]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/rs6000/predicates.md
re PR target/24230 (ICE in extract_insn with altivec)
[thirdparty/gcc.git] / gcc / config / rs6000 / predicates.md
1 ;; Predicate definitions for POWER and PowerPC.
2 ;; Copyright (C) 2005 Free Software Foundation, Inc.
3 ;;
4 ;; This file is part of GCC.
5 ;;
6 ;; GCC is free software; you can redistribute it and/or modify
7 ;; it under the terms of the GNU General Public License as published by
8 ;; the Free Software Foundation; either version 2, or (at your option)
9 ;; any later version.
10 ;;
11 ;; GCC is distributed in the hope that it will be useful,
12 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 ;; GNU General Public License for more details.
15 ;;
16 ;; You should have received a copy of the GNU General Public License
17 ;; along with GCC; see the file COPYING. If not, write to
18 ;; the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 ;; Boston, MA 02110-1301, USA.
20
21 ;; Return 1 for anything except PARALLEL.
22 (define_predicate "any_operand"
23 (match_code "const_int,const_double,const,symbol_ref,label_ref,subreg,reg,mem"))
24
25 ;; Return 1 for any PARALLEL.
26 (define_predicate "any_parallel_operand"
27 (match_code "parallel"))
28
29 ;; Return 1 if op is COUNT register.
30 (define_predicate "count_register_operand"
31 (and (match_code "reg")
32 (match_test "REGNO (op) == COUNT_REGISTER_REGNUM
33 || REGNO (op) > LAST_VIRTUAL_REGISTER")))
34
35 ;; Return 1 if op is an Altivec register.
36 (define_predicate "altivec_register_operand"
37 (and (match_operand 0 "register_operand")
38 (match_test "GET_CODE (op) != REG
39 || ALTIVEC_REGNO_P (REGNO (op))
40 || REGNO (op) > LAST_VIRTUAL_REGISTER")))
41
42 ;; Return 1 if op is XER register.
43 (define_predicate "xer_operand"
44 (and (match_code "reg")
45 (match_test "XER_REGNO_P (REGNO (op))")))
46
47 ;; Return 1 if op is a signed 5-bit constant integer.
48 (define_predicate "s5bit_cint_operand"
49 (and (match_code "const_int")
50 (match_test "INTVAL (op) >= -16 && INTVAL (op) <= 15")))
51
52 ;; Return 1 if op is a unsigned 5-bit constant integer.
53 (define_predicate "u5bit_cint_operand"
54 (and (match_code "const_int")
55 (match_test "INTVAL (op) >= 0 && INTVAL (op) <= 31")))
56
57 ;; Return 1 if op is a signed 8-bit constant integer.
58 ;; Integer multiplication complete more quickly
59 (define_predicate "s8bit_cint_operand"
60 (and (match_code "const_int")
61 (match_test "INTVAL (op) >= -128 && INTVAL (op) <= 127")))
62
63 ;; Return 1 if op is a constant integer that can fit in a D field.
64 (define_predicate "short_cint_operand"
65 (and (match_code "const_int")
66 (match_test "CONST_OK_FOR_LETTER_P (INTVAL (op), 'I')")))
67
68 ;; Return 1 if op is a constant integer that can fit in an unsigned D field.
69 (define_predicate "u_short_cint_operand"
70 (and (match_code "const_int")
71 (match_test "CONST_OK_FOR_LETTER_P (INTVAL (op), 'K')")))
72
73 ;; Return 1 if op is a constant integer that cannot fit in a signed D field.
74 (define_predicate "non_short_cint_operand"
75 (and (match_code "const_int")
76 (match_test "(unsigned HOST_WIDE_INT)
77 (INTVAL (op) + 0x8000) >= 0x10000")))
78
79 ;; Return 1 if op is a positive constant integer that is an exact power of 2.
80 (define_predicate "exact_log2_cint_operand"
81 (and (match_code "const_int")
82 (match_test "INTVAL (op) > 0 && exact_log2 (INTVAL (op)) >= 0")))
83
84 ;; Return 1 if op is a register that is not special.
85 (define_predicate "gpc_reg_operand"
86 (and (match_operand 0 "register_operand")
87 (match_test "GET_CODE (op) != REG
88 || (REGNO (op) >= ARG_POINTER_REGNUM
89 && !XER_REGNO_P (REGNO (op)))
90 || REGNO (op) < MQ_REGNO")))
91
92 ;; Return 1 if op is a register that is a condition register field.
93 (define_predicate "cc_reg_operand"
94 (and (match_operand 0 "register_operand")
95 (match_test "GET_CODE (op) != REG
96 || REGNO (op) > LAST_VIRTUAL_REGISTER
97 || CR_REGNO_P (REGNO (op))")))
98
99 ;; Return 1 if op is a register that is a condition register field not cr0.
100 (define_predicate "cc_reg_not_cr0_operand"
101 (and (match_operand 0 "register_operand")
102 (match_test "GET_CODE (op) != REG
103 || REGNO (op) > LAST_VIRTUAL_REGISTER
104 || CR_REGNO_NOT_CR0_P (REGNO (op))")))
105
106 ;; Return 1 if op is a constant integer valid for D field
107 ;; or non-special register register.
108 (define_predicate "reg_or_short_operand"
109 (if_then_else (match_code "const_int")
110 (match_operand 0 "short_cint_operand")
111 (match_operand 0 "gpc_reg_operand")))
112
113 ;; Return 1 if op is a constant integer valid whose negation is valid for
114 ;; D field or non-special register register.
115 ;; Do not allow a constant zero because all patterns that call this
116 ;; predicate use "addic r1,r2,-const" to set carry when r2 is greater than
117 ;; or equal to const, which does not work for zero.
118 (define_predicate "reg_or_neg_short_operand"
119 (if_then_else (match_code "const_int")
120 (match_test "CONST_OK_FOR_LETTER_P (INTVAL (op), 'P')
121 && INTVAL (op) != 0")
122 (match_operand 0 "gpc_reg_operand")))
123
124 ;; Return 1 if op is a constant integer valid for DS field
125 ;; or non-special register.
126 (define_predicate "reg_or_aligned_short_operand"
127 (if_then_else (match_code "const_int")
128 (and (match_operand 0 "short_cint_operand")
129 (match_test "!(INTVAL (op) & 3)"))
130 (match_operand 0 "gpc_reg_operand")))
131
132 ;; Return 1 if op is a constant integer whose high-order 16 bits are zero
133 ;; or non-special register.
134 (define_predicate "reg_or_u_short_operand"
135 (if_then_else (match_code "const_int")
136 (match_operand 0 "u_short_cint_operand")
137 (match_operand 0 "gpc_reg_operand")))
138
139 ;; Return 1 if op is any constant integer
140 ;; or non-special register.
141 (define_predicate "reg_or_cint_operand"
142 (ior (match_code "const_int")
143 (match_operand 0 "gpc_reg_operand")))
144
145 ;; Return 1 if op is a constant integer valid for addition
146 ;; or non-special register.
147 (define_predicate "reg_or_add_cint_operand"
148 (if_then_else (match_code "const_int")
149 (match_test "(HOST_BITS_PER_WIDE_INT == 32
150 && (mode == SImode || INTVAL (op) < 0x7fff8000))
151 || ((unsigned HOST_WIDE_INT) (INTVAL (op) + 0x80008000)
152 < (unsigned HOST_WIDE_INT) 0x100000000ll)")
153 (match_operand 0 "gpc_reg_operand")))
154
155 ;; Return 1 if op is a constant integer valid for subtraction
156 ;; or non-special register.
157 (define_predicate "reg_or_sub_cint_operand"
158 (if_then_else (match_code "const_int")
159 (match_test "(HOST_BITS_PER_WIDE_INT == 32
160 && (mode == SImode || - INTVAL (op) < 0x7fff8000))
161 || ((unsigned HOST_WIDE_INT) (- INTVAL (op)
162 + (mode == SImode
163 ? 0x80000000 : 0x80008000))
164 < (unsigned HOST_WIDE_INT) 0x100000000ll)")
165 (match_operand 0 "gpc_reg_operand")))
166
167 ;; Return 1 if op is any 32-bit unsigned constant integer
168 ;; or non-special register.
169 (define_predicate "reg_or_logical_cint_operand"
170 (if_then_else (match_code "const_int")
171 (match_test "(GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
172 && INTVAL (op) >= 0)
173 || ((INTVAL (op) & GET_MODE_MASK (mode)
174 & (~ (unsigned HOST_WIDE_INT) 0xffffffff)) == 0)")
175 (if_then_else (match_code "const_double")
176 (match_test "GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
177 && mode == DImode
178 && CONST_DOUBLE_HIGH (op) == 0")
179 (match_operand 0 "gpc_reg_operand"))))
180
181 ;; Return 1 if operand is a CONST_DOUBLE that can be set in a register
182 ;; with no more than one instruction per word.
183 (define_predicate "easy_fp_constant"
184 (match_code "const_double")
185 {
186 long k[4];
187 REAL_VALUE_TYPE rv;
188
189 if (GET_MODE (op) != mode
190 || (GET_MODE_CLASS (mode) != MODE_FLOAT && mode != DImode))
191 return 0;
192
193 /* Consider all constants with -msoft-float to be easy. */
194 if ((TARGET_SOFT_FLOAT || TARGET_E500_SINGLE)
195 && mode != DImode)
196 return 1;
197
198 /* If we are using V.4 style PIC, consider all constants to be hard. */
199 if (flag_pic && DEFAULT_ABI == ABI_V4)
200 return 0;
201
202 #ifdef TARGET_RELOCATABLE
203 /* Similarly if we are using -mrelocatable, consider all constants
204 to be hard. */
205 if (TARGET_RELOCATABLE)
206 return 0;
207 #endif
208
209 switch (mode)
210 {
211 case TFmode:
212 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
213 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
214
215 return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1
216 && num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1
217 && num_insns_constant_wide ((HOST_WIDE_INT) k[2]) == 1
218 && num_insns_constant_wide ((HOST_WIDE_INT) k[3]) == 1);
219
220 case DFmode:
221 /* Force constants to memory before reload to utilize
222 compress_float_constant.
223 Avoid this when flag_unsafe_math_optimizations is enabled
224 because RDIV division to reciprocal optimization is not able
225 to regenerate the division. */
226 if (TARGET_E500_DOUBLE
227 || (!reload_in_progress && !reload_completed
228 && !flag_unsafe_math_optimizations))
229 return 0;
230
231 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
232 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
233
234 return (num_insns_constant_wide ((HOST_WIDE_INT) k[0]) == 1
235 && num_insns_constant_wide ((HOST_WIDE_INT) k[1]) == 1);
236
237 case SFmode:
238 /* The constant 0.f is easy. */
239 if (op == CONST0_RTX (SFmode))
240 return 1;
241
242 /* Force constants to memory before reload to utilize
243 compress_float_constant.
244 Avoid this when flag_unsafe_math_optimizations is enabled
245 because RDIV division to reciprocal optimization is not able
246 to regenerate the division. */
247 if (!reload_in_progress && !reload_completed
248 && !flag_unsafe_math_optimizations)
249 return 0;
250
251 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
252 REAL_VALUE_TO_TARGET_SINGLE (rv, k[0]);
253
254 return num_insns_constant_wide (k[0]) == 1;
255
256 case DImode:
257 return ((TARGET_POWERPC64
258 && GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_LOW (op) == 0)
259 || (num_insns_constant (op, DImode) <= 2));
260
261 case SImode:
262 return 1;
263
264 default:
265 gcc_unreachable ();
266 }
267 })
268
269 ;; Return 1 if the operand is a CONST_VECTOR and can be loaded into a
270 ;; vector register without using memory.
271 (define_predicate "easy_vector_constant"
272 (match_code "const_vector")
273 {
274 if (ALTIVEC_VECTOR_MODE (mode))
275 {
276 if (zero_constant (op, mode))
277 return true;
278 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
279 return false;
280
281 return easy_altivec_constant (op, mode);
282 }
283
284 if (SPE_VECTOR_MODE (mode))
285 {
286 int cst, cst2;
287 if (zero_constant (op, mode))
288 return true;
289 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
290 return false;
291
292 /* Limit SPE vectors to 15 bits signed. These we can generate with:
293 li r0, CONSTANT1
294 evmergelo r0, r0, r0
295 li r0, CONSTANT2
296
297 I don't know how efficient it would be to allow bigger constants,
298 considering we'll have an extra 'ori' for every 'li'. I doubt 5
299 instructions is better than a 64-bit memory load, but I don't
300 have the e500 timing specs. */
301 if (mode == V2SImode)
302 {
303 cst = INTVAL (CONST_VECTOR_ELT (op, 0));
304 cst2 = INTVAL (CONST_VECTOR_ELT (op, 1));
305 return cst >= -0x7fff && cst <= 0x7fff
306 && cst2 >= -0x7fff && cst2 <= 0x7fff;
307 }
308 }
309
310 return false;
311 })
312
313 ;; Same as easy_vector_constant but only for EASY_VECTOR_15_ADD_SELF.
314 (define_predicate "easy_vector_constant_add_self"
315 (and (match_code "const_vector")
316 (and (match_test "TARGET_ALTIVEC")
317 (match_test "easy_altivec_constant (op, mode)")))
318 {
319 rtx last = CONST_VECTOR_ELT (op, GET_MODE_NUNITS (mode) - 1);
320 HOST_WIDE_INT val = (char) (INTVAL (last) & 255);
321 return EASY_VECTOR_15_ADD_SELF (val);
322 })
323
324 ;; Return 1 if operand is constant zero (scalars and vectors).
325 (define_predicate "zero_constant"
326 (and (match_code "const_int,const_double,const_vector")
327 (match_test "op == CONST0_RTX (mode)")))
328
329 ;; Return 1 if operand is 0.0.
330 ;; or non-special register register field no cr0
331 (define_predicate "zero_fp_constant"
332 (and (match_code "const_double")
333 (match_test "GET_MODE_CLASS (mode) == MODE_FLOAT
334 && op == CONST0_RTX (mode)")))
335
336 ;; Return 1 if the operand is in volatile memory. Note that during the
337 ;; RTL generation phase, memory_operand does not return TRUE for volatile
338 ;; memory references. So this function allows us to recognize volatile
339 ;; references where it's safe.
340 (define_predicate "volatile_mem_operand"
341 (and (and (match_code "mem")
342 (match_test "MEM_VOLATILE_P (op)"))
343 (if_then_else (match_test "reload_completed")
344 (match_operand 0 "memory_operand")
345 (if_then_else (match_test "reload_in_progress")
346 (match_test "strict_memory_address_p (mode, XEXP (op, 0))")
347 (match_test "memory_address_p (mode, XEXP (op, 0))")))))
348
349 ;; Return 1 if the operand is an offsettable memory operand.
350 (define_predicate "offsettable_mem_operand"
351 (and (match_code "mem")
352 (match_test "offsettable_address_p (reload_completed
353 || reload_in_progress,
354 mode, XEXP (op, 0))")))
355
356 ;; Return 1 if the operand is an indexed or indirect memory operand.
357 (define_predicate "indexed_or_indirect_operand"
358 (match_operand 0 "memory_operand")
359 {
360 rtx tmp = XEXP (op, 0);
361
362 if (TARGET_ALTIVEC
363 && ALTIVEC_VECTOR_MODE (mode)
364 && GET_CODE (tmp) == AND
365 && GET_CODE (XEXP (tmp, 1)) == CONST_INT
366 && INTVAL (XEXP (tmp, 1)) == -16)
367 tmp = XEXP (tmp, 0);
368
369 return REG_P (tmp)
370 || (GET_CODE (tmp) == PLUS
371 && REG_P (XEXP (tmp, 0))
372 && REG_P (XEXP (tmp, 1)));
373 })
374
375 ;; Return 1 if the operand is a memory operand with an address divisible by 4
376 (define_predicate "word_offset_memref_operand"
377 (and (match_operand 0 "memory_operand")
378 (match_test "GET_CODE (XEXP (op, 0)) != PLUS
379 || ! REG_P (XEXP (XEXP (op, 0), 0))
380 || GET_CODE (XEXP (XEXP (op, 0), 1)) != CONST_INT
381 || INTVAL (XEXP (XEXP (op, 0), 1)) % 4 == 0")))
382
383 ;; Return 1 if the operand is an indexed or indirect address.
384 (define_predicate "indexed_or_indirect_address"
385 (and (match_operand 0 "address_operand")
386 (match_test "REG_P (op)
387 || (GET_CODE (op) == PLUS
388 && REG_P (XEXP (op, 0))
389 && REG_P (XEXP (op, 1)))")))
390
391 ;; Used for the destination of the fix_truncdfsi2 expander.
392 ;; If stfiwx will be used, the result goes to memory; otherwise,
393 ;; we're going to emit a store and a load of a subreg, so the dest is a
394 ;; register.
395 (define_predicate "fix_trunc_dest_operand"
396 (if_then_else (match_test "! TARGET_E500_DOUBLE && TARGET_PPC_GFXOPT")
397 (match_operand 0 "memory_operand")
398 (match_operand 0 "gpc_reg_operand")))
399
400 ;; Return 1 if the operand is either a non-special register or can be used
401 ;; as the operand of a `mode' add insn.
402 (define_predicate "add_operand"
403 (if_then_else (match_code "const_int")
404 (match_test "CONST_OK_FOR_LETTER_P (INTVAL (op), 'I')
405 || CONST_OK_FOR_LETTER_P (INTVAL (op), 'L')")
406 (match_operand 0 "gpc_reg_operand")))
407
408 ;; Return 1 if OP is a constant but not a valid add_operand.
409 (define_predicate "non_add_cint_operand"
410 (and (match_code "const_int")
411 (match_test "!CONST_OK_FOR_LETTER_P (INTVAL (op), 'I')
412 && !CONST_OK_FOR_LETTER_P (INTVAL (op), 'L')")))
413
414 ;; Return 1 if the operand is a non-special register or a constant that
415 ;; can be used as the operand of an OR or XOR.
416 (define_predicate "logical_operand"
417 (match_code "reg,subreg,const_int,const_double")
418 {
419 HOST_WIDE_INT opl, oph;
420
421 if (gpc_reg_operand (op, mode))
422 return 1;
423
424 if (GET_CODE (op) == CONST_INT)
425 {
426 opl = INTVAL (op) & GET_MODE_MASK (mode);
427
428 if (HOST_BITS_PER_WIDE_INT <= 32
429 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT && opl < 0)
430 return 0;
431 }
432 else if (GET_CODE (op) == CONST_DOUBLE)
433 {
434 gcc_assert (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT);
435
436 opl = CONST_DOUBLE_LOW (op);
437 oph = CONST_DOUBLE_HIGH (op);
438 if (oph != 0)
439 return 0;
440 }
441 else
442 return 0;
443
444 return ((opl & ~ (unsigned HOST_WIDE_INT) 0xffff) == 0
445 || (opl & ~ (unsigned HOST_WIDE_INT) 0xffff0000) == 0);
446 })
447
448 ;; Return 1 if op is a constant that is not a logical operand, but could
449 ;; be split into one.
450 (define_predicate "non_logical_cint_operand"
451 (and (match_code "const_int,const_double")
452 (and (not (match_operand 0 "logical_operand"))
453 (match_operand 0 "reg_or_logical_cint_operand"))))
454
455 ;; Return 1 if op is a constant that can be encoded in a 32-bit mask,
456 ;; suitable for use with rlwinm (no more than two 1->0 or 0->1
457 ;; transitions). Reject all ones and all zeros, since these should have
458 ;; been optimized away and confuse the making of MB and ME.
459 (define_predicate "mask_operand"
460 (match_code "const_int")
461 {
462 HOST_WIDE_INT c, lsb;
463
464 c = INTVAL (op);
465
466 if (TARGET_POWERPC64)
467 {
468 /* Fail if the mask is not 32-bit. */
469 if (mode == DImode && (c & ~(unsigned HOST_WIDE_INT) 0xffffffff) != 0)
470 return 0;
471
472 /* Fail if the mask wraps around because the upper 32-bits of the
473 mask will all be 1s, contrary to GCC's internal view. */
474 if ((c & 0x80000001) == 0x80000001)
475 return 0;
476 }
477
478 /* We don't change the number of transitions by inverting,
479 so make sure we start with the LS bit zero. */
480 if (c & 1)
481 c = ~c;
482
483 /* Reject all zeros or all ones. */
484 if (c == 0)
485 return 0;
486
487 /* Find the first transition. */
488 lsb = c & -c;
489
490 /* Invert to look for a second transition. */
491 c = ~c;
492
493 /* Erase first transition. */
494 c &= -lsb;
495
496 /* Find the second transition (if any). */
497 lsb = c & -c;
498
499 /* Match if all the bits above are 1's (or c is zero). */
500 return c == -lsb;
501 })
502
503 ;; Return 1 for the PowerPC64 rlwinm corner case.
504 (define_predicate "mask_operand_wrap"
505 (match_code "const_int")
506 {
507 HOST_WIDE_INT c, lsb;
508
509 c = INTVAL (op);
510
511 if ((c & 0x80000001) != 0x80000001)
512 return 0;
513
514 c = ~c;
515 if (c == 0)
516 return 0;
517
518 lsb = c & -c;
519 c = ~c;
520 c &= -lsb;
521 lsb = c & -c;
522 return c == -lsb;
523 })
524
525 ;; Return 1 if the operand is a constant that is a PowerPC64 mask
526 ;; suitable for use with rldicl or rldicr (no more than one 1->0 or 0->1
527 ;; transition). Reject all zeros, since zero should have been
528 ;; optimized away and confuses the making of MB and ME.
529 (define_predicate "mask64_operand"
530 (match_code "const_int")
531 {
532 HOST_WIDE_INT c, lsb;
533
534 c = INTVAL (op);
535
536 /* Reject all zeros. */
537 if (c == 0)
538 return 0;
539
540 /* We don't change the number of transitions by inverting,
541 so make sure we start with the LS bit zero. */
542 if (c & 1)
543 c = ~c;
544
545 /* Find the first transition. */
546 lsb = c & -c;
547
548 /* Match if all the bits above are 1's (or c is zero). */
549 return c == -lsb;
550 })
551
552 ;; Like mask64_operand, but allow up to three transitions. This
553 ;; predicate is used by insn patterns that generate two rldicl or
554 ;; rldicr machine insns.
555 (define_predicate "mask64_2_operand"
556 (match_code "const_int")
557 {
558 HOST_WIDE_INT c, lsb;
559
560 c = INTVAL (op);
561
562 /* Disallow all zeros. */
563 if (c == 0)
564 return 0;
565
566 /* We don't change the number of transitions by inverting,
567 so make sure we start with the LS bit zero. */
568 if (c & 1)
569 c = ~c;
570
571 /* Find the first transition. */
572 lsb = c & -c;
573
574 /* Invert to look for a second transition. */
575 c = ~c;
576
577 /* Erase first transition. */
578 c &= -lsb;
579
580 /* Find the second transition. */
581 lsb = c & -c;
582
583 /* Invert to look for a third transition. */
584 c = ~c;
585
586 /* Erase second transition. */
587 c &= -lsb;
588
589 /* Find the third transition (if any). */
590 lsb = c & -c;
591
592 /* Match if all the bits above are 1's (or c is zero). */
593 return c == -lsb;
594 })
595
596 ;; Like and_operand, but also match constants that can be implemented
597 ;; with two rldicl or rldicr insns.
598 (define_predicate "and64_2_operand"
599 (ior (match_operand 0 "mask64_2_operand")
600 (if_then_else (match_test "fixed_regs[CR0_REGNO]")
601 (match_operand 0 "gpc_reg_operand")
602 (match_operand 0 "logical_operand"))))
603
604 ;; Return 1 if the operand is either a non-special register or a
605 ;; constant that can be used as the operand of a logical AND.
606 (define_predicate "and_operand"
607 (ior (match_operand 0 "mask_operand")
608 (ior (and (match_test "TARGET_POWERPC64 && mode == DImode")
609 (match_operand 0 "mask64_operand"))
610 (if_then_else (match_test "fixed_regs[CR0_REGNO]")
611 (match_operand 0 "gpc_reg_operand")
612 (match_operand 0 "logical_operand")))))
613
614 ;; Return 1 if the operand is either a logical operand or a short cint operand.
615 (define_predicate "scc_eq_operand"
616 (ior (match_operand 0 "logical_operand")
617 (match_operand 0 "short_cint_operand")))
618
619 ;; Return 1 if the operand is a general non-special register or memory operand.
620 (define_predicate "reg_or_mem_operand"
621 (if_then_else (match_code "mem")
622 (ior (match_operand 0 "memory_operand")
623 (ior (match_test "macho_lo_sum_memory_operand (op, mode)")
624 (match_operand 0 "volatile_mem_operand")))
625 (match_operand 0 "gpc_reg_operand")))
626
627 ;; Return 1 if the operand is either an easy FP constant or memory or reg.
628 (define_predicate "reg_or_none500mem_operand"
629 (if_then_else (match_code "mem")
630 (and (match_test "!TARGET_E500_DOUBLE")
631 (ior (match_operand 0 "memory_operand")
632 (ior (match_test "macho_lo_sum_memory_operand (op, mode)")
633 (match_operand 0 "volatile_mem_operand"))))
634 (match_operand 0 "gpc_reg_operand")))
635
636 ;; Return 1 if the operand is CONST_DOUBLE 0, register or memory operand.
637 (define_predicate "zero_reg_mem_operand"
638 (ior (match_operand 0 "zero_fp_constant")
639 (match_operand 0 "reg_or_mem_operand")))
640
641 ;; Return 1 if the operand is a general register or memory operand without
642 ;; pre_inc or pre_dec, which produces invalid form of PowerPC lwa
643 ;; instruction.
644 (define_predicate "lwa_operand"
645 (match_code "reg,subreg,mem")
646 {
647 rtx inner = op;
648
649 if (reload_completed && GET_CODE (inner) == SUBREG)
650 inner = SUBREG_REG (inner);
651
652 return gpc_reg_operand (inner, mode)
653 || (memory_operand (inner, mode)
654 && GET_CODE (XEXP (inner, 0)) != PRE_INC
655 && GET_CODE (XEXP (inner, 0)) != PRE_DEC
656 && (GET_CODE (XEXP (inner, 0)) != PLUS
657 || GET_CODE (XEXP (XEXP (inner, 0), 1)) != CONST_INT
658 || INTVAL (XEXP (XEXP (inner, 0), 1)) % 4 == 0));
659 })
660
661 ;; Return 1 if the operand, used inside a MEM, is a SYMBOL_REF.
662 (define_predicate "symbol_ref_operand"
663 (and (match_code "symbol_ref")
664 (match_test "(mode == VOIDmode || GET_MODE (op) == mode)
665 && (DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))")))
666
667 ;; Return 1 if op is an operand that can be loaded via the GOT.
668 ;; or non-special register register field no cr0
669 (define_predicate "got_operand"
670 (match_code "symbol_ref,const,label_ref"))
671
672 ;; Return 1 if op is a simple reference that can be loaded via the GOT,
673 ;; excluding labels involving addition.
674 (define_predicate "got_no_const_operand"
675 (match_code "symbol_ref,label_ref"))
676
677 ;; Return 1 if op is a SYMBOL_REF for a TLS symbol.
678 (define_predicate "rs6000_tls_symbol_ref"
679 (and (match_code "symbol_ref")
680 (match_test "RS6000_SYMBOL_REF_TLS_P (op)")))
681
682 ;; Return 1 if the operand, used inside a MEM, is a valid first argument
683 ;; to CALL. This is a SYMBOL_REF, a pseudo-register, LR or CTR.
684 (define_predicate "call_operand"
685 (if_then_else (match_code "reg")
686 (match_test "REGNO (op) == LINK_REGISTER_REGNUM
687 || REGNO (op) == COUNT_REGISTER_REGNUM
688 || REGNO (op) >= FIRST_PSEUDO_REGISTER")
689 (match_code "symbol_ref")))
690
691 ;; Return 1 if the operand is a SYMBOL_REF for a function known to be in
692 ;; this file.
693 (define_predicate "current_file_function_operand"
694 (and (match_code "symbol_ref")
695 (match_test "(DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op))
696 && (SYMBOL_REF_LOCAL_P (op)
697 || (op == XEXP (DECL_RTL (current_function_decl),
698 0)))")))
699
700 ;; Return 1 if this operand is a valid input for a move insn.
701 (define_predicate "input_operand"
702 (match_code "label_ref,symbol_ref,const,high,reg,subreg,mem,
703 const_double,const_vector,const_int,plus")
704 {
705 /* Memory is always valid. */
706 if (memory_operand (op, mode))
707 return 1;
708
709 /* For floating-point, easy constants are valid. */
710 if (GET_MODE_CLASS (mode) == MODE_FLOAT
711 && CONSTANT_P (op)
712 && easy_fp_constant (op, mode))
713 return 1;
714
715 /* Allow any integer constant. */
716 if (GET_MODE_CLASS (mode) == MODE_INT
717 && (GET_CODE (op) == CONST_INT
718 || GET_CODE (op) == CONST_DOUBLE))
719 return 1;
720
721 /* Allow easy vector constants. */
722 if (GET_CODE (op) == CONST_VECTOR
723 && easy_vector_constant (op, mode))
724 return 1;
725
726 /* For floating-point or multi-word mode, the only remaining valid type
727 is a register. */
728 if (GET_MODE_CLASS (mode) == MODE_FLOAT
729 || GET_MODE_SIZE (mode) > UNITS_PER_WORD)
730 return register_operand (op, mode);
731
732 /* The only cases left are integral modes one word or smaller (we
733 do not get called for MODE_CC values). These can be in any
734 register. */
735 if (register_operand (op, mode))
736 return 1;
737
738 /* A SYMBOL_REF referring to the TOC is valid. */
739 if (legitimate_constant_pool_address_p (op))
740 return 1;
741
742 /* A constant pool expression (relative to the TOC) is valid */
743 if (toc_relative_expr_p (op))
744 return 1;
745
746 /* V.4 allows SYMBOL_REFs and CONSTs that are in the small data region
747 to be valid. */
748 if (DEFAULT_ABI == ABI_V4
749 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST)
750 && small_data_operand (op, Pmode))
751 return 1;
752
753 return 0;
754 })
755
756 ;; Return true if OP is an invalid SUBREG operation on the e500.
757 (define_predicate "rs6000_nonimmediate_operand"
758 (match_code "reg,subreg,mem")
759 {
760 if (TARGET_E500_DOUBLE
761 && GET_CODE (op) == SUBREG
762 && invalid_e500_subreg (op, mode))
763 return 0;
764
765 return nonimmediate_operand (op, mode);
766 })
767
768 ;; Return true if operand is boolean operator.
769 (define_predicate "boolean_operator"
770 (match_code "and,ior,xor"))
771
772 ;; Return true if operand is OR-form of boolean operator.
773 (define_predicate "boolean_or_operator"
774 (match_code "ior,xor"))
775
776 ;; Return true if operand is an equality operator.
777 (define_special_predicate "equality_operator"
778 (match_code "eq,ne"))
779
780 ;; Return true if operand is MIN or MAX operator.
781 (define_predicate "min_max_operator"
782 (match_code "smin,smax,umin,umax"))
783
784 ;; Return 1 if OP is a comparison operation that is valid for a branch
785 ;; instruction. We check the opcode against the mode of the CC value.
786 ;; validate_condition_mode is an assertion.
787 (define_predicate "branch_comparison_operator"
788 (and (match_operand 0 "comparison_operator")
789 (and (match_test "GET_MODE_CLASS (GET_MODE (XEXP (op, 0))) == MODE_CC")
790 (match_test "validate_condition_mode (GET_CODE (op),
791 GET_MODE (XEXP (op, 0))),
792 1"))))
793
794 ;; Return 1 if OP is a comparison operation that is valid for an SCC insn --
795 ;; it must be a positive comparison.
796 (define_predicate "scc_comparison_operator"
797 (and (match_operand 0 "branch_comparison_operator")
798 (match_code "eq,lt,gt,ltu,gtu,unordered")))
799
800 ;; Return 1 if OP is a comparison operation that is valid for a branch
801 ;; insn, which is true if the corresponding bit in the CC register is set.
802 (define_predicate "branch_positive_comparison_operator"
803 (and (match_operand 0 "branch_comparison_operator")
804 (match_code "eq,lt,gt,ltu,gtu,unordered")))
805
806 ;; Return 1 is OP is a comparison operation that is valid for a trap insn.
807 (define_predicate "trap_comparison_operator"
808 (and (match_operand 0 "comparison_operator")
809 (match_code "eq,ne,le,lt,ge,gt,leu,ltu,geu,gtu")))
810
811 ;; Return 1 if OP is a load multiple operation, known to be a PARALLEL.
812 (define_predicate "load_multiple_operation"
813 (match_code "parallel")
814 {
815 int count = XVECLEN (op, 0);
816 unsigned int dest_regno;
817 rtx src_addr;
818 int i;
819
820 /* Perform a quick check so we don't blow up below. */
821 if (count <= 1
822 || GET_CODE (XVECEXP (op, 0, 0)) != SET
823 || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
824 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
825 return 0;
826
827 dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
828 src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
829
830 for (i = 1; i < count; i++)
831 {
832 rtx elt = XVECEXP (op, 0, i);
833
834 if (GET_CODE (elt) != SET
835 || GET_CODE (SET_DEST (elt)) != REG
836 || GET_MODE (SET_DEST (elt)) != SImode
837 || REGNO (SET_DEST (elt)) != dest_regno + i
838 || GET_CODE (SET_SRC (elt)) != MEM
839 || GET_MODE (SET_SRC (elt)) != SImode
840 || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
841 || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
842 || GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
843 || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4)
844 return 0;
845 }
846
847 return 1;
848 })
849
850 ;; Return 1 if OP is a store multiple operation, known to be a PARALLEL.
851 ;; The second vector element is a CLOBBER.
852 (define_predicate "store_multiple_operation"
853 (match_code "parallel")
854 {
855 int count = XVECLEN (op, 0) - 1;
856 unsigned int src_regno;
857 rtx dest_addr;
858 int i;
859
860 /* Perform a quick check so we don't blow up below. */
861 if (count <= 1
862 || GET_CODE (XVECEXP (op, 0, 0)) != SET
863 || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
864 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
865 return 0;
866
867 src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
868 dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
869
870 for (i = 1; i < count; i++)
871 {
872 rtx elt = XVECEXP (op, 0, i + 1);
873
874 if (GET_CODE (elt) != SET
875 || GET_CODE (SET_SRC (elt)) != REG
876 || GET_MODE (SET_SRC (elt)) != SImode
877 || REGNO (SET_SRC (elt)) != src_regno + i
878 || GET_CODE (SET_DEST (elt)) != MEM
879 || GET_MODE (SET_DEST (elt)) != SImode
880 || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
881 || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr)
882 || GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
883 || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4)
884 return 0;
885 }
886
887 return 1;
888 })
889
890 ;; Return 1 if OP is valid for a save_world call in prologue, known to be
891 ;; a PARLLEL.
892 (define_predicate "save_world_operation"
893 (match_code "parallel")
894 {
895 int index;
896 int i;
897 rtx elt;
898 int count = XVECLEN (op, 0);
899
900 if (count != 55)
901 return 0;
902
903 index = 0;
904 if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
905 || GET_CODE (XVECEXP (op, 0, index++)) != USE)
906 return 0;
907
908 for (i=1; i <= 18; i++)
909 {
910 elt = XVECEXP (op, 0, index++);
911 if (GET_CODE (elt) != SET
912 || GET_CODE (SET_DEST (elt)) != MEM
913 || ! memory_operand (SET_DEST (elt), DFmode)
914 || GET_CODE (SET_SRC (elt)) != REG
915 || GET_MODE (SET_SRC (elt)) != DFmode)
916 return 0;
917 }
918
919 for (i=1; i <= 12; i++)
920 {
921 elt = XVECEXP (op, 0, index++);
922 if (GET_CODE (elt) != SET
923 || GET_CODE (SET_DEST (elt)) != MEM
924 || GET_CODE (SET_SRC (elt)) != REG
925 || GET_MODE (SET_SRC (elt)) != V4SImode)
926 return 0;
927 }
928
929 for (i=1; i <= 19; i++)
930 {
931 elt = XVECEXP (op, 0, index++);
932 if (GET_CODE (elt) != SET
933 || GET_CODE (SET_DEST (elt)) != MEM
934 || ! memory_operand (SET_DEST (elt), Pmode)
935 || GET_CODE (SET_SRC (elt)) != REG
936 || GET_MODE (SET_SRC (elt)) != Pmode)
937 return 0;
938 }
939
940 elt = XVECEXP (op, 0, index++);
941 if (GET_CODE (elt) != SET
942 || GET_CODE (SET_DEST (elt)) != MEM
943 || ! memory_operand (SET_DEST (elt), Pmode)
944 || GET_CODE (SET_SRC (elt)) != REG
945 || REGNO (SET_SRC (elt)) != CR2_REGNO
946 || GET_MODE (SET_SRC (elt)) != Pmode)
947 return 0;
948
949 if (GET_CODE (XVECEXP (op, 0, index++)) != USE
950 || GET_CODE (XVECEXP (op, 0, index++)) != USE
951 || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER)
952 return 0;
953 return 1;
954 })
955
956 ;; Return 1 if OP is valid for a restore_world call in epilogue, known to be
957 ;; a PARLLEL.
958 (define_predicate "restore_world_operation"
959 (match_code "parallel")
960 {
961 int index;
962 int i;
963 rtx elt;
964 int count = XVECLEN (op, 0);
965
966 if (count != 59)
967 return 0;
968
969 index = 0;
970 if (GET_CODE (XVECEXP (op, 0, index++)) != RETURN
971 || GET_CODE (XVECEXP (op, 0, index++)) != USE
972 || GET_CODE (XVECEXP (op, 0, index++)) != USE
973 || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER)
974 return 0;
975
976 elt = XVECEXP (op, 0, index++);
977 if (GET_CODE (elt) != SET
978 || GET_CODE (SET_SRC (elt)) != MEM
979 || ! memory_operand (SET_SRC (elt), Pmode)
980 || GET_CODE (SET_DEST (elt)) != REG
981 || REGNO (SET_DEST (elt)) != CR2_REGNO
982 || GET_MODE (SET_DEST (elt)) != Pmode)
983 return 0;
984
985 for (i=1; i <= 19; i++)
986 {
987 elt = XVECEXP (op, 0, index++);
988 if (GET_CODE (elt) != SET
989 || GET_CODE (SET_SRC (elt)) != MEM
990 || ! memory_operand (SET_SRC (elt), Pmode)
991 || GET_CODE (SET_DEST (elt)) != REG
992 || GET_MODE (SET_DEST (elt)) != Pmode)
993 return 0;
994 }
995
996 for (i=1; i <= 12; i++)
997 {
998 elt = XVECEXP (op, 0, index++);
999 if (GET_CODE (elt) != SET
1000 || GET_CODE (SET_SRC (elt)) != MEM
1001 || GET_CODE (SET_DEST (elt)) != REG
1002 || GET_MODE (SET_DEST (elt)) != V4SImode)
1003 return 0;
1004 }
1005
1006 for (i=1; i <= 18; i++)
1007 {
1008 elt = XVECEXP (op, 0, index++);
1009 if (GET_CODE (elt) != SET
1010 || GET_CODE (SET_SRC (elt)) != MEM
1011 || ! memory_operand (SET_SRC (elt), DFmode)
1012 || GET_CODE (SET_DEST (elt)) != REG
1013 || GET_MODE (SET_DEST (elt)) != DFmode)
1014 return 0;
1015 }
1016
1017 if (GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1018 || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1019 || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1020 || GET_CODE (XVECEXP (op, 0, index++)) != CLOBBER
1021 || GET_CODE (XVECEXP (op, 0, index++)) != USE)
1022 return 0;
1023 return 1;
1024 })
1025
1026 ;; Return 1 if OP is valid for a vrsave call, known to be a PARALLEL.
1027 (define_predicate "vrsave_operation"
1028 (match_code "parallel")
1029 {
1030 int count = XVECLEN (op, 0);
1031 unsigned int dest_regno, src_regno;
1032 int i;
1033
1034 if (count <= 1
1035 || GET_CODE (XVECEXP (op, 0, 0)) != SET
1036 || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
1037 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC_VOLATILE)
1038 return 0;
1039
1040 dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
1041 src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
1042
1043 if (dest_regno != VRSAVE_REGNO
1044 && src_regno != VRSAVE_REGNO)
1045 return 0;
1046
1047 for (i = 1; i < count; i++)
1048 {
1049 rtx elt = XVECEXP (op, 0, i);
1050
1051 if (GET_CODE (elt) != CLOBBER
1052 && GET_CODE (elt) != SET)
1053 return 0;
1054 }
1055
1056 return 1;
1057 })
1058
1059 ;; Return 1 if OP is valid for mfcr insn, known to be a PARALLEL.
1060 (define_predicate "mfcr_operation"
1061 (match_code "parallel")
1062 {
1063 int count = XVECLEN (op, 0);
1064 int i;
1065
1066 /* Perform a quick check so we don't blow up below. */
1067 if (count < 1
1068 || GET_CODE (XVECEXP (op, 0, 0)) != SET
1069 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
1070 || XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
1071 return 0;
1072
1073 for (i = 0; i < count; i++)
1074 {
1075 rtx exp = XVECEXP (op, 0, i);
1076 rtx unspec;
1077 int maskval;
1078 rtx src_reg;
1079
1080 src_reg = XVECEXP (SET_SRC (exp), 0, 0);
1081
1082 if (GET_CODE (src_reg) != REG
1083 || GET_MODE (src_reg) != CCmode
1084 || ! CR_REGNO_P (REGNO (src_reg)))
1085 return 0;
1086
1087 if (GET_CODE (exp) != SET
1088 || GET_CODE (SET_DEST (exp)) != REG
1089 || GET_MODE (SET_DEST (exp)) != SImode
1090 || ! INT_REGNO_P (REGNO (SET_DEST (exp))))
1091 return 0;
1092 unspec = SET_SRC (exp);
1093 maskval = 1 << (MAX_CR_REGNO - REGNO (src_reg));
1094
1095 if (GET_CODE (unspec) != UNSPEC
1096 || XINT (unspec, 1) != UNSPEC_MOVESI_FROM_CR
1097 || XVECLEN (unspec, 0) != 2
1098 || XVECEXP (unspec, 0, 0) != src_reg
1099 || GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
1100 || INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
1101 return 0;
1102 }
1103 return 1;
1104 })
1105
1106 ;; Return 1 if OP is valid for mtcrf insn, known to be a PARALLEL.
1107 (define_predicate "mtcrf_operation"
1108 (match_code "parallel")
1109 {
1110 int count = XVECLEN (op, 0);
1111 int i;
1112 rtx src_reg;
1113
1114 /* Perform a quick check so we don't blow up below. */
1115 if (count < 1
1116 || GET_CODE (XVECEXP (op, 0, 0)) != SET
1117 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != UNSPEC
1118 || XVECLEN (SET_SRC (XVECEXP (op, 0, 0)), 0) != 2)
1119 return 0;
1120 src_reg = XVECEXP (SET_SRC (XVECEXP (op, 0, 0)), 0, 0);
1121
1122 if (GET_CODE (src_reg) != REG
1123 || GET_MODE (src_reg) != SImode
1124 || ! INT_REGNO_P (REGNO (src_reg)))
1125 return 0;
1126
1127 for (i = 0; i < count; i++)
1128 {
1129 rtx exp = XVECEXP (op, 0, i);
1130 rtx unspec;
1131 int maskval;
1132
1133 if (GET_CODE (exp) != SET
1134 || GET_CODE (SET_DEST (exp)) != REG
1135 || GET_MODE (SET_DEST (exp)) != CCmode
1136 || ! CR_REGNO_P (REGNO (SET_DEST (exp))))
1137 return 0;
1138 unspec = SET_SRC (exp);
1139 maskval = 1 << (MAX_CR_REGNO - REGNO (SET_DEST (exp)));
1140
1141 if (GET_CODE (unspec) != UNSPEC
1142 || XINT (unspec, 1) != UNSPEC_MOVESI_TO_CR
1143 || XVECLEN (unspec, 0) != 2
1144 || XVECEXP (unspec, 0, 0) != src_reg
1145 || GET_CODE (XVECEXP (unspec, 0, 1)) != CONST_INT
1146 || INTVAL (XVECEXP (unspec, 0, 1)) != maskval)
1147 return 0;
1148 }
1149 return 1;
1150 })
1151
1152 ;; Return 1 if OP is valid for lmw insn, known to be a PARALLEL.
1153 (define_predicate "lmw_operation"
1154 (match_code "parallel")
1155 {
1156 int count = XVECLEN (op, 0);
1157 unsigned int dest_regno;
1158 rtx src_addr;
1159 unsigned int base_regno;
1160 HOST_WIDE_INT offset;
1161 int i;
1162
1163 /* Perform a quick check so we don't blow up below. */
1164 if (count <= 1
1165 || GET_CODE (XVECEXP (op, 0, 0)) != SET
1166 || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
1167 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
1168 return 0;
1169
1170 dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
1171 src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
1172
1173 if (dest_regno > 31
1174 || count != 32 - (int) dest_regno)
1175 return 0;
1176
1177 if (legitimate_indirect_address_p (src_addr, 0))
1178 {
1179 offset = 0;
1180 base_regno = REGNO (src_addr);
1181 if (base_regno == 0)
1182 return 0;
1183 }
1184 else if (rs6000_legitimate_offset_address_p (SImode, src_addr, 0))
1185 {
1186 offset = INTVAL (XEXP (src_addr, 1));
1187 base_regno = REGNO (XEXP (src_addr, 0));
1188 }
1189 else
1190 return 0;
1191
1192 for (i = 0; i < count; i++)
1193 {
1194 rtx elt = XVECEXP (op, 0, i);
1195 rtx newaddr;
1196 rtx addr_reg;
1197 HOST_WIDE_INT newoffset;
1198
1199 if (GET_CODE (elt) != SET
1200 || GET_CODE (SET_DEST (elt)) != REG
1201 || GET_MODE (SET_DEST (elt)) != SImode
1202 || REGNO (SET_DEST (elt)) != dest_regno + i
1203 || GET_CODE (SET_SRC (elt)) != MEM
1204 || GET_MODE (SET_SRC (elt)) != SImode)
1205 return 0;
1206 newaddr = XEXP (SET_SRC (elt), 0);
1207 if (legitimate_indirect_address_p (newaddr, 0))
1208 {
1209 newoffset = 0;
1210 addr_reg = newaddr;
1211 }
1212 else if (rs6000_legitimate_offset_address_p (SImode, newaddr, 0))
1213 {
1214 addr_reg = XEXP (newaddr, 0);
1215 newoffset = INTVAL (XEXP (newaddr, 1));
1216 }
1217 else
1218 return 0;
1219 if (REGNO (addr_reg) != base_regno
1220 || newoffset != offset + 4 * i)
1221 return 0;
1222 }
1223
1224 return 1;
1225 })
1226
1227 ;; Return 1 if OP is valid for stmw insn, known to be a PARALLEL.
1228 (define_predicate "stmw_operation"
1229 (match_code "parallel")
1230 {
1231 int count = XVECLEN (op, 0);
1232 unsigned int src_regno;
1233 rtx dest_addr;
1234 unsigned int base_regno;
1235 HOST_WIDE_INT offset;
1236 int i;
1237
1238 /* Perform a quick check so we don't blow up below. */
1239 if (count <= 1
1240 || GET_CODE (XVECEXP (op, 0, 0)) != SET
1241 || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
1242 || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
1243 return 0;
1244
1245 src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
1246 dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
1247
1248 if (src_regno > 31
1249 || count != 32 - (int) src_regno)
1250 return 0;
1251
1252 if (legitimate_indirect_address_p (dest_addr, 0))
1253 {
1254 offset = 0;
1255 base_regno = REGNO (dest_addr);
1256 if (base_regno == 0)
1257 return 0;
1258 }
1259 else if (rs6000_legitimate_offset_address_p (SImode, dest_addr, 0))
1260 {
1261 offset = INTVAL (XEXP (dest_addr, 1));
1262 base_regno = REGNO (XEXP (dest_addr, 0));
1263 }
1264 else
1265 return 0;
1266
1267 for (i = 0; i < count; i++)
1268 {
1269 rtx elt = XVECEXP (op, 0, i);
1270 rtx newaddr;
1271 rtx addr_reg;
1272 HOST_WIDE_INT newoffset;
1273
1274 if (GET_CODE (elt) != SET
1275 || GET_CODE (SET_SRC (elt)) != REG
1276 || GET_MODE (SET_SRC (elt)) != SImode
1277 || REGNO (SET_SRC (elt)) != src_regno + i
1278 || GET_CODE (SET_DEST (elt)) != MEM
1279 || GET_MODE (SET_DEST (elt)) != SImode)
1280 return 0;
1281 newaddr = XEXP (SET_DEST (elt), 0);
1282 if (legitimate_indirect_address_p (newaddr, 0))
1283 {
1284 newoffset = 0;
1285 addr_reg = newaddr;
1286 }
1287 else if (rs6000_legitimate_offset_address_p (SImode, newaddr, 0))
1288 {
1289 addr_reg = XEXP (newaddr, 0);
1290 newoffset = INTVAL (XEXP (newaddr, 1));
1291 }
1292 else
1293 return 0;
1294 if (REGNO (addr_reg) != base_regno
1295 || newoffset != offset + 4 * i)
1296 return 0;
1297 }
1298
1299 return 1;
1300 })