]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/romp/romp.h
expr.c (move_block_from_reg): Remove "size" parm.
[thirdparty/gcc.git] / gcc / config / romp / romp.h
1 /* Definitions of target machine for GNU compiler, for ROMP chip.
2 Copyright (C) 1989, 1991, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@nyu.edu)
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* Names to predefine in the preprocessor for this target machine. */
25
26 #define CPP_PREDEFINES "-Dibm032 -Dunix -Asystem=unix -Asystem=bsd -Acpu=ibm032 -Amachine=ibm032"
27
28 /* Print subsidiary information on the compiler version in use. */
29 #define TARGET_VERSION ;
30
31 /* Add -lfp_p when running with -p or -pg. */
32 #define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
33
34 /* Run-time compilation parameters selecting different hardware subsets. */
35
36 /* Flag to generate all multiplies as an in-line sequence of multiply-step
37 insns instead of calling a library routine. */
38 #define TARGET_IN_LINE_MUL (target_flags & 1)
39
40 /* Flag to generate padded floating-point data blocks. Otherwise, we generate
41 them the minimum size. This trades off execution speed against size. */
42 #define TARGET_FULL_FP_BLOCKS (target_flags & 2)
43
44 /* Flag to pass and return floating point values in floating point registers.
45 Since this violates the linkage convention, we feel free to destroy fr2
46 and fr3 on function calls.
47 fr1-fr3 are used to pass the arguments. */
48 #define TARGET_FP_REGS (target_flags & 4)
49
50 /* Flag to return structures of more than one word in memory. This is for
51 compatibility with the MetaWare HighC (hc) compiler. */
52 #define TARGET_HC_STRUCT_RETURN (target_flags & 010)
53
54 extern int target_flags;
55
56 /* Macro to define tables used to set the flags.
57 This is a list in braces of pairs in braces,
58 each pair being { "NAME", VALUE }
59 where VALUE is the bits to set or minus the bits to clear.
60 An empty string NAME is used to identify the default VALUE. */
61
62 #define TARGET_SWITCHES \
63 { {"in-line-mul", 1}, \
64 {"call-lib-mul", -1}, \
65 {"full-fp-blocks", 2}, \
66 {"minimum-fp-blocks", -2}, \
67 {"fp-arg-in-fpregs", 4}, \
68 {"fp-arg-in-gregs", -4}, \
69 {"hc-struct-return", 010}, \
70 {"nohc-struct-return", - 010}, \
71 { "", TARGET_DEFAULT}}
72
73 #define TARGET_DEFAULT 3
74 \f
75 /* target machine storage layout */
76
77 /* Define this if most significant bit is lowest numbered
78 in instructions that operate on numbered bit-fields. */
79 /* That is true on ROMP. */
80 #define BITS_BIG_ENDIAN 1
81
82 /* Define this if most significant byte of a word is the lowest numbered. */
83 /* That is true on ROMP. */
84 #define BYTES_BIG_ENDIAN 1
85
86 /* Define this if most significant word of a multiword number is lowest
87 numbered.
88
89 For ROMP we can decide arbitrarily since there are no machine instructions
90 for them. Might as well be consistent with bits and bytes. */
91 #define WORDS_BIG_ENDIAN 1
92
93 /* Width of a word, in units (bytes). */
94 #define UNITS_PER_WORD 4
95
96 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
97 #define PARM_BOUNDARY 32
98
99 /* Boundary (in *bits*) on which stack pointer should be aligned. */
100 #define STACK_BOUNDARY 32
101
102 /* Allocation boundary (in *bits*) for the code of a function. */
103 #define FUNCTION_BOUNDARY 16
104
105 /* No data type wants to be aligned rounder than this. */
106 #define BIGGEST_ALIGNMENT 32
107
108 /* Alignment of field after `int : 0' in a structure. */
109 #define EMPTY_FIELD_BOUNDARY 32
110
111 /* Every structure's size must be a multiple of this. */
112 #define STRUCTURE_SIZE_BOUNDARY 8
113
114 /* A bit-field declared as `int' forces `int' alignment for the struct. */
115 #define PCC_BITFIELD_TYPE_MATTERS 1
116
117 /* Make strings word-aligned so strcpy from constants will be faster. */
118 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
119 (TREE_CODE (EXP) == STRING_CST \
120 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
121
122 /* Make arrays of chars word-aligned for the same reasons. */
123 #define DATA_ALIGNMENT(TYPE, ALIGN) \
124 (TREE_CODE (TYPE) == ARRAY_TYPE \
125 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
126 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
127
128 /* Set this nonzero if move instructions will actually fail to work
129 when given unaligned data. */
130 #define STRICT_ALIGNMENT 1
131 \f
132 /* Standard register usage. */
133
134 /* Number of actual hardware registers.
135 The hardware registers are assigned numbers for the compiler
136 from 0 to just below FIRST_PSEUDO_REGISTER.
137 All registers that the compiler knows about must be given numbers,
138 even those that are not normally considered general registers.
139
140 ROMP has 16 fullword registers and 8 floating point registers.
141
142 In addition, the difference between the frame and argument pointers is
143 a function of the number of registers saved, so we need to have a register
144 to use for AP that will later be eliminated in favor of sp or fp. This is
145 a normal register, but it is fixed. */
146
147 #define FIRST_PSEUDO_REGISTER 25
148
149 /* 1 for registers that have pervasive standard uses
150 and are not available for the register allocator.
151
152 On ROMP, r1 is used for the stack and r14 is used for a
153 data area pointer.
154
155 HACK WARNING: On the RT, there is a bug in code generation for
156 the MC68881 when the first and third operands are the same floating-point
157 register. See the definition of the FINAL_PRESCAN_INSN macro for details.
158 Here we need to reserve fr0 for this purpose. */
159 #define FIXED_REGISTERS \
160 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
161 1, \
162 1, 0, 0, 0, 0, 0, 0, 0}
163
164 /* 1 for registers not available across function calls.
165 These must include the FIXED_REGISTERS and also any
166 registers that can be used without being saved.
167 The latter must include the registers where values are returned
168 and the register where structure-value addresses are passed.
169 Aside from that, you can include as many other registers as you like. */
170 #define CALL_USED_REGISTERS \
171 {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
172 1, \
173 1, 1, 0, 0, 0, 0, 0, 0}
174
175 /* List the order in which to allocate registers. Each register must be
176 listed once, even those in FIXED_REGISTERS.
177
178 We allocate in the following order:
179 fr0, fr1 (not saved)
180 fr2 ... fr6
181 fr7 (more expensive for some FPA's)
182 r0 (not saved and won't conflict with parameter register)
183 r4, r3, r2 (not saved, highest used first to make less conflict)
184 r5 (not saved, but forces r6 to be saved if DI/DFmode)
185 r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save)
186 r1, ap */
187
188 #define REG_ALLOC_ORDER \
189 {17, 18, \
190 19, 20, 21, 22, 23, \
191 24, \
192 0, \
193 4, 3, 2, \
194 5, \
195 15, 14, 13, 12, 11, 10, \
196 9, 8, 7, 6, \
197 1, 16}
198
199 /* True if register is floating-point. */
200 #define FP_REGNO_P(N) ((N) >= 17)
201
202 /* Return number of consecutive hard regs needed starting at reg REGNO
203 to hold something of mode MODE.
204 This is ordinarily the length in words of a value of mode MODE
205 but can be less for certain modes in special long registers.
206
207 On ROMP, ordinary registers hold 32 bits worth;
208 a single floating point register is always enough for
209 anything that can be stored in them at all. */
210 #define HARD_REGNO_NREGS(REGNO, MODE) \
211 (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE) \
212 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
213
214 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
215 On ROMP, the cpu registers can hold any mode but the float registers
216 can hold only floating point. */
217 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
218 (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT \
219 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
220
221 /* Value is 1 if it is a good idea to tie two pseudo registers
222 when one has mode MODE1 and one has mode MODE2.
223 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
224 for any hard reg, then this must be 0 for correct output. */
225 #define MODES_TIEABLE_P(MODE1, MODE2) \
226 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
227 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
228 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
229 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
230
231 /* A C expression returning the cost of moving data from a register of class
232 CLASS1 to one of CLASS2.
233
234 On the ROMP, access to floating-point registers is expensive (even between
235 two FP regs.) */
236 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
237 (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS))
238
239 /* Specify the registers used for certain standard purposes.
240 The values of these macros are register numbers. */
241
242 /* ROMP pc isn't overloaded on a register that the compiler knows about. */
243 /* #define PC_REGNUM */
244
245 /* Register to use for pushing function arguments. */
246 #define STACK_POINTER_REGNUM 1
247
248 /* Base register for access to local variables of the function. */
249 #define FRAME_POINTER_REGNUM 13
250
251 /* Value should be nonzero if functions must have frame pointers.
252 Zero means the frame pointer need not be set up (and parms
253 may be accessed via the stack pointer) in functions that seem suitable.
254 This is computed in `reload', in reload1.c. */
255 #define FRAME_POINTER_REQUIRED 0
256
257 /* Base register for access to arguments of the function. */
258 #define ARG_POINTER_REGNUM 16
259
260 /* Place to put static chain when calling a function that requires it. */
261 #define STATIC_CHAIN \
262 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -36))
263
264 /* Place where static chain is found upon entry to routine. */
265 #define STATIC_CHAIN_INCOMING \
266 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -20))
267
268 /* Place that structure value return address is placed.
269
270 On the ROMP, it is passed as an extra parameter. */
271 #define STRUCT_VALUE 0
272 \f
273 /* Define the classes of registers for register constraints in the
274 machine description. Also define ranges of constants.
275
276 One of the classes must always be named ALL_REGS and include all hard regs.
277 If there is more than one class, another class must be named NO_REGS
278 and contain no registers.
279
280 The name GENERAL_REGS must be the name of a class (or an alias for
281 another name such as ALL_REGS). This is the class of registers
282 that is allowed by "g" or "r" in a register constraint.
283 Also, registers outside this class are allocated only when
284 instructions express preferences for them.
285
286 The classes must be numbered in nondecreasing order; that is,
287 a larger-numbered class must never be contained completely
288 in a smaller-numbered class.
289
290 For any two classes, it is very desirable that there be another
291 class that represents their union. */
292
293 /* The ROMP has two types of registers, general and floating-point.
294
295 However, r0 is special in that it cannot be used as a base register.
296 So make a class for registers valid as base registers.
297
298 For floating-point support, add classes that just consist of r0 and
299 r15, respectively. */
300
301 enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS,
302 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
303
304 #define N_REG_CLASSES (int) LIM_REG_CLASSES
305
306 /* Give names of register classes as strings for dump file. */
307
308 #define REG_CLASS_NAMES \
309 {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \
310 "FP_REGS", "ALL_REGS" }
311
312 /* Define which registers fit in which classes.
313 This is an initializer for a vector of HARD_REG_SET
314 of length N_REG_CLASSES. */
315
316 #define REG_CLASS_CONTENTS {{0}, {0x00001}, {0x08000}, {0x1fffe}, {0x1ffff}, \
317 {0x1fe0000}, {0x1ffffff} }
318
319 /* The same information, inverted:
320 Return the class number of the smallest class containing
321 reg number REGNO. This could be a conditional expression
322 or could index an array. */
323
324 #define REGNO_REG_CLASS(REGNO) \
325 ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS)
326
327 /* The class value for index registers, and the one for base regs. */
328 #define INDEX_REG_CLASS BASE_REGS
329 #define BASE_REG_CLASS BASE_REGS
330
331 /* Get reg_class from a letter such as appears in the machine description. */
332
333 #define REG_CLASS_FROM_LETTER(C) \
334 ((C) == 'f' ? FP_REGS \
335 : (C) == 'b' ? BASE_REGS \
336 : (C) == 'z' ? R0_REGS \
337 : (C) == 't' ? R15_REGS \
338 : NO_REGS)
339
340 /* The letters I, J, K, L, M, N, and P in a register constraint string
341 can be used to stand for particular ranges of immediate operands.
342 This macro defines what the ranges are.
343 C is the letter, and VALUE is a constant value.
344 Return 1 if VALUE is in the range specified by C.
345
346 `I' is constants less than 16
347 `J' is negative constants greater than -16
348 `K' is the range for a normal D insn.
349 `L' is a constant with only the low-order 16 bits set
350 `M' is a constant with only the high-order 16 bits set
351 `N' is a single-bit constant
352 `O' is a constant with either the high-order or low-order 16 bits all ones
353 `P' is the complement of a single-bit constant
354 */
355
356 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
357 ( (C) == 'I' ? (unsigned) (VALUE) < 0x10 \
358 : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16 \
359 : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
360 : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0 \
361 : (C) == 'M' ? ((VALUE) & 0xffff) == 0 \
362 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
363 : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff \
364 || ((VALUE) & 0xffff0000) == 0xffff0000 \
365 : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0 \
366 : 0)
367
368 /* Similar, but for floating constants, and defining letters G and H.
369 Here VALUE is the CONST_DOUBLE rtx itself.
370 No floating-point constants on ROMP. */
371
372 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
373
374 /* Optional extra constraints for this machine.
375
376 For the ROMP, `Q' means that this is a memory operand but not a symbolic
377 memory operand. Note that an unassigned pseudo register is such a
378 memory operand. If register allocation has not been done, we reject
379 pseudos, since we assume (hope) that they will get hard registers.
380
381 `R' means that this is a constant pool reference to the current function.
382 This is just r14 and so can be treated as a register. We bother with this
383 just in move insns as that is the only place it is likely to occur.
384
385 `S' means that this is the address of a constant pool location. This is
386 equal to r14 plus a constant. We also only check for this in move insns. */
387
388 #define EXTRA_CONSTRAINT(OP, C) \
389 ((C) == 'Q' ? \
390 ((GET_CODE (OP) == REG \
391 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
392 && reg_renumber != 0 \
393 && reg_renumber[REGNO (OP)] < 0) \
394 || (GET_CODE (OP) == MEM \
395 && ! symbolic_memory_operand (OP, VOIDmode))) \
396 : (C) == 'R' ? current_function_operand (OP, VOIDmode) \
397 : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \
398 : 0)
399
400 /* Given an rtx X being reloaded into a reg required to be
401 in class CLASS, return the class of reg to actually use.
402 In general this is just CLASS; but on some machines
403 in some cases it is preferable to use a more restrictive class.
404
405 For the ROMP, if X is a memory reference that involves a symbol,
406 we must use a BASE_REGS register instead of GENERAL_REGS
407 to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF
408 to be valid, so we assume that this is the case.
409
410 Also, if X is an integer class, ensure that floating-point registers
411 aren't used. */
412
413 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
414 ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
415 ? GENERAL_REGS : \
416 (CLASS) != GENERAL_REGS ? (CLASS) : \
417 GET_CODE (X) != MEM ? GENERAL_REGS : \
418 GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS : \
419 GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS : \
420 GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS : \
421 GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS : \
422 GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS : \
423 GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS : \
424 GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS : \
425 GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS)
426
427 /* Return the register class of a scratch register needed to store into
428 OUT from a register of class CLASS in MODE.
429
430 On the ROMP, we cannot store into a symbolic memory address from an
431 integer register; we need a BASE_REGS register as a scratch to do it. */
432
433 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
434 (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \
435 ? BASE_REGS : NO_REGS)
436
437 /* Return the maximum number of consecutive registers
438 needed to represent mode MODE in a register of class CLASS.
439
440 On ROMP, this is the size of MODE in words,
441 except in the FP regs, where a single reg is always enough. */
442 #define CLASS_MAX_NREGS(CLASS, MODE) \
443 ((CLASS) == FP_REGS ? 1 \
444 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
445 \f
446 /* Stack layout; function entry, exit and calling. */
447
448 /* Define this if pushing a word on the stack
449 makes the stack pointer a smaller address. */
450 #define STACK_GROWS_DOWNWARD
451
452 /* Define this if the nominal address of the stack frame
453 is at the high-address end of the local variables;
454 that is, each additional local variable allocated
455 goes at a more negative offset in the frame. */
456 #define FRAME_GROWS_DOWNWARD
457
458 /* Offset within stack frame to start allocating local variables at.
459 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
460 first local allocated. Otherwise, it is the offset to the BEGINNING
461 of the first local allocated.
462 On the ROMP, if we set the frame pointer to 15 words below the highest
463 address of the highest local variable, the first 16 words will be
464 addressable via D-short insns. */
465 #define STARTING_FRAME_OFFSET 64
466
467 /* If we generate an insn to push BYTES bytes,
468 this says how many the stack pointer really advances by.
469 On ROMP, don't define this because there are no push insns. */
470 /* #define PUSH_ROUNDING(BYTES) */
471
472 /* Offset of first parameter from the argument pointer register value.
473 On the ROMP, we define the argument pointer to the start of the argument
474 area. */
475 #define FIRST_PARM_OFFSET(FNDECL) 0
476
477 /* Define this if stack space is still allocated for a parameter passed
478 in a register. The value is the number of bytes. */
479 #define REG_PARM_STACK_SPACE(FNDECL) 16
480
481 /* This is the difference between the logical top of stack and the actual sp.
482
483 For the ROMP, sp points past the words allocated for the first four outgoing
484 arguments (they are part of the callee's frame). */
485 #define STACK_POINTER_OFFSET -16
486
487 /* Define this if the maximum size of all the outgoing args is to be
488 accumulated and pushed during the prologue. The amount can be
489 found in the variable current_function_outgoing_args_size. */
490 #define ACCUMULATE_OUTGOING_ARGS 1
491
492 /* Value is the number of bytes of arguments automatically
493 popped when returning from a subroutine call.
494 FUNDECL is the declaration node of the function (as a tree),
495 FUNTYPE is the data type of the function (as a tree),
496 or for a library call it is an identifier node for the subroutine name.
497 SIZE is the number of bytes of arguments passed on the stack. */
498
499 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
500
501 /* Define how to find the value returned by a function.
502 VALTYPE is the data type of the value (as a tree).
503 If the precise function being called is known, FUNC is its FUNCTION_DECL;
504 otherwise, FUNC is 0.
505
506 On ROMP the value is found in r2, unless the machine specific option
507 fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */
508
509 #define FUNCTION_VALUE(VALTYPE, FUNC) \
510 gen_rtx_REG (TYPE_MODE (VALTYPE), \
511 (TARGET_FP_REGS \
512 && GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) \
513 ? 18 : 2)
514
515 /* Define how to find the value returned by a library function
516 assuming the value has mode MODE. */
517
518 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 2)
519
520 /* The definition of this macro implies that there are cases where
521 a scalar value cannot be returned in registers.
522
523 For the ROMP, if compatibility with HC is required, anything of
524 type DImode is returned in memory. */
525
526 #define RETURN_IN_MEMORY(type) \
527 (TYPE_MODE (type) == BLKmode \
528 || (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode))
529
530 /* 1 if N is a possible register number for a function value
531 as seen by the caller.
532
533 On ROMP, r2 is the only register thus used unless fp values are to be
534 returned in fp regs, in which case fr1 is also used. */
535
536 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || ((N) == 18 && TARGET_FP_REGS))
537
538 /* 1 if N is a possible register number for function argument passing.
539 On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used). */
540
541 #define FUNCTION_ARG_REGNO_P(N) \
542 (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21))
543 \f
544 /* Define a data type for recording info about an argument list
545 during the scan of that argument list. This data type should
546 hold all necessary information about the function itself
547 and about the args processed so far, enough to enable macros
548 such as FUNCTION_ARG to determine where the next arg should go.
549
550 On the ROMP, this is a structure. The first word is the number of
551 words of (integer only if -mfp-arg-in-fpregs is specified) arguments
552 scanned so far (including the invisible argument, if any, which holds
553 the structure-value-address). The second word hold the corresponding
554 value for floating-point arguments, except that both single and double
555 count as one register. */
556
557 struct rt_cargs {int gregs, fregs; };
558 #define CUMULATIVE_ARGS struct rt_cargs
559
560 #define USE_FP_REG(MODE,CUM) \
561 (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT \
562 && (CUM).fregs < 3)
563
564 /* Define intermediate macro to compute the size (in registers) of an argument
565 for the ROMP. */
566
567 #define ROMP_ARG_SIZE(MODE, TYPE, NAMED) \
568 (! (NAMED) ? 0 \
569 : (MODE) != BLKmode \
570 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
571 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
572
573 /* Initialize a variable CUM of type CUMULATIVE_ARGS
574 for a call to a function whose data type is FNTYPE.
575 For a library call, FNTYPE is 0.
576
577 On ROMP, the offset normally starts at 0, but starts at 4 bytes
578 when the function gets a structure-value-address as an
579 invisible first argument. */
580
581 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
582 (CUM).gregs = 0, \
583 (CUM).fregs = 0
584
585 /* Update the data in CUM to advance over an argument
586 of mode MODE and data type TYPE.
587 (TYPE is null for libcalls where that information may not be available.) */
588
589 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
590 { if (NAMED) \
591 { \
592 if (USE_FP_REG(MODE, CUM)) \
593 (CUM).fregs++; \
594 else \
595 (CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \
596 } \
597 }
598
599 /* Determine where to put an argument to a function.
600 Value is zero to push the argument on the stack,
601 or a hard register in which to store the argument.
602
603 MODE is the argument's machine mode.
604 TYPE is the data type of the argument (as a tree).
605 This is null for libcalls where that information may
606 not be available.
607 CUM is a variable of type CUMULATIVE_ARGS which gives info about
608 the preceding args and about the function being called.
609 NAMED is nonzero if this argument is a named parameter
610 (otherwise it is an extra parameter matching an ellipsis).
611
612 On ROMP the first four words of args are normally in registers
613 and the rest are pushed. */
614
615 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
616 (! (NAMED) ? 0 \
617 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
618 : USE_FP_REG(MODE,CUM) ? gen_rtx_REG ((MODE), (CUM).fregs + 17) \
619 : (CUM).gregs < 4 ? gen_rtx_REG ((MODE), 2 + (CUM).gregs) : 0)
620
621 /* For an arg passed partly in registers and partly in memory,
622 this is the number of registers used.
623 For args passed entirely in registers or entirely in memory, zero. */
624
625 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
626 (! (NAMED) ? 0 \
627 : USE_FP_REG(MODE,CUM) ? 0 \
628 : (((CUM).gregs < 4 \
629 && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED))) \
630 ? 4 - (CUM).gregs : 0))
631
632 /* Perform any needed actions needed for a function that is receiving a
633 variable number of arguments.
634
635 CUM is as above.
636
637 MODE and TYPE are the mode and type of the current parameter.
638
639 PRETEND_SIZE is a variable that should be set to the amount of stack
640 that must be pushed by the prolog to pretend that our caller pushed
641 it.
642
643 Normally, this macro will push all remaining incoming registers on the
644 stack and set PRETEND_SIZE to the length of the registers pushed. */
645
646 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
647 { if (TARGET_FP_REGS) \
648 error ("can't have varargs with -mfp-arg-in-fp-regs"); \
649 else if ((CUM).gregs < 4) \
650 { \
651 int first_reg_offset = (CUM).gregs; \
652 \
653 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
654 first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
655 \
656 if (first_reg_offset > 4) \
657 first_reg_offset = 4; \
658 \
659 if (! NO_RTL && first_reg_offset != 4) \
660 move_block_from_reg \
661 (2 + first_reg_offset, \
662 gen_rtx_MEM (BLKmode, \
663 plus_constant (virtual_incoming_args_rtx, \
664 first_reg_offset * 4)), \
665 4 - first_reg_offset); \
666 PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD; \
667 } \
668 }
669
670 /* This macro produces the initial definition of a function name.
671 On the ROMP, we need to place an extra '.' in the function name. */
672
673 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
674 { if (TREE_PUBLIC(DECL)) \
675 fprintf (FILE, "\t.globl _.%s\n", NAME); \
676 fprintf (FILE, "_.%s:\n", NAME); \
677 }
678
679 /* This macro is used to output the start of the data area.
680
681 On the ROMP, the _name is a pointer to the data area. At that
682 location is the address of _.name, which is really the name of
683 the function. We need to set all this up here.
684
685 The global declaration of the data area, if needed, is done in
686 `assemble_function', where it thinks it is globalizing the function
687 itself. */
688
689 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE) \
690 { extern int data_offset; \
691 data_section (); \
692 fprintf (FILE, "\t.align 2\n"); \
693 ASM_OUTPUT_LABEL (FILE, NAME); \
694 fprintf (FILE, "\t.long _.%s, 0, ", NAME); \
695 if (current_function_calls_alloca) \
696 fprintf (FILE, "0x%x\n", \
697 0xf6900000 + current_function_outgoing_args_size); \
698 else \
699 fprintf (FILE, "0\n"); \
700 data_offset = ((SIZE) + 12 + 3) / 4; \
701 }
702
703 /* Output assembler code to FILE to increment profiler label # LABELNO
704 for profiling a function entry. */
705
706 #define FUNCTION_PROFILER(FILE, LABELNO) \
707 fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n");
708
709 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
710 the stack pointer does not matter. The value is tested only in
711 functions that have frame pointers.
712 No definition is equivalent to always zero. */
713 /* #define EXIT_IGNORE_STACK 1 */
714 \f
715 /* Output assembler code for a block containing the constant parts
716 of a trampoline, leaving space for the variable parts.
717
718 The trampoline should set the static chain pointer to value placed
719 into the trampoline and should branch to the specified routine.
720
721 On the ROMP, we have a problem. There are no free registers to use
722 to construct the static chain and function addresses. Hence we use
723 the following kludge: r15 (the return address) is first saved in mq.
724 Then we use r15 to form the function address. We then branch to the
725 function and restore r15 in the delay slot. This makes it appear that
726 the function was called directly from the caller.
727
728 (Note that the function address built is actually that of the data block.
729 This is passed in r0 and the actual routine address is loaded into r15.)
730
731 In addition, note that the address of the "called function", in this case
732 the trampoline, is actually the address of the data area. So we need to
733 make a fake data area that will contain the address of the trampoline.
734 Note that this must be defined as two half-words, since the trampoline
735 template (as opposed to the trampoline on the stack) is only half-word
736 aligned. */
737
738 #define TRAMPOLINE_TEMPLATE(FILE) \
739 { \
740 fprintf (FILE, "\t.short 0,0\n"); \
741 fprintf (FILE, "\tcau r0,0(r0)\n"); \
742 fprintf (FILE, "\toil r0,r0,0\n"); \
743 fprintf (FILE, "\tmts r10,r15\n"); \
744 fprintf (FILE, "\tst r0,-36(r1)\n"); \
745 fprintf (FILE, "\tcau r15,0(r0)\n"); \
746 fprintf (FILE, "\toil r15,r15,0\n"); \
747 fprintf (FILE, "\tcas r0,r15,r0\n"); \
748 fprintf (FILE, "\tls r15,0(r15)\n"); \
749 fprintf (FILE, "\tbrx r15\n"); \
750 fprintf (FILE, "\tmfs r10,r15\n"); \
751 }
752
753 /* Length in units of the trampoline for entering a nested function. */
754
755 #define TRAMPOLINE_SIZE 36
756
757 /* Emit RTL insns to initialize the variable parts of a trampoline.
758 FNADDR is an RTX for the address of the function's pure code.
759 CXT is an RTX for the static chain value for the function.
760
761 On the RT, the static chain and function addresses are written in
762 two 16-bit sections.
763
764 We also need to write the address of the first instruction in
765 the trampoline into the first word of the trampoline to simulate a
766 data area. */
767
768 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
769 romp_initialize_trampoline (ADDR, FNADDR, CXT)
770 \f
771 /* Definitions for register eliminations.
772
773 We have two registers that can be eliminated on the ROMP. First, the
774 frame pointer register can often be eliminated in favor of the stack
775 pointer register. Secondly, the argument pointer register can always be
776 eliminated; it is replaced with either the stack or frame pointer.
777
778 In addition, we use the elimination mechanism to see if r14 is needed.
779 Initially we assume that it isn't. If it is, we spill it. This is done
780 by making it an eliminable register. It doesn't matter what we replace
781 it with, since it will never occur in the rtl at this point. */
782
783 /* This is an array of structures. Each structure initializes one pair
784 of eliminable registers. The "from" register number is given first,
785 followed by "to". Eliminations of the same "from" register are listed
786 in order of preference. */
787 #define ELIMINABLE_REGS \
788 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
789 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
790 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
791 { 14, 0}}
792
793 /* Given FROM and TO register numbers, say whether this elimination is allowed.
794 Frame pointer elimination is automatically handled.
795
796 For the ROMP, if frame pointer elimination is being done, we would like to
797 convert ap into fp, not sp.
798
799 We need r14 if various conditions (tested in romp_using_r14) are true.
800
801 All other eliminations are valid. */
802 #define CAN_ELIMINATE(FROM, TO) \
803 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
804 ? ! frame_pointer_needed \
805 : (FROM) == 14 ? ! romp_using_r14 () \
806 : 1)
807
808 /* Define the offset between two registers, one to be eliminated, and the other
809 its replacement, at the start of a routine. */
810 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
811 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
812 { \
813 if (romp_pushes_stack ()) \
814 (OFFSET) = ((get_frame_size () - 64) \
815 + current_function_outgoing_args_size); \
816 else \
817 (OFFSET) = - (romp_sa_size () + 64); \
818 } \
819 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
820 (OFFSET) = romp_sa_size () - 16 + 64; \
821 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
822 { \
823 if (romp_pushes_stack ()) \
824 (OFFSET) = (get_frame_size () + (romp_sa_size () - 16) \
825 + current_function_outgoing_args_size); \
826 else \
827 (OFFSET) = -16; \
828 } \
829 else if ((FROM) == 14) \
830 (OFFSET) = 0; \
831 else \
832 abort (); \
833 }
834 \f
835 /* Addressing modes, and classification of registers for them. */
836
837 /* Macros to check register numbers against specific register classes. */
838
839 /* These assume that REGNO is a hard or pseudo reg number.
840 They give nonzero only if REGNO is a hard reg of the suitable class
841 or a pseudo reg currently allocated to a suitable hard reg.
842 Since they use reg_renumber, they are safe only once reg_renumber
843 has been allocated, which happens in local-alloc.c. */
844
845 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
846 #define REGNO_OK_FOR_BASE_P(REGNO) \
847 ((REGNO) < FIRST_PSEUDO_REGISTER \
848 ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16 \
849 : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0 \
850 && reg_renumber[REGNO] != 16))
851 \f
852 /* Maximum number of registers that can appear in a valid memory address. */
853
854 #define MAX_REGS_PER_ADDRESS 1
855
856 /* Recognize any constant value that is a valid address. */
857
858 #define CONSTANT_ADDRESS_P(X) \
859 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
860 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
861 || GET_CODE (X) == HIGH)
862
863 /* Nonzero if the constant value X is a legitimate general operand.
864 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
865
866 On the ROMP, there is a bit of a hack here. Basically, we wish to
867 only issue instructions that are not `as' macros. However, in the
868 case of `get', `load', and `store', if the operand is a relocatable
869 symbol (possibly +/- an integer), there is no way to express the
870 resulting split-relocation except with the macro. Therefore, allow
871 either a constant valid in a normal (sign-extended) D-format insn or
872 a relocatable expression.
873
874 Also, for DFmode and DImode, we must ensure that both words are
875 addressable.
876
877 We define two macros: The first is given an offset (0 or 4) and indicates
878 that the operand is a CONST_INT that is valid for that offset. The second
879 indicates a valid non-CONST_INT constant. */
880
881 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
882 (GET_CODE (X) == CONST_INT \
883 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
884
885 #define LEGITIMATE_ADDRESS_CONSTANT_P(X) \
886 (GET_CODE (X) == SYMBOL_REF \
887 || GET_CODE (X) == LABEL_REF \
888 || (GET_CODE (X) == CONST \
889 && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
890 || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \
891 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))
892
893 /* Include all constant integers and constant double, but exclude
894 SYMBOL_REFs that are to be obtained from the data area (see below). */
895 #define LEGITIMATE_CONSTANT_P(X) \
896 ((LEGITIMATE_ADDRESS_CONSTANT_P (X) \
897 || GET_CODE (X) == CONST_INT \
898 || GET_CODE (X) == CONST_DOUBLE) \
899 && ! (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)))
900
901 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
902 and check its validity for a certain class.
903 We have two alternate definitions for each of them.
904 The usual definition accepts all pseudo regs; the other rejects
905 them unless they have been allocated suitable hard regs.
906 The symbol REG_OK_STRICT causes the latter definition to be used.
907
908 Most source files want to accept pseudo regs in the hope that
909 they will get allocated to the class that the insn wants them to be in.
910 Source files for reload pass need to be strict.
911 After reload, it makes no difference, since pseudo regs have
912 been eliminated by then. */
913
914 #ifndef REG_OK_STRICT
915
916 /* Nonzero if X is a hard reg that can be used as an index
917 or if it is a pseudo reg. */
918 #define REG_OK_FOR_INDEX_P(X) 0
919 /* Nonzero if X is a hard reg that can be used as a base reg
920 or if it is a pseudo reg. */
921 #define REG_OK_FOR_BASE_P(X) \
922 (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
923
924 #else
925
926 /* Nonzero if X is a hard reg that can be used as an index. */
927 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
928 /* Nonzero if X is a hard reg that can be used as a base reg. */
929 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
930
931 #endif
932 \f
933 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
934 that is a valid memory address for an instruction.
935 The MODE argument is the machine mode for the MEM expression
936 that wants to use this address.
937
938 On the ROMP, a legitimate address is either a legitimate constant,
939 a register plus a legitimate constant, or a register. See the
940 discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro. */
941 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
942 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
943 goto ADDR; \
944 if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X)) \
945 goto ADDR; \
946 if (GET_CODE (X) == PLUS \
947 && GET_CODE (XEXP (X, 0)) == REG \
948 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
949 && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1))) \
950 goto ADDR; \
951 if (GET_CODE (X) == PLUS \
952 && GET_CODE (XEXP (X, 0)) == REG \
953 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
954 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
955 && (((MODE) != DFmode && (MODE) != DImode) \
956 || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))) \
957 goto ADDR; \
958 }
959 \f
960 /* Try machine-dependent ways of modifying an illegitimate address
961 to be legitimate. If we find one, return the new, valid address.
962 This macro is used in only one place: `memory_address' in explow.c.
963
964 OLDX is the address as it was before break_out_memory_refs was called.
965 In some cases it is useful to look at this to decide what needs to be done.
966
967 MODE and WIN are passed so that this macro can use
968 GO_IF_LEGITIMATE_ADDRESS.
969
970 It is always safe for this macro to do nothing. It exists to recognize
971 opportunities to optimize the output.
972
973 On ROMP, check for the sum of a register with a constant
974 integer that is out of range. If so, generate code to add the
975 constant with the low-order 16 bits masked to the register and force
976 this result into another register (this can be done with `cau').
977 Then generate an address of REG+(CONST&0xffff), allowing for the
978 possibility of bit 16 being a one.
979
980 If the register is not OK for a base register, abort. */
981
982 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
983 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
984 && GET_CODE (XEXP (X, 1)) == CONST_INT \
985 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
986 { int high_int, low_int; \
987 if (! REG_OK_FOR_BASE_P (XEXP (X, 0))) \
988 abort (); \
989 high_int = INTVAL (XEXP (X, 1)) >> 16; \
990 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
991 if (low_int & 0x8000) \
992 high_int += 1, low_int |= 0xffff0000; \
993 (X) = gen_rtx_PLUS (SImode, \
994 force_operand (plus_constant (XEXP (X, 0), \
995 high_int << 16), 0), \
996 GEN_INT (low_int)); \
997 } \
998 }
999
1000 /* Go to LABEL if ADDR (a legitimate address expression)
1001 has an effect that depends on the machine mode it is used for.
1002
1003 On the ROMP this is true only if the address is valid with a zero offset
1004 but not with an offset of four (this means it cannot be used as an
1005 address for DImode or DFmode). Since we know it is valid, we just check
1006 for an address that is not valid with an offset of four. */
1007
1008 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1009 { if (GET_CODE (ADDR) == PLUS \
1010 && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1)) \
1011 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1012 goto LABEL; \
1013 }
1014 \f
1015 /* Define this if some processing needs to be done immediately before
1016 emitting code for an insn.
1017
1018 This is used on the ROMP, to compensate for a bug in the floating-point
1019 code. When a floating-point operation is done with the first and third
1020 operands both the same floating-point register, it will generate bad code
1021 for the MC68881. So we must detect this. If it occurs, we patch the
1022 first operand to be fr0 and insert a move insn to move it to the desired
1023 destination. */
1024 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1025 { rtx op0, op1, op2, operation, tem; \
1026 if (NOPERANDS >= 3 && get_attr_type (INSN) == TYPE_FP) \
1027 { \
1028 op0 = OPERANDS[0]; \
1029 operation = OPERANDS[1]; \
1030 if (float_conversion (operation, VOIDmode)) \
1031 operation = XEXP (operation, 0); \
1032 if (float_binary (operation, VOIDmode)) \
1033 { \
1034 op1 = XEXP (operation, 0), op2 = XEXP (operation, 1); \
1035 if (float_conversion (op1, VOIDmode)) \
1036 op1 = XEXP (op1, 0); \
1037 if (float_conversion (op2, VOIDmode)) \
1038 op2 = XEXP (op2, 0); \
1039 if (rtx_equal_p (op0, op2) \
1040 && (GET_CODE (operation) == PLUS \
1041 || GET_CODE (operation) == MULT)) \
1042 tem = op1, op1 = op2, op2 = tem; \
1043 if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) \
1044 && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)) \
1045 && REGNO (op0) == REGNO (op2)) \
1046 { \
1047 tem = gen_rtx_REG (GET_MODE (op0), 17); \
1048 emit_insn_after (gen_move_insn (op0, tem), INSN); \
1049 SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; \
1050 OPERANDS[0] = tem; \
1051 } \
1052 } \
1053 } \
1054 }
1055 \f
1056 /* Specify the machine mode that this machine uses
1057 for the index in the tablejump instruction. */
1058 #define CASE_VECTOR_MODE SImode
1059
1060 /* Define as C expression which evaluates to nonzero if the tablejump
1061 instruction expects the table to contain offsets from the address of the
1062 table.
1063 Do not define this if the table should contain absolute addresses. */
1064 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1065
1066 /* Define this as 1 if `char' should by default be signed; else as 0. */
1067 #define DEFAULT_SIGNED_CHAR 0
1068
1069 /* This flag, if defined, says the same insns that convert to a signed fixnum
1070 also convert validly to an unsigned one.
1071
1072 We actually lie a bit here as overflow conditions are different. But
1073 they aren't being checked anyway. */
1074
1075 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1076
1077 /* Max number of bytes we can move from memory to memory
1078 in one reasonably fast instruction. */
1079 #define MOVE_MAX 4
1080
1081 /* Nonzero if access to memory by bytes is no faster than for words.
1082 Also nonzero if doing byte operations (specifically shifts) in registers
1083 is undesirable. */
1084 #define SLOW_BYTE_ACCESS 1
1085
1086 /* Define if operations between registers always perform the operation
1087 on the full register even if a narrower mode is specified. */
1088 #define WORD_REGISTER_OPERATIONS
1089
1090 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1091 will either zero-extend or sign-extend. The value of this macro should
1092 be the code that says which one of the two operations is implicitly
1093 done, NIL if none. */
1094 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1095
1096 /* This is BSD, so it wants DBX format. */
1097 #define DBX_DEBUGGING_INFO 1
1098
1099 /* Define the letter code used in a stabs entry for parameters passed
1100 with the register attribute.
1101
1102 GCC's default value, 'P', is used by dbx to refers to an external
1103 procedure. The section 5 manual page for dbx implies that 'R' would be the
1104 right letter, but dbx 1.5 has a bug in it that precludes its use.
1105 Probably that is why neither hc or pcc use this. pcc puts in two
1106 stabs entries: one for the parameter location and one for the register
1107 location. The letter `r' (register)
1108 would be okay, but it loses parameter attribute of the stabs entry. */
1109 #define DBX_REGPARM_STABS_LETTER 'R'
1110
1111 /* A C expression for the integer offset value of an automatic variable
1112 (N_LSYM) having address X (an RTX). This gets used in .stabs entries
1113 for the local variables. Compare with the default definition. */
1114 #define DEBUGGER_AUTO_OFFSET(X) \
1115 (GET_CODE (X) == PLUS \
1116 ? romp_debugger_auto_correction (INTVAL (XEXP (X, 1)) ) \
1117 : 0 )
1118
1119 /* A C expression for the integer offset value of an argument (N_PSYM)
1120 having address X (an RTX). The nominal offset is OFFSET. */
1121 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1122 romp_debugger_arg_correction (OFFSET);
1123
1124 /* We don't have GAS for the RT yet, so don't write out special
1125 .stabs in cc1plus. */
1126
1127 #define FASCIST_ASSEMBLER
1128
1129 /* Do not break .stabs pseudos into continuations. */
1130 #define DBX_CONTIN_LENGTH 0
1131
1132 /* Don't try to use the `x' type-cross-reference character in DBX data.
1133 Also has the consequence of putting each struct, union or enum
1134 into a separate .stabs, containing only cross-refs to the others. */
1135 #define DBX_NO_XREFS
1136
1137 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1138 is done just by pretending it is already truncated. */
1139 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1140
1141 /* Specify the machine mode that pointers have.
1142 After generation of rtl, the compiler makes no further distinction
1143 between pointers and any other objects of this machine mode. */
1144 #define Pmode SImode
1145
1146 /* Mode of a function address in a call instruction (for indexing purposes).
1147
1148 Doesn't matter on ROMP. */
1149 #define FUNCTION_MODE SImode
1150
1151 /* Define this if addresses of constant functions
1152 shouldn't be put through pseudo regs where they can be cse'd.
1153 Desirable on machines where ordinary constants are expensive
1154 but a CALL with constant address is cheap. */
1155 #define NO_FUNCTION_CSE
1156
1157 /* Define this if shift instructions ignore all but the low-order
1158 few bits.
1159
1160 This is not true on the RT since it uses the low-order 6, not 5, bits.
1161 At some point, this should be extended to see how to express that. */
1162
1163 /* #define SHIFT_COUNT_TRUNCATED */
1164
1165 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1166 should be adjusted to reflect any required changes. This macro is used when
1167 there is some systematic length adjustment required that would be difficult
1168 to express in the length attribute.
1169
1170 On the ROMP, there are two adjustments: First, a 2-byte insn in the delay
1171 slot of a CALL (including floating-point operations) actually takes four
1172 bytes. Second, we have to make the worst-case alignment assumption for
1173 address vectors. */
1174
1175 #define ADJUST_INSN_LENGTH(X,LENGTH) \
1176 if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE \
1177 && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN \
1178 && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2) \
1179 (LENGTH) += 2; \
1180 else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \
1181 (LENGTH) += 2;
1182 \f
1183 /* Tell final.c how to eliminate redundant test instructions. */
1184
1185 /* Here we define machine-dependent flags and fields in cc_status
1186 (see `conditions.h'). */
1187
1188 /* Set if condition code (really not-Z) is stored in `test bit'. */
1189 #define CC_IN_TB 01000
1190
1191 /* Set if condition code is set by an unsigned compare. */
1192 #define CC_UNSIGNED 02000
1193
1194 /* Store in cc_status the expressions
1195 that the condition codes will describe
1196 after execution of an instruction whose pattern is EXP.
1197 Do not alter them if the instruction would not alter the cc's. */
1198
1199 #define NOTICE_UPDATE_CC(BODY,INSN) \
1200 update_cc (BODY, INSN)
1201 \f
1202 /* Control the assembler format that we output. */
1203
1204 /* Output at beginning of assembler file. */
1205
1206 #define ASM_FILE_START(FILE) \
1207 { const char *p; \
1208 \
1209 fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \
1210 fprintf (FILE, "\t.globl .oVgcc"); \
1211 for (p = version_string; *p != ' ' && *p != 0; p++) \
1212 fprintf (FILE, "%c", *p); \
1213 fprintf (FILE, "\n\t.set .oVgcc"); \
1214 for (p = version_string; *p != ' ' && *p != 0; p++) \
1215 fprintf (FILE, "%c", *p); \
1216 fprintf (FILE, ",0\n"); \
1217 }
1218
1219 /* Output to assembler file text saying following lines
1220 may contain character constants, extra white space, comments, etc. */
1221
1222 #define ASM_APP_ON ""
1223
1224 /* Output to assembler file text saying following lines
1225 no longer contain unusual constructs. */
1226
1227 #define ASM_APP_OFF ""
1228
1229 /* Output before instructions and read-only data. */
1230
1231 #define TEXT_SECTION_ASM_OP "\t.text"
1232
1233 /* Output before writable data. */
1234
1235 #define DATA_SECTION_ASM_OP "\t.data"
1236
1237 /* How to refer to registers in assembler output.
1238 This sequence is indexed by compiler's hard-register-number (see above). */
1239
1240 #define REGISTER_NAMES \
1241 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1242 "r10", "r11", "r12", "r13", "r14", "r15", "ap", \
1243 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" }
1244
1245 /* Globalizing directive for a label. */
1246 #define GLOBAL_ASM_OP "\t.globl "
1247
1248 /* The prefix to add to user-visible assembler symbols. */
1249
1250 #define USER_LABEL_PREFIX "_"
1251
1252 /* This is how to output a label for a jump table. Arguments are the same as
1253 for (*targetm.asm_out.internal_label), except the insn for the jump table is
1254 passed. */
1255
1256 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1257 { ASM_OUTPUT_ALIGN (FILE, 2); (*targetm.asm_out.internal_label) (FILE, PREFIX, NUM); }
1258
1259 /* This is how to store into the string LABEL
1260 the symbol_ref name of an internal numbered label where
1261 PREFIX is the class of label and NUM is the number within the class.
1262 This is suitable for output with `assemble_name'. */
1263
1264 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1265 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1266
1267 /* This is how to output code to push a register on the stack.
1268 It need not be very fast code. */
1269
1270 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1271 fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO])
1272
1273 /* This is how to output an insn to pop a register from the stack.
1274 It need not be very fast code. */
1275
1276 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1277 fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO])
1278
1279 /* This is how to output an element of a case-vector that is absolute. */
1280
1281 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1282 fprintf (FILE, "\t.long L%d\n", VALUE)
1283
1284 /* This is how to output an element of a case-vector that is relative.
1285 Don't define this if it is not supported. */
1286
1287 /* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */
1288
1289 /* This is how to output an assembler line
1290 that says to advance the location counter
1291 to a multiple of 2**LOG bytes. */
1292
1293 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1294 if ((LOG) != 0) \
1295 fprintf (FILE, "\t.align %d\n", (LOG))
1296
1297 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1298 fprintf (FILE, "\t.space %d\n", (SIZE))
1299
1300 /* This says how to output an assembler line
1301 to define a global common symbol. */
1302
1303 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1304 ( fputs (".comm ", (FILE)), \
1305 assemble_name ((FILE), (NAME)), \
1306 fprintf ((FILE), ",%d\n", (SIZE)))
1307
1308 /* This says how to output an assembler line
1309 to define a local common symbol. */
1310
1311 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1312 ( fputs (".lcomm ", (FILE)), \
1313 assemble_name ((FILE), (NAME)), \
1314 fprintf ((FILE), ",%d\n", (SIZE)))
1315
1316 /* Print operand X (an rtx) in assembler syntax to file FILE.
1317 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1318 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1319
1320 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1321
1322 /* Define which CODE values are valid. */
1323
1324 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1325 ((CODE) == '.' || (CODE) == '#')
1326 \f
1327 /* Print a memory address as an operand to reference that memory location. */
1328
1329 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1330 { register rtx addr = ADDR; \
1331 register rtx base = 0, offset = addr; \
1332 if (GET_CODE (addr) == REG) \
1333 base = addr, offset = const0_rtx; \
1334 else if (GET_CODE (addr) == PLUS \
1335 && GET_CODE (XEXP (addr, 0)) == REG) \
1336 base = XEXP (addr, 0), offset = XEXP (addr, 1); \
1337 else if (GET_CODE (addr) == SYMBOL_REF \
1338 && CONSTANT_POOL_ADDRESS_P (addr)) \
1339 { \
1340 offset = GEN_INT (get_pool_offset (addr) + 12); \
1341 base = gen_rtx_REG (SImode, 14); \
1342 } \
1343 else if (GET_CODE (addr) == CONST \
1344 && GET_CODE (XEXP (addr, 0)) == PLUS \
1345 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT \
1346 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF \
1347 && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \
1348 { \
1349 offset = plus_constant (XEXP (XEXP (addr, 0), 1), \
1350 (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \
1351 + 12)); \
1352 base = gen_rtx_REG (SImode, 14); \
1353 } \
1354 output_addr_const (FILE, offset); \
1355 if (base) \
1356 fprintf (FILE, "(%s)", reg_names [REGNO (base)]); \
1357 }
1358
1359 /* Define the codes that are matched by predicates in aux-output.c. */
1360
1361 #define PREDICATE_CODES \
1362 {"zero_memory_operand", {SUBREG, MEM}}, \
1363 {"short_memory_operand", {SUBREG, MEM}}, \
1364 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1365 {"current_function_operand", {MEM}}, \
1366 {"constant_pool_address_operand", {SUBREG, CONST}}, \
1367 {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}}, \
1368 {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \
1369 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1370 {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}}, \
1371 {"short_cint_operand", {CONST_INT}}, \
1372 {"reg_or_D_operand", {SUBREG, REG, CONST_INT}}, \
1373 {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, \
1374 PLUS, CONST, CONST_INT}}, \
1375 {"reg_or_and_operand", {SUBREG, REG, CONST_INT}}, \
1376 {"reg_or_mem_operand", {SUBREG, REG, MEM}}, \
1377 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1378 {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \
1379 SYMBOL_REF, CONST_DOUBLE}}, \
1380 {"reg_0_operand", {REG}}, \
1381 {"reg_15_operand", {REG}}, \
1382 {"float_binary", {PLUS, MINUS, MULT, DIV}}, \
1383 {"float_unary", {NEG, ABS}}, \
1384 {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}},
1385