT_ABI) }
94
95 #undef ASM_SPEC
96 #define ASM_SPEC "\
97 %(subtarget_asm_debugging_spec) \
98 %{" FPIE_OR_FPIC_SPEC ":-fpic} \
99 %{march=*} \
100 %{mabi=*} \
101 %{mno-relax} \
102 %{mbig-endian} \
103 %{mlittle-endian} \
104 %(subtarget_asm_spec)" \
105 ASM_MISA_SPEC
106
107 #undef DRIVER_SELF_SPECS
108 #define DRIVER_SELF_SPECS \
109 "%{march=*:%:riscv_expand_arch(%*)} " \
110 "%{!march=*:%{mcpu=*:%:riscv_expand_arch_from_cpu(%*)}} "
111
112 #define TARGET_DEFAULT_CMODEL CM_MEDLOW
113
114 #define LOCAL_LABEL_PREFIX "."
115 #define USER_LABEL_PREFIX ""
116
117 /* Offsets recorded in opcodes are a multiple of this alignment factor.
118 The default for this in 64-bit mode is 8, which causes problems with
119 SFmode register saves. */
120 #define DWARF_CIE_DATA_ALIGNMENT -4
121
122 /* The mapping from gcc register number to DWARF 2 CFA column number. */
123 #define DWARF_FRAME_REGNUM(REGNO) \
124 (GP_REG_P (REGNO) || FP_REG_P (REGNO) ? REGNO : INVALID_REGNUM)
125
126 /* The DWARF 2 CFA column which tracks the return address. */
127 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
128 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
129
130 /* Describe how we implement __builtin_eh_return. */
131 #define EH_RETURN_DATA_REGNO(N) \
132 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
133
134 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
135
136 /* Target machine storage layout */
137
138 #define BITS_BIG_ENDIAN 0
139 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
140 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
141
142 #define MAX_BITS_PER_WORD 64
143
144 /* Width of a word, in units (bytes). */
145 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
146 #ifndef IN_LIBGCC2
147 #define MIN_UNITS_PER_WORD 4
148 #endif
149
150 /* Allows SImode op in builtin overflow pattern, see internal-fn.cc. */
151 #undef TARGET_MIN_ARITHMETIC_PRECISION
152 #define TARGET_MIN_ARITHMETIC_PRECISION riscv_min_arithmetic_precision
153
154 /* The `Q' extension is not yet supported. */
155 #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
156
157 /* The largest type that can be passed in floating-point registers. */
158 #define UNITS_PER_FP_ARG \
159 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
160 || riscv_abi == ABI_LP64) \
161 ? 0 \
162 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
163
164 /* Set the sizes of the core types. */
165 #define SHORT_TYPE_SIZE 16
166 #define INT_TYPE_SIZE 32
167 #define LONG_LONG_TYPE_SIZE 64
168 #define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
169 #define LONG_TYPE_SIZE POINTER_SIZE
170
171 #define FLOAT_TYPE_SIZE 32
172 #define DOUBLE_TYPE_SIZE 64
173 #define LONG_DOUBLE_TYPE_SIZE 128
174
175 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
176 #define PARM_BOUNDARY BITS_PER_WORD
177
178 /* Allocation boundary (in *bits*) for the code of a function. */
179 #define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32)
180
181 /* The smallest supported stack boundary the calling convention supports. */
182 #define STACK_BOUNDARY \
183 (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 2 * BITS_PER_WORD)
184
185 /* The ABI stack alignment. */
186 #define ABI_STACK_BOUNDARY (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 128)
187
188 /* There is no point aligning anything to a rounder boundary than this. */
189 #define BIGGEST_ALIGNMENT 128
190
191 /* The user-level ISA permits unaligned accesses, but they are not required
192 of the privileged architecture. */
193 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
194
195 /* Define this if you wish to imitate the way many other C compilers
196 handle alignment of bitfields and the structures that contain
197 them.
198
199 The behavior is that the type written for a bit-field (`int',
200 `short', or other integer type) imposes an alignment for the
201 entire structure, as if the structure really did contain an
202 ordinary field of that type. In addition, the bit-field is placed
203 within the structure so that it would fit within such a field,
204 not crossing a boundary for it.
205
206 Thus, on most machines, a bit-field whose type is written as `int'
207 would not cross a four-byte boundary, and would force four-byte
208 alignment for the whole structure. (The alignment used may not
209 be four bytes; it is controlled by the other alignment
210 parameters.)
211
212 If the macro is defined, its definition should be a C expression;
213 a nonzero value for the expression enables this behavior. */
214
215 #define PCC_BITFIELD_TYPE_MATTERS 1
216
217 /* An integer expression for the size in bits of the largest integer machine
218 mode that should actually be used. We allow pairs of registers. */
219 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
220
221 /* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */
222 #define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \
223 (((COND) && ((ALIGN) < BITS_PER_WORD) \
224 && (TREE_CODE (TYPE) == ARRAY_TYPE \
225 || TREE_CODE (TYPE) == UNION_TYPE \
226 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
227
228 /* If defined, a C expression to compute the alignment for a static
229 variable. TYPE is the data type, and ALIGN is the alignment that
230 the object would ordinarily have. The value of this macro is used
231 instead of that alignment to align the object.
232
233 If this macro is not defined, then ALIGN is used.
234
235 One use of this macro is to increase alignment of medium-size
236 data to make it all fit in fewer cache lines. Another is to
237 cause character arrays to be word-aligned so that `strcpy' calls
238 that copy constants to character arrays can be done inline. */
239
240 #define DATA_ALIGNMENT(TYPE, ALIGN) \
241 RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \
242 TYPE, ALIGN)
243
244 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
245 character arrays to be word-aligned so that `strcpy' calls that copy
246 constants to character arrays can be done inline, and 'strcmp' can be
247 optimised to use word loads. */
248 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
249 RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
250
251 /* Define if operations between registers always perform the operation
252 on the full register even if a narrower mode is specified. */
253 #define WORD_REGISTER_OPERATIONS 1
254
255 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
256 moves. All other references are zero extended. */
257 #define LOAD_EXTEND_OP(MODE) \
258 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
259
260 /* Define this macro if it is advisable to hold scalars in registers
261 in a wider mode than that declared by the program. In such cases,
262 the value is constrained to be within the bounds of the declared
263 type, but kept valid in the wider mode. The signedness of the
264 extension may differ from that of the type. */
265
266 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
267 if (GET_MODE_CLASS (MODE) == MODE_INT \
268 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
269 { \
270 if ((MODE) == SImode) \
271 (UNSIGNEDP) = 0; \
272 (MODE) = word_mode; \
273 }
274
275 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
276 Extensions of pointers to word_mode must be signed. */
277 #define POINTERS_EXTEND_UNSIGNED false
278
279 /* Define if loading short immediate values into registers sign extends. */
280 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
281
282 /* Standard register usage. */
283
284 /* Number of hardware registers. We have:
285
286 - 32 integer registers
287 - 32 floating point registers
288 - 2 fake registers:
289 - ARG_POINTER_REGNUM
290 - FRAME_POINTER_REGNUM */
291
292 #define FIRST_PSEUDO_REGISTER 66
293
294 /* x0, sp, gp, and tp are fixed. */
295
296 #define FIXED_REGISTERS \
297 { /* General registers. */ \
298 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
299 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
300 /* Floating-point registers. */ \
301 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
302 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
303 /* Others. */ \
304 1, 1 \
305 }
306
307 /* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
308 The call RTLs themselves clobber ra. */
309
310 #define CALL_USED_REGISTERS \
311 { /* General registers. */ \
312 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
313 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
314 /* Floating-point registers. */ \
315 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
316 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
317 /* Others. */ \
318 1, 1 \
319 }
320
321 /* Select a register mode required for caller save of hard regno REGNO.
322 Contrary to what is documented, the default is not the smallest suitable
323 mode but the largest suitable mode for the given (REGNO, NREGS) pair and
324 it quickly creates paradoxical subregs that can be problematic. */
325 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
326 ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
327
328 /* Internal macros to classify an ISA register's type. */
329
330 #define GP_REG_FIRST 0
331 #define GP_REG_LAST (TARGET_RVE ? 15 : 31)
332 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
333
334 #define FP_REG_FIRST 32
335 #define FP_REG_LAST 63
336 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
337
338 /* The DWARF 2 CFA column which tracks the return address from a
339 signal handler context. This means that to maintain backwards
340 compatibility, no hard register can be assigned this column if it
341 would need to be handled by the DWARF unwinder. */
342 #define DWARF_ALT_FRAME_RETURN_COLUMN 64
343
344 #define GP_REG_P(REGNO) \
345 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
346 #define FP_REG_P(REGNO) \
347 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
348
349 /* True when REGNO is in SIBCALL_REGS set. */
350 #define SIBCALL_REG_P(REGNO) \
351 TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO)
352
353 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
354
355 /* Use s0 as the frame pointer if it is so requested. */
356 #define HARD_FRAME_POINTER_REGNUM 8
357 #define STACK_POINTER_REGNUM 2
358 #define THREAD_POINTER_REGNUM 4
359
360 /* These two registers don't really exist: they get eliminated to either
361 the stack or hard frame pointer. */
362 #define ARG_POINTER_REGNUM 64
363 #define FRAME_POINTER_REGNUM 65
364
365 /* Register in which static-chain is passed to a function. */
366 #define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
367
368 /* Registers used as temporaries in prologue/epilogue code.
369
370 The prologue registers mustn't conflict with any
371 incoming arguments, the static chain pointer, or the frame pointer.
372 The epilogue temporary mustn't conflict with the return registers,
373 the frame pointer, the EH stack adjustment, or the EH data registers. */
374
375 #define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST)
376 #define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
377
378 #define RISCV_CALL_ADDRESS_TEMP_REGNUM (GP_TEMP_FIRST + 1)
379 #define RISCV_CALL_ADDRESS_TEMP(MODE) \
380 gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_TEMP_REGNUM)
381
382 #define MCOUNT_NAME "_mcount"
383
384 #define NO_PROFILE_COUNTERS 1
385
386 /* Emit rtl for profiling. Output assembler code to FILE
387 to call "_mcount" for profiling a function entry. */
388 #define PROFILE_HOOK(LABEL) \
389 { \
390 rtx fun, ra; \
391 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
392 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
393 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
394 }
395
396 /* All the work done in PROFILE_HOOK, but still required. */
397 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
398
399 /* Define this macro if it is as good or better to call a constant
400 function address than to call an address kept in a register. */
401 #define NO_FUNCTION_CSE 1
402
403 /* Define the classes of registers for register constraints in the
404 machine description. Also define ranges of constants.
405
406 One of the classes must always be named ALL_REGS and include all hard regs.
407 If there is more than one class, another class must be named NO_REGS
408 and contain no registers.
409
410 The name GENERAL_REGS must be the name of a class (or an alias for
411 another name such as ALL_REGS). This is the class of registers
412 that is allowed by "g" or "r" in a register constraint.
413 Also, registers outside this class are allocated only when
414 instructions express preferences for them.
415
416 The classes must be numbered in nondecreasing order; that is,
417 a larger-numbered class must never be contained completely
418 in a smaller-numbered class.
419
420 For any two classes, it is very desirable that there be another
421 class that represents their union. */
422
423 enum reg_class
424 {
425 NO_REGS, /* no registers in set */
426 SIBCALL_REGS, /* registers used by indirect sibcalls */
427 JALR_REGS, /* registers used by indirect calls */
428 GR_REGS, /* integer registers */
429 FP_REGS, /* floating-point registers */
430 FRAME_REGS, /* arg pointer and frame pointer */
431 ALL_REGS, /* all registers */
432 LIM_REG_CLASSES /* max value + 1 */
433 };
434
435 #define N_REG_CLASSES (int) LIM_REG_CLASSES
436
437 #define GENERAL_REGS GR_REGS
438
439 /* An initializer containing the names of the register classes as C
440 string constants. These names are used in writing some of the
441 debugging dumps. */
442
443 #define REG_CLASS_NAMES \
444 { \
445 "NO_REGS", \
446 "SIBCALL_REGS", \
447 "JALR_REGS", \
448 "GR_REGS", \
449 "FP_REGS", \
450 "FRAME_REGS", \
451 "ALL_REGS" \
452 }
453
454 /* An initializer containing the contents of the register classes,
455 as integers which are bit masks. The Nth integer specifies the
456 contents of class N. The way the integer MASK is interpreted is
457 that register R is in the class if `MASK & (1 << R)' is 1.
458
459 When the machine has more than 32 registers, an integer does not
460 suffice. Then the integers are replaced by sub-initializers,
461 braced groupings containing several integers. Each
462 sub-initializer must be suitable as an initializer for the type
463 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
464
465 #define REG_CLASS_CONTENTS \
466 { \
467 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
468 { 0xf003fcc0, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
469 { 0xffffffc0, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
470 { 0xffffffff, 0x00000000, 0x00000000 }, /* GR_REGS */ \
471 { 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \
472 { 0x00000000, 0x00000000, 0x00000003 }, /* FRAME_REGS */ \
473 { 0xffffffff, 0xffffffff, 0x00000003 } /* ALL_REGS */ \
474 }
475
476 /* A C expression whose value is a register class containing hard
477 register REGNO. In general there is more that one such class;
478 choose a class which is "minimal", meaning that no smaller class
479 also contains the register. */
480
481 #define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
482
483 /* A macro whose definition is the name of the class to which a
484 valid base register must belong. A base register is one used in
485 an address which is the register value plus a displacement. */
486
487 #define BASE_REG_CLASS GR_REGS
488
489 /* A macro whose definition is the name of the class to which a
490 valid index register must belong. An index register is one used
491 in an address where its value is either multiplied by a scale
492 factor or added to another register (as well as added to a
493 displacement). */
494
495 #define INDEX_REG_CLASS NO_REGS
496
497 /* We generally want to put call-clobbered registers ahead of
498 call-saved ones. (IRA expects this.) */
499
500 #define REG_ALLOC_ORDER \
501 { \
502 /* Call-clobbered GPRs. */ \
503 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
504 /* Call-saved GPRs. */ \
505 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
506 /* GPRs that can never be exposed to the register allocator. */ \
507 0, 2, 3, 4, \
508 /* Call-clobbered FPRs. */ \
509 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
510 60, 61, 62, 63, \
511 /* Call-saved FPRs. */ \
512 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
513 /* None of the remaining classes have defined call-saved \
514 registers. */ \
515 64, 65 \
516 }
517
518 /* True if VALUE is a signed 12-bit number. */
519
520 #define SMALL_OPERAND(VALUE) \
521 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
522
523 /* True if VALUE can be loaded into a register using LUI. */
524
525 #define LUI_OPERAND(VALUE) \
526 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
527 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
528
529 /* If this is a single bit mask, then we can load it with bseti. But this
530 is not useful for any of the low 31 bits because we can use addi or lui
531 to load them. It is wrong for loading SImode 0x80000000 on rv64 because it
532 needs to be sign-extended. So we restrict this to the upper 32-bits
533 only. */
534 #define SINGLE_BIT_MASK_OPERAND(VALUE) \
535 (pow2p_hwi (VALUE) && (ctz_hwi (VALUE) >= 32))
536
537 /* Stack layout; function entry, exit and calling. */
538
539 #define STACK_GROWS_DOWNWARD 1
540
541 #define FRAME_GROWS_DOWNWARD 1
542
543 #define RETURN_ADDR_RTX riscv_return_addr
544
545 #define ELIMINABLE_REGS \
546 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
547 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
548 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
549 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
550
551 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
552 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
553
554 /* Allocate stack space for arguments at the beginning of each function. */
555 #define ACCUMULATE_OUTGOING_ARGS 1
556
557 /* The argument pointer always points to the first argument. */
558 #define FIRST_PARM_OFFSET(FNDECL) 0
559
560 #define REG_PARM_STACK_SPACE(FNDECL) 0
561
562 /* Define this if it is the responsibility of the caller to
563 allocate the area reserved for arguments passed in registers.
564 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
565 of this macro is to determine whether the space is included in
566 `crtl->outgoing_args_size'. */
567 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
568
569 #define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
570
571 /* Symbolic macros for the registers used to return integer and floating
572 point values. */
573
574 #define GP_RETURN GP_ARG_FIRST
575 #define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
576
577 #define MAX_ARGS_IN_REGISTERS (riscv_abi == ABI_ILP32E ? 6 : 8)
578
579 /* Symbolic macros for the first/last argument registers. */
580
581 #define GP_ARG_FIRST (GP_REG_FIRST + 10)
582 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
583 #define GP_TEMP_FIRST (GP_REG_FIRST + 5)
584 #define FP_ARG_FIRST (FP_REG_FIRST + 10)
585 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
586
587 #define CALLEE_SAVED_REG_NUMBER(REGNO) \
588 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
589 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
590
591 #define LIBCALL_VALUE(MODE) \
592 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
593
594 #define FUNCTION_VALUE(VALTYPE, FUNC) \
595 riscv_function_value (VALTYPE, FUNC, VOIDmode)
596
597 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
598
599 /* 1 if N is a possible register number for function argument passing.
600 We have no FP argument registers when soft-float. */
601
602 /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
603 #define FUNCTION_ARG_REGNO_P(N) \
604 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
605 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
606
607 typedef struct {
608 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
609 unsigned int num_gprs;
610
611 /* Number of floating-point registers used so far, likewise. */
612 unsigned int num_fprs;
613 } CUMULATIVE_ARGS;
614
615 /* Initialize a variable CUM of type CUMULATIVE_ARGS
616 for a call to a function whose data type is FNTYPE.
617 For a library call, FNTYPE is 0. */
618
619 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
620 memset (&(CUM), 0, sizeof (CUM))
621
622 #define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
623
624 /* Align based on stack boundary, which might have been set by the user. */
625 #define RISCV_STACK_ALIGN(LOC) \
626 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
627
628 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
629 the stack pointer does not matter. The value is tested only in
630 functions that have frame pointers.
631 No definition is equivalent to always zero. */
632
633 #define EXIT_IGNORE_STACK 1
634
635
636 /* Trampolines are a block of code followed by two pointers. */
637
638 #define TRAMPOLINE_CODE_SIZE 16
639 #define TRAMPOLINE_SIZE \
640 ((Pmode == SImode) \
641 ? TRAMPOLINE_CODE_SIZE \
642 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
643 #define TRAMPOLINE_ALIGNMENT POINTER_SIZE
644
645 /* Addressing modes, and classification of registers for them. */
646
647 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
648 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
649 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
650
651 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
652 and check its validity for a certain class.
653 We have two alternate definitions for each of them.
654 The usual definition accepts all pseudo regs; the other rejects them all.
655 The symbol REG_OK_STRICT causes the latter definition to be used.
656
657 Most source files want to accept pseudo regs in the hope that
658 they will get allocated to the class that the insn wants them to be in.
659 Some source files that are used after register allocation
660 need to be strict. */
661
662 #ifndef REG_OK_STRICT
663 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
664 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
665 #else
666 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
667 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
668 #endif
669
670 #define REG_OK_FOR_INDEX_P(X) 0
671
672 /* Maximum number of registers that can appear in a valid memory address. */
673
674 #define MAX_REGS_PER_ADDRESS 1
675
676 #define CONSTANT_ADDRESS_P(X) \
677 (CONSTANT_P (X) && memory_address_p (SImode, X))
678
679 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
680 'the start of the function that this code is output in'. */
681
682 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
683 do { \
684 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
685 asm_fprintf ((FILE), "%U%s", \
686 XSTR (XEXP (DECL_RTL (current_function_decl), \
687 0), 0)); \
688 else \
689 asm_fprintf ((FILE), "%U%s", (NAME)); \
690 } while (0)
691
692 #define JUMP_TABLES_IN_TEXT_SECTION 0
693 #define CASE_VECTOR_MODE SImode
694 #define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
695
696 /* The load-address macro is used for PC-relative addressing of symbols
697 that bind locally. Don't use it for symbols that should be addressed
698 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
699 currently results in more opportunities for linker relaxation. */
700 #define USE_LOAD_ADDRESS_MACRO(sym) \
701 (!TARGET_EXPLICIT_RELOCS && \
702 ((flag_pic \
703 && ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
704 || ((GET_CODE (sym) == CONST) \
705 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
706 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))) \
707 || riscv_cmodel == CM_MEDANY))
708
709 /* Define this as 1 if `char' should by default be signed; else as 0. */
710 #define DEFAULT_SIGNED_CHAR 0
711
712 #define MOVE_MAX UNITS_PER_WORD
713 #define MAX_MOVE_MAX 8
714
715 /* The SPARC port says:
716 Nonzero if access to memory by bytes is slow and undesirable.
717 For RISC chips, it means that access to memory by bytes is no
718 better than access by words when possible, so grab a whole word
719 and maybe make use of that. */
720 #define SLOW_BYTE_ACCESS 1
721
722 /* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
723 in the md file instead. */
724 #define SHIFT_COUNT_TRUNCATED 0
725
726 /* Specify the machine mode that pointers have.
727 After generation of rtl, the compiler makes no further distinction
728 between pointers and any other objects of this machine mode. */
729
730 #define Pmode word_mode
731
732 /* Give call MEMs SImode since it is the "most permissive" mode
733 for both 32-bit and 64-bit targets. */
734
735 #define FUNCTION_MODE SImode
736
737 /* A C expression for the cost of a branch instruction. A value of 2
738 seems to minimize code size. */
739
740 #define BRANCH_COST(speed_p, predictable_p) \
741 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
742
743 /* True if the target optimizes short forward branches around integer
744 arithmetic instructions into predicated operations, e.g., for
745 conditional-move operations. The macro assumes that all branch
746 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
747 support this feature. The macro further assumes that any integer
748 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
749 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
750 counterparts, including C.MV and C.LI) can be in the branch shadow. */
751
752 #define TARGET_SFB_ALU (riscv_microarchitecture == sifive_7)
753
754 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
755
756 /* Control the assembler format that we output. */
757
758 /* Output to assembler file text saying following lines
759 may contain character constants, extra white space, comments, etc. */
760
761 #ifndef ASM_APP_ON
762 #define ASM_APP_ON " #APP\n"
763 #endif
764
765 /* Output to assembler file text saying following lines
766 no longer contain unusual constructs. */
767
768 #ifndef ASM_APP_OFF
769 #define ASM_APP_OFF " #NO_APP\n"
770 #endif
771
772 #define REGISTER_NAMES \
773 { "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
774 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
775 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
776 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
777 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
778 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
779 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
780 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
781 "arg", "frame", }
782
783 #define ADDITIONAL_REGISTER_NAMES \
784 { \
785 { "x0", 0 + GP_REG_FIRST }, \
786 { "x1", 1 + GP_REG_FIRST }, \
787 { "x2", 2 + GP_REG_FIRST }, \
788 { "x3", 3 + GP_REG_FIRST }, \
789 { "x4", 4 + GP_REG_FIRST }, \
790 { "x5", 5 + GP_REG_FIRST }, \
791 { "x6", 6 + GP_REG_FIRST }, \
792 { "x7", 7 + GP_REG_FIRST }, \
793 { "x8", 8 + GP_REG_FIRST }, \
794 { "x9", 9 + GP_REG_FIRST }, \
795 { "x10", 10 + GP_REG_FIRST }, \
796 { "x11", 11 + GP_REG_FIRST }, \
797 { "x12", 12 + GP_REG_FIRST }, \
798 { "x13", 13 + GP_REG_FIRST }, \
799 { "x14", 14 + GP_REG_FIRST }, \
800 { "x15", 15 + GP_REG_FIRST }, \
801 { "x16", 16 + GP_REG_FIRST }, \
802 { "x17", 17 + GP_REG_FIRST }, \
803 { "x18", 18 + GP_REG_FIRST }, \
804 { "x19", 19 + GP_REG_FIRST }, \
805 { "x20", 20 + GP_REG_FIRST }, \
806 { "x21", 21 + GP_REG_FIRST }, \
807 { "x22", 22 + GP_REG_FIRST }, \
808 { "x23", 23 + GP_REG_FIRST }, \
809 { "x24", 24 + GP_REG_FIRST }, \
810 { "x25", 25 + GP_REG_FIRST }, \
811 { "x26", 26 + GP_REG_FIRST }, \
812 { "x27", 27 + GP_REG_FIRST }, \
813 { "x28", 28 + GP_REG_FIRST }, \
814 { "x29", 29 + GP_REG_FIRST }, \
815 { "x30", 30 + GP_REG_FIRST }, \
816 { "x31", 31 + GP_REG_FIRST }, \
817 { "f0", 0 + FP_REG_FIRST }, \
818 { "f1", 1 + FP_REG_FIRST }, \
819 { "f2", 2 + FP_REG_FIRST }, \
820 { "f3", 3 + FP_REG_FIRST }, \
821 { "f4", 4 + FP_REG_FIRST }, \
822 { "f5", 5 + FP_REG_FIRST }, \
823 { "f6", 6 + FP_REG_FIRST }, \
824 { "f7", 7 + FP_REG_FIRST }, \
825 { "f8", 8 + FP_REG_FIRST }, \
826 { "f9", 9 + FP_REG_FIRST }, \
827 { "f10", 10 + FP_REG_FIRST }, \
828 { "f11", 11 + FP_REG_FIRST }, \
829 { "f12", 12 + FP_REG_FIRST }, \
830 { "f13", 13 + FP_REG_FIRST }, \
831 { "f14", 14 + FP_REG_FIRST }, \
832 { "f15", 15 + FP_REG_FIRST }, \
833 { "f16", 16 + FP_REG_FIRST }, \
834 { "f17", 17 + FP_REG_FIRST }, \
835 { "f18", 18 + FP_REG_FIRST }, \
836 { "f19", 19 + FP_REG_FIRST }, \
837 { "f20", 20 + FP_REG_FIRST }, \
838 { "f21", 21 + FP_REG_FIRST }, \
839 { "f22", 22 + FP_REG_FIRST }, \
840 { "f23", 23 + FP_REG_FIRST }, \
841 { "f24", 24 + FP_REG_FIRST }, \
842 { "f25", 25 + FP_REG_FIRST }, \
843 { "f26", 26 + FP_REG_FIRST }, \
844 { "f27", 27 + FP_REG_FIRST }, \
845 { "f28", 28 + FP_REG_FIRST }, \
846 { "f29", 29 + FP_REG_FIRST }, \
847 { "f30", 30 + FP_REG_FIRST }, \
848 { "f31", 31 + FP_REG_FIRST }, \
849 }
850
851 /* Globalizing directive for a label. */
852 #define GLOBAL_ASM_OP "\t.globl\t"
853
854 /* This is how to store into the string LABEL
855 the symbol_ref name of an internal numbered label where
856 PREFIX is the class of label and NUM is the number within the class.
857 This is suitable for output with `assemble_name'. */
858
859 #undef ASM_GENERATE_INTERNAL_LABEL
860 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
861 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
862
863 /* This is how to output an element of a case-vector that is absolute. */
864
865 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
866 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
867
868 /* This is how to output an element of a PIC case-vector. */
869
870 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
871 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
872 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
873
874 /* This is how to output an assembler line
875 that says to advance the location counter
876 to a multiple of 2**LOG bytes. */
877
878 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
879 fprintf (STREAM, "\t.align\t%d\n", (LOG))
880
881 /* Define the strings to put out for each section in the object file. */
882 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
883 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
884 #define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
885 #define BSS_SECTION_ASM_OP "\t.bss"
886 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
887 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
888
889 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
890 do \
891 { \
892 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
893 reg_names[STACK_POINTER_REGNUM], \
894 reg_names[STACK_POINTER_REGNUM], \
895 TARGET_64BIT ? "sd" : "sw", \
896 reg_names[REGNO], \
897 reg_names[STACK_POINTER_REGNUM]); \
898 } \
899 while (0)
900
901 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
902 do \
903 { \
904 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
905 TARGET_64BIT ? "ld" : "lw", \
906 reg_names[REGNO], \
907 reg_names[STACK_POINTER_REGNUM], \
908 reg_names[STACK_POINTER_REGNUM], \
909 reg_names[STACK_POINTER_REGNUM]); \
910 } \
911 while (0)
912
913 #define ASM_COMMENT_START "#"
914
915 #undef SIZE_TYPE
916 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
917
918 #undef PTRDIFF_TYPE
919 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
920
921 /* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
922
923 #define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
924
925 /* The maximum number of bytes that can be copied by a straight-line
926 cpymemsi implementation. */
927
928 #define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
929
930 /* If a memory-to-memory move would take MOVE_RATIO or more simple
931 move-instruction pairs, we will do a cpymem or libcall instead.
932 Do not use move_by_pieces at all when strict alignment is not
933 in effect but the target has slow unaligned accesses; in this
934 case, cpymem or libcall is more efficient. */
935
936 #define MOVE_RATIO(speed) \
937 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
938 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
939 CLEAR_RATIO (speed) / 2)
940
941 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
942 of the length of a memset call, but use the default otherwise. */
943
944 #define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
945
946 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
947 optimizing for size adjust the ratio to account for the overhead of
948 loading the constant and replicating it across the word. */
949
950 #define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
951
952 #ifndef USED_FOR_TARGET
953 extern const enum reg_class riscv_regno_to_class[];
954 extern bool riscv_slow_unaligned_access_p;
955 extern unsigned riscv_stack_boundary;
956 #endif
957
958 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
959 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
960
961 #define XLEN_SPEC \
962 "%{march=rv32*:32}" \
963 "%{march=rv64*:64}" \
964
965 #define ABI_SPEC \
966 "%{mabi=ilp32:ilp32}" \
967 "%{mabi=ilp32e:ilp32e}" \
968 "%{mabi=ilp32f:ilp32f}" \
969 "%{mabi=ilp32d:ilp32d}" \
970 "%{mabi=lp64:lp64}" \
971 "%{mabi=lp64f:lp64f}" \
972 "%{mabi=lp64d:lp64d}" \
973
974 /* ISA constants needed for code generation. */
975 #define OPCODE_LW 0x2003
976 #define OPCODE_LD 0x3003
977 #define OPCODE_AUIPC 0x17
978 #define OPCODE_JALR 0x67
979 #define OPCODE_LUI 0x37
980 #define OPCODE_ADDI 0x13
981 #define SHIFT_RD 7
982 #define SHIFT_RS1 15
983 #define SHIFT_IMM 20
984 #define IMM_BITS 12
985 #define C_S_BITS 5
986 #define C_SxSP_BITS 6
987
988 #define IMM_REACH (1LL << IMM_BITS)
989 #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
990 #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
991
992 #define SWSP_REACH (4LL << C_SxSP_BITS)
993 #define SDSP_REACH (8LL << C_SxSP_BITS)
994
995 /* This is the maximum value that can be represented in a compressed load/store
996 offset (an unsigned 5-bit value scaled by 4). */
997 #define CSW_MAX_OFFSET (((4LL << C_S_BITS) - 1) & ~3)
998
999 /* Called from RISCV_REORG, this is defined in riscv-sr.cc. */
1000
1001 extern void riscv_remove_unneeded_save_restore_calls (void);
1002
1003 #define HARD_REGNO_RENAME_OK(FROM, TO) riscv_hard_regno_rename_ok (FROM, TO)
1004
1005 #endif /* ! GCC_RISCV_H */