]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/riscv/riscv.h
RISC-V: Handle implied extension for -march parser.
[thirdparty/gcc.git] / gcc / config / riscv / riscv.h
1 /* Definition of RISC-V target for GNU compiler.
2 Copyright (C) 2011-2020 Free Software Foundation, Inc.
3 Contributed by Andrew Waterman (andrew@sifive.com).
4 Based on MIPS target for GNU compiler.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_RISCV_H
23 #define GCC_RISCV_H
24
25 #include "config/riscv/riscv-opts.h"
26
27 /* Target CPU builtins. */
28 #define TARGET_CPU_CPP_BUILTINS() riscv_cpu_cpp_builtins (pfile)
29
30 /* Target CPU versions for D. */
31 #define TARGET_D_CPU_VERSIONS riscv_d_target_versions
32
33 /* Default target_flags if no switches are specified */
34
35 #ifndef TARGET_DEFAULT
36 #define TARGET_DEFAULT 0
37 #endif
38
39 #ifndef RISCV_TUNE_STRING_DEFAULT
40 #define RISCV_TUNE_STRING_DEFAULT "rocket"
41 #endif
42
43 extern const char *riscv_expand_arch (int argc, const char **argv);
44
45 # define EXTRA_SPEC_FUNCTIONS \
46 { "riscv_expand_arch", riscv_expand_arch },
47
48 /* Support for a compile-time default CPU, et cetera. The rules are:
49 --with-arch is ignored if -march is specified.
50 --with-abi is ignored if -mabi is specified.
51 --with-tune is ignored if -mtune is specified. */
52 #define OPTION_DEFAULT_SPECS \
53 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
54 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
55 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
56
57 #ifdef IN_LIBGCC2
58 #undef TARGET_64BIT
59 /* Make this compile time constant for libgcc2 */
60 #define TARGET_64BIT (__riscv_xlen == 64)
61 #endif /* IN_LIBGCC2 */
62
63 #undef ASM_SPEC
64 #define ASM_SPEC "\
65 %(subtarget_asm_debugging_spec) \
66 %{" FPIE_OR_FPIC_SPEC ":-fpic} \
67 %{march=*:-march=%:riscv_expand_arch(%*)} \
68 %{mabi=*} \
69 %(subtarget_asm_spec)"
70
71 #define TARGET_DEFAULT_CMODEL CM_MEDLOW
72
73 #define LOCAL_LABEL_PREFIX "."
74 #define USER_LABEL_PREFIX ""
75
76 /* Offsets recorded in opcodes are a multiple of this alignment factor.
77 The default for this in 64-bit mode is 8, which causes problems with
78 SFmode register saves. */
79 #define DWARF_CIE_DATA_ALIGNMENT -4
80
81 /* The mapping from gcc register number to DWARF 2 CFA column number. */
82 #define DWARF_FRAME_REGNUM(REGNO) \
83 (GP_REG_P (REGNO) || FP_REG_P (REGNO) ? REGNO : INVALID_REGNUM)
84
85 /* The DWARF 2 CFA column which tracks the return address. */
86 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
87 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
88
89 /* Describe how we implement __builtin_eh_return. */
90 #define EH_RETURN_DATA_REGNO(N) \
91 ((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
92
93 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
94
95 /* Target machine storage layout */
96
97 #define BITS_BIG_ENDIAN 0
98 #define BYTES_BIG_ENDIAN 0
99 #define WORDS_BIG_ENDIAN 0
100
101 #define MAX_BITS_PER_WORD 64
102
103 /* Width of a word, in units (bytes). */
104 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
105 #ifndef IN_LIBGCC2
106 #define MIN_UNITS_PER_WORD 4
107 #endif
108
109 /* The `Q' extension is not yet supported. */
110 #define UNITS_PER_FP_REG (TARGET_DOUBLE_FLOAT ? 8 : 4)
111
112 /* The largest type that can be passed in floating-point registers. */
113 #define UNITS_PER_FP_ARG \
114 ((riscv_abi == ABI_ILP32 || riscv_abi == ABI_ILP32E \
115 || riscv_abi == ABI_LP64) \
116 ? 0 \
117 : ((riscv_abi == ABI_ILP32F || riscv_abi == ABI_LP64F) ? 4 : 8))
118
119 /* Set the sizes of the core types. */
120 #define SHORT_TYPE_SIZE 16
121 #define INT_TYPE_SIZE 32
122 #define LONG_LONG_TYPE_SIZE 64
123 #define POINTER_SIZE (riscv_abi >= ABI_LP64 ? 64 : 32)
124 #define LONG_TYPE_SIZE POINTER_SIZE
125
126 #define FLOAT_TYPE_SIZE 32
127 #define DOUBLE_TYPE_SIZE 64
128 #define LONG_DOUBLE_TYPE_SIZE 128
129
130 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
131 #define PARM_BOUNDARY BITS_PER_WORD
132
133 /* Allocation boundary (in *bits*) for the code of a function. */
134 #define FUNCTION_BOUNDARY (TARGET_RVC ? 16 : 32)
135
136 /* The smallest supported stack boundary the calling convention supports. */
137 #define STACK_BOUNDARY \
138 (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 2 * BITS_PER_WORD)
139
140 /* The ABI stack alignment. */
141 #define ABI_STACK_BOUNDARY (riscv_abi == ABI_ILP32E ? BITS_PER_WORD : 128)
142
143 /* There is no point aligning anything to a rounder boundary than this. */
144 #define BIGGEST_ALIGNMENT 128
145
146 /* The user-level ISA permits unaligned accesses, but they are not required
147 of the privileged architecture. */
148 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
149
150 /* Define this if you wish to imitate the way many other C compilers
151 handle alignment of bitfields and the structures that contain
152 them.
153
154 The behavior is that the type written for a bit-field (`int',
155 `short', or other integer type) imposes an alignment for the
156 entire structure, as if the structure really did contain an
157 ordinary field of that type. In addition, the bit-field is placed
158 within the structure so that it would fit within such a field,
159 not crossing a boundary for it.
160
161 Thus, on most machines, a bit-field whose type is written as `int'
162 would not cross a four-byte boundary, and would force four-byte
163 alignment for the whole structure. (The alignment used may not
164 be four bytes; it is controlled by the other alignment
165 parameters.)
166
167 If the macro is defined, its definition should be a C expression;
168 a nonzero value for the expression enables this behavior. */
169
170 #define PCC_BITFIELD_TYPE_MATTERS 1
171
172 /* An integer expression for the size in bits of the largest integer machine
173 mode that should actually be used. We allow pairs of registers. */
174 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
175
176 /* DATA_ALIGNMENT and LOCAL_ALIGNMENT common definition. */
177 #define RISCV_EXPAND_ALIGNMENT(COND, TYPE, ALIGN) \
178 (((COND) && ((ALIGN) < BITS_PER_WORD) \
179 && (TREE_CODE (TYPE) == ARRAY_TYPE \
180 || TREE_CODE (TYPE) == UNION_TYPE \
181 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
182
183 /* If defined, a C expression to compute the alignment for a static
184 variable. TYPE is the data type, and ALIGN is the alignment that
185 the object would ordinarily have. The value of this macro is used
186 instead of that alignment to align the object.
187
188 If this macro is not defined, then ALIGN is used.
189
190 One use of this macro is to increase alignment of medium-size
191 data to make it all fit in fewer cache lines. Another is to
192 cause character arrays to be word-aligned so that `strcpy' calls
193 that copy constants to character arrays can be done inline. */
194
195 #define DATA_ALIGNMENT(TYPE, ALIGN) \
196 RISCV_EXPAND_ALIGNMENT (riscv_align_data_type == riscv_align_data_type_xlen, \
197 TYPE, ALIGN)
198
199 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
200 character arrays to be word-aligned so that `strcpy' calls that copy
201 constants to character arrays can be done inline, and 'strcmp' can be
202 optimised to use word loads. */
203 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
204 RISCV_EXPAND_ALIGNMENT (true, TYPE, ALIGN)
205
206 /* Define if operations between registers always perform the operation
207 on the full register even if a narrower mode is specified. */
208 #define WORD_REGISTER_OPERATIONS 1
209
210 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
211 moves. All other references are zero extended. */
212 #define LOAD_EXTEND_OP(MODE) \
213 (TARGET_64BIT && (MODE) == SImode ? SIGN_EXTEND : ZERO_EXTEND)
214
215 /* Define this macro if it is advisable to hold scalars in registers
216 in a wider mode than that declared by the program. In such cases,
217 the value is constrained to be within the bounds of the declared
218 type, but kept valid in the wider mode. The signedness of the
219 extension may differ from that of the type. */
220
221 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
222 if (GET_MODE_CLASS (MODE) == MODE_INT \
223 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
224 { \
225 if ((MODE) == SImode) \
226 (UNSIGNEDP) = 0; \
227 (MODE) = word_mode; \
228 }
229
230 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
231 Extensions of pointers to word_mode must be signed. */
232 #define POINTERS_EXTEND_UNSIGNED false
233
234 /* Define if loading short immediate values into registers sign extends. */
235 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
236
237 /* Standard register usage. */
238
239 /* Number of hardware registers. We have:
240
241 - 32 integer registers
242 - 32 floating point registers
243 - 2 fake registers:
244 - ARG_POINTER_REGNUM
245 - FRAME_POINTER_REGNUM */
246
247 #define FIRST_PSEUDO_REGISTER 66
248
249 /* x0, sp, gp, and tp are fixed. */
250
251 #define FIXED_REGISTERS \
252 { /* General registers. */ \
253 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
254 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
255 /* Floating-point registers. */ \
256 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
258 /* Others. */ \
259 1, 1 \
260 }
261
262 /* a0-a7, t0-t6, fa0-fa7, and ft0-ft11 are volatile across calls.
263 The call RTLs themselves clobber ra. */
264
265 #define CALL_USED_REGISTERS \
266 { /* General registers. */ \
267 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
268 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
269 /* Floating-point registers. */ \
270 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
271 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
272 /* Others. */ \
273 1, 1 \
274 }
275
276 /* Select a register mode required for caller save of hard regno REGNO.
277 Contrary to what is documented, the default is not the smallest suitable
278 mode but the largest suitable mode for the given (REGNO, NREGS) pair and
279 it quickly creates paradoxical subregs that can be problematic. */
280 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
281 ((MODE) == VOIDmode ? choose_hard_reg_mode (REGNO, NREGS, NULL) : (MODE))
282
283 /* Internal macros to classify an ISA register's type. */
284
285 #define GP_REG_FIRST 0
286 #define GP_REG_LAST (TARGET_RVE ? 15 : 31)
287 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
288
289 #define FP_REG_FIRST 32
290 #define FP_REG_LAST 63
291 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
292
293 /* The DWARF 2 CFA column which tracks the return address from a
294 signal handler context. This means that to maintain backwards
295 compatibility, no hard register can be assigned this column if it
296 would need to be handled by the DWARF unwinder. */
297 #define DWARF_ALT_FRAME_RETURN_COLUMN 64
298
299 #define GP_REG_P(REGNO) \
300 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
301 #define FP_REG_P(REGNO) \
302 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
303
304 /* True when REGNO is in SIBCALL_REGS set. */
305 #define SIBCALL_REG_P(REGNO) \
306 TEST_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], REGNO)
307
308 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
309
310 /* Use s0 as the frame pointer if it is so requested. */
311 #define HARD_FRAME_POINTER_REGNUM 8
312 #define STACK_POINTER_REGNUM 2
313 #define THREAD_POINTER_REGNUM 4
314
315 /* These two registers don't really exist: they get eliminated to either
316 the stack or hard frame pointer. */
317 #define ARG_POINTER_REGNUM 64
318 #define FRAME_POINTER_REGNUM 65
319
320 /* Register in which static-chain is passed to a function. */
321 #define STATIC_CHAIN_REGNUM (GP_TEMP_FIRST + 2)
322
323 /* Registers used as temporaries in prologue/epilogue code.
324
325 The prologue registers mustn't conflict with any
326 incoming arguments, the static chain pointer, or the frame pointer.
327 The epilogue temporary mustn't conflict with the return registers,
328 the frame pointer, the EH stack adjustment, or the EH data registers. */
329
330 #define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST + 1)
331 #define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
332
333 #define MCOUNT_NAME "_mcount"
334
335 #define NO_PROFILE_COUNTERS 1
336
337 /* Emit rtl for profiling. Output assembler code to FILE
338 to call "_mcount" for profiling a function entry. */
339 #define PROFILE_HOOK(LABEL) \
340 { \
341 rtx fun, ra; \
342 ra = get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM); \
343 fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_NAME); \
344 emit_library_call (fun, LCT_NORMAL, VOIDmode, ra, Pmode); \
345 }
346
347 /* All the work done in PROFILE_HOOK, but still required. */
348 #define FUNCTION_PROFILER(STREAM, LABELNO) do { } while (0)
349
350 /* Define this macro if it is as good or better to call a constant
351 function address than to call an address kept in a register. */
352 #define NO_FUNCTION_CSE 1
353
354 /* Define the classes of registers for register constraints in the
355 machine description. Also define ranges of constants.
356
357 One of the classes must always be named ALL_REGS and include all hard regs.
358 If there is more than one class, another class must be named NO_REGS
359 and contain no registers.
360
361 The name GENERAL_REGS must be the name of a class (or an alias for
362 another name such as ALL_REGS). This is the class of registers
363 that is allowed by "g" or "r" in a register constraint.
364 Also, registers outside this class are allocated only when
365 instructions express preferences for them.
366
367 The classes must be numbered in nondecreasing order; that is,
368 a larger-numbered class must never be contained completely
369 in a smaller-numbered class.
370
371 For any two classes, it is very desirable that there be another
372 class that represents their union. */
373
374 enum reg_class
375 {
376 NO_REGS, /* no registers in set */
377 SIBCALL_REGS, /* registers used by indirect sibcalls */
378 JALR_REGS, /* registers used by indirect calls */
379 GR_REGS, /* integer registers */
380 FP_REGS, /* floating-point registers */
381 FRAME_REGS, /* arg pointer and frame pointer */
382 ALL_REGS, /* all registers */
383 LIM_REG_CLASSES /* max value + 1 */
384 };
385
386 #define N_REG_CLASSES (int) LIM_REG_CLASSES
387
388 #define GENERAL_REGS GR_REGS
389
390 /* An initializer containing the names of the register classes as C
391 string constants. These names are used in writing some of the
392 debugging dumps. */
393
394 #define REG_CLASS_NAMES \
395 { \
396 "NO_REGS", \
397 "SIBCALL_REGS", \
398 "JALR_REGS", \
399 "GR_REGS", \
400 "FP_REGS", \
401 "FRAME_REGS", \
402 "ALL_REGS" \
403 }
404
405 /* An initializer containing the contents of the register classes,
406 as integers which are bit masks. The Nth integer specifies the
407 contents of class N. The way the integer MASK is interpreted is
408 that register R is in the class if `MASK & (1 << R)' is 1.
409
410 When the machine has more than 32 registers, an integer does not
411 suffice. Then the integers are replaced by sub-initializers,
412 braced groupings containing several integers. Each
413 sub-initializer must be suitable as an initializer for the type
414 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
415
416 #define REG_CLASS_CONTENTS \
417 { \
418 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
419 { 0xf003fcc0, 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
420 { 0xffffffc0, 0x00000000, 0x00000000 }, /* JALR_REGS */ \
421 { 0xffffffff, 0x00000000, 0x00000000 }, /* GR_REGS */ \
422 { 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \
423 { 0x00000000, 0x00000000, 0x00000003 }, /* FRAME_REGS */ \
424 { 0xffffffff, 0xffffffff, 0x00000003 } /* ALL_REGS */ \
425 }
426
427 /* A C expression whose value is a register class containing hard
428 register REGNO. In general there is more that one such class;
429 choose a class which is "minimal", meaning that no smaller class
430 also contains the register. */
431
432 #define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
433
434 /* A macro whose definition is the name of the class to which a
435 valid base register must belong. A base register is one used in
436 an address which is the register value plus a displacement. */
437
438 #define BASE_REG_CLASS GR_REGS
439
440 /* A macro whose definition is the name of the class to which a
441 valid index register must belong. An index register is one used
442 in an address where its value is either multiplied by a scale
443 factor or added to another register (as well as added to a
444 displacement). */
445
446 #define INDEX_REG_CLASS NO_REGS
447
448 /* We generally want to put call-clobbered registers ahead of
449 call-saved ones. (IRA expects this.) */
450
451 #define REG_ALLOC_ORDER \
452 { \
453 /* Call-clobbered GPRs. */ \
454 15, 14, 13, 12, 11, 10, 16, 17, 6, 28, 29, 30, 31, 5, 7, 1, \
455 /* Call-saved GPRs. */ \
456 8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
457 /* GPRs that can never be exposed to the register allocator. */ \
458 0, 2, 3, 4, \
459 /* Call-clobbered FPRs. */ \
460 47, 46, 45, 44, 43, 42, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, \
461 60, 61, 62, 63, \
462 /* Call-saved FPRs. */ \
463 40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
464 /* None of the remaining classes have defined call-saved \
465 registers. */ \
466 64, 65 \
467 }
468
469 /* True if VALUE is a signed 12-bit number. */
470
471 #define SMALL_OPERAND(VALUE) \
472 ((unsigned HOST_WIDE_INT) (VALUE) + IMM_REACH/2 < IMM_REACH)
473
474 /* True if VALUE can be loaded into a register using LUI. */
475
476 #define LUI_OPERAND(VALUE) \
477 (((VALUE) | ((1UL<<31) - IMM_REACH)) == ((1UL<<31) - IMM_REACH) \
478 || ((VALUE) | ((1UL<<31) - IMM_REACH)) + IMM_REACH == 0)
479
480 /* Stack layout; function entry, exit and calling. */
481
482 #define STACK_GROWS_DOWNWARD 1
483
484 #define FRAME_GROWS_DOWNWARD 1
485
486 #define RETURN_ADDR_RTX riscv_return_addr
487
488 #define ELIMINABLE_REGS \
489 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
490 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
491 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
492 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
493
494 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
495 (OFFSET) = riscv_initial_elimination_offset (FROM, TO)
496
497 /* Allocate stack space for arguments at the beginning of each function. */
498 #define ACCUMULATE_OUTGOING_ARGS 1
499
500 /* The argument pointer always points to the first argument. */
501 #define FIRST_PARM_OFFSET(FNDECL) 0
502
503 #define REG_PARM_STACK_SPACE(FNDECL) 0
504
505 /* Define this if it is the responsibility of the caller to
506 allocate the area reserved for arguments passed in registers.
507 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
508 of this macro is to determine whether the space is included in
509 `crtl->outgoing_args_size'. */
510 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
511
512 #define PREFERRED_STACK_BOUNDARY riscv_stack_boundary
513
514 /* Symbolic macros for the registers used to return integer and floating
515 point values. */
516
517 #define GP_RETURN GP_ARG_FIRST
518 #define FP_RETURN (UNITS_PER_FP_ARG == 0 ? GP_RETURN : FP_ARG_FIRST)
519
520 #define MAX_ARGS_IN_REGISTERS (riscv_abi == ABI_ILP32E ? 6 : 8)
521
522 /* Symbolic macros for the first/last argument registers. */
523
524 #define GP_ARG_FIRST (GP_REG_FIRST + 10)
525 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
526 #define GP_TEMP_FIRST (GP_REG_FIRST + 5)
527 #define FP_ARG_FIRST (FP_REG_FIRST + 10)
528 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
529
530 #define CALLEE_SAVED_REG_NUMBER(REGNO) \
531 ((REGNO) >= 8 && (REGNO) <= 9 ? (REGNO) - 8 : \
532 (REGNO) >= 18 && (REGNO) <= 27 ? (REGNO) - 16 : -1)
533
534 #define LIBCALL_VALUE(MODE) \
535 riscv_function_value (NULL_TREE, NULL_TREE, MODE)
536
537 #define FUNCTION_VALUE(VALTYPE, FUNC) \
538 riscv_function_value (VALTYPE, FUNC, VOIDmode)
539
540 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
541
542 /* 1 if N is a possible register number for function argument passing.
543 We have no FP argument registers when soft-float. */
544
545 /* Accept arguments in a0-a7, and in fa0-fa7 if permitted by the ABI. */
546 #define FUNCTION_ARG_REGNO_P(N) \
547 (IN_RANGE ((N), GP_ARG_FIRST, GP_ARG_LAST) \
548 || (UNITS_PER_FP_ARG && IN_RANGE ((N), FP_ARG_FIRST, FP_ARG_LAST)))
549
550 typedef struct {
551 /* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
552 unsigned int num_gprs;
553
554 /* Number of floating-point registers used so far, likewise. */
555 unsigned int num_fprs;
556 } CUMULATIVE_ARGS;
557
558 /* Initialize a variable CUM of type CUMULATIVE_ARGS
559 for a call to a function whose data type is FNTYPE.
560 For a library call, FNTYPE is 0. */
561
562 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
563 memset (&(CUM), 0, sizeof (CUM))
564
565 #define EPILOGUE_USES(REGNO) riscv_epilogue_uses (REGNO)
566
567 /* Align based on stack boundary, which might have been set by the user. */
568 #define RISCV_STACK_ALIGN(LOC) \
569 (((LOC) + ((PREFERRED_STACK_BOUNDARY/8)-1)) & -(PREFERRED_STACK_BOUNDARY/8))
570
571 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
572 the stack pointer does not matter. The value is tested only in
573 functions that have frame pointers.
574 No definition is equivalent to always zero. */
575
576 #define EXIT_IGNORE_STACK 1
577
578
579 /* Trampolines are a block of code followed by two pointers. */
580
581 #define TRAMPOLINE_CODE_SIZE 16
582 #define TRAMPOLINE_SIZE \
583 ((Pmode == SImode) \
584 ? TRAMPOLINE_CODE_SIZE \
585 : (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2))
586 #define TRAMPOLINE_ALIGNMENT POINTER_SIZE
587
588 /* Addressing modes, and classification of registers for them. */
589
590 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
591 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
592 riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
593
594 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
595 and check its validity for a certain class.
596 We have two alternate definitions for each of them.
597 The usual definition accepts all pseudo regs; the other rejects them all.
598 The symbol REG_OK_STRICT causes the latter definition to be used.
599
600 Most source files want to accept pseudo regs in the hope that
601 they will get allocated to the class that the insn wants them to be in.
602 Some source files that are used after register allocation
603 need to be strict. */
604
605 #ifndef REG_OK_STRICT
606 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
607 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
608 #else
609 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
610 riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
611 #endif
612
613 #define REG_OK_FOR_INDEX_P(X) 0
614
615 /* Maximum number of registers that can appear in a valid memory address. */
616
617 #define MAX_REGS_PER_ADDRESS 1
618
619 #define CONSTANT_ADDRESS_P(X) \
620 (CONSTANT_P (X) && memory_address_p (SImode, X))
621
622 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
623 'the start of the function that this code is output in'. */
624
625 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
626 do { \
627 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
628 asm_fprintf ((FILE), "%U%s", \
629 XSTR (XEXP (DECL_RTL (current_function_decl), \
630 0), 0)); \
631 else \
632 asm_fprintf ((FILE), "%U%s", (NAME)); \
633 } while (0)
634
635 #define JUMP_TABLES_IN_TEXT_SECTION 0
636 #define CASE_VECTOR_MODE SImode
637 #define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
638
639 /* The load-address macro is used for PC-relative addressing of symbols
640 that bind locally. Don't use it for symbols that should be addressed
641 via the GOT. Also, avoid it for CM_MEDLOW, where LUI addressing
642 currently results in more opportunities for linker relaxation. */
643 #define USE_LOAD_ADDRESS_MACRO(sym) \
644 (!TARGET_EXPLICIT_RELOCS && \
645 ((flag_pic \
646 && ((SYMBOL_REF_P (sym) && SYMBOL_REF_LOCAL_P (sym)) \
647 || ((GET_CODE (sym) == CONST) \
648 && SYMBOL_REF_P (XEXP (XEXP (sym, 0),0)) \
649 && SYMBOL_REF_LOCAL_P (XEXP (XEXP (sym, 0),0))))) \
650 || riscv_cmodel == CM_MEDANY))
651
652 /* Define this as 1 if `char' should by default be signed; else as 0. */
653 #define DEFAULT_SIGNED_CHAR 0
654
655 #define MOVE_MAX UNITS_PER_WORD
656 #define MAX_MOVE_MAX 8
657
658 /* The SPARC port says:
659 Nonzero if access to memory by bytes is slow and undesirable.
660 For RISC chips, it means that access to memory by bytes is no
661 better than access by words when possible, so grab a whole word
662 and maybe make use of that. */
663 #define SLOW_BYTE_ACCESS 1
664
665 /* Using SHIFT_COUNT_TRUNCATED is discouraged, so we handle this with patterns
666 in the md file instead. */
667 #define SHIFT_COUNT_TRUNCATED 0
668
669 /* Specify the machine mode that pointers have.
670 After generation of rtl, the compiler makes no further distinction
671 between pointers and any other objects of this machine mode. */
672
673 #define Pmode word_mode
674
675 /* Give call MEMs SImode since it is the "most permissive" mode
676 for both 32-bit and 64-bit targets. */
677
678 #define FUNCTION_MODE SImode
679
680 /* A C expression for the cost of a branch instruction. A value of 2
681 seems to minimize code size. */
682
683 #define BRANCH_COST(speed_p, predictable_p) \
684 ((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
685
686 /* True if the target optimizes short forward branches around integer
687 arithmetic instructions into predicated operations, e.g., for
688 conditional-move operations. The macro assumes that all branch
689 instructions (BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ)
690 support this feature. The macro further assumes that any integer
691 arithmetic and logical operation (ADD[I], SUB, SLL[I], SRL[I], SRA[I],
692 SLT[I][U], AND[I], XOR[I], OR[I], LUI, AUIPC, and their compressed
693 counterparts, including C.MV and C.LI) can be in the branch shadow. */
694
695 #define TARGET_SFB_ALU (riscv_microarchitecture == sifive_7)
696
697 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
698
699 /* Control the assembler format that we output. */
700
701 /* Output to assembler file text saying following lines
702 may contain character constants, extra white space, comments, etc. */
703
704 #ifndef ASM_APP_ON
705 #define ASM_APP_ON " #APP\n"
706 #endif
707
708 /* Output to assembler file text saying following lines
709 no longer contain unusual constructs. */
710
711 #ifndef ASM_APP_OFF
712 #define ASM_APP_OFF " #NO_APP\n"
713 #endif
714
715 #define REGISTER_NAMES \
716 { "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
717 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
718 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
719 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
720 "ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
721 "fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
722 "fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
723 "fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
724 "arg", "frame", }
725
726 #define ADDITIONAL_REGISTER_NAMES \
727 { \
728 { "x0", 0 + GP_REG_FIRST }, \
729 { "x1", 1 + GP_REG_FIRST }, \
730 { "x2", 2 + GP_REG_FIRST }, \
731 { "x3", 3 + GP_REG_FIRST }, \
732 { "x4", 4 + GP_REG_FIRST }, \
733 { "x5", 5 + GP_REG_FIRST }, \
734 { "x6", 6 + GP_REG_FIRST }, \
735 { "x7", 7 + GP_REG_FIRST }, \
736 { "x8", 8 + GP_REG_FIRST }, \
737 { "x9", 9 + GP_REG_FIRST }, \
738 { "x10", 10 + GP_REG_FIRST }, \
739 { "x11", 11 + GP_REG_FIRST }, \
740 { "x12", 12 + GP_REG_FIRST }, \
741 { "x13", 13 + GP_REG_FIRST }, \
742 { "x14", 14 + GP_REG_FIRST }, \
743 { "x15", 15 + GP_REG_FIRST }, \
744 { "x16", 16 + GP_REG_FIRST }, \
745 { "x17", 17 + GP_REG_FIRST }, \
746 { "x18", 18 + GP_REG_FIRST }, \
747 { "x19", 19 + GP_REG_FIRST }, \
748 { "x20", 20 + GP_REG_FIRST }, \
749 { "x21", 21 + GP_REG_FIRST }, \
750 { "x22", 22 + GP_REG_FIRST }, \
751 { "x23", 23 + GP_REG_FIRST }, \
752 { "x24", 24 + GP_REG_FIRST }, \
753 { "x25", 25 + GP_REG_FIRST }, \
754 { "x26", 26 + GP_REG_FIRST }, \
755 { "x27", 27 + GP_REG_FIRST }, \
756 { "x28", 28 + GP_REG_FIRST }, \
757 { "x29", 29 + GP_REG_FIRST }, \
758 { "x30", 30 + GP_REG_FIRST }, \
759 { "x31", 31 + GP_REG_FIRST }, \
760 { "f0", 0 + FP_REG_FIRST }, \
761 { "f1", 1 + FP_REG_FIRST }, \
762 { "f2", 2 + FP_REG_FIRST }, \
763 { "f3", 3 + FP_REG_FIRST }, \
764 { "f4", 4 + FP_REG_FIRST }, \
765 { "f5", 5 + FP_REG_FIRST }, \
766 { "f6", 6 + FP_REG_FIRST }, \
767 { "f7", 7 + FP_REG_FIRST }, \
768 { "f8", 8 + FP_REG_FIRST }, \
769 { "f9", 9 + FP_REG_FIRST }, \
770 { "f10", 10 + FP_REG_FIRST }, \
771 { "f11", 11 + FP_REG_FIRST }, \
772 { "f12", 12 + FP_REG_FIRST }, \
773 { "f13", 13 + FP_REG_FIRST }, \
774 { "f14", 14 + FP_REG_FIRST }, \
775 { "f15", 15 + FP_REG_FIRST }, \
776 { "f16", 16 + FP_REG_FIRST }, \
777 { "f17", 17 + FP_REG_FIRST }, \
778 { "f18", 18 + FP_REG_FIRST }, \
779 { "f19", 19 + FP_REG_FIRST }, \
780 { "f20", 20 + FP_REG_FIRST }, \
781 { "f21", 21 + FP_REG_FIRST }, \
782 { "f22", 22 + FP_REG_FIRST }, \
783 { "f23", 23 + FP_REG_FIRST }, \
784 { "f24", 24 + FP_REG_FIRST }, \
785 { "f25", 25 + FP_REG_FIRST }, \
786 { "f26", 26 + FP_REG_FIRST }, \
787 { "f27", 27 + FP_REG_FIRST }, \
788 { "f28", 28 + FP_REG_FIRST }, \
789 { "f29", 29 + FP_REG_FIRST }, \
790 { "f30", 30 + FP_REG_FIRST }, \
791 { "f31", 31 + FP_REG_FIRST }, \
792 }
793
794 /* Globalizing directive for a label. */
795 #define GLOBAL_ASM_OP "\t.globl\t"
796
797 /* This is how to store into the string LABEL
798 the symbol_ref name of an internal numbered label where
799 PREFIX is the class of label and NUM is the number within the class.
800 This is suitable for output with `assemble_name'. */
801
802 #undef ASM_GENERATE_INTERNAL_LABEL
803 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
804 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
805
806 /* This is how to output an element of a case-vector that is absolute. */
807
808 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
809 fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
810
811 /* This is how to output an element of a PIC case-vector. */
812
813 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
814 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
815 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
816
817 /* This is how to output an assembler line
818 that says to advance the location counter
819 to a multiple of 2**LOG bytes. */
820
821 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
822 fprintf (STREAM, "\t.align\t%d\n", (LOG))
823
824 /* Define the strings to put out for each section in the object file. */
825 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
826 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
827 #define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
828 #define BSS_SECTION_ASM_OP "\t.bss"
829 #define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
830 #define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
831
832 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
833 do \
834 { \
835 fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
836 reg_names[STACK_POINTER_REGNUM], \
837 reg_names[STACK_POINTER_REGNUM], \
838 TARGET_64BIT ? "sd" : "sw", \
839 reg_names[REGNO], \
840 reg_names[STACK_POINTER_REGNUM]); \
841 } \
842 while (0)
843
844 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
845 do \
846 { \
847 fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
848 TARGET_64BIT ? "ld" : "lw", \
849 reg_names[REGNO], \
850 reg_names[STACK_POINTER_REGNUM], \
851 reg_names[STACK_POINTER_REGNUM], \
852 reg_names[STACK_POINTER_REGNUM]); \
853 } \
854 while (0)
855
856 #define ASM_COMMENT_START "#"
857
858 #undef SIZE_TYPE
859 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
860
861 #undef PTRDIFF_TYPE
862 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
863
864 /* The maximum number of bytes copied by one iteration of a cpymemsi loop. */
865
866 #define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
867
868 /* The maximum number of bytes that can be copied by a straight-line
869 cpymemsi implementation. */
870
871 #define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 3)
872
873 /* If a memory-to-memory move would take MOVE_RATIO or more simple
874 move-instruction pairs, we will do a cpymem or libcall instead.
875 Do not use move_by_pieces at all when strict alignment is not
876 in effect but the target has slow unaligned accesses; in this
877 case, cpymem or libcall is more efficient. */
878
879 #define MOVE_RATIO(speed) \
880 (!STRICT_ALIGNMENT && riscv_slow_unaligned_access_p ? 1 : \
881 (speed) ? RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / UNITS_PER_WORD : \
882 CLEAR_RATIO (speed) / 2)
883
884 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
885 of the length of a memset call, but use the default otherwise. */
886
887 #define CLEAR_RATIO(speed) ((speed) ? 16 : 6)
888
889 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
890 optimizing for size adjust the ratio to account for the overhead of
891 loading the constant and replicating it across the word. */
892
893 #define SET_RATIO(speed) (CLEAR_RATIO (speed) - ((speed) ? 0 : 2))
894
895 #ifndef USED_FOR_TARGET
896 extern const enum reg_class riscv_regno_to_class[];
897 extern bool riscv_slow_unaligned_access_p;
898 extern unsigned riscv_stack_boundary;
899 #endif
900
901 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
902 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
903
904 #define XLEN_SPEC \
905 "%{march=rv32*:32}" \
906 "%{march=rv64*:64}" \
907
908 #define ABI_SPEC \
909 "%{mabi=ilp32:ilp32}" \
910 "%{mabi=ilp32e:ilp32e}" \
911 "%{mabi=ilp32f:ilp32f}" \
912 "%{mabi=ilp32d:ilp32d}" \
913 "%{mabi=lp64:lp64}" \
914 "%{mabi=lp64f:lp64f}" \
915 "%{mabi=lp64d:lp64d}" \
916
917 /* ISA constants needed for code generation. */
918 #define OPCODE_LW 0x2003
919 #define OPCODE_LD 0x3003
920 #define OPCODE_AUIPC 0x17
921 #define OPCODE_JALR 0x67
922 #define OPCODE_LUI 0x37
923 #define OPCODE_ADDI 0x13
924 #define SHIFT_RD 7
925 #define SHIFT_RS1 15
926 #define SHIFT_IMM 20
927 #define IMM_BITS 12
928 #define C_S_BITS 5
929 #define C_SxSP_BITS 6
930
931 #define IMM_REACH (1LL << IMM_BITS)
932 #define CONST_HIGH_PART(VALUE) (((VALUE) + (IMM_REACH/2)) & ~(IMM_REACH-1))
933 #define CONST_LOW_PART(VALUE) ((VALUE) - CONST_HIGH_PART (VALUE))
934
935 #define SWSP_REACH (4LL << C_SxSP_BITS)
936 #define SDSP_REACH (8LL << C_SxSP_BITS)
937
938 /* This is the maximum value that can be represented in a compressed load/store
939 offset (an unsigned 5-bit value scaled by 4). */
940 #define CSW_MAX_OFFSET ((4LL << C_S_BITS) - 1) & ~3
941
942 /* Called from RISCV_REORG, this is defined in riscv-sr.c. */
943
944 extern void riscv_remove_unneeded_save_restore_calls (void);
945
946 #define HARD_REGNO_RENAME_OK(FROM, TO) riscv_hard_regno_rename_ok (FROM, TO)
947
948 #endif /* ! GCC_RISCV_H */