]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/riscv/riscv.h
RISC-V: Fix riscv_vector_chunks configuration according to TARGET_MIN_VLEN
[thirdparty/gcc.git] / gcc / config / riscv / riscv.h
1 /* Definition of RISC-V target for GNU compiler.
2 Copyright (C) 2011-2022 Free Software Foundation, Inc.
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_RISCV_H
23 #define GCC_RISCV_H
24
25 #include "config/riscv/riscv-opts.h"
26
27 /* Target CPU builtins. */
28 #define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
29
30 /* Target hooks for D language. */
31 #define TARGET_D_CPU_VERSIONS riscv_d_target_versions
32 #define TARGET_D_REGISTER_CPU_TARGET_INFO riscv_d_register_target_info
33
34 #ifdef TARGET_BIG_ENDIAN_DEFAULT
35 #define DEFAULT_ENDIAN_SPEC "b"
36 #else
37 #define DEFAULT_ENDIAN_SPEC "l"
38 #endif
39
40 /* Default target_flags if no switches are specified */
41
42 #ifndef TARGET_DEFAULT
43 #define TARGET_DEFAULT 0
44 #endif
45
46 #ifndef RISCV_TUNE_STRING_DEFAULT
47 #define RISCV_TUNE_STRING_DEFAULT "rocket"
48 #endif
49
50 extern const char *riscv_expand_arch (int argc, const char **argv);
51 extern const char *riscv_expand_arch_from_cpu (int argc, const char **argv);
52 extern const char *riscv_default_mtune (int argc, const char **argv);
53
54 # define EXTRA_SPEC_FUNCTIONS \
55 { "riscv_expand_arch", riscv_expand_arch }, \
56 { "riscv_expand_arch_from_cpu", riscv_expand_arch_from_cpu }, \
57 { "riscv_default_mtune", riscv_default_mtune },
58
59 /* Support for a compile-time default CPU, et cetera. The rules are:
60 --with-arch is ignored if -march or -mcpu is specified.
61 --with-abi is ignored if -mabi is specified.
62 --with-tune is ignored if -mtune or -mcpu is specified.
63 --with-isa-spec is ignored if -misa-spec is specified.
64
65 But using default -march/-mtune value if -mcpu don't have valid option. */
66 #define OPTION_DEFAULT_SPECS \
67 {"tune", "%{!mtune=*:" \
68 " %{!mcpu=*:-mtune=%(VALUE)}" \
69 " %{mcpu=*:-mtune=%:riscv_default_mtune(%* %(VALUE))}}" }, \
70 {"arch", "%{!march=*:" \
71 " %{!mcpu=*:-march=%(VALUE)}" \
72 " %{mcpu=*:%:riscv_expand_arch_from_cpu(%* %(VALUE))}}" }, \
73 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
74 {"isa_spec", "%{!misa-spec=*:-misa-spec=%(VALUE)}" }, \
75
76 #ifdef IN_LIBGCC2
77 #undef TARGET_64BIT
78 /* Make this compile time constant for libgcc2 */
79 #define TARGET_64BIT (__riscv_xlen == 64)
80 #endif /* IN_LIBGCC2 */
81
82 #ifdef HAVE_AS_MISA_SPEC
83 #define ASM_MISA_SPEC "%{misa-spec=*}"
84 #else
85 #define ASM_MISA_SPEC ""
86 #endif
87
88 /* Reference:
89 https://gcc.gnu.org/onlinedocs/cpp/Stringizing.html#Stringizing */
90 #define STRINGIZING(s) __STRINGIZING(s)
91 #define __STRINGIZING(s) #s
92
93 #define MULTILIB_DEFAULTS \
94 {"march=" STRINGIZING (TARGET_RISCV_DEFAULT_ARCH), \
95 "mabi=" STRINGIZING (TARGET_RISCV_DEFAULT_ABI) }
96
97 #undef ASM_SPEC
98 #define ASM_SPEC "\
99 %(subtarget_asm_debugging_spec) \
100 %{" FPIE_OR_FPIC_SPEC ":-fpic} \
101 %{march=*} \
102 %{mabi=*} \
103 %{mno-relax} \
104 %{mbig-endian} \
105 %{mlittle-endian} \
106 %(subtarget_asm_spec)" \
107 ASM_MISA_SPEC
108
109 #undef DRIVER_SELF_SPECS
110 #define DRIVER_SELF_SPECS \
111 "%{march=*:%:riscv_expand_arch(%*)} " \
112 "%{!march=*:%{mcpu=*:%:riscv_expand_arch_from_cpu(%*)}} "
113
114 #define TARGET_DEFAULT_CMODEL CM_MEDLOW
115
116 #define LOCAL_LABEL_PREFIX "."
117 #define USER_LABEL_PREFIX ""
118
119 /* Offsets recorded in opcodes are a multiple of this alignment factor.
120 The default for this in 64-bit mode is 8, which causes problems with
121 SFmode register saves. */
122 #define DWARF_CIE_DATA_ALIGNMENT -4
123
124 /* The mapping from gcc register number to DWARF 2 CFA column number. */
125 #define DWARF_FRAME_REGNUM(REGNO) \
126 (VL_REG_P (REGNO) ? RISCV_DWARF_VL \
127 : VTYPE_REG_P (REGNO) \
128 ? RISCV_DWARF_VTYPE \
129 : (GP_REG_P (REGNO) || FP_REG_P (REGNO) || V_REG_P (REGNO) \
130 ? REGNO \
131 : INVALID_REGNUM))
132
133 /* The DWARF 2 CFA column which tracks the return address. */
134 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
135 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
136
137 /* Describe how we implement __builtin_eh_return. */
138 #define EH_RETURN_DATA_REGNO(N) \
139 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
140
141 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
142
143 /* Target machine storage layout */
144
145 #define BITS_BIG_ENDIAN 0
146 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
147 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
148
149 #define MAX_BITS_PER_WORD 64
150
151 /* Width of a word, in units (bytes). */
152 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
153 #ifndef IN_LIBGCC2
154 #define MIN_UNITS_PER_WORD 4
155 #endif
156
157 /* Allows SImode op in builtin overflow pattern, see internal-fn.cc. */
158 #undef TARGET_MIN_ARITHMETIC_PRECISION
159 #define TARGET_MIN_ARITHMETIC_PRECISION riscv_min_arithmetic_precision
160
161 /* The `Q' extension is not yet supported. */
162 #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
163 /* Size per vector register. For VLEN = 32, size = poly (4, 4). Otherwise, size = poly (8, 8). */
164 #define UNITS_PER_V_REG (riscv_vector_chunks * riscv_bytes_per_vector_chunk)
165
166 /* The largest type that can be passed in floating-point registers. */
167 #define UNITS_PER_FP_ARG \
168 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
169 || riscv_abi == ABI_LP64) \
170 ? 0 \
171 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
172
173 /* Set the sizes of the core types. */
174 #define SHORT_TYPE_SIZE 16
175 #define INT_TYPE_SIZE 32
176 #define LONG_LONG_TYPE_SIZE 64
177 #define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
178 #define LONG_TYPE_SIZE POINTER_SIZE
179
180 #define FLOAT_TYPE_SIZE 32
181 #define DOUBLE_TYPE_SIZE 64
182 #define LONG_DOUBLE_TYPE_SIZE 128
183
184 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
185 #define PARM_BOUNDARY BITS_PER_WORD
186
187 /* Allocation boundary (in *bits*) for the code of a function. */
188 #define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32)
189
190 /* The smallest supported stack boundary the calling convention supports. */
191 #define STACK_BOUNDARY \
192 (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 2 * BITS_PER_WORD)
193
194 /* The ABI stack alignment. */
195 #define ABI_STACK_BOUNDARY (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 128)
196
197 /* There is no point aligning anything to a rounder boundary than this. */
198 #define BIGGEST_ALIGNMENT 128
199
200 /* The user-level ISA permits unaligned accesses, but they are not required
201 of the privileged architecture. */
202 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
203
204 /* Define this if you wish to imitate the way many other C compilers
205 handle alignment of bitfields and the structures that contain
206 them.
207
208 The behavior is that the type written for a bit-field (`int',
209 `short', or other integer type) imposes an alignment for the
210 entire structure, as if the structure really did contain an
211 ordinary field of that type. In addition, the bit-field is placed
212 within the structure so that it would fit within such a field,
213 not crossing a boundary for it.
214
215 Thus, on most machines, a bit-field whose type is written as `int'
216 would not cross a four-byte boundary, and would force four-byte
217 alignment for the whole structure. (The alignment used may not
218 be four bytes; it is controlled by the other alignment
219 parameters.)
220
221 If the macro is defined, its definition should be a C expression;
222 a nonzero value for the expression enables this behavior. */
223
224 #define PCC_BITFIELD_TYPE_MATTERS 1
225
226 /* An integer expression for the size in bits of the largest integer machine
227 mode that should actually be used. We allow pairs of registers. */
228 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
229
230 /* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */
231 #define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \
232 (((COND) && ((ALIGN) < BITS_PER_WORD) \
233 && (TREE_CODE (TYPE) == ARRAY_TYPE \
234 || TREE_CODE (TYPE) == UNION_TYPE \
235 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
236
237 /* If defined, a C expression to compute the alignment for a static
238 variable. TYPE is the data type, and ALIGN is the alignment that
239 the object would ordinarily have. The value of this macro is used
240 instead of that alignment to align the object.
241
242 If this macro is not defined, then ALIGN is used.
243
244 One use of this macro is to increase alignment of medium-size
245 data to make it all fit in fewer cache lines. Another is to
246 cause character arrays to be word-aligned so that `strcpy' calls
247 that copy constants to character arrays can be done inline. */
248
249 #define DATA_ALIGNMENT(TYPE, ALIGN) \
250 RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \
251 TYPE, ALIGN)
252
253 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
254 character arrays to be word-aligned so that `strcpy' calls that copy
255 constants to character arrays can be done inline, and 'strcmp' can be
256 optimised to use word loads. */
257 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
258 RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
259
260 /* Define if operations between registers always perform the operation
261 on the full register even if a narrower mode is specified. */
262 #define WORD_REGISTER_OPERATIONS 1
263
264 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
265 moves. All other references are zero extended. */
266 #define LOAD_EXTEND_OP(MODE) \
267 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
268
269 /* Define this macro if it is advisable to hold scalars in registers
270 in a wider mode than that declared by the program. In such cases,
271 the value is constrained to be within the bounds of the declared
272 type, but kept valid in the wider mode. The signedness of the
273 extension may differ from that of the type. */
274
275 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
276 if (GET_MODE_CLASS (MODE) == MODE_INT \
277 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
278 { \
279 if ((MODE) == SImode) \
280 (UNSIGNEDP) = 0; \
281 (MODE) = word_mode; \
282 }
283
284 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
285 Extensions of pointers to word_mode must be signed. */
286 #define POINTERS_EXTEND_UNSIGNED false
287
288 /* Define if loading short immediate values into registers sign extends. */
289 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
290
291 /* Standard register usage. */
292
293 /* Number of hardware registers. We have:
294
295 - 32 integer registers
296 - 32 floating point registers
297 - 2 fake registers:
298 - ARG_POINTER_REGNUM
299 - FRAME_POINTER_REGNUM
300 - 1 vl register
301 - 1 vtype register
302 - 30 unused registers for future expansion
303 - 32 vector registers */
304
305 #define FIRST_PSEUDO_REGISTER 128
306
307 /* x0, sp, gp, and tp are fixed. */
308
309 #define FIXED_REGISTERS \
310 { /* General registers. */ \
311 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
312 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
313 /* Floating-point registers. */ \
314 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
315 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
316 /* Others. */ \
317 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
318 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
319 /* Vector registers. */ \
320 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
321 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
322 }
323
324 /* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
325 The call RTLs themselves clobber ra. */
326
327 #define CALL_USED_REGISTERS \
328 { /* General registers. */ \
329 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
330 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
331 /* Floating-point registers. */ \
332 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
333 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
334 /* Others. */ \
335 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
336 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
337 /* Vector registers. */ \
338 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
339 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
340 }
341
342 /* Select a register mode required for caller save of hard regno REGNO.
343 Contrary to what is documented, the default is not the smallest suitable
344 mode but the largest suitable mode for the given (REGNO, NREGS) pair and
345 it quickly creates paradoxical subregs that can be problematic. */
346 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
347 ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
348
349 /* Internal macros to classify an ISA register's type. */
350
351 #define GP_REG_FIRST 0
352 #define GP_REG_LAST (TARGET_RVE ? 15 : 31)
353 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
354
355 #define FP_REG_FIRST 32
356 #define FP_REG_LAST 63
357 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
358
359 #define V_REG_FIRST 96
360 #define V_REG_LAST 127
361 #define V_REG_NUM (V_REG_LAST - V_REG_FIRST + 1)
362
363 /* The DWARF 2 CFA column which tracks the return address from a
364 signal handler context. This means that to maintain backwards
365 compatibility, no hard register can be assigned this column if it
366 would need to be handled by the DWARF unwinder. */
367 #define DWARF_ALT_FRAME_RETURN_COLUMN 64
368
369 #define GP_REG_P(REGNO) \
370 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
371 #define FP_REG_P(REGNO) \
372 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
373 #define V_REG_P(REGNO) \
374 ((unsigned int) ((int) (REGNO) - V_REG_FIRST) < V_REG_NUM)
375 #define VL_REG_P(REGNO) ((REGNO) == VL_REGNUM)
376 #define VTYPE_REG_P(REGNO) ((REGNO) == VTYPE_REGNUM)
377
378 /* True when REGNO is in SIBCALL_REGS set. */
379 #define SIBCALL_REG_P(REGNO) \
380 TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO)
381
382 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
383
384 /* Use s0 as the frame pointer if it is so requested. */
385 #define HARD_FRAME_POINTER_REGNUM 8
386 #define STACK_POINTER_REGNUM 2
387 #define THREAD_POINTER_REGNUM 4
388
389 /* These two registers don't really exist: they get eliminated to either
390 the stack or hard frame pointer. */
391 #define ARG_POINTER_REGNUM 64
392 #define FRAME_POINTER_REGNUM 65
393
394 /* Define Dwarf for RVV. */
395 #define RISCV_DWARF_VL (4096 + 0xc20)
396 #define RISCV_DWARF_VTYPE (4096 + 0xc21)
397
398 /* Register in which static-chain is passed to a function. */
399 #define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
400
401 /* Registers used as temporaries in prologue/epilogue code.
402
403 The prologue registers mustn't conflict with any
404 incoming arguments, the static chain pointer, or the frame pointer.
405 The epilogue temporary mustn't conflict with the return registers,
406 the frame pointer, the EH stack adjustment, or the EH data registers. */
407
408 #define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST)
409 #define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
410
411 #define RISCV_CALL_ADDRESS_TEMP_REGNUM (GP_TEMP_FIRST + 1)
412 #define RISCV_CALL_ADDRESS_TEMP(MODE) \
413 gen_rtx_REG (MODE, RISCV_CALL_ADDRESS_TEMP_REGNUM)
414
415 #define MCOUNT_NAME "_mcount"
416
417 #define NO_PROFILE_COUNTERS 1
418
419 /* Emit rtl for profiling. Output assembler code to FILE
420 to call "_mcount" for profiling a function entry. */
421 #define PROFILE_HOOK(LABEL) \
422 { \
423 rtx fun, ra; \
424 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
425 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
426 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
427 }
428
429 /* All the work done in PROFILE_HOOK, but still required. */
430 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
431
432 /* Define this macro if it is as good or better to call a constant
433 function address than to call an address kept in a register. */
434 #define NO_FUNCTION_CSE 1
435
436 /* Define the classes of registers for register constraints in the
437 machine description. Also define ranges of constants.
438
439 One of the classes must always be named ALL_REGS and include all hard regs.
440 If there is more than one class, another class must be named NO_REGS
441 and contain no registers.
442
443 The name GENERAL_REGS must be the name of a class (or an alias for
444 another name such as ALL_REGS). This is the class of registers
445 that is allowed by "g" or "r" in a register constraint.
446 Also, registers outside this class are allocated only when
447 instructions express preferences for them.
448
449 The classes must be numbered in nondecreasing order; that is,
450 a larger-numbered class must never be contained completely
451 in a smaller-numbered class.
452
453 For any two classes, it is very desirable that there be another
454 class that represents their union. */
455
456 enum reg_class
457 {
458 NO_REGS, /* no registers in set */
459 SIBCALL_REGS, /* registers used by indirect sibcalls */
460 JALR_REGS, /* registers used by indirect calls */
461 GR_REGS, /* integer registers */
462 FP_REGS, /* floating-point registers */
463 FRAME_REGS, /* arg pointer and frame pointer */
464 VL_REGS, /* vl register */
465 VTYPE_REGS, /* vype register */
466 VM_REGS, /* v0.t registers */
467 VD_REGS, /* vector registers except v0.t */
468 V_REGS, /* vector registers */
469 ALL_REGS, /* all registers */
470 LIM_REG_CLASSES /* max value + 1 */
471 };
472
473 #define N_REG_CLASSES (int) LIM_REG_CLASSES
474
475 #define GENERAL_REGS GR_REGS
476
477 /* An initializer containing the names of the register classes as C
478 string constants. These names are used in writing some of the
479 debugging dumps. */
480
481 #define REG_CLASS_NAMES \
482 { \
483 "NO_REGS", \
484 "SIBCALL_REGS", \
485 "JALR_REGS", \
486 "GR_REGS", \
487 "FP_REGS", \
488 "FRAME_REGS", \
489 "VL_REGS", \
490 "VTYPE_REGS", \
491 "VM_REGS", \
492 "VD_REGS", \
493 "V_REGS", \
494 "ALL_REGS" \
495 }
496
497 /* An initializer containing the contents of the register classes,
498 as integers which are bit masks. The Nth integer specifies the
499 contents of class N. The way the integer MASK is interpreted is
500 that register R is in the class if `MASK & (1 << R)' is 1.
501
502 When the machine has more than 32 registers, an integer does not
503 suffice. Then the integers are replaced by sub-initializers,
504 braced groupings containing several integers. Each
505 sub-initializer must be suitable as an initializer for the type
506 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
507
508 #define REG_CLASS_CONTENTS \
509 { \
510 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
511 { 0xf003fcc0, 0x00000000, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
512 { 0xffffffc0, 0x00000000, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
513 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
514 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FP_REGS */ \
515 { 0x00000000, 0x00000000, 0x00000003, 0x00000000 }, /* FRAME_REGS */ \
516 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* VL_REGS */ \
517 { 0x00000000, 0x00000000, 0x00000008, 0x00000000 }, /* VTYPE_REGS */ \
518 { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, /* V0_REGS */ \
519 { 0x00000000, 0x00000000, 0x00000000, 0xfffffffe }, /* VNoV0_REGS */ \
520 { 0x00000000, 0x00000000, 0x00000000, 0xffffffff }, /* V_REGS */ \
521 { 0xffffffff, 0xffffffff, 0x00000003, 0x00000000 } /* ALL_REGS */ \
522 }
523
524 /* A C expression whose value is a register class containing hard
525 register REGNO. In general there is more that one such class;
526 choose a class which is "minimal", meaning that no smaller class
527 also contains the register. */
528
529 #define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
530
531 /* A macro whose definition is the name of the class to which a
532 valid base register must belong. A base register is one used in
533 an address which is the register value plus a displacement. */
534
535 #define BASE_REG_CLASS GR_REGS
536
537 /* A macro whose definition is the name of the class to which a
538 valid index register must belong. An index register is one used
539 in an address where its value is either multiplied by a scale
540 factor or added to another register (as well as added to a
541 displacement). */
542
543 #define INDEX_REG_CLASS NO_REGS
544
545 /* We generally want to put call-clobbered registers ahead of
546 call-saved ones. (IRA expects this.) */
547
548 #define REG_ALLOC_ORDER \
549 { \
550 /* Call-clobbered GPRs. */ \
551 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
552 /* Call-saved GPRs. */ \
553 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
554 /* GPRs that can never be exposed to the register allocator. */ \
555 0, 2, 3, 4, \
556 /* Call-clobbered FPRs. */ \
557 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
558 60, 61, 62, 63, \
559 /* Call-saved FPRs. */ \
560 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
561 /* V24 ~ V31. */ \
562 120, 121, 122, 123, 124, 125, 126, 127, \
563 /* V8 ~ V23. */ \
564 104, 105, 106, 107, 108, 109, 110, 111, \
565 112, 113, 114, 115, 116, 117, 118, 119, \
566 /* V0 ~ V7. */ \
567 96, 97, 98, 99, 100, 101, 102, 103, \
568 /* None of the remaining classes have defined call-saved \
569 registers. */ \
570 64, 65, 66, 67 \
571 }
572
573 /* True if VALUE is a signed 12-bit number. */
574
575 #define SMALL_OPERAND(VALUE) \
576 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
577
578 #define POLY_SMALL_OPERAND_P(POLY_VALUE) \
579 (POLY_VALUE.is_constant () ? \
580 SMALL_OPERAND (POLY_VALUE.to_constant ()) : false)
581
582 /* True if VALUE can be loaded into a register using LUI. */
583
584 #define LUI_OPERAND(VALUE) \
585 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
586 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
587
588 /* If this is a single bit mask, then we can load it with bseti. Special
589 handling of SImode 0x80000000 on RV64 is done in riscv_build_integer_1. */
590 #define SINGLE_BIT_MASK_OPERAND(VALUE) \
591 (pow2p_hwi (TARGET_64BIT \
592 ? (VALUE) \
593 : ((VALUE) & ((HOST_WIDE_INT_1U << 32)-1))))
594
595 /* Stack layout; function entry, exit and calling. */
596
597 #define STACK_GROWS_DOWNWARD 1
598
599 #define FRAME_GROWS_DOWNWARD 1
600
601 #define RETURN_ADDR_RTX riscv_return_addr
602
603 #define ELIMINABLE_REGS \
604 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
605 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
606 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
607 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
608
609 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
610 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
611
612 /* Allocate stack space for arguments at the beginning of each function. */
613 #define ACCUMULATE_OUTGOING_ARGS 1
614
615 /* The argument pointer always points to the first argument. */
616 #define FIRST_PARM_OFFSET(FNDECL) 0
617
618 #define REG_PARM_STACK_SPACE(FNDECL) 0
619
620 /* Define this if it is the responsibility of the caller to
621 allocate the area reserved for arguments passed in registers.
622 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
623 of this macro is to determine whether the space is included in
624 `crtl->outgoing_args_size'. */
625 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
626
627 #define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
628
629 /* Symbolic macros for the registers used to return integer and floating
630 point values. */
631
632 #define GP_RETURN GP_ARG_FIRST
633 #define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
634
635 #define MAX_ARGS_IN_REGISTERS (riscv_abi == ABI_ILP32E ? 6 : 8)
636
637 /* Symbolic macros for the first/last argument registers. */
638
639 #define GP_ARG_FIRST (GP_REG_FIRST + 10)
640 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
641 #define GP_TEMP_FIRST (GP_REG_FIRST + 5)
642 #define FP_ARG_FIRST (FP_REG_FIRST + 10)
643 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
644
645 #define CALLEE_SAVED_REG_NUMBER(REGNO) \
646 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
647 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
648
649 #define LIBCALL_VALUE(MODE) \
650 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
651
652 #define FUNCTION_VALUE(VALTYPE, FUNC) \
653 riscv_function_value (VALTYPE, FUNC, VOIDmode)
654
655 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
656
657 /* 1 if N is a possible register number for function argument passing.
658 We have no FP argument registers when soft-float. */
659
660 /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
661 #define FUNCTION_ARG_REGNO_P(N) \
662 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
663 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
664
665 typedef struct {
666 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
667 unsigned int num_gprs;
668
669 /* Number of floating-point registers used so far, likewise. */
670 unsigned int num_fprs;
671 } CUMULATIVE_ARGS;
672
673 /* Initialize a variable CUM of type CUMULATIVE_ARGS
674 for a call to a function whose data type is FNTYPE.
675 For a library call, FNTYPE is 0. */
676
677 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
678 memset (&(CUM), 0, sizeof (CUM))
679
680 #define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
681
682 /* Align based on stack boundary, which might have been set by the user. */
683 #define RISCV_STACK_ALIGN(LOC) \
684 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
685
686 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
687 the stack pointer does not matter. The value is tested only in
688 functions that have frame pointers.
689 No definition is equivalent to always zero. */
690
691 #define EXIT_IGNORE_STACK 1
692
693
694 /* Trampolines are a block of code followed by two pointers. */
695
696 #define TRAMPOLINE_CODE_SIZE 16
697 #define TRAMPOLINE_SIZE \
698 ((Pmode == SImode) \
699 ? TRAMPOLINE_CODE_SIZE \
700 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
701 #define TRAMPOLINE_ALIGNMENT POINTER_SIZE
702
703 /* Addressing modes, and classification of registers for them. */
704
705 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
706 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
707 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
708
709 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
710 and check its validity for a certain class.
711 We have two alternate definitions for each of them.
712 The usual definition accepts all pseudo regs; the other rejects them all.
713 The symbol REG_OK_STRICT causes the latter definition to be used.
714
715 Most source files want to accept pseudo regs in the hope that
716 they will get allocated to the class that the insn wants them to be in.
717 Some source files that are used after register allocation
718 need to be strict. */
719
720 #ifndef REG_OK_STRICT
721 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
722 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
723 #else
724 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
725 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
726 #endif
727
728 #define REG_OK_FOR_INDEX_P(X) 0
729
730 /* Maximum number of registers that can appear in a valid memory address. */
731
732 #define MAX_REGS_PER_ADDRESS 1
733
734 #define CONSTANT_ADDRESS_P(X) \
735 (CONSTANT_P (X) && memory_address_p (SImode, X))
736
737 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
738 'the start of the function that this code is output in'. */
739
740 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
741 do { \
742 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
743 asm_fprintf ((FILE), "%U%s", \
744 XSTR (XEXP (DECL_RTL (current_function_decl), \
745 0), 0)); \
746 else \
747 asm_fprintf ((FILE), "%U%s", (NAME)); \
748 } while (0)
749
750 #define JUMP_TABLES_IN_TEXT_SECTION 0
751 #define CASE_VECTOR_MODE SImode
752 #define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
753
754 /* The load-address macro is used for PC-relative addressing of symbols
755 that bind locally. Don't use it for symbols that should be addressed
756 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
757 currently results in more opportunities for linker relaxation. */
758 #define USE_LOAD_ADDRESS_MACRO(sym) \
759 (!TARGET_EXPLICIT_RELOCS && \
760 ((flag_pic \
761 && ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
762 || ((GET_CODE (sym) == CONST) \
763 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
764 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))) \
765 || riscv_cmodel == CM_MEDANY))
766
767 /* Define this as 1 if `char' should by default be signed; else as 0. */
768 #define DEFAULT_SIGNED_CHAR 0
769
770 #define MOVE_MAX UNITS_PER_WORD
771 #define MAX_MOVE_MAX 8
772
773 /* The SPARC port says:
774 Nonzero if access to memory by bytes is slow and undesirable.
775 For RISC chips, it means that access to memory by bytes is no
776 better than access by words when possible, so grab a whole word
777 and maybe make use of that. */
778 #define SLOW_BYTE_ACCESS 1
779
780 /* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
781 in the md file instead. */
782 #define SHIFT_COUNT_TRUNCATED 0
783
784 /* Specify the machine mode that pointers have.
785 After generation of rtl, the compiler makes no further distinction
786 between pointers and any other objects of this machine mode. */
787
788 #define Pmode word_mode
789
790 /* Give call MEMs SImode since it is the "most permissive" mode
791 for both 32-bit and 64-bit targets. */
792
793 #define FUNCTION_MODE SImode
794
795 /* A C expression for the cost of a branch instruction. A value of 2
796 seems to minimize code size. */
797
798 #define BRANCH_COST(speed_p, predictable_p) \
799 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
800
801 /* True if the target optimizes short forward branches around integer
802 arithmetic instructions into predicated operations, e.g., for
803 conditional-move operations. The macro assumes that all branch
804 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
805 support this feature. The macro further assumes that any integer
806 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
807 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
808 counterparts, including C.MV and C.LI) can be in the branch shadow. */
809
810 #define TARGET_SFB_ALU (riscv_microarchitecture == sifive_7)
811
812 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
813
814 /* Control the assembler format that we output. */
815
816 /* Output to assembler file text saying following lines
817 may contain character constants, extra white space, comments, etc. */
818
819 #ifndef ASM_APP_ON
820 #define ASM_APP_ON " #APP\n"
821 #endif
822
823 /* Output to assembler file text saying following lines
824 no longer contain unusual constructs. */
825
826 #ifndef ASM_APP_OFF
827 #define ASM_APP_OFF " #NO_APP\n"
828 #endif
829
830 #define REGISTER_NAMES \
831 { "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
832 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
833 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
834 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
835 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
836 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
837 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
838 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
839 "arg", "frame", "vl", "vtype", "N/A", "N/A", "N/A", "N/A", \
840 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
841 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
842 "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", "N/A", \
843 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
844 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
845 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
846 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",}
847
848 #define ADDITIONAL_REGISTER_NAMES \
849 { \
850 { "x0", 0 + GP_REG_FIRST }, \
851 { "x1", 1 + GP_REG_FIRST }, \
852 { "x2", 2 + GP_REG_FIRST }, \
853 { "x3", 3 + GP_REG_FIRST }, \
854 { "x4", 4 + GP_REG_FIRST }, \
855 { "x5", 5 + GP_REG_FIRST }, \
856 { "x6", 6 + GP_REG_FIRST }, \
857 { "x7", 7 + GP_REG_FIRST }, \
858 { "x8", 8 + GP_REG_FIRST }, \
859 { "x9", 9 + GP_REG_FIRST }, \
860 { "x10", 10 + GP_REG_FIRST }, \
861 { "x11", 11 + GP_REG_FIRST }, \
862 { "x12", 12 + GP_REG_FIRST }, \
863 { "x13", 13 + GP_REG_FIRST }, \
864 { "x14", 14 + GP_REG_FIRST }, \
865 { "x15", 15 + GP_REG_FIRST }, \
866 { "x16", 16 + GP_REG_FIRST }, \
867 { "x17", 17 + GP_REG_FIRST }, \
868 { "x18", 18 + GP_REG_FIRST }, \
869 { "x19", 19 + GP_REG_FIRST }, \
870 { "x20", 20 + GP_REG_FIRST }, \
871 { "x21", 21 + GP_REG_FIRST }, \
872 { "x22", 22 + GP_REG_FIRST }, \
873 { "x23", 23 + GP_REG_FIRST }, \
874 { "x24", 24 + GP_REG_FIRST }, \
875 { "x25", 25 + GP_REG_FIRST }, \
876 { "x26", 26 + GP_REG_FIRST }, \
877 { "x27", 27 + GP_REG_FIRST }, \
878 { "x28", 28 + GP_REG_FIRST }, \
879 { "x29", 29 + GP_REG_FIRST }, \
880 { "x30", 30 + GP_REG_FIRST }, \
881 { "x31", 31 + GP_REG_FIRST }, \
882 { "f0", 0 + FP_REG_FIRST }, \
883 { "f1", 1 + FP_REG_FIRST }, \
884 { "f2", 2 + FP_REG_FIRST }, \
885 { "f3", 3 + FP_REG_FIRST }, \
886 { "f4", 4 + FP_REG_FIRST }, \
887 { "f5", 5 + FP_REG_FIRST }, \
888 { "f6", 6 + FP_REG_FIRST }, \
889 { "f7", 7 + FP_REG_FIRST }, \
890 { "f8", 8 + FP_REG_FIRST }, \
891 { "f9", 9 + FP_REG_FIRST }, \
892 { "f10", 10 + FP_REG_FIRST }, \
893 { "f11", 11 + FP_REG_FIRST }, \
894 { "f12", 12 + FP_REG_FIRST }, \
895 { "f13", 13 + FP_REG_FIRST }, \
896 { "f14", 14 + FP_REG_FIRST }, \
897 { "f15", 15 + FP_REG_FIRST }, \
898 { "f16", 16 + FP_REG_FIRST }, \
899 { "f17", 17 + FP_REG_FIRST }, \
900 { "f18", 18 + FP_REG_FIRST }, \
901 { "f19", 19 + FP_REG_FIRST }, \
902 { "f20", 20 + FP_REG_FIRST }, \
903 { "f21", 21 + FP_REG_FIRST }, \
904 { "f22", 22 + FP_REG_FIRST }, \
905 { "f23", 23 + FP_REG_FIRST }, \
906 { "f24", 24 + FP_REG_FIRST }, \
907 { "f25", 25 + FP_REG_FIRST }, \
908 { "f26", 26 + FP_REG_FIRST }, \
909 { "f27", 27 + FP_REG_FIRST }, \
910 { "f28", 28 + FP_REG_FIRST }, \
911 { "f29", 29 + FP_REG_FIRST }, \
912 { "f30", 30 + FP_REG_FIRST }, \
913 { "f31", 31 + FP_REG_FIRST }, \
914 }
915
916 /* Globalizing directive for a label. */
917 #define GLOBAL_ASM_OP "\t.globl\t"
918
919 /* This is how to store into the string LABEL
920 the symbol_ref name of an internal numbered label where
921 PREFIX is the class of label and NUM is the number within the class.
922 This is suitable for output with `assemble_name'. */
923
924 #undef ASM_GENERATE_INTERNAL_LABEL
925 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
926 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
927
928 /* This is how to output an element of a case-vector that is absolute. */
929
930 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
931 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
932
933 /* This is how to output an element of a PIC case-vector. */
934
935 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
936 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
937 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
938
939 /* This is how to output an assembler line
940 that says to advance the location counter
941 to a multiple of 2**LOG bytes. */
942
943 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
944 fprintf (STREAM, "\t.align\t%d\n", (LOG))
945
946 /* Define the strings to put out for each section in the object file. */
947 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
948 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
949 #define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
950 #define BSS_SECTION_ASM_OP "\t.bss"
951 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
952 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
953
954 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
955 do \
956 { \
957 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
958 reg_names[STACK_POINTER_REGNUM], \
959 reg_names[STACK_POINTER_REGNUM], \
960 TARGET_64BIT ? "sd" : "sw", \
961 reg_names[REGNO], \
962 reg_names[STACK_POINTER_REGNUM]); \
963 } \
964 while (0)
965
966 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
967 do \
968 { \
969 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
970 TARGET_64BIT ? "ld" : "lw", \
971 reg_names[REGNO], \
972 reg_names[STACK_POINTER_REGNUM], \
973 reg_names[STACK_POINTER_REGNUM], \
974 reg_names[STACK_POINTER_REGNUM]); \
975 } \
976 while (0)
977
978 #define ASM_COMMENT_START "#"
979
980 #undef SIZE_TYPE
981 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
982
983 #undef PTRDIFF_TYPE
984 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
985
986 /* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
987
988 #define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
989
990 /* The maximum number of bytes that can be copied by a straight-line
991 cpymemsi implementation. */
992
993 #define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
994
995 /* If a memory-to-memory move would take MOVE_RATIO or more simple
996 move-instruction pairs, we will do a cpymem or libcall instead.
997 Do not use move_by_pieces at all when strict alignment is not
998 in effect but the target has slow unaligned accesses; in this
999 case, cpymem or libcall is more efficient. */
1000
1001 #define MOVE_RATIO(speed) \
1002 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
1003 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
1004 CLEAR_RATIO (speed) / 2)
1005
1006 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
1007 of the length of a memset call, but use the default otherwise. */
1008
1009 #define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
1010
1011 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
1012 optimizing for size adjust the ratio to account for the overhead of
1013 loading the constant and replicating it across the word. */
1014
1015 #define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
1016
1017 #ifndef USED_FOR_TARGET
1018 extern const enum reg_class riscv_regno_to_class[];
1019 extern bool riscv_slow_unaligned_access_p;
1020 extern unsigned riscv_stack_boundary;
1021 extern unsigned riscv_bytes_per_vector_chunk;
1022 extern poly_uint16 riscv_vector_chunks;
1023 /* The number of bits and bytes in a RVV vector. */
1024 #define BITS_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk * 8))
1025 #define BYTES_PER_RISCV_VECTOR (poly_uint16 (riscv_vector_chunks * riscv_bytes_per_vector_chunk))
1026 #endif
1027
1028 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1029 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
1030
1031 #define XLEN_SPEC \
1032 "%{march=rv32*:32}" \
1033 "%{march=rv64*:64}" \
1034
1035 #define ABI_SPEC \
1036 "%{mabi=ilp32:ilp32}" \
1037 "%{mabi=ilp32e:ilp32e}" \
1038 "%{mabi=ilp32f:ilp32f}" \
1039 "%{mabi=ilp32d:ilp32d}" \
1040 "%{mabi=lp64:lp64}" \
1041 "%{mabi=lp64f:lp64f}" \
1042 "%{mabi=lp64d:lp64d}" \
1043
1044 /* ISA constants needed for code generation. */
1045 #define OPCODE_LW 0x2003
1046 #define OPCODE_LD 0x3003
1047 #define OPCODE_AUIPC 0x17
1048 #define OPCODE_JALR 0x67
1049 #define OPCODE_LUI 0x37
1050 #define OPCODE_ADDI 0x13
1051 #define SHIFT_RD 7
1052 #define SHIFT_RS1 15
1053 #define SHIFT_IMM 20
1054 #define IMM_BITS 12
1055 #define C_S_BITS 5
1056 #define C_SxSP_BITS 6
1057
1058 #define IMM_REACH (1LL << IMM_BITS)
1059 #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
1060 #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
1061
1062 #define SWSP_REACH (4LL << C_SxSP_BITS)
1063 #define SDSP_REACH (8LL << C_SxSP_BITS)
1064
1065 /* This is the maximum value that can be represented in a compressed load/store
1066 offset (an unsigned 5-bit value scaled by 4). */
1067 #define CSW_MAX_OFFSET (((4LL << C_S_BITS) - 1) & ~3)
1068
1069 /* Called from RISCV_REORG, this is defined in riscv-sr.cc. */
1070
1071 extern void riscv_remove_unneeded_save_restore_calls (void);
1072
1073 #define HARD_REGNO_RENAME_OK(FROM, TO) riscv_hard_regno_rename_ok (FROM, TO)
1074
1075 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1076 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1077 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1078 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
1079
1080 #define TARGET_SUPPORTS_WIDE_INT 1
1081
1082 #endif /* ! GCC_RISCV_H */