]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/rs6000/rs6000.c
re PR c++/35483 (GCC on AIX doesn't support dollar in symbols name.)
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.c
1 /* Subroutines used for code generation on IBM RS/6000.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
11 by the Free Software Foundation; either version 3, or (at your
12 option) any later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "real.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "insn-attr.h"
34 #include "flags.h"
35 #include "recog.h"
36 #include "obstack.h"
37 #include "tree.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "except.h"
41 #include "function.h"
42 #include "output.h"
43 #include "basic-block.h"
44 #include "integrate.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "hashtab.h"
48 #include "tm_p.h"
49 #include "target.h"
50 #include "target-def.h"
51 #include "langhooks.h"
52 #include "reload.h"
53 #include "cfglayout.h"
54 #include "sched-int.h"
55 #include "gimple.h"
56 #include "tree-flow.h"
57 #include "intl.h"
58 #include "params.h"
59 #include "tm-constrs.h"
60 #if TARGET_XCOFF
61 #include "xcoffout.h" /* get declarations of xcoff_*_section_name */
62 #endif
63 #if TARGET_MACHO
64 #include "gstab.h" /* for N_SLINE */
65 #endif
66
67 #ifndef TARGET_NO_PROTOTYPE
68 #define TARGET_NO_PROTOTYPE 0
69 #endif
70
71 #define min(A,B) ((A) < (B) ? (A) : (B))
72 #define max(A,B) ((A) > (B) ? (A) : (B))
73
74 /* Structure used to define the rs6000 stack */
75 typedef struct rs6000_stack {
76 int first_gp_reg_save; /* first callee saved GP register used */
77 int first_fp_reg_save; /* first callee saved FP register used */
78 int first_altivec_reg_save; /* first callee saved AltiVec register used */
79 int lr_save_p; /* true if the link reg needs to be saved */
80 int cr_save_p; /* true if the CR reg needs to be saved */
81 unsigned int vrsave_mask; /* mask of vec registers to save */
82 int push_p; /* true if we need to allocate stack space */
83 int calls_p; /* true if the function makes any calls */
84 int world_save_p; /* true if we're saving *everything*:
85 r13-r31, cr, f14-f31, vrsave, v20-v31 */
86 enum rs6000_abi abi; /* which ABI to use */
87 int gp_save_offset; /* offset to save GP regs from initial SP */
88 int fp_save_offset; /* offset to save FP regs from initial SP */
89 int altivec_save_offset; /* offset to save AltiVec regs from initial SP */
90 int lr_save_offset; /* offset to save LR from initial SP */
91 int cr_save_offset; /* offset to save CR from initial SP */
92 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
93 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
94 int varargs_save_offset; /* offset to save the varargs registers */
95 int ehrd_offset; /* offset to EH return data */
96 int reg_size; /* register size (4 or 8) */
97 HOST_WIDE_INT vars_size; /* variable save area size */
98 int parm_size; /* outgoing parameter size */
99 int save_size; /* save area size */
100 int fixed_size; /* fixed size of stack frame */
101 int gp_size; /* size of saved GP registers */
102 int fp_size; /* size of saved FP registers */
103 int altivec_size; /* size of saved AltiVec registers */
104 int cr_size; /* size to hold CR if not in save_size */
105 int vrsave_size; /* size to hold VRSAVE if not in save_size */
106 int altivec_padding_size; /* size of altivec alignment padding if
107 not in save_size */
108 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
109 int spe_padding_size;
110 HOST_WIDE_INT total_size; /* total bytes allocated for stack */
111 int spe_64bit_regs_used;
112 } rs6000_stack_t;
113
114 /* A C structure for machine-specific, per-function data.
115 This is added to the cfun structure. */
116 typedef struct machine_function GTY(())
117 {
118 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
119 int ra_needs_full_frame;
120 /* Some local-dynamic symbol. */
121 const char *some_ld_name;
122 /* Whether the instruction chain has been scanned already. */
123 int insn_chain_scanned_p;
124 /* Flags if __builtin_return_address (0) was used. */
125 int ra_need_lr;
126 /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
127 varargs save area. */
128 HOST_WIDE_INT varargs_save_offset;
129 /* Temporary stack slot to use for SDmode copies. This slot is
130 64-bits wide and is allocated early enough so that the offset
131 does not overflow the 16-bit load/store offset field. */
132 rtx sdmode_stack_slot;
133 } machine_function;
134
135 /* Target cpu type */
136
137 enum processor_type rs6000_cpu;
138 struct rs6000_cpu_select rs6000_select[3] =
139 {
140 /* switch name, tune arch */
141 { (const char *)0, "--with-cpu=", 1, 1 },
142 { (const char *)0, "-mcpu=", 1, 1 },
143 { (const char *)0, "-mtune=", 1, 0 },
144 };
145
146 /* Always emit branch hint bits. */
147 static GTY(()) bool rs6000_always_hint;
148
149 /* Schedule instructions for group formation. */
150 static GTY(()) bool rs6000_sched_groups;
151
152 /* Align branch targets. */
153 static GTY(()) bool rs6000_align_branch_targets;
154
155 /* Support for -msched-costly-dep option. */
156 const char *rs6000_sched_costly_dep_str;
157 enum rs6000_dependence_cost rs6000_sched_costly_dep;
158
159 /* Support for -minsert-sched-nops option. */
160 const char *rs6000_sched_insert_nops_str;
161 enum rs6000_nop_insertion rs6000_sched_insert_nops;
162
163 /* Support targetm.vectorize.builtin_mask_for_load. */
164 static GTY(()) tree altivec_builtin_mask_for_load;
165
166 /* Size of long double. */
167 int rs6000_long_double_type_size;
168
169 /* IEEE quad extended precision long double. */
170 int rs6000_ieeequad;
171
172 /* Nonzero to use AltiVec ABI. */
173 int rs6000_altivec_abi;
174
175 /* Nonzero if we want SPE SIMD instructions. */
176 int rs6000_spe;
177
178 /* Nonzero if we want SPE ABI extensions. */
179 int rs6000_spe_abi;
180
181 /* Nonzero to use isel instructions. */
182 int rs6000_isel;
183
184 /* Nonzero if floating point operations are done in the GPRs. */
185 int rs6000_float_gprs = 0;
186
187 /* Nonzero if we want Darwin's struct-by-value-in-regs ABI. */
188 int rs6000_darwin64_abi;
189
190 /* Set to nonzero once AIX common-mode calls have been defined. */
191 static GTY(()) int common_mode_defined;
192
193 /* Save information from a "cmpxx" operation until the branch or scc is
194 emitted. */
195 rtx rs6000_compare_op0, rs6000_compare_op1;
196 int rs6000_compare_fp_p;
197
198 /* Label number of label created for -mrelocatable, to call to so we can
199 get the address of the GOT section */
200 int rs6000_pic_labelno;
201
202 #ifdef USING_ELFOS_H
203 /* Which abi to adhere to */
204 const char *rs6000_abi_name;
205
206 /* Semantics of the small data area */
207 enum rs6000_sdata_type rs6000_sdata = SDATA_DATA;
208
209 /* Which small data model to use */
210 const char *rs6000_sdata_name = (char *)0;
211
212 /* Counter for labels which are to be placed in .fixup. */
213 int fixuplabelno = 0;
214 #endif
215
216 /* Bit size of immediate TLS offsets and string from which it is decoded. */
217 int rs6000_tls_size = 32;
218 const char *rs6000_tls_size_string;
219
220 /* ABI enumeration available for subtarget to use. */
221 enum rs6000_abi rs6000_current_abi;
222
223 /* Whether to use variant of AIX ABI for PowerPC64 Linux. */
224 int dot_symbols;
225
226 /* Debug flags */
227 const char *rs6000_debug_name;
228 int rs6000_debug_stack; /* debug stack applications */
229 int rs6000_debug_arg; /* debug argument handling */
230
231 /* Value is TRUE if register/mode pair is acceptable. */
232 bool rs6000_hard_regno_mode_ok_p[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
233
234 /* Built in types. */
235
236 tree rs6000_builtin_types[RS6000_BTI_MAX];
237 tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
238
239 const char *rs6000_traceback_name;
240 static enum {
241 traceback_default = 0,
242 traceback_none,
243 traceback_part,
244 traceback_full
245 } rs6000_traceback;
246
247 /* Flag to say the TOC is initialized */
248 int toc_initialized;
249 char toc_label_name[10];
250
251 /* Cached value of rs6000_variable_issue. This is cached in
252 rs6000_variable_issue hook and returned from rs6000_sched_reorder2. */
253 static short cached_can_issue_more;
254
255 static GTY(()) section *read_only_data_section;
256 static GTY(()) section *private_data_section;
257 static GTY(()) section *read_only_private_data_section;
258 static GTY(()) section *sdata2_section;
259 static GTY(()) section *toc_section;
260
261 /* Control alignment for fields within structures. */
262 /* String from -malign-XXXXX. */
263 int rs6000_alignment_flags;
264
265 /* True for any options that were explicitly set. */
266 struct {
267 bool aix_struct_ret; /* True if -maix-struct-ret was used. */
268 bool alignment; /* True if -malign- was used. */
269 bool spe_abi; /* True if -mabi=spe/no-spe was used. */
270 bool altivec_abi; /* True if -mabi=altivec/no-altivec used. */
271 bool spe; /* True if -mspe= was used. */
272 bool float_gprs; /* True if -mfloat-gprs= was used. */
273 bool isel; /* True if -misel was used. */
274 bool long_double; /* True if -mlong-double- was used. */
275 bool ieee; /* True if -mabi=ieee/ibmlongdouble used. */
276 bool vrsave; /* True if -mvrsave was used. */
277 } rs6000_explicit_options;
278
279 struct builtin_description
280 {
281 /* mask is not const because we're going to alter it below. This
282 nonsense will go away when we rewrite the -march infrastructure
283 to give us more target flag bits. */
284 unsigned int mask;
285 const enum insn_code icode;
286 const char *const name;
287 const enum rs6000_builtins code;
288 };
289 \f
290 /* Target cpu costs. */
291
292 struct processor_costs {
293 const int mulsi; /* cost of SImode multiplication. */
294 const int mulsi_const; /* cost of SImode multiplication by constant. */
295 const int mulsi_const9; /* cost of SImode mult by short constant. */
296 const int muldi; /* cost of DImode multiplication. */
297 const int divsi; /* cost of SImode division. */
298 const int divdi; /* cost of DImode division. */
299 const int fp; /* cost of simple SFmode and DFmode insns. */
300 const int dmul; /* cost of DFmode multiplication (and fmadd). */
301 const int sdiv; /* cost of SFmode division (fdivs). */
302 const int ddiv; /* cost of DFmode division (fdiv). */
303 const int cache_line_size; /* cache line size in bytes. */
304 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
305 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
306 const int simultaneous_prefetches; /* number of parallel prefetch
307 operations. */
308 };
309
310 const struct processor_costs *rs6000_cost;
311
312 /* Processor costs (relative to an add) */
313
314 /* Instruction size costs on 32bit processors. */
315 static const
316 struct processor_costs size32_cost = {
317 COSTS_N_INSNS (1), /* mulsi */
318 COSTS_N_INSNS (1), /* mulsi_const */
319 COSTS_N_INSNS (1), /* mulsi_const9 */
320 COSTS_N_INSNS (1), /* muldi */
321 COSTS_N_INSNS (1), /* divsi */
322 COSTS_N_INSNS (1), /* divdi */
323 COSTS_N_INSNS (1), /* fp */
324 COSTS_N_INSNS (1), /* dmul */
325 COSTS_N_INSNS (1), /* sdiv */
326 COSTS_N_INSNS (1), /* ddiv */
327 32,
328 0,
329 0,
330 0,
331 };
332
333 /* Instruction size costs on 64bit processors. */
334 static const
335 struct processor_costs size64_cost = {
336 COSTS_N_INSNS (1), /* mulsi */
337 COSTS_N_INSNS (1), /* mulsi_const */
338 COSTS_N_INSNS (1), /* mulsi_const9 */
339 COSTS_N_INSNS (1), /* muldi */
340 COSTS_N_INSNS (1), /* divsi */
341 COSTS_N_INSNS (1), /* divdi */
342 COSTS_N_INSNS (1), /* fp */
343 COSTS_N_INSNS (1), /* dmul */
344 COSTS_N_INSNS (1), /* sdiv */
345 COSTS_N_INSNS (1), /* ddiv */
346 128,
347 0,
348 0,
349 0,
350 };
351
352 /* Instruction costs on RIOS1 processors. */
353 static const
354 struct processor_costs rios1_cost = {
355 COSTS_N_INSNS (5), /* mulsi */
356 COSTS_N_INSNS (4), /* mulsi_const */
357 COSTS_N_INSNS (3), /* mulsi_const9 */
358 COSTS_N_INSNS (5), /* muldi */
359 COSTS_N_INSNS (19), /* divsi */
360 COSTS_N_INSNS (19), /* divdi */
361 COSTS_N_INSNS (2), /* fp */
362 COSTS_N_INSNS (2), /* dmul */
363 COSTS_N_INSNS (19), /* sdiv */
364 COSTS_N_INSNS (19), /* ddiv */
365 128, /* cache line size */
366 64, /* l1 cache */
367 512, /* l2 cache */
368 0, /* streams */
369 };
370
371 /* Instruction costs on RIOS2 processors. */
372 static const
373 struct processor_costs rios2_cost = {
374 COSTS_N_INSNS (2), /* mulsi */
375 COSTS_N_INSNS (2), /* mulsi_const */
376 COSTS_N_INSNS (2), /* mulsi_const9 */
377 COSTS_N_INSNS (2), /* muldi */
378 COSTS_N_INSNS (13), /* divsi */
379 COSTS_N_INSNS (13), /* divdi */
380 COSTS_N_INSNS (2), /* fp */
381 COSTS_N_INSNS (2), /* dmul */
382 COSTS_N_INSNS (17), /* sdiv */
383 COSTS_N_INSNS (17), /* ddiv */
384 256, /* cache line size */
385 256, /* l1 cache */
386 1024, /* l2 cache */
387 0, /* streams */
388 };
389
390 /* Instruction costs on RS64A processors. */
391 static const
392 struct processor_costs rs64a_cost = {
393 COSTS_N_INSNS (20), /* mulsi */
394 COSTS_N_INSNS (12), /* mulsi_const */
395 COSTS_N_INSNS (8), /* mulsi_const9 */
396 COSTS_N_INSNS (34), /* muldi */
397 COSTS_N_INSNS (65), /* divsi */
398 COSTS_N_INSNS (67), /* divdi */
399 COSTS_N_INSNS (4), /* fp */
400 COSTS_N_INSNS (4), /* dmul */
401 COSTS_N_INSNS (31), /* sdiv */
402 COSTS_N_INSNS (31), /* ddiv */
403 128, /* cache line size */
404 128, /* l1 cache */
405 2048, /* l2 cache */
406 1, /* streams */
407 };
408
409 /* Instruction costs on MPCCORE processors. */
410 static const
411 struct processor_costs mpccore_cost = {
412 COSTS_N_INSNS (2), /* mulsi */
413 COSTS_N_INSNS (2), /* mulsi_const */
414 COSTS_N_INSNS (2), /* mulsi_const9 */
415 COSTS_N_INSNS (2), /* muldi */
416 COSTS_N_INSNS (6), /* divsi */
417 COSTS_N_INSNS (6), /* divdi */
418 COSTS_N_INSNS (4), /* fp */
419 COSTS_N_INSNS (5), /* dmul */
420 COSTS_N_INSNS (10), /* sdiv */
421 COSTS_N_INSNS (17), /* ddiv */
422 32, /* cache line size */
423 4, /* l1 cache */
424 16, /* l2 cache */
425 1, /* streams */
426 };
427
428 /* Instruction costs on PPC403 processors. */
429 static const
430 struct processor_costs ppc403_cost = {
431 COSTS_N_INSNS (4), /* mulsi */
432 COSTS_N_INSNS (4), /* mulsi_const */
433 COSTS_N_INSNS (4), /* mulsi_const9 */
434 COSTS_N_INSNS (4), /* muldi */
435 COSTS_N_INSNS (33), /* divsi */
436 COSTS_N_INSNS (33), /* divdi */
437 COSTS_N_INSNS (11), /* fp */
438 COSTS_N_INSNS (11), /* dmul */
439 COSTS_N_INSNS (11), /* sdiv */
440 COSTS_N_INSNS (11), /* ddiv */
441 32, /* cache line size */
442 4, /* l1 cache */
443 16, /* l2 cache */
444 1, /* streams */
445 };
446
447 /* Instruction costs on PPC405 processors. */
448 static const
449 struct processor_costs ppc405_cost = {
450 COSTS_N_INSNS (5), /* mulsi */
451 COSTS_N_INSNS (4), /* mulsi_const */
452 COSTS_N_INSNS (3), /* mulsi_const9 */
453 COSTS_N_INSNS (5), /* muldi */
454 COSTS_N_INSNS (35), /* divsi */
455 COSTS_N_INSNS (35), /* divdi */
456 COSTS_N_INSNS (11), /* fp */
457 COSTS_N_INSNS (11), /* dmul */
458 COSTS_N_INSNS (11), /* sdiv */
459 COSTS_N_INSNS (11), /* ddiv */
460 32, /* cache line size */
461 16, /* l1 cache */
462 128, /* l2 cache */
463 1, /* streams */
464 };
465
466 /* Instruction costs on PPC440 processors. */
467 static const
468 struct processor_costs ppc440_cost = {
469 COSTS_N_INSNS (3), /* mulsi */
470 COSTS_N_INSNS (2), /* mulsi_const */
471 COSTS_N_INSNS (2), /* mulsi_const9 */
472 COSTS_N_INSNS (3), /* muldi */
473 COSTS_N_INSNS (34), /* divsi */
474 COSTS_N_INSNS (34), /* divdi */
475 COSTS_N_INSNS (5), /* fp */
476 COSTS_N_INSNS (5), /* dmul */
477 COSTS_N_INSNS (19), /* sdiv */
478 COSTS_N_INSNS (33), /* ddiv */
479 32, /* cache line size */
480 32, /* l1 cache */
481 256, /* l2 cache */
482 1, /* streams */
483 };
484
485 /* Instruction costs on PPC601 processors. */
486 static const
487 struct processor_costs ppc601_cost = {
488 COSTS_N_INSNS (5), /* mulsi */
489 COSTS_N_INSNS (5), /* mulsi_const */
490 COSTS_N_INSNS (5), /* mulsi_const9 */
491 COSTS_N_INSNS (5), /* muldi */
492 COSTS_N_INSNS (36), /* divsi */
493 COSTS_N_INSNS (36), /* divdi */
494 COSTS_N_INSNS (4), /* fp */
495 COSTS_N_INSNS (5), /* dmul */
496 COSTS_N_INSNS (17), /* sdiv */
497 COSTS_N_INSNS (31), /* ddiv */
498 32, /* cache line size */
499 32, /* l1 cache */
500 256, /* l2 cache */
501 1, /* streams */
502 };
503
504 /* Instruction costs on PPC603 processors. */
505 static const
506 struct processor_costs ppc603_cost = {
507 COSTS_N_INSNS (5), /* mulsi */
508 COSTS_N_INSNS (3), /* mulsi_const */
509 COSTS_N_INSNS (2), /* mulsi_const9 */
510 COSTS_N_INSNS (5), /* muldi */
511 COSTS_N_INSNS (37), /* divsi */
512 COSTS_N_INSNS (37), /* divdi */
513 COSTS_N_INSNS (3), /* fp */
514 COSTS_N_INSNS (4), /* dmul */
515 COSTS_N_INSNS (18), /* sdiv */
516 COSTS_N_INSNS (33), /* ddiv */
517 32, /* cache line size */
518 8, /* l1 cache */
519 64, /* l2 cache */
520 1, /* streams */
521 };
522
523 /* Instruction costs on PPC604 processors. */
524 static const
525 struct processor_costs ppc604_cost = {
526 COSTS_N_INSNS (4), /* mulsi */
527 COSTS_N_INSNS (4), /* mulsi_const */
528 COSTS_N_INSNS (4), /* mulsi_const9 */
529 COSTS_N_INSNS (4), /* muldi */
530 COSTS_N_INSNS (20), /* divsi */
531 COSTS_N_INSNS (20), /* divdi */
532 COSTS_N_INSNS (3), /* fp */
533 COSTS_N_INSNS (3), /* dmul */
534 COSTS_N_INSNS (18), /* sdiv */
535 COSTS_N_INSNS (32), /* ddiv */
536 32, /* cache line size */
537 16, /* l1 cache */
538 512, /* l2 cache */
539 1, /* streams */
540 };
541
542 /* Instruction costs on PPC604e processors. */
543 static const
544 struct processor_costs ppc604e_cost = {
545 COSTS_N_INSNS (2), /* mulsi */
546 COSTS_N_INSNS (2), /* mulsi_const */
547 COSTS_N_INSNS (2), /* mulsi_const9 */
548 COSTS_N_INSNS (2), /* muldi */
549 COSTS_N_INSNS (20), /* divsi */
550 COSTS_N_INSNS (20), /* divdi */
551 COSTS_N_INSNS (3), /* fp */
552 COSTS_N_INSNS (3), /* dmul */
553 COSTS_N_INSNS (18), /* sdiv */
554 COSTS_N_INSNS (32), /* ddiv */
555 32, /* cache line size */
556 32, /* l1 cache */
557 1024, /* l2 cache */
558 1, /* streams */
559 };
560
561 /* Instruction costs on PPC620 processors. */
562 static const
563 struct processor_costs ppc620_cost = {
564 COSTS_N_INSNS (5), /* mulsi */
565 COSTS_N_INSNS (4), /* mulsi_const */
566 COSTS_N_INSNS (3), /* mulsi_const9 */
567 COSTS_N_INSNS (7), /* muldi */
568 COSTS_N_INSNS (21), /* divsi */
569 COSTS_N_INSNS (37), /* divdi */
570 COSTS_N_INSNS (3), /* fp */
571 COSTS_N_INSNS (3), /* dmul */
572 COSTS_N_INSNS (18), /* sdiv */
573 COSTS_N_INSNS (32), /* ddiv */
574 128, /* cache line size */
575 32, /* l1 cache */
576 1024, /* l2 cache */
577 1, /* streams */
578 };
579
580 /* Instruction costs on PPC630 processors. */
581 static const
582 struct processor_costs ppc630_cost = {
583 COSTS_N_INSNS (5), /* mulsi */
584 COSTS_N_INSNS (4), /* mulsi_const */
585 COSTS_N_INSNS (3), /* mulsi_const9 */
586 COSTS_N_INSNS (7), /* muldi */
587 COSTS_N_INSNS (21), /* divsi */
588 COSTS_N_INSNS (37), /* divdi */
589 COSTS_N_INSNS (3), /* fp */
590 COSTS_N_INSNS (3), /* dmul */
591 COSTS_N_INSNS (17), /* sdiv */
592 COSTS_N_INSNS (21), /* ddiv */
593 128, /* cache line size */
594 64, /* l1 cache */
595 1024, /* l2 cache */
596 1, /* streams */
597 };
598
599 /* Instruction costs on Cell processor. */
600 /* COSTS_N_INSNS (1) ~ one add. */
601 static const
602 struct processor_costs ppccell_cost = {
603 COSTS_N_INSNS (9/2)+2, /* mulsi */
604 COSTS_N_INSNS (6/2), /* mulsi_const */
605 COSTS_N_INSNS (6/2), /* mulsi_const9 */
606 COSTS_N_INSNS (15/2)+2, /* muldi */
607 COSTS_N_INSNS (38/2), /* divsi */
608 COSTS_N_INSNS (70/2), /* divdi */
609 COSTS_N_INSNS (10/2), /* fp */
610 COSTS_N_INSNS (10/2), /* dmul */
611 COSTS_N_INSNS (74/2), /* sdiv */
612 COSTS_N_INSNS (74/2), /* ddiv */
613 128, /* cache line size */
614 32, /* l1 cache */
615 512, /* l2 cache */
616 6, /* streams */
617 };
618
619 /* Instruction costs on PPC750 and PPC7400 processors. */
620 static const
621 struct processor_costs ppc750_cost = {
622 COSTS_N_INSNS (5), /* mulsi */
623 COSTS_N_INSNS (3), /* mulsi_const */
624 COSTS_N_INSNS (2), /* mulsi_const9 */
625 COSTS_N_INSNS (5), /* muldi */
626 COSTS_N_INSNS (17), /* divsi */
627 COSTS_N_INSNS (17), /* divdi */
628 COSTS_N_INSNS (3), /* fp */
629 COSTS_N_INSNS (3), /* dmul */
630 COSTS_N_INSNS (17), /* sdiv */
631 COSTS_N_INSNS (31), /* ddiv */
632 32, /* cache line size */
633 32, /* l1 cache */
634 512, /* l2 cache */
635 1, /* streams */
636 };
637
638 /* Instruction costs on PPC7450 processors. */
639 static const
640 struct processor_costs ppc7450_cost = {
641 COSTS_N_INSNS (4), /* mulsi */
642 COSTS_N_INSNS (3), /* mulsi_const */
643 COSTS_N_INSNS (3), /* mulsi_const9 */
644 COSTS_N_INSNS (4), /* muldi */
645 COSTS_N_INSNS (23), /* divsi */
646 COSTS_N_INSNS (23), /* divdi */
647 COSTS_N_INSNS (5), /* fp */
648 COSTS_N_INSNS (5), /* dmul */
649 COSTS_N_INSNS (21), /* sdiv */
650 COSTS_N_INSNS (35), /* ddiv */
651 32, /* cache line size */
652 32, /* l1 cache */
653 1024, /* l2 cache */
654 1, /* streams */
655 };
656
657 /* Instruction costs on PPC8540 processors. */
658 static const
659 struct processor_costs ppc8540_cost = {
660 COSTS_N_INSNS (4), /* mulsi */
661 COSTS_N_INSNS (4), /* mulsi_const */
662 COSTS_N_INSNS (4), /* mulsi_const9 */
663 COSTS_N_INSNS (4), /* muldi */
664 COSTS_N_INSNS (19), /* divsi */
665 COSTS_N_INSNS (19), /* divdi */
666 COSTS_N_INSNS (4), /* fp */
667 COSTS_N_INSNS (4), /* dmul */
668 COSTS_N_INSNS (29), /* sdiv */
669 COSTS_N_INSNS (29), /* ddiv */
670 32, /* cache line size */
671 32, /* l1 cache */
672 256, /* l2 cache */
673 1, /* prefetch streams /*/
674 };
675
676 /* Instruction costs on E300C2 and E300C3 cores. */
677 static const
678 struct processor_costs ppce300c2c3_cost = {
679 COSTS_N_INSNS (4), /* mulsi */
680 COSTS_N_INSNS (4), /* mulsi_const */
681 COSTS_N_INSNS (4), /* mulsi_const9 */
682 COSTS_N_INSNS (4), /* muldi */
683 COSTS_N_INSNS (19), /* divsi */
684 COSTS_N_INSNS (19), /* divdi */
685 COSTS_N_INSNS (3), /* fp */
686 COSTS_N_INSNS (4), /* dmul */
687 COSTS_N_INSNS (18), /* sdiv */
688 COSTS_N_INSNS (33), /* ddiv */
689 32,
690 16, /* l1 cache */
691 16, /* l2 cache */
692 1, /* prefetch streams /*/
693 };
694
695 /* Instruction costs on PPCE500MC processors. */
696 static const
697 struct processor_costs ppce500mc_cost = {
698 COSTS_N_INSNS (4), /* mulsi */
699 COSTS_N_INSNS (4), /* mulsi_const */
700 COSTS_N_INSNS (4), /* mulsi_const9 */
701 COSTS_N_INSNS (4), /* muldi */
702 COSTS_N_INSNS (14), /* divsi */
703 COSTS_N_INSNS (14), /* divdi */
704 COSTS_N_INSNS (8), /* fp */
705 COSTS_N_INSNS (10), /* dmul */
706 COSTS_N_INSNS (36), /* sdiv */
707 COSTS_N_INSNS (66), /* ddiv */
708 64, /* cache line size */
709 32, /* l1 cache */
710 128, /* l2 cache */
711 1, /* prefetch streams /*/
712 };
713
714 /* Instruction costs on POWER4 and POWER5 processors. */
715 static const
716 struct processor_costs power4_cost = {
717 COSTS_N_INSNS (3), /* mulsi */
718 COSTS_N_INSNS (2), /* mulsi_const */
719 COSTS_N_INSNS (2), /* mulsi_const9 */
720 COSTS_N_INSNS (4), /* muldi */
721 COSTS_N_INSNS (18), /* divsi */
722 COSTS_N_INSNS (34), /* divdi */
723 COSTS_N_INSNS (3), /* fp */
724 COSTS_N_INSNS (3), /* dmul */
725 COSTS_N_INSNS (17), /* sdiv */
726 COSTS_N_INSNS (17), /* ddiv */
727 128, /* cache line size */
728 32, /* l1 cache */
729 1024, /* l2 cache */
730 8, /* prefetch streams /*/
731 };
732
733 /* Instruction costs on POWER6 processors. */
734 static const
735 struct processor_costs power6_cost = {
736 COSTS_N_INSNS (8), /* mulsi */
737 COSTS_N_INSNS (8), /* mulsi_const */
738 COSTS_N_INSNS (8), /* mulsi_const9 */
739 COSTS_N_INSNS (8), /* muldi */
740 COSTS_N_INSNS (22), /* divsi */
741 COSTS_N_INSNS (28), /* divdi */
742 COSTS_N_INSNS (3), /* fp */
743 COSTS_N_INSNS (3), /* dmul */
744 COSTS_N_INSNS (13), /* sdiv */
745 COSTS_N_INSNS (16), /* ddiv */
746 128, /* cache line size */
747 64, /* l1 cache */
748 2048, /* l2 cache */
749 16, /* prefetch streams */
750 };
751
752 \f
753 static bool rs6000_function_ok_for_sibcall (tree, tree);
754 static const char *rs6000_invalid_within_doloop (const_rtx);
755 static rtx rs6000_generate_compare (enum rtx_code);
756 static void rs6000_emit_stack_tie (void);
757 static void rs6000_frame_related (rtx, rtx, HOST_WIDE_INT, rtx, rtx);
758 static bool spe_func_has_64bit_regs_p (void);
759 static void emit_frame_save (rtx, rtx, enum machine_mode, unsigned int,
760 int, HOST_WIDE_INT);
761 static rtx gen_frame_mem_offset (enum machine_mode, rtx, int);
762 static void rs6000_emit_allocate_stack (HOST_WIDE_INT, int, int);
763 static unsigned rs6000_hash_constant (rtx);
764 static unsigned toc_hash_function (const void *);
765 static int toc_hash_eq (const void *, const void *);
766 static bool constant_pool_expr_p (rtx);
767 static bool legitimate_small_data_p (enum machine_mode, rtx);
768 static bool legitimate_lo_sum_address_p (enum machine_mode, rtx, int);
769 static struct machine_function * rs6000_init_machine_status (void);
770 static bool rs6000_assemble_integer (rtx, unsigned int, int);
771 static bool no_global_regs_above (int, bool);
772 #ifdef HAVE_GAS_HIDDEN
773 static void rs6000_assemble_visibility (tree, int);
774 #endif
775 static int rs6000_ra_ever_killed (void);
776 static tree rs6000_handle_longcall_attribute (tree *, tree, tree, int, bool *);
777 static tree rs6000_handle_altivec_attribute (tree *, tree, tree, int, bool *);
778 static bool rs6000_ms_bitfield_layout_p (const_tree);
779 static tree rs6000_handle_struct_attribute (tree *, tree, tree, int, bool *);
780 static void rs6000_eliminate_indexed_memrefs (rtx operands[2]);
781 static const char *rs6000_mangle_type (const_tree);
782 extern const struct attribute_spec rs6000_attribute_table[];
783 static void rs6000_set_default_type_attributes (tree);
784 static rtx rs6000_savres_routine_sym (rs6000_stack_t *, bool, bool, bool);
785 static void rs6000_emit_stack_reset (rs6000_stack_t *, rtx, rtx, int, bool);
786 static rtx rs6000_make_savres_rtx (rs6000_stack_t *, rtx, int,
787 enum machine_mode, bool, bool, bool);
788 static bool rs6000_reg_live_or_pic_offset_p (int);
789 static int rs6000_savres_strategy (rs6000_stack_t *, bool, int, int);
790 static void rs6000_restore_saved_cr (rtx, int);
791 static void rs6000_output_function_prologue (FILE *, HOST_WIDE_INT);
792 static void rs6000_output_function_epilogue (FILE *, HOST_WIDE_INT);
793 static void rs6000_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT,
794 tree);
795 static rtx rs6000_emit_set_long_const (rtx, HOST_WIDE_INT, HOST_WIDE_INT);
796 static bool rs6000_return_in_memory (const_tree, const_tree);
797 static void rs6000_file_start (void);
798 #if TARGET_ELF
799 static int rs6000_elf_reloc_rw_mask (void);
800 static void rs6000_elf_asm_out_constructor (rtx, int);
801 static void rs6000_elf_asm_out_destructor (rtx, int);
802 static void rs6000_elf_end_indicate_exec_stack (void) ATTRIBUTE_UNUSED;
803 static void rs6000_elf_asm_init_sections (void);
804 static section *rs6000_elf_select_rtx_section (enum machine_mode, rtx,
805 unsigned HOST_WIDE_INT);
806 static void rs6000_elf_encode_section_info (tree, rtx, int)
807 ATTRIBUTE_UNUSED;
808 #endif
809 static bool rs6000_use_blocks_for_constant_p (enum machine_mode, const_rtx);
810 static void rs6000_alloc_sdmode_stack_slot (void);
811 static void rs6000_instantiate_decls (void);
812 #if TARGET_XCOFF
813 static void rs6000_xcoff_asm_output_anchor (rtx);
814 static void rs6000_xcoff_asm_globalize_label (FILE *, const char *);
815 static void rs6000_xcoff_asm_init_sections (void);
816 static int rs6000_xcoff_reloc_rw_mask (void);
817 static void rs6000_xcoff_asm_named_section (const char *, unsigned int, tree);
818 static section *rs6000_xcoff_select_section (tree, int,
819 unsigned HOST_WIDE_INT);
820 static void rs6000_xcoff_unique_section (tree, int);
821 static section *rs6000_xcoff_select_rtx_section
822 (enum machine_mode, rtx, unsigned HOST_WIDE_INT);
823 static const char * rs6000_xcoff_strip_name_encoding (const char *);
824 static unsigned int rs6000_xcoff_section_type_flags (tree, const char *, int);
825 static void rs6000_xcoff_file_start (void);
826 static void rs6000_xcoff_file_end (void);
827 #endif
828 static int rs6000_variable_issue (FILE *, int, rtx, int);
829 static bool rs6000_rtx_costs (rtx, int, int, int *, bool);
830 static int rs6000_adjust_cost (rtx, rtx, rtx, int);
831 static void rs6000_sched_init (FILE *, int, int);
832 static bool is_microcoded_insn (rtx);
833 static bool is_nonpipeline_insn (rtx);
834 static bool is_cracked_insn (rtx);
835 static bool is_branch_slot_insn (rtx);
836 static bool is_load_insn (rtx);
837 static rtx get_store_dest (rtx pat);
838 static bool is_store_insn (rtx);
839 static bool set_to_load_agen (rtx,rtx);
840 static bool adjacent_mem_locations (rtx,rtx);
841 static int rs6000_adjust_priority (rtx, int);
842 static int rs6000_issue_rate (void);
843 static bool rs6000_is_costly_dependence (dep_t, int, int);
844 static rtx get_next_active_insn (rtx, rtx);
845 static bool insn_terminates_group_p (rtx , enum group_termination);
846 static bool insn_must_be_first_in_group (rtx);
847 static bool insn_must_be_last_in_group (rtx);
848 static bool is_costly_group (rtx *, rtx);
849 static int force_new_group (int, FILE *, rtx *, rtx, bool *, int, int *);
850 static int redefine_groups (FILE *, int, rtx, rtx);
851 static int pad_groups (FILE *, int, rtx, rtx);
852 static void rs6000_sched_finish (FILE *, int);
853 static int rs6000_sched_reorder (FILE *, int, rtx *, int *, int);
854 static int rs6000_sched_reorder2 (FILE *, int, rtx *, int *, int);
855 static int rs6000_use_sched_lookahead (void);
856 static int rs6000_use_sched_lookahead_guard (rtx);
857 static void * rs6000_alloc_sched_context (void);
858 static void rs6000_init_sched_context (void *, bool);
859 static void rs6000_set_sched_context (void *);
860 static void rs6000_free_sched_context (void *);
861 static tree rs6000_builtin_reciprocal (unsigned int, bool, bool);
862 static tree rs6000_builtin_mask_for_load (void);
863 static tree rs6000_builtin_mul_widen_even (tree);
864 static tree rs6000_builtin_mul_widen_odd (tree);
865 static tree rs6000_builtin_conversion (enum tree_code, tree);
866 static tree rs6000_builtin_vec_perm (tree, tree *);
867
868 static void def_builtin (int, const char *, tree, int);
869 static bool rs6000_vector_alignment_reachable (const_tree, bool);
870 static void rs6000_init_builtins (void);
871 static rtx rs6000_expand_unop_builtin (enum insn_code, tree, rtx);
872 static rtx rs6000_expand_binop_builtin (enum insn_code, tree, rtx);
873 static rtx rs6000_expand_ternop_builtin (enum insn_code, tree, rtx);
874 static rtx rs6000_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
875 static void altivec_init_builtins (void);
876 static void rs6000_common_init_builtins (void);
877 static void rs6000_init_libfuncs (void);
878
879 static void paired_init_builtins (void);
880 static rtx paired_expand_builtin (tree, rtx, bool *);
881 static rtx paired_expand_lv_builtin (enum insn_code, tree, rtx);
882 static rtx paired_expand_stv_builtin (enum insn_code, tree);
883 static rtx paired_expand_predicate_builtin (enum insn_code, tree, rtx);
884
885 static void enable_mask_for_builtins (struct builtin_description *, int,
886 enum rs6000_builtins,
887 enum rs6000_builtins);
888 static tree build_opaque_vector_type (tree, int);
889 static void spe_init_builtins (void);
890 static rtx spe_expand_builtin (tree, rtx, bool *);
891 static rtx spe_expand_stv_builtin (enum insn_code, tree);
892 static rtx spe_expand_predicate_builtin (enum insn_code, tree, rtx);
893 static rtx spe_expand_evsel_builtin (enum insn_code, tree, rtx);
894 static int rs6000_emit_int_cmove (rtx, rtx, rtx, rtx);
895 static rs6000_stack_t *rs6000_stack_info (void);
896 static void debug_stack_info (rs6000_stack_t *);
897
898 static rtx altivec_expand_builtin (tree, rtx, bool *);
899 static rtx altivec_expand_ld_builtin (tree, rtx, bool *);
900 static rtx altivec_expand_st_builtin (tree, rtx, bool *);
901 static rtx altivec_expand_dst_builtin (tree, rtx, bool *);
902 static rtx altivec_expand_abs_builtin (enum insn_code, tree, rtx);
903 static rtx altivec_expand_predicate_builtin (enum insn_code,
904 const char *, tree, rtx);
905 static rtx altivec_expand_stv_builtin (enum insn_code, tree);
906 static rtx altivec_expand_vec_init_builtin (tree, tree, rtx);
907 static rtx altivec_expand_vec_set_builtin (tree);
908 static rtx altivec_expand_vec_ext_builtin (tree, rtx);
909 static int get_element_number (tree, tree);
910 static bool rs6000_handle_option (size_t, const char *, int);
911 static void rs6000_parse_tls_size_option (void);
912 static void rs6000_parse_yes_no_option (const char *, const char *, int *);
913 static int first_altivec_reg_to_save (void);
914 static unsigned int compute_vrsave_mask (void);
915 static void compute_save_world_info (rs6000_stack_t *info_ptr);
916 static void is_altivec_return_reg (rtx, void *);
917 static rtx generate_set_vrsave (rtx, rs6000_stack_t *, int);
918 int easy_vector_constant (rtx, enum machine_mode);
919 static bool rs6000_is_opaque_type (const_tree);
920 static rtx rs6000_dwarf_register_span (rtx);
921 static void rs6000_init_dwarf_reg_sizes_extra (tree);
922 static rtx rs6000_legitimize_tls_address (rtx, enum tls_model);
923 static void rs6000_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
924 static rtx rs6000_tls_get_addr (void);
925 static rtx rs6000_got_sym (void);
926 static int rs6000_tls_symbol_ref_1 (rtx *, void *);
927 static const char *rs6000_get_some_local_dynamic_name (void);
928 static int rs6000_get_some_local_dynamic_name_1 (rtx *, void *);
929 static rtx rs6000_complex_function_value (enum machine_mode);
930 static rtx rs6000_spe_function_arg (CUMULATIVE_ARGS *,
931 enum machine_mode, tree);
932 static void rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS *,
933 HOST_WIDE_INT);
934 static void rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS *,
935 tree, HOST_WIDE_INT);
936 static void rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS *,
937 HOST_WIDE_INT,
938 rtx[], int *);
939 static void rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS *,
940 const_tree, HOST_WIDE_INT,
941 rtx[], int *);
942 static rtx rs6000_darwin64_record_arg (CUMULATIVE_ARGS *, const_tree, int, bool);
943 static rtx rs6000_mixed_function_arg (enum machine_mode, tree, int);
944 static void rs6000_move_block_from_reg (int regno, rtx x, int nregs);
945 static void setup_incoming_varargs (CUMULATIVE_ARGS *,
946 enum machine_mode, tree,
947 int *, int);
948 static bool rs6000_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
949 const_tree, bool);
950 static int rs6000_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
951 tree, bool);
952 static const char *invalid_arg_for_unprototyped_fn (const_tree, const_tree, const_tree);
953 #if TARGET_MACHO
954 static void macho_branch_islands (void);
955 static int no_previous_def (tree function_name);
956 static tree get_prev_label (tree function_name);
957 static void rs6000_darwin_file_start (void);
958 #endif
959
960 static tree rs6000_build_builtin_va_list (void);
961 static void rs6000_va_start (tree, rtx);
962 static tree rs6000_gimplify_va_arg (tree, tree, gimple_seq *, gimple_seq *);
963 static bool rs6000_must_pass_in_stack (enum machine_mode, const_tree);
964 static bool rs6000_scalar_mode_supported_p (enum machine_mode);
965 static bool rs6000_vector_mode_supported_p (enum machine_mode);
966 static int get_vec_cmp_insn (enum rtx_code, enum machine_mode,
967 enum machine_mode);
968 static rtx rs6000_emit_vector_compare (enum rtx_code, rtx, rtx,
969 enum machine_mode);
970 static int get_vsel_insn (enum machine_mode);
971 static void rs6000_emit_vector_select (rtx, rtx, rtx, rtx);
972 static tree rs6000_stack_protect_fail (void);
973
974 const int INSN_NOT_AVAILABLE = -1;
975 static enum machine_mode rs6000_eh_return_filter_mode (void);
976
977 /* Hash table stuff for keeping track of TOC entries. */
978
979 struct toc_hash_struct GTY(())
980 {
981 /* `key' will satisfy CONSTANT_P; in fact, it will satisfy
982 ASM_OUTPUT_SPECIAL_POOL_ENTRY_P. */
983 rtx key;
984 enum machine_mode key_mode;
985 int labelno;
986 };
987
988 static GTY ((param_is (struct toc_hash_struct))) htab_t toc_hash_table;
989 \f
990 /* Default register names. */
991 char rs6000_reg_names[][8] =
992 {
993 "0", "1", "2", "3", "4", "5", "6", "7",
994 "8", "9", "10", "11", "12", "13", "14", "15",
995 "16", "17", "18", "19", "20", "21", "22", "23",
996 "24", "25", "26", "27", "28", "29", "30", "31",
997 "0", "1", "2", "3", "4", "5", "6", "7",
998 "8", "9", "10", "11", "12", "13", "14", "15",
999 "16", "17", "18", "19", "20", "21", "22", "23",
1000 "24", "25", "26", "27", "28", "29", "30", "31",
1001 "mq", "lr", "ctr","ap",
1002 "0", "1", "2", "3", "4", "5", "6", "7",
1003 "xer",
1004 /* AltiVec registers. */
1005 "0", "1", "2", "3", "4", "5", "6", "7",
1006 "8", "9", "10", "11", "12", "13", "14", "15",
1007 "16", "17", "18", "19", "20", "21", "22", "23",
1008 "24", "25", "26", "27", "28", "29", "30", "31",
1009 "vrsave", "vscr",
1010 /* SPE registers. */
1011 "spe_acc", "spefscr",
1012 /* Soft frame pointer. */
1013 "sfp"
1014 };
1015
1016 #ifdef TARGET_REGNAMES
1017 static const char alt_reg_names[][8] =
1018 {
1019 "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7",
1020 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
1021 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23",
1022 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31",
1023 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
1024 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",
1025 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",
1026 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",
1027 "mq", "lr", "ctr", "ap",
1028 "%cr0", "%cr1", "%cr2", "%cr3", "%cr4", "%cr5", "%cr6", "%cr7",
1029 "xer",
1030 /* AltiVec registers. */
1031 "%v0", "%v1", "%v2", "%v3", "%v4", "%v5", "%v6", "%v7",
1032 "%v8", "%v9", "%v10", "%v11", "%v12", "%v13", "%v14", "%v15",
1033 "%v16", "%v17", "%v18", "%v19", "%v20", "%v21", "%v22", "%v23",
1034 "%v24", "%v25", "%v26", "%v27", "%v28", "%v29", "%v30", "%v31",
1035 "vrsave", "vscr",
1036 /* SPE registers. */
1037 "spe_acc", "spefscr",
1038 /* Soft frame pointer. */
1039 "sfp"
1040 };
1041 #endif
1042 \f
1043 #ifndef MASK_STRICT_ALIGN
1044 #define MASK_STRICT_ALIGN 0
1045 #endif
1046 #ifndef TARGET_PROFILE_KERNEL
1047 #define TARGET_PROFILE_KERNEL 0
1048 #endif
1049
1050 /* The VRSAVE bitmask puts bit %v0 as the most significant bit. */
1051 #define ALTIVEC_REG_BIT(REGNO) (0x80000000 >> ((REGNO) - FIRST_ALTIVEC_REGNO))
1052 \f
1053 /* Initialize the GCC target structure. */
1054 #undef TARGET_ATTRIBUTE_TABLE
1055 #define TARGET_ATTRIBUTE_TABLE rs6000_attribute_table
1056 #undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
1057 #define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES rs6000_set_default_type_attributes
1058
1059 #undef TARGET_ASM_ALIGNED_DI_OP
1060 #define TARGET_ASM_ALIGNED_DI_OP DOUBLE_INT_ASM_OP
1061
1062 /* Default unaligned ops are only provided for ELF. Find the ops needed
1063 for non-ELF systems. */
1064 #ifndef OBJECT_FORMAT_ELF
1065 #if TARGET_XCOFF
1066 /* For XCOFF. rs6000_assemble_integer will handle unaligned DIs on
1067 64-bit targets. */
1068 #undef TARGET_ASM_UNALIGNED_HI_OP
1069 #define TARGET_ASM_UNALIGNED_HI_OP "\t.vbyte\t2,"
1070 #undef TARGET_ASM_UNALIGNED_SI_OP
1071 #define TARGET_ASM_UNALIGNED_SI_OP "\t.vbyte\t4,"
1072 #undef TARGET_ASM_UNALIGNED_DI_OP
1073 #define TARGET_ASM_UNALIGNED_DI_OP "\t.vbyte\t8,"
1074 #else
1075 /* For Darwin. */
1076 #undef TARGET_ASM_UNALIGNED_HI_OP
1077 #define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
1078 #undef TARGET_ASM_UNALIGNED_SI_OP
1079 #define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
1080 #undef TARGET_ASM_UNALIGNED_DI_OP
1081 #define TARGET_ASM_UNALIGNED_DI_OP "\t.quad\t"
1082 #undef TARGET_ASM_ALIGNED_DI_OP
1083 #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
1084 #endif
1085 #endif
1086
1087 /* This hook deals with fixups for relocatable code and DI-mode objects
1088 in 64-bit code. */
1089 #undef TARGET_ASM_INTEGER
1090 #define TARGET_ASM_INTEGER rs6000_assemble_integer
1091
1092 #ifdef HAVE_GAS_HIDDEN
1093 #undef TARGET_ASM_ASSEMBLE_VISIBILITY
1094 #define TARGET_ASM_ASSEMBLE_VISIBILITY rs6000_assemble_visibility
1095 #endif
1096
1097 #undef TARGET_HAVE_TLS
1098 #define TARGET_HAVE_TLS HAVE_AS_TLS
1099
1100 #undef TARGET_CANNOT_FORCE_CONST_MEM
1101 #define TARGET_CANNOT_FORCE_CONST_MEM rs6000_tls_referenced_p
1102
1103 #undef TARGET_ASM_FUNCTION_PROLOGUE
1104 #define TARGET_ASM_FUNCTION_PROLOGUE rs6000_output_function_prologue
1105 #undef TARGET_ASM_FUNCTION_EPILOGUE
1106 #define TARGET_ASM_FUNCTION_EPILOGUE rs6000_output_function_epilogue
1107
1108 #undef TARGET_SCHED_VARIABLE_ISSUE
1109 #define TARGET_SCHED_VARIABLE_ISSUE rs6000_variable_issue
1110
1111 #undef TARGET_SCHED_ISSUE_RATE
1112 #define TARGET_SCHED_ISSUE_RATE rs6000_issue_rate
1113 #undef TARGET_SCHED_ADJUST_COST
1114 #define TARGET_SCHED_ADJUST_COST rs6000_adjust_cost
1115 #undef TARGET_SCHED_ADJUST_PRIORITY
1116 #define TARGET_SCHED_ADJUST_PRIORITY rs6000_adjust_priority
1117 #undef TARGET_SCHED_IS_COSTLY_DEPENDENCE
1118 #define TARGET_SCHED_IS_COSTLY_DEPENDENCE rs6000_is_costly_dependence
1119 #undef TARGET_SCHED_INIT
1120 #define TARGET_SCHED_INIT rs6000_sched_init
1121 #undef TARGET_SCHED_FINISH
1122 #define TARGET_SCHED_FINISH rs6000_sched_finish
1123 #undef TARGET_SCHED_REORDER
1124 #define TARGET_SCHED_REORDER rs6000_sched_reorder
1125 #undef TARGET_SCHED_REORDER2
1126 #define TARGET_SCHED_REORDER2 rs6000_sched_reorder2
1127
1128 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
1129 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD rs6000_use_sched_lookahead
1130
1131 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
1132 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD rs6000_use_sched_lookahead_guard
1133
1134 #undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
1135 #define TARGET_SCHED_ALLOC_SCHED_CONTEXT rs6000_alloc_sched_context
1136 #undef TARGET_SCHED_INIT_SCHED_CONTEXT
1137 #define TARGET_SCHED_INIT_SCHED_CONTEXT rs6000_init_sched_context
1138 #undef TARGET_SCHED_SET_SCHED_CONTEXT
1139 #define TARGET_SCHED_SET_SCHED_CONTEXT rs6000_set_sched_context
1140 #undef TARGET_SCHED_FREE_SCHED_CONTEXT
1141 #define TARGET_SCHED_FREE_SCHED_CONTEXT rs6000_free_sched_context
1142
1143 #undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
1144 #define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD rs6000_builtin_mask_for_load
1145 #undef TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN
1146 #define TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN rs6000_builtin_mul_widen_even
1147 #undef TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD
1148 #define TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD rs6000_builtin_mul_widen_odd
1149 #undef TARGET_VECTORIZE_BUILTIN_CONVERSION
1150 #define TARGET_VECTORIZE_BUILTIN_CONVERSION rs6000_builtin_conversion
1151 #undef TARGET_VECTORIZE_BUILTIN_VEC_PERM
1152 #define TARGET_VECTORIZE_BUILTIN_VEC_PERM rs6000_builtin_vec_perm
1153
1154 #undef TARGET_VECTOR_ALIGNMENT_REACHABLE
1155 #define TARGET_VECTOR_ALIGNMENT_REACHABLE rs6000_vector_alignment_reachable
1156
1157 #undef TARGET_INIT_BUILTINS
1158 #define TARGET_INIT_BUILTINS rs6000_init_builtins
1159
1160 #undef TARGET_EXPAND_BUILTIN
1161 #define TARGET_EXPAND_BUILTIN rs6000_expand_builtin
1162
1163 #undef TARGET_MANGLE_TYPE
1164 #define TARGET_MANGLE_TYPE rs6000_mangle_type
1165
1166 #undef TARGET_INIT_LIBFUNCS
1167 #define TARGET_INIT_LIBFUNCS rs6000_init_libfuncs
1168
1169 #if TARGET_MACHO
1170 #undef TARGET_BINDS_LOCAL_P
1171 #define TARGET_BINDS_LOCAL_P darwin_binds_local_p
1172 #endif
1173
1174 #undef TARGET_MS_BITFIELD_LAYOUT_P
1175 #define TARGET_MS_BITFIELD_LAYOUT_P rs6000_ms_bitfield_layout_p
1176
1177 #undef TARGET_ASM_OUTPUT_MI_THUNK
1178 #define TARGET_ASM_OUTPUT_MI_THUNK rs6000_output_mi_thunk
1179
1180 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
1181 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
1182
1183 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
1184 #define TARGET_FUNCTION_OK_FOR_SIBCALL rs6000_function_ok_for_sibcall
1185
1186 #undef TARGET_INVALID_WITHIN_DOLOOP
1187 #define TARGET_INVALID_WITHIN_DOLOOP rs6000_invalid_within_doloop
1188
1189 #undef TARGET_RTX_COSTS
1190 #define TARGET_RTX_COSTS rs6000_rtx_costs
1191 #undef TARGET_ADDRESS_COST
1192 #define TARGET_ADDRESS_COST hook_int_rtx_bool_0
1193
1194 #undef TARGET_VECTOR_OPAQUE_P
1195 #define TARGET_VECTOR_OPAQUE_P rs6000_is_opaque_type
1196
1197 #undef TARGET_DWARF_REGISTER_SPAN
1198 #define TARGET_DWARF_REGISTER_SPAN rs6000_dwarf_register_span
1199
1200 #undef TARGET_INIT_DWARF_REG_SIZES_EXTRA
1201 #define TARGET_INIT_DWARF_REG_SIZES_EXTRA rs6000_init_dwarf_reg_sizes_extra
1202
1203 /* On rs6000, function arguments are promoted, as are function return
1204 values. */
1205 #undef TARGET_PROMOTE_FUNCTION_ARGS
1206 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true
1207 #undef TARGET_PROMOTE_FUNCTION_RETURN
1208 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_const_tree_true
1209
1210 #undef TARGET_RETURN_IN_MEMORY
1211 #define TARGET_RETURN_IN_MEMORY rs6000_return_in_memory
1212
1213 #undef TARGET_SETUP_INCOMING_VARARGS
1214 #define TARGET_SETUP_INCOMING_VARARGS setup_incoming_varargs
1215
1216 /* Always strict argument naming on rs6000. */
1217 #undef TARGET_STRICT_ARGUMENT_NAMING
1218 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
1219 #undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
1220 #define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
1221 #undef TARGET_SPLIT_COMPLEX_ARG
1222 #define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
1223 #undef TARGET_MUST_PASS_IN_STACK
1224 #define TARGET_MUST_PASS_IN_STACK rs6000_must_pass_in_stack
1225 #undef TARGET_PASS_BY_REFERENCE
1226 #define TARGET_PASS_BY_REFERENCE rs6000_pass_by_reference
1227 #undef TARGET_ARG_PARTIAL_BYTES
1228 #define TARGET_ARG_PARTIAL_BYTES rs6000_arg_partial_bytes
1229
1230 #undef TARGET_BUILD_BUILTIN_VA_LIST
1231 #define TARGET_BUILD_BUILTIN_VA_LIST rs6000_build_builtin_va_list
1232
1233 #undef TARGET_EXPAND_BUILTIN_VA_START
1234 #define TARGET_EXPAND_BUILTIN_VA_START rs6000_va_start
1235
1236 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
1237 #define TARGET_GIMPLIFY_VA_ARG_EXPR rs6000_gimplify_va_arg
1238
1239 #undef TARGET_EH_RETURN_FILTER_MODE
1240 #define TARGET_EH_RETURN_FILTER_MODE rs6000_eh_return_filter_mode
1241
1242 #undef TARGET_SCALAR_MODE_SUPPORTED_P
1243 #define TARGET_SCALAR_MODE_SUPPORTED_P rs6000_scalar_mode_supported_p
1244
1245 #undef TARGET_VECTOR_MODE_SUPPORTED_P
1246 #define TARGET_VECTOR_MODE_SUPPORTED_P rs6000_vector_mode_supported_p
1247
1248 #undef TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
1249 #define TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN invalid_arg_for_unprototyped_fn
1250
1251 #undef TARGET_HANDLE_OPTION
1252 #define TARGET_HANDLE_OPTION rs6000_handle_option
1253
1254 #undef TARGET_DEFAULT_TARGET_FLAGS
1255 #define TARGET_DEFAULT_TARGET_FLAGS \
1256 (TARGET_DEFAULT)
1257
1258 #undef TARGET_STACK_PROTECT_FAIL
1259 #define TARGET_STACK_PROTECT_FAIL rs6000_stack_protect_fail
1260
1261 /* MPC604EUM 3.5.2 Weak Consistency between Multiple Processors
1262 The PowerPC architecture requires only weak consistency among
1263 processors--that is, memory accesses between processors need not be
1264 sequentially consistent and memory accesses among processors can occur
1265 in any order. The ability to order memory accesses weakly provides
1266 opportunities for more efficient use of the system bus. Unless a
1267 dependency exists, the 604e allows read operations to precede store
1268 operations. */
1269 #undef TARGET_RELAXED_ORDERING
1270 #define TARGET_RELAXED_ORDERING true
1271
1272 #ifdef HAVE_AS_TLS
1273 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
1274 #define TARGET_ASM_OUTPUT_DWARF_DTPREL rs6000_output_dwarf_dtprel
1275 #endif
1276
1277 /* Use a 32-bit anchor range. This leads to sequences like:
1278
1279 addis tmp,anchor,high
1280 add dest,tmp,low
1281
1282 where tmp itself acts as an anchor, and can be shared between
1283 accesses to the same 64k page. */
1284 #undef TARGET_MIN_ANCHOR_OFFSET
1285 #define TARGET_MIN_ANCHOR_OFFSET -0x7fffffff - 1
1286 #undef TARGET_MAX_ANCHOR_OFFSET
1287 #define TARGET_MAX_ANCHOR_OFFSET 0x7fffffff
1288 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
1289 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P rs6000_use_blocks_for_constant_p
1290
1291 #undef TARGET_BUILTIN_RECIPROCAL
1292 #define TARGET_BUILTIN_RECIPROCAL rs6000_builtin_reciprocal
1293
1294 #undef TARGET_EXPAND_TO_RTL_HOOK
1295 #define TARGET_EXPAND_TO_RTL_HOOK rs6000_alloc_sdmode_stack_slot
1296
1297 #undef TARGET_INSTANTIATE_DECLS
1298 #define TARGET_INSTANTIATE_DECLS rs6000_instantiate_decls
1299
1300 struct gcc_target targetm = TARGET_INITIALIZER;
1301 \f
1302
1303 /* Value is 1 if hard register REGNO can hold a value of machine-mode
1304 MODE. */
1305 static int
1306 rs6000_hard_regno_mode_ok (int regno, enum machine_mode mode)
1307 {
1308 /* The GPRs can hold any mode, but values bigger than one register
1309 cannot go past R31. */
1310 if (INT_REGNO_P (regno))
1311 return INT_REGNO_P (regno + HARD_REGNO_NREGS (regno, mode) - 1);
1312
1313 /* The float registers can only hold floating modes and DImode.
1314 This excludes the 32-bit decimal float mode for now. */
1315 if (FP_REGNO_P (regno))
1316 return
1317 ((SCALAR_FLOAT_MODE_P (mode)
1318 && (mode != TDmode || (regno % 2) == 0)
1319 && FP_REGNO_P (regno + HARD_REGNO_NREGS (regno, mode) - 1))
1320 || (GET_MODE_CLASS (mode) == MODE_INT
1321 && GET_MODE_SIZE (mode) == UNITS_PER_FP_WORD)
1322 || (PAIRED_SIMD_REGNO_P (regno) && TARGET_PAIRED_FLOAT
1323 && PAIRED_VECTOR_MODE (mode)));
1324
1325 /* The CR register can only hold CC modes. */
1326 if (CR_REGNO_P (regno))
1327 return GET_MODE_CLASS (mode) == MODE_CC;
1328
1329 if (XER_REGNO_P (regno))
1330 return mode == PSImode;
1331
1332 /* AltiVec only in AldyVec registers. */
1333 if (ALTIVEC_REGNO_P (regno))
1334 return ALTIVEC_VECTOR_MODE (mode);
1335
1336 /* ...but GPRs can hold SIMD data on the SPE in one register. */
1337 if (SPE_SIMD_REGNO_P (regno) && TARGET_SPE && SPE_VECTOR_MODE (mode))
1338 return 1;
1339
1340 /* We cannot put TImode anywhere except general register and it must be
1341 able to fit within the register set. */
1342
1343 return GET_MODE_SIZE (mode) <= UNITS_PER_WORD;
1344 }
1345
1346 /* Initialize rs6000_hard_regno_mode_ok_p table. */
1347 static void
1348 rs6000_init_hard_regno_mode_ok (void)
1349 {
1350 int r, m;
1351
1352 for (r = 0; r < FIRST_PSEUDO_REGISTER; ++r)
1353 for (m = 0; m < NUM_MACHINE_MODES; ++m)
1354 if (rs6000_hard_regno_mode_ok (r, m))
1355 rs6000_hard_regno_mode_ok_p[m][r] = true;
1356 }
1357
1358 #if TARGET_MACHO
1359 /* The Darwin version of SUBTARGET_OVERRIDE_OPTIONS. */
1360
1361 static void
1362 darwin_rs6000_override_options (void)
1363 {
1364 /* The Darwin ABI always includes AltiVec, can't be (validly) turned
1365 off. */
1366 rs6000_altivec_abi = 1;
1367 TARGET_ALTIVEC_VRSAVE = 1;
1368 if (DEFAULT_ABI == ABI_DARWIN)
1369 {
1370 if (MACHO_DYNAMIC_NO_PIC_P)
1371 {
1372 if (flag_pic)
1373 warning (0, "-mdynamic-no-pic overrides -fpic or -fPIC");
1374 flag_pic = 0;
1375 }
1376 else if (flag_pic == 1)
1377 {
1378 flag_pic = 2;
1379 }
1380 }
1381 if (TARGET_64BIT && ! TARGET_POWERPC64)
1382 {
1383 target_flags |= MASK_POWERPC64;
1384 warning (0, "-m64 requires PowerPC64 architecture, enabling");
1385 }
1386 if (flag_mkernel)
1387 {
1388 rs6000_default_long_calls = 1;
1389 target_flags |= MASK_SOFT_FLOAT;
1390 }
1391
1392 /* Make -m64 imply -maltivec. Darwin's 64-bit ABI includes
1393 Altivec. */
1394 if (!flag_mkernel && !flag_apple_kext
1395 && TARGET_64BIT
1396 && ! (target_flags_explicit & MASK_ALTIVEC))
1397 target_flags |= MASK_ALTIVEC;
1398
1399 /* Unless the user (not the configurer) has explicitly overridden
1400 it with -mcpu=G3 or -mno-altivec, then 10.5+ targets default to
1401 G4 unless targetting the kernel. */
1402 if (!flag_mkernel
1403 && !flag_apple_kext
1404 && strverscmp (darwin_macosx_version_min, "10.5") >= 0
1405 && ! (target_flags_explicit & MASK_ALTIVEC)
1406 && ! rs6000_select[1].string)
1407 {
1408 target_flags |= MASK_ALTIVEC;
1409 }
1410 }
1411 #endif
1412
1413 /* If not otherwise specified by a target, make 'long double' equivalent to
1414 'double'. */
1415
1416 #ifndef RS6000_DEFAULT_LONG_DOUBLE_SIZE
1417 #define RS6000_DEFAULT_LONG_DOUBLE_SIZE 64
1418 #endif
1419
1420 /* Override command line options. Mostly we process the processor
1421 type and sometimes adjust other TARGET_ options. */
1422
1423 void
1424 rs6000_override_options (const char *default_cpu)
1425 {
1426 size_t i, j;
1427 struct rs6000_cpu_select *ptr;
1428 int set_masks;
1429
1430 /* Simplifications for entries below. */
1431
1432 enum {
1433 POWERPC_BASE_MASK = MASK_POWERPC | MASK_NEW_MNEMONICS,
1434 POWERPC_7400_MASK = POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_ALTIVEC
1435 };
1436
1437 /* This table occasionally claims that a processor does not support
1438 a particular feature even though it does, but the feature is slower
1439 than the alternative. Thus, it shouldn't be relied on as a
1440 complete description of the processor's support.
1441
1442 Please keep this list in order, and don't forget to update the
1443 documentation in invoke.texi when adding a new processor or
1444 flag. */
1445 static struct ptt
1446 {
1447 const char *const name; /* Canonical processor name. */
1448 const enum processor_type processor; /* Processor type enum value. */
1449 const int target_enable; /* Target flags to enable. */
1450 } const processor_target_table[]
1451 = {{"401", PROCESSOR_PPC403, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1452 {"403", PROCESSOR_PPC403,
1453 POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_STRICT_ALIGN},
1454 {"405", PROCESSOR_PPC405,
1455 POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_MULHW | MASK_DLMZB},
1456 {"405fp", PROCESSOR_PPC405,
1457 POWERPC_BASE_MASK | MASK_MULHW | MASK_DLMZB},
1458 {"440", PROCESSOR_PPC440,
1459 POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_MULHW | MASK_DLMZB},
1460 {"440fp", PROCESSOR_PPC440,
1461 POWERPC_BASE_MASK | MASK_MULHW | MASK_DLMZB},
1462 {"464", PROCESSOR_PPC440,
1463 POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_MULHW | MASK_DLMZB},
1464 {"464fp", PROCESSOR_PPC440,
1465 POWERPC_BASE_MASK | MASK_MULHW | MASK_DLMZB},
1466 {"505", PROCESSOR_MPCCORE, POWERPC_BASE_MASK},
1467 {"601", PROCESSOR_PPC601,
1468 MASK_POWER | POWERPC_BASE_MASK | MASK_MULTIPLE | MASK_STRING},
1469 {"602", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1470 {"603", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1471 {"603e", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1472 {"604", PROCESSOR_PPC604, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1473 {"604e", PROCESSOR_PPC604e, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1474 {"620", PROCESSOR_PPC620,
1475 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
1476 {"630", PROCESSOR_PPC630,
1477 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
1478 {"740", PROCESSOR_PPC750, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1479 {"7400", PROCESSOR_PPC7400, POWERPC_7400_MASK},
1480 {"7450", PROCESSOR_PPC7450, POWERPC_7400_MASK},
1481 {"750", PROCESSOR_PPC750, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1482 {"801", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1483 {"821", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1484 {"823", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1485 {"8540", PROCESSOR_PPC8540, POWERPC_BASE_MASK | MASK_STRICT_ALIGN},
1486 /* 8548 has a dummy entry for now. */
1487 {"8548", PROCESSOR_PPC8540, POWERPC_BASE_MASK | MASK_STRICT_ALIGN},
1488 {"e300c2", PROCESSOR_PPCE300C2, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1489 {"e300c3", PROCESSOR_PPCE300C3, POWERPC_BASE_MASK},
1490 {"e500mc", PROCESSOR_PPCE500MC, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1491 {"860", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1492 {"970", PROCESSOR_POWER4,
1493 POWERPC_7400_MASK | MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64},
1494 {"cell", PROCESSOR_CELL,
1495 POWERPC_7400_MASK | MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64},
1496 {"common", PROCESSOR_COMMON, MASK_NEW_MNEMONICS},
1497 {"ec603e", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
1498 {"G3", PROCESSOR_PPC750, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
1499 {"G4", PROCESSOR_PPC7450, POWERPC_7400_MASK},
1500 {"G5", PROCESSOR_POWER4,
1501 POWERPC_7400_MASK | MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64},
1502 {"power", PROCESSOR_POWER, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1503 {"power2", PROCESSOR_POWER,
1504 MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING},
1505 {"power3", PROCESSOR_PPC630,
1506 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
1507 {"power4", PROCESSOR_POWER4,
1508 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1509 | MASK_MFCRF},
1510 {"power5", PROCESSOR_POWER5,
1511 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1512 | MASK_MFCRF | MASK_POPCNTB},
1513 {"power5+", PROCESSOR_POWER5,
1514 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1515 | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND},
1516 {"power6", PROCESSOR_POWER6,
1517 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1518 | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_DFP},
1519 {"power6x", PROCESSOR_POWER6,
1520 POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
1521 | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_DFP
1522 | MASK_MFPGPR},
1523 {"power7", PROCESSOR_POWER5,
1524 POWERPC_7400_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_MFCRF
1525 | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_DFP},
1526 {"powerpc", PROCESSOR_POWERPC, POWERPC_BASE_MASK},
1527 {"powerpc64", PROCESSOR_POWERPC64,
1528 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
1529 {"rios", PROCESSOR_RIOS1, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1530 {"rios1", PROCESSOR_RIOS1, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1531 {"rios2", PROCESSOR_RIOS2,
1532 MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING},
1533 {"rsc", PROCESSOR_PPC601, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1534 {"rsc1", PROCESSOR_PPC601, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
1535 {"rs64", PROCESSOR_RS64A,
1536 POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64}
1537 };
1538
1539 const size_t ptt_size = ARRAY_SIZE (processor_target_table);
1540
1541 /* Some OSs don't support saving the high part of 64-bit registers on
1542 context switch. Other OSs don't support saving Altivec registers.
1543 On those OSs, we don't touch the MASK_POWERPC64 or MASK_ALTIVEC
1544 settings; if the user wants either, the user must explicitly specify
1545 them and we won't interfere with the user's specification. */
1546
1547 enum {
1548 POWER_MASKS = MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING,
1549 POWERPC_MASKS = (POWERPC_BASE_MASK | MASK_PPC_GPOPT | MASK_STRICT_ALIGN
1550 | MASK_PPC_GFXOPT | MASK_POWERPC64 | MASK_ALTIVEC
1551 | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND | MASK_MULHW
1552 | MASK_DLMZB | MASK_CMPB | MASK_MFPGPR | MASK_DFP)
1553 };
1554
1555 set_masks = POWER_MASKS | POWERPC_MASKS | MASK_SOFT_FLOAT;
1556 #ifdef OS_MISSING_POWERPC64
1557 if (OS_MISSING_POWERPC64)
1558 set_masks &= ~MASK_POWERPC64;
1559 #endif
1560 #ifdef OS_MISSING_ALTIVEC
1561 if (OS_MISSING_ALTIVEC)
1562 set_masks &= ~MASK_ALTIVEC;
1563 #endif
1564
1565 /* Don't override by the processor default if given explicitly. */
1566 set_masks &= ~target_flags_explicit;
1567
1568 /* Identify the processor type. */
1569 rs6000_select[0].string = default_cpu;
1570 rs6000_cpu = TARGET_POWERPC64 ? PROCESSOR_DEFAULT64 : PROCESSOR_DEFAULT;
1571
1572 for (i = 0; i < ARRAY_SIZE (rs6000_select); i++)
1573 {
1574 ptr = &rs6000_select[i];
1575 if (ptr->string != (char *)0 && ptr->string[0] != '\0')
1576 {
1577 for (j = 0; j < ptt_size; j++)
1578 if (! strcmp (ptr->string, processor_target_table[j].name))
1579 {
1580 if (ptr->set_tune_p)
1581 rs6000_cpu = processor_target_table[j].processor;
1582
1583 if (ptr->set_arch_p)
1584 {
1585 target_flags &= ~set_masks;
1586 target_flags |= (processor_target_table[j].target_enable
1587 & set_masks);
1588 }
1589 break;
1590 }
1591
1592 if (j == ptt_size)
1593 error ("bad value (%s) for %s switch", ptr->string, ptr->name);
1594 }
1595 }
1596
1597 if ((TARGET_E500 || rs6000_cpu == PROCESSOR_PPCE500MC)
1598 && !rs6000_explicit_options.isel)
1599 rs6000_isel = 1;
1600
1601 if (rs6000_cpu == PROCESSOR_PPCE300C2 || rs6000_cpu == PROCESSOR_PPCE300C3
1602 || rs6000_cpu == PROCESSOR_PPCE500MC)
1603 {
1604 if (TARGET_ALTIVEC)
1605 error ("AltiVec not supported in this target");
1606 if (TARGET_SPE)
1607 error ("Spe not supported in this target");
1608 }
1609
1610 /* Disable cell micro code if we are optimizing for the cell
1611 and not optimizing for size. */
1612 if (rs6000_gen_cell_microcode == -1)
1613 rs6000_gen_cell_microcode = !(rs6000_cpu == PROCESSOR_CELL
1614 && !optimize_size);
1615
1616 /* If we are optimizing big endian systems for space, use the load/store
1617 multiple and string instructions unless we are not generating
1618 Cell microcode. */
1619 if (BYTES_BIG_ENDIAN && optimize_size && !rs6000_gen_cell_microcode)
1620 target_flags |= ~target_flags_explicit & (MASK_MULTIPLE | MASK_STRING);
1621
1622 /* Don't allow -mmultiple or -mstring on little endian systems
1623 unless the cpu is a 750, because the hardware doesn't support the
1624 instructions used in little endian mode, and causes an alignment
1625 trap. The 750 does not cause an alignment trap (except when the
1626 target is unaligned). */
1627
1628 if (!BYTES_BIG_ENDIAN && rs6000_cpu != PROCESSOR_PPC750)
1629 {
1630 if (TARGET_MULTIPLE)
1631 {
1632 target_flags &= ~MASK_MULTIPLE;
1633 if ((target_flags_explicit & MASK_MULTIPLE) != 0)
1634 warning (0, "-mmultiple is not supported on little endian systems");
1635 }
1636
1637 if (TARGET_STRING)
1638 {
1639 target_flags &= ~MASK_STRING;
1640 if ((target_flags_explicit & MASK_STRING) != 0)
1641 warning (0, "-mstring is not supported on little endian systems");
1642 }
1643 }
1644
1645 /* Set debug flags */
1646 if (rs6000_debug_name)
1647 {
1648 if (! strcmp (rs6000_debug_name, "all"))
1649 rs6000_debug_stack = rs6000_debug_arg = 1;
1650 else if (! strcmp (rs6000_debug_name, "stack"))
1651 rs6000_debug_stack = 1;
1652 else if (! strcmp (rs6000_debug_name, "arg"))
1653 rs6000_debug_arg = 1;
1654 else
1655 error ("unknown -mdebug-%s switch", rs6000_debug_name);
1656 }
1657
1658 if (rs6000_traceback_name)
1659 {
1660 if (! strncmp (rs6000_traceback_name, "full", 4))
1661 rs6000_traceback = traceback_full;
1662 else if (! strncmp (rs6000_traceback_name, "part", 4))
1663 rs6000_traceback = traceback_part;
1664 else if (! strncmp (rs6000_traceback_name, "no", 2))
1665 rs6000_traceback = traceback_none;
1666 else
1667 error ("unknown -mtraceback arg %qs; expecting %<full%>, %<partial%> or %<none%>",
1668 rs6000_traceback_name);
1669 }
1670
1671 if (!rs6000_explicit_options.long_double)
1672 rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;
1673
1674 #ifndef POWERPC_LINUX
1675 if (!rs6000_explicit_options.ieee)
1676 rs6000_ieeequad = 1;
1677 #endif
1678
1679 /* Enable Altivec ABI for AIX -maltivec. */
1680 if (TARGET_XCOFF && TARGET_ALTIVEC)
1681 rs6000_altivec_abi = 1;
1682
1683 /* The AltiVec ABI is the default for PowerPC-64 GNU/Linux. For
1684 PowerPC-32 GNU/Linux, -maltivec implies the AltiVec ABI. It can
1685 be explicitly overridden in either case. */
1686 if (TARGET_ELF)
1687 {
1688 if (!rs6000_explicit_options.altivec_abi
1689 && (TARGET_64BIT || TARGET_ALTIVEC))
1690 rs6000_altivec_abi = 1;
1691
1692 /* Enable VRSAVE for AltiVec ABI, unless explicitly overridden. */
1693 if (!rs6000_explicit_options.vrsave)
1694 TARGET_ALTIVEC_VRSAVE = rs6000_altivec_abi;
1695 }
1696
1697 /* Set the Darwin64 ABI as default for 64-bit Darwin. */
1698 if (DEFAULT_ABI == ABI_DARWIN && TARGET_64BIT)
1699 {
1700 rs6000_darwin64_abi = 1;
1701 #if TARGET_MACHO
1702 darwin_one_byte_bool = 1;
1703 #endif
1704 /* Default to natural alignment, for better performance. */
1705 rs6000_alignment_flags = MASK_ALIGN_NATURAL;
1706 }
1707
1708 /* Place FP constants in the constant pool instead of TOC
1709 if section anchors enabled. */
1710 if (flag_section_anchors)
1711 TARGET_NO_FP_IN_TOC = 1;
1712
1713 /* Handle -mtls-size option. */
1714 rs6000_parse_tls_size_option ();
1715
1716 #ifdef SUBTARGET_OVERRIDE_OPTIONS
1717 SUBTARGET_OVERRIDE_OPTIONS;
1718 #endif
1719 #ifdef SUBSUBTARGET_OVERRIDE_OPTIONS
1720 SUBSUBTARGET_OVERRIDE_OPTIONS;
1721 #endif
1722 #ifdef SUB3TARGET_OVERRIDE_OPTIONS
1723 SUB3TARGET_OVERRIDE_OPTIONS;
1724 #endif
1725
1726 if (TARGET_E500 || rs6000_cpu == PROCESSOR_PPCE500MC)
1727 {
1728 /* The e500 and e500mc do not have string instructions, and we set
1729 MASK_STRING above when optimizing for size. */
1730 if ((target_flags & MASK_STRING) != 0)
1731 target_flags = target_flags & ~MASK_STRING;
1732 }
1733 else if (rs6000_select[1].string != NULL)
1734 {
1735 /* For the powerpc-eabispe configuration, we set all these by
1736 default, so let's unset them if we manually set another
1737 CPU that is not the E500. */
1738 if (!rs6000_explicit_options.spe_abi)
1739 rs6000_spe_abi = 0;
1740 if (!rs6000_explicit_options.spe)
1741 rs6000_spe = 0;
1742 if (!rs6000_explicit_options.float_gprs)
1743 rs6000_float_gprs = 0;
1744 if (!rs6000_explicit_options.isel)
1745 rs6000_isel = 0;
1746 }
1747
1748 /* Detect invalid option combinations with E500. */
1749 CHECK_E500_OPTIONS;
1750
1751 rs6000_always_hint = (rs6000_cpu != PROCESSOR_POWER4
1752 && rs6000_cpu != PROCESSOR_POWER5
1753 && rs6000_cpu != PROCESSOR_POWER6
1754 && rs6000_cpu != PROCESSOR_CELL);
1755 rs6000_sched_groups = (rs6000_cpu == PROCESSOR_POWER4
1756 || rs6000_cpu == PROCESSOR_POWER5);
1757 rs6000_align_branch_targets = (rs6000_cpu == PROCESSOR_POWER4
1758 || rs6000_cpu == PROCESSOR_POWER5
1759 || rs6000_cpu == PROCESSOR_POWER6);
1760
1761 rs6000_sched_restricted_insns_priority
1762 = (rs6000_sched_groups ? 1 : 0);
1763
1764 /* Handle -msched-costly-dep option. */
1765 rs6000_sched_costly_dep
1766 = (rs6000_sched_groups ? store_to_load_dep_costly : no_dep_costly);
1767
1768 if (rs6000_sched_costly_dep_str)
1769 {
1770 if (! strcmp (rs6000_sched_costly_dep_str, "no"))
1771 rs6000_sched_costly_dep = no_dep_costly;
1772 else if (! strcmp (rs6000_sched_costly_dep_str, "all"))
1773 rs6000_sched_costly_dep = all_deps_costly;
1774 else if (! strcmp (rs6000_sched_costly_dep_str, "true_store_to_load"))
1775 rs6000_sched_costly_dep = true_store_to_load_dep_costly;
1776 else if (! strcmp (rs6000_sched_costly_dep_str, "store_to_load"))
1777 rs6000_sched_costly_dep = store_to_load_dep_costly;
1778 else
1779 rs6000_sched_costly_dep = atoi (rs6000_sched_costly_dep_str);
1780 }
1781
1782 /* Handle -minsert-sched-nops option. */
1783 rs6000_sched_insert_nops
1784 = (rs6000_sched_groups ? sched_finish_regroup_exact : sched_finish_none);
1785
1786 if (rs6000_sched_insert_nops_str)
1787 {
1788 if (! strcmp (rs6000_sched_insert_nops_str, "no"))
1789 rs6000_sched_insert_nops = sched_finish_none;
1790 else if (! strcmp (rs6000_sched_insert_nops_str, "pad"))
1791 rs6000_sched_insert_nops = sched_finish_pad_groups;
1792 else if (! strcmp (rs6000_sched_insert_nops_str, "regroup_exact"))
1793 rs6000_sched_insert_nops = sched_finish_regroup_exact;
1794 else
1795 rs6000_sched_insert_nops = atoi (rs6000_sched_insert_nops_str);
1796 }
1797
1798 #ifdef TARGET_REGNAMES
1799 /* If the user desires alternate register names, copy in the
1800 alternate names now. */
1801 if (TARGET_REGNAMES)
1802 memcpy (rs6000_reg_names, alt_reg_names, sizeof (rs6000_reg_names));
1803 #endif
1804
1805 /* Set aix_struct_return last, after the ABI is determined.
1806 If -maix-struct-return or -msvr4-struct-return was explicitly
1807 used, don't override with the ABI default. */
1808 if (!rs6000_explicit_options.aix_struct_ret)
1809 aix_struct_return = (DEFAULT_ABI != ABI_V4 || DRAFT_V4_STRUCT_RET);
1810
1811 if (TARGET_LONG_DOUBLE_128 && !TARGET_IEEEQUAD)
1812 REAL_MODE_FORMAT (TFmode) = &ibm_extended_format;
1813
1814 if (TARGET_TOC)
1815 ASM_GENERATE_INTERNAL_LABEL (toc_label_name, "LCTOC", 1);
1816
1817 /* We can only guarantee the availability of DI pseudo-ops when
1818 assembling for 64-bit targets. */
1819 if (!TARGET_64BIT)
1820 {
1821 targetm.asm_out.aligned_op.di = NULL;
1822 targetm.asm_out.unaligned_op.di = NULL;
1823 }
1824
1825 /* Set branch target alignment, if not optimizing for size. */
1826 if (!optimize_size)
1827 {
1828 /* Cell wants to be aligned 8byte for dual issue. */
1829 if (rs6000_cpu == PROCESSOR_CELL)
1830 {
1831 if (align_functions <= 0)
1832 align_functions = 8;
1833 if (align_jumps <= 0)
1834 align_jumps = 8;
1835 if (align_loops <= 0)
1836 align_loops = 8;
1837 }
1838 if (rs6000_align_branch_targets)
1839 {
1840 if (align_functions <= 0)
1841 align_functions = 16;
1842 if (align_jumps <= 0)
1843 align_jumps = 16;
1844 if (align_loops <= 0)
1845 align_loops = 16;
1846 }
1847 if (align_jumps_max_skip <= 0)
1848 align_jumps_max_skip = 15;
1849 if (align_loops_max_skip <= 0)
1850 align_loops_max_skip = 15;
1851 }
1852
1853 /* Arrange to save and restore machine status around nested functions. */
1854 init_machine_status = rs6000_init_machine_status;
1855
1856 /* We should always be splitting complex arguments, but we can't break
1857 Linux and Darwin ABIs at the moment. For now, only AIX is fixed. */
1858 if (DEFAULT_ABI != ABI_AIX)
1859 targetm.calls.split_complex_arg = NULL;
1860
1861 /* Initialize rs6000_cost with the appropriate target costs. */
1862 if (optimize_size)
1863 rs6000_cost = TARGET_POWERPC64 ? &size64_cost : &size32_cost;
1864 else
1865 switch (rs6000_cpu)
1866 {
1867 case PROCESSOR_RIOS1:
1868 rs6000_cost = &rios1_cost;
1869 break;
1870
1871 case PROCESSOR_RIOS2:
1872 rs6000_cost = &rios2_cost;
1873 break;
1874
1875 case PROCESSOR_RS64A:
1876 rs6000_cost = &rs64a_cost;
1877 break;
1878
1879 case PROCESSOR_MPCCORE:
1880 rs6000_cost = &mpccore_cost;
1881 break;
1882
1883 case PROCESSOR_PPC403:
1884 rs6000_cost = &ppc403_cost;
1885 break;
1886
1887 case PROCESSOR_PPC405:
1888 rs6000_cost = &ppc405_cost;
1889 break;
1890
1891 case PROCESSOR_PPC440:
1892 rs6000_cost = &ppc440_cost;
1893 break;
1894
1895 case PROCESSOR_PPC601:
1896 rs6000_cost = &ppc601_cost;
1897 break;
1898
1899 case PROCESSOR_PPC603:
1900 rs6000_cost = &ppc603_cost;
1901 break;
1902
1903 case PROCESSOR_PPC604:
1904 rs6000_cost = &ppc604_cost;
1905 break;
1906
1907 case PROCESSOR_PPC604e:
1908 rs6000_cost = &ppc604e_cost;
1909 break;
1910
1911 case PROCESSOR_PPC620:
1912 rs6000_cost = &ppc620_cost;
1913 break;
1914
1915 case PROCESSOR_PPC630:
1916 rs6000_cost = &ppc630_cost;
1917 break;
1918
1919 case PROCESSOR_CELL:
1920 rs6000_cost = &ppccell_cost;
1921 break;
1922
1923 case PROCESSOR_PPC750:
1924 case PROCESSOR_PPC7400:
1925 rs6000_cost = &ppc750_cost;
1926 break;
1927
1928 case PROCESSOR_PPC7450:
1929 rs6000_cost = &ppc7450_cost;
1930 break;
1931
1932 case PROCESSOR_PPC8540:
1933 rs6000_cost = &ppc8540_cost;
1934 break;
1935
1936 case PROCESSOR_PPCE300C2:
1937 case PROCESSOR_PPCE300C3:
1938 rs6000_cost = &ppce300c2c3_cost;
1939 break;
1940
1941 case PROCESSOR_PPCE500MC:
1942 rs6000_cost = &ppce500mc_cost;
1943 break;
1944
1945 case PROCESSOR_POWER4:
1946 case PROCESSOR_POWER5:
1947 rs6000_cost = &power4_cost;
1948 break;
1949
1950 case PROCESSOR_POWER6:
1951 rs6000_cost = &power6_cost;
1952 break;
1953
1954 default:
1955 gcc_unreachable ();
1956 }
1957
1958 if (!PARAM_SET_P (PARAM_SIMULTANEOUS_PREFETCHES))
1959 set_param_value ("simultaneous-prefetches",
1960 rs6000_cost->simultaneous_prefetches);
1961 if (!PARAM_SET_P (PARAM_L1_CACHE_SIZE))
1962 set_param_value ("l1-cache-size", rs6000_cost->l1_cache_size);
1963 if (!PARAM_SET_P (PARAM_L1_CACHE_LINE_SIZE))
1964 set_param_value ("l1-cache-line-size", rs6000_cost->cache_line_size);
1965 if (!PARAM_SET_P (PARAM_L2_CACHE_SIZE))
1966 set_param_value ("l2-cache-size", rs6000_cost->l2_cache_size);
1967
1968 /* If using typedef char *va_list, signal that __builtin_va_start (&ap, 0)
1969 can be optimized to ap = __builtin_next_arg (0). */
1970 if (DEFAULT_ABI != ABI_V4)
1971 targetm.expand_builtin_va_start = NULL;
1972
1973 /* Set up single/double float flags.
1974 If TARGET_HARD_FLOAT is set, but neither single or double is set,
1975 then set both flags. */
1976 if (TARGET_HARD_FLOAT && TARGET_FPRS
1977 && rs6000_single_float == 0 && rs6000_double_float == 0)
1978 rs6000_single_float = rs6000_double_float = 1;
1979
1980 /* Reset single and double FP flags if target is E500. */
1981 if (TARGET_E500)
1982 {
1983 rs6000_single_float = rs6000_double_float = 0;
1984 if (TARGET_E500_SINGLE)
1985 rs6000_single_float = 1;
1986 if (TARGET_E500_DOUBLE)
1987 rs6000_single_float = rs6000_double_float = 1;
1988 }
1989
1990 rs6000_init_hard_regno_mode_ok ();
1991 }
1992
1993 /* Implement targetm.vectorize.builtin_mask_for_load. */
1994 static tree
1995 rs6000_builtin_mask_for_load (void)
1996 {
1997 if (TARGET_ALTIVEC)
1998 return altivec_builtin_mask_for_load;
1999 else
2000 return 0;
2001 }
2002
2003 /* Implement targetm.vectorize.builtin_conversion.
2004 Returns a decl of a function that implements conversion of an integer vector
2005 into a floating-point vector, or vice-versa. TYPE is the type of the integer
2006 side of the conversion.
2007 Return NULL_TREE if it is not available. */
2008 static tree
2009 rs6000_builtin_conversion (enum tree_code code, tree type)
2010 {
2011 if (!TARGET_ALTIVEC)
2012 return NULL_TREE;
2013
2014 switch (code)
2015 {
2016 case FIX_TRUNC_EXPR:
2017 switch (TYPE_MODE (type))
2018 {
2019 case V4SImode:
2020 return TYPE_UNSIGNED (type)
2021 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VCTUXS]
2022 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VCTSXS];
2023 default:
2024 return NULL_TREE;
2025 }
2026
2027 case FLOAT_EXPR:
2028 switch (TYPE_MODE (type))
2029 {
2030 case V4SImode:
2031 return TYPE_UNSIGNED (type)
2032 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VCFUX]
2033 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VCFSX];
2034 default:
2035 return NULL_TREE;
2036 }
2037
2038 default:
2039 return NULL_TREE;
2040 }
2041 }
2042
2043 /* Implement targetm.vectorize.builtin_mul_widen_even. */
2044 static tree
2045 rs6000_builtin_mul_widen_even (tree type)
2046 {
2047 if (!TARGET_ALTIVEC)
2048 return NULL_TREE;
2049
2050 switch (TYPE_MODE (type))
2051 {
2052 case V8HImode:
2053 return TYPE_UNSIGNED (type)
2054 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULEUH]
2055 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULESH];
2056
2057 case V16QImode:
2058 return TYPE_UNSIGNED (type)
2059 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULEUB]
2060 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULESB];
2061 default:
2062 return NULL_TREE;
2063 }
2064 }
2065
2066 /* Implement targetm.vectorize.builtin_mul_widen_odd. */
2067 static tree
2068 rs6000_builtin_mul_widen_odd (tree type)
2069 {
2070 if (!TARGET_ALTIVEC)
2071 return NULL_TREE;
2072
2073 switch (TYPE_MODE (type))
2074 {
2075 case V8HImode:
2076 return TYPE_UNSIGNED (type)
2077 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOUH]
2078 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOSH];
2079
2080 case V16QImode:
2081 return TYPE_UNSIGNED (type)
2082 ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOUB]
2083 : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOSB];
2084 default:
2085 return NULL_TREE;
2086 }
2087 }
2088
2089
2090 /* Return true iff, data reference of TYPE can reach vector alignment (16)
2091 after applying N number of iterations. This routine does not determine
2092 how may iterations are required to reach desired alignment. */
2093
2094 static bool
2095 rs6000_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED, bool is_packed)
2096 {
2097 if (is_packed)
2098 return false;
2099
2100 if (TARGET_32BIT)
2101 {
2102 if (rs6000_alignment_flags == MASK_ALIGN_NATURAL)
2103 return true;
2104
2105 if (rs6000_alignment_flags == MASK_ALIGN_POWER)
2106 return true;
2107
2108 return false;
2109 }
2110 else
2111 {
2112 if (TARGET_MACHO)
2113 return false;
2114
2115 /* Assuming that all other types are naturally aligned. CHECKME! */
2116 return true;
2117 }
2118 }
2119
2120 /* Implement targetm.vectorize.builtin_vec_perm. */
2121 tree
2122 rs6000_builtin_vec_perm (tree type, tree *mask_element_type)
2123 {
2124 tree d;
2125
2126 *mask_element_type = unsigned_char_type_node;
2127
2128 switch (TYPE_MODE (type))
2129 {
2130 case V16QImode:
2131 d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_16QI];
2132 break;
2133
2134 case V8HImode:
2135 d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_8HI];
2136 break;
2137
2138 case V4SImode:
2139 d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_4SI];
2140 break;
2141
2142 case V4SFmode:
2143 d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_4SF];
2144 break;
2145
2146 default:
2147 return NULL_TREE;
2148 }
2149
2150 gcc_assert (d);
2151 return d;
2152 }
2153
2154 /* Handle generic options of the form -mfoo=yes/no.
2155 NAME is the option name.
2156 VALUE is the option value.
2157 FLAG is the pointer to the flag where to store a 1 or 0, depending on
2158 whether the option value is 'yes' or 'no' respectively. */
2159 static void
2160 rs6000_parse_yes_no_option (const char *name, const char *value, int *flag)
2161 {
2162 if (value == 0)
2163 return;
2164 else if (!strcmp (value, "yes"))
2165 *flag = 1;
2166 else if (!strcmp (value, "no"))
2167 *flag = 0;
2168 else
2169 error ("unknown -m%s= option specified: '%s'", name, value);
2170 }
2171
2172 /* Validate and record the size specified with the -mtls-size option. */
2173
2174 static void
2175 rs6000_parse_tls_size_option (void)
2176 {
2177 if (rs6000_tls_size_string == 0)
2178 return;
2179 else if (strcmp (rs6000_tls_size_string, "16") == 0)
2180 rs6000_tls_size = 16;
2181 else if (strcmp (rs6000_tls_size_string, "32") == 0)
2182 rs6000_tls_size = 32;
2183 else if (strcmp (rs6000_tls_size_string, "64") == 0)
2184 rs6000_tls_size = 64;
2185 else
2186 error ("bad value %qs for -mtls-size switch", rs6000_tls_size_string);
2187 }
2188
2189 void
2190 optimization_options (int level ATTRIBUTE_UNUSED, int size ATTRIBUTE_UNUSED)
2191 {
2192 if (DEFAULT_ABI == ABI_DARWIN)
2193 /* The Darwin libraries never set errno, so we might as well
2194 avoid calling them when that's the only reason we would. */
2195 flag_errno_math = 0;
2196
2197 /* Double growth factor to counter reduced min jump length. */
2198 set_param_value ("max-grow-copy-bb-insns", 16);
2199
2200 /* Enable section anchors by default.
2201 Skip section anchors for Objective C and Objective C++
2202 until front-ends fixed. */
2203 if (!TARGET_MACHO && lang_hooks.name[4] != 'O')
2204 flag_section_anchors = 2;
2205 }
2206
2207 static enum fpu_type_t
2208 rs6000_parse_fpu_option (const char *option)
2209 {
2210 if (!strcmp("none", option)) return FPU_NONE;
2211 if (!strcmp("sp_lite", option)) return FPU_SF_LITE;
2212 if (!strcmp("dp_lite", option)) return FPU_DF_LITE;
2213 if (!strcmp("sp_full", option)) return FPU_SF_FULL;
2214 if (!strcmp("dp_full", option)) return FPU_DF_FULL;
2215 error("unknown value %s for -mfpu", option);
2216 return FPU_NONE;
2217 }
2218
2219 /* Implement TARGET_HANDLE_OPTION. */
2220
2221 static bool
2222 rs6000_handle_option (size_t code, const char *arg, int value)
2223 {
2224 enum fpu_type_t fpu_type = FPU_NONE;
2225
2226 switch (code)
2227 {
2228 case OPT_mno_power:
2229 target_flags &= ~(MASK_POWER | MASK_POWER2
2230 | MASK_MULTIPLE | MASK_STRING);
2231 target_flags_explicit |= (MASK_POWER | MASK_POWER2
2232 | MASK_MULTIPLE | MASK_STRING);
2233 break;
2234 case OPT_mno_powerpc:
2235 target_flags &= ~(MASK_POWERPC | MASK_PPC_GPOPT
2236 | MASK_PPC_GFXOPT | MASK_POWERPC64);
2237 target_flags_explicit |= (MASK_POWERPC | MASK_PPC_GPOPT
2238 | MASK_PPC_GFXOPT | MASK_POWERPC64);
2239 break;
2240 case OPT_mfull_toc:
2241 target_flags &= ~MASK_MINIMAL_TOC;
2242 TARGET_NO_FP_IN_TOC = 0;
2243 TARGET_NO_SUM_IN_TOC = 0;
2244 target_flags_explicit |= MASK_MINIMAL_TOC;
2245 #ifdef TARGET_USES_SYSV4_OPT
2246 /* Note, V.4 no longer uses a normal TOC, so make -mfull-toc, be
2247 just the same as -mminimal-toc. */
2248 target_flags |= MASK_MINIMAL_TOC;
2249 target_flags_explicit |= MASK_MINIMAL_TOC;
2250 #endif
2251 break;
2252
2253 #ifdef TARGET_USES_SYSV4_OPT
2254 case OPT_mtoc:
2255 /* Make -mtoc behave like -mminimal-toc. */
2256 target_flags |= MASK_MINIMAL_TOC;
2257 target_flags_explicit |= MASK_MINIMAL_TOC;
2258 break;
2259 #endif
2260
2261 #ifdef TARGET_USES_AIX64_OPT
2262 case OPT_maix64:
2263 #else
2264 case OPT_m64:
2265 #endif
2266 target_flags |= MASK_POWERPC64 | MASK_POWERPC;
2267 target_flags |= ~target_flags_explicit & MASK_PPC_GFXOPT;
2268 target_flags_explicit |= MASK_POWERPC64 | MASK_POWERPC;
2269 break;
2270
2271 #ifdef TARGET_USES_AIX64_OPT
2272 case OPT_maix32:
2273 #else
2274 case OPT_m32:
2275 #endif
2276 target_flags &= ~MASK_POWERPC64;
2277 target_flags_explicit |= MASK_POWERPC64;
2278 break;
2279
2280 case OPT_minsert_sched_nops_:
2281 rs6000_sched_insert_nops_str = arg;
2282 break;
2283
2284 case OPT_mminimal_toc:
2285 if (value == 1)
2286 {
2287 TARGET_NO_FP_IN_TOC = 0;
2288 TARGET_NO_SUM_IN_TOC = 0;
2289 }
2290 break;
2291
2292 case OPT_mpower:
2293 if (value == 1)
2294 {
2295 target_flags |= (MASK_MULTIPLE | MASK_STRING);
2296 target_flags_explicit |= (MASK_MULTIPLE | MASK_STRING);
2297 }
2298 break;
2299
2300 case OPT_mpower2:
2301 if (value == 1)
2302 {
2303 target_flags |= (MASK_POWER | MASK_MULTIPLE | MASK_STRING);
2304 target_flags_explicit |= (MASK_POWER | MASK_MULTIPLE | MASK_STRING);
2305 }
2306 break;
2307
2308 case OPT_mpowerpc_gpopt:
2309 case OPT_mpowerpc_gfxopt:
2310 if (value == 1)
2311 {
2312 target_flags |= MASK_POWERPC;
2313 target_flags_explicit |= MASK_POWERPC;
2314 }
2315 break;
2316
2317 case OPT_maix_struct_return:
2318 case OPT_msvr4_struct_return:
2319 rs6000_explicit_options.aix_struct_ret = true;
2320 break;
2321
2322 case OPT_mvrsave_:
2323 rs6000_explicit_options.vrsave = true;
2324 rs6000_parse_yes_no_option ("vrsave", arg, &(TARGET_ALTIVEC_VRSAVE));
2325 break;
2326
2327 case OPT_misel:
2328 rs6000_explicit_options.isel = true;
2329 rs6000_isel = value;
2330 break;
2331
2332 case OPT_misel_:
2333 rs6000_explicit_options.isel = true;
2334 rs6000_parse_yes_no_option ("isel", arg, &(rs6000_isel));
2335 break;
2336
2337 case OPT_mspe:
2338 rs6000_explicit_options.spe = true;
2339 rs6000_spe = value;
2340 break;
2341
2342 case OPT_mspe_:
2343 rs6000_explicit_options.spe = true;
2344 rs6000_parse_yes_no_option ("spe", arg, &(rs6000_spe));
2345 break;
2346
2347 case OPT_mdebug_:
2348 rs6000_debug_name = arg;
2349 break;
2350
2351 #ifdef TARGET_USES_SYSV4_OPT
2352 case OPT_mcall_:
2353 rs6000_abi_name = arg;
2354 break;
2355
2356 case OPT_msdata_:
2357 rs6000_sdata_name = arg;
2358 break;
2359
2360 case OPT_mtls_size_:
2361 rs6000_tls_size_string = arg;
2362 break;
2363
2364 case OPT_mrelocatable:
2365 if (value == 1)
2366 {
2367 target_flags |= MASK_MINIMAL_TOC;
2368 target_flags_explicit |= MASK_MINIMAL_TOC;
2369 TARGET_NO_FP_IN_TOC = 1;
2370 }
2371 break;
2372
2373 case OPT_mrelocatable_lib:
2374 if (value == 1)
2375 {
2376 target_flags |= MASK_RELOCATABLE | MASK_MINIMAL_TOC;
2377 target_flags_explicit |= MASK_RELOCATABLE | MASK_MINIMAL_TOC;
2378 TARGET_NO_FP_IN_TOC = 1;
2379 }
2380 else
2381 {
2382 target_flags &= ~MASK_RELOCATABLE;
2383 target_flags_explicit |= MASK_RELOCATABLE;
2384 }
2385 break;
2386 #endif
2387
2388 case OPT_mabi_:
2389 if (!strcmp (arg, "altivec"))
2390 {
2391 rs6000_explicit_options.altivec_abi = true;
2392 rs6000_altivec_abi = 1;
2393
2394 /* Enabling the AltiVec ABI turns off the SPE ABI. */
2395 rs6000_spe_abi = 0;
2396 }
2397 else if (! strcmp (arg, "no-altivec"))
2398 {
2399 rs6000_explicit_options.altivec_abi = true;
2400 rs6000_altivec_abi = 0;
2401 }
2402 else if (! strcmp (arg, "spe"))
2403 {
2404 rs6000_explicit_options.spe_abi = true;
2405 rs6000_spe_abi = 1;
2406 rs6000_altivec_abi = 0;
2407 if (!TARGET_SPE_ABI)
2408 error ("not configured for ABI: '%s'", arg);
2409 }
2410 else if (! strcmp (arg, "no-spe"))
2411 {
2412 rs6000_explicit_options.spe_abi = true;
2413 rs6000_spe_abi = 0;
2414 }
2415
2416 /* These are here for testing during development only, do not
2417 document in the manual please. */
2418 else if (! strcmp (arg, "d64"))
2419 {
2420 rs6000_darwin64_abi = 1;
2421 warning (0, "Using darwin64 ABI");
2422 }
2423 else if (! strcmp (arg, "d32"))
2424 {
2425 rs6000_darwin64_abi = 0;
2426 warning (0, "Using old darwin ABI");
2427 }
2428
2429 else if (! strcmp (arg, "ibmlongdouble"))
2430 {
2431 rs6000_explicit_options.ieee = true;
2432 rs6000_ieeequad = 0;
2433 warning (0, "Using IBM extended precision long double");
2434 }
2435 else if (! strcmp (arg, "ieeelongdouble"))
2436 {
2437 rs6000_explicit_options.ieee = true;
2438 rs6000_ieeequad = 1;
2439 warning (0, "Using IEEE extended precision long double");
2440 }
2441
2442 else
2443 {
2444 error ("unknown ABI specified: '%s'", arg);
2445 return false;
2446 }
2447 break;
2448
2449 case OPT_mcpu_:
2450 rs6000_select[1].string = arg;
2451 break;
2452
2453 case OPT_mtune_:
2454 rs6000_select[2].string = arg;
2455 break;
2456
2457 case OPT_mtraceback_:
2458 rs6000_traceback_name = arg;
2459 break;
2460
2461 case OPT_mfloat_gprs_:
2462 rs6000_explicit_options.float_gprs = true;
2463 if (! strcmp (arg, "yes") || ! strcmp (arg, "single"))
2464 rs6000_float_gprs = 1;
2465 else if (! strcmp (arg, "double"))
2466 rs6000_float_gprs = 2;
2467 else if (! strcmp (arg, "no"))
2468 rs6000_float_gprs = 0;
2469 else
2470 {
2471 error ("invalid option for -mfloat-gprs: '%s'", arg);
2472 return false;
2473 }
2474 break;
2475
2476 case OPT_mlong_double_:
2477 rs6000_explicit_options.long_double = true;
2478 rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;
2479 if (value != 64 && value != 128)
2480 {
2481 error ("Unknown switch -mlong-double-%s", arg);
2482 rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;
2483 return false;
2484 }
2485 else
2486 rs6000_long_double_type_size = value;
2487 break;
2488
2489 case OPT_msched_costly_dep_:
2490 rs6000_sched_costly_dep_str = arg;
2491 break;
2492
2493 case OPT_malign_:
2494 rs6000_explicit_options.alignment = true;
2495 if (! strcmp (arg, "power"))
2496 {
2497 /* On 64-bit Darwin, power alignment is ABI-incompatible with
2498 some C library functions, so warn about it. The flag may be
2499 useful for performance studies from time to time though, so
2500 don't disable it entirely. */
2501 if (DEFAULT_ABI == ABI_DARWIN && TARGET_64BIT)
2502 warning (0, "-malign-power is not supported for 64-bit Darwin;"
2503 " it is incompatible with the installed C and C++ libraries");
2504 rs6000_alignment_flags = MASK_ALIGN_POWER;
2505 }
2506 else if (! strcmp (arg, "natural"))
2507 rs6000_alignment_flags = MASK_ALIGN_NATURAL;
2508 else
2509 {
2510 error ("unknown -malign-XXXXX option specified: '%s'", arg);
2511 return false;
2512 }
2513 break;
2514
2515 case OPT_msingle_float:
2516 if (!TARGET_SINGLE_FPU)
2517 warning (0, "-msingle-float option equivalent to -mhard-float");
2518 /* -msingle-float implies -mno-double-float and TARGET_HARD_FLOAT. */
2519 rs6000_double_float = 0;
2520 target_flags &= ~MASK_SOFT_FLOAT;
2521 target_flags_explicit |= MASK_SOFT_FLOAT;
2522 break;
2523
2524 case OPT_mdouble_float:
2525 /* -mdouble-float implies -msingle-float and TARGET_HARD_FLOAT. */
2526 rs6000_single_float = 1;
2527 target_flags &= ~MASK_SOFT_FLOAT;
2528 target_flags_explicit |= MASK_SOFT_FLOAT;
2529 break;
2530
2531 case OPT_msimple_fpu:
2532 if (!TARGET_SINGLE_FPU)
2533 warning (0, "-msimple-fpu option ignored");
2534 break;
2535
2536 case OPT_mhard_float:
2537 /* -mhard_float implies -msingle-float and -mdouble-float. */
2538 rs6000_single_float = rs6000_double_float = 1;
2539 break;
2540
2541 case OPT_msoft_float:
2542 /* -msoft_float implies -mnosingle-float and -mnodouble-float. */
2543 rs6000_single_float = rs6000_double_float = 0;
2544 break;
2545
2546 case OPT_mfpu_:
2547 fpu_type = rs6000_parse_fpu_option(arg);
2548 if (fpu_type != FPU_NONE)
2549 /* If -mfpu is not none, then turn off SOFT_FLOAT, turn on HARD_FLOAT. */
2550 {
2551 target_flags &= ~MASK_SOFT_FLOAT;
2552 target_flags_explicit |= MASK_SOFT_FLOAT;
2553 rs6000_xilinx_fpu = 1;
2554 if (fpu_type == FPU_SF_LITE || fpu_type == FPU_SF_FULL)
2555 rs6000_single_float = 1;
2556 if (fpu_type == FPU_DF_LITE || fpu_type == FPU_DF_FULL)
2557 rs6000_single_float = rs6000_double_float = 1;
2558 if (fpu_type == FPU_SF_LITE || fpu_type == FPU_DF_LITE)
2559 rs6000_simple_fpu = 1;
2560 }
2561 else
2562 {
2563 /* -mfpu=none is equivalent to -msoft-float */
2564 target_flags |= MASK_SOFT_FLOAT;
2565 target_flags_explicit |= MASK_SOFT_FLOAT;
2566 rs6000_single_float = rs6000_double_float = 0;
2567 }
2568 break;
2569 }
2570 return true;
2571 }
2572 \f
2573 /* Do anything needed at the start of the asm file. */
2574
2575 static void
2576 rs6000_file_start (void)
2577 {
2578 size_t i;
2579 char buffer[80];
2580 const char *start = buffer;
2581 struct rs6000_cpu_select *ptr;
2582 const char *default_cpu = TARGET_CPU_DEFAULT;
2583 FILE *file = asm_out_file;
2584
2585 default_file_start ();
2586
2587 #ifdef TARGET_BI_ARCH
2588 if ((TARGET_DEFAULT ^ target_flags) & MASK_64BIT)
2589 default_cpu = 0;
2590 #endif
2591
2592 if (flag_verbose_asm)
2593 {
2594 sprintf (buffer, "\n%s rs6000/powerpc options:", ASM_COMMENT_START);
2595 rs6000_select[0].string = default_cpu;
2596
2597 for (i = 0; i < ARRAY_SIZE (rs6000_select); i++)
2598 {
2599 ptr = &rs6000_select[i];
2600 if (ptr->string != (char *)0 && ptr->string[0] != '\0')
2601 {
2602 fprintf (file, "%s %s%s", start, ptr->name, ptr->string);
2603 start = "";
2604 }
2605 }
2606
2607 if (PPC405_ERRATUM77)
2608 {
2609 fprintf (file, "%s PPC405CR_ERRATUM77", start);
2610 start = "";
2611 }
2612
2613 #ifdef USING_ELFOS_H
2614 switch (rs6000_sdata)
2615 {
2616 case SDATA_NONE: fprintf (file, "%s -msdata=none", start); start = ""; break;
2617 case SDATA_DATA: fprintf (file, "%s -msdata=data", start); start = ""; break;
2618 case SDATA_SYSV: fprintf (file, "%s -msdata=sysv", start); start = ""; break;
2619 case SDATA_EABI: fprintf (file, "%s -msdata=eabi", start); start = ""; break;
2620 }
2621
2622 if (rs6000_sdata && g_switch_value)
2623 {
2624 fprintf (file, "%s -G " HOST_WIDE_INT_PRINT_UNSIGNED, start,
2625 g_switch_value);
2626 start = "";
2627 }
2628 #endif
2629
2630 if (*start == '\0')
2631 putc ('\n', file);
2632 }
2633
2634 #ifdef HAVE_AS_GNU_ATTRIBUTE
2635 if (TARGET_32BIT && DEFAULT_ABI == ABI_V4)
2636 {
2637 fprintf (file, "\t.gnu_attribute 4, %d\n",
2638 ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT) ? 1
2639 : (TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_SINGLE_FLOAT) ? 3
2640 : 2));
2641 fprintf (file, "\t.gnu_attribute 8, %d\n",
2642 (TARGET_ALTIVEC_ABI ? 2
2643 : TARGET_SPE_ABI ? 3
2644 : 1));
2645 }
2646 #endif
2647
2648 if (DEFAULT_ABI == ABI_AIX || (TARGET_ELF && flag_pic == 2))
2649 {
2650 switch_to_section (toc_section);
2651 switch_to_section (text_section);
2652 }
2653 }
2654
2655 \f
2656 /* Return nonzero if this function is known to have a null epilogue. */
2657
2658 int
2659 direct_return (void)
2660 {
2661 if (reload_completed)
2662 {
2663 rs6000_stack_t *info = rs6000_stack_info ();
2664
2665 if (info->first_gp_reg_save == 32
2666 && info->first_fp_reg_save == 64
2667 && info->first_altivec_reg_save == LAST_ALTIVEC_REGNO + 1
2668 && ! info->lr_save_p
2669 && ! info->cr_save_p
2670 && info->vrsave_mask == 0
2671 && ! info->push_p)
2672 return 1;
2673 }
2674
2675 return 0;
2676 }
2677
2678 /* Return the number of instructions it takes to form a constant in an
2679 integer register. */
2680
2681 int
2682 num_insns_constant_wide (HOST_WIDE_INT value)
2683 {
2684 /* signed constant loadable with {cal|addi} */
2685 if ((unsigned HOST_WIDE_INT) (value + 0x8000) < 0x10000)
2686 return 1;
2687
2688 /* constant loadable with {cau|addis} */
2689 else if ((value & 0xffff) == 0
2690 && (value >> 31 == -1 || value >> 31 == 0))
2691 return 1;
2692
2693 #if HOST_BITS_PER_WIDE_INT == 64
2694 else if (TARGET_POWERPC64)
2695 {
2696 HOST_WIDE_INT low = ((value & 0xffffffff) ^ 0x80000000) - 0x80000000;
2697 HOST_WIDE_INT high = value >> 31;
2698
2699 if (high == 0 || high == -1)
2700 return 2;
2701
2702 high >>= 1;
2703
2704 if (low == 0)
2705 return num_insns_constant_wide (high) + 1;
2706 else
2707 return (num_insns_constant_wide (high)
2708 + num_insns_constant_wide (low) + 1);
2709 }
2710 #endif
2711
2712 else
2713 return 2;
2714 }
2715
2716 int
2717 num_insns_constant (rtx op, enum machine_mode mode)
2718 {
2719 HOST_WIDE_INT low, high;
2720
2721 switch (GET_CODE (op))
2722 {
2723 case CONST_INT:
2724 #if HOST_BITS_PER_WIDE_INT == 64
2725 if ((INTVAL (op) >> 31) != 0 && (INTVAL (op) >> 31) != -1
2726 && mask64_operand (op, mode))
2727 return 2;
2728 else
2729 #endif
2730 return num_insns_constant_wide (INTVAL (op));
2731
2732 case CONST_DOUBLE:
2733 if (mode == SFmode || mode == SDmode)
2734 {
2735 long l;
2736 REAL_VALUE_TYPE rv;
2737
2738 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
2739 if (DECIMAL_FLOAT_MODE_P (mode))
2740 REAL_VALUE_TO_TARGET_DECIMAL32 (rv, l);
2741 else
2742 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
2743 return num_insns_constant_wide ((HOST_WIDE_INT) l);
2744 }
2745
2746 if (mode == VOIDmode || mode == DImode)
2747 {
2748 high = CONST_DOUBLE_HIGH (op);
2749 low = CONST_DOUBLE_LOW (op);
2750 }
2751 else
2752 {
2753 long l[2];
2754 REAL_VALUE_TYPE rv;
2755
2756 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
2757 if (DECIMAL_FLOAT_MODE_P (mode))
2758 REAL_VALUE_TO_TARGET_DECIMAL64 (rv, l);
2759 else
2760 REAL_VALUE_TO_TARGET_DOUBLE (rv, l);
2761 high = l[WORDS_BIG_ENDIAN == 0];
2762 low = l[WORDS_BIG_ENDIAN != 0];
2763 }
2764
2765 if (TARGET_32BIT)
2766 return (num_insns_constant_wide (low)
2767 + num_insns_constant_wide (high));
2768 else
2769 {
2770 if ((high == 0 && low >= 0)
2771 || (high == -1 && low < 0))
2772 return num_insns_constant_wide (low);
2773
2774 else if (mask64_operand (op, mode))
2775 return 2;
2776
2777 else if (low == 0)
2778 return num_insns_constant_wide (high) + 1;
2779
2780 else
2781 return (num_insns_constant_wide (high)
2782 + num_insns_constant_wide (low) + 1);
2783 }
2784
2785 default:
2786 gcc_unreachable ();
2787 }
2788 }
2789
2790 /* Interpret element ELT of the CONST_VECTOR OP as an integer value.
2791 If the mode of OP is MODE_VECTOR_INT, this simply returns the
2792 corresponding element of the vector, but for V4SFmode and V2SFmode,
2793 the corresponding "float" is interpreted as an SImode integer. */
2794
2795 HOST_WIDE_INT
2796 const_vector_elt_as_int (rtx op, unsigned int elt)
2797 {
2798 rtx tmp = CONST_VECTOR_ELT (op, elt);
2799 if (GET_MODE (op) == V4SFmode
2800 || GET_MODE (op) == V2SFmode)
2801 tmp = gen_lowpart (SImode, tmp);
2802 return INTVAL (tmp);
2803 }
2804
2805 /* Return true if OP can be synthesized with a particular vspltisb, vspltish
2806 or vspltisw instruction. OP is a CONST_VECTOR. Which instruction is used
2807 depends on STEP and COPIES, one of which will be 1. If COPIES > 1,
2808 all items are set to the same value and contain COPIES replicas of the
2809 vsplt's operand; if STEP > 1, one in STEP elements is set to the vsplt's
2810 operand and the others are set to the value of the operand's msb. */
2811
2812 static bool
2813 vspltis_constant (rtx op, unsigned step, unsigned copies)
2814 {
2815 enum machine_mode mode = GET_MODE (op);
2816 enum machine_mode inner = GET_MODE_INNER (mode);
2817
2818 unsigned i;
2819 unsigned nunits = GET_MODE_NUNITS (mode);
2820 unsigned bitsize = GET_MODE_BITSIZE (inner);
2821 unsigned mask = GET_MODE_MASK (inner);
2822
2823 HOST_WIDE_INT val = const_vector_elt_as_int (op, nunits - 1);
2824 HOST_WIDE_INT splat_val = val;
2825 HOST_WIDE_INT msb_val = val > 0 ? 0 : -1;
2826
2827 /* Construct the value to be splatted, if possible. If not, return 0. */
2828 for (i = 2; i <= copies; i *= 2)
2829 {
2830 HOST_WIDE_INT small_val;
2831 bitsize /= 2;
2832 small_val = splat_val >> bitsize;
2833 mask >>= bitsize;
2834 if (splat_val != ((small_val << bitsize) | (small_val & mask)))
2835 return false;
2836 splat_val = small_val;
2837 }
2838
2839 /* Check if SPLAT_VAL can really be the operand of a vspltis[bhw]. */
2840 if (EASY_VECTOR_15 (splat_val))
2841 ;
2842
2843 /* Also check if we can splat, and then add the result to itself. Do so if
2844 the value is positive, of if the splat instruction is using OP's mode;
2845 for splat_val < 0, the splat and the add should use the same mode. */
2846 else if (EASY_VECTOR_15_ADD_SELF (splat_val)
2847 && (splat_val >= 0 || (step == 1 && copies == 1)))
2848 ;
2849
2850 else
2851 return false;
2852
2853 /* Check if VAL is present in every STEP-th element, and the
2854 other elements are filled with its most significant bit. */
2855 for (i = 0; i < nunits - 1; ++i)
2856 {
2857 HOST_WIDE_INT desired_val;
2858 if (((i + 1) & (step - 1)) == 0)
2859 desired_val = val;
2860 else
2861 desired_val = msb_val;
2862
2863 if (desired_val != const_vector_elt_as_int (op, i))
2864 return false;
2865 }
2866
2867 return true;
2868 }
2869
2870
2871 /* Return true if OP is of the given MODE and can be synthesized
2872 with a vspltisb, vspltish or vspltisw. */
2873
2874 bool
2875 easy_altivec_constant (rtx op, enum machine_mode mode)
2876 {
2877 unsigned step, copies;
2878
2879 if (mode == VOIDmode)
2880 mode = GET_MODE (op);
2881 else if (mode != GET_MODE (op))
2882 return false;
2883
2884 /* Start with a vspltisw. */
2885 step = GET_MODE_NUNITS (mode) / 4;
2886 copies = 1;
2887
2888 if (vspltis_constant (op, step, copies))
2889 return true;
2890
2891 /* Then try with a vspltish. */
2892 if (step == 1)
2893 copies <<= 1;
2894 else
2895 step >>= 1;
2896
2897 if (vspltis_constant (op, step, copies))
2898 return true;
2899
2900 /* And finally a vspltisb. */
2901 if (step == 1)
2902 copies <<= 1;
2903 else
2904 step >>= 1;
2905
2906 if (vspltis_constant (op, step, copies))
2907 return true;
2908
2909 return false;
2910 }
2911
2912 /* Generate a VEC_DUPLICATE representing a vspltis[bhw] instruction whose
2913 result is OP. Abort if it is not possible. */
2914
2915 rtx
2916 gen_easy_altivec_constant (rtx op)
2917 {
2918 enum machine_mode mode = GET_MODE (op);
2919 int nunits = GET_MODE_NUNITS (mode);
2920 rtx last = CONST_VECTOR_ELT (op, nunits - 1);
2921 unsigned step = nunits / 4;
2922 unsigned copies = 1;
2923
2924 /* Start with a vspltisw. */
2925 if (vspltis_constant (op, step, copies))
2926 return gen_rtx_VEC_DUPLICATE (V4SImode, gen_lowpart (SImode, last));
2927
2928 /* Then try with a vspltish. */
2929 if (step == 1)
2930 copies <<= 1;
2931 else
2932 step >>= 1;
2933
2934 if (vspltis_constant (op, step, copies))
2935 return gen_rtx_VEC_DUPLICATE (V8HImode, gen_lowpart (HImode, last));
2936
2937 /* And finally a vspltisb. */
2938 if (step == 1)
2939 copies <<= 1;
2940 else
2941 step >>= 1;
2942
2943 if (vspltis_constant (op, step, copies))
2944 return gen_rtx_VEC_DUPLICATE (V16QImode, gen_lowpart (QImode, last));
2945
2946 gcc_unreachable ();
2947 }
2948
2949 const char *
2950 output_vec_const_move (rtx *operands)
2951 {
2952 int cst, cst2;
2953 enum machine_mode mode;
2954 rtx dest, vec;
2955
2956 dest = operands[0];
2957 vec = operands[1];
2958 mode = GET_MODE (dest);
2959
2960 if (TARGET_ALTIVEC)
2961 {
2962 rtx splat_vec;
2963 if (zero_constant (vec, mode))
2964 return "vxor %0,%0,%0";
2965
2966 splat_vec = gen_easy_altivec_constant (vec);
2967 gcc_assert (GET_CODE (splat_vec) == VEC_DUPLICATE);
2968 operands[1] = XEXP (splat_vec, 0);
2969 if (!EASY_VECTOR_15 (INTVAL (operands[1])))
2970 return "#";
2971
2972 switch (GET_MODE (splat_vec))
2973 {
2974 case V4SImode:
2975 return "vspltisw %0,%1";
2976
2977 case V8HImode:
2978 return "vspltish %0,%1";
2979
2980 case V16QImode:
2981 return "vspltisb %0,%1";
2982
2983 default:
2984 gcc_unreachable ();
2985 }
2986 }
2987
2988 gcc_assert (TARGET_SPE);
2989
2990 /* Vector constant 0 is handled as a splitter of V2SI, and in the
2991 pattern of V1DI, V4HI, and V2SF.
2992
2993 FIXME: We should probably return # and add post reload
2994 splitters for these, but this way is so easy ;-). */
2995 cst = INTVAL (CONST_VECTOR_ELT (vec, 0));
2996 cst2 = INTVAL (CONST_VECTOR_ELT (vec, 1));
2997 operands[1] = CONST_VECTOR_ELT (vec, 0);
2998 operands[2] = CONST_VECTOR_ELT (vec, 1);
2999 if (cst == cst2)
3000 return "li %0,%1\n\tevmergelo %0,%0,%0";
3001 else
3002 return "li %0,%1\n\tevmergelo %0,%0,%0\n\tli %0,%2";
3003 }
3004
3005 /* Initialize TARGET of vector PAIRED to VALS. */
3006
3007 void
3008 paired_expand_vector_init (rtx target, rtx vals)
3009 {
3010 enum machine_mode mode = GET_MODE (target);
3011 int n_elts = GET_MODE_NUNITS (mode);
3012 int n_var = 0;
3013 rtx x, new_rtx, tmp, constant_op, op1, op2;
3014 int i;
3015
3016 for (i = 0; i < n_elts; ++i)
3017 {
3018 x = XVECEXP (vals, 0, i);
3019 if (!CONSTANT_P (x))
3020 ++n_var;
3021 }
3022 if (n_var == 0)
3023 {
3024 /* Load from constant pool. */
3025 emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)));
3026 return;
3027 }
3028
3029 if (n_var == 2)
3030 {
3031 /* The vector is initialized only with non-constants. */
3032 new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, XVECEXP (vals, 0, 0),
3033 XVECEXP (vals, 0, 1));
3034
3035 emit_move_insn (target, new_rtx);
3036 return;
3037 }
3038
3039 /* One field is non-constant and the other one is a constant. Load the
3040 constant from the constant pool and use ps_merge instruction to
3041 construct the whole vector. */
3042 op1 = XVECEXP (vals, 0, 0);
3043 op2 = XVECEXP (vals, 0, 1);
3044
3045 constant_op = (CONSTANT_P (op1)) ? op1 : op2;
3046
3047 tmp = gen_reg_rtx (GET_MODE (constant_op));
3048 emit_move_insn (tmp, constant_op);
3049
3050 if (CONSTANT_P (op1))
3051 new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, tmp, op2);
3052 else
3053 new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, op1, tmp);
3054
3055 emit_move_insn (target, new_rtx);
3056 }
3057
3058 void
3059 paired_expand_vector_move (rtx operands[])
3060 {
3061 rtx op0 = operands[0], op1 = operands[1];
3062
3063 emit_move_insn (op0, op1);
3064 }
3065
3066 /* Emit vector compare for code RCODE. DEST is destination, OP1 and
3067 OP2 are two VEC_COND_EXPR operands, CC_OP0 and CC_OP1 are the two
3068 operands for the relation operation COND. This is a recursive
3069 function. */
3070
3071 static void
3072 paired_emit_vector_compare (enum rtx_code rcode,
3073 rtx dest, rtx op0, rtx op1,
3074 rtx cc_op0, rtx cc_op1)
3075 {
3076 rtx tmp = gen_reg_rtx (V2SFmode);
3077 rtx tmp1, max, min, equal_zero;
3078
3079 gcc_assert (TARGET_PAIRED_FLOAT);
3080 gcc_assert (GET_MODE (op0) == GET_MODE (op1));
3081
3082 switch (rcode)
3083 {
3084 case LT:
3085 case LTU:
3086 paired_emit_vector_compare (GE, dest, op1, op0, cc_op0, cc_op1);
3087 return;
3088 case GE:
3089 case GEU:
3090 emit_insn (gen_subv2sf3 (tmp, cc_op0, cc_op1));
3091 emit_insn (gen_selv2sf4 (dest, tmp, op0, op1, CONST0_RTX (SFmode)));
3092 return;
3093 case LE:
3094 case LEU:
3095 paired_emit_vector_compare (GE, dest, op0, op1, cc_op1, cc_op0);
3096 return;
3097 case GT:
3098 paired_emit_vector_compare (LE, dest, op1, op0, cc_op0, cc_op1);
3099 return;
3100 case EQ:
3101 tmp1 = gen_reg_rtx (V2SFmode);
3102 max = gen_reg_rtx (V2SFmode);
3103 min = gen_reg_rtx (V2SFmode);
3104 equal_zero = gen_reg_rtx (V2SFmode);
3105
3106 emit_insn (gen_subv2sf3 (tmp, cc_op0, cc_op1));
3107 emit_insn (gen_selv2sf4
3108 (max, tmp, cc_op0, cc_op1, CONST0_RTX (SFmode)));
3109 emit_insn (gen_subv2sf3 (tmp, cc_op1, cc_op0));
3110 emit_insn (gen_selv2sf4
3111 (min, tmp, cc_op0, cc_op1, CONST0_RTX (SFmode)));
3112 emit_insn (gen_subv2sf3 (tmp1, min, max));
3113 emit_insn (gen_selv2sf4 (dest, tmp1, op0, op1, CONST0_RTX (SFmode)));
3114 return;
3115 case NE:
3116 paired_emit_vector_compare (EQ, dest, op1, op0, cc_op0, cc_op1);
3117 return;
3118 case UNLE:
3119 paired_emit_vector_compare (LE, dest, op1, op0, cc_op0, cc_op1);
3120 return;
3121 case UNLT:
3122 paired_emit_vector_compare (LT, dest, op1, op0, cc_op0, cc_op1);
3123 return;
3124 case UNGE:
3125 paired_emit_vector_compare (GE, dest, op1, op0, cc_op0, cc_op1);
3126 return;
3127 case UNGT:
3128 paired_emit_vector_compare (GT, dest, op1, op0, cc_op0, cc_op1);
3129 return;
3130 default:
3131 gcc_unreachable ();
3132 }
3133
3134 return;
3135 }
3136
3137 /* Emit vector conditional expression.
3138 DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
3139 CC_OP0 and CC_OP1 are the two operands for the relation operation COND. */
3140
3141 int
3142 paired_emit_vector_cond_expr (rtx dest, rtx op1, rtx op2,
3143 rtx cond, rtx cc_op0, rtx cc_op1)
3144 {
3145 enum rtx_code rcode = GET_CODE (cond);
3146
3147 if (!TARGET_PAIRED_FLOAT)
3148 return 0;
3149
3150 paired_emit_vector_compare (rcode, dest, op1, op2, cc_op0, cc_op1);
3151
3152 return 1;
3153 }
3154
3155 /* Initialize vector TARGET to VALS. */
3156
3157 void
3158 rs6000_expand_vector_init (rtx target, rtx vals)
3159 {
3160 enum machine_mode mode = GET_MODE (target);
3161 enum machine_mode inner_mode = GET_MODE_INNER (mode);
3162 int n_elts = GET_MODE_NUNITS (mode);
3163 int n_var = 0, one_var = -1;
3164 bool all_same = true, all_const_zero = true;
3165 rtx x, mem;
3166 int i;
3167
3168 for (i = 0; i < n_elts; ++i)
3169 {
3170 x = XVECEXP (vals, 0, i);
3171 if (!CONSTANT_P (x))
3172 ++n_var, one_var = i;
3173 else if (x != CONST0_RTX (inner_mode))
3174 all_const_zero = false;
3175
3176 if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
3177 all_same = false;
3178 }
3179
3180 if (n_var == 0)
3181 {
3182 rtx const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
3183 if (mode != V4SFmode && all_const_zero)
3184 {
3185 /* Zero register. */
3186 emit_insn (gen_rtx_SET (VOIDmode, target,
3187 gen_rtx_XOR (mode, target, target)));
3188 return;
3189 }
3190 else if (mode != V4SFmode && easy_vector_constant (const_vec, mode))
3191 {
3192 /* Splat immediate. */
3193 emit_insn (gen_rtx_SET (VOIDmode, target, const_vec));
3194 return;
3195 }
3196 else if (all_same)
3197 ; /* Splat vector element. */
3198 else
3199 {
3200 /* Load from constant pool. */
3201 emit_move_insn (target, const_vec);
3202 return;
3203 }
3204 }
3205
3206 /* Store value to stack temp. Load vector element. Splat. */
3207 if (all_same)
3208 {
3209 mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode), 0);
3210 emit_move_insn (adjust_address_nv (mem, inner_mode, 0),
3211 XVECEXP (vals, 0, 0));
3212 x = gen_rtx_UNSPEC (VOIDmode,
3213 gen_rtvec (1, const0_rtx), UNSPEC_LVE);
3214 emit_insn (gen_rtx_PARALLEL (VOIDmode,
3215 gen_rtvec (2,
3216 gen_rtx_SET (VOIDmode,
3217 target, mem),
3218 x)));
3219 x = gen_rtx_VEC_SELECT (inner_mode, target,
3220 gen_rtx_PARALLEL (VOIDmode,
3221 gen_rtvec (1, const0_rtx)));
3222 emit_insn (gen_rtx_SET (VOIDmode, target,
3223 gen_rtx_VEC_DUPLICATE (mode, x)));
3224 return;
3225 }
3226
3227 /* One field is non-constant. Load constant then overwrite
3228 varying field. */
3229 if (n_var == 1)
3230 {
3231 rtx copy = copy_rtx (vals);
3232
3233 /* Load constant part of vector, substitute neighboring value for
3234 varying element. */
3235 XVECEXP (copy, 0, one_var) = XVECEXP (vals, 0, (one_var + 1) % n_elts);
3236 rs6000_expand_vector_init (target, copy);
3237
3238 /* Insert variable. */
3239 rs6000_expand_vector_set (target, XVECEXP (vals, 0, one_var), one_var);
3240 return;
3241 }
3242
3243 /* Construct the vector in memory one field at a time
3244 and load the whole vector. */
3245 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
3246 for (i = 0; i < n_elts; i++)
3247 emit_move_insn (adjust_address_nv (mem, inner_mode,
3248 i * GET_MODE_SIZE (inner_mode)),
3249 XVECEXP (vals, 0, i));
3250 emit_move_insn (target, mem);
3251 }
3252
3253 /* Set field ELT of TARGET to VAL. */
3254
3255 void
3256 rs6000_expand_vector_set (rtx target, rtx val, int elt)
3257 {
3258 enum machine_mode mode = GET_MODE (target);
3259 enum machine_mode inner_mode = GET_MODE_INNER (mode);
3260 rtx reg = gen_reg_rtx (mode);
3261 rtx mask, mem, x;
3262 int width = GET_MODE_SIZE (inner_mode);
3263 int i;
3264
3265 /* Load single variable value. */
3266 mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode), 0);
3267 emit_move_insn (adjust_address_nv (mem, inner_mode, 0), val);
3268 x = gen_rtx_UNSPEC (VOIDmode,
3269 gen_rtvec (1, const0_rtx), UNSPEC_LVE);
3270 emit_insn (gen_rtx_PARALLEL (VOIDmode,
3271 gen_rtvec (2,
3272 gen_rtx_SET (VOIDmode,
3273 reg, mem),
3274 x)));
3275
3276 /* Linear sequence. */
3277 mask = gen_rtx_PARALLEL (V16QImode, rtvec_alloc (16));
3278 for (i = 0; i < 16; ++i)
3279 XVECEXP (mask, 0, i) = GEN_INT (i);
3280
3281 /* Set permute mask to insert element into target. */
3282 for (i = 0; i < width; ++i)
3283 XVECEXP (mask, 0, elt*width + i)
3284 = GEN_INT (i + 0x10);
3285 x = gen_rtx_CONST_VECTOR (V16QImode, XVEC (mask, 0));
3286 x = gen_rtx_UNSPEC (mode,
3287 gen_rtvec (3, target, reg,
3288 force_reg (V16QImode, x)),
3289 UNSPEC_VPERM);
3290 emit_insn (gen_rtx_SET (VOIDmode, target, x));
3291 }
3292
3293 /* Extract field ELT from VEC into TARGET. */
3294
3295 void
3296 rs6000_expand_vector_extract (rtx target, rtx vec, int elt)
3297 {
3298 enum machine_mode mode = GET_MODE (vec);
3299 enum machine_mode inner_mode = GET_MODE_INNER (mode);
3300 rtx mem, x;
3301
3302 /* Allocate mode-sized buffer. */
3303 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
3304
3305 /* Add offset to field within buffer matching vector element. */
3306 mem = adjust_address_nv (mem, mode, elt * GET_MODE_SIZE (inner_mode));
3307
3308 /* Store single field into mode-sized buffer. */
3309 x = gen_rtx_UNSPEC (VOIDmode,
3310 gen_rtvec (1, const0_rtx), UNSPEC_STVE);
3311 emit_insn (gen_rtx_PARALLEL (VOIDmode,
3312 gen_rtvec (2,
3313 gen_rtx_SET (VOIDmode,
3314 mem, vec),
3315 x)));
3316 emit_move_insn (target, adjust_address_nv (mem, inner_mode, 0));
3317 }
3318
3319 /* Generates shifts and masks for a pair of rldicl or rldicr insns to
3320 implement ANDing by the mask IN. */
3321 void
3322 build_mask64_2_operands (rtx in, rtx *out)
3323 {
3324 #if HOST_BITS_PER_WIDE_INT >= 64
3325 unsigned HOST_WIDE_INT c, lsb, m1, m2;
3326 int shift;
3327
3328 gcc_assert (GET_CODE (in) == CONST_INT);
3329
3330 c = INTVAL (in);
3331 if (c & 1)
3332 {
3333 /* Assume c initially something like 0x00fff000000fffff. The idea
3334 is to rotate the word so that the middle ^^^^^^ group of zeros
3335 is at the MS end and can be cleared with an rldicl mask. We then
3336 rotate back and clear off the MS ^^ group of zeros with a
3337 second rldicl. */
3338 c = ~c; /* c == 0xff000ffffff00000 */
3339 lsb = c & -c; /* lsb == 0x0000000000100000 */
3340 m1 = -lsb; /* m1 == 0xfffffffffff00000 */
3341 c = ~c; /* c == 0x00fff000000fffff */
3342 c &= -lsb; /* c == 0x00fff00000000000 */
3343 lsb = c & -c; /* lsb == 0x0000100000000000 */
3344 c = ~c; /* c == 0xff000fffffffffff */
3345 c &= -lsb; /* c == 0xff00000000000000 */
3346 shift = 0;
3347 while ((lsb >>= 1) != 0)
3348 shift++; /* shift == 44 on exit from loop */
3349 m1 <<= 64 - shift; /* m1 == 0xffffff0000000000 */
3350 m1 = ~m1; /* m1 == 0x000000ffffffffff */
3351 m2 = ~c; /* m2 == 0x00ffffffffffffff */
3352 }
3353 else
3354 {
3355 /* Assume c initially something like 0xff000f0000000000. The idea
3356 is to rotate the word so that the ^^^ middle group of zeros
3357 is at the LS end and can be cleared with an rldicr mask. We then
3358 rotate back and clear off the LS group of ^^^^^^^^^^ zeros with
3359 a second rldicr. */
3360 lsb = c & -c; /* lsb == 0x0000010000000000 */
3361 m2 = -lsb; /* m2 == 0xffffff0000000000 */
3362 c = ~c; /* c == 0x00fff0ffffffffff */
3363 c &= -lsb; /* c == 0x00fff00000000000 */
3364 lsb = c & -c; /* lsb == 0x0000100000000000 */
3365 c = ~c; /* c == 0xff000fffffffffff */
3366 c &= -lsb; /* c == 0xff00000000000000 */
3367 shift = 0;
3368 while ((lsb >>= 1) != 0)
3369 shift++; /* shift == 44 on exit from loop */
3370 m1 = ~c; /* m1 == 0x00ffffffffffffff */
3371 m1 >>= shift; /* m1 == 0x0000000000000fff */
3372 m1 = ~m1; /* m1 == 0xfffffffffffff000 */
3373 }
3374
3375 /* Note that when we only have two 0->1 and 1->0 transitions, one of the
3376 masks will be all 1's. We are guaranteed more than one transition. */
3377 out[0] = GEN_INT (64 - shift);
3378 out[1] = GEN_INT (m1);
3379 out[2] = GEN_INT (shift);
3380 out[3] = GEN_INT (m2);
3381 #else
3382 (void)in;
3383 (void)out;
3384 gcc_unreachable ();
3385 #endif
3386 }
3387
3388 /* Return TRUE if OP is an invalid SUBREG operation on the e500. */
3389
3390 bool
3391 invalid_e500_subreg (rtx op, enum machine_mode mode)
3392 {
3393 if (TARGET_E500_DOUBLE)
3394 {
3395 /* Reject (subreg:SI (reg:DF)); likewise with subreg:DI or
3396 subreg:TI and reg:TF. Decimal float modes are like integer
3397 modes (only low part of each register used) for this
3398 purpose. */
3399 if (GET_CODE (op) == SUBREG
3400 && (mode == SImode || mode == DImode || mode == TImode
3401 || mode == DDmode || mode == TDmode)
3402 && REG_P (SUBREG_REG (op))
3403 && (GET_MODE (SUBREG_REG (op)) == DFmode
3404 || GET_MODE (SUBREG_REG (op)) == TFmode))
3405 return true;
3406
3407 /* Reject (subreg:DF (reg:DI)); likewise with subreg:TF and
3408 reg:TI. */
3409 if (GET_CODE (op) == SUBREG
3410 && (mode == DFmode || mode == TFmode)
3411 && REG_P (SUBREG_REG (op))
3412 && (GET_MODE (SUBREG_REG (op)) == DImode
3413 || GET_MODE (SUBREG_REG (op)) == TImode
3414 || GET_MODE (SUBREG_REG (op)) == DDmode
3415 || GET_MODE (SUBREG_REG (op)) == TDmode))
3416 return true;
3417 }
3418
3419 if (TARGET_SPE
3420 && GET_CODE (op) == SUBREG
3421 && mode == SImode
3422 && REG_P (SUBREG_REG (op))
3423 && SPE_VECTOR_MODE (GET_MODE (SUBREG_REG (op))))
3424 return true;
3425
3426 return false;
3427 }
3428
3429 /* AIX increases natural record alignment to doubleword if the first
3430 field is an FP double while the FP fields remain word aligned. */
3431
3432 unsigned int
3433 rs6000_special_round_type_align (tree type, unsigned int computed,
3434 unsigned int specified)
3435 {
3436 unsigned int align = MAX (computed, specified);
3437 tree field = TYPE_FIELDS (type);
3438
3439 /* Skip all non field decls */
3440 while (field != NULL && TREE_CODE (field) != FIELD_DECL)
3441 field = TREE_CHAIN (field);
3442
3443 if (field != NULL && field != type)
3444 {
3445 type = TREE_TYPE (field);
3446 while (TREE_CODE (type) == ARRAY_TYPE)
3447 type = TREE_TYPE (type);
3448
3449 if (type != error_mark_node && TYPE_MODE (type) == DFmode)
3450 align = MAX (align, 64);
3451 }
3452
3453 return align;
3454 }
3455
3456 /* Darwin increases record alignment to the natural alignment of
3457 the first field. */
3458
3459 unsigned int
3460 darwin_rs6000_special_round_type_align (tree type, unsigned int computed,
3461 unsigned int specified)
3462 {
3463 unsigned int align = MAX (computed, specified);
3464
3465 if (TYPE_PACKED (type))
3466 return align;
3467
3468 /* Find the first field, looking down into aggregates. */
3469 do {
3470 tree field = TYPE_FIELDS (type);
3471 /* Skip all non field decls */
3472 while (field != NULL && TREE_CODE (field) != FIELD_DECL)
3473 field = TREE_CHAIN (field);
3474 if (! field)
3475 break;
3476 type = TREE_TYPE (field);
3477 while (TREE_CODE (type) == ARRAY_TYPE)
3478 type = TREE_TYPE (type);
3479 } while (AGGREGATE_TYPE_P (type));
3480
3481 if (! AGGREGATE_TYPE_P (type) && type != error_mark_node)
3482 align = MAX (align, TYPE_ALIGN (type));
3483
3484 return align;
3485 }
3486
3487 /* Return 1 for an operand in small memory on V.4/eabi. */
3488
3489 int
3490 small_data_operand (rtx op ATTRIBUTE_UNUSED,
3491 enum machine_mode mode ATTRIBUTE_UNUSED)
3492 {
3493 #if TARGET_ELF
3494 rtx sym_ref;
3495
3496 if (rs6000_sdata == SDATA_NONE || rs6000_sdata == SDATA_DATA)
3497 return 0;
3498
3499 if (DEFAULT_ABI != ABI_V4)
3500 return 0;
3501
3502 /* Vector and float memory instructions have a limited offset on the
3503 SPE, so using a vector or float variable directly as an operand is
3504 not useful. */
3505 if (TARGET_SPE
3506 && (SPE_VECTOR_MODE (mode) || FLOAT_MODE_P (mode)))
3507 return 0;
3508
3509 if (GET_CODE (op) == SYMBOL_REF)
3510 sym_ref = op;
3511
3512 else if (GET_CODE (op) != CONST
3513 || GET_CODE (XEXP (op, 0)) != PLUS
3514 || GET_CODE (XEXP (XEXP (op, 0), 0)) != SYMBOL_REF
3515 || GET_CODE (XEXP (XEXP (op, 0), 1)) != CONST_INT)
3516 return 0;
3517
3518 else
3519 {
3520 rtx sum = XEXP (op, 0);
3521 HOST_WIDE_INT summand;
3522
3523 /* We have to be careful here, because it is the referenced address
3524 that must be 32k from _SDA_BASE_, not just the symbol. */
3525 summand = INTVAL (XEXP (sum, 1));
3526 if (summand < 0 || (unsigned HOST_WIDE_INT) summand > g_switch_value)
3527 return 0;
3528
3529 sym_ref = XEXP (sum, 0);
3530 }
3531
3532 return SYMBOL_REF_SMALL_P (sym_ref);
3533 #else
3534 return 0;
3535 #endif
3536 }
3537
3538 /* Return true if either operand is a general purpose register. */
3539
3540 bool
3541 gpr_or_gpr_p (rtx op0, rtx op1)
3542 {
3543 return ((REG_P (op0) && INT_REGNO_P (REGNO (op0)))
3544 || (REG_P (op1) && INT_REGNO_P (REGNO (op1))));
3545 }
3546
3547 \f
3548 /* Subroutines of rs6000_legitimize_address and rs6000_legitimate_address. */
3549
3550 static bool
3551 constant_pool_expr_p (rtx op)
3552 {
3553 rtx base, offset;
3554
3555 split_const (op, &base, &offset);
3556 return (GET_CODE (base) == SYMBOL_REF
3557 && CONSTANT_POOL_ADDRESS_P (base)
3558 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (base), Pmode));
3559 }
3560
3561 bool
3562 toc_relative_expr_p (rtx op)
3563 {
3564 rtx base, offset;
3565
3566 if (GET_CODE (op) != CONST)
3567 return false;
3568
3569 split_const (op, &base, &offset);
3570 return (GET_CODE (base) == UNSPEC
3571 && XINT (base, 1) == UNSPEC_TOCREL);
3572 }
3573
3574 bool
3575 legitimate_constant_pool_address_p (rtx x)
3576 {
3577 return (TARGET_TOC
3578 && GET_CODE (x) == PLUS
3579 && GET_CODE (XEXP (x, 0)) == REG
3580 && (TARGET_MINIMAL_TOC || REGNO (XEXP (x, 0)) == TOC_REGISTER)
3581 && toc_relative_expr_p (XEXP (x, 1)));
3582 }
3583
3584 static bool
3585 legitimate_small_data_p (enum machine_mode mode, rtx x)
3586 {
3587 return (DEFAULT_ABI == ABI_V4
3588 && !flag_pic && !TARGET_TOC
3589 && (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST)
3590 && small_data_operand (x, mode));
3591 }
3592
3593 /* SPE offset addressing is limited to 5-bits worth of double words. */
3594 #define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
3595
3596 bool
3597 rs6000_legitimate_offset_address_p (enum machine_mode mode, rtx x, int strict)
3598 {
3599 unsigned HOST_WIDE_INT offset, extra;
3600
3601 if (GET_CODE (x) != PLUS)
3602 return false;
3603 if (GET_CODE (XEXP (x, 0)) != REG)
3604 return false;
3605 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
3606 return false;
3607 if (legitimate_constant_pool_address_p (x))
3608 return true;
3609 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
3610 return false;
3611
3612 offset = INTVAL (XEXP (x, 1));
3613 extra = 0;
3614 switch (mode)
3615 {
3616 case V16QImode:
3617 case V8HImode:
3618 case V4SFmode:
3619 case V4SImode:
3620 /* AltiVec vector modes. Only reg+reg addressing is valid and
3621 constant offset zero should not occur due to canonicalization. */
3622 return false;
3623
3624 case V4HImode:
3625 case V2SImode:
3626 case V1DImode:
3627 case V2SFmode:
3628 /* Paired vector modes. Only reg+reg addressing is valid and
3629 constant offset zero should not occur due to canonicalization. */
3630 if (TARGET_PAIRED_FLOAT)
3631 return false;
3632 /* SPE vector modes. */
3633 return SPE_CONST_OFFSET_OK (offset);
3634
3635 case DFmode:
3636 if (TARGET_E500_DOUBLE)
3637 return SPE_CONST_OFFSET_OK (offset);
3638
3639 case DDmode:
3640 case DImode:
3641 /* On e500v2, we may have:
3642
3643 (subreg:DF (mem:DI (plus (reg) (const_int))) 0).
3644
3645 Which gets addressed with evldd instructions. */
3646 if (TARGET_E500_DOUBLE)
3647 return SPE_CONST_OFFSET_OK (offset);
3648
3649 if (mode == DFmode || mode == DDmode || !TARGET_POWERPC64)
3650 extra = 4;
3651 else if (offset & 3)
3652 return false;
3653 break;
3654
3655 case TFmode:
3656 if (TARGET_E500_DOUBLE)
3657 return (SPE_CONST_OFFSET_OK (offset)
3658 && SPE_CONST_OFFSET_OK (offset + 8));
3659
3660 case TDmode:
3661 case TImode:
3662 if (mode == TFmode || mode == TDmode || !TARGET_POWERPC64)
3663 extra = 12;
3664 else if (offset & 3)
3665 return false;
3666 else
3667 extra = 8;
3668 break;
3669
3670 default:
3671 break;
3672 }
3673
3674 offset += 0x8000;
3675 return (offset < 0x10000) && (offset + extra < 0x10000);
3676 }
3677
3678 bool
3679 legitimate_indexed_address_p (rtx x, int strict)
3680 {
3681 rtx op0, op1;
3682
3683 if (GET_CODE (x) != PLUS)
3684 return false;
3685
3686 op0 = XEXP (x, 0);
3687 op1 = XEXP (x, 1);
3688
3689 /* Recognize the rtl generated by reload which we know will later be
3690 replaced with proper base and index regs. */
3691 if (!strict
3692 && reload_in_progress
3693 && (REG_P (op0) || GET_CODE (op0) == PLUS)
3694 && REG_P (op1))
3695 return true;
3696
3697 return (REG_P (op0) && REG_P (op1)
3698 && ((INT_REG_OK_FOR_BASE_P (op0, strict)
3699 && INT_REG_OK_FOR_INDEX_P (op1, strict))
3700 || (INT_REG_OK_FOR_BASE_P (op1, strict)
3701 && INT_REG_OK_FOR_INDEX_P (op0, strict))));
3702 }
3703
3704 inline bool
3705 legitimate_indirect_address_p (rtx x, int strict)
3706 {
3707 return GET_CODE (x) == REG && INT_REG_OK_FOR_BASE_P (x, strict);
3708 }
3709
3710 bool
3711 macho_lo_sum_memory_operand (rtx x, enum machine_mode mode)
3712 {
3713 if (!TARGET_MACHO || !flag_pic
3714 || mode != SImode || GET_CODE (x) != MEM)
3715 return false;
3716 x = XEXP (x, 0);
3717
3718 if (GET_CODE (x) != LO_SUM)
3719 return false;
3720 if (GET_CODE (XEXP (x, 0)) != REG)
3721 return false;
3722 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 0))
3723 return false;
3724 x = XEXP (x, 1);
3725
3726 return CONSTANT_P (x);
3727 }
3728
3729 static bool
3730 legitimate_lo_sum_address_p (enum machine_mode mode, rtx x, int strict)
3731 {
3732 if (GET_CODE (x) != LO_SUM)
3733 return false;
3734 if (GET_CODE (XEXP (x, 0)) != REG)
3735 return false;
3736 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
3737 return false;
3738 /* Restrict addressing for DI because of our SUBREG hackery. */
3739 if (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
3740 || mode == DDmode || mode == TDmode
3741 || mode == DImode))
3742 return false;
3743 x = XEXP (x, 1);
3744
3745 if (TARGET_ELF || TARGET_MACHO)
3746 {
3747 if (DEFAULT_ABI != ABI_AIX && DEFAULT_ABI != ABI_DARWIN && flag_pic)
3748 return false;
3749 if (TARGET_TOC)
3750 return false;
3751 if (GET_MODE_NUNITS (mode) != 1)
3752 return false;
3753 if (GET_MODE_BITSIZE (mode) > 64
3754 || (GET_MODE_BITSIZE (mode) > 32 && !TARGET_POWERPC64
3755 && !(TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT
3756 && (mode == DFmode || mode == DDmode))))
3757 return false;
3758
3759 return CONSTANT_P (x);
3760 }
3761
3762 return false;
3763 }
3764
3765
3766 /* Try machine-dependent ways of modifying an illegitimate address
3767 to be legitimate. If we find one, return the new, valid address.
3768 This is used from only one place: `memory_address' in explow.c.
3769
3770 OLDX is the address as it was before break_out_memory_refs was
3771 called. In some cases it is useful to look at this to decide what
3772 needs to be done.
3773
3774 MODE is passed so that this function can use GO_IF_LEGITIMATE_ADDRESS.
3775
3776 It is always safe for this function to do nothing. It exists to
3777 recognize opportunities to optimize the output.
3778
3779 On RS/6000, first check for the sum of a register with a constant
3780 integer that is out of range. If so, generate code to add the
3781 constant with the low-order 16 bits masked to the register and force
3782 this result into another register (this can be done with `cau').
3783 Then generate an address of REG+(CONST&0xffff), allowing for the
3784 possibility of bit 16 being a one.
3785
3786 Then check for the sum of a register and something not constant, try to
3787 load the other things into a register and return the sum. */
3788
3789 rtx
3790 rs6000_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
3791 enum machine_mode mode)
3792 {
3793 if (GET_CODE (x) == SYMBOL_REF)
3794 {
3795 enum tls_model model = SYMBOL_REF_TLS_MODEL (x);
3796 if (model != 0)
3797 return rs6000_legitimize_tls_address (x, model);
3798 }
3799
3800 if (GET_CODE (x) == PLUS
3801 && GET_CODE (XEXP (x, 0)) == REG
3802 && GET_CODE (XEXP (x, 1)) == CONST_INT
3803 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 1)) + 0x8000) >= 0x10000
3804 && !(SPE_VECTOR_MODE (mode)
3805 || ALTIVEC_VECTOR_MODE (mode)
3806 || (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
3807 || mode == DImode || mode == DDmode
3808 || mode == TDmode))))
3809 {
3810 HOST_WIDE_INT high_int, low_int;
3811 rtx sum;
3812 low_int = ((INTVAL (XEXP (x, 1)) & 0xffff) ^ 0x8000) - 0x8000;
3813 high_int = INTVAL (XEXP (x, 1)) - low_int;
3814 sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (x, 0),
3815 GEN_INT (high_int)), 0);
3816 return gen_rtx_PLUS (Pmode, sum, GEN_INT (low_int));
3817 }
3818 else if (GET_CODE (x) == PLUS
3819 && GET_CODE (XEXP (x, 0)) == REG
3820 && GET_CODE (XEXP (x, 1)) != CONST_INT
3821 && GET_MODE_NUNITS (mode) == 1
3822 && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
3823 || TARGET_POWERPC64
3824 || ((mode != DImode && mode != DFmode && mode != DDmode)
3825 || (TARGET_E500_DOUBLE && mode != DDmode)))
3826 && (TARGET_POWERPC64 || mode != DImode)
3827 && mode != TImode
3828 && mode != TFmode
3829 && mode != TDmode)
3830 {
3831 return gen_rtx_PLUS (Pmode, XEXP (x, 0),
3832 force_reg (Pmode, force_operand (XEXP (x, 1), 0)));
3833 }
3834 else if (ALTIVEC_VECTOR_MODE (mode))
3835 {
3836 rtx reg;
3837
3838 /* Make sure both operands are registers. */
3839 if (GET_CODE (x) == PLUS)
3840 return gen_rtx_PLUS (Pmode, force_reg (Pmode, XEXP (x, 0)),
3841 force_reg (Pmode, XEXP (x, 1)));
3842
3843 reg = force_reg (Pmode, x);
3844 return reg;
3845 }
3846 else if (SPE_VECTOR_MODE (mode)
3847 || (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
3848 || mode == DDmode || mode == TDmode
3849 || mode == DImode)))
3850 {
3851 if (mode == DImode)
3852 return NULL_RTX;
3853 /* We accept [reg + reg] and [reg + OFFSET]. */
3854
3855 if (GET_CODE (x) == PLUS)
3856 {
3857 rtx op1 = XEXP (x, 0);
3858 rtx op2 = XEXP (x, 1);
3859 rtx y;
3860
3861 op1 = force_reg (Pmode, op1);
3862
3863 if (GET_CODE (op2) != REG
3864 && (GET_CODE (op2) != CONST_INT
3865 || !SPE_CONST_OFFSET_OK (INTVAL (op2))
3866 || (GET_MODE_SIZE (mode) > 8
3867 && !SPE_CONST_OFFSET_OK (INTVAL (op2) + 8))))
3868 op2 = force_reg (Pmode, op2);
3869
3870 /* We can't always do [reg + reg] for these, because [reg +
3871 reg + offset] is not a legitimate addressing mode. */
3872 y = gen_rtx_PLUS (Pmode, op1, op2);
3873
3874 if ((GET_MODE_SIZE (mode) > 8 || mode == DDmode) && REG_P (op2))
3875 return force_reg (Pmode, y);
3876 else
3877 return y;
3878 }
3879
3880 return force_reg (Pmode, x);
3881 }
3882 else if (TARGET_ELF
3883 && TARGET_32BIT
3884 && TARGET_NO_TOC
3885 && ! flag_pic
3886 && GET_CODE (x) != CONST_INT
3887 && GET_CODE (x) != CONST_DOUBLE
3888 && CONSTANT_P (x)
3889 && GET_MODE_NUNITS (mode) == 1
3890 && (GET_MODE_BITSIZE (mode) <= 32
3891 || ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
3892 && (mode == DFmode || mode == DDmode))))
3893 {
3894 rtx reg = gen_reg_rtx (Pmode);
3895 emit_insn (gen_elf_high (reg, x));
3896 return gen_rtx_LO_SUM (Pmode, reg, x);
3897 }
3898 else if (TARGET_MACHO && TARGET_32BIT && TARGET_NO_TOC
3899 && ! flag_pic
3900 #if TARGET_MACHO
3901 && ! MACHO_DYNAMIC_NO_PIC_P
3902 #endif
3903 && GET_CODE (x) != CONST_INT
3904 && GET_CODE (x) != CONST_DOUBLE
3905 && CONSTANT_P (x)
3906 && GET_MODE_NUNITS (mode) == 1
3907 && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
3908 || (mode != DFmode && mode != DDmode))
3909 && mode != DImode
3910 && mode != TImode)
3911 {
3912 rtx reg = gen_reg_rtx (Pmode);
3913 emit_insn (gen_macho_high (reg, x));
3914 return gen_rtx_LO_SUM (Pmode, reg, x);
3915 }
3916 else if (TARGET_TOC
3917 && GET_CODE (x) == SYMBOL_REF
3918 && constant_pool_expr_p (x)
3919 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), Pmode))
3920 {
3921 return create_TOC_reference (x);
3922 }
3923 else
3924 return NULL_RTX;
3925 }
3926
3927 /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
3928 We need to emit DTP-relative relocations. */
3929
3930 static void
3931 rs6000_output_dwarf_dtprel (FILE *file, int size, rtx x)
3932 {
3933 switch (size)
3934 {
3935 case 4:
3936 fputs ("\t.long\t", file);
3937 break;
3938 case 8:
3939 fputs (DOUBLE_INT_ASM_OP, file);
3940 break;
3941 default:
3942 gcc_unreachable ();
3943 }
3944 output_addr_const (file, x);
3945 fputs ("@dtprel+0x8000", file);
3946 }
3947
3948 /* Construct the SYMBOL_REF for the tls_get_addr function. */
3949
3950 static GTY(()) rtx rs6000_tls_symbol;
3951 static rtx
3952 rs6000_tls_get_addr (void)
3953 {
3954 if (!rs6000_tls_symbol)
3955 rs6000_tls_symbol = init_one_libfunc ("__tls_get_addr");
3956
3957 return rs6000_tls_symbol;
3958 }
3959
3960 /* Construct the SYMBOL_REF for TLS GOT references. */
3961
3962 static GTY(()) rtx rs6000_got_symbol;
3963 static rtx
3964 rs6000_got_sym (void)
3965 {
3966 if (!rs6000_got_symbol)
3967 {
3968 rs6000_got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
3969 SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_LOCAL;
3970 SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_EXTERNAL;
3971 }
3972
3973 return rs6000_got_symbol;
3974 }
3975
3976 /* ADDR contains a thread-local SYMBOL_REF. Generate code to compute
3977 this (thread-local) address. */
3978
3979 static rtx
3980 rs6000_legitimize_tls_address (rtx addr, enum tls_model model)
3981 {
3982 rtx dest, insn;
3983
3984 dest = gen_reg_rtx (Pmode);
3985 if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 16)
3986 {
3987 rtx tlsreg;
3988
3989 if (TARGET_64BIT)
3990 {
3991 tlsreg = gen_rtx_REG (Pmode, 13);
3992 insn = gen_tls_tprel_64 (dest, tlsreg, addr);
3993 }
3994 else
3995 {
3996 tlsreg = gen_rtx_REG (Pmode, 2);
3997 insn = gen_tls_tprel_32 (dest, tlsreg, addr);
3998 }
3999 emit_insn (insn);
4000 }
4001 else if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 32)
4002 {
4003 rtx tlsreg, tmp;
4004
4005 tmp = gen_reg_rtx (Pmode);
4006 if (TARGET_64BIT)
4007 {
4008 tlsreg = gen_rtx_REG (Pmode, 13);
4009 insn = gen_tls_tprel_ha_64 (tmp, tlsreg, addr);
4010 }
4011 else
4012 {
4013 tlsreg = gen_rtx_REG (Pmode, 2);
4014 insn = gen_tls_tprel_ha_32 (tmp, tlsreg, addr);
4015 }
4016 emit_insn (insn);
4017 if (TARGET_64BIT)
4018 insn = gen_tls_tprel_lo_64 (dest, tmp, addr);
4019 else
4020 insn = gen_tls_tprel_lo_32 (dest, tmp, addr);
4021 emit_insn (insn);
4022 }
4023 else
4024 {
4025 rtx r3, got, tga, tmp1, tmp2, eqv;
4026
4027 /* We currently use relocations like @got@tlsgd for tls, which
4028 means the linker will handle allocation of tls entries, placing
4029 them in the .got section. So use a pointer to the .got section,
4030 not one to secondary TOC sections used by 64-bit -mminimal-toc,
4031 or to secondary GOT sections used by 32-bit -fPIC. */
4032 if (TARGET_64BIT)
4033 got = gen_rtx_REG (Pmode, 2);
4034 else
4035 {
4036 if (flag_pic == 1)
4037 got = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
4038 else
4039 {
4040 rtx gsym = rs6000_got_sym ();
4041 got = gen_reg_rtx (Pmode);
4042 if (flag_pic == 0)
4043 rs6000_emit_move (got, gsym, Pmode);
4044 else
4045 {
4046 rtx tmp3, mem;
4047 rtx first, last;
4048
4049 tmp1 = gen_reg_rtx (Pmode);
4050 tmp2 = gen_reg_rtx (Pmode);
4051 tmp3 = gen_reg_rtx (Pmode);
4052 mem = gen_const_mem (Pmode, tmp1);
4053
4054 first = emit_insn (gen_load_toc_v4_PIC_1b (gsym));
4055 emit_move_insn (tmp1,
4056 gen_rtx_REG (Pmode, LR_REGNO));
4057 emit_move_insn (tmp2, mem);
4058 emit_insn (gen_addsi3 (tmp3, tmp1, tmp2));
4059 last = emit_move_insn (got, tmp3);
4060 set_unique_reg_note (last, REG_EQUAL, gsym);
4061 }
4062 }
4063 }
4064
4065 if (model == TLS_MODEL_GLOBAL_DYNAMIC)
4066 {
4067 r3 = gen_rtx_REG (Pmode, 3);
4068 tga = rs6000_tls_get_addr ();
4069
4070 if (DEFAULT_ABI == ABI_AIX && TARGET_64BIT)
4071 insn = gen_tls_gd_aix64 (r3, got, addr, tga, const0_rtx);
4072 else if (DEFAULT_ABI == ABI_AIX && !TARGET_64BIT)
4073 insn = gen_tls_gd_aix32 (r3, got, addr, tga, const0_rtx);
4074 else if (DEFAULT_ABI == ABI_V4)
4075 insn = gen_tls_gd_sysvsi (r3, got, addr, tga, const0_rtx);
4076 else
4077 gcc_unreachable ();
4078
4079 start_sequence ();
4080 insn = emit_call_insn (insn);
4081 RTL_CONST_CALL_P (insn) = 1;
4082 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r3);
4083 if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
4084 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
4085 insn = get_insns ();
4086 end_sequence ();
4087 emit_libcall_block (insn, dest, r3, addr);
4088 }
4089 else if (model == TLS_MODEL_LOCAL_DYNAMIC)
4090 {
4091 r3 = gen_rtx_REG (Pmode, 3);
4092 tga = rs6000_tls_get_addr ();
4093
4094 if (DEFAULT_ABI == ABI_AIX && TARGET_64BIT)
4095 insn = gen_tls_ld_aix64 (r3, got, tga, const0_rtx);
4096 else if (DEFAULT_ABI == ABI_AIX && !TARGET_64BIT)
4097 insn = gen_tls_ld_aix32 (r3, got, tga, const0_rtx);
4098 else if (DEFAULT_ABI == ABI_V4)
4099 insn = gen_tls_ld_sysvsi (r3, got, tga, const0_rtx);
4100 else
4101 gcc_unreachable ();
4102
4103 start_sequence ();
4104 insn = emit_call_insn (insn);
4105 RTL_CONST_CALL_P (insn) = 1;
4106 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r3);
4107 if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
4108 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
4109 insn = get_insns ();
4110 end_sequence ();
4111 tmp1 = gen_reg_rtx (Pmode);
4112 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
4113 UNSPEC_TLSLD);
4114 emit_libcall_block (insn, tmp1, r3, eqv);
4115 if (rs6000_tls_size == 16)
4116 {
4117 if (TARGET_64BIT)
4118 insn = gen_tls_dtprel_64 (dest, tmp1, addr);
4119 else
4120 insn = gen_tls_dtprel_32 (dest, tmp1, addr);
4121 }
4122 else if (rs6000_tls_size == 32)
4123 {
4124 tmp2 = gen_reg_rtx (Pmode);
4125 if (TARGET_64BIT)
4126 insn = gen_tls_dtprel_ha_64 (tmp2, tmp1, addr);
4127 else
4128 insn = gen_tls_dtprel_ha_32 (tmp2, tmp1, addr);
4129 emit_insn (insn);
4130 if (TARGET_64BIT)
4131 insn = gen_tls_dtprel_lo_64 (dest, tmp2, addr);
4132 else
4133 insn = gen_tls_dtprel_lo_32 (dest, tmp2, addr);
4134 }
4135 else
4136 {
4137 tmp2 = gen_reg_rtx (Pmode);
4138 if (TARGET_64BIT)
4139 insn = gen_tls_got_dtprel_64 (tmp2, got, addr);
4140 else
4141 insn = gen_tls_got_dtprel_32 (tmp2, got, addr);
4142 emit_insn (insn);
4143 insn = gen_rtx_SET (Pmode, dest,
4144 gen_rtx_PLUS (Pmode, tmp2, tmp1));
4145 }
4146 emit_insn (insn);
4147 }
4148 else
4149 {
4150 /* IE, or 64-bit offset LE. */
4151 tmp2 = gen_reg_rtx (Pmode);
4152 if (TARGET_64BIT)
4153 insn = gen_tls_got_tprel_64 (tmp2, got, addr);
4154 else
4155 insn = gen_tls_got_tprel_32 (tmp2, got, addr);
4156 emit_insn (insn);
4157 if (TARGET_64BIT)
4158 insn = gen_tls_tls_64 (dest, tmp2, addr);
4159 else
4160 insn = gen_tls_tls_32 (dest, tmp2, addr);
4161 emit_insn (insn);
4162 }
4163 }
4164
4165 return dest;
4166 }
4167
4168 /* Return 1 if X contains a thread-local symbol. */
4169
4170 bool
4171 rs6000_tls_referenced_p (rtx x)
4172 {
4173 if (! TARGET_HAVE_TLS)
4174 return false;
4175
4176 return for_each_rtx (&x, &rs6000_tls_symbol_ref_1, 0);
4177 }
4178
4179 /* Return 1 if *X is a thread-local symbol. This is the same as
4180 rs6000_tls_symbol_ref except for the type of the unused argument. */
4181
4182 static int
4183 rs6000_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
4184 {
4185 return RS6000_SYMBOL_REF_TLS_P (*x);
4186 }
4187
4188 /* The convention appears to be to define this wherever it is used.
4189 With legitimize_reload_address now defined here, REG_MODE_OK_FOR_BASE_P
4190 is now used here. */
4191 #ifndef REG_MODE_OK_FOR_BASE_P
4192 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
4193 #endif
4194
4195 /* Our implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to
4196 replace the input X, or the original X if no replacement is called for.
4197 The output parameter *WIN is 1 if the calling macro should goto WIN,
4198 0 if it should not.
4199
4200 For RS/6000, we wish to handle large displacements off a base
4201 register by splitting the addend across an addiu/addis and the mem insn.
4202 This cuts number of extra insns needed from 3 to 1.
4203
4204 On Darwin, we use this to generate code for floating point constants.
4205 A movsf_low is generated so we wind up with 2 instructions rather than 3.
4206 The Darwin code is inside #if TARGET_MACHO because only then are the
4207 machopic_* functions defined. */
4208 rtx
4209 rs6000_legitimize_reload_address (rtx x, enum machine_mode mode,
4210 int opnum, int type,
4211 int ind_levels ATTRIBUTE_UNUSED, int *win)
4212 {
4213 /* We must recognize output that we have already generated ourselves. */
4214 if (GET_CODE (x) == PLUS
4215 && GET_CODE (XEXP (x, 0)) == PLUS
4216 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
4217 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4218 && GET_CODE (XEXP (x, 1)) == CONST_INT)
4219 {
4220 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
4221 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
4222 opnum, (enum reload_type)type);
4223 *win = 1;
4224 return x;
4225 }
4226
4227 #if TARGET_MACHO
4228 if (DEFAULT_ABI == ABI_DARWIN && flag_pic
4229 && GET_CODE (x) == LO_SUM
4230 && GET_CODE (XEXP (x, 0)) == PLUS
4231 && XEXP (XEXP (x, 0), 0) == pic_offset_table_rtx
4232 && GET_CODE (XEXP (XEXP (x, 0), 1)) == HIGH
4233 && XEXP (XEXP (XEXP (x, 0), 1), 0) == XEXP (x, 1)
4234 && machopic_operand_p (XEXP (x, 1)))
4235 {
4236 /* Result of previous invocation of this function on Darwin
4237 floating point constant. */
4238 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
4239 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
4240 opnum, (enum reload_type)type);
4241 *win = 1;
4242 return x;
4243 }
4244 #endif
4245
4246 /* Force ld/std non-word aligned offset into base register by wrapping
4247 in offset 0. */
4248 if (GET_CODE (x) == PLUS
4249 && GET_CODE (XEXP (x, 0)) == REG
4250 && REGNO (XEXP (x, 0)) < 32
4251 && REG_MODE_OK_FOR_BASE_P (XEXP (x, 0), mode)
4252 && GET_CODE (XEXP (x, 1)) == CONST_INT
4253 && (INTVAL (XEXP (x, 1)) & 3) != 0
4254 && !ALTIVEC_VECTOR_MODE (mode)
4255 && GET_MODE_SIZE (mode) >= UNITS_PER_WORD
4256 && TARGET_POWERPC64)
4257 {
4258 x = gen_rtx_PLUS (GET_MODE (x), x, GEN_INT (0));
4259 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
4260 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
4261 opnum, (enum reload_type) type);
4262 *win = 1;
4263 return x;
4264 }
4265
4266 if (GET_CODE (x) == PLUS
4267 && GET_CODE (XEXP (x, 0)) == REG
4268 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
4269 && REG_MODE_OK_FOR_BASE_P (XEXP (x, 0), mode)
4270 && GET_CODE (XEXP (x, 1)) == CONST_INT
4271 && !SPE_VECTOR_MODE (mode)
4272 && !(TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
4273 || mode == DDmode || mode == TDmode
4274 || mode == DImode))
4275 && !ALTIVEC_VECTOR_MODE (mode))
4276 {
4277 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
4278 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;
4279 HOST_WIDE_INT high
4280 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;
4281
4282 /* Check for 32-bit overflow. */
4283 if (high + low != val)
4284 {
4285 *win = 0;
4286 return x;
4287 }
4288
4289 /* Reload the high part into a base reg; leave the low part
4290 in the mem directly. */
4291
4292 x = gen_rtx_PLUS (GET_MODE (x),
4293 gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
4294 GEN_INT (high)),
4295 GEN_INT (low));
4296
4297 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
4298 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
4299 opnum, (enum reload_type)type);
4300 *win = 1;
4301 return x;
4302 }
4303
4304 if (GET_CODE (x) == SYMBOL_REF
4305 && !ALTIVEC_VECTOR_MODE (mode)
4306 && !SPE_VECTOR_MODE (mode)
4307 #if TARGET_MACHO
4308 && DEFAULT_ABI == ABI_DARWIN
4309 && (flag_pic || MACHO_DYNAMIC_NO_PIC_P)
4310 #else
4311 && DEFAULT_ABI == ABI_V4
4312 && !flag_pic
4313 #endif
4314 /* Don't do this for TFmode or TDmode, since the result isn't offsettable.
4315 The same goes for DImode without 64-bit gprs and DFmode and DDmode
4316 without fprs. */
4317 && mode != TFmode
4318 && mode != TDmode
4319 && (mode != DImode || TARGET_POWERPC64)
4320 && ((mode != DFmode && mode != DDmode) || TARGET_POWERPC64
4321 || (TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)))
4322 {
4323 #if TARGET_MACHO
4324 if (flag_pic)
4325 {
4326 rtx offset = machopic_gen_offset (x);
4327 x = gen_rtx_LO_SUM (GET_MODE (x),
4328 gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
4329 gen_rtx_HIGH (Pmode, offset)), offset);
4330 }
4331 else
4332 #endif
4333 x = gen_rtx_LO_SUM (GET_MODE (x),
4334 gen_rtx_HIGH (Pmode, x), x);
4335
4336 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
4337 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
4338 opnum, (enum reload_type)type);
4339 *win = 1;
4340 return x;
4341 }
4342
4343 /* Reload an offset address wrapped by an AND that represents the
4344 masking of the lower bits. Strip the outer AND and let reload
4345 convert the offset address into an indirect address. */
4346 if (TARGET_ALTIVEC
4347 && ALTIVEC_VECTOR_MODE (mode)
4348 && GET_CODE (x) == AND
4349 && GET_CODE (XEXP (x, 0)) == PLUS
4350 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
4351 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4352 && GET_CODE (XEXP (x, 1)) == CONST_INT
4353 && INTVAL (XEXP (x, 1)) == -16)
4354 {
4355 x = XEXP (x, 0);
4356 *win = 1;
4357 return x;
4358 }
4359
4360 if (TARGET_TOC
4361 && GET_CODE (x) == SYMBOL_REF
4362 && constant_pool_expr_p (x)
4363 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), mode))
4364 {
4365 x = create_TOC_reference (x);
4366 *win = 1;
4367 return x;
4368 }
4369 *win = 0;
4370 return x;
4371 }
4372
4373 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
4374 that is a valid memory address for an instruction.
4375 The MODE argument is the machine mode for the MEM expression
4376 that wants to use this address.
4377
4378 On the RS/6000, there are four valid address: a SYMBOL_REF that
4379 refers to a constant pool entry of an address (or the sum of it
4380 plus a constant), a short (16-bit signed) constant plus a register,
4381 the sum of two registers, or a register indirect, possibly with an
4382 auto-increment. For DFmode, DDmode and DImode with a constant plus
4383 register, we must ensure that both words are addressable or PowerPC64
4384 with offset word aligned.
4385
4386 For modes spanning multiple registers (DFmode and DDmode in 32-bit GPRs,
4387 32-bit DImode, TImode, TFmode, TDmode), indexed addressing cannot be used
4388 because adjacent memory cells are accessed by adding word-sized offsets
4389 during assembly output. */
4390 int
4391 rs6000_legitimate_address (enum machine_mode mode, rtx x, int reg_ok_strict)
4392 {
4393 /* If this is an unaligned stvx/ldvx type address, discard the outer AND. */
4394 if (TARGET_ALTIVEC
4395 && ALTIVEC_VECTOR_MODE (mode)
4396 && GET_CODE (x) == AND
4397 && GET_CODE (XEXP (x, 1)) == CONST_INT
4398 && INTVAL (XEXP (x, 1)) == -16)
4399 x = XEXP (x, 0);
4400
4401 if (RS6000_SYMBOL_REF_TLS_P (x))
4402 return 0;
4403 if (legitimate_indirect_address_p (x, reg_ok_strict))
4404 return 1;
4405 if ((GET_CODE (x) == PRE_INC || GET_CODE (x) == PRE_DEC)
4406 && !ALTIVEC_VECTOR_MODE (mode)
4407 && !SPE_VECTOR_MODE (mode)
4408 && mode != TFmode
4409 && mode != TDmode
4410 /* Restrict addressing for DI because of our SUBREG hackery. */
4411 && !(TARGET_E500_DOUBLE
4412 && (mode == DFmode || mode == DDmode || mode == DImode))
4413 && TARGET_UPDATE
4414 && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict))
4415 return 1;
4416 if (legitimate_small_data_p (mode, x))
4417 return 1;
4418 if (legitimate_constant_pool_address_p (x))
4419 return 1;
4420 /* If not REG_OK_STRICT (before reload) let pass any stack offset. */
4421 if (! reg_ok_strict
4422 && GET_CODE (x) == PLUS
4423 && GET_CODE (XEXP (x, 0)) == REG
4424 && (XEXP (x, 0) == virtual_stack_vars_rtx
4425 || XEXP (x, 0) == arg_pointer_rtx)
4426 && GET_CODE (XEXP (x, 1)) == CONST_INT)
4427 return 1;
4428 if (rs6000_legitimate_offset_address_p (mode, x, reg_ok_strict))
4429 return 1;
4430 if (mode != TImode
4431 && mode != TFmode
4432 && mode != TDmode
4433 && ((TARGET_HARD_FLOAT && TARGET_FPRS)
4434 || TARGET_POWERPC64
4435 || (mode != DFmode && mode != DDmode)
4436 || (TARGET_E500_DOUBLE && mode != DDmode))
4437 && (TARGET_POWERPC64 || mode != DImode)
4438 && legitimate_indexed_address_p (x, reg_ok_strict))
4439 return 1;
4440 if (GET_CODE (x) == PRE_MODIFY
4441 && mode != TImode
4442 && mode != TFmode
4443 && mode != TDmode
4444 && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
4445 || TARGET_POWERPC64
4446 || ((mode != DFmode && mode != DDmode) || TARGET_E500_DOUBLE))
4447 && (TARGET_POWERPC64 || mode != DImode)
4448 && !ALTIVEC_VECTOR_MODE (mode)
4449 && !SPE_VECTOR_MODE (mode)
4450 /* Restrict addressing for DI because of our SUBREG hackery. */
4451 && !(TARGET_E500_DOUBLE
4452 && (mode == DFmode || mode == DDmode || mode == DImode))
4453 && TARGET_UPDATE
4454 && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict)
4455 && (rs6000_legitimate_offset_address_p (mode, XEXP (x, 1), reg_ok_strict)
4456 || legitimate_indexed_address_p (XEXP (x, 1), reg_ok_strict))
4457 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4458 return 1;
4459 if (legitimate_lo_sum_address_p (mode, x, reg_ok_strict))
4460 return 1;
4461 return 0;
4462 }
4463
4464 /* Go to LABEL if ADDR (a legitimate address expression)
4465 has an effect that depends on the machine mode it is used for.
4466
4467 On the RS/6000 this is true of all integral offsets (since AltiVec
4468 modes don't allow them) or is a pre-increment or decrement.
4469
4470 ??? Except that due to conceptual problems in offsettable_address_p
4471 we can't really report the problems of integral offsets. So leave
4472 this assuming that the adjustable offset must be valid for the
4473 sub-words of a TFmode operand, which is what we had before. */
4474
4475 bool
4476 rs6000_mode_dependent_address (rtx addr)
4477 {
4478 switch (GET_CODE (addr))
4479 {
4480 case PLUS:
4481 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
4482 {
4483 unsigned HOST_WIDE_INT val = INTVAL (XEXP (addr, 1));
4484 return val + 12 + 0x8000 >= 0x10000;
4485 }
4486 break;
4487
4488 case LO_SUM:
4489 return true;
4490
4491 /* Auto-increment cases are now treated generically in recog.c. */
4492 case PRE_MODIFY:
4493 return TARGET_UPDATE;
4494
4495 default:
4496 break;
4497 }
4498
4499 return false;
4500 }
4501
4502 /* Implement FIND_BASE_TERM. */
4503
4504 rtx
4505 rs6000_find_base_term (rtx op)
4506 {
4507 rtx base, offset;
4508
4509 split_const (op, &base, &offset);
4510 if (GET_CODE (base) == UNSPEC)
4511 switch (XINT (base, 1))
4512 {
4513 case UNSPEC_TOCREL:
4514 case UNSPEC_MACHOPIC_OFFSET:
4515 /* OP represents SYM [+ OFFSET] - ANCHOR. SYM is the base term
4516 for aliasing purposes. */
4517 return XVECEXP (base, 0, 0);
4518 }
4519
4520 return op;
4521 }
4522
4523 /* More elaborate version of recog's offsettable_memref_p predicate
4524 that works around the ??? note of rs6000_mode_dependent_address.
4525 In particular it accepts
4526
4527 (mem:DI (plus:SI (reg/f:SI 31 31) (const_int 32760 [0x7ff8])))
4528
4529 in 32-bit mode, that the recog predicate rejects. */
4530
4531 bool
4532 rs6000_offsettable_memref_p (rtx op)
4533 {
4534 if (!MEM_P (op))
4535 return false;
4536
4537 /* First mimic offsettable_memref_p. */
4538 if (offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)))
4539 return true;
4540
4541 /* offsettable_address_p invokes rs6000_mode_dependent_address, but
4542 the latter predicate knows nothing about the mode of the memory
4543 reference and, therefore, assumes that it is the largest supported
4544 mode (TFmode). As a consequence, legitimate offsettable memory
4545 references are rejected. rs6000_legitimate_offset_address_p contains
4546 the correct logic for the PLUS case of rs6000_mode_dependent_address. */
4547 return rs6000_legitimate_offset_address_p (GET_MODE (op), XEXP (op, 0), 1);
4548 }
4549
4550 /* Return number of consecutive hard regs needed starting at reg REGNO
4551 to hold something of mode MODE.
4552 This is ordinarily the length in words of a value of mode MODE
4553 but can be less for certain modes in special long registers.
4554
4555 For the SPE, GPRs are 64 bits but only 32 bits are visible in
4556 scalar instructions. The upper 32 bits are only available to the
4557 SIMD instructions.
4558
4559 POWER and PowerPC GPRs hold 32 bits worth;
4560 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
4561
4562 int
4563 rs6000_hard_regno_nregs (int regno, enum machine_mode mode)
4564 {
4565 if (FP_REGNO_P (regno))
4566 return (GET_MODE_SIZE (mode) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD;
4567
4568 if (SPE_SIMD_REGNO_P (regno) && TARGET_SPE && SPE_VECTOR_MODE (mode))
4569 return (GET_MODE_SIZE (mode) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD;
4570
4571 if (ALTIVEC_REGNO_P (regno))
4572 return
4573 (GET_MODE_SIZE (mode) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD;
4574
4575 /* The value returned for SCmode in the E500 double case is 2 for
4576 ABI compatibility; storing an SCmode value in a single register
4577 would require function_arg and rs6000_spe_function_arg to handle
4578 SCmode so as to pass the value correctly in a pair of
4579 registers. */
4580 if (TARGET_E500_DOUBLE && FLOAT_MODE_P (mode) && mode != SCmode
4581 && !DECIMAL_FLOAT_MODE_P (mode))
4582 return (GET_MODE_SIZE (mode) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD;
4583
4584 return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
4585 }
4586
4587 /* Change register usage conditional on target flags. */
4588 void
4589 rs6000_conditional_register_usage (void)
4590 {
4591 int i;
4592
4593 /* Set MQ register fixed (already call_used) if not POWER
4594 architecture (RIOS1, RIOS2, RSC, and PPC601) so that it will not
4595 be allocated. */
4596 if (! TARGET_POWER)
4597 fixed_regs[64] = 1;
4598
4599 /* 64-bit AIX and Linux reserve GPR13 for thread-private data. */
4600 if (TARGET_64BIT)
4601 fixed_regs[13] = call_used_regs[13]
4602 = call_really_used_regs[13] = 1;
4603
4604 /* Conditionally disable FPRs. */
4605 if (TARGET_SOFT_FLOAT || !TARGET_FPRS)
4606 for (i = 32; i < 64; i++)
4607 fixed_regs[i] = call_used_regs[i]
4608 = call_really_used_regs[i] = 1;
4609
4610 /* The TOC register is not killed across calls in a way that is
4611 visible to the compiler. */
4612 if (DEFAULT_ABI == ABI_AIX)
4613 call_really_used_regs[2] = 0;
4614
4615 if (DEFAULT_ABI == ABI_V4
4616 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
4617 && flag_pic == 2)
4618 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
4619
4620 if (DEFAULT_ABI == ABI_V4
4621 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
4622 && flag_pic == 1)
4623 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4624 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4625 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
4626
4627 if (DEFAULT_ABI == ABI_DARWIN
4628 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4629 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4630 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4631 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
4632
4633 if (TARGET_TOC && TARGET_MINIMAL_TOC)
4634 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
4635 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
4636
4637 if (TARGET_SPE)
4638 {
4639 global_regs[SPEFSCR_REGNO] = 1;
4640 /* We used to use r14 as FIXED_SCRATCH to address SPE 64-bit
4641 registers in prologues and epilogues. We no longer use r14
4642 for FIXED_SCRATCH, but we're keeping r14 out of the allocation
4643 pool for link-compatibility with older versions of GCC. Once
4644 "old" code has died out, we can return r14 to the allocation
4645 pool. */
4646 fixed_regs[14]
4647 = call_used_regs[14]
4648 = call_really_used_regs[14] = 1;
4649 }
4650
4651 if (!TARGET_ALTIVEC)
4652 {
4653 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
4654 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
4655 call_really_used_regs[VRSAVE_REGNO] = 1;
4656 }
4657
4658 if (TARGET_ALTIVEC)
4659 global_regs[VSCR_REGNO] = 1;
4660
4661 if (TARGET_ALTIVEC_ABI)
4662 {
4663 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)
4664 call_used_regs[i] = call_really_used_regs[i] = 1;
4665
4666 /* AIX reserves VR20:31 in non-extended ABI mode. */
4667 if (TARGET_XCOFF)
4668 for (i = FIRST_ALTIVEC_REGNO + 20; i < FIRST_ALTIVEC_REGNO + 32; ++i)
4669 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
4670 }
4671 }
4672 \f
4673 /* Try to output insns to set TARGET equal to the constant C if it can
4674 be done in less than N insns. Do all computations in MODE.
4675 Returns the place where the output has been placed if it can be
4676 done and the insns have been emitted. If it would take more than N
4677 insns, zero is returned and no insns and emitted. */
4678
4679 rtx
4680 rs6000_emit_set_const (rtx dest, enum machine_mode mode,
4681 rtx source, int n ATTRIBUTE_UNUSED)
4682 {
4683 rtx result, insn, set;
4684 HOST_WIDE_INT c0, c1;
4685
4686 switch (mode)
4687 {
4688 case QImode:
4689 case HImode:
4690 if (dest == NULL)
4691 dest = gen_reg_rtx (mode);
4692 emit_insn (gen_rtx_SET (VOIDmode, dest, source));
4693 return dest;
4694
4695 case SImode:
4696 result = !can_create_pseudo_p () ? dest : gen_reg_rtx (SImode);
4697
4698 emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (result),
4699 GEN_INT (INTVAL (source)
4700 & (~ (HOST_WIDE_INT) 0xffff))));
4701 emit_insn (gen_rtx_SET (VOIDmode, dest,
4702 gen_rtx_IOR (SImode, copy_rtx (result),
4703 GEN_INT (INTVAL (source) & 0xffff))));
4704 result = dest;
4705 break;
4706
4707 case DImode:
4708 switch (GET_CODE (source))
4709 {
4710 case CONST_INT:
4711 c0 = INTVAL (source);
4712 c1 = -(c0 < 0);
4713 break;
4714
4715 case CONST_DOUBLE:
4716 #if HOST_BITS_PER_WIDE_INT >= 64
4717 c0 = CONST_DOUBLE_LOW (source);
4718 c1 = -(c0 < 0);
4719 #else
4720 c0 = CONST_DOUBLE_LOW (source);
4721 c1 = CONST_DOUBLE_HIGH (source);
4722 #endif
4723 break;
4724
4725 default:
4726 gcc_unreachable ();
4727 }
4728
4729 result = rs6000_emit_set_long_const (dest, c0, c1);
4730 break;
4731
4732 default:
4733 gcc_unreachable ();
4734 }
4735
4736 insn = get_last_insn ();
4737 set = single_set (insn);
4738 if (! CONSTANT_P (SET_SRC (set)))
4739 set_unique_reg_note (insn, REG_EQUAL, source);
4740
4741 return result;
4742 }
4743
4744 /* Having failed to find a 3 insn sequence in rs6000_emit_set_const,
4745 fall back to a straight forward decomposition. We do this to avoid
4746 exponential run times encountered when looking for longer sequences
4747 with rs6000_emit_set_const. */
4748 static rtx
4749 rs6000_emit_set_long_const (rtx dest, HOST_WIDE_INT c1, HOST_WIDE_INT c2)
4750 {
4751 if (!TARGET_POWERPC64)
4752 {
4753 rtx operand1, operand2;
4754
4755 operand1 = operand_subword_force (dest, WORDS_BIG_ENDIAN == 0,
4756 DImode);
4757 operand2 = operand_subword_force (copy_rtx (dest), WORDS_BIG_ENDIAN != 0,
4758 DImode);
4759 emit_move_insn (operand1, GEN_INT (c1));
4760 emit_move_insn (operand2, GEN_INT (c2));
4761 }
4762 else
4763 {
4764 HOST_WIDE_INT ud1, ud2, ud3, ud4;
4765
4766 ud1 = c1 & 0xffff;
4767 ud2 = (c1 & 0xffff0000) >> 16;
4768 #if HOST_BITS_PER_WIDE_INT >= 64
4769 c2 = c1 >> 32;
4770 #endif
4771 ud3 = c2 & 0xffff;
4772 ud4 = (c2 & 0xffff0000) >> 16;
4773
4774 if ((ud4 == 0xffff && ud3 == 0xffff && ud2 == 0xffff && (ud1 & 0x8000))
4775 || (ud4 == 0 && ud3 == 0 && ud2 == 0 && ! (ud1 & 0x8000)))
4776 {
4777 if (ud1 & 0x8000)
4778 emit_move_insn (dest, GEN_INT (((ud1 ^ 0x8000) - 0x8000)));
4779 else
4780 emit_move_insn (dest, GEN_INT (ud1));
4781 }
4782
4783 else if ((ud4 == 0xffff && ud3 == 0xffff && (ud2 & 0x8000))
4784 || (ud4 == 0 && ud3 == 0 && ! (ud2 & 0x8000)))
4785 {
4786 if (ud2 & 0x8000)
4787 emit_move_insn (dest, GEN_INT (((ud2 << 16) ^ 0x80000000)
4788 - 0x80000000));
4789 else
4790 emit_move_insn (dest, GEN_INT (ud2 << 16));
4791 if (ud1 != 0)
4792 emit_move_insn (copy_rtx (dest),
4793 gen_rtx_IOR (DImode, copy_rtx (dest),
4794 GEN_INT (ud1)));
4795 }
4796 else if ((ud4 == 0xffff && (ud3 & 0x8000))
4797 || (ud4 == 0 && ! (ud3 & 0x8000)))
4798 {
4799 if (ud3 & 0x8000)
4800 emit_move_insn (dest, GEN_INT (((ud3 << 16) ^ 0x80000000)
4801 - 0x80000000));
4802 else
4803 emit_move_insn (dest, GEN_INT (ud3 << 16));
4804
4805 if (ud2 != 0)
4806 emit_move_insn (copy_rtx (dest),
4807 gen_rtx_IOR (DImode, copy_rtx (dest),
4808 GEN_INT (ud2)));
4809 emit_move_insn (copy_rtx (dest),
4810 gen_rtx_ASHIFT (DImode, copy_rtx (dest),
4811 GEN_INT (16)));
4812 if (ud1 != 0)
4813 emit_move_insn (copy_rtx (dest),
4814 gen_rtx_IOR (DImode, copy_rtx (dest),
4815 GEN_INT (ud1)));
4816 }
4817 else
4818 {
4819 if (ud4 & 0x8000)
4820 emit_move_insn (dest, GEN_INT (((ud4 << 16) ^ 0x80000000)
4821 - 0x80000000));
4822 else
4823 emit_move_insn (dest, GEN_INT (ud4 << 16));
4824
4825 if (ud3 != 0)
4826 emit_move_insn (copy_rtx (dest),
4827 gen_rtx_IOR (DImode, copy_rtx (dest),
4828 GEN_INT (ud3)));
4829
4830 emit_move_insn (copy_rtx (dest),
4831 gen_rtx_ASHIFT (DImode, copy_rtx (dest),
4832 GEN_INT (32)));
4833 if (ud2 != 0)
4834 emit_move_insn (copy_rtx (dest),
4835 gen_rtx_IOR (DImode, copy_rtx (dest),
4836 GEN_INT (ud2 << 16)));
4837 if (ud1 != 0)
4838 emit_move_insn (copy_rtx (dest),
4839 gen_rtx_IOR (DImode, copy_rtx (dest), GEN_INT (ud1)));
4840 }
4841 }
4842 return dest;
4843 }
4844
4845 /* Helper for the following. Get rid of [r+r] memory refs
4846 in cases where it won't work (TImode, TFmode, TDmode). */
4847
4848 static void
4849 rs6000_eliminate_indexed_memrefs (rtx operands[2])
4850 {
4851 if (GET_CODE (operands[0]) == MEM
4852 && GET_CODE (XEXP (operands[0], 0)) != REG
4853 && ! legitimate_constant_pool_address_p (XEXP (operands[0], 0))
4854 && ! reload_in_progress)
4855 operands[0]
4856 = replace_equiv_address (operands[0],
4857 copy_addr_to_reg (XEXP (operands[0], 0)));
4858
4859 if (GET_CODE (operands[1]) == MEM
4860 && GET_CODE (XEXP (operands[1], 0)) != REG
4861 && ! legitimate_constant_pool_address_p (XEXP (operands[1], 0))
4862 && ! reload_in_progress)
4863 operands[1]
4864 = replace_equiv_address (operands[1],
4865 copy_addr_to_reg (XEXP (operands[1], 0)));
4866 }
4867
4868 /* Emit a move from SOURCE to DEST in mode MODE. */
4869 void
4870 rs6000_emit_move (rtx dest, rtx source, enum machine_mode mode)
4871 {
4872 rtx operands[2];
4873 operands[0] = dest;
4874 operands[1] = source;
4875
4876 /* Sanity checks. Check that we get CONST_DOUBLE only when we should. */
4877 if (GET_CODE (operands[1]) == CONST_DOUBLE
4878 && ! FLOAT_MODE_P (mode)
4879 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4880 {
4881 /* FIXME. This should never happen. */
4882 /* Since it seems that it does, do the safe thing and convert
4883 to a CONST_INT. */
4884 operands[1] = gen_int_mode (CONST_DOUBLE_LOW (operands[1]), mode);
4885 }
4886 gcc_assert (GET_CODE (operands[1]) != CONST_DOUBLE
4887 || FLOAT_MODE_P (mode)
4888 || ((CONST_DOUBLE_HIGH (operands[1]) != 0
4889 || CONST_DOUBLE_LOW (operands[1]) < 0)
4890 && (CONST_DOUBLE_HIGH (operands[1]) != -1
4891 || CONST_DOUBLE_LOW (operands[1]) >= 0)));
4892
4893 /* Check if GCC is setting up a block move that will end up using FP
4894 registers as temporaries. We must make sure this is acceptable. */
4895 if (GET_CODE (operands[0]) == MEM
4896 && GET_CODE (operands[1]) == MEM
4897 && mode == DImode
4898 && (SLOW_UNALIGNED_ACCESS (DImode, MEM_ALIGN (operands[0]))
4899 || SLOW_UNALIGNED_ACCESS (DImode, MEM_ALIGN (operands[1])))
4900 && ! (SLOW_UNALIGNED_ACCESS (SImode, (MEM_ALIGN (operands[0]) > 32
4901 ? 32 : MEM_ALIGN (operands[0])))
4902 || SLOW_UNALIGNED_ACCESS (SImode, (MEM_ALIGN (operands[1]) > 32
4903 ? 32
4904 : MEM_ALIGN (operands[1]))))
4905 && ! MEM_VOLATILE_P (operands [0])
4906 && ! MEM_VOLATILE_P (operands [1]))
4907 {
4908 emit_move_insn (adjust_address (operands[0], SImode, 0),
4909 adjust_address (operands[1], SImode, 0));
4910 emit_move_insn (adjust_address (copy_rtx (operands[0]), SImode, 4),
4911 adjust_address (copy_rtx (operands[1]), SImode, 4));
4912 return;
4913 }
4914
4915 if (can_create_pseudo_p () && GET_CODE (operands[0]) == MEM
4916 && !gpc_reg_operand (operands[1], mode))
4917 operands[1] = force_reg (mode, operands[1]);
4918
4919 if (mode == SFmode && ! TARGET_POWERPC
4920 && TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT
4921 && GET_CODE (operands[0]) == MEM)
4922 {
4923 int regnum;
4924
4925 if (reload_in_progress || reload_completed)
4926 regnum = true_regnum (operands[1]);
4927 else if (GET_CODE (operands[1]) == REG)
4928 regnum = REGNO (operands[1]);
4929 else
4930 regnum = -1;
4931
4932 /* If operands[1] is a register, on POWER it may have
4933 double-precision data in it, so truncate it to single
4934 precision. */
4935 if (FP_REGNO_P (regnum) || regnum >= FIRST_PSEUDO_REGISTER)
4936 {
4937 rtx newreg;
4938 newreg = (!can_create_pseudo_p () ? copy_rtx (operands[1])
4939 : gen_reg_rtx (mode));
4940 emit_insn (gen_aux_truncdfsf2 (newreg, operands[1]));
4941 operands[1] = newreg;
4942 }
4943 }
4944
4945 /* Recognize the case where operand[1] is a reference to thread-local
4946 data and load its address to a register. */
4947 if (rs6000_tls_referenced_p (operands[1]))
4948 {
4949 enum tls_model model;
4950 rtx tmp = operands[1];
4951 rtx addend = NULL;
4952
4953 if (GET_CODE (tmp) == CONST && GET_CODE (XEXP (tmp, 0)) == PLUS)
4954 {
4955 addend = XEXP (XEXP (tmp, 0), 1);
4956 tmp = XEXP (XEXP (tmp, 0), 0);
4957 }
4958
4959 gcc_assert (GET_CODE (tmp) == SYMBOL_REF);
4960 model = SYMBOL_REF_TLS_MODEL (tmp);
4961 gcc_assert (model != 0);
4962
4963 tmp = rs6000_legitimize_tls_address (tmp, model);
4964 if (addend)
4965 {
4966 tmp = gen_rtx_PLUS (mode, tmp, addend);
4967 tmp = force_operand (tmp, operands[0]);
4968 }
4969 operands[1] = tmp;
4970 }
4971
4972 /* Handle the case where reload calls us with an invalid address. */
4973 if (reload_in_progress && mode == Pmode
4974 && (! general_operand (operands[1], mode)
4975 || ! nonimmediate_operand (operands[0], mode)))
4976 goto emit_set;
4977
4978 /* 128-bit constant floating-point values on Darwin should really be
4979 loaded as two parts. */
4980 if (!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128
4981 && mode == TFmode && GET_CODE (operands[1]) == CONST_DOUBLE)
4982 {
4983 /* DImode is used, not DFmode, because simplify_gen_subreg doesn't
4984 know how to get a DFmode SUBREG of a TFmode. */
4985 enum machine_mode imode = (TARGET_E500_DOUBLE ? DFmode : DImode);
4986 rs6000_emit_move (simplify_gen_subreg (imode, operands[0], mode, 0),
4987 simplify_gen_subreg (imode, operands[1], mode, 0),
4988 imode);
4989 rs6000_emit_move (simplify_gen_subreg (imode, operands[0], mode,
4990 GET_MODE_SIZE (imode)),
4991 simplify_gen_subreg (imode, operands[1], mode,
4992 GET_MODE_SIZE (imode)),
4993 imode);
4994 return;
4995 }
4996
4997 if (reload_in_progress && cfun->machine->sdmode_stack_slot != NULL_RTX)
4998 cfun->machine->sdmode_stack_slot =
4999 eliminate_regs (cfun->machine->sdmode_stack_slot, VOIDmode, NULL_RTX);
5000
5001 if (reload_in_progress
5002 && mode == SDmode
5003 && MEM_P (operands[0])
5004 && rtx_equal_p (operands[0], cfun->machine->sdmode_stack_slot)
5005 && REG_P (operands[1]))
5006 {
5007 if (FP_REGNO_P (REGNO (operands[1])))
5008 {
5009 rtx mem = adjust_address_nv (operands[0], DDmode, 0);
5010 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
5011 emit_insn (gen_movsd_store (mem, operands[1]));
5012 }
5013 else if (INT_REGNO_P (REGNO (operands[1])))
5014 {
5015 rtx mem = adjust_address_nv (operands[0], mode, 4);
5016 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
5017 emit_insn (gen_movsd_hardfloat (mem, operands[1]));
5018 }
5019 else
5020 gcc_unreachable();
5021 return;
5022 }
5023 if (reload_in_progress
5024 && mode == SDmode
5025 && REG_P (operands[0])
5026 && MEM_P (operands[1])
5027 && rtx_equal_p (operands[1], cfun->machine->sdmode_stack_slot))
5028 {
5029 if (FP_REGNO_P (REGNO (operands[0])))
5030 {
5031 rtx mem = adjust_address_nv (operands[1], DDmode, 0);
5032 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
5033 emit_insn (gen_movsd_load (operands[0], mem));
5034 }
5035 else if (INT_REGNO_P (REGNO (operands[0])))
5036 {
5037 rtx mem = adjust_address_nv (operands[1], mode, 4);
5038 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
5039 emit_insn (gen_movsd_hardfloat (operands[0], mem));
5040 }
5041 else
5042 gcc_unreachable();
5043 return;
5044 }
5045
5046 /* FIXME: In the long term, this switch statement should go away
5047 and be replaced by a sequence of tests based on things like
5048 mode == Pmode. */
5049 switch (mode)
5050 {
5051 case HImode:
5052 case QImode:
5053 if (CONSTANT_P (operands[1])
5054 && GET_CODE (operands[1]) != CONST_INT)
5055 operands[1] = force_const_mem (mode, operands[1]);
5056 break;
5057
5058 case TFmode:
5059 case TDmode:
5060 rs6000_eliminate_indexed_memrefs (operands);
5061 /* fall through */
5062
5063 case DFmode:
5064 case DDmode:
5065 case SFmode:
5066 case SDmode:
5067 if (CONSTANT_P (operands[1])
5068 && ! easy_fp_constant (operands[1], mode))
5069 operands[1] = force_const_mem (mode, operands[1]);
5070 break;
5071
5072 case V16QImode:
5073 case V8HImode:
5074 case V4SFmode:
5075 case V4SImode:
5076 case V4HImode:
5077 case V2SFmode:
5078 case V2SImode:
5079 case V1DImode:
5080 if (CONSTANT_P (operands[1])
5081 && !easy_vector_constant (operands[1], mode))
5082 operands[1] = force_const_mem (mode, operands[1]);
5083 break;
5084
5085 case SImode:
5086 case DImode:
5087 /* Use default pattern for address of ELF small data */
5088 if (TARGET_ELF
5089 && mode == Pmode
5090 && DEFAULT_ABI == ABI_V4
5091 && (GET_CODE (operands[1]) == SYMBOL_REF
5092 || GET_CODE (operands[1]) == CONST)
5093 && small_data_operand (operands[1], mode))
5094 {
5095 emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1]));
5096 return;
5097 }
5098
5099 if (DEFAULT_ABI == ABI_V4
5100 && mode == Pmode && mode == SImode
5101 && flag_pic == 1 && got_operand (operands[1], mode))
5102 {
5103 emit_insn (gen_movsi_got (operands[0], operands[1]));
5104 return;
5105 }
5106
5107 if ((TARGET_ELF || DEFAULT_ABI == ABI_DARWIN)
5108 && TARGET_NO_TOC
5109 && ! flag_pic
5110 && mode == Pmode
5111 && CONSTANT_P (operands[1])
5112 && GET_CODE (operands[1]) != HIGH
5113 && GET_CODE (operands[1]) != CONST_INT)
5114 {
5115 rtx target = (!can_create_pseudo_p ()
5116 ? operands[0]
5117 : gen_reg_rtx (mode));
5118
5119 /* If this is a function address on -mcall-aixdesc,
5120 convert it to the address of the descriptor. */
5121 if (DEFAULT_ABI == ABI_AIX
5122 && GET_CODE (operands[1]) == SYMBOL_REF
5123 && XSTR (operands[1], 0)[0] == '.')
5124 {
5125 const char *name = XSTR (operands[1], 0);
5126 rtx new_ref;
5127 while (*name == '.')
5128 name++;
5129 new_ref = gen_rtx_SYMBOL_REF (Pmode, name);
5130 CONSTANT_POOL_ADDRESS_P (new_ref)
5131 = CONSTANT_POOL_ADDRESS_P (operands[1]);
5132 SYMBOL_REF_FLAGS (new_ref) = SYMBOL_REF_FLAGS (operands[1]);
5133 SYMBOL_REF_USED (new_ref) = SYMBOL_REF_USED (operands[1]);
5134 SYMBOL_REF_DATA (new_ref) = SYMBOL_REF_DATA (operands[1]);
5135 operands[1] = new_ref;
5136 }
5137
5138 if (DEFAULT_ABI == ABI_DARWIN)
5139 {
5140 #if TARGET_MACHO
5141 if (MACHO_DYNAMIC_NO_PIC_P)
5142 {
5143 /* Take care of any required data indirection. */
5144 operands[1] = rs6000_machopic_legitimize_pic_address (
5145 operands[1], mode, operands[0]);
5146 if (operands[0] != operands[1])
5147 emit_insn (gen_rtx_SET (VOIDmode,
5148 operands[0], operands[1]));
5149 return;
5150 }
5151 #endif
5152 emit_insn (gen_macho_high (target, operands[1]));
5153 emit_insn (gen_macho_low (operands[0], target, operands[1]));
5154 return;
5155 }
5156
5157 emit_insn (gen_elf_high (target, operands[1]));
5158 emit_insn (gen_elf_low (operands[0], target, operands[1]));
5159 return;
5160 }
5161
5162 /* If this is a SYMBOL_REF that refers to a constant pool entry,
5163 and we have put it in the TOC, we just need to make a TOC-relative
5164 reference to it. */
5165 if (TARGET_TOC
5166 && GET_CODE (operands[1]) == SYMBOL_REF
5167 && constant_pool_expr_p (operands[1])
5168 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (operands[1]),
5169 get_pool_mode (operands[1])))
5170 {
5171 operands[1] = create_TOC_reference (operands[1]);
5172 }
5173 else if (mode == Pmode
5174 && CONSTANT_P (operands[1])
5175 && ((GET_CODE (operands[1]) != CONST_INT
5176 && ! easy_fp_constant (operands[1], mode))
5177 || (GET_CODE (operands[1]) == CONST_INT
5178 && num_insns_constant (operands[1], mode) > 2)
5179 || (GET_CODE (operands[0]) == REG
5180 && FP_REGNO_P (REGNO (operands[0]))))
5181 && GET_CODE (operands[1]) != HIGH
5182 && ! legitimate_constant_pool_address_p (operands[1])
5183 && ! toc_relative_expr_p (operands[1]))
5184 {
5185 /* Emit a USE operation so that the constant isn't deleted if
5186 expensive optimizations are turned on because nobody
5187 references it. This should only be done for operands that
5188 contain SYMBOL_REFs with CONSTANT_POOL_ADDRESS_P set.
5189 This should not be done for operands that contain LABEL_REFs.
5190 For now, we just handle the obvious case. */
5191 if (GET_CODE (operands[1]) != LABEL_REF)
5192 emit_use (operands[1]);
5193
5194 #if TARGET_MACHO
5195 /* Darwin uses a special PIC legitimizer. */
5196 if (DEFAULT_ABI == ABI_DARWIN && MACHOPIC_INDIRECT)
5197 {
5198 operands[1] =
5199 rs6000_machopic_legitimize_pic_address (operands[1], mode,
5200 operands[0]);
5201 if (operands[0] != operands[1])
5202 emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1]));
5203 return;
5204 }
5205 #endif
5206
5207 /* If we are to limit the number of things we put in the TOC and
5208 this is a symbol plus a constant we can add in one insn,
5209 just put the symbol in the TOC and add the constant. Don't do
5210 this if reload is in progress. */
5211 if (GET_CODE (operands[1]) == CONST
5212 && TARGET_NO_SUM_IN_TOC && ! reload_in_progress
5213 && GET_CODE (XEXP (operands[1], 0)) == PLUS
5214 && add_operand (XEXP (XEXP (operands[1], 0), 1), mode)
5215 && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
5216 || GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
5217 && ! side_effects_p (operands[0]))
5218 {
5219 rtx sym =
5220 force_const_mem (mode, XEXP (XEXP (operands[1], 0), 0));
5221 rtx other = XEXP (XEXP (operands[1], 0), 1);
5222
5223 sym = force_reg (mode, sym);
5224 if (mode == SImode)
5225 emit_insn (gen_addsi3 (operands[0], sym, other));
5226 else
5227 emit_insn (gen_adddi3 (operands[0], sym, other));
5228 return;
5229 }
5230
5231 operands[1] = force_const_mem (mode, operands[1]);
5232
5233 if (TARGET_TOC
5234 && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
5235 && constant_pool_expr_p (XEXP (operands[1], 0))
5236 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (
5237 get_pool_constant (XEXP (operands[1], 0)),
5238 get_pool_mode (XEXP (operands[1], 0))))
5239 {
5240 operands[1]
5241 = gen_const_mem (mode,
5242 create_TOC_reference (XEXP (operands[1], 0)));
5243 set_mem_alias_set (operands[1], get_TOC_alias_set ());
5244 }
5245 }
5246 break;
5247
5248 case TImode:
5249 rs6000_eliminate_indexed_memrefs (operands);
5250
5251 if (TARGET_POWER)
5252 {
5253 emit_insn (gen_rtx_PARALLEL (VOIDmode,
5254 gen_rtvec (2,
5255 gen_rtx_SET (VOIDmode,
5256 operands[0], operands[1]),
5257 gen_rtx_CLOBBER (VOIDmode,
5258 gen_rtx_SCRATCH (SImode)))));
5259 return;
5260 }
5261 break;
5262
5263 default:
5264 gcc_unreachable ();
5265 }
5266
5267 /* Above, we may have called force_const_mem which may have returned
5268 an invalid address. If we can, fix this up; otherwise, reload will
5269 have to deal with it. */
5270 if (GET_CODE (operands[1]) == MEM && ! reload_in_progress)
5271 operands[1] = validize_mem (operands[1]);
5272
5273 emit_set:
5274 emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1]));
5275 }
5276 \f
5277 /* Nonzero if we can use a floating-point register to pass this arg. */
5278 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
5279 (SCALAR_FLOAT_MODE_P (MODE) \
5280 && (CUM)->fregno <= FP_ARG_MAX_REG \
5281 && TARGET_HARD_FLOAT && TARGET_FPRS)
5282
5283 /* Nonzero if we can use an AltiVec register to pass this arg. */
5284 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE,NAMED) \
5285 (ALTIVEC_VECTOR_MODE (MODE) \
5286 && (CUM)->vregno <= ALTIVEC_ARG_MAX_REG \
5287 && TARGET_ALTIVEC_ABI \
5288 && (NAMED))
5289
5290 /* Return a nonzero value to say to return the function value in
5291 memory, just as large structures are always returned. TYPE will be
5292 the data type of the value, and FNTYPE will be the type of the
5293 function doing the returning, or @code{NULL} for libcalls.
5294
5295 The AIX ABI for the RS/6000 specifies that all structures are
5296 returned in memory. The Darwin ABI does the same. The SVR4 ABI
5297 specifies that structures <= 8 bytes are returned in r3/r4, but a
5298 draft put them in memory, and GCC used to implement the draft
5299 instead of the final standard. Therefore, aix_struct_return
5300 controls this instead of DEFAULT_ABI; V.4 targets needing backward
5301 compatibility can change DRAFT_V4_STRUCT_RET to override the
5302 default, and -m switches get the final word. See
5303 rs6000_override_options for more details.
5304
5305 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
5306 long double support is enabled. These values are returned in memory.
5307
5308 int_size_in_bytes returns -1 for variable size objects, which go in
5309 memory always. The cast to unsigned makes -1 > 8. */
5310
5311 static bool
5312 rs6000_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5313 {
5314 /* In the darwin64 abi, try to use registers for larger structs
5315 if possible. */
5316 if (rs6000_darwin64_abi
5317 && TREE_CODE (type) == RECORD_TYPE
5318 && int_size_in_bytes (type) > 0)
5319 {
5320 CUMULATIVE_ARGS valcum;
5321 rtx valret;
5322
5323 valcum.words = 0;
5324 valcum.fregno = FP_ARG_MIN_REG;
5325 valcum.vregno = ALTIVEC_ARG_MIN_REG;
5326 /* Do a trial code generation as if this were going to be passed
5327 as an argument; if any part goes in memory, we return NULL. */
5328 valret = rs6000_darwin64_record_arg (&valcum, type, 1, true);
5329 if (valret)
5330 return false;
5331 /* Otherwise fall through to more conventional ABI rules. */
5332 }
5333
5334 if (AGGREGATE_TYPE_P (type)
5335 && (aix_struct_return
5336 || (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8))
5337 return true;
5338
5339 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
5340 modes only exist for GCC vector types if -maltivec. */
5341 if (TARGET_32BIT && !TARGET_ALTIVEC_ABI
5342 && ALTIVEC_VECTOR_MODE (TYPE_MODE (type)))
5343 return false;
5344
5345 /* Return synthetic vectors in memory. */
5346 if (TREE_CODE (type) == VECTOR_TYPE
5347 && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
5348 {
5349 static bool warned_for_return_big_vectors = false;
5350 if (!warned_for_return_big_vectors)
5351 {
5352 warning (0, "GCC vector returned by reference: "
5353 "non-standard ABI extension with no compatibility guarantee");
5354 warned_for_return_big_vectors = true;
5355 }
5356 return true;
5357 }
5358
5359 if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD && TYPE_MODE (type) == TFmode)
5360 return true;
5361
5362 return false;
5363 }
5364
5365 /* Initialize a variable CUM of type CUMULATIVE_ARGS
5366 for a call to a function whose data type is FNTYPE.
5367 For a library call, FNTYPE is 0.
5368
5369 For incoming args we set the number of arguments in the prototype large
5370 so we never return a PARALLEL. */
5371
5372 void
5373 init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
5374 rtx libname ATTRIBUTE_UNUSED, int incoming,
5375 int libcall, int n_named_args)
5376 {
5377 static CUMULATIVE_ARGS zero_cumulative;
5378
5379 *cum = zero_cumulative;
5380 cum->words = 0;
5381 cum->fregno = FP_ARG_MIN_REG;
5382 cum->vregno = ALTIVEC_ARG_MIN_REG;
5383 cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
5384 cum->call_cookie = ((DEFAULT_ABI == ABI_V4 && libcall)
5385 ? CALL_LIBCALL : CALL_NORMAL);
5386 cum->sysv_gregno = GP_ARG_MIN_REG;
5387 cum->stdarg = fntype
5388 && (TYPE_ARG_TYPES (fntype) != 0
5389 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
5390 != void_type_node));
5391
5392 cum->nargs_prototype = 0;
5393 if (incoming || cum->prototype)
5394 cum->nargs_prototype = n_named_args;
5395
5396 /* Check for a longcall attribute. */
5397 if ((!fntype && rs6000_default_long_calls)
5398 || (fntype
5399 && lookup_attribute ("longcall", TYPE_ATTRIBUTES (fntype))
5400 && !lookup_attribute ("shortcall", TYPE_ATTRIBUTES (fntype))))
5401 cum->call_cookie |= CALL_LONG;
5402
5403 if (TARGET_DEBUG_ARG)
5404 {
5405 fprintf (stderr, "\ninit_cumulative_args:");
5406 if (fntype)
5407 {
5408 tree ret_type = TREE_TYPE (fntype);
5409 fprintf (stderr, " ret code = %s,",
5410 tree_code_name[ (int)TREE_CODE (ret_type) ]);
5411 }
5412
5413 if (cum->call_cookie & CALL_LONG)
5414 fprintf (stderr, " longcall,");
5415
5416 fprintf (stderr, " proto = %d, nargs = %d\n",
5417 cum->prototype, cum->nargs_prototype);
5418 }
5419
5420 if (fntype
5421 && !TARGET_ALTIVEC
5422 && TARGET_ALTIVEC_ABI
5423 && ALTIVEC_VECTOR_MODE (TYPE_MODE (TREE_TYPE (fntype))))
5424 {
5425 error ("cannot return value in vector register because"
5426 " altivec instructions are disabled, use -maltivec"
5427 " to enable them");
5428 }
5429 }
5430 \f
5431 /* Return true if TYPE must be passed on the stack and not in registers. */
5432
5433 static bool
5434 rs6000_must_pass_in_stack (enum machine_mode mode, const_tree type)
5435 {
5436 if (DEFAULT_ABI == ABI_AIX || TARGET_64BIT)
5437 return must_pass_in_stack_var_size (mode, type);
5438 else
5439 return must_pass_in_stack_var_size_or_pad (mode, type);
5440 }
5441
5442 /* If defined, a C expression which determines whether, and in which
5443 direction, to pad out an argument with extra space. The value
5444 should be of type `enum direction': either `upward' to pad above
5445 the argument, `downward' to pad below, or `none' to inhibit
5446 padding.
5447
5448 For the AIX ABI structs are always stored left shifted in their
5449 argument slot. */
5450
5451 enum direction
5452 function_arg_padding (enum machine_mode mode, const_tree type)
5453 {
5454 #ifndef AGGREGATE_PADDING_FIXED
5455 #define AGGREGATE_PADDING_FIXED 0
5456 #endif
5457 #ifndef AGGREGATES_PAD_UPWARD_ALWAYS
5458 #define AGGREGATES_PAD_UPWARD_ALWAYS 0
5459 #endif
5460
5461 if (!AGGREGATE_PADDING_FIXED)
5462 {
5463 /* GCC used to pass structures of the same size as integer types as
5464 if they were in fact integers, ignoring FUNCTION_ARG_PADDING.
5465 i.e. Structures of size 1 or 2 (or 4 when TARGET_64BIT) were
5466 passed padded downward, except that -mstrict-align further
5467 muddied the water in that multi-component structures of 2 and 4
5468 bytes in size were passed padded upward.
5469
5470 The following arranges for best compatibility with previous
5471 versions of gcc, but removes the -mstrict-align dependency. */
5472 if (BYTES_BIG_ENDIAN)
5473 {
5474 HOST_WIDE_INT size = 0;
5475
5476 if (mode == BLKmode)
5477 {
5478 if (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
5479 size = int_size_in_bytes (type);
5480 }
5481 else
5482 size = GET_MODE_SIZE (mode);
5483
5484 if (size == 1 || size == 2 || size == 4)
5485 return downward;
5486 }
5487 return upward;
5488 }
5489
5490 if (AGGREGATES_PAD_UPWARD_ALWAYS)
5491 {
5492 if (type != 0 && AGGREGATE_TYPE_P (type))
5493 return upward;
5494 }
5495
5496 /* Fall back to the default. */
5497 return DEFAULT_FUNCTION_ARG_PADDING (mode, type);
5498 }
5499
5500 /* If defined, a C expression that gives the alignment boundary, in bits,
5501 of an argument with the specified mode and type. If it is not defined,
5502 PARM_BOUNDARY is used for all arguments.
5503
5504 V.4 wants long longs and doubles to be double word aligned. Just
5505 testing the mode size is a boneheaded way to do this as it means
5506 that other types such as complex int are also double word aligned.
5507 However, we're stuck with this because changing the ABI might break
5508 existing library interfaces.
5509
5510 Doubleword align SPE vectors.
5511 Quadword align Altivec vectors.
5512 Quadword align large synthetic vector types. */
5513
5514 int
5515 function_arg_boundary (enum machine_mode mode, tree type)
5516 {
5517 if (DEFAULT_ABI == ABI_V4
5518 && (GET_MODE_SIZE (mode) == 8
5519 || (TARGET_HARD_FLOAT
5520 && TARGET_FPRS
5521 && (mode == TFmode || mode == TDmode))))
5522 return 64;
5523 else if (SPE_VECTOR_MODE (mode)
5524 || (type && TREE_CODE (type) == VECTOR_TYPE
5525 && int_size_in_bytes (type) >= 8
5526 && int_size_in_bytes (type) < 16))
5527 return 64;
5528 else if (ALTIVEC_VECTOR_MODE (mode)
5529 || (type && TREE_CODE (type) == VECTOR_TYPE
5530 && int_size_in_bytes (type) >= 16))
5531 return 128;
5532 else if (rs6000_darwin64_abi && mode == BLKmode
5533 && type && TYPE_ALIGN (type) > 64)
5534 return 128;
5535 else
5536 return PARM_BOUNDARY;
5537 }
5538
5539 /* For a function parm of MODE and TYPE, return the starting word in
5540 the parameter area. NWORDS of the parameter area are already used. */
5541
5542 static unsigned int
5543 rs6000_parm_start (enum machine_mode mode, tree type, unsigned int nwords)
5544 {
5545 unsigned int align;
5546 unsigned int parm_offset;
5547
5548 align = function_arg_boundary (mode, type) / PARM_BOUNDARY - 1;
5549 parm_offset = DEFAULT_ABI == ABI_V4 ? 2 : 6;
5550 return nwords + (-(parm_offset + nwords) & align);
5551 }
5552
5553 /* Compute the size (in words) of a function argument. */
5554
5555 static unsigned long
5556 rs6000_arg_size (enum machine_mode mode, tree type)
5557 {
5558 unsigned long size;
5559
5560 if (mode != BLKmode)
5561 size = GET_MODE_SIZE (mode);
5562 else
5563 size = int_size_in_bytes (type);
5564
5565 if (TARGET_32BIT)
5566 return (size + 3) >> 2;
5567 else
5568 return (size + 7) >> 3;
5569 }
5570 \f
5571 /* Use this to flush pending int fields. */
5572
5573 static void
5574 rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS *cum,
5575 HOST_WIDE_INT bitpos)
5576 {
5577 unsigned int startbit, endbit;
5578 int intregs, intoffset;
5579 enum machine_mode mode;
5580
5581 if (cum->intoffset == -1)
5582 return;
5583
5584 intoffset = cum->intoffset;
5585 cum->intoffset = -1;
5586
5587 if (intoffset % BITS_PER_WORD != 0)
5588 {
5589 mode = mode_for_size (BITS_PER_WORD - intoffset % BITS_PER_WORD,
5590 MODE_INT, 0);
5591 if (mode == BLKmode)
5592 {
5593 /* We couldn't find an appropriate mode, which happens,
5594 e.g., in packed structs when there are 3 bytes to load.
5595 Back intoffset back to the beginning of the word in this
5596 case. */
5597 intoffset = intoffset & -BITS_PER_WORD;
5598 }
5599 }
5600
5601 startbit = intoffset & -BITS_PER_WORD;
5602 endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD;
5603 intregs = (endbit - startbit) / BITS_PER_WORD;
5604 cum->words += intregs;
5605 }
5606
5607 /* The darwin64 ABI calls for us to recurse down through structs,
5608 looking for elements passed in registers. Unfortunately, we have
5609 to track int register count here also because of misalignments
5610 in powerpc alignment mode. */
5611
5612 static void
5613 rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS *cum,
5614 tree type,
5615 HOST_WIDE_INT startbitpos)
5616 {
5617 tree f;
5618
5619 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
5620 if (TREE_CODE (f) == FIELD_DECL)
5621 {
5622 HOST_WIDE_INT bitpos = startbitpos;
5623 tree ftype = TREE_TYPE (f);
5624 enum machine_mode mode;
5625 if (ftype == error_mark_node)
5626 continue;
5627 mode = TYPE_MODE (ftype);
5628
5629 if (DECL_SIZE (f) != 0
5630 && host_integerp (bit_position (f), 1))
5631 bitpos += int_bit_position (f);
5632
5633 /* ??? FIXME: else assume zero offset. */
5634
5635 if (TREE_CODE (ftype) == RECORD_TYPE)
5636 rs6000_darwin64_record_arg_advance_recurse (cum, ftype, bitpos);
5637 else if (USE_FP_FOR_ARG_P (cum, mode, ftype))
5638 {
5639 rs6000_darwin64_record_arg_advance_flush (cum, bitpos);
5640 cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
5641 cum->words += (GET_MODE_SIZE (mode) + 7) >> 3;
5642 }
5643 else if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, 1))
5644 {
5645 rs6000_darwin64_record_arg_advance_flush (cum, bitpos);
5646 cum->vregno++;
5647 cum->words += 2;
5648 }
5649 else if (cum->intoffset == -1)
5650 cum->intoffset = bitpos;
5651 }
5652 }
5653
5654 /* Update the data in CUM to advance over an argument
5655 of mode MODE and data type TYPE.
5656 (TYPE is null for libcalls where that information may not be available.)
5657
5658 Note that for args passed by reference, function_arg will be called
5659 with MODE and TYPE set to that of the pointer to the arg, not the arg
5660 itself. */
5661
5662 void
5663 function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
5664 tree type, int named, int depth)
5665 {
5666 int size;
5667
5668 /* Only tick off an argument if we're not recursing. */
5669 if (depth == 0)
5670 cum->nargs_prototype--;
5671
5672 if (TARGET_ALTIVEC_ABI
5673 && (ALTIVEC_VECTOR_MODE (mode)
5674 || (type && TREE_CODE (type) == VECTOR_TYPE
5675 && int_size_in_bytes (type) == 16)))
5676 {
5677 bool stack = false;
5678
5679 if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, named))
5680 {
5681 cum->vregno++;
5682 if (!TARGET_ALTIVEC)
5683 error ("cannot pass argument in vector register because"
5684 " altivec instructions are disabled, use -maltivec"
5685 " to enable them");
5686
5687 /* PowerPC64 Linux and AIX allocate GPRs for a vector argument
5688 even if it is going to be passed in a vector register.
5689 Darwin does the same for variable-argument functions. */
5690 if ((DEFAULT_ABI == ABI_AIX && TARGET_64BIT)
5691 || (cum->stdarg && DEFAULT_ABI != ABI_V4))
5692 stack = true;
5693 }
5694 else
5695 stack = true;
5696
5697 if (stack)
5698 {
5699 int align;
5700
5701 /* Vector parameters must be 16-byte aligned. This places
5702 them at 2 mod 4 in terms of words in 32-bit mode, since
5703 the parameter save area starts at offset 24 from the
5704 stack. In 64-bit mode, they just have to start on an
5705 even word, since the parameter save area is 16-byte
5706 aligned. Space for GPRs is reserved even if the argument
5707 will be passed in memory. */
5708 if (TARGET_32BIT)
5709 align = (2 - cum->words) & 3;
5710 else
5711 align = cum->words & 1;
5712 cum->words += align + rs6000_arg_size (mode, type);
5713
5714 if (TARGET_DEBUG_ARG)
5715 {
5716 fprintf (stderr, "function_adv: words = %2d, align=%d, ",
5717 cum->words, align);
5718 fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s\n",
5719 cum->nargs_prototype, cum->prototype,
5720 GET_MODE_NAME (mode));
5721 }
5722 }
5723 }
5724 else if (TARGET_SPE_ABI && TARGET_SPE && SPE_VECTOR_MODE (mode)
5725 && !cum->stdarg
5726 && cum->sysv_gregno <= GP_ARG_MAX_REG)
5727 cum->sysv_gregno++;
5728
5729 else if (rs6000_darwin64_abi
5730 && mode == BLKmode
5731 && TREE_CODE (type) == RECORD_TYPE
5732 && (size = int_size_in_bytes (type)) > 0)
5733 {
5734 /* Variable sized types have size == -1 and are
5735 treated as if consisting entirely of ints.
5736 Pad to 16 byte boundary if needed. */
5737 if (TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
5738 && (cum->words % 2) != 0)
5739 cum->words++;
5740 /* For varargs, we can just go up by the size of the struct. */
5741 if (!named)
5742 cum->words += (size + 7) / 8;
5743 else
5744 {
5745 /* It is tempting to say int register count just goes up by
5746 sizeof(type)/8, but this is wrong in a case such as
5747 { int; double; int; } [powerpc alignment]. We have to
5748 grovel through the fields for these too. */
5749 cum->intoffset = 0;
5750 rs6000_darwin64_record_arg_advance_recurse (cum, type, 0);
5751 rs6000_darwin64_record_arg_advance_flush (cum,
5752 size * BITS_PER_UNIT);
5753 }
5754 }
5755 else if (DEFAULT_ABI == ABI_V4)
5756 {
5757 if (TARGET_HARD_FLOAT && TARGET_FPRS
5758 && ((TARGET_SINGLE_FLOAT && mode == SFmode)
5759 || (TARGET_DOUBLE_FLOAT && mode == DFmode)
5760 || (mode == TFmode && !TARGET_IEEEQUAD)
5761 || mode == SDmode || mode == DDmode || mode == TDmode))
5762 {
5763 /* _Decimal128 must use an even/odd register pair. This assumes
5764 that the register number is odd when fregno is odd. */
5765 if (mode == TDmode && (cum->fregno % 2) == 1)
5766 cum->fregno++;
5767
5768 if (cum->fregno + (mode == TFmode || mode == TDmode ? 1 : 0)
5769 <= FP_ARG_V4_MAX_REG)
5770 cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
5771 else
5772 {
5773 cum->fregno = FP_ARG_V4_MAX_REG + 1;
5774 if (mode == DFmode || mode == TFmode
5775 || mode == DDmode || mode == TDmode)
5776 cum->words += cum->words & 1;
5777 cum->words += rs6000_arg_size (mode, type);
5778 }
5779 }
5780 else
5781 {
5782 int n_words = rs6000_arg_size (mode, type);
5783 int gregno = cum->sysv_gregno;
5784
5785 /* Long long and SPE vectors are put in (r3,r4), (r5,r6),
5786 (r7,r8) or (r9,r10). As does any other 2 word item such
5787 as complex int due to a historical mistake. */
5788 if (n_words == 2)
5789 gregno += (1 - gregno) & 1;
5790
5791 /* Multi-reg args are not split between registers and stack. */
5792 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
5793 {
5794 /* Long long and SPE vectors are aligned on the stack.
5795 So are other 2 word items such as complex int due to
5796 a historical mistake. */
5797 if (n_words == 2)
5798 cum->words += cum->words & 1;
5799 cum->words += n_words;
5800 }
5801
5802 /* Note: continuing to accumulate gregno past when we've started
5803 spilling to the stack indicates the fact that we've started
5804 spilling to the stack to expand_builtin_saveregs. */
5805 cum->sysv_gregno = gregno + n_words;
5806 }
5807
5808 if (TARGET_DEBUG_ARG)
5809 {
5810 fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
5811 cum->words, cum->fregno);
5812 fprintf (stderr, "gregno = %2d, nargs = %4d, proto = %d, ",
5813 cum->sysv_gregno, cum->nargs_prototype, cum->prototype);
5814 fprintf (stderr, "mode = %4s, named = %d\n",
5815 GET_MODE_NAME (mode), named);
5816 }
5817 }
5818 else
5819 {
5820 int n_words = rs6000_arg_size (mode, type);
5821 int start_words = cum->words;
5822 int align_words = rs6000_parm_start (mode, type, start_words);
5823
5824 cum->words = align_words + n_words;
5825
5826 if (SCALAR_FLOAT_MODE_P (mode)
5827 && TARGET_HARD_FLOAT && TARGET_FPRS)
5828 {
5829 /* _Decimal128 must be passed in an even/odd float register pair.
5830 This assumes that the register number is odd when fregno is
5831 odd. */
5832 if (mode == TDmode && (cum->fregno % 2) == 1)
5833 cum->fregno++;
5834 cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
5835 }
5836
5837 if (TARGET_DEBUG_ARG)
5838 {
5839 fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
5840 cum->words, cum->fregno);
5841 fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s, ",
5842 cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode));
5843 fprintf (stderr, "named = %d, align = %d, depth = %d\n",
5844 named, align_words - start_words, depth);
5845 }
5846 }
5847 }
5848
5849 static rtx
5850 spe_build_register_parallel (enum machine_mode mode, int gregno)
5851 {
5852 rtx r1, r3, r5, r7;
5853
5854 switch (mode)
5855 {
5856 case DFmode:
5857 r1 = gen_rtx_REG (DImode, gregno);
5858 r1 = gen_rtx_EXPR_LIST (VOIDmode, r1, const0_rtx);
5859 return gen_rtx_PARALLEL (mode, gen_rtvec (1, r1));
5860
5861 case DCmode:
5862 case TFmode:
5863 r1 = gen_rtx_REG (DImode, gregno);
5864 r1 = gen_rtx_EXPR_LIST (VOIDmode, r1, const0_rtx);
5865 r3 = gen_rtx_REG (DImode, gregno + 2);
5866 r3 = gen_rtx_EXPR_LIST (VOIDmode, r3, GEN_INT (8));
5867 return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r3));
5868
5869 case TCmode:
5870 r1 = gen_rtx_REG (DImode, gregno);
5871 r1 = gen_rtx_EXPR_LIST (VOIDmode, r1, const0_rtx);
5872 r3 = gen_rtx_REG (DImode, gregno + 2);
5873 r3 = gen_rtx_EXPR_LIST (VOIDmode, r3, GEN_INT (8));
5874 r5 = gen_rtx_REG (DImode, gregno + 4);
5875 r5 = gen_rtx_EXPR_LIST (VOIDmode, r5, GEN_INT (16));
5876 r7 = gen_rtx_REG (DImode, gregno + 6);
5877 r7 = gen_rtx_EXPR_LIST (VOIDmode, r7, GEN_INT (24));
5878 return gen_rtx_PARALLEL (mode, gen_rtvec (4, r1, r3, r5, r7));
5879
5880 default:
5881 gcc_unreachable ();
5882 }
5883 }
5884
5885 /* Determine where to put a SIMD argument on the SPE. */
5886 static rtx
5887 rs6000_spe_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
5888 tree type)
5889 {
5890 int gregno = cum->sysv_gregno;
5891
5892 /* On E500 v2, double arithmetic is done on the full 64-bit GPR, but
5893 are passed and returned in a pair of GPRs for ABI compatibility. */
5894 if (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
5895 || mode == DCmode || mode == TCmode))
5896 {
5897 int n_words = rs6000_arg_size (mode, type);
5898
5899 /* Doubles go in an odd/even register pair (r5/r6, etc). */
5900 if (mode == DFmode)
5901 gregno += (1 - gregno) & 1;
5902
5903 /* Multi-reg args are not split between registers and stack. */
5904 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
5905 return NULL_RTX;
5906
5907 return spe_build_register_parallel (mode, gregno);
5908 }
5909 if (cum->stdarg)
5910 {
5911 int n_words = rs6000_arg_size (mode, type);
5912
5913 /* SPE vectors are put in odd registers. */
5914 if (n_words == 2 && (gregno & 1) == 0)
5915 gregno += 1;
5916
5917 if (gregno + n_words - 1 <= GP_ARG_MAX_REG)
5918 {
5919 rtx r1, r2;
5920 enum machine_mode m = SImode;
5921
5922 r1 = gen_rtx_REG (m, gregno);
5923 r1 = gen_rtx_EXPR_LIST (m, r1, const0_rtx);
5924 r2 = gen_rtx_REG (m, gregno + 1);
5925 r2 = gen_rtx_EXPR_LIST (m, r2, GEN_INT (4));
5926 return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r2));
5927 }
5928 else
5929 return NULL_RTX;
5930 }
5931 else
5932 {
5933 if (gregno <= GP_ARG_MAX_REG)
5934 return gen_rtx_REG (mode, gregno);
5935 else
5936 return NULL_RTX;
5937 }
5938 }
5939
5940 /* A subroutine of rs6000_darwin64_record_arg. Assign the bits of the
5941 structure between cum->intoffset and bitpos to integer registers. */
5942
5943 static void
5944 rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS *cum,
5945 HOST_WIDE_INT bitpos, rtx rvec[], int *k)
5946 {
5947 enum machine_mode mode;
5948 unsigned int regno;
5949 unsigned int startbit, endbit;
5950 int this_regno, intregs, intoffset;
5951 rtx reg;
5952
5953 if (cum->intoffset == -1)
5954 return;
5955
5956 intoffset = cum->intoffset;
5957 cum->intoffset = -1;
5958
5959 /* If this is the trailing part of a word, try to only load that
5960 much into the register. Otherwise load the whole register. Note
5961 that in the latter case we may pick up unwanted bits. It's not a
5962 problem at the moment but may wish to revisit. */
5963
5964 if (intoffset % BITS_PER_WORD != 0)
5965 {
5966 mode = mode_for_size (BITS_PER_WORD - intoffset % BITS_PER_WORD,
5967 MODE_INT, 0);
5968 if (mode == BLKmode)
5969 {
5970 /* We couldn't find an appropriate mode, which happens,
5971 e.g., in packed structs when there are 3 bytes to load.
5972 Back intoffset back to the beginning of the word in this
5973 case. */
5974 intoffset = intoffset & -BITS_PER_WORD;
5975 mode = word_mode;
5976 }
5977 }
5978 else
5979 mode = word_mode;
5980
5981 startbit = intoffset & -BITS_PER_WORD;
5982 endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD;
5983 intregs = (endbit - startbit) / BITS_PER_WORD;
5984 this_regno = cum->words + intoffset / BITS_PER_WORD;
5985
5986 if (intregs > 0 && intregs > GP_ARG_NUM_REG - this_regno)
5987 cum->use_stack = 1;
5988
5989 intregs = MIN (intregs, GP_ARG_NUM_REG - this_regno);
5990 if (intregs <= 0)
5991 return;
5992
5993 intoffset /= BITS_PER_UNIT;
5994 do
5995 {
5996 regno = GP_ARG_MIN_REG + this_regno;
5997 reg = gen_rtx_REG (mode, regno);
5998 rvec[(*k)++] =
5999 gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset));
6000
6001 this_regno += 1;
6002 intoffset = (intoffset | (UNITS_PER_WORD-1)) + 1;
6003 mode = word_mode;
6004 intregs -= 1;
6005 }
6006 while (intregs > 0);
6007 }
6008
6009 /* Recursive workhorse for the following. */
6010
6011 static void
6012 rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS *cum, const_tree type,
6013 HOST_WIDE_INT startbitpos, rtx rvec[],
6014 int *k)
6015 {
6016 tree f;
6017
6018 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
6019 if (TREE_CODE (f) == FIELD_DECL)
6020 {
6021 HOST_WIDE_INT bitpos = startbitpos;
6022 tree ftype = TREE_TYPE (f);
6023 enum machine_mode mode;
6024 if (ftype == error_mark_node)
6025 continue;
6026 mode = TYPE_MODE (ftype);
6027
6028 if (DECL_SIZE (f) != 0
6029 && host_integerp (bit_position (f), 1))
6030 bitpos += int_bit_position (f);
6031
6032 /* ??? FIXME: else assume zero offset. */
6033
6034 if (TREE_CODE (ftype) == RECORD_TYPE)
6035 rs6000_darwin64_record_arg_recurse (cum, ftype, bitpos, rvec, k);
6036 else if (cum->named && USE_FP_FOR_ARG_P (cum, mode, ftype))
6037 {
6038 #if 0
6039 switch (mode)
6040 {
6041 case SCmode: mode = SFmode; break;
6042 case DCmode: mode = DFmode; break;
6043 case TCmode: mode = TFmode; break;
6044 default: break;
6045 }
6046 #endif
6047 rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
6048 rvec[(*k)++]
6049 = gen_rtx_EXPR_LIST (VOIDmode,
6050 gen_rtx_REG (mode, cum->fregno++),
6051 GEN_INT (bitpos / BITS_PER_UNIT));
6052 if (mode == TFmode || mode == TDmode)
6053 cum->fregno++;
6054 }
6055 else if (cum->named && USE_ALTIVEC_FOR_ARG_P (cum, mode, ftype, 1))
6056 {
6057 rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
6058 rvec[(*k)++]
6059 = gen_rtx_EXPR_LIST (VOIDmode,
6060 gen_rtx_REG (mode, cum->vregno++),
6061 GEN_INT (bitpos / BITS_PER_UNIT));
6062 }
6063 else if (cum->intoffset == -1)
6064 cum->intoffset = bitpos;
6065 }
6066 }
6067
6068 /* For the darwin64 ABI, we want to construct a PARALLEL consisting of
6069 the register(s) to be used for each field and subfield of a struct
6070 being passed by value, along with the offset of where the
6071 register's value may be found in the block. FP fields go in FP
6072 register, vector fields go in vector registers, and everything
6073 else goes in int registers, packed as in memory.
6074
6075 This code is also used for function return values. RETVAL indicates
6076 whether this is the case.
6077
6078 Much of this is taken from the SPARC V9 port, which has a similar
6079 calling convention. */
6080
6081 static rtx
6082 rs6000_darwin64_record_arg (CUMULATIVE_ARGS *orig_cum, const_tree type,
6083 int named, bool retval)
6084 {
6085 rtx rvec[FIRST_PSEUDO_REGISTER];
6086 int k = 1, kbase = 1;
6087 HOST_WIDE_INT typesize = int_size_in_bytes (type);
6088 /* This is a copy; modifications are not visible to our caller. */
6089 CUMULATIVE_ARGS copy_cum = *orig_cum;
6090 CUMULATIVE_ARGS *cum = &copy_cum;
6091
6092 /* Pad to 16 byte boundary if needed. */
6093 if (!retval && TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
6094 && (cum->words % 2) != 0)
6095 cum->words++;
6096
6097 cum->intoffset = 0;
6098 cum->use_stack = 0;
6099 cum->named = named;
6100
6101 /* Put entries into rvec[] for individual FP and vector fields, and
6102 for the chunks of memory that go in int regs. Note we start at
6103 element 1; 0 is reserved for an indication of using memory, and
6104 may or may not be filled in below. */
6105 rs6000_darwin64_record_arg_recurse (cum, type, 0, rvec, &k);
6106 rs6000_darwin64_record_arg_flush (cum, typesize * BITS_PER_UNIT, rvec, &k);
6107
6108 /* If any part of the struct went on the stack put all of it there.
6109 This hack is because the generic code for
6110 FUNCTION_ARG_PARTIAL_NREGS cannot handle cases where the register
6111 parts of the struct are not at the beginning. */
6112 if (cum->use_stack)
6113 {
6114 if (retval)
6115 return NULL_RTX; /* doesn't go in registers at all */
6116 kbase = 0;
6117 rvec[0] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
6118 }
6119 if (k > 1 || cum->use_stack)
6120 return gen_rtx_PARALLEL (BLKmode, gen_rtvec_v (k - kbase, &rvec[kbase]));
6121 else
6122 return NULL_RTX;
6123 }
6124
6125 /* Determine where to place an argument in 64-bit mode with 32-bit ABI. */
6126
6127 static rtx
6128 rs6000_mixed_function_arg (enum machine_mode mode, tree type, int align_words)
6129 {
6130 int n_units;
6131 int i, k;
6132 rtx rvec[GP_ARG_NUM_REG + 1];
6133
6134 if (align_words >= GP_ARG_NUM_REG)
6135 return NULL_RTX;
6136
6137 n_units = rs6000_arg_size (mode, type);
6138
6139 /* Optimize the simple case where the arg fits in one gpr, except in
6140 the case of BLKmode due to assign_parms assuming that registers are
6141 BITS_PER_WORD wide. */
6142 if (n_units == 0
6143 || (n_units == 1 && mode != BLKmode))
6144 return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
6145
6146 k = 0;
6147 if (align_words + n_units > GP_ARG_NUM_REG)
6148 /* Not all of the arg fits in gprs. Say that it goes in memory too,
6149 using a magic NULL_RTX component.
6150 This is not strictly correct. Only some of the arg belongs in
6151 memory, not all of it. However, the normal scheme using
6152 function_arg_partial_nregs can result in unusual subregs, eg.
6153 (subreg:SI (reg:DF) 4), which are not handled well. The code to
6154 store the whole arg to memory is often more efficient than code
6155 to store pieces, and we know that space is available in the right
6156 place for the whole arg. */
6157 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
6158
6159 i = 0;
6160 do
6161 {
6162 rtx r = gen_rtx_REG (SImode, GP_ARG_MIN_REG + align_words);
6163 rtx off = GEN_INT (i++ * 4);
6164 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
6165 }
6166 while (++align_words < GP_ARG_NUM_REG && --n_units != 0);
6167
6168 return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
6169 }
6170
6171 /* Determine where to put an argument to a function.
6172 Value is zero to push the argument on the stack,
6173 or a hard register in which to store the argument.
6174
6175 MODE is the argument's machine mode.
6176 TYPE is the data type of the argument (as a tree).
6177 This is null for libcalls where that information may
6178 not be available.
6179 CUM is a variable of type CUMULATIVE_ARGS which gives info about
6180 the preceding args and about the function being called. It is
6181 not modified in this routine.
6182 NAMED is nonzero if this argument is a named parameter
6183 (otherwise it is an extra parameter matching an ellipsis).
6184
6185 On RS/6000 the first eight words of non-FP are normally in registers
6186 and the rest are pushed. Under AIX, the first 13 FP args are in registers.
6187 Under V.4, the first 8 FP args are in registers.
6188
6189 If this is floating-point and no prototype is specified, we use
6190 both an FP and integer register (or possibly FP reg and stack). Library
6191 functions (when CALL_LIBCALL is set) always have the proper types for args,
6192 so we can pass the FP value just in one register. emit_library_function
6193 doesn't support PARALLEL anyway.
6194
6195 Note that for args passed by reference, function_arg will be called
6196 with MODE and TYPE set to that of the pointer to the arg, not the arg
6197 itself. */
6198
6199 rtx
6200 function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
6201 tree type, int named)
6202 {
6203 enum rs6000_abi abi = DEFAULT_ABI;
6204
6205 /* Return a marker to indicate whether CR1 needs to set or clear the
6206 bit that V.4 uses to say fp args were passed in registers.
6207 Assume that we don't need the marker for software floating point,
6208 or compiler generated library calls. */
6209 if (mode == VOIDmode)
6210 {
6211 if (abi == ABI_V4
6212 && (cum->call_cookie & CALL_LIBCALL) == 0
6213 && (cum->stdarg
6214 || (cum->nargs_prototype < 0
6215 && (cum->prototype || TARGET_NO_PROTOTYPE))))
6216 {
6217 /* For the SPE, we need to crxor CR6 always. */
6218 if (TARGET_SPE_ABI)
6219 return GEN_INT (cum->call_cookie | CALL_V4_SET_FP_ARGS);
6220 else if (TARGET_HARD_FLOAT && TARGET_FPRS)
6221 return GEN_INT (cum->call_cookie
6222 | ((cum->fregno == FP_ARG_MIN_REG)
6223 ? CALL_V4_SET_FP_ARGS
6224 : CALL_V4_CLEAR_FP_ARGS));
6225 }
6226
6227 return GEN_INT (cum->call_cookie);
6228 }
6229
6230 if (rs6000_darwin64_abi && mode == BLKmode
6231 && TREE_CODE (type) == RECORD_TYPE)
6232 {
6233 rtx rslt = rs6000_darwin64_record_arg (cum, type, named, false);
6234 if (rslt != NULL_RTX)
6235 return rslt;
6236 /* Else fall through to usual handling. */
6237 }
6238
6239 if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, named))
6240 if (TARGET_64BIT && ! cum->prototype)
6241 {
6242 /* Vector parameters get passed in vector register
6243 and also in GPRs or memory, in absence of prototype. */
6244 int align_words;
6245 rtx slot;
6246 align_words = (cum->words + 1) & ~1;
6247
6248 if (align_words >= GP_ARG_NUM_REG)
6249 {
6250 slot = NULL_RTX;
6251 }
6252 else
6253 {
6254 slot = gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
6255 }
6256 return gen_rtx_PARALLEL (mode,
6257 gen_rtvec (2,
6258 gen_rtx_EXPR_LIST (VOIDmode,
6259 slot, const0_rtx),
6260 gen_rtx_EXPR_LIST (VOIDmode,
6261 gen_rtx_REG (mode, cum->vregno),
6262 const0_rtx)));
6263 }
6264 else
6265 return gen_rtx_REG (mode, cum->vregno);
6266 else if (TARGET_ALTIVEC_ABI
6267 && (ALTIVEC_VECTOR_MODE (mode)
6268 || (type && TREE_CODE (type) == VECTOR_TYPE
6269 && int_size_in_bytes (type) == 16)))
6270 {
6271 if (named || abi == ABI_V4)
6272 return NULL_RTX;
6273 else
6274 {
6275 /* Vector parameters to varargs functions under AIX or Darwin
6276 get passed in memory and possibly also in GPRs. */
6277 int align, align_words, n_words;
6278 enum machine_mode part_mode;
6279
6280 /* Vector parameters must be 16-byte aligned. This places them at
6281 2 mod 4 in terms of words in 32-bit mode, since the parameter
6282 save area starts at offset 24 from the stack. In 64-bit mode,
6283 they just have to start on an even word, since the parameter
6284 save area is 16-byte aligned. */
6285 if (TARGET_32BIT)
6286 align = (2 - cum->words) & 3;
6287 else
6288 align = cum->words & 1;
6289 align_words = cum->words + align;
6290
6291 /* Out of registers? Memory, then. */
6292 if (align_words >= GP_ARG_NUM_REG)
6293 return NULL_RTX;
6294
6295 if (TARGET_32BIT && TARGET_POWERPC64)
6296 return rs6000_mixed_function_arg (mode, type, align_words);
6297
6298 /* The vector value goes in GPRs. Only the part of the
6299 value in GPRs is reported here. */
6300 part_mode = mode;
6301 n_words = rs6000_arg_size (mode, type);
6302 if (align_words + n_words > GP_ARG_NUM_REG)
6303 /* Fortunately, there are only two possibilities, the value
6304 is either wholly in GPRs or half in GPRs and half not. */
6305 part_mode = DImode;
6306
6307 return gen_rtx_REG (part_mode, GP_ARG_MIN_REG + align_words);
6308 }
6309 }
6310 else if (TARGET_SPE_ABI && TARGET_SPE
6311 && (SPE_VECTOR_MODE (mode)
6312 || (TARGET_E500_DOUBLE && (mode == DFmode
6313 || mode == DCmode
6314 || mode == TFmode
6315 || mode == TCmode))))
6316 return rs6000_spe_function_arg (cum, mode, type);
6317
6318 else if (abi == ABI_V4)
6319 {
6320 if (TARGET_HARD_FLOAT && TARGET_FPRS
6321 && ((TARGET_SINGLE_FLOAT && mode == SFmode)
6322 || (TARGET_DOUBLE_FLOAT && mode == DFmode)
6323 || (mode == TFmode && !TARGET_IEEEQUAD)
6324 || mode == SDmode || mode == DDmode || mode == TDmode))
6325 {
6326 /* _Decimal128 must use an even/odd register pair. This assumes
6327 that the register number is odd when fregno is odd. */
6328 if (mode == TDmode && (cum->fregno % 2) == 1)
6329 cum->fregno++;
6330
6331 if (cum->fregno + (mode == TFmode || mode == TDmode ? 1 : 0)
6332 <= FP_ARG_V4_MAX_REG)
6333 return gen_rtx_REG (mode, cum->fregno);
6334 else
6335 return NULL_RTX;
6336 }
6337 else
6338 {
6339 int n_words = rs6000_arg_size (mode, type);
6340 int gregno = cum->sysv_gregno;
6341
6342 /* Long long and SPE vectors are put in (r3,r4), (r5,r6),
6343 (r7,r8) or (r9,r10). As does any other 2 word item such
6344 as complex int due to a historical mistake. */
6345 if (n_words == 2)
6346 gregno += (1 - gregno) & 1;
6347
6348 /* Multi-reg args are not split between registers and stack. */
6349 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
6350 return NULL_RTX;
6351
6352 if (TARGET_32BIT && TARGET_POWERPC64)
6353 return rs6000_mixed_function_arg (mode, type,
6354 gregno - GP_ARG_MIN_REG);
6355 return gen_rtx_REG (mode, gregno);
6356 }
6357 }
6358 else
6359 {
6360 int align_words = rs6000_parm_start (mode, type, cum->words);
6361
6362 /* _Decimal128 must be passed in an even/odd float register pair.
6363 This assumes that the register number is odd when fregno is odd. */
6364 if (mode == TDmode && (cum->fregno % 2) == 1)
6365 cum->fregno++;
6366
6367 if (USE_FP_FOR_ARG_P (cum, mode, type))
6368 {
6369 rtx rvec[GP_ARG_NUM_REG + 1];
6370 rtx r;
6371 int k;
6372 bool needs_psave;
6373 enum machine_mode fmode = mode;
6374 unsigned long n_fpreg = (GET_MODE_SIZE (mode) + 7) >> 3;
6375
6376 if (cum->fregno + n_fpreg > FP_ARG_MAX_REG + 1)
6377 {
6378 /* Currently, we only ever need one reg here because complex
6379 doubles are split. */
6380 gcc_assert (cum->fregno == FP_ARG_MAX_REG
6381 && (fmode == TFmode || fmode == TDmode));
6382
6383 /* Long double or _Decimal128 split over regs and memory. */
6384 fmode = DECIMAL_FLOAT_MODE_P (fmode) ? DDmode : DFmode;
6385 }
6386
6387 /* Do we also need to pass this arg in the parameter save
6388 area? */
6389 needs_psave = (type
6390 && (cum->nargs_prototype <= 0
6391 || (DEFAULT_ABI == ABI_AIX
6392 && TARGET_XL_COMPAT
6393 && align_words >= GP_ARG_NUM_REG)));
6394
6395 if (!needs_psave && mode == fmode)
6396 return gen_rtx_REG (fmode, cum->fregno);
6397
6398 k = 0;
6399 if (needs_psave)
6400 {
6401 /* Describe the part that goes in gprs or the stack.
6402 This piece must come first, before the fprs. */
6403 if (align_words < GP_ARG_NUM_REG)
6404 {
6405 unsigned long n_words = rs6000_arg_size (mode, type);
6406
6407 if (align_words + n_words > GP_ARG_NUM_REG
6408 || (TARGET_32BIT && TARGET_POWERPC64))
6409 {
6410 /* If this is partially on the stack, then we only
6411 include the portion actually in registers here. */
6412 enum machine_mode rmode = TARGET_32BIT ? SImode : DImode;
6413 rtx off;
6414 int i = 0;
6415 if (align_words + n_words > GP_ARG_NUM_REG)
6416 /* Not all of the arg fits in gprs. Say that it
6417 goes in memory too, using a magic NULL_RTX
6418 component. Also see comment in
6419 rs6000_mixed_function_arg for why the normal
6420 function_arg_partial_nregs scheme doesn't work
6421 in this case. */
6422 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX,
6423 const0_rtx);
6424 do
6425 {
6426 r = gen_rtx_REG (rmode,
6427 GP_ARG_MIN_REG + align_words);
6428 off = GEN_INT (i++ * GET_MODE_SIZE (rmode));
6429 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
6430 }
6431 while (++align_words < GP_ARG_NUM_REG && --n_words != 0);
6432 }
6433 else
6434 {
6435 /* The whole arg fits in gprs. */
6436 r = gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
6437 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, const0_rtx);
6438 }
6439 }
6440 else
6441 /* It's entirely in memory. */
6442 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
6443 }
6444
6445 /* Describe where this piece goes in the fprs. */
6446 r = gen_rtx_REG (fmode, cum->fregno);
6447 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, const0_rtx);
6448
6449 return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
6450 }
6451 else if (align_words < GP_ARG_NUM_REG)
6452 {
6453 if (TARGET_32BIT && TARGET_POWERPC64)
6454 return rs6000_mixed_function_arg (mode, type, align_words);
6455
6456 if (mode == BLKmode)
6457 mode = Pmode;
6458
6459 return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
6460 }
6461 else
6462 return NULL_RTX;
6463 }
6464 }
6465 \f
6466 /* For an arg passed partly in registers and partly in memory, this is
6467 the number of bytes passed in registers. For args passed entirely in
6468 registers or entirely in memory, zero. When an arg is described by a
6469 PARALLEL, perhaps using more than one register type, this function
6470 returns the number of bytes used by the first element of the PARALLEL. */
6471
6472 static int
6473 rs6000_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
6474 tree type, bool named)
6475 {
6476 int ret = 0;
6477 int align_words;
6478
6479 if (DEFAULT_ABI == ABI_V4)
6480 return 0;
6481
6482 if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, named)
6483 && cum->nargs_prototype >= 0)
6484 return 0;
6485
6486 /* In this complicated case we just disable the partial_nregs code. */
6487 if (rs6000_darwin64_abi && mode == BLKmode
6488 && TREE_CODE (type) == RECORD_TYPE
6489 && int_size_in_bytes (type) > 0)
6490 return 0;
6491
6492 align_words = rs6000_parm_start (mode, type, cum->words);
6493
6494 if (USE_FP_FOR_ARG_P (cum, mode, type))
6495 {
6496 /* If we are passing this arg in the fixed parameter save area
6497 (gprs or memory) as well as fprs, then this function should
6498 return the number of partial bytes passed in the parameter
6499 save area rather than partial bytes passed in fprs. */
6500 if (type
6501 && (cum->nargs_prototype <= 0
6502 || (DEFAULT_ABI == ABI_AIX
6503 && TARGET_XL_COMPAT
6504 && align_words >= GP_ARG_NUM_REG)))
6505 return 0;
6506 else if (cum->fregno + ((GET_MODE_SIZE (mode) + 7) >> 3)
6507 > FP_ARG_MAX_REG + 1)
6508 ret = (FP_ARG_MAX_REG + 1 - cum->fregno) * 8;
6509 else if (cum->nargs_prototype >= 0)
6510 return 0;
6511 }
6512
6513 if (align_words < GP_ARG_NUM_REG
6514 && GP_ARG_NUM_REG < align_words + rs6000_arg_size (mode, type))
6515 ret = (GP_ARG_NUM_REG - align_words) * (TARGET_32BIT ? 4 : 8);
6516
6517 if (ret != 0 && TARGET_DEBUG_ARG)
6518 fprintf (stderr, "rs6000_arg_partial_bytes: %d\n", ret);
6519
6520 return ret;
6521 }
6522 \f
6523 /* A C expression that indicates when an argument must be passed by
6524 reference. If nonzero for an argument, a copy of that argument is
6525 made in memory and a pointer to the argument is passed instead of
6526 the argument itself. The pointer is passed in whatever way is
6527 appropriate for passing a pointer to that type.
6528
6529 Under V.4, aggregates and long double are passed by reference.
6530
6531 As an extension to all 32-bit ABIs, AltiVec vectors are passed by
6532 reference unless the AltiVec vector extension ABI is in force.
6533
6534 As an extension to all ABIs, variable sized types are passed by
6535 reference. */
6536
6537 static bool
6538 rs6000_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
6539 enum machine_mode mode, const_tree type,
6540 bool named ATTRIBUTE_UNUSED)
6541 {
6542 if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD && mode == TFmode)
6543 {
6544 if (TARGET_DEBUG_ARG)
6545 fprintf (stderr, "function_arg_pass_by_reference: V4 long double\n");
6546 return 1;
6547 }
6548
6549 if (!type)
6550 return 0;
6551
6552 if (DEFAULT_ABI == ABI_V4 && AGGREGATE_TYPE_P (type))
6553 {
6554 if (TARGET_DEBUG_ARG)
6555 fprintf (stderr, "function_arg_pass_by_reference: V4 aggregate\n");
6556 return 1;
6557 }
6558
6559 if (int_size_in_bytes (type) < 0)
6560 {
6561 if (TARGET_DEBUG_ARG)
6562 fprintf (stderr, "function_arg_pass_by_reference: variable size\n");
6563 return 1;
6564 }
6565
6566 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
6567 modes only exist for GCC vector types if -maltivec. */
6568 if (TARGET_32BIT && !TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
6569 {
6570 if (TARGET_DEBUG_ARG)
6571 fprintf (stderr, "function_arg_pass_by_reference: AltiVec\n");
6572 return 1;
6573 }
6574
6575 /* Pass synthetic vectors in memory. */
6576 if (TREE_CODE (type) == VECTOR_TYPE
6577 && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
6578 {
6579 static bool warned_for_pass_big_vectors = false;
6580 if (TARGET_DEBUG_ARG)
6581 fprintf (stderr, "function_arg_pass_by_reference: synthetic vector\n");
6582 if (!warned_for_pass_big_vectors)
6583 {
6584 warning (0, "GCC vector passed by reference: "
6585 "non-standard ABI extension with no compatibility guarantee");
6586 warned_for_pass_big_vectors = true;
6587 }
6588 return 1;
6589 }
6590
6591 return 0;
6592 }
6593
6594 static void
6595 rs6000_move_block_from_reg (int regno, rtx x, int nregs)
6596 {
6597 int i;
6598 enum machine_mode reg_mode = TARGET_32BIT ? SImode : DImode;
6599
6600 if (nregs == 0)
6601 return;
6602
6603 for (i = 0; i < nregs; i++)
6604 {
6605 rtx tem = adjust_address_nv (x, reg_mode, i * GET_MODE_SIZE (reg_mode));
6606 if (reload_completed)
6607 {
6608 if (! strict_memory_address_p (reg_mode, XEXP (tem, 0)))
6609 tem = NULL_RTX;
6610 else
6611 tem = simplify_gen_subreg (reg_mode, x, BLKmode,
6612 i * GET_MODE_SIZE (reg_mode));
6613 }
6614 else
6615 tem = replace_equiv_address (tem, XEXP (tem, 0));
6616
6617 gcc_assert (tem);
6618
6619 emit_move_insn (tem, gen_rtx_REG (reg_mode, regno + i));
6620 }
6621 }
6622 \f
6623 /* Perform any needed actions needed for a function that is receiving a
6624 variable number of arguments.
6625
6626 CUM is as above.
6627
6628 MODE and TYPE are the mode and type of the current parameter.
6629
6630 PRETEND_SIZE is a variable that should be set to the amount of stack
6631 that must be pushed by the prolog to pretend that our caller pushed
6632 it.
6633
6634 Normally, this macro will push all remaining incoming registers on the
6635 stack and set PRETEND_SIZE to the length of the registers pushed. */
6636
6637 static void
6638 setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
6639 tree type, int *pretend_size ATTRIBUTE_UNUSED,
6640 int no_rtl)
6641 {
6642 CUMULATIVE_ARGS next_cum;
6643 int reg_size = TARGET_32BIT ? 4 : 8;
6644 rtx save_area = NULL_RTX, mem;
6645 int first_reg_offset;
6646 alias_set_type set;
6647
6648 /* Skip the last named argument. */
6649 next_cum = *cum;
6650 function_arg_advance (&next_cum, mode, type, 1, 0);
6651
6652 if (DEFAULT_ABI == ABI_V4)
6653 {
6654 first_reg_offset = next_cum.sysv_gregno - GP_ARG_MIN_REG;
6655
6656 if (! no_rtl)
6657 {
6658 int gpr_reg_num = 0, gpr_size = 0, fpr_size = 0;
6659 HOST_WIDE_INT offset = 0;
6660
6661 /* Try to optimize the size of the varargs save area.
6662 The ABI requires that ap.reg_save_area is doubleword
6663 aligned, but we don't need to allocate space for all
6664 the bytes, only those to which we actually will save
6665 anything. */
6666 if (cfun->va_list_gpr_size && first_reg_offset < GP_ARG_NUM_REG)
6667 gpr_reg_num = GP_ARG_NUM_REG - first_reg_offset;
6668 if (TARGET_HARD_FLOAT && TARGET_FPRS
6669 && next_cum.fregno <= FP_ARG_V4_MAX_REG
6670 && cfun->va_list_fpr_size)
6671 {
6672 if (gpr_reg_num)
6673 fpr_size = (next_cum.fregno - FP_ARG_MIN_REG)
6674 * UNITS_PER_FP_WORD;
6675 if (cfun->va_list_fpr_size
6676 < FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
6677 fpr_size += cfun->va_list_fpr_size * UNITS_PER_FP_WORD;
6678 else
6679 fpr_size += (FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
6680 * UNITS_PER_FP_WORD;
6681 }
6682 if (gpr_reg_num)
6683 {
6684 offset = -((first_reg_offset * reg_size) & ~7);
6685 if (!fpr_size && gpr_reg_num > cfun->va_list_gpr_size)
6686 {
6687 gpr_reg_num = cfun->va_list_gpr_size;
6688 if (reg_size == 4 && (first_reg_offset & 1))
6689 gpr_reg_num++;
6690 }
6691 gpr_size = (gpr_reg_num * reg_size + 7) & ~7;
6692 }
6693 else if (fpr_size)
6694 offset = - (int) (next_cum.fregno - FP_ARG_MIN_REG)
6695 * UNITS_PER_FP_WORD
6696 - (int) (GP_ARG_NUM_REG * reg_size);
6697
6698 if (gpr_size + fpr_size)
6699 {
6700 rtx reg_save_area
6701 = assign_stack_local (BLKmode, gpr_size + fpr_size, 64);
6702 gcc_assert (GET_CODE (reg_save_area) == MEM);
6703 reg_save_area = XEXP (reg_save_area, 0);
6704 if (GET_CODE (reg_save_area) == PLUS)
6705 {
6706 gcc_assert (XEXP (reg_save_area, 0)
6707 == virtual_stack_vars_rtx);
6708 gcc_assert (GET_CODE (XEXP (reg_save_area, 1)) == CONST_INT);
6709 offset += INTVAL (XEXP (reg_save_area, 1));
6710 }
6711 else
6712 gcc_assert (reg_save_area == virtual_stack_vars_rtx);
6713 }
6714
6715 cfun->machine->varargs_save_offset = offset;
6716 save_area = plus_constant (virtual_stack_vars_rtx, offset);
6717 }
6718 }
6719 else
6720 {
6721 first_reg_offset = next_cum.words;
6722 save_area = virtual_incoming_args_rtx;
6723
6724 if (targetm.calls.must_pass_in_stack (mode, type))
6725 first_reg_offset += rs6000_arg_size (TYPE_MODE (type), type);
6726 }
6727
6728 set = get_varargs_alias_set ();
6729 if (! no_rtl && first_reg_offset < GP_ARG_NUM_REG
6730 && cfun->va_list_gpr_size)
6731 {
6732 int nregs = GP_ARG_NUM_REG - first_reg_offset;
6733
6734 if (va_list_gpr_counter_field)
6735 {
6736 /* V4 va_list_gpr_size counts number of registers needed. */
6737 if (nregs > cfun->va_list_gpr_size)
6738 nregs = cfun->va_list_gpr_size;
6739 }
6740 else
6741 {
6742 /* char * va_list instead counts number of bytes needed. */
6743 if (nregs > cfun->va_list_gpr_size / reg_size)
6744 nregs = cfun->va_list_gpr_size / reg_size;
6745 }
6746
6747 mem = gen_rtx_MEM (BLKmode,
6748 plus_constant (save_area,
6749 first_reg_offset * reg_size));
6750 MEM_NOTRAP_P (mem) = 1;
6751 set_mem_alias_set (mem, set);
6752 set_mem_align (mem, BITS_PER_WORD);
6753
6754 rs6000_move_block_from_reg (GP_ARG_MIN_REG + first_reg_offset, mem,
6755 nregs);
6756 }
6757
6758 /* Save FP registers if needed. */
6759 if (DEFAULT_ABI == ABI_V4
6760 && TARGET_HARD_FLOAT && TARGET_FPRS
6761 && ! no_rtl
6762 && next_cum.fregno <= FP_ARG_V4_MAX_REG
6763 && cfun->va_list_fpr_size)
6764 {
6765 int fregno = next_cum.fregno, nregs;
6766 rtx cr1 = gen_rtx_REG (CCmode, CR1_REGNO);
6767 rtx lab = gen_label_rtx ();
6768 int off = (GP_ARG_NUM_REG * reg_size) + ((fregno - FP_ARG_MIN_REG)
6769 * UNITS_PER_FP_WORD);
6770
6771 emit_jump_insn
6772 (gen_rtx_SET (VOIDmode,
6773 pc_rtx,
6774 gen_rtx_IF_THEN_ELSE (VOIDmode,
6775 gen_rtx_NE (VOIDmode, cr1,
6776 const0_rtx),
6777 gen_rtx_LABEL_REF (VOIDmode, lab),
6778 pc_rtx)));
6779
6780 for (nregs = 0;
6781 fregno <= FP_ARG_V4_MAX_REG && nregs < cfun->va_list_fpr_size;
6782 fregno++, off += UNITS_PER_FP_WORD, nregs++)
6783 {
6784 mem = gen_rtx_MEM ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
6785 ? DFmode : SFmode,
6786 plus_constant (save_area, off));
6787 MEM_NOTRAP_P (mem) = 1;
6788 set_mem_alias_set (mem, set);
6789 set_mem_align (mem, GET_MODE_ALIGNMENT (
6790 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
6791 ? DFmode : SFmode));
6792 emit_move_insn (mem, gen_rtx_REG (
6793 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
6794 ? DFmode : SFmode, fregno));
6795 }
6796
6797 emit_label (lab);
6798 }
6799 }
6800
6801 /* Create the va_list data type. */
6802
6803 static tree
6804 rs6000_build_builtin_va_list (void)
6805 {
6806 tree f_gpr, f_fpr, f_res, f_ovf, f_sav, record, type_decl;
6807
6808 /* For AIX, prefer 'char *' because that's what the system
6809 header files like. */
6810 if (DEFAULT_ABI != ABI_V4)
6811 return build_pointer_type (char_type_node);
6812
6813 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
6814 type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
6815
6816 f_gpr = build_decl (FIELD_DECL, get_identifier ("gpr"),
6817 unsigned_char_type_node);
6818 f_fpr = build_decl (FIELD_DECL, get_identifier ("fpr"),
6819 unsigned_char_type_node);
6820 /* Give the two bytes of padding a name, so that -Wpadded won't warn on
6821 every user file. */
6822 f_res = build_decl (FIELD_DECL, get_identifier ("reserved"),
6823 short_unsigned_type_node);
6824 f_ovf = build_decl (FIELD_DECL, get_identifier ("overflow_arg_area"),
6825 ptr_type_node);
6826 f_sav = build_decl (FIELD_DECL, get_identifier ("reg_save_area"),
6827 ptr_type_node);
6828
6829 va_list_gpr_counter_field = f_gpr;
6830 va_list_fpr_counter_field = f_fpr;
6831
6832 DECL_FIELD_CONTEXT (f_gpr) = record;
6833 DECL_FIELD_CONTEXT (f_fpr) = record;
6834 DECL_FIELD_CONTEXT (f_res) = record;
6835 DECL_FIELD_CONTEXT (f_ovf) = record;
6836 DECL_FIELD_CONTEXT (f_sav) = record;
6837
6838 TREE_CHAIN (record) = type_decl;
6839 TYPE_NAME (record) = type_decl;
6840 TYPE_FIELDS (record) = f_gpr;
6841 TREE_CHAIN (f_gpr) = f_fpr;
6842 TREE_CHAIN (f_fpr) = f_res;
6843 TREE_CHAIN (f_res) = f_ovf;
6844 TREE_CHAIN (f_ovf) = f_sav;
6845
6846 layout_type (record);
6847
6848 /* The correct type is an array type of one element. */
6849 return build_array_type (record, build_index_type (size_zero_node));
6850 }
6851
6852 /* Implement va_start. */
6853
6854 static void
6855 rs6000_va_start (tree valist, rtx nextarg)
6856 {
6857 HOST_WIDE_INT words, n_gpr, n_fpr;
6858 tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
6859 tree gpr, fpr, ovf, sav, t;
6860
6861 /* Only SVR4 needs something special. */
6862 if (DEFAULT_ABI != ABI_V4)
6863 {
6864 std_expand_builtin_va_start (valist, nextarg);
6865 return;
6866 }
6867
6868 f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
6869 f_fpr = TREE_CHAIN (f_gpr);
6870 f_res = TREE_CHAIN (f_fpr);
6871 f_ovf = TREE_CHAIN (f_res);
6872 f_sav = TREE_CHAIN (f_ovf);
6873
6874 valist = build_va_arg_indirect_ref (valist);
6875 gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
6876 fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
6877 f_fpr, NULL_TREE);
6878 ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
6879 f_ovf, NULL_TREE);
6880 sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
6881 f_sav, NULL_TREE);
6882
6883 /* Count number of gp and fp argument registers used. */
6884 words = crtl->args.info.words;
6885 n_gpr = MIN (crtl->args.info.sysv_gregno - GP_ARG_MIN_REG,
6886 GP_ARG_NUM_REG);
6887 n_fpr = MIN (crtl->args.info.fregno - FP_ARG_MIN_REG,
6888 FP_ARG_NUM_REG);
6889
6890 if (TARGET_DEBUG_ARG)
6891 fprintf (stderr, "va_start: words = "HOST_WIDE_INT_PRINT_DEC", n_gpr = "
6892 HOST_WIDE_INT_PRINT_DEC", n_fpr = "HOST_WIDE_INT_PRINT_DEC"\n",
6893 words, n_gpr, n_fpr);
6894
6895 if (cfun->va_list_gpr_size)
6896 {
6897 t = build2 (MODIFY_EXPR, TREE_TYPE (gpr), gpr,
6898 build_int_cst (NULL_TREE, n_gpr));
6899 TREE_SIDE_EFFECTS (t) = 1;
6900 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6901 }
6902
6903 if (cfun->va_list_fpr_size)
6904 {
6905 t = build2 (MODIFY_EXPR, TREE_TYPE (fpr), fpr,
6906 build_int_cst (NULL_TREE, n_fpr));
6907 TREE_SIDE_EFFECTS (t) = 1;
6908 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6909 }
6910
6911 /* Find the overflow area. */
6912 t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx);
6913 if (words != 0)
6914 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovf), t,
6915 size_int (words * UNITS_PER_WORD));
6916 t = build2 (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
6917 TREE_SIDE_EFFECTS (t) = 1;
6918 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6919
6920 /* If there were no va_arg invocations, don't set up the register
6921 save area. */
6922 if (!cfun->va_list_gpr_size
6923 && !cfun->va_list_fpr_size
6924 && n_gpr < GP_ARG_NUM_REG
6925 && n_fpr < FP_ARG_V4_MAX_REG)
6926 return;
6927
6928 /* Find the register save area. */
6929 t = make_tree (TREE_TYPE (sav), virtual_stack_vars_rtx);
6930 if (cfun->machine->varargs_save_offset)
6931 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (sav), t,
6932 size_int (cfun->machine->varargs_save_offset));
6933 t = build2 (MODIFY_EXPR, TREE_TYPE (sav), sav, t);
6934 TREE_SIDE_EFFECTS (t) = 1;
6935 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
6936 }
6937
6938 /* Implement va_arg. */
6939
6940 tree
6941 rs6000_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
6942 gimple_seq *post_p)
6943 {
6944 tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
6945 tree gpr, fpr, ovf, sav, reg, t, u;
6946 int size, rsize, n_reg, sav_ofs, sav_scale;
6947 tree lab_false, lab_over, addr;
6948 int align;
6949 tree ptrtype = build_pointer_type (type);
6950 int regalign = 0;
6951 gimple stmt;
6952
6953 if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
6954 {
6955 t = rs6000_gimplify_va_arg (valist, ptrtype, pre_p, post_p);
6956 return build_va_arg_indirect_ref (t);
6957 }
6958
6959 if (DEFAULT_ABI != ABI_V4)
6960 {
6961 if (targetm.calls.split_complex_arg && TREE_CODE (type) == COMPLEX_TYPE)
6962 {
6963 tree elem_type = TREE_TYPE (type);
6964 enum machine_mode elem_mode = TYPE_MODE (elem_type);
6965 int elem_size = GET_MODE_SIZE (elem_mode);
6966
6967 if (elem_size < UNITS_PER_WORD)
6968 {
6969 tree real_part, imag_part;
6970 gimple_seq post = NULL;
6971
6972 real_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
6973 &post);
6974 /* Copy the value into a temporary, lest the formal temporary
6975 be reused out from under us. */
6976 real_part = get_initialized_tmp_var (real_part, pre_p, &post);
6977 gimple_seq_add_seq (pre_p, post);
6978
6979 imag_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
6980 post_p);
6981
6982 return build2 (COMPLEX_EXPR, type, real_part, imag_part);
6983 }
6984 }
6985
6986 return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
6987 }
6988
6989 f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
6990 f_fpr = TREE_CHAIN (f_gpr);
6991 f_res = TREE_CHAIN (f_fpr);
6992 f_ovf = TREE_CHAIN (f_res);
6993 f_sav = TREE_CHAIN (f_ovf);
6994
6995 valist = build_va_arg_indirect_ref (valist);
6996 gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
6997 fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
6998 f_fpr, NULL_TREE);
6999 ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
7000 f_ovf, NULL_TREE);
7001 sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
7002 f_sav, NULL_TREE);
7003
7004 size = int_size_in_bytes (type);
7005 rsize = (size + 3) / 4;
7006 align = 1;
7007
7008 if (TARGET_HARD_FLOAT && TARGET_FPRS
7009 && ((TARGET_SINGLE_FLOAT && TYPE_MODE (type) == SFmode)
7010 || (TARGET_DOUBLE_FLOAT
7011 && (TYPE_MODE (type) == DFmode
7012 || TYPE_MODE (type) == TFmode
7013 || TYPE_MODE (type) == SDmode
7014 || TYPE_MODE (type) == DDmode
7015 || TYPE_MODE (type) == TDmode))))
7016 {
7017 /* FP args go in FP registers, if present. */
7018 reg = fpr;
7019 n_reg = (size + 7) / 8;
7020 sav_ofs = ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? 8 : 4) * 4;
7021 sav_scale = ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? 8 : 4);
7022 if (TYPE_MODE (type) != SFmode && TYPE_MODE (type) != SDmode)
7023 align = 8;
7024 }
7025 else
7026 {
7027 /* Otherwise into GP registers. */
7028 reg = gpr;
7029 n_reg = rsize;
7030 sav_ofs = 0;
7031 sav_scale = 4;
7032 if (n_reg == 2)
7033 align = 8;
7034 }
7035
7036 /* Pull the value out of the saved registers.... */
7037
7038 lab_over = NULL;
7039 addr = create_tmp_var (ptr_type_node, "addr");
7040 DECL_POINTER_ALIAS_SET (addr) = get_varargs_alias_set ();
7041
7042 /* AltiVec vectors never go in registers when -mabi=altivec. */
7043 if (TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (TYPE_MODE (type)))
7044 align = 16;
7045 else
7046 {
7047 lab_false = create_artificial_label ();
7048 lab_over = create_artificial_label ();
7049
7050 /* Long long and SPE vectors are aligned in the registers.
7051 As are any other 2 gpr item such as complex int due to a
7052 historical mistake. */
7053 u = reg;
7054 if (n_reg == 2 && reg == gpr)
7055 {
7056 regalign = 1;
7057 u = build2 (BIT_AND_EXPR, TREE_TYPE (reg), unshare_expr (reg),
7058 build_int_cst (TREE_TYPE (reg), n_reg - 1));
7059 u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg),
7060 unshare_expr (reg), u);
7061 }
7062 /* _Decimal128 is passed in even/odd fpr pairs; the stored
7063 reg number is 0 for f1, so we want to make it odd. */
7064 else if (reg == fpr && TYPE_MODE (type) == TDmode)
7065 {
7066 regalign = 1;
7067 t = build2 (BIT_IOR_EXPR, TREE_TYPE (reg), unshare_expr (reg),
7068 build_int_cst (TREE_TYPE (reg), 1));
7069 u = build2 (MODIFY_EXPR, void_type_node, unshare_expr (reg), t);
7070 }
7071
7072 t = fold_convert (TREE_TYPE (reg), size_int (8 - n_reg + 1));
7073 t = build2 (GE_EXPR, boolean_type_node, u, t);
7074 u = build1 (GOTO_EXPR, void_type_node, lab_false);
7075 t = build3 (COND_EXPR, void_type_node, t, u, NULL_TREE);
7076 gimplify_and_add (t, pre_p);
7077
7078 t = sav;
7079 if (sav_ofs)
7080 t = build2 (POINTER_PLUS_EXPR, ptr_type_node, sav, size_int (sav_ofs));
7081
7082 u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg), unshare_expr (reg),
7083 build_int_cst (TREE_TYPE (reg), n_reg));
7084 u = fold_convert (sizetype, u);
7085 u = build2 (MULT_EXPR, sizetype, u, size_int (sav_scale));
7086 t = build2 (POINTER_PLUS_EXPR, ptr_type_node, t, u);
7087
7088 /* _Decimal32 varargs are located in the second word of the 64-bit
7089 FP register for 32-bit binaries. */
7090 if (!TARGET_POWERPC64
7091 && TARGET_HARD_FLOAT && TARGET_FPRS
7092 && TYPE_MODE (type) == SDmode)
7093 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (size));
7094
7095 gimplify_assign (addr, t, pre_p);
7096
7097 gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over));
7098
7099 stmt = gimple_build_label (lab_false);
7100 gimple_seq_add_stmt (pre_p, stmt);
7101
7102 if ((n_reg == 2 && !regalign) || n_reg > 2)
7103 {
7104 /* Ensure that we don't find any more args in regs.
7105 Alignment has taken care of for special cases. */
7106 gimplify_assign (reg, build_int_cst (TREE_TYPE (reg), 8), pre_p);
7107 }
7108 }
7109
7110 /* ... otherwise out of the overflow area. */
7111
7112 /* Care for on-stack alignment if needed. */
7113 t = ovf;
7114 if (align != 1)
7115 {
7116 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (align - 1));
7117 t = fold_convert (sizetype, t);
7118 t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
7119 size_int (-align));
7120 t = fold_convert (TREE_TYPE (ovf), t);
7121 }
7122 gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue);
7123
7124 gimplify_assign (unshare_expr (addr), t, pre_p);
7125
7126 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (size));
7127 gimplify_assign (unshare_expr (ovf), t, pre_p);
7128
7129 if (lab_over)
7130 {
7131 stmt = gimple_build_label (lab_over);
7132 gimple_seq_add_stmt (pre_p, stmt);
7133 }
7134
7135 if (STRICT_ALIGNMENT
7136 && (TYPE_ALIGN (type)
7137 > (unsigned) BITS_PER_UNIT * (align < 4 ? 4 : align)))
7138 {
7139 /* The value (of type complex double, for example) may not be
7140 aligned in memory in the saved registers, so copy via a
7141 temporary. (This is the same code as used for SPARC.) */
7142 tree tmp = create_tmp_var (type, "va_arg_tmp");
7143 tree dest_addr = build_fold_addr_expr (tmp);
7144
7145 tree copy = build_call_expr (implicit_built_in_decls[BUILT_IN_MEMCPY],
7146 3, dest_addr, addr, size_int (rsize * 4));
7147
7148 gimplify_and_add (copy, pre_p);
7149 addr = dest_addr;
7150 }
7151
7152 addr = fold_convert (ptrtype, addr);
7153 return build_va_arg_indirect_ref (addr);
7154 }
7155
7156 /* Builtins. */
7157
7158 static void
7159 def_builtin (int mask, const char *name, tree type, int code)
7160 {
7161 if ((mask & target_flags) || TARGET_PAIRED_FLOAT)
7162 {
7163 if (rs6000_builtin_decls[code])
7164 abort ();
7165
7166 rs6000_builtin_decls[code] =
7167 add_builtin_function (name, type, code, BUILT_IN_MD,
7168 NULL, NULL_TREE);
7169 }
7170 }
7171
7172 /* Simple ternary operations: VECd = foo (VECa, VECb, VECc). */
7173
7174 static const struct builtin_description bdesc_3arg[] =
7175 {
7176 { MASK_ALTIVEC, CODE_FOR_altivec_vmaddfp, "__builtin_altivec_vmaddfp", ALTIVEC_BUILTIN_VMADDFP },
7177 { MASK_ALTIVEC, CODE_FOR_altivec_vmhaddshs, "__builtin_altivec_vmhaddshs", ALTIVEC_BUILTIN_VMHADDSHS },
7178 { MASK_ALTIVEC, CODE_FOR_altivec_vmhraddshs, "__builtin_altivec_vmhraddshs", ALTIVEC_BUILTIN_VMHRADDSHS },
7179 { MASK_ALTIVEC, CODE_FOR_altivec_vmladduhm, "__builtin_altivec_vmladduhm", ALTIVEC_BUILTIN_VMLADDUHM},
7180 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumubm, "__builtin_altivec_vmsumubm", ALTIVEC_BUILTIN_VMSUMUBM },
7181 { MASK_ALTIVEC, CODE_FOR_altivec_vmsummbm, "__builtin_altivec_vmsummbm", ALTIVEC_BUILTIN_VMSUMMBM },
7182 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumuhm, "__builtin_altivec_vmsumuhm", ALTIVEC_BUILTIN_VMSUMUHM },
7183 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumshm, "__builtin_altivec_vmsumshm", ALTIVEC_BUILTIN_VMSUMSHM },
7184 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumuhs, "__builtin_altivec_vmsumuhs", ALTIVEC_BUILTIN_VMSUMUHS },
7185 { MASK_ALTIVEC, CODE_FOR_altivec_vmsumshs, "__builtin_altivec_vmsumshs", ALTIVEC_BUILTIN_VMSUMSHS },
7186 { MASK_ALTIVEC, CODE_FOR_altivec_vnmsubfp, "__builtin_altivec_vnmsubfp", ALTIVEC_BUILTIN_VNMSUBFP },
7187 { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v4sf, "__builtin_altivec_vperm_4sf", ALTIVEC_BUILTIN_VPERM_4SF },
7188 { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v4si, "__builtin_altivec_vperm_4si", ALTIVEC_BUILTIN_VPERM_4SI },
7189 { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v8hi, "__builtin_altivec_vperm_8hi", ALTIVEC_BUILTIN_VPERM_8HI },
7190 { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v16qi, "__builtin_altivec_vperm_16qi", ALTIVEC_BUILTIN_VPERM_16QI },
7191 { MASK_ALTIVEC, CODE_FOR_altivec_vsel_v4sf, "__builtin_altivec_vsel_4sf", ALTIVEC_BUILTIN_VSEL_4SF },
7192 { MASK_ALTIVEC, CODE_FOR_altivec_vsel_v4si, "__builtin_altivec_vsel_4si", ALTIVEC_BUILTIN_VSEL_4SI },
7193 { MASK_ALTIVEC, CODE_FOR_altivec_vsel_v8hi, "__builtin_altivec_vsel_8hi", ALTIVEC_BUILTIN_VSEL_8HI },
7194 { MASK_ALTIVEC, CODE_FOR_altivec_vsel_v16qi, "__builtin_altivec_vsel_16qi", ALTIVEC_BUILTIN_VSEL_16QI },
7195 { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v16qi, "__builtin_altivec_vsldoi_16qi", ALTIVEC_BUILTIN_VSLDOI_16QI },
7196 { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v8hi, "__builtin_altivec_vsldoi_8hi", ALTIVEC_BUILTIN_VSLDOI_8HI },
7197 { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v4si, "__builtin_altivec_vsldoi_4si", ALTIVEC_BUILTIN_VSLDOI_4SI },
7198 { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v4sf, "__builtin_altivec_vsldoi_4sf", ALTIVEC_BUILTIN_VSLDOI_4SF },
7199
7200 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_madd", ALTIVEC_BUILTIN_VEC_MADD },
7201 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_madds", ALTIVEC_BUILTIN_VEC_MADDS },
7202 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mladd", ALTIVEC_BUILTIN_VEC_MLADD },
7203 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mradds", ALTIVEC_BUILTIN_VEC_MRADDS },
7204 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_msum", ALTIVEC_BUILTIN_VEC_MSUM },
7205 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumshm", ALTIVEC_BUILTIN_VEC_VMSUMSHM },
7206 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumuhm", ALTIVEC_BUILTIN_VEC_VMSUMUHM },
7207 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsummbm", ALTIVEC_BUILTIN_VEC_VMSUMMBM },
7208 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumubm", ALTIVEC_BUILTIN_VEC_VMSUMUBM },
7209 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_msums", ALTIVEC_BUILTIN_VEC_MSUMS },
7210 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumshs", ALTIVEC_BUILTIN_VEC_VMSUMSHS },
7211 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumuhs", ALTIVEC_BUILTIN_VEC_VMSUMUHS },
7212 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_nmsub", ALTIVEC_BUILTIN_VEC_NMSUB },
7213 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_perm", ALTIVEC_BUILTIN_VEC_PERM },
7214 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sel", ALTIVEC_BUILTIN_VEC_SEL },
7215
7216 { 0, CODE_FOR_paired_msub, "__builtin_paired_msub", PAIRED_BUILTIN_MSUB },
7217 { 0, CODE_FOR_paired_madd, "__builtin_paired_madd", PAIRED_BUILTIN_MADD },
7218 { 0, CODE_FOR_paired_madds0, "__builtin_paired_madds0", PAIRED_BUILTIN_MADDS0 },
7219 { 0, CODE_FOR_paired_madds1, "__builtin_paired_madds1", PAIRED_BUILTIN_MADDS1 },
7220 { 0, CODE_FOR_paired_nmsub, "__builtin_paired_nmsub", PAIRED_BUILTIN_NMSUB },
7221 { 0, CODE_FOR_paired_nmadd, "__builtin_paired_nmadd", PAIRED_BUILTIN_NMADD },
7222 { 0, CODE_FOR_paired_sum0, "__builtin_paired_sum0", PAIRED_BUILTIN_SUM0 },
7223 { 0, CODE_FOR_paired_sum1, "__builtin_paired_sum1", PAIRED_BUILTIN_SUM1 },
7224 { 0, CODE_FOR_selv2sf4, "__builtin_paired_selv2sf4", PAIRED_BUILTIN_SELV2SF4 },
7225 };
7226
7227 /* DST operations: void foo (void *, const int, const char). */
7228
7229 static const struct builtin_description bdesc_dst[] =
7230 {
7231 { MASK_ALTIVEC, CODE_FOR_altivec_dst, "__builtin_altivec_dst", ALTIVEC_BUILTIN_DST },
7232 { MASK_ALTIVEC, CODE_FOR_altivec_dstt, "__builtin_altivec_dstt", ALTIVEC_BUILTIN_DSTT },
7233 { MASK_ALTIVEC, CODE_FOR_altivec_dstst, "__builtin_altivec_dstst", ALTIVEC_BUILTIN_DSTST },
7234 { MASK_ALTIVEC, CODE_FOR_altivec_dststt, "__builtin_altivec_dststt", ALTIVEC_BUILTIN_DSTSTT },
7235
7236 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dst", ALTIVEC_BUILTIN_VEC_DST },
7237 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dstt", ALTIVEC_BUILTIN_VEC_DSTT },
7238 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dstst", ALTIVEC_BUILTIN_VEC_DSTST },
7239 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dststt", ALTIVEC_BUILTIN_VEC_DSTSTT }
7240 };
7241
7242 /* Simple binary operations: VECc = foo (VECa, VECb). */
7243
7244 static struct builtin_description bdesc_2arg[] =
7245 {
7246 { MASK_ALTIVEC, CODE_FOR_addv16qi3, "__builtin_altivec_vaddubm", ALTIVEC_BUILTIN_VADDUBM },
7247 { MASK_ALTIVEC, CODE_FOR_addv8hi3, "__builtin_altivec_vadduhm", ALTIVEC_BUILTIN_VADDUHM },
7248 { MASK_ALTIVEC, CODE_FOR_addv4si3, "__builtin_altivec_vadduwm", ALTIVEC_BUILTIN_VADDUWM },
7249 { MASK_ALTIVEC, CODE_FOR_addv4sf3, "__builtin_altivec_vaddfp", ALTIVEC_BUILTIN_VADDFP },
7250 { MASK_ALTIVEC, CODE_FOR_altivec_vaddcuw, "__builtin_altivec_vaddcuw", ALTIVEC_BUILTIN_VADDCUW },
7251 { MASK_ALTIVEC, CODE_FOR_altivec_vaddubs, "__builtin_altivec_vaddubs", ALTIVEC_BUILTIN_VADDUBS },
7252 { MASK_ALTIVEC, CODE_FOR_altivec_vaddsbs, "__builtin_altivec_vaddsbs", ALTIVEC_BUILTIN_VADDSBS },
7253 { MASK_ALTIVEC, CODE_FOR_altivec_vadduhs, "__builtin_altivec_vadduhs", ALTIVEC_BUILTIN_VADDUHS },
7254 { MASK_ALTIVEC, CODE_FOR_altivec_vaddshs, "__builtin_altivec_vaddshs", ALTIVEC_BUILTIN_VADDSHS },
7255 { MASK_ALTIVEC, CODE_FOR_altivec_vadduws, "__builtin_altivec_vadduws", ALTIVEC_BUILTIN_VADDUWS },
7256 { MASK_ALTIVEC, CODE_FOR_altivec_vaddsws, "__builtin_altivec_vaddsws", ALTIVEC_BUILTIN_VADDSWS },
7257 { MASK_ALTIVEC, CODE_FOR_andv4si3, "__builtin_altivec_vand", ALTIVEC_BUILTIN_VAND },
7258 { MASK_ALTIVEC, CODE_FOR_andcv4si3, "__builtin_altivec_vandc", ALTIVEC_BUILTIN_VANDC },
7259 { MASK_ALTIVEC, CODE_FOR_altivec_vavgub, "__builtin_altivec_vavgub", ALTIVEC_BUILTIN_VAVGUB },
7260 { MASK_ALTIVEC, CODE_FOR_altivec_vavgsb, "__builtin_altivec_vavgsb", ALTIVEC_BUILTIN_VAVGSB },
7261 { MASK_ALTIVEC, CODE_FOR_altivec_vavguh, "__builtin_altivec_vavguh", ALTIVEC_BUILTIN_VAVGUH },
7262 { MASK_ALTIVEC, CODE_FOR_altivec_vavgsh, "__builtin_altivec_vavgsh", ALTIVEC_BUILTIN_VAVGSH },
7263 { MASK_ALTIVEC, CODE_FOR_altivec_vavguw, "__builtin_altivec_vavguw", ALTIVEC_BUILTIN_VAVGUW },
7264 { MASK_ALTIVEC, CODE_FOR_altivec_vavgsw, "__builtin_altivec_vavgsw", ALTIVEC_BUILTIN_VAVGSW },
7265 { MASK_ALTIVEC, CODE_FOR_altivec_vcfux, "__builtin_altivec_vcfux", ALTIVEC_BUILTIN_VCFUX },
7266 { MASK_ALTIVEC, CODE_FOR_altivec_vcfsx, "__builtin_altivec_vcfsx", ALTIVEC_BUILTIN_VCFSX },
7267 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpbfp, "__builtin_altivec_vcmpbfp", ALTIVEC_BUILTIN_VCMPBFP },
7268 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpequb, "__builtin_altivec_vcmpequb", ALTIVEC_BUILTIN_VCMPEQUB },
7269 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpequh, "__builtin_altivec_vcmpequh", ALTIVEC_BUILTIN_VCMPEQUH },
7270 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpequw, "__builtin_altivec_vcmpequw", ALTIVEC_BUILTIN_VCMPEQUW },
7271 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpeqfp, "__builtin_altivec_vcmpeqfp", ALTIVEC_BUILTIN_VCMPEQFP },
7272 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgefp, "__builtin_altivec_vcmpgefp", ALTIVEC_BUILTIN_VCMPGEFP },
7273 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtub, "__builtin_altivec_vcmpgtub", ALTIVEC_BUILTIN_VCMPGTUB },
7274 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtsb, "__builtin_altivec_vcmpgtsb", ALTIVEC_BUILTIN_VCMPGTSB },
7275 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtuh, "__builtin_altivec_vcmpgtuh", ALTIVEC_BUILTIN_VCMPGTUH },
7276 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtsh, "__builtin_altivec_vcmpgtsh", ALTIVEC_BUILTIN_VCMPGTSH },
7277 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtuw, "__builtin_altivec_vcmpgtuw", ALTIVEC_BUILTIN_VCMPGTUW },
7278 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtsw, "__builtin_altivec_vcmpgtsw", ALTIVEC_BUILTIN_VCMPGTSW },
7279 { MASK_ALTIVEC, CODE_FOR_altivec_vcmpgtfp, "__builtin_altivec_vcmpgtfp", ALTIVEC_BUILTIN_VCMPGTFP },
7280 { MASK_ALTIVEC, CODE_FOR_altivec_vctsxs, "__builtin_altivec_vctsxs", ALTIVEC_BUILTIN_VCTSXS },
7281 { MASK_ALTIVEC, CODE_FOR_altivec_vctuxs, "__builtin_altivec_vctuxs", ALTIVEC_BUILTIN_VCTUXS },
7282 { MASK_ALTIVEC, CODE_FOR_umaxv16qi3, "__builtin_altivec_vmaxub", ALTIVEC_BUILTIN_VMAXUB },
7283 { MASK_ALTIVEC, CODE_FOR_smaxv16qi3, "__builtin_altivec_vmaxsb", ALTIVEC_BUILTIN_VMAXSB },
7284 { MASK_ALTIVEC, CODE_FOR_umaxv8hi3, "__builtin_altivec_vmaxuh", ALTIVEC_BUILTIN_VMAXUH },
7285 { MASK_ALTIVEC, CODE_FOR_smaxv8hi3, "__builtin_altivec_vmaxsh", ALTIVEC_BUILTIN_VMAXSH },
7286 { MASK_ALTIVEC, CODE_FOR_umaxv4si3, "__builtin_altivec_vmaxuw", ALTIVEC_BUILTIN_VMAXUW },
7287 { MASK_ALTIVEC, CODE_FOR_smaxv4si3, "__builtin_altivec_vmaxsw", ALTIVEC_BUILTIN_VMAXSW },
7288 { MASK_ALTIVEC, CODE_FOR_smaxv4sf3, "__builtin_altivec_vmaxfp", ALTIVEC_BUILTIN_VMAXFP },
7289 { MASK_ALTIVEC, CODE_FOR_altivec_vmrghb, "__builtin_altivec_vmrghb", ALTIVEC_BUILTIN_VMRGHB },
7290 { MASK_ALTIVEC, CODE_FOR_altivec_vmrghh, "__builtin_altivec_vmrghh", ALTIVEC_BUILTIN_VMRGHH },
7291 { MASK_ALTIVEC, CODE_FOR_altivec_vmrghw, "__builtin_altivec_vmrghw", ALTIVEC_BUILTIN_VMRGHW },
7292 { MASK_ALTIVEC, CODE_FOR_altivec_vmrglb, "__builtin_altivec_vmrglb", ALTIVEC_BUILTIN_VMRGLB },
7293 { MASK_ALTIVEC, CODE_FOR_altivec_vmrglh, "__builtin_altivec_vmrglh", ALTIVEC_BUILTIN_VMRGLH },
7294 { MASK_ALTIVEC, CODE_FOR_altivec_vmrglw, "__builtin_altivec_vmrglw", ALTIVEC_BUILTIN_VMRGLW },
7295 { MASK_ALTIVEC, CODE_FOR_uminv16qi3, "__builtin_altivec_vminub", ALTIVEC_BUILTIN_VMINUB },
7296 { MASK_ALTIVEC, CODE_FOR_sminv16qi3, "__builtin_altivec_vminsb", ALTIVEC_BUILTIN_VMINSB },
7297 { MASK_ALTIVEC, CODE_FOR_uminv8hi3, "__builtin_altivec_vminuh", ALTIVEC_BUILTIN_VMINUH },
7298 { MASK_ALTIVEC, CODE_FOR_sminv8hi3, "__builtin_altivec_vminsh", ALTIVEC_BUILTIN_VMINSH },
7299 { MASK_ALTIVEC, CODE_FOR_uminv4si3, "__builtin_altivec_vminuw", ALTIVEC_BUILTIN_VMINUW },
7300 { MASK_ALTIVEC, CODE_FOR_sminv4si3, "__builtin_altivec_vminsw", ALTIVEC_BUILTIN_VMINSW },
7301 { MASK_ALTIVEC, CODE_FOR_sminv4sf3, "__builtin_altivec_vminfp", ALTIVEC_BUILTIN_VMINFP },
7302 { MASK_ALTIVEC, CODE_FOR_altivec_vmuleub, "__builtin_altivec_vmuleub", ALTIVEC_BUILTIN_VMULEUB },
7303 { MASK_ALTIVEC, CODE_FOR_altivec_vmulesb, "__builtin_altivec_vmulesb", ALTIVEC_BUILTIN_VMULESB },
7304 { MASK_ALTIVEC, CODE_FOR_altivec_vmuleuh, "__builtin_altivec_vmuleuh", ALTIVEC_BUILTIN_VMULEUH },
7305 { MASK_ALTIVEC, CODE_FOR_altivec_vmulesh, "__builtin_altivec_vmulesh", ALTIVEC_BUILTIN_VMULESH },
7306 { MASK_ALTIVEC, CODE_FOR_altivec_vmuloub, "__builtin_altivec_vmuloub", ALTIVEC_BUILTIN_VMULOUB },
7307 { MASK_ALTIVEC, CODE_FOR_altivec_vmulosb, "__builtin_altivec_vmulosb", ALTIVEC_BUILTIN_VMULOSB },
7308 { MASK_ALTIVEC, CODE_FOR_altivec_vmulouh, "__builtin_altivec_vmulouh", ALTIVEC_BUILTIN_VMULOUH },
7309 { MASK_ALTIVEC, CODE_FOR_altivec_vmulosh, "__builtin_altivec_vmulosh", ALTIVEC_BUILTIN_VMULOSH },
7310 { MASK_ALTIVEC, CODE_FOR_altivec_norv4si3, "__builtin_altivec_vnor", ALTIVEC_BUILTIN_VNOR },
7311 { MASK_ALTIVEC, CODE_FOR_iorv4si3, "__builtin_altivec_vor", ALTIVEC_BUILTIN_VOR },
7312 { MASK_ALTIVEC, CODE_FOR_altivec_vpkuhum, "__builtin_altivec_vpkuhum", ALTIVEC_BUILTIN_VPKUHUM },
7313 { MASK_ALTIVEC, CODE_FOR_altivec_vpkuwum, "__builtin_altivec_vpkuwum", ALTIVEC_BUILTIN_VPKUWUM },
7314 { MASK_ALTIVEC, CODE_FOR_altivec_vpkpx, "__builtin_altivec_vpkpx", ALTIVEC_BUILTIN_VPKPX },
7315 { MASK_ALTIVEC, CODE_FOR_altivec_vpkshss, "__builtin_altivec_vpkshss", ALTIVEC_BUILTIN_VPKSHSS },
7316 { MASK_ALTIVEC, CODE_FOR_altivec_vpkswss, "__builtin_altivec_vpkswss", ALTIVEC_BUILTIN_VPKSWSS },
7317 { MASK_ALTIVEC, CODE_FOR_altivec_vpkuhus, "__builtin_altivec_vpkuhus", ALTIVEC_BUILTIN_VPKUHUS },
7318 { MASK_ALTIVEC, CODE_FOR_altivec_vpkshus, "__builtin_altivec_vpkshus", ALTIVEC_BUILTIN_VPKSHUS },
7319 { MASK_ALTIVEC, CODE_FOR_altivec_vpkuwus, "__builtin_altivec_vpkuwus", ALTIVEC_BUILTIN_VPKUWUS },
7320 { MASK_ALTIVEC, CODE_FOR_altivec_vpkswus, "__builtin_altivec_vpkswus", ALTIVEC_BUILTIN_VPKSWUS },
7321 { MASK_ALTIVEC, CODE_FOR_altivec_vrlb, "__builtin_altivec_vrlb", ALTIVEC_BUILTIN_VRLB },
7322 { MASK_ALTIVEC, CODE_FOR_altivec_vrlh, "__builtin_altivec_vrlh", ALTIVEC_BUILTIN_VRLH },
7323 { MASK_ALTIVEC, CODE_FOR_altivec_vrlw, "__builtin_altivec_vrlw", ALTIVEC_BUILTIN_VRLW },
7324 { MASK_ALTIVEC, CODE_FOR_vashlv16qi3, "__builtin_altivec_vslb", ALTIVEC_BUILTIN_VSLB },
7325 { MASK_ALTIVEC, CODE_FOR_vashlv8hi3, "__builtin_altivec_vslh", ALTIVEC_BUILTIN_VSLH },
7326 { MASK_ALTIVEC, CODE_FOR_vashlv4si3, "__builtin_altivec_vslw", ALTIVEC_BUILTIN_VSLW },
7327 { MASK_ALTIVEC, CODE_FOR_altivec_vsl, "__builtin_altivec_vsl", ALTIVEC_BUILTIN_VSL },
7328 { MASK_ALTIVEC, CODE_FOR_altivec_vslo, "__builtin_altivec_vslo", ALTIVEC_BUILTIN_VSLO },
7329 { MASK_ALTIVEC, CODE_FOR_altivec_vspltb, "__builtin_altivec_vspltb", ALTIVEC_BUILTIN_VSPLTB },
7330 { MASK_ALTIVEC, CODE_FOR_altivec_vsplth, "__builtin_altivec_vsplth", ALTIVEC_BUILTIN_VSPLTH },
7331 { MASK_ALTIVEC, CODE_FOR_altivec_vspltw, "__builtin_altivec_vspltw", ALTIVEC_BUILTIN_VSPLTW },
7332 { MASK_ALTIVEC, CODE_FOR_vlshrv16qi3, "__builtin_altivec_vsrb", ALTIVEC_BUILTIN_VSRB },
7333 { MASK_ALTIVEC, CODE_FOR_vlshrv8hi3, "__builtin_altivec_vsrh", ALTIVEC_BUILTIN_VSRH },
7334 { MASK_ALTIVEC, CODE_FOR_vlshrv4si3, "__builtin_altivec_vsrw", ALTIVEC_BUILTIN_VSRW },
7335 { MASK_ALTIVEC, CODE_FOR_vashrv16qi3, "__builtin_altivec_vsrab", ALTIVEC_BUILTIN_VSRAB },
7336 { MASK_ALTIVEC, CODE_FOR_vashrv8hi3, "__builtin_altivec_vsrah", ALTIVEC_BUILTIN_VSRAH },
7337 { MASK_ALTIVEC, CODE_FOR_vashrv4si3, "__builtin_altivec_vsraw", ALTIVEC_BUILTIN_VSRAW },
7338 { MASK_ALTIVEC, CODE_FOR_altivec_vsr, "__builtin_altivec_vsr", ALTIVEC_BUILTIN_VSR },
7339 { MASK_ALTIVEC, CODE_FOR_altivec_vsro, "__builtin_altivec_vsro", ALTIVEC_BUILTIN_VSRO },
7340 { MASK_ALTIVEC, CODE_FOR_subv16qi3, "__builtin_altivec_vsububm", ALTIVEC_BUILTIN_VSUBUBM },
7341 { MASK_ALTIVEC, CODE_FOR_subv8hi3, "__builtin_altivec_vsubuhm", ALTIVEC_BUILTIN_VSUBUHM },
7342 { MASK_ALTIVEC, CODE_FOR_subv4si3, "__builtin_altivec_vsubuwm", ALTIVEC_BUILTIN_VSUBUWM },
7343 { MASK_ALTIVEC, CODE_FOR_subv4sf3, "__builtin_altivec_vsubfp", ALTIVEC_BUILTIN_VSUBFP },
7344 { MASK_ALTIVEC, CODE_FOR_altivec_vsubcuw, "__builtin_altivec_vsubcuw", ALTIVEC_BUILTIN_VSUBCUW },
7345 { MASK_ALTIVEC, CODE_FOR_altivec_vsububs, "__builtin_altivec_vsububs", ALTIVEC_BUILTIN_VSUBUBS },
7346 { MASK_ALTIVEC, CODE_FOR_altivec_vsubsbs, "__builtin_altivec_vsubsbs", ALTIVEC_BUILTIN_VSUBSBS },
7347 { MASK_ALTIVEC, CODE_FOR_altivec_vsubuhs, "__builtin_altivec_vsubuhs", ALTIVEC_BUILTIN_VSUBUHS },
7348 { MASK_ALTIVEC, CODE_FOR_altivec_vsubshs, "__builtin_altivec_vsubshs", ALTIVEC_BUILTIN_VSUBSHS },
7349 { MASK_ALTIVEC, CODE_FOR_altivec_vsubuws, "__builtin_altivec_vsubuws", ALTIVEC_BUILTIN_VSUBUWS },
7350 { MASK_ALTIVEC, CODE_FOR_altivec_vsubsws, "__builtin_altivec_vsubsws", ALTIVEC_BUILTIN_VSUBSWS },
7351 { MASK_ALTIVEC, CODE_FOR_altivec_vsum4ubs, "__builtin_altivec_vsum4ubs", ALTIVEC_BUILTIN_VSUM4UBS },
7352 { MASK_ALTIVEC, CODE_FOR_altivec_vsum4sbs, "__builtin_altivec_vsum4sbs", ALTIVEC_BUILTIN_VSUM4SBS },
7353 { MASK_ALTIVEC, CODE_FOR_altivec_vsum4shs, "__builtin_altivec_vsum4shs", ALTIVEC_BUILTIN_VSUM4SHS },
7354 { MASK_ALTIVEC, CODE_FOR_altivec_vsum2sws, "__builtin_altivec_vsum2sws", ALTIVEC_BUILTIN_VSUM2SWS },
7355 { MASK_ALTIVEC, CODE_FOR_altivec_vsumsws, "__builtin_altivec_vsumsws", ALTIVEC_BUILTIN_VSUMSWS },
7356 { MASK_ALTIVEC, CODE_FOR_xorv4si3, "__builtin_altivec_vxor", ALTIVEC_BUILTIN_VXOR },
7357
7358 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_add", ALTIVEC_BUILTIN_VEC_ADD },
7359 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddfp", ALTIVEC_BUILTIN_VEC_VADDFP },
7360 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduwm", ALTIVEC_BUILTIN_VEC_VADDUWM },
7361 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduhm", ALTIVEC_BUILTIN_VEC_VADDUHM },
7362 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddubm", ALTIVEC_BUILTIN_VEC_VADDUBM },
7363 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_addc", ALTIVEC_BUILTIN_VEC_ADDC },
7364 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_adds", ALTIVEC_BUILTIN_VEC_ADDS },
7365 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddsws", ALTIVEC_BUILTIN_VEC_VADDSWS },
7366 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduws", ALTIVEC_BUILTIN_VEC_VADDUWS },
7367 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddshs", ALTIVEC_BUILTIN_VEC_VADDSHS },
7368 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduhs", ALTIVEC_BUILTIN_VEC_VADDUHS },
7369 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddsbs", ALTIVEC_BUILTIN_VEC_VADDSBS },
7370 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddubs", ALTIVEC_BUILTIN_VEC_VADDUBS },
7371 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_and", ALTIVEC_BUILTIN_VEC_AND },
7372 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_andc", ALTIVEC_BUILTIN_VEC_ANDC },
7373 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_avg", ALTIVEC_BUILTIN_VEC_AVG },
7374 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgsw", ALTIVEC_BUILTIN_VEC_VAVGSW },
7375 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavguw", ALTIVEC_BUILTIN_VEC_VAVGUW },
7376 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgsh", ALTIVEC_BUILTIN_VEC_VAVGSH },
7377 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavguh", ALTIVEC_BUILTIN_VEC_VAVGUH },
7378 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgsb", ALTIVEC_BUILTIN_VEC_VAVGSB },
7379 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgub", ALTIVEC_BUILTIN_VEC_VAVGUB },
7380 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpb", ALTIVEC_BUILTIN_VEC_CMPB },
7381 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpeq", ALTIVEC_BUILTIN_VEC_CMPEQ },
7382 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpeqfp", ALTIVEC_BUILTIN_VEC_VCMPEQFP },
7383 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpequw", ALTIVEC_BUILTIN_VEC_VCMPEQUW },
7384 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpequh", ALTIVEC_BUILTIN_VEC_VCMPEQUH },
7385 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpequb", ALTIVEC_BUILTIN_VEC_VCMPEQUB },
7386 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpge", ALTIVEC_BUILTIN_VEC_CMPGE },
7387 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpgt", ALTIVEC_BUILTIN_VEC_CMPGT },
7388 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtfp", ALTIVEC_BUILTIN_VEC_VCMPGTFP },
7389 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtsw", ALTIVEC_BUILTIN_VEC_VCMPGTSW },
7390 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtuw", ALTIVEC_BUILTIN_VEC_VCMPGTUW },
7391 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtsh", ALTIVEC_BUILTIN_VEC_VCMPGTSH },
7392 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtuh", ALTIVEC_BUILTIN_VEC_VCMPGTUH },
7393 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtsb", ALTIVEC_BUILTIN_VEC_VCMPGTSB },
7394 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtub", ALTIVEC_BUILTIN_VEC_VCMPGTUB },
7395 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmple", ALTIVEC_BUILTIN_VEC_CMPLE },
7396 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmplt", ALTIVEC_BUILTIN_VEC_CMPLT },
7397 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_max", ALTIVEC_BUILTIN_VEC_MAX },
7398 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxfp", ALTIVEC_BUILTIN_VEC_VMAXFP },
7399 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxsw", ALTIVEC_BUILTIN_VEC_VMAXSW },
7400 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxuw", ALTIVEC_BUILTIN_VEC_VMAXUW },
7401 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxsh", ALTIVEC_BUILTIN_VEC_VMAXSH },
7402 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxuh", ALTIVEC_BUILTIN_VEC_VMAXUH },
7403 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxsb", ALTIVEC_BUILTIN_VEC_VMAXSB },
7404 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxub", ALTIVEC_BUILTIN_VEC_VMAXUB },
7405 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mergeh", ALTIVEC_BUILTIN_VEC_MERGEH },
7406 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrghw", ALTIVEC_BUILTIN_VEC_VMRGHW },
7407 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrghh", ALTIVEC_BUILTIN_VEC_VMRGHH },
7408 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrghb", ALTIVEC_BUILTIN_VEC_VMRGHB },
7409 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mergel", ALTIVEC_BUILTIN_VEC_MERGEL },
7410 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrglw", ALTIVEC_BUILTIN_VEC_VMRGLW },
7411 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrglh", ALTIVEC_BUILTIN_VEC_VMRGLH },
7412 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrglb", ALTIVEC_BUILTIN_VEC_VMRGLB },
7413 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_min", ALTIVEC_BUILTIN_VEC_MIN },
7414 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminfp", ALTIVEC_BUILTIN_VEC_VMINFP },
7415 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminsw", ALTIVEC_BUILTIN_VEC_VMINSW },
7416 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminuw", ALTIVEC_BUILTIN_VEC_VMINUW },
7417 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminsh", ALTIVEC_BUILTIN_VEC_VMINSH },
7418 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminuh", ALTIVEC_BUILTIN_VEC_VMINUH },
7419 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminsb", ALTIVEC_BUILTIN_VEC_VMINSB },
7420 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminub", ALTIVEC_BUILTIN_VEC_VMINUB },
7421 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mule", ALTIVEC_BUILTIN_VEC_MULE },
7422 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmuleub", ALTIVEC_BUILTIN_VEC_VMULEUB },
7423 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulesb", ALTIVEC_BUILTIN_VEC_VMULESB },
7424 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmuleuh", ALTIVEC_BUILTIN_VEC_VMULEUH },
7425 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulesh", ALTIVEC_BUILTIN_VEC_VMULESH },
7426 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mulo", ALTIVEC_BUILTIN_VEC_MULO },
7427 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulosh", ALTIVEC_BUILTIN_VEC_VMULOSH },
7428 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulouh", ALTIVEC_BUILTIN_VEC_VMULOUH },
7429 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulosb", ALTIVEC_BUILTIN_VEC_VMULOSB },
7430 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmuloub", ALTIVEC_BUILTIN_VEC_VMULOUB },
7431 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_nor", ALTIVEC_BUILTIN_VEC_NOR },
7432 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_or", ALTIVEC_BUILTIN_VEC_OR },
7433 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_pack", ALTIVEC_BUILTIN_VEC_PACK },
7434 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuwum", ALTIVEC_BUILTIN_VEC_VPKUWUM },
7435 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuhum", ALTIVEC_BUILTIN_VEC_VPKUHUM },
7436 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_packpx", ALTIVEC_BUILTIN_VEC_PACKPX },
7437 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_packs", ALTIVEC_BUILTIN_VEC_PACKS },
7438 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkswss", ALTIVEC_BUILTIN_VEC_VPKSWSS },
7439 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuwus", ALTIVEC_BUILTIN_VEC_VPKUWUS },
7440 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkshss", ALTIVEC_BUILTIN_VEC_VPKSHSS },
7441 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuhus", ALTIVEC_BUILTIN_VEC_VPKUHUS },
7442 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_packsu", ALTIVEC_BUILTIN_VEC_PACKSU },
7443 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkswus", ALTIVEC_BUILTIN_VEC_VPKSWUS },
7444 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkshus", ALTIVEC_BUILTIN_VEC_VPKSHUS },
7445 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_rl", ALTIVEC_BUILTIN_VEC_RL },
7446 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vrlw", ALTIVEC_BUILTIN_VEC_VRLW },
7447 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vrlh", ALTIVEC_BUILTIN_VEC_VRLH },
7448 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vrlb", ALTIVEC_BUILTIN_VEC_VRLB },
7449 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sl", ALTIVEC_BUILTIN_VEC_SL },
7450 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vslw", ALTIVEC_BUILTIN_VEC_VSLW },
7451 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vslh", ALTIVEC_BUILTIN_VEC_VSLH },
7452 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vslb", ALTIVEC_BUILTIN_VEC_VSLB },
7453 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sll", ALTIVEC_BUILTIN_VEC_SLL },
7454 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_slo", ALTIVEC_BUILTIN_VEC_SLO },
7455 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sr", ALTIVEC_BUILTIN_VEC_SR },
7456 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrw", ALTIVEC_BUILTIN_VEC_VSRW },
7457 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrh", ALTIVEC_BUILTIN_VEC_VSRH },
7458 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrb", ALTIVEC_BUILTIN_VEC_VSRB },
7459 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sra", ALTIVEC_BUILTIN_VEC_SRA },
7460 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsraw", ALTIVEC_BUILTIN_VEC_VSRAW },
7461 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrah", ALTIVEC_BUILTIN_VEC_VSRAH },
7462 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrab", ALTIVEC_BUILTIN_VEC_VSRAB },
7463 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_srl", ALTIVEC_BUILTIN_VEC_SRL },
7464 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sro", ALTIVEC_BUILTIN_VEC_SRO },
7465 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sub", ALTIVEC_BUILTIN_VEC_SUB },
7466 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubfp", ALTIVEC_BUILTIN_VEC_VSUBFP },
7467 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuwm", ALTIVEC_BUILTIN_VEC_VSUBUWM },
7468 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuhm", ALTIVEC_BUILTIN_VEC_VSUBUHM },
7469 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsububm", ALTIVEC_BUILTIN_VEC_VSUBUBM },
7470 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_subc", ALTIVEC_BUILTIN_VEC_SUBC },
7471 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_subs", ALTIVEC_BUILTIN_VEC_SUBS },
7472 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubsws", ALTIVEC_BUILTIN_VEC_VSUBSWS },
7473 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuws", ALTIVEC_BUILTIN_VEC_VSUBUWS },
7474 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubshs", ALTIVEC_BUILTIN_VEC_VSUBSHS },
7475 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuhs", ALTIVEC_BUILTIN_VEC_VSUBUHS },
7476 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubsbs", ALTIVEC_BUILTIN_VEC_VSUBSBS },
7477 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsububs", ALTIVEC_BUILTIN_VEC_VSUBUBS },
7478 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sum4s", ALTIVEC_BUILTIN_VEC_SUM4S },
7479 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsum4shs", ALTIVEC_BUILTIN_VEC_VSUM4SHS },
7480 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsum4sbs", ALTIVEC_BUILTIN_VEC_VSUM4SBS },
7481 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsum4ubs", ALTIVEC_BUILTIN_VEC_VSUM4UBS },
7482 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sum2s", ALTIVEC_BUILTIN_VEC_SUM2S },
7483 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sums", ALTIVEC_BUILTIN_VEC_SUMS },
7484 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_xor", ALTIVEC_BUILTIN_VEC_XOR },
7485
7486 { 0, CODE_FOR_divv2sf3, "__builtin_paired_divv2sf3", PAIRED_BUILTIN_DIVV2SF3 },
7487 { 0, CODE_FOR_addv2sf3, "__builtin_paired_addv2sf3", PAIRED_BUILTIN_ADDV2SF3 },
7488 { 0, CODE_FOR_subv2sf3, "__builtin_paired_subv2sf3", PAIRED_BUILTIN_SUBV2SF3 },
7489 { 0, CODE_FOR_mulv2sf3, "__builtin_paired_mulv2sf3", PAIRED_BUILTIN_MULV2SF3 },
7490 { 0, CODE_FOR_paired_muls0, "__builtin_paired_muls0", PAIRED_BUILTIN_MULS0 },
7491 { 0, CODE_FOR_paired_muls1, "__builtin_paired_muls1", PAIRED_BUILTIN_MULS1 },
7492 { 0, CODE_FOR_paired_merge00, "__builtin_paired_merge00", PAIRED_BUILTIN_MERGE00 },
7493 { 0, CODE_FOR_paired_merge01, "__builtin_paired_merge01", PAIRED_BUILTIN_MERGE01 },
7494 { 0, CODE_FOR_paired_merge10, "__builtin_paired_merge10", PAIRED_BUILTIN_MERGE10 },
7495 { 0, CODE_FOR_paired_merge11, "__builtin_paired_merge11", PAIRED_BUILTIN_MERGE11 },
7496
7497 /* Place holder, leave as first spe builtin. */
7498 { 0, CODE_FOR_spe_evaddw, "__builtin_spe_evaddw", SPE_BUILTIN_EVADDW },
7499 { 0, CODE_FOR_spe_evand, "__builtin_spe_evand", SPE_BUILTIN_EVAND },
7500 { 0, CODE_FOR_spe_evandc, "__builtin_spe_evandc", SPE_BUILTIN_EVANDC },
7501 { 0, CODE_FOR_spe_evdivws, "__builtin_spe_evdivws", SPE_BUILTIN_EVDIVWS },
7502 { 0, CODE_FOR_spe_evdivwu, "__builtin_spe_evdivwu", SPE_BUILTIN_EVDIVWU },
7503 { 0, CODE_FOR_spe_eveqv, "__builtin_spe_eveqv", SPE_BUILTIN_EVEQV },
7504 { 0, CODE_FOR_spe_evfsadd, "__builtin_spe_evfsadd", SPE_BUILTIN_EVFSADD },
7505 { 0, CODE_FOR_spe_evfsdiv, "__builtin_spe_evfsdiv", SPE_BUILTIN_EVFSDIV },
7506 { 0, CODE_FOR_spe_evfsmul, "__builtin_spe_evfsmul", SPE_BUILTIN_EVFSMUL },
7507 { 0, CODE_FOR_spe_evfssub, "__builtin_spe_evfssub", SPE_BUILTIN_EVFSSUB },
7508 { 0, CODE_FOR_spe_evmergehi, "__builtin_spe_evmergehi", SPE_BUILTIN_EVMERGEHI },
7509 { 0, CODE_FOR_spe_evmergehilo, "__builtin_spe_evmergehilo", SPE_BUILTIN_EVMERGEHILO },
7510 { 0, CODE_FOR_spe_evmergelo, "__builtin_spe_evmergelo", SPE_BUILTIN_EVMERGELO },
7511 { 0, CODE_FOR_spe_evmergelohi, "__builtin_spe_evmergelohi", SPE_BUILTIN_EVMERGELOHI },
7512 { 0, CODE_FOR_spe_evmhegsmfaa, "__builtin_spe_evmhegsmfaa", SPE_BUILTIN_EVMHEGSMFAA },
7513 { 0, CODE_FOR_spe_evmhegsmfan, "__builtin_spe_evmhegsmfan", SPE_BUILTIN_EVMHEGSMFAN },
7514 { 0, CODE_FOR_spe_evmhegsmiaa, "__builtin_spe_evmhegsmiaa", SPE_BUILTIN_EVMHEGSMIAA },
7515 { 0, CODE_FOR_spe_evmhegsmian, "__builtin_spe_evmhegsmian", SPE_BUILTIN_EVMHEGSMIAN },
7516 { 0, CODE_FOR_spe_evmhegumiaa, "__builtin_spe_evmhegumiaa", SPE_BUILTIN_EVMHEGUMIAA },
7517 { 0, CODE_FOR_spe_evmhegumian, "__builtin_spe_evmhegumian", SPE_BUILTIN_EVMHEGUMIAN },
7518 { 0, CODE_FOR_spe_evmhesmf, "__builtin_spe_evmhesmf", SPE_BUILTIN_EVMHESMF },
7519 { 0, CODE_FOR_spe_evmhesmfa, "__builtin_spe_evmhesmfa", SPE_BUILTIN_EVMHESMFA },
7520 { 0, CODE_FOR_spe_evmhesmfaaw, "__builtin_spe_evmhesmfaaw", SPE_BUILTIN_EVMHESMFAAW },
7521 { 0, CODE_FOR_spe_evmhesmfanw, "__builtin_spe_evmhesmfanw", SPE_BUILTIN_EVMHESMFANW },
7522 { 0, CODE_FOR_spe_evmhesmi, "__builtin_spe_evmhesmi", SPE_BUILTIN_EVMHESMI },
7523 { 0, CODE_FOR_spe_evmhesmia, "__builtin_spe_evmhesmia", SPE_BUILTIN_EVMHESMIA },
7524 { 0, CODE_FOR_spe_evmhesmiaaw, "__builtin_spe_evmhesmiaaw", SPE_BUILTIN_EVMHESMIAAW },
7525 { 0, CODE_FOR_spe_evmhesmianw, "__builtin_spe_evmhesmianw", SPE_BUILTIN_EVMHESMIANW },
7526 { 0, CODE_FOR_spe_evmhessf, "__builtin_spe_evmhessf", SPE_BUILTIN_EVMHESSF },
7527 { 0, CODE_FOR_spe_evmhessfa, "__builtin_spe_evmhessfa", SPE_BUILTIN_EVMHESSFA },
7528 { 0, CODE_FOR_spe_evmhessfaaw, "__builtin_spe_evmhessfaaw", SPE_BUILTIN_EVMHESSFAAW },
7529 { 0, CODE_FOR_spe_evmhessfanw, "__builtin_spe_evmhessfanw", SPE_BUILTIN_EVMHESSFANW },
7530 { 0, CODE_FOR_spe_evmhessiaaw, "__builtin_spe_evmhessiaaw", SPE_BUILTIN_EVMHESSIAAW },
7531 { 0, CODE_FOR_spe_evmhessianw, "__builtin_spe_evmhessianw", SPE_BUILTIN_EVMHESSIANW },
7532 { 0, CODE_FOR_spe_evmheumi, "__builtin_spe_evmheumi", SPE_BUILTIN_EVMHEUMI },
7533 { 0, CODE_FOR_spe_evmheumia, "__builtin_spe_evmheumia", SPE_BUILTIN_EVMHEUMIA },
7534 { 0, CODE_FOR_spe_evmheumiaaw, "__builtin_spe_evmheumiaaw", SPE_BUILTIN_EVMHEUMIAAW },
7535 { 0, CODE_FOR_spe_evmheumianw, "__builtin_spe_evmheumianw", SPE_BUILTIN_EVMHEUMIANW },
7536 { 0, CODE_FOR_spe_evmheusiaaw, "__builtin_spe_evmheusiaaw", SPE_BUILTIN_EVMHEUSIAAW },
7537 { 0, CODE_FOR_spe_evmheusianw, "__builtin_spe_evmheusianw", SPE_BUILTIN_EVMHEUSIANW },
7538 { 0, CODE_FOR_spe_evmhogsmfaa, "__builtin_spe_evmhogsmfaa", SPE_BUILTIN_EVMHOGSMFAA },
7539 { 0, CODE_FOR_spe_evmhogsmfan, "__builtin_spe_evmhogsmfan", SPE_BUILTIN_EVMHOGSMFAN },
7540 { 0, CODE_FOR_spe_evmhogsmiaa, "__builtin_spe_evmhogsmiaa", SPE_BUILTIN_EVMHOGSMIAA },
7541 { 0, CODE_FOR_spe_evmhogsmian, "__builtin_spe_evmhogsmian", SPE_BUILTIN_EVMHOGSMIAN },
7542 { 0, CODE_FOR_spe_evmhogumiaa, "__builtin_spe_evmhogumiaa", SPE_BUILTIN_EVMHOGUMIAA },
7543 { 0, CODE_FOR_spe_evmhogumian, "__builtin_spe_evmhogumian", SPE_BUILTIN_EVMHOGUMIAN },
7544 { 0, CODE_FOR_spe_evmhosmf, "__builtin_spe_evmhosmf", SPE_BUILTIN_EVMHOSMF },
7545 { 0, CODE_FOR_spe_evmhosmfa, "__builtin_spe_evmhosmfa", SPE_BUILTIN_EVMHOSMFA },
7546 { 0, CODE_FOR_spe_evmhosmfaaw, "__builtin_spe_evmhosmfaaw", SPE_BUILTIN_EVMHOSMFAAW },
7547 { 0, CODE_FOR_spe_evmhosmfanw, "__builtin_spe_evmhosmfanw", SPE_BUILTIN_EVMHOSMFANW },
7548 { 0, CODE_FOR_spe_evmhosmi, "__builtin_spe_evmhosmi", SPE_BUILTIN_EVMHOSMI },
7549 { 0, CODE_FOR_spe_evmhosmia, "__builtin_spe_evmhosmia", SPE_BUILTIN_EVMHOSMIA },
7550 { 0, CODE_FOR_spe_evmhosmiaaw, "__builtin_spe_evmhosmiaaw", SPE_BUILTIN_EVMHOSMIAAW },
7551 { 0, CODE_FOR_spe_evmhosmianw, "__builtin_spe_evmhosmianw", SPE_BUILTIN_EVMHOSMIANW },
7552 { 0, CODE_FOR_spe_evmhossf, "__builtin_spe_evmhossf", SPE_BUILTIN_EVMHOSSF },
7553 { 0, CODE_FOR_spe_evmhossfa, "__builtin_spe_evmhossfa", SPE_BUILTIN_EVMHOSSFA },
7554 { 0, CODE_FOR_spe_evmhossfaaw, "__builtin_spe_evmhossfaaw", SPE_BUILTIN_EVMHOSSFAAW },
7555 { 0, CODE_FOR_spe_evmhossfanw, "__builtin_spe_evmhossfanw", SPE_BUILTIN_EVMHOSSFANW },
7556 { 0, CODE_FOR_spe_evmhossiaaw, "__builtin_spe_evmhossiaaw", SPE_BUILTIN_EVMHOSSIAAW },
7557 { 0, CODE_FOR_spe_evmhossianw, "__builtin_spe_evmhossianw", SPE_BUILTIN_EVMHOSSIANW },
7558 { 0, CODE_FOR_spe_evmhoumi, "__builtin_spe_evmhoumi", SPE_BUILTIN_EVMHOUMI },
7559 { 0, CODE_FOR_spe_evmhoumia, "__builtin_spe_evmhoumia", SPE_BUILTIN_EVMHOUMIA },
7560 { 0, CODE_FOR_spe_evmhoumiaaw, "__builtin_spe_evmhoumiaaw", SPE_BUILTIN_EVMHOUMIAAW },
7561 { 0, CODE_FOR_spe_evmhoumianw, "__builtin_spe_evmhoumianw", SPE_BUILTIN_EVMHOUMIANW },
7562 { 0, CODE_FOR_spe_evmhousiaaw, "__builtin_spe_evmhousiaaw", SPE_BUILTIN_EVMHOUSIAAW },
7563 { 0, CODE_FOR_spe_evmhousianw, "__builtin_spe_evmhousianw", SPE_BUILTIN_EVMHOUSIANW },
7564 { 0, CODE_FOR_spe_evmwhsmf, "__builtin_spe_evmwhsmf", SPE_BUILTIN_EVMWHSMF },
7565 { 0, CODE_FOR_spe_evmwhsmfa, "__builtin_spe_evmwhsmfa", SPE_BUILTIN_EVMWHSMFA },
7566 { 0, CODE_FOR_spe_evmwhsmi, "__builtin_spe_evmwhsmi", SPE_BUILTIN_EVMWHSMI },
7567 { 0, CODE_FOR_spe_evmwhsmia, "__builtin_spe_evmwhsmia", SPE_BUILTIN_EVMWHSMIA },
7568 { 0, CODE_FOR_spe_evmwhssf, "__builtin_spe_evmwhssf", SPE_BUILTIN_EVMWHSSF },
7569 { 0, CODE_FOR_spe_evmwhssfa, "__builtin_spe_evmwhssfa", SPE_BUILTIN_EVMWHSSFA },
7570 { 0, CODE_FOR_spe_evmwhumi, "__builtin_spe_evmwhumi", SPE_BUILTIN_EVMWHUMI },
7571 { 0, CODE_FOR_spe_evmwhumia, "__builtin_spe_evmwhumia", SPE_BUILTIN_EVMWHUMIA },
7572 { 0, CODE_FOR_spe_evmwlsmiaaw, "__builtin_spe_evmwlsmiaaw", SPE_BUILTIN_EVMWLSMIAAW },
7573 { 0, CODE_FOR_spe_evmwlsmianw, "__builtin_spe_evmwlsmianw", SPE_BUILTIN_EVMWLSMIANW },
7574 { 0, CODE_FOR_spe_evmwlssiaaw, "__builtin_spe_evmwlssiaaw", SPE_BUILTIN_EVMWLSSIAAW },
7575 { 0, CODE_FOR_spe_evmwlssianw, "__builtin_spe_evmwlssianw", SPE_BUILTIN_EVMWLSSIANW },
7576 { 0, CODE_FOR_spe_evmwlumi, "__builtin_spe_evmwlumi", SPE_BUILTIN_EVMWLUMI },
7577 { 0, CODE_FOR_spe_evmwlumia, "__builtin_spe_evmwlumia", SPE_BUILTIN_EVMWLUMIA },
7578 { 0, CODE_FOR_spe_evmwlumiaaw, "__builtin_spe_evmwlumiaaw", SPE_BUILTIN_EVMWLUMIAAW },
7579 { 0, CODE_FOR_spe_evmwlumianw, "__builtin_spe_evmwlumianw", SPE_BUILTIN_EVMWLUMIANW },
7580 { 0, CODE_FOR_spe_evmwlusiaaw, "__builtin_spe_evmwlusiaaw", SPE_BUILTIN_EVMWLUSIAAW },
7581 { 0, CODE_FOR_spe_evmwlusianw, "__builtin_spe_evmwlusianw", SPE_BUILTIN_EVMWLUSIANW },
7582 { 0, CODE_FOR_spe_evmwsmf, "__builtin_spe_evmwsmf", SPE_BUILTIN_EVMWSMF },
7583 { 0, CODE_FOR_spe_evmwsmfa, "__builtin_spe_evmwsmfa", SPE_BUILTIN_EVMWSMFA },
7584 { 0, CODE_FOR_spe_evmwsmfaa, "__builtin_spe_evmwsmfaa", SPE_BUILTIN_EVMWSMFAA },
7585 { 0, CODE_FOR_spe_evmwsmfan, "__builtin_spe_evmwsmfan", SPE_BUILTIN_EVMWSMFAN },
7586 { 0, CODE_FOR_spe_evmwsmi, "__builtin_spe_evmwsmi", SPE_BUILTIN_EVMWSMI },
7587 { 0, CODE_FOR_spe_evmwsmia, "__builtin_spe_evmwsmia", SPE_BUILTIN_EVMWSMIA },
7588 { 0, CODE_FOR_spe_evmwsmiaa, "__builtin_spe_evmwsmiaa", SPE_BUILTIN_EVMWSMIAA },
7589 { 0, CODE_FOR_spe_evmwsmian, "__builtin_spe_evmwsmian", SPE_BUILTIN_EVMWSMIAN },
7590 { 0, CODE_FOR_spe_evmwssf, "__builtin_spe_evmwssf", SPE_BUILTIN_EVMWSSF },
7591 { 0, CODE_FOR_spe_evmwssfa, "__builtin_spe_evmwssfa", SPE_BUILTIN_EVMWSSFA },
7592 { 0, CODE_FOR_spe_evmwssfaa, "__builtin_spe_evmwssfaa", SPE_BUILTIN_EVMWSSFAA },
7593 { 0, CODE_FOR_spe_evmwssfan, "__builtin_spe_evmwssfan", SPE_BUILTIN_EVMWSSFAN },
7594 { 0, CODE_FOR_spe_evmwumi, "__builtin_spe_evmwumi", SPE_BUILTIN_EVMWUMI },
7595 { 0, CODE_FOR_spe_evmwumia, "__builtin_spe_evmwumia", SPE_BUILTIN_EVMWUMIA },
7596 { 0, CODE_FOR_spe_evmwumiaa, "__builtin_spe_evmwumiaa", SPE_BUILTIN_EVMWUMIAA },
7597 { 0, CODE_FOR_spe_evmwumian, "__builtin_spe_evmwumian", SPE_BUILTIN_EVMWUMIAN },
7598 { 0, CODE_FOR_spe_evnand, "__builtin_spe_evnand", SPE_BUILTIN_EVNAND },
7599 { 0, CODE_FOR_spe_evnor, "__builtin_spe_evnor", SPE_BUILTIN_EVNOR },
7600 { 0, CODE_FOR_spe_evor, "__builtin_spe_evor", SPE_BUILTIN_EVOR },
7601 { 0, CODE_FOR_spe_evorc, "__builtin_spe_evorc", SPE_BUILTIN_EVORC },
7602 { 0, CODE_FOR_spe_evrlw, "__builtin_spe_evrlw", SPE_BUILTIN_EVRLW },
7603 { 0, CODE_FOR_spe_evslw, "__builtin_spe_evslw", SPE_BUILTIN_EVSLW },
7604 { 0, CODE_FOR_spe_evsrws, "__builtin_spe_evsrws", SPE_BUILTIN_EVSRWS },
7605 { 0, CODE_FOR_spe_evsrwu, "__builtin_spe_evsrwu", SPE_BUILTIN_EVSRWU },
7606 { 0, CODE_FOR_spe_evsubfw, "__builtin_spe_evsubfw", SPE_BUILTIN_EVSUBFW },
7607
7608 /* SPE binary operations expecting a 5-bit unsigned literal. */
7609 { 0, CODE_FOR_spe_evaddiw, "__builtin_spe_evaddiw", SPE_BUILTIN_EVADDIW },
7610
7611 { 0, CODE_FOR_spe_evrlwi, "__builtin_spe_evrlwi", SPE_BUILTIN_EVRLWI },
7612 { 0, CODE_FOR_spe_evslwi, "__builtin_spe_evslwi", SPE_BUILTIN_EVSLWI },
7613 { 0, CODE_FOR_spe_evsrwis, "__builtin_spe_evsrwis", SPE_BUILTIN_EVSRWIS },
7614 { 0, CODE_FOR_spe_evsrwiu, "__builtin_spe_evsrwiu", SPE_BUILTIN_EVSRWIU },
7615 { 0, CODE_FOR_spe_evsubifw, "__builtin_spe_evsubifw", SPE_BUILTIN_EVSUBIFW },
7616 { 0, CODE_FOR_spe_evmwhssfaa, "__builtin_spe_evmwhssfaa", SPE_BUILTIN_EVMWHSSFAA },
7617 { 0, CODE_FOR_spe_evmwhssmaa, "__builtin_spe_evmwhssmaa", SPE_BUILTIN_EVMWHSSMAA },
7618 { 0, CODE_FOR_spe_evmwhsmfaa, "__builtin_spe_evmwhsmfaa", SPE_BUILTIN_EVMWHSMFAA },
7619 { 0, CODE_FOR_spe_evmwhsmiaa, "__builtin_spe_evmwhsmiaa", SPE_BUILTIN_EVMWHSMIAA },
7620 { 0, CODE_FOR_spe_evmwhusiaa, "__builtin_spe_evmwhusiaa", SPE_BUILTIN_EVMWHUSIAA },
7621 { 0, CODE_FOR_spe_evmwhumiaa, "__builtin_spe_evmwhumiaa", SPE_BUILTIN_EVMWHUMIAA },
7622 { 0, CODE_FOR_spe_evmwhssfan, "__builtin_spe_evmwhssfan", SPE_BUILTIN_EVMWHSSFAN },
7623 { 0, CODE_FOR_spe_evmwhssian, "__builtin_spe_evmwhssian", SPE_BUILTIN_EVMWHSSIAN },
7624 { 0, CODE_FOR_spe_evmwhsmfan, "__builtin_spe_evmwhsmfan", SPE_BUILTIN_EVMWHSMFAN },
7625 { 0, CODE_FOR_spe_evmwhsmian, "__builtin_spe_evmwhsmian", SPE_BUILTIN_EVMWHSMIAN },
7626 { 0, CODE_FOR_spe_evmwhusian, "__builtin_spe_evmwhusian", SPE_BUILTIN_EVMWHUSIAN },
7627 { 0, CODE_FOR_spe_evmwhumian, "__builtin_spe_evmwhumian", SPE_BUILTIN_EVMWHUMIAN },
7628 { 0, CODE_FOR_spe_evmwhgssfaa, "__builtin_spe_evmwhgssfaa", SPE_BUILTIN_EVMWHGSSFAA },
7629 { 0, CODE_FOR_spe_evmwhgsmfaa, "__builtin_spe_evmwhgsmfaa", SPE_BUILTIN_EVMWHGSMFAA },
7630 { 0, CODE_FOR_spe_evmwhgsmiaa, "__builtin_spe_evmwhgsmiaa", SPE_BUILTIN_EVMWHGSMIAA },
7631 { 0, CODE_FOR_spe_evmwhgumiaa, "__builtin_spe_evmwhgumiaa", SPE_BUILTIN_EVMWHGUMIAA },
7632 { 0, CODE_FOR_spe_evmwhgssfan, "__builtin_spe_evmwhgssfan", SPE_BUILTIN_EVMWHGSSFAN },
7633 { 0, CODE_FOR_spe_evmwhgsmfan, "__builtin_spe_evmwhgsmfan", SPE_BUILTIN_EVMWHGSMFAN },
7634 { 0, CODE_FOR_spe_evmwhgsmian, "__builtin_spe_evmwhgsmian", SPE_BUILTIN_EVMWHGSMIAN },
7635 { 0, CODE_FOR_spe_evmwhgumian, "__builtin_spe_evmwhgumian", SPE_BUILTIN_EVMWHGUMIAN },
7636 { 0, CODE_FOR_spe_brinc, "__builtin_spe_brinc", SPE_BUILTIN_BRINC },
7637
7638 /* Place-holder. Leave as last binary SPE builtin. */
7639 { 0, CODE_FOR_xorv2si3, "__builtin_spe_evxor", SPE_BUILTIN_EVXOR }
7640 };
7641
7642 /* AltiVec predicates. */
7643
7644 struct builtin_description_predicates
7645 {
7646 const unsigned int mask;
7647 const enum insn_code icode;
7648 const char *opcode;
7649 const char *const name;
7650 const enum rs6000_builtins code;
7651 };
7652
7653 static const struct builtin_description_predicates bdesc_altivec_preds[] =
7654 {
7655 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpbfp.", "__builtin_altivec_vcmpbfp_p", ALTIVEC_BUILTIN_VCMPBFP_P },
7656 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpeqfp.", "__builtin_altivec_vcmpeqfp_p", ALTIVEC_BUILTIN_VCMPEQFP_P },
7657 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpgefp.", "__builtin_altivec_vcmpgefp_p", ALTIVEC_BUILTIN_VCMPGEFP_P },
7658 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4sf, "*vcmpgtfp.", "__builtin_altivec_vcmpgtfp_p", ALTIVEC_BUILTIN_VCMPGTFP_P },
7659 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4si, "*vcmpequw.", "__builtin_altivec_vcmpequw_p", ALTIVEC_BUILTIN_VCMPEQUW_P },
7660 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4si, "*vcmpgtsw.", "__builtin_altivec_vcmpgtsw_p", ALTIVEC_BUILTIN_VCMPGTSW_P },
7661 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v4si, "*vcmpgtuw.", "__builtin_altivec_vcmpgtuw_p", ALTIVEC_BUILTIN_VCMPGTUW_P },
7662 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v8hi, "*vcmpgtuh.", "__builtin_altivec_vcmpgtuh_p", ALTIVEC_BUILTIN_VCMPGTUH_P },
7663 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v8hi, "*vcmpgtsh.", "__builtin_altivec_vcmpgtsh_p", ALTIVEC_BUILTIN_VCMPGTSH_P },
7664 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v8hi, "*vcmpequh.", "__builtin_altivec_vcmpequh_p", ALTIVEC_BUILTIN_VCMPEQUH_P },
7665 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v16qi, "*vcmpequb.", "__builtin_altivec_vcmpequb_p", ALTIVEC_BUILTIN_VCMPEQUB_P },
7666 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v16qi, "*vcmpgtsb.", "__builtin_altivec_vcmpgtsb_p", ALTIVEC_BUILTIN_VCMPGTSB_P },
7667 { MASK_ALTIVEC, CODE_FOR_altivec_predicate_v16qi, "*vcmpgtub.", "__builtin_altivec_vcmpgtub_p", ALTIVEC_BUILTIN_VCMPGTUB_P },
7668
7669 { MASK_ALTIVEC, 0, NULL, "__builtin_vec_vcmpeq_p", ALTIVEC_BUILTIN_VCMPEQ_P },
7670 { MASK_ALTIVEC, 0, NULL, "__builtin_vec_vcmpgt_p", ALTIVEC_BUILTIN_VCMPGT_P },
7671 { MASK_ALTIVEC, 0, NULL, "__builtin_vec_vcmpge_p", ALTIVEC_BUILTIN_VCMPGE_P }
7672 };
7673
7674 /* SPE predicates. */
7675 static struct builtin_description bdesc_spe_predicates[] =
7676 {
7677 /* Place-holder. Leave as first. */
7678 { 0, CODE_FOR_spe_evcmpeq, "__builtin_spe_evcmpeq", SPE_BUILTIN_EVCMPEQ },
7679 { 0, CODE_FOR_spe_evcmpgts, "__builtin_spe_evcmpgts", SPE_BUILTIN_EVCMPGTS },
7680 { 0, CODE_FOR_spe_evcmpgtu, "__builtin_spe_evcmpgtu", SPE_BUILTIN_EVCMPGTU },
7681 { 0, CODE_FOR_spe_evcmplts, "__builtin_spe_evcmplts", SPE_BUILTIN_EVCMPLTS },
7682 { 0, CODE_FOR_spe_evcmpltu, "__builtin_spe_evcmpltu", SPE_BUILTIN_EVCMPLTU },
7683 { 0, CODE_FOR_spe_evfscmpeq, "__builtin_spe_evfscmpeq", SPE_BUILTIN_EVFSCMPEQ },
7684 { 0, CODE_FOR_spe_evfscmpgt, "__builtin_spe_evfscmpgt", SPE_BUILTIN_EVFSCMPGT },
7685 { 0, CODE_FOR_spe_evfscmplt, "__builtin_spe_evfscmplt", SPE_BUILTIN_EVFSCMPLT },
7686 { 0, CODE_FOR_spe_evfststeq, "__builtin_spe_evfststeq", SPE_BUILTIN_EVFSTSTEQ },
7687 { 0, CODE_FOR_spe_evfststgt, "__builtin_spe_evfststgt", SPE_BUILTIN_EVFSTSTGT },
7688 /* Place-holder. Leave as last. */
7689 { 0, CODE_FOR_spe_evfststlt, "__builtin_spe_evfststlt", SPE_BUILTIN_EVFSTSTLT },
7690 };
7691
7692 /* SPE evsel predicates. */
7693 static struct builtin_description bdesc_spe_evsel[] =
7694 {
7695 /* Place-holder. Leave as first. */
7696 { 0, CODE_FOR_spe_evcmpgts, "__builtin_spe_evsel_gts", SPE_BUILTIN_EVSEL_CMPGTS },
7697 { 0, CODE_FOR_spe_evcmpgtu, "__builtin_spe_evsel_gtu", SPE_BUILTIN_EVSEL_CMPGTU },
7698 { 0, CODE_FOR_spe_evcmplts, "__builtin_spe_evsel_lts", SPE_BUILTIN_EVSEL_CMPLTS },
7699 { 0, CODE_FOR_spe_evcmpltu, "__builtin_spe_evsel_ltu", SPE_BUILTIN_EVSEL_CMPLTU },
7700 { 0, CODE_FOR_spe_evcmpeq, "__builtin_spe_evsel_eq", SPE_BUILTIN_EVSEL_CMPEQ },
7701 { 0, CODE_FOR_spe_evfscmpgt, "__builtin_spe_evsel_fsgt", SPE_BUILTIN_EVSEL_FSCMPGT },
7702 { 0, CODE_FOR_spe_evfscmplt, "__builtin_spe_evsel_fslt", SPE_BUILTIN_EVSEL_FSCMPLT },
7703 { 0, CODE_FOR_spe_evfscmpeq, "__builtin_spe_evsel_fseq", SPE_BUILTIN_EVSEL_FSCMPEQ },
7704 { 0, CODE_FOR_spe_evfststgt, "__builtin_spe_evsel_fststgt", SPE_BUILTIN_EVSEL_FSTSTGT },
7705 { 0, CODE_FOR_spe_evfststlt, "__builtin_spe_evsel_fststlt", SPE_BUILTIN_EVSEL_FSTSTLT },
7706 /* Place-holder. Leave as last. */
7707 { 0, CODE_FOR_spe_evfststeq, "__builtin_spe_evsel_fststeq", SPE_BUILTIN_EVSEL_FSTSTEQ },
7708 };
7709
7710 /* PAIRED predicates. */
7711 static const struct builtin_description bdesc_paired_preds[] =
7712 {
7713 /* Place-holder. Leave as first. */
7714 { 0, CODE_FOR_paired_cmpu0, "__builtin_paired_cmpu0", PAIRED_BUILTIN_CMPU0 },
7715 /* Place-holder. Leave as last. */
7716 { 0, CODE_FOR_paired_cmpu1, "__builtin_paired_cmpu1", PAIRED_BUILTIN_CMPU1 },
7717 };
7718
7719 /* ABS* operations. */
7720
7721 static const struct builtin_description bdesc_abs[] =
7722 {
7723 { MASK_ALTIVEC, CODE_FOR_absv4si2, "__builtin_altivec_abs_v4si", ALTIVEC_BUILTIN_ABS_V4SI },
7724 { MASK_ALTIVEC, CODE_FOR_absv8hi2, "__builtin_altivec_abs_v8hi", ALTIVEC_BUILTIN_ABS_V8HI },
7725 { MASK_ALTIVEC, CODE_FOR_absv4sf2, "__builtin_altivec_abs_v4sf", ALTIVEC_BUILTIN_ABS_V4SF },
7726 { MASK_ALTIVEC, CODE_FOR_absv16qi2, "__builtin_altivec_abs_v16qi", ALTIVEC_BUILTIN_ABS_V16QI },
7727 { MASK_ALTIVEC, CODE_FOR_altivec_abss_v4si, "__builtin_altivec_abss_v4si", ALTIVEC_BUILTIN_ABSS_V4SI },
7728 { MASK_ALTIVEC, CODE_FOR_altivec_abss_v8hi, "__builtin_altivec_abss_v8hi", ALTIVEC_BUILTIN_ABSS_V8HI },
7729 { MASK_ALTIVEC, CODE_FOR_altivec_abss_v16qi, "__builtin_altivec_abss_v16qi", ALTIVEC_BUILTIN_ABSS_V16QI }
7730 };
7731
7732 /* Simple unary operations: VECb = foo (unsigned literal) or VECb =
7733 foo (VECa). */
7734
7735 static struct builtin_description bdesc_1arg[] =
7736 {
7737 { MASK_ALTIVEC, CODE_FOR_altivec_vexptefp, "__builtin_altivec_vexptefp", ALTIVEC_BUILTIN_VEXPTEFP },
7738 { MASK_ALTIVEC, CODE_FOR_altivec_vlogefp, "__builtin_altivec_vlogefp", ALTIVEC_BUILTIN_VLOGEFP },
7739 { MASK_ALTIVEC, CODE_FOR_altivec_vrefp, "__builtin_altivec_vrefp", ALTIVEC_BUILTIN_VREFP },
7740 { MASK_ALTIVEC, CODE_FOR_altivec_vrfim, "__builtin_altivec_vrfim", ALTIVEC_BUILTIN_VRFIM },
7741 { MASK_ALTIVEC, CODE_FOR_altivec_vrfin, "__builtin_altivec_vrfin", ALTIVEC_BUILTIN_VRFIN },
7742 { MASK_ALTIVEC, CODE_FOR_altivec_vrfip, "__builtin_altivec_vrfip", ALTIVEC_BUILTIN_VRFIP },
7743 { MASK_ALTIVEC, CODE_FOR_ftruncv4sf2, "__builtin_altivec_vrfiz", ALTIVEC_BUILTIN_VRFIZ },
7744 { MASK_ALTIVEC, CODE_FOR_altivec_vrsqrtefp, "__builtin_altivec_vrsqrtefp", ALTIVEC_BUILTIN_VRSQRTEFP },
7745 { MASK_ALTIVEC, CODE_FOR_altivec_vspltisb, "__builtin_altivec_vspltisb", ALTIVEC_BUILTIN_VSPLTISB },
7746 { MASK_ALTIVEC, CODE_FOR_altivec_vspltish, "__builtin_altivec_vspltish", ALTIVEC_BUILTIN_VSPLTISH },
7747 { MASK_ALTIVEC, CODE_FOR_altivec_vspltisw, "__builtin_altivec_vspltisw", ALTIVEC_BUILTIN_VSPLTISW },
7748 { MASK_ALTIVEC, CODE_FOR_altivec_vupkhsb, "__builtin_altivec_vupkhsb", ALTIVEC_BUILTIN_VUPKHSB },
7749 { MASK_ALTIVEC, CODE_FOR_altivec_vupkhpx, "__builtin_altivec_vupkhpx", ALTIVEC_BUILTIN_VUPKHPX },
7750 { MASK_ALTIVEC, CODE_FOR_altivec_vupkhsh, "__builtin_altivec_vupkhsh", ALTIVEC_BUILTIN_VUPKHSH },
7751 { MASK_ALTIVEC, CODE_FOR_altivec_vupklsb, "__builtin_altivec_vupklsb", ALTIVEC_BUILTIN_VUPKLSB },
7752 { MASK_ALTIVEC, CODE_FOR_altivec_vupklpx, "__builtin_altivec_vupklpx", ALTIVEC_BUILTIN_VUPKLPX },
7753 { MASK_ALTIVEC, CODE_FOR_altivec_vupklsh, "__builtin_altivec_vupklsh", ALTIVEC_BUILTIN_VUPKLSH },
7754
7755 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_abs", ALTIVEC_BUILTIN_VEC_ABS },
7756 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_abss", ALTIVEC_BUILTIN_VEC_ABSS },
7757 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_ceil", ALTIVEC_BUILTIN_VEC_CEIL },
7758 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_expte", ALTIVEC_BUILTIN_VEC_EXPTE },
7759 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_floor", ALTIVEC_BUILTIN_VEC_FLOOR },
7760 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_loge", ALTIVEC_BUILTIN_VEC_LOGE },
7761 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mtvscr", ALTIVEC_BUILTIN_VEC_MTVSCR },
7762 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_re", ALTIVEC_BUILTIN_VEC_RE },
7763 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_round", ALTIVEC_BUILTIN_VEC_ROUND },
7764 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_rsqrte", ALTIVEC_BUILTIN_VEC_RSQRTE },
7765 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_trunc", ALTIVEC_BUILTIN_VEC_TRUNC },
7766 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_unpackh", ALTIVEC_BUILTIN_VEC_UNPACKH },
7767 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupkhsh", ALTIVEC_BUILTIN_VEC_VUPKHSH },
7768 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupkhpx", ALTIVEC_BUILTIN_VEC_VUPKHPX },
7769 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupkhsb", ALTIVEC_BUILTIN_VEC_VUPKHSB },
7770 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_unpackl", ALTIVEC_BUILTIN_VEC_UNPACKL },
7771 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupklpx", ALTIVEC_BUILTIN_VEC_VUPKLPX },
7772 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupklsh", ALTIVEC_BUILTIN_VEC_VUPKLSH },
7773 { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupklsb", ALTIVEC_BUILTIN_VEC_VUPKLSB },
7774
7775 /* The SPE unary builtins must start with SPE_BUILTIN_EVABS and
7776 end with SPE_BUILTIN_EVSUBFUSIAAW. */
7777 { 0, CODE_FOR_spe_evabs, "__builtin_spe_evabs", SPE_BUILTIN_EVABS },
7778 { 0, CODE_FOR_spe_evaddsmiaaw, "__builtin_spe_evaddsmiaaw", SPE_BUILTIN_EVADDSMIAAW },
7779 { 0, CODE_FOR_spe_evaddssiaaw, "__builtin_spe_evaddssiaaw", SPE_BUILTIN_EVADDSSIAAW },
7780 { 0, CODE_FOR_spe_evaddumiaaw, "__builtin_spe_evaddumiaaw", SPE_BUILTIN_EVADDUMIAAW },
7781 { 0, CODE_FOR_spe_evaddusiaaw, "__builtin_spe_evaddusiaaw", SPE_BUILTIN_EVADDUSIAAW },
7782 { 0, CODE_FOR_spe_evcntlsw, "__builtin_spe_evcntlsw", SPE_BUILTIN_EVCNTLSW },
7783 { 0, CODE_FOR_spe_evcntlzw, "__builtin_spe_evcntlzw", SPE_BUILTIN_EVCNTLZW },
7784 { 0, CODE_FOR_spe_evextsb, "__builtin_spe_evextsb", SPE_BUILTIN_EVEXTSB },
7785 { 0, CODE_FOR_spe_evextsh, "__builtin_spe_evextsh", SPE_BUILTIN_EVEXTSH },
7786 { 0, CODE_FOR_spe_evfsabs, "__builtin_spe_evfsabs", SPE_BUILTIN_EVFSABS },
7787 { 0, CODE_FOR_spe_evfscfsf, "__builtin_spe_evfscfsf", SPE_BUILTIN_EVFSCFSF },
7788 { 0, CODE_FOR_spe_evfscfsi, "__builtin_spe_evfscfsi", SPE_BUILTIN_EVFSCFSI },
7789 { 0, CODE_FOR_spe_evfscfuf, "__builtin_spe_evfscfuf", SPE_BUILTIN_EVFSCFUF },
7790 { 0, CODE_FOR_spe_evfscfui, "__builtin_spe_evfscfui", SPE_BUILTIN_EVFSCFUI },
7791 { 0, CODE_FOR_spe_evfsctsf, "__builtin_spe_evfsctsf", SPE_BUILTIN_EVFSCTSF },
7792 { 0, CODE_FOR_spe_evfsctsi, "__builtin_spe_evfsctsi", SPE_BUILTIN_EVFSCTSI },
7793 { 0, CODE_FOR_spe_evfsctsiz, "__builtin_spe_evfsctsiz", SPE_BUILTIN_EVFSCTSIZ },
7794 { 0, CODE_FOR_spe_evfsctuf, "__builtin_spe_evfsctuf", SPE_BUILTIN_EVFSCTUF },
7795 { 0, CODE_FOR_spe_evfsctui, "__builtin_spe_evfsctui", SPE_BUILTIN_EVFSCTUI },
7796 { 0, CODE_FOR_spe_evfsctuiz, "__builtin_spe_evfsctuiz", SPE_BUILTIN_EVFSCTUIZ },
7797 { 0, CODE_FOR_spe_evfsnabs, "__builtin_spe_evfsnabs", SPE_BUILTIN_EVFSNABS },
7798 { 0, CODE_FOR_spe_evfsneg, "__builtin_spe_evfsneg", SPE_BUILTIN_EVFSNEG },
7799 { 0, CODE_FOR_spe_evmra, "__builtin_spe_evmra", SPE_BUILTIN_EVMRA },
7800 { 0, CODE_FOR_negv2si2, "__builtin_spe_evneg", SPE_BUILTIN_EVNEG },
7801 { 0, CODE_FOR_spe_evrndw, "__builtin_spe_evrndw", SPE_BUILTIN_EVRNDW },
7802 { 0, CODE_FOR_spe_evsubfsmiaaw, "__builtin_spe_evsubfsmiaaw", SPE_BUILTIN_EVSUBFSMIAAW },
7803 { 0, CODE_FOR_spe_evsubfssiaaw, "__builtin_spe_evsubfssiaaw", SPE_BUILTIN_EVSUBFSSIAAW },
7804 { 0, CODE_FOR_spe_evsubfumiaaw, "__builtin_spe_evsubfumiaaw", SPE_BUILTIN_EVSUBFUMIAAW },
7805
7806 /* Place-holder. Leave as last unary SPE builtin. */
7807 { 0, CODE_FOR_spe_evsubfusiaaw, "__builtin_spe_evsubfusiaaw", SPE_BUILTIN_EVSUBFUSIAAW },
7808
7809 { 0, CODE_FOR_absv2sf2, "__builtin_paired_absv2sf2", PAIRED_BUILTIN_ABSV2SF2 },
7810 { 0, CODE_FOR_nabsv2sf2, "__builtin_paired_nabsv2sf2", PAIRED_BUILTIN_NABSV2SF2 },
7811 { 0, CODE_FOR_negv2sf2, "__builtin_paired_negv2sf2", PAIRED_BUILTIN_NEGV2SF2 },
7812 { 0, CODE_FOR_sqrtv2sf2, "__builtin_paired_sqrtv2sf2", PAIRED_BUILTIN_SQRTV2SF2 },
7813 { 0, CODE_FOR_resv2sf2, "__builtin_paired_resv2sf2", PAIRED_BUILTIN_RESV2SF2 }
7814 };
7815
7816 static rtx
7817 rs6000_expand_unop_builtin (enum insn_code icode, tree exp, rtx target)
7818 {
7819 rtx pat;
7820 tree arg0 = CALL_EXPR_ARG (exp, 0);
7821 rtx op0 = expand_normal (arg0);
7822 enum machine_mode tmode = insn_data[icode].operand[0].mode;
7823 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
7824
7825 if (icode == CODE_FOR_nothing)
7826 /* Builtin not supported on this processor. */
7827 return 0;
7828
7829 /* If we got invalid arguments bail out before generating bad rtl. */
7830 if (arg0 == error_mark_node)
7831 return const0_rtx;
7832
7833 if (icode == CODE_FOR_altivec_vspltisb
7834 || icode == CODE_FOR_altivec_vspltish
7835 || icode == CODE_FOR_altivec_vspltisw
7836 || icode == CODE_FOR_spe_evsplatfi
7837 || icode == CODE_FOR_spe_evsplati)
7838 {
7839 /* Only allow 5-bit *signed* literals. */
7840 if (GET_CODE (op0) != CONST_INT
7841 || INTVAL (op0) > 15
7842 || INTVAL (op0) < -16)
7843 {
7844 error ("argument 1 must be a 5-bit signed literal");
7845 return const0_rtx;
7846 }
7847 }
7848
7849 if (target == 0
7850 || GET_MODE (target) != tmode
7851 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
7852 target = gen_reg_rtx (tmode);
7853
7854 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
7855 op0 = copy_to_mode_reg (mode0, op0);
7856
7857 pat = GEN_FCN (icode) (target, op0);
7858 if (! pat)
7859 return 0;
7860 emit_insn (pat);
7861
7862 return target;
7863 }
7864
7865 static rtx
7866 altivec_expand_abs_builtin (enum insn_code icode, tree exp, rtx target)
7867 {
7868 rtx pat, scratch1, scratch2;
7869 tree arg0 = CALL_EXPR_ARG (exp, 0);
7870 rtx op0 = expand_normal (arg0);
7871 enum machine_mode tmode = insn_data[icode].operand[0].mode;
7872 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
7873
7874 /* If we have invalid arguments, bail out before generating bad rtl. */
7875 if (arg0 == error_mark_node)
7876 return const0_rtx;
7877
7878 if (target == 0
7879 || GET_MODE (target) != tmode
7880 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
7881 target = gen_reg_rtx (tmode);
7882
7883 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
7884 op0 = copy_to_mode_reg (mode0, op0);
7885
7886 scratch1 = gen_reg_rtx (mode0);
7887 scratch2 = gen_reg_rtx (mode0);
7888
7889 pat = GEN_FCN (icode) (target, op0, scratch1, scratch2);
7890 if (! pat)
7891 return 0;
7892 emit_insn (pat);
7893
7894 return target;
7895 }
7896
7897 static rtx
7898 rs6000_expand_binop_builtin (enum insn_code icode, tree exp, rtx target)
7899 {
7900 rtx pat;
7901 tree arg0 = CALL_EXPR_ARG (exp, 0);
7902 tree arg1 = CALL_EXPR_ARG (exp, 1);
7903 rtx op0 = expand_normal (arg0);
7904 rtx op1 = expand_normal (arg1);
7905 enum machine_mode tmode = insn_data[icode].operand[0].mode;
7906 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
7907 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
7908
7909 if (icode == CODE_FOR_nothing)
7910 /* Builtin not supported on this processor. */
7911 return 0;
7912
7913 /* If we got invalid arguments bail out before generating bad rtl. */
7914 if (arg0 == error_mark_node || arg1 == error_mark_node)
7915 return const0_rtx;
7916
7917 if (icode == CODE_FOR_altivec_vcfux
7918 || icode == CODE_FOR_altivec_vcfsx
7919 || icode == CODE_FOR_altivec_vctsxs
7920 || icode == CODE_FOR_altivec_vctuxs
7921 || icode == CODE_FOR_altivec_vspltb
7922 || icode == CODE_FOR_altivec_vsplth
7923 || icode == CODE_FOR_altivec_vspltw
7924 || icode == CODE_FOR_spe_evaddiw
7925 || icode == CODE_FOR_spe_evldd
7926 || icode == CODE_FOR_spe_evldh
7927 || icode == CODE_FOR_spe_evldw
7928 || icode == CODE_FOR_spe_evlhhesplat
7929 || icode == CODE_FOR_spe_evlhhossplat
7930 || icode == CODE_FOR_spe_evlhhousplat
7931 || icode == CODE_FOR_spe_evlwhe
7932 || icode == CODE_FOR_spe_evlwhos
7933 || icode == CODE_FOR_spe_evlwhou
7934 || icode == CODE_FOR_spe_evlwhsplat
7935 || icode == CODE_FOR_spe_evlwwsplat
7936 || icode == CODE_FOR_spe_evrlwi
7937 || icode == CODE_FOR_spe_evslwi
7938 || icode == CODE_FOR_spe_evsrwis
7939 || icode == CODE_FOR_spe_evsubifw
7940 || icode == CODE_FOR_spe_evsrwiu)
7941 {
7942 /* Only allow 5-bit unsigned literals. */
7943 STRIP_NOPS (arg1);
7944 if (TREE_CODE (arg1) != INTEGER_CST
7945 || TREE_INT_CST_LOW (arg1) & ~0x1f)
7946 {
7947 error ("argument 2 must be a 5-bit unsigned literal");
7948 return const0_rtx;
7949 }
7950 }
7951
7952 if (target == 0
7953 || GET_MODE (target) != tmode
7954 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
7955 target = gen_reg_rtx (tmode);
7956
7957 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
7958 op0 = copy_to_mode_reg (mode0, op0);
7959 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
7960 op1 = copy_to_mode_reg (mode1, op1);
7961
7962 pat = GEN_FCN (icode) (target, op0, op1);
7963 if (! pat)
7964 return 0;
7965 emit_insn (pat);
7966
7967 return target;
7968 }
7969
7970 static rtx
7971 altivec_expand_predicate_builtin (enum insn_code icode, const char *opcode,
7972 tree exp, rtx target)
7973 {
7974 rtx pat, scratch;
7975 tree cr6_form = CALL_EXPR_ARG (exp, 0);
7976 tree arg0 = CALL_EXPR_ARG (exp, 1);
7977 tree arg1 = CALL_EXPR_ARG (exp, 2);
7978 rtx op0 = expand_normal (arg0);
7979 rtx op1 = expand_normal (arg1);
7980 enum machine_mode tmode = SImode;
7981 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
7982 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
7983 int cr6_form_int;
7984
7985 if (TREE_CODE (cr6_form) != INTEGER_CST)
7986 {
7987 error ("argument 1 of __builtin_altivec_predicate must be a constant");
7988 return const0_rtx;
7989 }
7990 else
7991 cr6_form_int = TREE_INT_CST_LOW (cr6_form);
7992
7993 gcc_assert (mode0 == mode1);
7994
7995 /* If we have invalid arguments, bail out before generating bad rtl. */
7996 if (arg0 == error_mark_node || arg1 == error_mark_node)
7997 return const0_rtx;
7998
7999 if (target == 0
8000 || GET_MODE (target) != tmode
8001 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8002 target = gen_reg_rtx (tmode);
8003
8004 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
8005 op0 = copy_to_mode_reg (mode0, op0);
8006 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
8007 op1 = copy_to_mode_reg (mode1, op1);
8008
8009 scratch = gen_reg_rtx (mode0);
8010
8011 pat = GEN_FCN (icode) (scratch, op0, op1,
8012 gen_rtx_SYMBOL_REF (Pmode, opcode));
8013 if (! pat)
8014 return 0;
8015 emit_insn (pat);
8016
8017 /* The vec_any* and vec_all* predicates use the same opcodes for two
8018 different operations, but the bits in CR6 will be different
8019 depending on what information we want. So we have to play tricks
8020 with CR6 to get the right bits out.
8021
8022 If you think this is disgusting, look at the specs for the
8023 AltiVec predicates. */
8024
8025 switch (cr6_form_int)
8026 {
8027 case 0:
8028 emit_insn (gen_cr6_test_for_zero (target));
8029 break;
8030 case 1:
8031 emit_insn (gen_cr6_test_for_zero_reverse (target));
8032 break;
8033 case 2:
8034 emit_insn (gen_cr6_test_for_lt (target));
8035 break;
8036 case 3:
8037 emit_insn (gen_cr6_test_for_lt_reverse (target));
8038 break;
8039 default:
8040 error ("argument 1 of __builtin_altivec_predicate is out of range");
8041 break;
8042 }
8043
8044 return target;
8045 }
8046
8047 static rtx
8048 paired_expand_lv_builtin (enum insn_code icode, tree exp, rtx target)
8049 {
8050 rtx pat, addr;
8051 tree arg0 = CALL_EXPR_ARG (exp, 0);
8052 tree arg1 = CALL_EXPR_ARG (exp, 1);
8053 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8054 enum machine_mode mode0 = Pmode;
8055 enum machine_mode mode1 = Pmode;
8056 rtx op0 = expand_normal (arg0);
8057 rtx op1 = expand_normal (arg1);
8058
8059 if (icode == CODE_FOR_nothing)
8060 /* Builtin not supported on this processor. */
8061 return 0;
8062
8063 /* If we got invalid arguments bail out before generating bad rtl. */
8064 if (arg0 == error_mark_node || arg1 == error_mark_node)
8065 return const0_rtx;
8066
8067 if (target == 0
8068 || GET_MODE (target) != tmode
8069 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8070 target = gen_reg_rtx (tmode);
8071
8072 op1 = copy_to_mode_reg (mode1, op1);
8073
8074 if (op0 == const0_rtx)
8075 {
8076 addr = gen_rtx_MEM (tmode, op1);
8077 }
8078 else
8079 {
8080 op0 = copy_to_mode_reg (mode0, op0);
8081 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op0, op1));
8082 }
8083
8084 pat = GEN_FCN (icode) (target, addr);
8085
8086 if (! pat)
8087 return 0;
8088 emit_insn (pat);
8089
8090 return target;
8091 }
8092
8093 static rtx
8094 altivec_expand_lv_builtin (enum insn_code icode, tree exp, rtx target, bool blk)
8095 {
8096 rtx pat, addr;
8097 tree arg0 = CALL_EXPR_ARG (exp, 0);
8098 tree arg1 = CALL_EXPR_ARG (exp, 1);
8099 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8100 enum machine_mode mode0 = Pmode;
8101 enum machine_mode mode1 = Pmode;
8102 rtx op0 = expand_normal (arg0);
8103 rtx op1 = expand_normal (arg1);
8104
8105 if (icode == CODE_FOR_nothing)
8106 /* Builtin not supported on this processor. */
8107 return 0;
8108
8109 /* If we got invalid arguments bail out before generating bad rtl. */
8110 if (arg0 == error_mark_node || arg1 == error_mark_node)
8111 return const0_rtx;
8112
8113 if (target == 0
8114 || GET_MODE (target) != tmode
8115 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8116 target = gen_reg_rtx (tmode);
8117
8118 op1 = copy_to_mode_reg (mode1, op1);
8119
8120 if (op0 == const0_rtx)
8121 {
8122 addr = gen_rtx_MEM (blk ? BLKmode : tmode, op1);
8123 }
8124 else
8125 {
8126 op0 = copy_to_mode_reg (mode0, op0);
8127 addr = gen_rtx_MEM (blk ? BLKmode : tmode, gen_rtx_PLUS (Pmode, op0, op1));
8128 }
8129
8130 pat = GEN_FCN (icode) (target, addr);
8131
8132 if (! pat)
8133 return 0;
8134 emit_insn (pat);
8135
8136 return target;
8137 }
8138
8139 static rtx
8140 spe_expand_stv_builtin (enum insn_code icode, tree exp)
8141 {
8142 tree arg0 = CALL_EXPR_ARG (exp, 0);
8143 tree arg1 = CALL_EXPR_ARG (exp, 1);
8144 tree arg2 = CALL_EXPR_ARG (exp, 2);
8145 rtx op0 = expand_normal (arg0);
8146 rtx op1 = expand_normal (arg1);
8147 rtx op2 = expand_normal (arg2);
8148 rtx pat;
8149 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
8150 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
8151 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
8152
8153 /* Invalid arguments. Bail before doing anything stoopid! */
8154 if (arg0 == error_mark_node
8155 || arg1 == error_mark_node
8156 || arg2 == error_mark_node)
8157 return const0_rtx;
8158
8159 if (! (*insn_data[icode].operand[2].predicate) (op0, mode2))
8160 op0 = copy_to_mode_reg (mode2, op0);
8161 if (! (*insn_data[icode].operand[0].predicate) (op1, mode0))
8162 op1 = copy_to_mode_reg (mode0, op1);
8163 if (! (*insn_data[icode].operand[1].predicate) (op2, mode1))
8164 op2 = copy_to_mode_reg (mode1, op2);
8165
8166 pat = GEN_FCN (icode) (op1, op2, op0);
8167 if (pat)
8168 emit_insn (pat);
8169 return NULL_RTX;
8170 }
8171
8172 static rtx
8173 paired_expand_stv_builtin (enum insn_code icode, tree exp)
8174 {
8175 tree arg0 = CALL_EXPR_ARG (exp, 0);
8176 tree arg1 = CALL_EXPR_ARG (exp, 1);
8177 tree arg2 = CALL_EXPR_ARG (exp, 2);
8178 rtx op0 = expand_normal (arg0);
8179 rtx op1 = expand_normal (arg1);
8180 rtx op2 = expand_normal (arg2);
8181 rtx pat, addr;
8182 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8183 enum machine_mode mode1 = Pmode;
8184 enum machine_mode mode2 = Pmode;
8185
8186 /* Invalid arguments. Bail before doing anything stoopid! */
8187 if (arg0 == error_mark_node
8188 || arg1 == error_mark_node
8189 || arg2 == error_mark_node)
8190 return const0_rtx;
8191
8192 if (! (*insn_data[icode].operand[1].predicate) (op0, tmode))
8193 op0 = copy_to_mode_reg (tmode, op0);
8194
8195 op2 = copy_to_mode_reg (mode2, op2);
8196
8197 if (op1 == const0_rtx)
8198 {
8199 addr = gen_rtx_MEM (tmode, op2);
8200 }
8201 else
8202 {
8203 op1 = copy_to_mode_reg (mode1, op1);
8204 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op1, op2));
8205 }
8206
8207 pat = GEN_FCN (icode) (addr, op0);
8208 if (pat)
8209 emit_insn (pat);
8210 return NULL_RTX;
8211 }
8212
8213 static rtx
8214 altivec_expand_stv_builtin (enum insn_code icode, tree exp)
8215 {
8216 tree arg0 = CALL_EXPR_ARG (exp, 0);
8217 tree arg1 = CALL_EXPR_ARG (exp, 1);
8218 tree arg2 = CALL_EXPR_ARG (exp, 2);
8219 rtx op0 = expand_normal (arg0);
8220 rtx op1 = expand_normal (arg1);
8221 rtx op2 = expand_normal (arg2);
8222 rtx pat, addr;
8223 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8224 enum machine_mode mode1 = Pmode;
8225 enum machine_mode mode2 = Pmode;
8226
8227 /* Invalid arguments. Bail before doing anything stoopid! */
8228 if (arg0 == error_mark_node
8229 || arg1 == error_mark_node
8230 || arg2 == error_mark_node)
8231 return const0_rtx;
8232
8233 if (! (*insn_data[icode].operand[1].predicate) (op0, tmode))
8234 op0 = copy_to_mode_reg (tmode, op0);
8235
8236 op2 = copy_to_mode_reg (mode2, op2);
8237
8238 if (op1 == const0_rtx)
8239 {
8240 addr = gen_rtx_MEM (tmode, op2);
8241 }
8242 else
8243 {
8244 op1 = copy_to_mode_reg (mode1, op1);
8245 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op1, op2));
8246 }
8247
8248 pat = GEN_FCN (icode) (addr, op0);
8249 if (pat)
8250 emit_insn (pat);
8251 return NULL_RTX;
8252 }
8253
8254 static rtx
8255 rs6000_expand_ternop_builtin (enum insn_code icode, tree exp, rtx target)
8256 {
8257 rtx pat;
8258 tree arg0 = CALL_EXPR_ARG (exp, 0);
8259 tree arg1 = CALL_EXPR_ARG (exp, 1);
8260 tree arg2 = CALL_EXPR_ARG (exp, 2);
8261 rtx op0 = expand_normal (arg0);
8262 rtx op1 = expand_normal (arg1);
8263 rtx op2 = expand_normal (arg2);
8264 enum machine_mode tmode = insn_data[icode].operand[0].mode;
8265 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
8266 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
8267 enum machine_mode mode2 = insn_data[icode].operand[3].mode;
8268
8269 if (icode == CODE_FOR_nothing)
8270 /* Builtin not supported on this processor. */
8271 return 0;
8272
8273 /* If we got invalid arguments bail out before generating bad rtl. */
8274 if (arg0 == error_mark_node
8275 || arg1 == error_mark_node
8276 || arg2 == error_mark_node)
8277 return const0_rtx;
8278
8279 if (icode == CODE_FOR_altivec_vsldoi_v4sf
8280 || icode == CODE_FOR_altivec_vsldoi_v4si
8281 || icode == CODE_FOR_altivec_vsldoi_v8hi
8282 || icode == CODE_FOR_altivec_vsldoi_v16qi)
8283 {
8284 /* Only allow 4-bit unsigned literals. */
8285 STRIP_NOPS (arg2);
8286 if (TREE_CODE (arg2) != INTEGER_CST
8287 || TREE_INT_CST_LOW (arg2) & ~0xf)
8288 {
8289 error ("argument 3 must be a 4-bit unsigned literal");
8290 return const0_rtx;
8291 }
8292 }
8293
8294 if (target == 0
8295 || GET_MODE (target) != tmode
8296 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8297 target = gen_reg_rtx (tmode);
8298
8299 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
8300 op0 = copy_to_mode_reg (mode0, op0);
8301 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
8302 op1 = copy_to_mode_reg (mode1, op1);
8303 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
8304 op2 = copy_to_mode_reg (mode2, op2);
8305
8306 if (TARGET_PAIRED_FLOAT && icode == CODE_FOR_selv2sf4)
8307 pat = GEN_FCN (icode) (target, op0, op1, op2, CONST0_RTX (SFmode));
8308 else
8309 pat = GEN_FCN (icode) (target, op0, op1, op2);
8310 if (! pat)
8311 return 0;
8312 emit_insn (pat);
8313
8314 return target;
8315 }
8316
8317 /* Expand the lvx builtins. */
8318 static rtx
8319 altivec_expand_ld_builtin (tree exp, rtx target, bool *expandedp)
8320 {
8321 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8322 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8323 tree arg0;
8324 enum machine_mode tmode, mode0;
8325 rtx pat, op0;
8326 enum insn_code icode;
8327
8328 switch (fcode)
8329 {
8330 case ALTIVEC_BUILTIN_LD_INTERNAL_16qi:
8331 icode = CODE_FOR_altivec_lvx_v16qi;
8332 break;
8333 case ALTIVEC_BUILTIN_LD_INTERNAL_8hi:
8334 icode = CODE_FOR_altivec_lvx_v8hi;
8335 break;
8336 case ALTIVEC_BUILTIN_LD_INTERNAL_4si:
8337 icode = CODE_FOR_altivec_lvx_v4si;
8338 break;
8339 case ALTIVEC_BUILTIN_LD_INTERNAL_4sf:
8340 icode = CODE_FOR_altivec_lvx_v4sf;
8341 break;
8342 default:
8343 *expandedp = false;
8344 return NULL_RTX;
8345 }
8346
8347 *expandedp = true;
8348
8349 arg0 = CALL_EXPR_ARG (exp, 0);
8350 op0 = expand_normal (arg0);
8351 tmode = insn_data[icode].operand[0].mode;
8352 mode0 = insn_data[icode].operand[1].mode;
8353
8354 if (target == 0
8355 || GET_MODE (target) != tmode
8356 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8357 target = gen_reg_rtx (tmode);
8358
8359 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
8360 op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
8361
8362 pat = GEN_FCN (icode) (target, op0);
8363 if (! pat)
8364 return 0;
8365 emit_insn (pat);
8366 return target;
8367 }
8368
8369 /* Expand the stvx builtins. */
8370 static rtx
8371 altivec_expand_st_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
8372 bool *expandedp)
8373 {
8374 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8375 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8376 tree arg0, arg1;
8377 enum machine_mode mode0, mode1;
8378 rtx pat, op0, op1;
8379 enum insn_code icode;
8380
8381 switch (fcode)
8382 {
8383 case ALTIVEC_BUILTIN_ST_INTERNAL_16qi:
8384 icode = CODE_FOR_altivec_stvx_v16qi;
8385 break;
8386 case ALTIVEC_BUILTIN_ST_INTERNAL_8hi:
8387 icode = CODE_FOR_altivec_stvx_v8hi;
8388 break;
8389 case ALTIVEC_BUILTIN_ST_INTERNAL_4si:
8390 icode = CODE_FOR_altivec_stvx_v4si;
8391 break;
8392 case ALTIVEC_BUILTIN_ST_INTERNAL_4sf:
8393 icode = CODE_FOR_altivec_stvx_v4sf;
8394 break;
8395 default:
8396 *expandedp = false;
8397 return NULL_RTX;
8398 }
8399
8400 arg0 = CALL_EXPR_ARG (exp, 0);
8401 arg1 = CALL_EXPR_ARG (exp, 1);
8402 op0 = expand_normal (arg0);
8403 op1 = expand_normal (arg1);
8404 mode0 = insn_data[icode].operand[0].mode;
8405 mode1 = insn_data[icode].operand[1].mode;
8406
8407 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
8408 op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
8409 if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
8410 op1 = copy_to_mode_reg (mode1, op1);
8411
8412 pat = GEN_FCN (icode) (op0, op1);
8413 if (pat)
8414 emit_insn (pat);
8415
8416 *expandedp = true;
8417 return NULL_RTX;
8418 }
8419
8420 /* Expand the dst builtins. */
8421 static rtx
8422 altivec_expand_dst_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
8423 bool *expandedp)
8424 {
8425 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8426 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8427 tree arg0, arg1, arg2;
8428 enum machine_mode mode0, mode1, mode2;
8429 rtx pat, op0, op1, op2;
8430 const struct builtin_description *d;
8431 size_t i;
8432
8433 *expandedp = false;
8434
8435 /* Handle DST variants. */
8436 d = bdesc_dst;
8437 for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
8438 if (d->code == fcode)
8439 {
8440 arg0 = CALL_EXPR_ARG (exp, 0);
8441 arg1 = CALL_EXPR_ARG (exp, 1);
8442 arg2 = CALL_EXPR_ARG (exp, 2);
8443 op0 = expand_normal (arg0);
8444 op1 = expand_normal (arg1);
8445 op2 = expand_normal (arg2);
8446 mode0 = insn_data[d->icode].operand[0].mode;
8447 mode1 = insn_data[d->icode].operand[1].mode;
8448 mode2 = insn_data[d->icode].operand[2].mode;
8449
8450 /* Invalid arguments, bail out before generating bad rtl. */
8451 if (arg0 == error_mark_node
8452 || arg1 == error_mark_node
8453 || arg2 == error_mark_node)
8454 return const0_rtx;
8455
8456 *expandedp = true;
8457 STRIP_NOPS (arg2);
8458 if (TREE_CODE (arg2) != INTEGER_CST
8459 || TREE_INT_CST_LOW (arg2) & ~0x3)
8460 {
8461 error ("argument to %qs must be a 2-bit unsigned literal", d->name);
8462 return const0_rtx;
8463 }
8464
8465 if (! (*insn_data[d->icode].operand[0].predicate) (op0, mode0))
8466 op0 = copy_to_mode_reg (Pmode, op0);
8467 if (! (*insn_data[d->icode].operand[1].predicate) (op1, mode1))
8468 op1 = copy_to_mode_reg (mode1, op1);
8469
8470 pat = GEN_FCN (d->icode) (op0, op1, op2);
8471 if (pat != 0)
8472 emit_insn (pat);
8473
8474 return NULL_RTX;
8475 }
8476
8477 return NULL_RTX;
8478 }
8479
8480 /* Expand vec_init builtin. */
8481 static rtx
8482 altivec_expand_vec_init_builtin (tree type, tree exp, rtx target)
8483 {
8484 enum machine_mode tmode = TYPE_MODE (type);
8485 enum machine_mode inner_mode = GET_MODE_INNER (tmode);
8486 int i, n_elt = GET_MODE_NUNITS (tmode);
8487 rtvec v = rtvec_alloc (n_elt);
8488
8489 gcc_assert (VECTOR_MODE_P (tmode));
8490 gcc_assert (n_elt == call_expr_nargs (exp));
8491
8492 for (i = 0; i < n_elt; ++i)
8493 {
8494 rtx x = expand_normal (CALL_EXPR_ARG (exp, i));
8495 RTVEC_ELT (v, i) = gen_lowpart (inner_mode, x);
8496 }
8497
8498 if (!target || !register_operand (target, tmode))
8499 target = gen_reg_rtx (tmode);
8500
8501 rs6000_expand_vector_init (target, gen_rtx_PARALLEL (tmode, v));
8502 return target;
8503 }
8504
8505 /* Return the integer constant in ARG. Constrain it to be in the range
8506 of the subparts of VEC_TYPE; issue an error if not. */
8507
8508 static int
8509 get_element_number (tree vec_type, tree arg)
8510 {
8511 unsigned HOST_WIDE_INT elt, max = TYPE_VECTOR_SUBPARTS (vec_type) - 1;
8512
8513 if (!host_integerp (arg, 1)
8514 || (elt = tree_low_cst (arg, 1), elt > max))
8515 {
8516 error ("selector must be an integer constant in the range 0..%wi", max);
8517 return 0;
8518 }
8519
8520 return elt;
8521 }
8522
8523 /* Expand vec_set builtin. */
8524 static rtx
8525 altivec_expand_vec_set_builtin (tree exp)
8526 {
8527 enum machine_mode tmode, mode1;
8528 tree arg0, arg1, arg2;
8529 int elt;
8530 rtx op0, op1;
8531
8532 arg0 = CALL_EXPR_ARG (exp, 0);
8533 arg1 = CALL_EXPR_ARG (exp, 1);
8534 arg2 = CALL_EXPR_ARG (exp, 2);
8535
8536 tmode = TYPE_MODE (TREE_TYPE (arg0));
8537 mode1 = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
8538 gcc_assert (VECTOR_MODE_P (tmode));
8539
8540 op0 = expand_expr (arg0, NULL_RTX, tmode, 0);
8541 op1 = expand_expr (arg1, NULL_RTX, mode1, 0);
8542 elt = get_element_number (TREE_TYPE (arg0), arg2);
8543
8544 if (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode)
8545 op1 = convert_modes (mode1, GET_MODE (op1), op1, true);
8546
8547 op0 = force_reg (tmode, op0);
8548 op1 = force_reg (mode1, op1);
8549
8550 rs6000_expand_vector_set (op0, op1, elt);
8551
8552 return op0;
8553 }
8554
8555 /* Expand vec_ext builtin. */
8556 static rtx
8557 altivec_expand_vec_ext_builtin (tree exp, rtx target)
8558 {
8559 enum machine_mode tmode, mode0;
8560 tree arg0, arg1;
8561 int elt;
8562 rtx op0;
8563
8564 arg0 = CALL_EXPR_ARG (exp, 0);
8565 arg1 = CALL_EXPR_ARG (exp, 1);
8566
8567 op0 = expand_normal (arg0);
8568 elt = get_element_number (TREE_TYPE (arg0), arg1);
8569
8570 tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
8571 mode0 = TYPE_MODE (TREE_TYPE (arg0));
8572 gcc_assert (VECTOR_MODE_P (mode0));
8573
8574 op0 = force_reg (mode0, op0);
8575
8576 if (optimize || !target || !register_operand (target, tmode))
8577 target = gen_reg_rtx (tmode);
8578
8579 rs6000_expand_vector_extract (target, op0, elt);
8580
8581 return target;
8582 }
8583
8584 /* Expand the builtin in EXP and store the result in TARGET. Store
8585 true in *EXPANDEDP if we found a builtin to expand. */
8586 static rtx
8587 altivec_expand_builtin (tree exp, rtx target, bool *expandedp)
8588 {
8589 const struct builtin_description *d;
8590 const struct builtin_description_predicates *dp;
8591 size_t i;
8592 enum insn_code icode;
8593 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8594 tree arg0;
8595 rtx op0, pat;
8596 enum machine_mode tmode, mode0;
8597 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8598
8599 if (fcode >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
8600 && fcode <= ALTIVEC_BUILTIN_OVERLOADED_LAST)
8601 {
8602 *expandedp = true;
8603 error ("unresolved overload for Altivec builtin %qF", fndecl);
8604 return const0_rtx;
8605 }
8606
8607 target = altivec_expand_ld_builtin (exp, target, expandedp);
8608 if (*expandedp)
8609 return target;
8610
8611 target = altivec_expand_st_builtin (exp, target, expandedp);
8612 if (*expandedp)
8613 return target;
8614
8615 target = altivec_expand_dst_builtin (exp, target, expandedp);
8616 if (*expandedp)
8617 return target;
8618
8619 *expandedp = true;
8620
8621 switch (fcode)
8622 {
8623 case ALTIVEC_BUILTIN_STVX:
8624 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx, exp);
8625 case ALTIVEC_BUILTIN_STVEBX:
8626 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvebx, exp);
8627 case ALTIVEC_BUILTIN_STVEHX:
8628 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvehx, exp);
8629 case ALTIVEC_BUILTIN_STVEWX:
8630 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvewx, exp);
8631 case ALTIVEC_BUILTIN_STVXL:
8632 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl, exp);
8633
8634 case ALTIVEC_BUILTIN_STVLX:
8635 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlx, exp);
8636 case ALTIVEC_BUILTIN_STVLXL:
8637 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlxl, exp);
8638 case ALTIVEC_BUILTIN_STVRX:
8639 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrx, exp);
8640 case ALTIVEC_BUILTIN_STVRXL:
8641 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrxl, exp);
8642
8643 case ALTIVEC_BUILTIN_MFVSCR:
8644 icode = CODE_FOR_altivec_mfvscr;
8645 tmode = insn_data[icode].operand[0].mode;
8646
8647 if (target == 0
8648 || GET_MODE (target) != tmode
8649 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8650 target = gen_reg_rtx (tmode);
8651
8652 pat = GEN_FCN (icode) (target);
8653 if (! pat)
8654 return 0;
8655 emit_insn (pat);
8656 return target;
8657
8658 case ALTIVEC_BUILTIN_MTVSCR:
8659 icode = CODE_FOR_altivec_mtvscr;
8660 arg0 = CALL_EXPR_ARG (exp, 0);
8661 op0 = expand_normal (arg0);
8662 mode0 = insn_data[icode].operand[0].mode;
8663
8664 /* If we got invalid arguments bail out before generating bad rtl. */
8665 if (arg0 == error_mark_node)
8666 return const0_rtx;
8667
8668 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
8669 op0 = copy_to_mode_reg (mode0, op0);
8670
8671 pat = GEN_FCN (icode) (op0);
8672 if (pat)
8673 emit_insn (pat);
8674 return NULL_RTX;
8675
8676 case ALTIVEC_BUILTIN_DSSALL:
8677 emit_insn (gen_altivec_dssall ());
8678 return NULL_RTX;
8679
8680 case ALTIVEC_BUILTIN_DSS:
8681 icode = CODE_FOR_altivec_dss;
8682 arg0 = CALL_EXPR_ARG (exp, 0);
8683 STRIP_NOPS (arg0);
8684 op0 = expand_normal (arg0);
8685 mode0 = insn_data[icode].operand[0].mode;
8686
8687 /* If we got invalid arguments bail out before generating bad rtl. */
8688 if (arg0 == error_mark_node)
8689 return const0_rtx;
8690
8691 if (TREE_CODE (arg0) != INTEGER_CST
8692 || TREE_INT_CST_LOW (arg0) & ~0x3)
8693 {
8694 error ("argument to dss must be a 2-bit unsigned literal");
8695 return const0_rtx;
8696 }
8697
8698 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
8699 op0 = copy_to_mode_reg (mode0, op0);
8700
8701 emit_insn (gen_altivec_dss (op0));
8702 return NULL_RTX;
8703
8704 case ALTIVEC_BUILTIN_VEC_INIT_V4SI:
8705 case ALTIVEC_BUILTIN_VEC_INIT_V8HI:
8706 case ALTIVEC_BUILTIN_VEC_INIT_V16QI:
8707 case ALTIVEC_BUILTIN_VEC_INIT_V4SF:
8708 return altivec_expand_vec_init_builtin (TREE_TYPE (exp), exp, target);
8709
8710 case ALTIVEC_BUILTIN_VEC_SET_V4SI:
8711 case ALTIVEC_BUILTIN_VEC_SET_V8HI:
8712 case ALTIVEC_BUILTIN_VEC_SET_V16QI:
8713 case ALTIVEC_BUILTIN_VEC_SET_V4SF:
8714 return altivec_expand_vec_set_builtin (exp);
8715
8716 case ALTIVEC_BUILTIN_VEC_EXT_V4SI:
8717 case ALTIVEC_BUILTIN_VEC_EXT_V8HI:
8718 case ALTIVEC_BUILTIN_VEC_EXT_V16QI:
8719 case ALTIVEC_BUILTIN_VEC_EXT_V4SF:
8720 return altivec_expand_vec_ext_builtin (exp, target);
8721
8722 default:
8723 break;
8724 /* Fall through. */
8725 }
8726
8727 /* Expand abs* operations. */
8728 d = bdesc_abs;
8729 for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
8730 if (d->code == fcode)
8731 return altivec_expand_abs_builtin (d->icode, exp, target);
8732
8733 /* Expand the AltiVec predicates. */
8734 dp = bdesc_altivec_preds;
8735 for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, dp++)
8736 if (dp->code == fcode)
8737 return altivec_expand_predicate_builtin (dp->icode, dp->opcode,
8738 exp, target);
8739
8740 /* LV* are funky. We initialized them differently. */
8741 switch (fcode)
8742 {
8743 case ALTIVEC_BUILTIN_LVSL:
8744 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsl,
8745 exp, target, false);
8746 case ALTIVEC_BUILTIN_LVSR:
8747 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsr,
8748 exp, target, false);
8749 case ALTIVEC_BUILTIN_LVEBX:
8750 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvebx,
8751 exp, target, false);
8752 case ALTIVEC_BUILTIN_LVEHX:
8753 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvehx,
8754 exp, target, false);
8755 case ALTIVEC_BUILTIN_LVEWX:
8756 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvewx,
8757 exp, target, false);
8758 case ALTIVEC_BUILTIN_LVXL:
8759 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl,
8760 exp, target, false);
8761 case ALTIVEC_BUILTIN_LVX:
8762 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx,
8763 exp, target, false);
8764 case ALTIVEC_BUILTIN_LVLX:
8765 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlx,
8766 exp, target, true);
8767 case ALTIVEC_BUILTIN_LVLXL:
8768 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlxl,
8769 exp, target, true);
8770 case ALTIVEC_BUILTIN_LVRX:
8771 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrx,
8772 exp, target, true);
8773 case ALTIVEC_BUILTIN_LVRXL:
8774 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrxl,
8775 exp, target, true);
8776 default:
8777 break;
8778 /* Fall through. */
8779 }
8780
8781 *expandedp = false;
8782 return NULL_RTX;
8783 }
8784
8785 /* Expand the builtin in EXP and store the result in TARGET. Store
8786 true in *EXPANDEDP if we found a builtin to expand. */
8787 static rtx
8788 paired_expand_builtin (tree exp, rtx target, bool * expandedp)
8789 {
8790 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8791 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8792 const struct builtin_description *d;
8793 size_t i;
8794
8795 *expandedp = true;
8796
8797 switch (fcode)
8798 {
8799 case PAIRED_BUILTIN_STX:
8800 return paired_expand_stv_builtin (CODE_FOR_paired_stx, exp);
8801 case PAIRED_BUILTIN_LX:
8802 return paired_expand_lv_builtin (CODE_FOR_paired_lx, exp, target);
8803 default:
8804 break;
8805 /* Fall through. */
8806 }
8807
8808 /* Expand the paired predicates. */
8809 d = bdesc_paired_preds;
8810 for (i = 0; i < ARRAY_SIZE (bdesc_paired_preds); i++, d++)
8811 if (d->code == fcode)
8812 return paired_expand_predicate_builtin (d->icode, exp, target);
8813
8814 *expandedp = false;
8815 return NULL_RTX;
8816 }
8817
8818 /* Binops that need to be initialized manually, but can be expanded
8819 automagically by rs6000_expand_binop_builtin. */
8820 static struct builtin_description bdesc_2arg_spe[] =
8821 {
8822 { 0, CODE_FOR_spe_evlddx, "__builtin_spe_evlddx", SPE_BUILTIN_EVLDDX },
8823 { 0, CODE_FOR_spe_evldwx, "__builtin_spe_evldwx", SPE_BUILTIN_EVLDWX },
8824 { 0, CODE_FOR_spe_evldhx, "__builtin_spe_evldhx", SPE_BUILTIN_EVLDHX },
8825 { 0, CODE_FOR_spe_evlwhex, "__builtin_spe_evlwhex", SPE_BUILTIN_EVLWHEX },
8826 { 0, CODE_FOR_spe_evlwhoux, "__builtin_spe_evlwhoux", SPE_BUILTIN_EVLWHOUX },
8827 { 0, CODE_FOR_spe_evlwhosx, "__builtin_spe_evlwhosx", SPE_BUILTIN_EVLWHOSX },
8828 { 0, CODE_FOR_spe_evlwwsplatx, "__builtin_spe_evlwwsplatx", SPE_BUILTIN_EVLWWSPLATX },
8829 { 0, CODE_FOR_spe_evlwhsplatx, "__builtin_spe_evlwhsplatx", SPE_BUILTIN_EVLWHSPLATX },
8830 { 0, CODE_FOR_spe_evlhhesplatx, "__builtin_spe_evlhhesplatx", SPE_BUILTIN_EVLHHESPLATX },
8831 { 0, CODE_FOR_spe_evlhhousplatx, "__builtin_spe_evlhhousplatx", SPE_BUILTIN_EVLHHOUSPLATX },
8832 { 0, CODE_FOR_spe_evlhhossplatx, "__builtin_spe_evlhhossplatx", SPE_BUILTIN_EVLHHOSSPLATX },
8833 { 0, CODE_FOR_spe_evldd, "__builtin_spe_evldd", SPE_BUILTIN_EVLDD },
8834 { 0, CODE_FOR_spe_evldw, "__builtin_spe_evldw", SPE_BUILTIN_EVLDW },
8835 { 0, CODE_FOR_spe_evldh, "__builtin_spe_evldh", SPE_BUILTIN_EVLDH },
8836 { 0, CODE_FOR_spe_evlwhe, "__builtin_spe_evlwhe", SPE_BUILTIN_EVLWHE },
8837 { 0, CODE_FOR_spe_evlwhou, "__builtin_spe_evlwhou", SPE_BUILTIN_EVLWHOU },
8838 { 0, CODE_FOR_spe_evlwhos, "__builtin_spe_evlwhos", SPE_BUILTIN_EVLWHOS },
8839 { 0, CODE_FOR_spe_evlwwsplat, "__builtin_spe_evlwwsplat", SPE_BUILTIN_EVLWWSPLAT },
8840 { 0, CODE_FOR_spe_evlwhsplat, "__builtin_spe_evlwhsplat", SPE_BUILTIN_EVLWHSPLAT },
8841 { 0, CODE_FOR_spe_evlhhesplat, "__builtin_spe_evlhhesplat", SPE_BUILTIN_EVLHHESPLAT },
8842 { 0, CODE_FOR_spe_evlhhousplat, "__builtin_spe_evlhhousplat", SPE_BUILTIN_EVLHHOUSPLAT },
8843 { 0, CODE_FOR_spe_evlhhossplat, "__builtin_spe_evlhhossplat", SPE_BUILTIN_EVLHHOSSPLAT }
8844 };
8845
8846 /* Expand the builtin in EXP and store the result in TARGET. Store
8847 true in *EXPANDEDP if we found a builtin to expand.
8848
8849 This expands the SPE builtins that are not simple unary and binary
8850 operations. */
8851 static rtx
8852 spe_expand_builtin (tree exp, rtx target, bool *expandedp)
8853 {
8854 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
8855 tree arg1, arg0;
8856 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
8857 enum insn_code icode;
8858 enum machine_mode tmode, mode0;
8859 rtx pat, op0;
8860 struct builtin_description *d;
8861 size_t i;
8862
8863 *expandedp = true;
8864
8865 /* Syntax check for a 5-bit unsigned immediate. */
8866 switch (fcode)
8867 {
8868 case SPE_BUILTIN_EVSTDD:
8869 case SPE_BUILTIN_EVSTDH:
8870 case SPE_BUILTIN_EVSTDW:
8871 case SPE_BUILTIN_EVSTWHE:
8872 case SPE_BUILTIN_EVSTWHO:
8873 case SPE_BUILTIN_EVSTWWE:
8874 case SPE_BUILTIN_EVSTWWO:
8875 arg1 = CALL_EXPR_ARG (exp, 2);
8876 if (TREE_CODE (arg1) != INTEGER_CST
8877 || TREE_INT_CST_LOW (arg1) & ~0x1f)
8878 {
8879 error ("argument 2 must be a 5-bit unsigned literal");
8880 return const0_rtx;
8881 }
8882 break;
8883 default:
8884 break;
8885 }
8886
8887 /* The evsplat*i instructions are not quite generic. */
8888 switch (fcode)
8889 {
8890 case SPE_BUILTIN_EVSPLATFI:
8891 return rs6000_expand_unop_builtin (CODE_FOR_spe_evsplatfi,
8892 exp, target);
8893 case SPE_BUILTIN_EVSPLATI:
8894 return rs6000_expand_unop_builtin (CODE_FOR_spe_evsplati,
8895 exp, target);
8896 default:
8897 break;
8898 }
8899
8900 d = (struct builtin_description *) bdesc_2arg_spe;
8901 for (i = 0; i < ARRAY_SIZE (bdesc_2arg_spe); ++i, ++d)
8902 if (d->code == fcode)
8903 return rs6000_expand_binop_builtin (d->icode, exp, target);
8904
8905 d = (struct builtin_description *) bdesc_spe_predicates;
8906 for (i = 0; i < ARRAY_SIZE (bdesc_spe_predicates); ++i, ++d)
8907 if (d->code == fcode)
8908 return spe_expand_predicate_builtin (d->icode, exp, target);
8909
8910 d = (struct builtin_description *) bdesc_spe_evsel;
8911 for (i = 0; i < ARRAY_SIZE (bdesc_spe_evsel); ++i, ++d)
8912 if (d->code == fcode)
8913 return spe_expand_evsel_builtin (d->icode, exp, target);
8914
8915 switch (fcode)
8916 {
8917 case SPE_BUILTIN_EVSTDDX:
8918 return spe_expand_stv_builtin (CODE_FOR_spe_evstddx, exp);
8919 case SPE_BUILTIN_EVSTDHX:
8920 return spe_expand_stv_builtin (CODE_FOR_spe_evstdhx, exp);
8921 case SPE_BUILTIN_EVSTDWX:
8922 return spe_expand_stv_builtin (CODE_FOR_spe_evstdwx, exp);
8923 case SPE_BUILTIN_EVSTWHEX:
8924 return spe_expand_stv_builtin (CODE_FOR_spe_evstwhex, exp);
8925 case SPE_BUILTIN_EVSTWHOX:
8926 return spe_expand_stv_builtin (CODE_FOR_spe_evstwhox, exp);
8927 case SPE_BUILTIN_EVSTWWEX:
8928 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwex, exp);
8929 case SPE_BUILTIN_EVSTWWOX:
8930 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwox, exp);
8931 case SPE_BUILTIN_EVSTDD:
8932 return spe_expand_stv_builtin (CODE_FOR_spe_evstdd, exp);
8933 case SPE_BUILTIN_EVSTDH:
8934 return spe_expand_stv_builtin (CODE_FOR_spe_evstdh, exp);
8935 case SPE_BUILTIN_EVSTDW:
8936 return spe_expand_stv_builtin (CODE_FOR_spe_evstdw, exp);
8937 case SPE_BUILTIN_EVSTWHE:
8938 return spe_expand_stv_builtin (CODE_FOR_spe_evstwhe, exp);
8939 case SPE_BUILTIN_EVSTWHO:
8940 return spe_expand_stv_builtin (CODE_FOR_spe_evstwho, exp);
8941 case SPE_BUILTIN_EVSTWWE:
8942 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwe, exp);
8943 case SPE_BUILTIN_EVSTWWO:
8944 return spe_expand_stv_builtin (CODE_FOR_spe_evstwwo, exp);
8945 case SPE_BUILTIN_MFSPEFSCR:
8946 icode = CODE_FOR_spe_mfspefscr;
8947 tmode = insn_data[icode].operand[0].mode;
8948
8949 if (target == 0
8950 || GET_MODE (target) != tmode
8951 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
8952 target = gen_reg_rtx (tmode);
8953
8954 pat = GEN_FCN (icode) (target);
8955 if (! pat)
8956 return 0;
8957 emit_insn (pat);
8958 return target;
8959 case SPE_BUILTIN_MTSPEFSCR:
8960 icode = CODE_FOR_spe_mtspefscr;
8961 arg0 = CALL_EXPR_ARG (exp, 0);
8962 op0 = expand_normal (arg0);
8963 mode0 = insn_data[icode].operand[0].mode;
8964
8965 if (arg0 == error_mark_node)
8966 return const0_rtx;
8967
8968 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
8969 op0 = copy_to_mode_reg (mode0, op0);
8970
8971 pat = GEN_FCN (icode) (op0);
8972 if (pat)
8973 emit_insn (pat);
8974 return NULL_RTX;
8975 default:
8976 break;
8977 }
8978
8979 *expandedp = false;
8980 return NULL_RTX;
8981 }
8982
8983 static rtx
8984 paired_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
8985 {
8986 rtx pat, scratch, tmp;
8987 tree form = CALL_EXPR_ARG (exp, 0);
8988 tree arg0 = CALL_EXPR_ARG (exp, 1);
8989 tree arg1 = CALL_EXPR_ARG (exp, 2);
8990 rtx op0 = expand_normal (arg0);
8991 rtx op1 = expand_normal (arg1);
8992 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
8993 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
8994 int form_int;
8995 enum rtx_code code;
8996
8997 if (TREE_CODE (form) != INTEGER_CST)
8998 {
8999 error ("argument 1 of __builtin_paired_predicate must be a constant");
9000 return const0_rtx;
9001 }
9002 else
9003 form_int = TREE_INT_CST_LOW (form);
9004
9005 gcc_assert (mode0 == mode1);
9006
9007 if (arg0 == error_mark_node || arg1 == error_mark_node)
9008 return const0_rtx;
9009
9010 if (target == 0
9011 || GET_MODE (target) != SImode
9012 || !(*insn_data[icode].operand[0].predicate) (target, SImode))
9013 target = gen_reg_rtx (SImode);
9014 if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
9015 op0 = copy_to_mode_reg (mode0, op0);
9016 if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
9017 op1 = copy_to_mode_reg (mode1, op1);
9018
9019 scratch = gen_reg_rtx (CCFPmode);
9020
9021 pat = GEN_FCN (icode) (scratch, op0, op1);
9022 if (!pat)
9023 return const0_rtx;
9024
9025 emit_insn (pat);
9026
9027 switch (form_int)
9028 {
9029 /* LT bit. */
9030 case 0:
9031 code = LT;
9032 break;
9033 /* GT bit. */
9034 case 1:
9035 code = GT;
9036 break;
9037 /* EQ bit. */
9038 case 2:
9039 code = EQ;
9040 break;
9041 /* UN bit. */
9042 case 3:
9043 emit_insn (gen_move_from_CR_ov_bit (target, scratch));
9044 return target;
9045 default:
9046 error ("argument 1 of __builtin_paired_predicate is out of range");
9047 return const0_rtx;
9048 }
9049
9050 tmp = gen_rtx_fmt_ee (code, SImode, scratch, const0_rtx);
9051 emit_move_insn (target, tmp);
9052 return target;
9053 }
9054
9055 static rtx
9056 spe_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
9057 {
9058 rtx pat, scratch, tmp;
9059 tree form = CALL_EXPR_ARG (exp, 0);
9060 tree arg0 = CALL_EXPR_ARG (exp, 1);
9061 tree arg1 = CALL_EXPR_ARG (exp, 2);
9062 rtx op0 = expand_normal (arg0);
9063 rtx op1 = expand_normal (arg1);
9064 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
9065 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
9066 int form_int;
9067 enum rtx_code code;
9068
9069 if (TREE_CODE (form) != INTEGER_CST)
9070 {
9071 error ("argument 1 of __builtin_spe_predicate must be a constant");
9072 return const0_rtx;
9073 }
9074 else
9075 form_int = TREE_INT_CST_LOW (form);
9076
9077 gcc_assert (mode0 == mode1);
9078
9079 if (arg0 == error_mark_node || arg1 == error_mark_node)
9080 return const0_rtx;
9081
9082 if (target == 0
9083 || GET_MODE (target) != SImode
9084 || ! (*insn_data[icode].operand[0].predicate) (target, SImode))
9085 target = gen_reg_rtx (SImode);
9086
9087 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
9088 op0 = copy_to_mode_reg (mode0, op0);
9089 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
9090 op1 = copy_to_mode_reg (mode1, op1);
9091
9092 scratch = gen_reg_rtx (CCmode);
9093
9094 pat = GEN_FCN (icode) (scratch, op0, op1);
9095 if (! pat)
9096 return const0_rtx;
9097 emit_insn (pat);
9098
9099 /* There are 4 variants for each predicate: _any_, _all_, _upper_,
9100 _lower_. We use one compare, but look in different bits of the
9101 CR for each variant.
9102
9103 There are 2 elements in each SPE simd type (upper/lower). The CR
9104 bits are set as follows:
9105
9106 BIT0 | BIT 1 | BIT 2 | BIT 3
9107 U | L | (U | L) | (U & L)
9108
9109 So, for an "all" relationship, BIT 3 would be set.
9110 For an "any" relationship, BIT 2 would be set. Etc.
9111
9112 Following traditional nomenclature, these bits map to:
9113
9114 BIT0 | BIT 1 | BIT 2 | BIT 3
9115 LT | GT | EQ | OV
9116
9117 Later, we will generate rtl to look in the LT/EQ/EQ/OV bits.
9118 */
9119
9120 switch (form_int)
9121 {
9122 /* All variant. OV bit. */
9123 case 0:
9124 /* We need to get to the OV bit, which is the ORDERED bit. We
9125 could generate (ordered:SI (reg:CC xx) (const_int 0)), but
9126 that's ugly and will make validate_condition_mode die.
9127 So let's just use another pattern. */
9128 emit_insn (gen_move_from_CR_ov_bit (target, scratch));
9129 return target;
9130 /* Any variant. EQ bit. */
9131 case 1:
9132 code = EQ;
9133 break;
9134 /* Upper variant. LT bit. */
9135 case 2:
9136 code = LT;
9137 break;
9138 /* Lower variant. GT bit. */
9139 case 3:
9140 code = GT;
9141 break;
9142 default:
9143 error ("argument 1 of __builtin_spe_predicate is out of range");
9144 return const0_rtx;
9145 }
9146
9147 tmp = gen_rtx_fmt_ee (code, SImode, scratch, const0_rtx);
9148 emit_move_insn (target, tmp);
9149
9150 return target;
9151 }
9152
9153 /* The evsel builtins look like this:
9154
9155 e = __builtin_spe_evsel_OP (a, b, c, d);
9156
9157 and work like this:
9158
9159 e[upper] = a[upper] *OP* b[upper] ? c[upper] : d[upper];
9160 e[lower] = a[lower] *OP* b[lower] ? c[lower] : d[lower];
9161 */
9162
9163 static rtx
9164 spe_expand_evsel_builtin (enum insn_code icode, tree exp, rtx target)
9165 {
9166 rtx pat, scratch;
9167 tree arg0 = CALL_EXPR_ARG (exp, 0);
9168 tree arg1 = CALL_EXPR_ARG (exp, 1);
9169 tree arg2 = CALL_EXPR_ARG (exp, 2);
9170 tree arg3 = CALL_EXPR_ARG (exp, 3);
9171 rtx op0 = expand_normal (arg0);
9172 rtx op1 = expand_normal (arg1);
9173 rtx op2 = expand_normal (arg2);
9174 rtx op3 = expand_normal (arg3);
9175 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
9176 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
9177
9178 gcc_assert (mode0 == mode1);
9179
9180 if (arg0 == error_mark_node || arg1 == error_mark_node
9181 || arg2 == error_mark_node || arg3 == error_mark_node)
9182 return const0_rtx;
9183
9184 if (target == 0
9185 || GET_MODE (target) != mode0
9186 || ! (*insn_data[icode].operand[0].predicate) (target, mode0))
9187 target = gen_reg_rtx (mode0);
9188
9189 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
9190 op0 = copy_to_mode_reg (mode0, op0);
9191 if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
9192 op1 = copy_to_mode_reg (mode0, op1);
9193 if (! (*insn_data[icode].operand[1].predicate) (op2, mode1))
9194 op2 = copy_to_mode_reg (mode0, op2);
9195 if (! (*insn_data[icode].operand[1].predicate) (op3, mode1))
9196 op3 = copy_to_mode_reg (mode0, op3);
9197
9198 /* Generate the compare. */
9199 scratch = gen_reg_rtx (CCmode);
9200 pat = GEN_FCN (icode) (scratch, op0, op1);
9201 if (! pat)
9202 return const0_rtx;
9203 emit_insn (pat);
9204
9205 if (mode0 == V2SImode)
9206 emit_insn (gen_spe_evsel (target, op2, op3, scratch));
9207 else
9208 emit_insn (gen_spe_evsel_fs (target, op2, op3, scratch));
9209
9210 return target;
9211 }
9212
9213 /* Expand an expression EXP that calls a built-in function,
9214 with result going to TARGET if that's convenient
9215 (and in mode MODE if that's convenient).
9216 SUBTARGET may be used as the target for computing one of EXP's operands.
9217 IGNORE is nonzero if the value is to be ignored. */
9218
9219 static rtx
9220 rs6000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
9221 enum machine_mode mode ATTRIBUTE_UNUSED,
9222 int ignore ATTRIBUTE_UNUSED)
9223 {
9224 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
9225 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
9226 const struct builtin_description *d;
9227 size_t i;
9228 rtx ret;
9229 bool success;
9230
9231 if (fcode == RS6000_BUILTIN_RECIP)
9232 return rs6000_expand_binop_builtin (CODE_FOR_recipdf3, exp, target);
9233
9234 if (fcode == RS6000_BUILTIN_RECIPF)
9235 return rs6000_expand_binop_builtin (CODE_FOR_recipsf3, exp, target);
9236
9237 if (fcode == RS6000_BUILTIN_RSQRTF)
9238 return rs6000_expand_unop_builtin (CODE_FOR_rsqrtsf2, exp, target);
9239
9240 if (fcode == ALTIVEC_BUILTIN_MASK_FOR_LOAD
9241 || fcode == ALTIVEC_BUILTIN_MASK_FOR_STORE)
9242 {
9243 int icode = (int) CODE_FOR_altivec_lvsr;
9244 enum machine_mode tmode = insn_data[icode].operand[0].mode;
9245 enum machine_mode mode = insn_data[icode].operand[1].mode;
9246 tree arg;
9247 rtx op, addr, pat;
9248
9249 gcc_assert (TARGET_ALTIVEC);
9250
9251 arg = CALL_EXPR_ARG (exp, 0);
9252 gcc_assert (TREE_CODE (TREE_TYPE (arg)) == POINTER_TYPE);
9253 op = expand_expr (arg, NULL_RTX, Pmode, EXPAND_NORMAL);
9254 addr = memory_address (mode, op);
9255 if (fcode == ALTIVEC_BUILTIN_MASK_FOR_STORE)
9256 op = addr;
9257 else
9258 {
9259 /* For the load case need to negate the address. */
9260 op = gen_reg_rtx (GET_MODE (addr));
9261 emit_insn (gen_rtx_SET (VOIDmode, op,
9262 gen_rtx_NEG (GET_MODE (addr), addr)));
9263 }
9264 op = gen_rtx_MEM (mode, op);
9265
9266 if (target == 0
9267 || GET_MODE (target) != tmode
9268 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
9269 target = gen_reg_rtx (tmode);
9270
9271 /*pat = gen_altivec_lvsr (target, op);*/
9272 pat = GEN_FCN (icode) (target, op);
9273 if (!pat)
9274 return 0;
9275 emit_insn (pat);
9276
9277 return target;
9278 }
9279
9280 /* FIXME: There's got to be a nicer way to handle this case than
9281 constructing a new CALL_EXPR. */
9282 if (fcode == ALTIVEC_BUILTIN_VCFUX
9283 || fcode == ALTIVEC_BUILTIN_VCFSX
9284 || fcode == ALTIVEC_BUILTIN_VCTUXS
9285 || fcode == ALTIVEC_BUILTIN_VCTSXS)
9286 {
9287 if (call_expr_nargs (exp) == 1)
9288 exp = build_call_nary (TREE_TYPE (exp), CALL_EXPR_FN (exp),
9289 2, CALL_EXPR_ARG (exp, 0), integer_zero_node);
9290 }
9291
9292 if (TARGET_ALTIVEC)
9293 {
9294 ret = altivec_expand_builtin (exp, target, &success);
9295
9296 if (success)
9297 return ret;
9298 }
9299 if (TARGET_SPE)
9300 {
9301 ret = spe_expand_builtin (exp, target, &success);
9302
9303 if (success)
9304 return ret;
9305 }
9306 if (TARGET_PAIRED_FLOAT)
9307 {
9308 ret = paired_expand_builtin (exp, target, &success);
9309
9310 if (success)
9311 return ret;
9312 }
9313
9314 gcc_assert (TARGET_ALTIVEC || TARGET_SPE || TARGET_PAIRED_FLOAT);
9315
9316 /* Handle simple unary operations. */
9317 d = (struct builtin_description *) bdesc_1arg;
9318 for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
9319 if (d->code == fcode)
9320 return rs6000_expand_unop_builtin (d->icode, exp, target);
9321
9322 /* Handle simple binary operations. */
9323 d = (struct builtin_description *) bdesc_2arg;
9324 for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
9325 if (d->code == fcode)
9326 return rs6000_expand_binop_builtin (d->icode, exp, target);
9327
9328 /* Handle simple ternary operations. */
9329 d = bdesc_3arg;
9330 for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
9331 if (d->code == fcode)
9332 return rs6000_expand_ternop_builtin (d->icode, exp, target);
9333
9334 gcc_unreachable ();
9335 }
9336
9337 static tree
9338 build_opaque_vector_type (tree node, int nunits)
9339 {
9340 node = copy_node (node);
9341 TYPE_MAIN_VARIANT (node) = node;
9342 TYPE_CANONICAL (node) = node;
9343 return build_vector_type (node, nunits);
9344 }
9345
9346 static void
9347 rs6000_init_builtins (void)
9348 {
9349 V2SI_type_node = build_vector_type (intSI_type_node, 2);
9350 V2SF_type_node = build_vector_type (float_type_node, 2);
9351 V4HI_type_node = build_vector_type (intHI_type_node, 4);
9352 V4SI_type_node = build_vector_type (intSI_type_node, 4);
9353 V4SF_type_node = build_vector_type (float_type_node, 4);
9354 V8HI_type_node = build_vector_type (intHI_type_node, 8);
9355 V16QI_type_node = build_vector_type (intQI_type_node, 16);
9356
9357 unsigned_V16QI_type_node = build_vector_type (unsigned_intQI_type_node, 16);
9358 unsigned_V8HI_type_node = build_vector_type (unsigned_intHI_type_node, 8);
9359 unsigned_V4SI_type_node = build_vector_type (unsigned_intSI_type_node, 4);
9360
9361 opaque_V2SF_type_node = build_opaque_vector_type (float_type_node, 2);
9362 opaque_V2SI_type_node = build_opaque_vector_type (intSI_type_node, 2);
9363 opaque_p_V2SI_type_node = build_pointer_type (opaque_V2SI_type_node);
9364 opaque_V4SI_type_node = copy_node (V4SI_type_node);
9365
9366 /* The 'vector bool ...' types must be kept distinct from 'vector unsigned ...'
9367 types, especially in C++ land. Similarly, 'vector pixel' is distinct from
9368 'vector unsigned short'. */
9369
9370 bool_char_type_node = build_distinct_type_copy (unsigned_intQI_type_node);
9371 bool_short_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
9372 bool_int_type_node = build_distinct_type_copy (unsigned_intSI_type_node);
9373 pixel_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
9374
9375 long_integer_type_internal_node = long_integer_type_node;
9376 long_unsigned_type_internal_node = long_unsigned_type_node;
9377 intQI_type_internal_node = intQI_type_node;
9378 uintQI_type_internal_node = unsigned_intQI_type_node;
9379 intHI_type_internal_node = intHI_type_node;
9380 uintHI_type_internal_node = unsigned_intHI_type_node;
9381 intSI_type_internal_node = intSI_type_node;
9382 uintSI_type_internal_node = unsigned_intSI_type_node;
9383 float_type_internal_node = float_type_node;
9384 void_type_internal_node = void_type_node;
9385
9386 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9387 get_identifier ("__bool char"),
9388 bool_char_type_node));
9389 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9390 get_identifier ("__bool short"),
9391 bool_short_type_node));
9392 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9393 get_identifier ("__bool int"),
9394 bool_int_type_node));
9395 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9396 get_identifier ("__pixel"),
9397 pixel_type_node));
9398
9399 bool_V16QI_type_node = build_vector_type (bool_char_type_node, 16);
9400 bool_V8HI_type_node = build_vector_type (bool_short_type_node, 8);
9401 bool_V4SI_type_node = build_vector_type (bool_int_type_node, 4);
9402 pixel_V8HI_type_node = build_vector_type (pixel_type_node, 8);
9403
9404 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9405 get_identifier ("__vector unsigned char"),
9406 unsigned_V16QI_type_node));
9407 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9408 get_identifier ("__vector signed char"),
9409 V16QI_type_node));
9410 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9411 get_identifier ("__vector __bool char"),
9412 bool_V16QI_type_node));
9413
9414 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9415 get_identifier ("__vector unsigned short"),
9416 unsigned_V8HI_type_node));
9417 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9418 get_identifier ("__vector signed short"),
9419 V8HI_type_node));
9420 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9421 get_identifier ("__vector __bool short"),
9422 bool_V8HI_type_node));
9423
9424 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9425 get_identifier ("__vector unsigned int"),
9426 unsigned_V4SI_type_node));
9427 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9428 get_identifier ("__vector signed int"),
9429 V4SI_type_node));
9430 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9431 get_identifier ("__vector __bool int"),
9432 bool_V4SI_type_node));
9433
9434 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9435 get_identifier ("__vector float"),
9436 V4SF_type_node));
9437 (*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
9438 get_identifier ("__vector __pixel"),
9439 pixel_V8HI_type_node));
9440
9441 if (TARGET_PAIRED_FLOAT)
9442 paired_init_builtins ();
9443 if (TARGET_SPE)
9444 spe_init_builtins ();
9445 if (TARGET_ALTIVEC)
9446 altivec_init_builtins ();
9447 if (TARGET_ALTIVEC || TARGET_SPE || TARGET_PAIRED_FLOAT)
9448 rs6000_common_init_builtins ();
9449 if (TARGET_PPC_GFXOPT)
9450 {
9451 tree ftype = build_function_type_list (float_type_node,
9452 float_type_node,
9453 float_type_node,
9454 NULL_TREE);
9455 def_builtin (MASK_PPC_GFXOPT, "__builtin_recipdivf", ftype,
9456 RS6000_BUILTIN_RECIPF);
9457
9458 ftype = build_function_type_list (float_type_node,
9459 float_type_node,
9460 NULL_TREE);
9461 def_builtin (MASK_PPC_GFXOPT, "__builtin_rsqrtf", ftype,
9462 RS6000_BUILTIN_RSQRTF);
9463 }
9464 if (TARGET_POPCNTB)
9465 {
9466 tree ftype = build_function_type_list (double_type_node,
9467 double_type_node,
9468 double_type_node,
9469 NULL_TREE);
9470 def_builtin (MASK_POPCNTB, "__builtin_recipdiv", ftype,
9471 RS6000_BUILTIN_RECIP);
9472
9473 }
9474
9475 #if TARGET_XCOFF
9476 /* AIX libm provides clog as __clog. */
9477 if (built_in_decls [BUILT_IN_CLOG])
9478 set_user_assembler_name (built_in_decls [BUILT_IN_CLOG], "__clog");
9479 #endif
9480
9481 #ifdef SUBTARGET_INIT_BUILTINS
9482 SUBTARGET_INIT_BUILTINS;
9483 #endif
9484 }
9485
9486 /* Search through a set of builtins and enable the mask bits.
9487 DESC is an array of builtins.
9488 SIZE is the total number of builtins.
9489 START is the builtin enum at which to start.
9490 END is the builtin enum at which to end. */
9491 static void
9492 enable_mask_for_builtins (struct builtin_description *desc, int size,
9493 enum rs6000_builtins start,
9494 enum rs6000_builtins end)
9495 {
9496 int i;
9497
9498 for (i = 0; i < size; ++i)
9499 if (desc[i].code == start)
9500 break;
9501
9502 if (i == size)
9503 return;
9504
9505 for (; i < size; ++i)
9506 {
9507 /* Flip all the bits on. */
9508 desc[i].mask = target_flags;
9509 if (desc[i].code == end)
9510 break;
9511 }
9512 }
9513
9514 static void
9515 spe_init_builtins (void)
9516 {
9517 tree endlink = void_list_node;
9518 tree puint_type_node = build_pointer_type (unsigned_type_node);
9519 tree pushort_type_node = build_pointer_type (short_unsigned_type_node);
9520 struct builtin_description *d;
9521 size_t i;
9522
9523 tree v2si_ftype_4_v2si
9524 = build_function_type
9525 (opaque_V2SI_type_node,
9526 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9527 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9528 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9529 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9530 endlink)))));
9531
9532 tree v2sf_ftype_4_v2sf
9533 = build_function_type
9534 (opaque_V2SF_type_node,
9535 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9536 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9537 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9538 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9539 endlink)))));
9540
9541 tree int_ftype_int_v2si_v2si
9542 = build_function_type
9543 (integer_type_node,
9544 tree_cons (NULL_TREE, integer_type_node,
9545 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9546 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9547 endlink))));
9548
9549 tree int_ftype_int_v2sf_v2sf
9550 = build_function_type
9551 (integer_type_node,
9552 tree_cons (NULL_TREE, integer_type_node,
9553 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9554 tree_cons (NULL_TREE, opaque_V2SF_type_node,
9555 endlink))));
9556
9557 tree void_ftype_v2si_puint_int
9558 = build_function_type (void_type_node,
9559 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9560 tree_cons (NULL_TREE, puint_type_node,
9561 tree_cons (NULL_TREE,
9562 integer_type_node,
9563 endlink))));
9564
9565 tree void_ftype_v2si_puint_char
9566 = build_function_type (void_type_node,
9567 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9568 tree_cons (NULL_TREE, puint_type_node,
9569 tree_cons (NULL_TREE,
9570 char_type_node,
9571 endlink))));
9572
9573 tree void_ftype_v2si_pv2si_int
9574 = build_function_type (void_type_node,
9575 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9576 tree_cons (NULL_TREE, opaque_p_V2SI_type_node,
9577 tree_cons (NULL_TREE,
9578 integer_type_node,
9579 endlink))));
9580
9581 tree void_ftype_v2si_pv2si_char
9582 = build_function_type (void_type_node,
9583 tree_cons (NULL_TREE, opaque_V2SI_type_node,
9584 tree_cons (NULL_TREE, opaque_p_V2SI_type_node,
9585 tree_cons (NULL_TREE,
9586 char_type_node,
9587 endlink))));
9588
9589 tree void_ftype_int
9590 = build_function_type (void_type_node,
9591 tree_cons (NULL_TREE, integer_type_node, endlink));
9592
9593 tree int_ftype_void
9594 = build_function_type (integer_type_node, endlink);
9595
9596 tree v2si_ftype_pv2si_int
9597 = build_function_type (opaque_V2SI_type_node,
9598 tree_cons (NULL_TREE, opaque_p_V2SI_type_node,
9599 tree_cons (NULL_TREE, integer_type_node,
9600 endlink)));
9601
9602 tree v2si_ftype_puint_int
9603 = build_function_type (opaque_V2SI_type_node,
9604 tree_cons (NULL_TREE, puint_type_node,
9605 tree_cons (NULL_TREE, integer_type_node,
9606 endlink)));
9607
9608 tree v2si_ftype_pushort_int
9609 = build_function_type (opaque_V2SI_type_node,
9610 tree_cons (NULL_TREE, pushort_type_node,
9611 tree_cons (NULL_TREE, integer_type_node,
9612 endlink)));
9613
9614 tree v2si_ftype_signed_char
9615 = build_function_type (opaque_V2SI_type_node,
9616 tree_cons (NULL_TREE, signed_char_type_node,
9617 endlink));
9618
9619 /* The initialization of the simple binary and unary builtins is
9620 done in rs6000_common_init_builtins, but we have to enable the
9621 mask bits here manually because we have run out of `target_flags'
9622 bits. We really need to redesign this mask business. */
9623
9624 enable_mask_for_builtins ((struct builtin_description *) bdesc_2arg,
9625 ARRAY_SIZE (bdesc_2arg),
9626 SPE_BUILTIN_EVADDW,
9627 SPE_BUILTIN_EVXOR);
9628 enable_mask_for_builtins ((struct builtin_description *) bdesc_1arg,
9629 ARRAY_SIZE (bdesc_1arg),
9630 SPE_BUILTIN_EVABS,
9631 SPE_BUILTIN_EVSUBFUSIAAW);
9632 enable_mask_for_builtins ((struct builtin_description *) bdesc_spe_predicates,
9633 ARRAY_SIZE (bdesc_spe_predicates),
9634 SPE_BUILTIN_EVCMPEQ,
9635 SPE_BUILTIN_EVFSTSTLT);
9636 enable_mask_for_builtins ((struct builtin_description *) bdesc_spe_evsel,
9637 ARRAY_SIZE (bdesc_spe_evsel),
9638 SPE_BUILTIN_EVSEL_CMPGTS,
9639 SPE_BUILTIN_EVSEL_FSTSTEQ);
9640
9641 (*lang_hooks.decls.pushdecl)
9642 (build_decl (TYPE_DECL, get_identifier ("__ev64_opaque__"),
9643 opaque_V2SI_type_node));
9644
9645 /* Initialize irregular SPE builtins. */
9646
9647 def_builtin (target_flags, "__builtin_spe_mtspefscr", void_ftype_int, SPE_BUILTIN_MTSPEFSCR);
9648 def_builtin (target_flags, "__builtin_spe_mfspefscr", int_ftype_void, SPE_BUILTIN_MFSPEFSCR);
9649 def_builtin (target_flags, "__builtin_spe_evstddx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDDX);
9650 def_builtin (target_flags, "__builtin_spe_evstdhx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDHX);
9651 def_builtin (target_flags, "__builtin_spe_evstdwx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDWX);
9652 def_builtin (target_flags, "__builtin_spe_evstwhex", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWHEX);
9653 def_builtin (target_flags, "__builtin_spe_evstwhox", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWHOX);
9654 def_builtin (target_flags, "__builtin_spe_evstwwex", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWWEX);
9655 def_builtin (target_flags, "__builtin_spe_evstwwox", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWWOX);
9656 def_builtin (target_flags, "__builtin_spe_evstdd", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDD);
9657 def_builtin (target_flags, "__builtin_spe_evstdh", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDH);
9658 def_builtin (target_flags, "__builtin_spe_evstdw", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDW);
9659 def_builtin (target_flags, "__builtin_spe_evstwhe", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWHE);
9660 def_builtin (target_flags, "__builtin_spe_evstwho", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWHO);
9661 def_builtin (target_flags, "__builtin_spe_evstwwe", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWWE);
9662 def_builtin (target_flags, "__builtin_spe_evstwwo", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWWO);
9663 def_builtin (target_flags, "__builtin_spe_evsplatfi", v2si_ftype_signed_char, SPE_BUILTIN_EVSPLATFI);
9664 def_builtin (target_flags, "__builtin_spe_evsplati", v2si_ftype_signed_char, SPE_BUILTIN_EVSPLATI);
9665
9666 /* Loads. */
9667 def_builtin (target_flags, "__builtin_spe_evlddx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDDX);
9668 def_builtin (target_flags, "__builtin_spe_evldwx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDWX);
9669 def_builtin (target_flags, "__builtin_spe_evldhx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDHX);
9670 def_builtin (target_flags, "__builtin_spe_evlwhex", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHEX);
9671 def_builtin (target_flags, "__builtin_spe_evlwhoux", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOUX);
9672 def_builtin (target_flags, "__builtin_spe_evlwhosx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOSX);
9673 def_builtin (target_flags, "__builtin_spe_evlwwsplatx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWWSPLATX);
9674 def_builtin (target_flags, "__builtin_spe_evlwhsplatx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHSPLATX);
9675 def_builtin (target_flags, "__builtin_spe_evlhhesplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHESPLATX);
9676 def_builtin (target_flags, "__builtin_spe_evlhhousplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOUSPLATX);
9677 def_builtin (target_flags, "__builtin_spe_evlhhossplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOSSPLATX);
9678 def_builtin (target_flags, "__builtin_spe_evldd", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDD);
9679 def_builtin (target_flags, "__builtin_spe_evldw", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDW);
9680 def_builtin (target_flags, "__builtin_spe_evldh", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDH);
9681 def_builtin (target_flags, "__builtin_spe_evlhhesplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHESPLAT);
9682 def_builtin (target_flags, "__builtin_spe_evlhhossplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOSSPLAT);
9683 def_builtin (target_flags, "__builtin_spe_evlhhousplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOUSPLAT);
9684 def_builtin (target_flags, "__builtin_spe_evlwhe", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHE);
9685 def_builtin (target_flags, "__builtin_spe_evlwhos", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOS);
9686 def_builtin (target_flags, "__builtin_spe_evlwhou", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOU);
9687 def_builtin (target_flags, "__builtin_spe_evlwhsplat", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHSPLAT);
9688 def_builtin (target_flags, "__builtin_spe_evlwwsplat", v2si_ftype_puint_int, SPE_BUILTIN_EVLWWSPLAT);
9689
9690 /* Predicates. */
9691 d = (struct builtin_description *) bdesc_spe_predicates;
9692 for (i = 0; i < ARRAY_SIZE (bdesc_spe_predicates); ++i, d++)
9693 {
9694 tree type;
9695
9696 switch (insn_data[d->icode].operand[1].mode)
9697 {
9698 case V2SImode:
9699 type = int_ftype_int_v2si_v2si;
9700 break;
9701 case V2SFmode:
9702 type = int_ftype_int_v2sf_v2sf;
9703 break;
9704 default:
9705 gcc_unreachable ();
9706 }
9707
9708 def_builtin (d->mask, d->name, type, d->code);
9709 }
9710
9711 /* Evsel predicates. */
9712 d = (struct builtin_description *) bdesc_spe_evsel;
9713 for (i = 0; i < ARRAY_SIZE (bdesc_spe_evsel); ++i, d++)
9714 {
9715 tree type;
9716
9717 switch (insn_data[d->icode].operand[1].mode)
9718 {
9719 case V2SImode:
9720 type = v2si_ftype_4_v2si;
9721 break;
9722 case V2SFmode:
9723 type = v2sf_ftype_4_v2sf;
9724 break;
9725 default:
9726 gcc_unreachable ();
9727 }
9728
9729 def_builtin (d->mask, d->name, type, d->code);
9730 }
9731 }
9732
9733 static void
9734 paired_init_builtins (void)
9735 {
9736 const struct builtin_description *d;
9737 size_t i;
9738 tree endlink = void_list_node;
9739
9740 tree int_ftype_int_v2sf_v2sf
9741 = build_function_type
9742 (integer_type_node,
9743 tree_cons (NULL_TREE, integer_type_node,
9744 tree_cons (NULL_TREE, V2SF_type_node,
9745 tree_cons (NULL_TREE, V2SF_type_node,
9746 endlink))));
9747 tree pcfloat_type_node =
9748 build_pointer_type (build_qualified_type
9749 (float_type_node, TYPE_QUAL_CONST));
9750
9751 tree v2sf_ftype_long_pcfloat = build_function_type_list (V2SF_type_node,
9752 long_integer_type_node,
9753 pcfloat_type_node,
9754 NULL_TREE);
9755 tree void_ftype_v2sf_long_pcfloat =
9756 build_function_type_list (void_type_node,
9757 V2SF_type_node,
9758 long_integer_type_node,
9759 pcfloat_type_node,
9760 NULL_TREE);
9761
9762
9763 def_builtin (0, "__builtin_paired_lx", v2sf_ftype_long_pcfloat,
9764 PAIRED_BUILTIN_LX);
9765
9766
9767 def_builtin (0, "__builtin_paired_stx", void_ftype_v2sf_long_pcfloat,
9768 PAIRED_BUILTIN_STX);
9769
9770 /* Predicates. */
9771 d = bdesc_paired_preds;
9772 for (i = 0; i < ARRAY_SIZE (bdesc_paired_preds); ++i, d++)
9773 {
9774 tree type;
9775
9776 switch (insn_data[d->icode].operand[1].mode)
9777 {
9778 case V2SFmode:
9779 type = int_ftype_int_v2sf_v2sf;
9780 break;
9781 default:
9782 gcc_unreachable ();
9783 }
9784
9785 def_builtin (d->mask, d->name, type, d->code);
9786 }
9787 }
9788
9789 static void
9790 altivec_init_builtins (void)
9791 {
9792 const struct builtin_description *d;
9793 const struct builtin_description_predicates *dp;
9794 size_t i;
9795 tree ftype;
9796
9797 tree pfloat_type_node = build_pointer_type (float_type_node);
9798 tree pint_type_node = build_pointer_type (integer_type_node);
9799 tree pshort_type_node = build_pointer_type (short_integer_type_node);
9800 tree pchar_type_node = build_pointer_type (char_type_node);
9801
9802 tree pvoid_type_node = build_pointer_type (void_type_node);
9803
9804 tree pcfloat_type_node = build_pointer_type (build_qualified_type (float_type_node, TYPE_QUAL_CONST));
9805 tree pcint_type_node = build_pointer_type (build_qualified_type (integer_type_node, TYPE_QUAL_CONST));
9806 tree pcshort_type_node = build_pointer_type (build_qualified_type (short_integer_type_node, TYPE_QUAL_CONST));
9807 tree pcchar_type_node = build_pointer_type (build_qualified_type (char_type_node, TYPE_QUAL_CONST));
9808
9809 tree pcvoid_type_node = build_pointer_type (build_qualified_type (void_type_node, TYPE_QUAL_CONST));
9810
9811 tree int_ftype_opaque
9812 = build_function_type_list (integer_type_node,
9813 opaque_V4SI_type_node, NULL_TREE);
9814 tree opaque_ftype_opaque
9815 = build_function_type (integer_type_node,
9816 NULL_TREE);
9817 tree opaque_ftype_opaque_int
9818 = build_function_type_list (opaque_V4SI_type_node,
9819 opaque_V4SI_type_node, integer_type_node, NULL_TREE);
9820 tree opaque_ftype_opaque_opaque_int
9821 = build_function_type_list (opaque_V4SI_type_node,
9822 opaque_V4SI_type_node, opaque_V4SI_type_node,
9823 integer_type_node, NULL_TREE);
9824 tree int_ftype_int_opaque_opaque
9825 = build_function_type_list (integer_type_node,
9826 integer_type_node, opaque_V4SI_type_node,
9827 opaque_V4SI_type_node, NULL_TREE);
9828 tree int_ftype_int_v4si_v4si
9829 = build_function_type_list (integer_type_node,
9830 integer_type_node, V4SI_type_node,
9831 V4SI_type_node, NULL_TREE);
9832 tree v4sf_ftype_pcfloat
9833 = build_function_type_list (V4SF_type_node, pcfloat_type_node, NULL_TREE);
9834 tree void_ftype_pfloat_v4sf
9835 = build_function_type_list (void_type_node,
9836 pfloat_type_node, V4SF_type_node, NULL_TREE);
9837 tree v4si_ftype_pcint
9838 = build_function_type_list (V4SI_type_node, pcint_type_node, NULL_TREE);
9839 tree void_ftype_pint_v4si
9840 = build_function_type_list (void_type_node,
9841 pint_type_node, V4SI_type_node, NULL_TREE);
9842 tree v8hi_ftype_pcshort
9843 = build_function_type_list (V8HI_type_node, pcshort_type_node, NULL_TREE);
9844 tree void_ftype_pshort_v8hi
9845 = build_function_type_list (void_type_node,
9846 pshort_type_node, V8HI_type_node, NULL_TREE);
9847 tree v16qi_ftype_pcchar
9848 = build_function_type_list (V16QI_type_node, pcchar_type_node, NULL_TREE);
9849 tree void_ftype_pchar_v16qi
9850 = build_function_type_list (void_type_node,
9851 pchar_type_node, V16QI_type_node, NULL_TREE);
9852 tree void_ftype_v4si
9853 = build_function_type_list (void_type_node, V4SI_type_node, NULL_TREE);
9854 tree v8hi_ftype_void
9855 = build_function_type (V8HI_type_node, void_list_node);
9856 tree void_ftype_void
9857 = build_function_type (void_type_node, void_list_node);
9858 tree void_ftype_int
9859 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
9860
9861 tree opaque_ftype_long_pcvoid
9862 = build_function_type_list (opaque_V4SI_type_node,
9863 long_integer_type_node, pcvoid_type_node, NULL_TREE);
9864 tree v16qi_ftype_long_pcvoid
9865 = build_function_type_list (V16QI_type_node,
9866 long_integer_type_node, pcvoid_type_node, NULL_TREE);
9867 tree v8hi_ftype_long_pcvoid
9868 = build_function_type_list (V8HI_type_node,
9869 long_integer_type_node, pcvoid_type_node, NULL_TREE);
9870 tree v4si_ftype_long_pcvoid
9871 = build_function_type_list (V4SI_type_node,
9872 long_integer_type_node, pcvoid_type_node, NULL_TREE);
9873
9874 tree void_ftype_opaque_long_pvoid
9875 = build_function_type_list (void_type_node,
9876 opaque_V4SI_type_node, long_integer_type_node,
9877 pvoid_type_node, NULL_TREE);
9878 tree void_ftype_v4si_long_pvoid
9879 = build_function_type_list (void_type_node,
9880 V4SI_type_node, long_integer_type_node,
9881 pvoid_type_node, NULL_TREE);
9882 tree void_ftype_v16qi_long_pvoid
9883 = build_function_type_list (void_type_node,
9884 V16QI_type_node, long_integer_type_node,
9885 pvoid_type_node, NULL_TREE);
9886 tree void_ftype_v8hi_long_pvoid
9887 = build_function_type_list (void_type_node,
9888 V8HI_type_node, long_integer_type_node,
9889 pvoid_type_node, NULL_TREE);
9890 tree int_ftype_int_v8hi_v8hi
9891 = build_function_type_list (integer_type_node,
9892 integer_type_node, V8HI_type_node,
9893 V8HI_type_node, NULL_TREE);
9894 tree int_ftype_int_v16qi_v16qi
9895 = build_function_type_list (integer_type_node,
9896 integer_type_node, V16QI_type_node,
9897 V16QI_type_node, NULL_TREE);
9898 tree int_ftype_int_v4sf_v4sf
9899 = build_function_type_list (integer_type_node,
9900 integer_type_node, V4SF_type_node,
9901 V4SF_type_node, NULL_TREE);
9902 tree v4si_ftype_v4si
9903 = build_function_type_list (V4SI_type_node, V4SI_type_node, NULL_TREE);
9904 tree v8hi_ftype_v8hi
9905 = build_function_type_list (V8HI_type_node, V8HI_type_node, NULL_TREE);
9906 tree v16qi_ftype_v16qi
9907 = build_function_type_list (V16QI_type_node, V16QI_type_node, NULL_TREE);
9908 tree v4sf_ftype_v4sf
9909 = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE);
9910 tree void_ftype_pcvoid_int_int
9911 = build_function_type_list (void_type_node,
9912 pcvoid_type_node, integer_type_node,
9913 integer_type_node, NULL_TREE);
9914
9915 def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_4sf", v4sf_ftype_pcfloat,
9916 ALTIVEC_BUILTIN_LD_INTERNAL_4sf);
9917 def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_4sf", void_ftype_pfloat_v4sf,
9918 ALTIVEC_BUILTIN_ST_INTERNAL_4sf);
9919 def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_4si", v4si_ftype_pcint,
9920 ALTIVEC_BUILTIN_LD_INTERNAL_4si);
9921 def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_4si", void_ftype_pint_v4si,
9922 ALTIVEC_BUILTIN_ST_INTERNAL_4si);
9923 def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_8hi", v8hi_ftype_pcshort,
9924 ALTIVEC_BUILTIN_LD_INTERNAL_8hi);
9925 def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_8hi", void_ftype_pshort_v8hi,
9926 ALTIVEC_BUILTIN_ST_INTERNAL_8hi);
9927 def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_16qi", v16qi_ftype_pcchar,
9928 ALTIVEC_BUILTIN_LD_INTERNAL_16qi);
9929 def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_16qi", void_ftype_pchar_v16qi,
9930 ALTIVEC_BUILTIN_ST_INTERNAL_16qi);
9931 def_builtin (MASK_ALTIVEC, "__builtin_altivec_mtvscr", void_ftype_v4si, ALTIVEC_BUILTIN_MTVSCR);
9932 def_builtin (MASK_ALTIVEC, "__builtin_altivec_mfvscr", v8hi_ftype_void, ALTIVEC_BUILTIN_MFVSCR);
9933 def_builtin (MASK_ALTIVEC, "__builtin_altivec_dssall", void_ftype_void, ALTIVEC_BUILTIN_DSSALL);
9934 def_builtin (MASK_ALTIVEC, "__builtin_altivec_dss", void_ftype_int, ALTIVEC_BUILTIN_DSS);
9935 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSL);
9936 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSR);
9937 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEBX);
9938 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEHX);
9939 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEWX);
9940 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvxl", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVXL);
9941 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVX);
9942 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVX);
9943 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvewx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVEWX);
9944 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvxl", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVXL);
9945 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvebx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVEBX);
9946 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvehx", void_ftype_v8hi_long_pvoid, ALTIVEC_BUILTIN_STVEHX);
9947 def_builtin (MASK_ALTIVEC, "__builtin_vec_ld", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LD);
9948 def_builtin (MASK_ALTIVEC, "__builtin_vec_lde", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDE);
9949 def_builtin (MASK_ALTIVEC, "__builtin_vec_ldl", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDL);
9950 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSL);
9951 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSR);
9952 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEBX);
9953 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEHX);
9954 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEWX);
9955 def_builtin (MASK_ALTIVEC, "__builtin_vec_st", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_ST);
9956 def_builtin (MASK_ALTIVEC, "__builtin_vec_ste", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STE);
9957 def_builtin (MASK_ALTIVEC, "__builtin_vec_stl", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STL);
9958 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvewx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEWX);
9959 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvebx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEBX);
9960 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvehx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEHX);
9961
9962 if (rs6000_cpu == PROCESSOR_CELL)
9963 {
9964 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvlx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLX);
9965 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLXL);
9966 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvrx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRX);
9967 def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRXL);
9968
9969 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvlx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLX);
9970 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLXL);
9971 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvrx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRX);
9972 def_builtin (MASK_ALTIVEC, "__builtin_vec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRXL);
9973
9974 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvlx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLX);
9975 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLXL);
9976 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvrx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRX);
9977 def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRXL);
9978
9979 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvlx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLX);
9980 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLXL);
9981 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvrx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRX);
9982 def_builtin (MASK_ALTIVEC, "__builtin_vec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRXL);
9983 }
9984 def_builtin (MASK_ALTIVEC, "__builtin_vec_step", int_ftype_opaque, ALTIVEC_BUILTIN_VEC_STEP);
9985 def_builtin (MASK_ALTIVEC, "__builtin_vec_splats", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_SPLATS);
9986 def_builtin (MASK_ALTIVEC, "__builtin_vec_promote", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_PROMOTE);
9987
9988 def_builtin (MASK_ALTIVEC, "__builtin_vec_sld", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_SLD);
9989 def_builtin (MASK_ALTIVEC, "__builtin_vec_splat", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_SPLAT);
9990 def_builtin (MASK_ALTIVEC, "__builtin_vec_extract", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_EXTRACT);
9991 def_builtin (MASK_ALTIVEC, "__builtin_vec_insert", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_INSERT);
9992 def_builtin (MASK_ALTIVEC, "__builtin_vec_vspltw", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTW);
9993 def_builtin (MASK_ALTIVEC, "__builtin_vec_vsplth", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTH);
9994 def_builtin (MASK_ALTIVEC, "__builtin_vec_vspltb", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTB);
9995 def_builtin (MASK_ALTIVEC, "__builtin_vec_ctf", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTF);
9996 def_builtin (MASK_ALTIVEC, "__builtin_vec_vcfsx", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFSX);
9997 def_builtin (MASK_ALTIVEC, "__builtin_vec_vcfux", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFUX);
9998 def_builtin (MASK_ALTIVEC, "__builtin_vec_cts", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTS);
9999 def_builtin (MASK_ALTIVEC, "__builtin_vec_ctu", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTU);
10000
10001 /* Add the DST variants. */
10002 d = bdesc_dst;
10003 for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
10004 def_builtin (d->mask, d->name, void_ftype_pcvoid_int_int, d->code);
10005
10006 /* Initialize the predicates. */
10007 dp = bdesc_altivec_preds;
10008 for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, dp++)
10009 {
10010 enum machine_mode mode1;
10011 tree type;
10012 bool is_overloaded = dp->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10013 && dp->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST;
10014
10015 if (is_overloaded)
10016 mode1 = VOIDmode;
10017 else
10018 mode1 = insn_data[dp->icode].operand[1].mode;
10019
10020 switch (mode1)
10021 {
10022 case VOIDmode:
10023 type = int_ftype_int_opaque_opaque;
10024 break;
10025 case V4SImode:
10026 type = int_ftype_int_v4si_v4si;
10027 break;
10028 case V8HImode:
10029 type = int_ftype_int_v8hi_v8hi;
10030 break;
10031 case V16QImode:
10032 type = int_ftype_int_v16qi_v16qi;
10033 break;
10034 case V4SFmode:
10035 type = int_ftype_int_v4sf_v4sf;
10036 break;
10037 default:
10038 gcc_unreachable ();
10039 }
10040
10041 def_builtin (dp->mask, dp->name, type, dp->code);
10042 }
10043
10044 /* Initialize the abs* operators. */
10045 d = bdesc_abs;
10046 for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
10047 {
10048 enum machine_mode mode0;
10049 tree type;
10050
10051 mode0 = insn_data[d->icode].operand[0].mode;
10052
10053 switch (mode0)
10054 {
10055 case V4SImode:
10056 type = v4si_ftype_v4si;
10057 break;
10058 case V8HImode:
10059 type = v8hi_ftype_v8hi;
10060 break;
10061 case V16QImode:
10062 type = v16qi_ftype_v16qi;
10063 break;
10064 case V4SFmode:
10065 type = v4sf_ftype_v4sf;
10066 break;
10067 default:
10068 gcc_unreachable ();
10069 }
10070
10071 def_builtin (d->mask, d->name, type, d->code);
10072 }
10073
10074 if (TARGET_ALTIVEC)
10075 {
10076 tree decl;
10077
10078 /* Initialize target builtin that implements
10079 targetm.vectorize.builtin_mask_for_load. */
10080
10081 decl = add_builtin_function ("__builtin_altivec_mask_for_load",
10082 v16qi_ftype_long_pcvoid,
10083 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
10084 BUILT_IN_MD, NULL, NULL_TREE);
10085 TREE_READONLY (decl) = 1;
10086 /* Record the decl. Will be used by rs6000_builtin_mask_for_load. */
10087 altivec_builtin_mask_for_load = decl;
10088 }
10089
10090 /* Access to the vec_init patterns. */
10091 ftype = build_function_type_list (V4SI_type_node, integer_type_node,
10092 integer_type_node, integer_type_node,
10093 integer_type_node, NULL_TREE);
10094 def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v4si", ftype,
10095 ALTIVEC_BUILTIN_VEC_INIT_V4SI);
10096
10097 ftype = build_function_type_list (V8HI_type_node, short_integer_type_node,
10098 short_integer_type_node,
10099 short_integer_type_node,
10100 short_integer_type_node,
10101 short_integer_type_node,
10102 short_integer_type_node,
10103 short_integer_type_node,
10104 short_integer_type_node, NULL_TREE);
10105 def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v8hi", ftype,
10106 ALTIVEC_BUILTIN_VEC_INIT_V8HI);
10107
10108 ftype = build_function_type_list (V16QI_type_node, char_type_node,
10109 char_type_node, char_type_node,
10110 char_type_node, char_type_node,
10111 char_type_node, char_type_node,
10112 char_type_node, char_type_node,
10113 char_type_node, char_type_node,
10114 char_type_node, char_type_node,
10115 char_type_node, char_type_node,
10116 char_type_node, NULL_TREE);
10117 def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v16qi", ftype,
10118 ALTIVEC_BUILTIN_VEC_INIT_V16QI);
10119
10120 ftype = build_function_type_list (V4SF_type_node, float_type_node,
10121 float_type_node, float_type_node,
10122 float_type_node, NULL_TREE);
10123 def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v4sf", ftype,
10124 ALTIVEC_BUILTIN_VEC_INIT_V4SF);
10125
10126 /* Access to the vec_set patterns. */
10127 ftype = build_function_type_list (V4SI_type_node, V4SI_type_node,
10128 intSI_type_node,
10129 integer_type_node, NULL_TREE);
10130 def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v4si", ftype,
10131 ALTIVEC_BUILTIN_VEC_SET_V4SI);
10132
10133 ftype = build_function_type_list (V8HI_type_node, V8HI_type_node,
10134 intHI_type_node,
10135 integer_type_node, NULL_TREE);
10136 def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v8hi", ftype,
10137 ALTIVEC_BUILTIN_VEC_SET_V8HI);
10138
10139 ftype = build_function_type_list (V8HI_type_node, V16QI_type_node,
10140 intQI_type_node,
10141 integer_type_node, NULL_TREE);
10142 def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v16qi", ftype,
10143 ALTIVEC_BUILTIN_VEC_SET_V16QI);
10144
10145 ftype = build_function_type_list (V4SF_type_node, V4SF_type_node,
10146 float_type_node,
10147 integer_type_node, NULL_TREE);
10148 def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v4sf", ftype,
10149 ALTIVEC_BUILTIN_VEC_SET_V4SF);
10150
10151 /* Access to the vec_extract patterns. */
10152 ftype = build_function_type_list (intSI_type_node, V4SI_type_node,
10153 integer_type_node, NULL_TREE);
10154 def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v4si", ftype,
10155 ALTIVEC_BUILTIN_VEC_EXT_V4SI);
10156
10157 ftype = build_function_type_list (intHI_type_node, V8HI_type_node,
10158 integer_type_node, NULL_TREE);
10159 def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v8hi", ftype,
10160 ALTIVEC_BUILTIN_VEC_EXT_V8HI);
10161
10162 ftype = build_function_type_list (intQI_type_node, V16QI_type_node,
10163 integer_type_node, NULL_TREE);
10164 def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v16qi", ftype,
10165 ALTIVEC_BUILTIN_VEC_EXT_V16QI);
10166
10167 ftype = build_function_type_list (float_type_node, V4SF_type_node,
10168 integer_type_node, NULL_TREE);
10169 def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v4sf", ftype,
10170 ALTIVEC_BUILTIN_VEC_EXT_V4SF);
10171 }
10172
10173 static void
10174 rs6000_common_init_builtins (void)
10175 {
10176 const struct builtin_description *d;
10177 size_t i;
10178
10179 tree v2sf_ftype_v2sf_v2sf_v2sf
10180 = build_function_type_list (V2SF_type_node,
10181 V2SF_type_node, V2SF_type_node,
10182 V2SF_type_node, NULL_TREE);
10183
10184 tree v4sf_ftype_v4sf_v4sf_v16qi
10185 = build_function_type_list (V4SF_type_node,
10186 V4SF_type_node, V4SF_type_node,
10187 V16QI_type_node, NULL_TREE);
10188 tree v4si_ftype_v4si_v4si_v16qi
10189 = build_function_type_list (V4SI_type_node,
10190 V4SI_type_node, V4SI_type_node,
10191 V16QI_type_node, NULL_TREE);
10192 tree v8hi_ftype_v8hi_v8hi_v16qi
10193 = build_function_type_list (V8HI_type_node,
10194 V8HI_type_node, V8HI_type_node,
10195 V16QI_type_node, NULL_TREE);
10196 tree v16qi_ftype_v16qi_v16qi_v16qi
10197 = build_function_type_list (V16QI_type_node,
10198 V16QI_type_node, V16QI_type_node,
10199 V16QI_type_node, NULL_TREE);
10200 tree v4si_ftype_int
10201 = build_function_type_list (V4SI_type_node, integer_type_node, NULL_TREE);
10202 tree v8hi_ftype_int
10203 = build_function_type_list (V8HI_type_node, integer_type_node, NULL_TREE);
10204 tree v16qi_ftype_int
10205 = build_function_type_list (V16QI_type_node, integer_type_node, NULL_TREE);
10206 tree v8hi_ftype_v16qi
10207 = build_function_type_list (V8HI_type_node, V16QI_type_node, NULL_TREE);
10208 tree v4sf_ftype_v4sf
10209 = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE);
10210
10211 tree v2si_ftype_v2si_v2si
10212 = build_function_type_list (opaque_V2SI_type_node,
10213 opaque_V2SI_type_node,
10214 opaque_V2SI_type_node, NULL_TREE);
10215
10216 tree v2sf_ftype_v2sf_v2sf_spe
10217 = build_function_type_list (opaque_V2SF_type_node,
10218 opaque_V2SF_type_node,
10219 opaque_V2SF_type_node, NULL_TREE);
10220
10221 tree v2sf_ftype_v2sf_v2sf
10222 = build_function_type_list (V2SF_type_node,
10223 V2SF_type_node,
10224 V2SF_type_node, NULL_TREE);
10225
10226
10227 tree v2si_ftype_int_int
10228 = build_function_type_list (opaque_V2SI_type_node,
10229 integer_type_node, integer_type_node,
10230 NULL_TREE);
10231
10232 tree opaque_ftype_opaque
10233 = build_function_type_list (opaque_V4SI_type_node,
10234 opaque_V4SI_type_node, NULL_TREE);
10235
10236 tree v2si_ftype_v2si
10237 = build_function_type_list (opaque_V2SI_type_node,
10238 opaque_V2SI_type_node, NULL_TREE);
10239
10240 tree v2sf_ftype_v2sf_spe
10241 = build_function_type_list (opaque_V2SF_type_node,
10242 opaque_V2SF_type_node, NULL_TREE);
10243
10244 tree v2sf_ftype_v2sf
10245 = build_function_type_list (V2SF_type_node,
10246 V2SF_type_node, NULL_TREE);
10247
10248 tree v2sf_ftype_v2si
10249 = build_function_type_list (opaque_V2SF_type_node,
10250 opaque_V2SI_type_node, NULL_TREE);
10251
10252 tree v2si_ftype_v2sf
10253 = build_function_type_list (opaque_V2SI_type_node,
10254 opaque_V2SF_type_node, NULL_TREE);
10255
10256 tree v2si_ftype_v2si_char
10257 = build_function_type_list (opaque_V2SI_type_node,
10258 opaque_V2SI_type_node,
10259 char_type_node, NULL_TREE);
10260
10261 tree v2si_ftype_int_char
10262 = build_function_type_list (opaque_V2SI_type_node,
10263 integer_type_node, char_type_node, NULL_TREE);
10264
10265 tree v2si_ftype_char
10266 = build_function_type_list (opaque_V2SI_type_node,
10267 char_type_node, NULL_TREE);
10268
10269 tree int_ftype_int_int
10270 = build_function_type_list (integer_type_node,
10271 integer_type_node, integer_type_node,
10272 NULL_TREE);
10273
10274 tree opaque_ftype_opaque_opaque
10275 = build_function_type_list (opaque_V4SI_type_node,
10276 opaque_V4SI_type_node, opaque_V4SI_type_node, NULL_TREE);
10277 tree v4si_ftype_v4si_v4si
10278 = build_function_type_list (V4SI_type_node,
10279 V4SI_type_node, V4SI_type_node, NULL_TREE);
10280 tree v4sf_ftype_v4si_int
10281 = build_function_type_list (V4SF_type_node,
10282 V4SI_type_node, integer_type_node, NULL_TREE);
10283 tree v4si_ftype_v4sf_int
10284 = build_function_type_list (V4SI_type_node,
10285 V4SF_type_node, integer_type_node, NULL_TREE);
10286 tree v4si_ftype_v4si_int
10287 = build_function_type_list (V4SI_type_node,
10288 V4SI_type_node, integer_type_node, NULL_TREE);
10289 tree v8hi_ftype_v8hi_int
10290 = build_function_type_list (V8HI_type_node,
10291 V8HI_type_node, integer_type_node, NULL_TREE);
10292 tree v16qi_ftype_v16qi_int
10293 = build_function_type_list (V16QI_type_node,
10294 V16QI_type_node, integer_type_node, NULL_TREE);
10295 tree v16qi_ftype_v16qi_v16qi_int
10296 = build_function_type_list (V16QI_type_node,
10297 V16QI_type_node, V16QI_type_node,
10298 integer_type_node, NULL_TREE);
10299 tree v8hi_ftype_v8hi_v8hi_int
10300 = build_function_type_list (V8HI_type_node,
10301 V8HI_type_node, V8HI_type_node,
10302 integer_type_node, NULL_TREE);
10303 tree v4si_ftype_v4si_v4si_int
10304 = build_function_type_list (V4SI_type_node,
10305 V4SI_type_node, V4SI_type_node,
10306 integer_type_node, NULL_TREE);
10307 tree v4sf_ftype_v4sf_v4sf_int
10308 = build_function_type_list (V4SF_type_node,
10309 V4SF_type_node, V4SF_type_node,
10310 integer_type_node, NULL_TREE);
10311 tree v4sf_ftype_v4sf_v4sf
10312 = build_function_type_list (V4SF_type_node,
10313 V4SF_type_node, V4SF_type_node, NULL_TREE);
10314 tree opaque_ftype_opaque_opaque_opaque
10315 = build_function_type_list (opaque_V4SI_type_node,
10316 opaque_V4SI_type_node, opaque_V4SI_type_node,
10317 opaque_V4SI_type_node, NULL_TREE);
10318 tree v4sf_ftype_v4sf_v4sf_v4si
10319 = build_function_type_list (V4SF_type_node,
10320 V4SF_type_node, V4SF_type_node,
10321 V4SI_type_node, NULL_TREE);
10322 tree v4sf_ftype_v4sf_v4sf_v4sf
10323 = build_function_type_list (V4SF_type_node,
10324 V4SF_type_node, V4SF_type_node,
10325 V4SF_type_node, NULL_TREE);
10326 tree v4si_ftype_v4si_v4si_v4si
10327 = build_function_type_list (V4SI_type_node,
10328 V4SI_type_node, V4SI_type_node,
10329 V4SI_type_node, NULL_TREE);
10330 tree v8hi_ftype_v8hi_v8hi
10331 = build_function_type_list (V8HI_type_node,
10332 V8HI_type_node, V8HI_type_node, NULL_TREE);
10333 tree v8hi_ftype_v8hi_v8hi_v8hi
10334 = build_function_type_list (V8HI_type_node,
10335 V8HI_type_node, V8HI_type_node,
10336 V8HI_type_node, NULL_TREE);
10337 tree v4si_ftype_v8hi_v8hi_v4si
10338 = build_function_type_list (V4SI_type_node,
10339 V8HI_type_node, V8HI_type_node,
10340 V4SI_type_node, NULL_TREE);
10341 tree v4si_ftype_v16qi_v16qi_v4si
10342 = build_function_type_list (V4SI_type_node,
10343 V16QI_type_node, V16QI_type_node,
10344 V4SI_type_node, NULL_TREE);
10345 tree v16qi_ftype_v16qi_v16qi
10346 = build_function_type_list (V16QI_type_node,
10347 V16QI_type_node, V16QI_type_node, NULL_TREE);
10348 tree v4si_ftype_v4sf_v4sf
10349 = build_function_type_list (V4SI_type_node,
10350 V4SF_type_node, V4SF_type_node, NULL_TREE);
10351 tree v8hi_ftype_v16qi_v16qi
10352 = build_function_type_list (V8HI_type_node,
10353 V16QI_type_node, V16QI_type_node, NULL_TREE);
10354 tree v4si_ftype_v8hi_v8hi
10355 = build_function_type_list (V4SI_type_node,
10356 V8HI_type_node, V8HI_type_node, NULL_TREE);
10357 tree v8hi_ftype_v4si_v4si
10358 = build_function_type_list (V8HI_type_node,
10359 V4SI_type_node, V4SI_type_node, NULL_TREE);
10360 tree v16qi_ftype_v8hi_v8hi
10361 = build_function_type_list (V16QI_type_node,
10362 V8HI_type_node, V8HI_type_node, NULL_TREE);
10363 tree v4si_ftype_v16qi_v4si
10364 = build_function_type_list (V4SI_type_node,
10365 V16QI_type_node, V4SI_type_node, NULL_TREE);
10366 tree v4si_ftype_v16qi_v16qi
10367 = build_function_type_list (V4SI_type_node,
10368 V16QI_type_node, V16QI_type_node, NULL_TREE);
10369 tree v4si_ftype_v8hi_v4si
10370 = build_function_type_list (V4SI_type_node,
10371 V8HI_type_node, V4SI_type_node, NULL_TREE);
10372 tree v4si_ftype_v8hi
10373 = build_function_type_list (V4SI_type_node, V8HI_type_node, NULL_TREE);
10374 tree int_ftype_v4si_v4si
10375 = build_function_type_list (integer_type_node,
10376 V4SI_type_node, V4SI_type_node, NULL_TREE);
10377 tree int_ftype_v4sf_v4sf
10378 = build_function_type_list (integer_type_node,
10379 V4SF_type_node, V4SF_type_node, NULL_TREE);
10380 tree int_ftype_v16qi_v16qi
10381 = build_function_type_list (integer_type_node,
10382 V16QI_type_node, V16QI_type_node, NULL_TREE);
10383 tree int_ftype_v8hi_v8hi
10384 = build_function_type_list (integer_type_node,
10385 V8HI_type_node, V8HI_type_node, NULL_TREE);
10386
10387 /* Add the simple ternary operators. */
10388 d = bdesc_3arg;
10389 for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
10390 {
10391 enum machine_mode mode0, mode1, mode2, mode3;
10392 tree type;
10393 bool is_overloaded = d->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10394 && d->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST;
10395
10396 if (is_overloaded)
10397 {
10398 mode0 = VOIDmode;
10399 mode1 = VOIDmode;
10400 mode2 = VOIDmode;
10401 mode3 = VOIDmode;
10402 }
10403 else
10404 {
10405 if (d->name == 0 || d->icode == CODE_FOR_nothing)
10406 continue;
10407
10408 mode0 = insn_data[d->icode].operand[0].mode;
10409 mode1 = insn_data[d->icode].operand[1].mode;
10410 mode2 = insn_data[d->icode].operand[2].mode;
10411 mode3 = insn_data[d->icode].operand[3].mode;
10412 }
10413
10414 /* When all four are of the same mode. */
10415 if (mode0 == mode1 && mode1 == mode2 && mode2 == mode3)
10416 {
10417 switch (mode0)
10418 {
10419 case VOIDmode:
10420 type = opaque_ftype_opaque_opaque_opaque;
10421 break;
10422 case V4SImode:
10423 type = v4si_ftype_v4si_v4si_v4si;
10424 break;
10425 case V4SFmode:
10426 type = v4sf_ftype_v4sf_v4sf_v4sf;
10427 break;
10428 case V8HImode:
10429 type = v8hi_ftype_v8hi_v8hi_v8hi;
10430 break;
10431 case V16QImode:
10432 type = v16qi_ftype_v16qi_v16qi_v16qi;
10433 break;
10434 case V2SFmode:
10435 type = v2sf_ftype_v2sf_v2sf_v2sf;
10436 break;
10437 default:
10438 gcc_unreachable ();
10439 }
10440 }
10441 else if (mode0 == mode1 && mode1 == mode2 && mode3 == V16QImode)
10442 {
10443 switch (mode0)
10444 {
10445 case V4SImode:
10446 type = v4si_ftype_v4si_v4si_v16qi;
10447 break;
10448 case V4SFmode:
10449 type = v4sf_ftype_v4sf_v4sf_v16qi;
10450 break;
10451 case V8HImode:
10452 type = v8hi_ftype_v8hi_v8hi_v16qi;
10453 break;
10454 case V16QImode:
10455 type = v16qi_ftype_v16qi_v16qi_v16qi;
10456 break;
10457 default:
10458 gcc_unreachable ();
10459 }
10460 }
10461 else if (mode0 == V4SImode && mode1 == V16QImode && mode2 == V16QImode
10462 && mode3 == V4SImode)
10463 type = v4si_ftype_v16qi_v16qi_v4si;
10464 else if (mode0 == V4SImode && mode1 == V8HImode && mode2 == V8HImode
10465 && mode3 == V4SImode)
10466 type = v4si_ftype_v8hi_v8hi_v4si;
10467 else if (mode0 == V4SFmode && mode1 == V4SFmode && mode2 == V4SFmode
10468 && mode3 == V4SImode)
10469 type = v4sf_ftype_v4sf_v4sf_v4si;
10470
10471 /* vchar, vchar, vchar, 4-bit literal. */
10472 else if (mode0 == V16QImode && mode1 == mode0 && mode2 == mode0
10473 && mode3 == QImode)
10474 type = v16qi_ftype_v16qi_v16qi_int;
10475
10476 /* vshort, vshort, vshort, 4-bit literal. */
10477 else if (mode0 == V8HImode && mode1 == mode0 && mode2 == mode0
10478 && mode3 == QImode)
10479 type = v8hi_ftype_v8hi_v8hi_int;
10480
10481 /* vint, vint, vint, 4-bit literal. */
10482 else if (mode0 == V4SImode && mode1 == mode0 && mode2 == mode0
10483 && mode3 == QImode)
10484 type = v4si_ftype_v4si_v4si_int;
10485
10486 /* vfloat, vfloat, vfloat, 4-bit literal. */
10487 else if (mode0 == V4SFmode && mode1 == mode0 && mode2 == mode0
10488 && mode3 == QImode)
10489 type = v4sf_ftype_v4sf_v4sf_int;
10490
10491 else
10492 gcc_unreachable ();
10493
10494 def_builtin (d->mask, d->name, type, d->code);
10495 }
10496
10497 /* Add the simple binary operators. */
10498 d = (struct builtin_description *) bdesc_2arg;
10499 for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
10500 {
10501 enum machine_mode mode0, mode1, mode2;
10502 tree type;
10503 bool is_overloaded = d->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10504 && d->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST;
10505
10506 if (is_overloaded)
10507 {
10508 mode0 = VOIDmode;
10509 mode1 = VOIDmode;
10510 mode2 = VOIDmode;
10511 }
10512 else
10513 {
10514 if (d->name == 0 || d->icode == CODE_FOR_nothing)
10515 continue;
10516
10517 mode0 = insn_data[d->icode].operand[0].mode;
10518 mode1 = insn_data[d->icode].operand[1].mode;
10519 mode2 = insn_data[d->icode].operand[2].mode;
10520 }
10521
10522 /* When all three operands are of the same mode. */
10523 if (mode0 == mode1 && mode1 == mode2)
10524 {
10525 switch (mode0)
10526 {
10527 case VOIDmode:
10528 type = opaque_ftype_opaque_opaque;
10529 break;
10530 case V4SFmode:
10531 type = v4sf_ftype_v4sf_v4sf;
10532 break;
10533 case V4SImode:
10534 type = v4si_ftype_v4si_v4si;
10535 break;
10536 case V16QImode:
10537 type = v16qi_ftype_v16qi_v16qi;
10538 break;
10539 case V8HImode:
10540 type = v8hi_ftype_v8hi_v8hi;
10541 break;
10542 case V2SImode:
10543 type = v2si_ftype_v2si_v2si;
10544 break;
10545 case V2SFmode:
10546 if (TARGET_PAIRED_FLOAT)
10547 type = v2sf_ftype_v2sf_v2sf;
10548 else
10549 type = v2sf_ftype_v2sf_v2sf_spe;
10550 break;
10551 case SImode:
10552 type = int_ftype_int_int;
10553 break;
10554 default:
10555 gcc_unreachable ();
10556 }
10557 }
10558
10559 /* A few other combos we really don't want to do manually. */
10560
10561 /* vint, vfloat, vfloat. */
10562 else if (mode0 == V4SImode && mode1 == V4SFmode && mode2 == V4SFmode)
10563 type = v4si_ftype_v4sf_v4sf;
10564
10565 /* vshort, vchar, vchar. */
10566 else if (mode0 == V8HImode && mode1 == V16QImode && mode2 == V16QImode)
10567 type = v8hi_ftype_v16qi_v16qi;
10568
10569 /* vint, vshort, vshort. */
10570 else if (mode0 == V4SImode && mode1 == V8HImode && mode2 == V8HImode)
10571 type = v4si_ftype_v8hi_v8hi;
10572
10573 /* vshort, vint, vint. */
10574 else if (mode0 == V8HImode && mode1 == V4SImode && mode2 == V4SImode)
10575 type = v8hi_ftype_v4si_v4si;
10576
10577 /* vchar, vshort, vshort. */
10578 else if (mode0 == V16QImode && mode1 == V8HImode && mode2 == V8HImode)
10579 type = v16qi_ftype_v8hi_v8hi;
10580
10581 /* vint, vchar, vint. */
10582 else if (mode0 == V4SImode && mode1 == V16QImode && mode2 == V4SImode)
10583 type = v4si_ftype_v16qi_v4si;
10584
10585 /* vint, vchar, vchar. */
10586 else if (mode0 == V4SImode && mode1 == V16QImode && mode2 == V16QImode)
10587 type = v4si_ftype_v16qi_v16qi;
10588
10589 /* vint, vshort, vint. */
10590 else if (mode0 == V4SImode && mode1 == V8HImode && mode2 == V4SImode)
10591 type = v4si_ftype_v8hi_v4si;
10592
10593 /* vint, vint, 5-bit literal. */
10594 else if (mode0 == V4SImode && mode1 == V4SImode && mode2 == QImode)
10595 type = v4si_ftype_v4si_int;
10596
10597 /* vshort, vshort, 5-bit literal. */
10598 else if (mode0 == V8HImode && mode1 == V8HImode && mode2 == QImode)
10599 type = v8hi_ftype_v8hi_int;
10600
10601 /* vchar, vchar, 5-bit literal. */
10602 else if (mode0 == V16QImode && mode1 == V16QImode && mode2 == QImode)
10603 type = v16qi_ftype_v16qi_int;
10604
10605 /* vfloat, vint, 5-bit literal. */
10606 else if (mode0 == V4SFmode && mode1 == V4SImode && mode2 == QImode)
10607 type = v4sf_ftype_v4si_int;
10608
10609 /* vint, vfloat, 5-bit literal. */
10610 else if (mode0 == V4SImode && mode1 == V4SFmode && mode2 == QImode)
10611 type = v4si_ftype_v4sf_int;
10612
10613 else if (mode0 == V2SImode && mode1 == SImode && mode2 == SImode)
10614 type = v2si_ftype_int_int;
10615
10616 else if (mode0 == V2SImode && mode1 == V2SImode && mode2 == QImode)
10617 type = v2si_ftype_v2si_char;
10618
10619 else if (mode0 == V2SImode && mode1 == SImode && mode2 == QImode)
10620 type = v2si_ftype_int_char;
10621
10622 else
10623 {
10624 /* int, x, x. */
10625 gcc_assert (mode0 == SImode);
10626 switch (mode1)
10627 {
10628 case V4SImode:
10629 type = int_ftype_v4si_v4si;
10630 break;
10631 case V4SFmode:
10632 type = int_ftype_v4sf_v4sf;
10633 break;
10634 case V16QImode:
10635 type = int_ftype_v16qi_v16qi;
10636 break;
10637 case V8HImode:
10638 type = int_ftype_v8hi_v8hi;
10639 break;
10640 default:
10641 gcc_unreachable ();
10642 }
10643 }
10644
10645 def_builtin (d->mask, d->name, type, d->code);
10646 }
10647
10648 /* Add the simple unary operators. */
10649 d = (struct builtin_description *) bdesc_1arg;
10650 for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
10651 {
10652 enum machine_mode mode0, mode1;
10653 tree type;
10654 bool is_overloaded = d->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
10655 && d->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST;
10656
10657 if (is_overloaded)
10658 {
10659 mode0 = VOIDmode;
10660 mode1 = VOIDmode;
10661 }
10662 else
10663 {
10664 if (d->name == 0 || d->icode == CODE_FOR_nothing)
10665 continue;
10666
10667 mode0 = insn_data[d->icode].operand[0].mode;
10668 mode1 = insn_data[d->icode].operand[1].mode;
10669 }
10670
10671 if (mode0 == V4SImode && mode1 == QImode)
10672 type = v4si_ftype_int;
10673 else if (mode0 == V8HImode && mode1 == QImode)
10674 type = v8hi_ftype_int;
10675 else if (mode0 == V16QImode && mode1 == QImode)
10676 type = v16qi_ftype_int;
10677 else if (mode0 == VOIDmode && mode1 == VOIDmode)
10678 type = opaque_ftype_opaque;
10679 else if (mode0 == V4SFmode && mode1 == V4SFmode)
10680 type = v4sf_ftype_v4sf;
10681 else if (mode0 == V8HImode && mode1 == V16QImode)
10682 type = v8hi_ftype_v16qi;
10683 else if (mode0 == V4SImode && mode1 == V8HImode)
10684 type = v4si_ftype_v8hi;
10685 else if (mode0 == V2SImode && mode1 == V2SImode)
10686 type = v2si_ftype_v2si;
10687 else if (mode0 == V2SFmode && mode1 == V2SFmode)
10688 {
10689 if (TARGET_PAIRED_FLOAT)
10690 type = v2sf_ftype_v2sf;
10691 else
10692 type = v2sf_ftype_v2sf_spe;
10693 }
10694 else if (mode0 == V2SFmode && mode1 == V2SImode)
10695 type = v2sf_ftype_v2si;
10696 else if (mode0 == V2SImode && mode1 == V2SFmode)
10697 type = v2si_ftype_v2sf;
10698 else if (mode0 == V2SImode && mode1 == QImode)
10699 type = v2si_ftype_char;
10700 else
10701 gcc_unreachable ();
10702
10703 def_builtin (d->mask, d->name, type, d->code);
10704 }
10705 }
10706
10707 static void
10708 rs6000_init_libfuncs (void)
10709 {
10710 if (DEFAULT_ABI != ABI_V4 && TARGET_XCOFF
10711 && !TARGET_POWER2 && !TARGET_POWERPC)
10712 {
10713 /* AIX library routines for float->int conversion. */
10714 set_conv_libfunc (sfix_optab, SImode, DFmode, "__itrunc");
10715 set_conv_libfunc (ufix_optab, SImode, DFmode, "__uitrunc");
10716 set_conv_libfunc (sfix_optab, SImode, TFmode, "_qitrunc");
10717 set_conv_libfunc (ufix_optab, SImode, TFmode, "_quitrunc");
10718 }
10719
10720 if (!TARGET_IEEEQUAD)
10721 /* AIX/Darwin/64-bit Linux quad floating point routines. */
10722 if (!TARGET_XL_COMPAT)
10723 {
10724 set_optab_libfunc (add_optab, TFmode, "__gcc_qadd");
10725 set_optab_libfunc (sub_optab, TFmode, "__gcc_qsub");
10726 set_optab_libfunc (smul_optab, TFmode, "__gcc_qmul");
10727 set_optab_libfunc (sdiv_optab, TFmode, "__gcc_qdiv");
10728
10729 if (!(TARGET_HARD_FLOAT && (TARGET_FPRS || TARGET_E500_DOUBLE)))
10730 {
10731 set_optab_libfunc (neg_optab, TFmode, "__gcc_qneg");
10732 set_optab_libfunc (eq_optab, TFmode, "__gcc_qeq");
10733 set_optab_libfunc (ne_optab, TFmode, "__gcc_qne");
10734 set_optab_libfunc (gt_optab, TFmode, "__gcc_qgt");
10735 set_optab_libfunc (ge_optab, TFmode, "__gcc_qge");
10736 set_optab_libfunc (lt_optab, TFmode, "__gcc_qlt");
10737 set_optab_libfunc (le_optab, TFmode, "__gcc_qle");
10738
10739 set_conv_libfunc (sext_optab, TFmode, SFmode, "__gcc_stoq");
10740 set_conv_libfunc (sext_optab, TFmode, DFmode, "__gcc_dtoq");
10741 set_conv_libfunc (trunc_optab, SFmode, TFmode, "__gcc_qtos");
10742 set_conv_libfunc (trunc_optab, DFmode, TFmode, "__gcc_qtod");
10743 set_conv_libfunc (sfix_optab, SImode, TFmode, "__gcc_qtoi");
10744 set_conv_libfunc (ufix_optab, SImode, TFmode, "__gcc_qtou");
10745 set_conv_libfunc (sfloat_optab, TFmode, SImode, "__gcc_itoq");
10746 set_conv_libfunc (ufloat_optab, TFmode, SImode, "__gcc_utoq");
10747 }
10748
10749 if (!(TARGET_HARD_FLOAT && TARGET_FPRS))
10750 set_optab_libfunc (unord_optab, TFmode, "__gcc_qunord");
10751 }
10752 else
10753 {
10754 set_optab_libfunc (add_optab, TFmode, "_xlqadd");
10755 set_optab_libfunc (sub_optab, TFmode, "_xlqsub");
10756 set_optab_libfunc (smul_optab, TFmode, "_xlqmul");
10757 set_optab_libfunc (sdiv_optab, TFmode, "_xlqdiv");
10758 }
10759 else
10760 {
10761 /* 32-bit SVR4 quad floating point routines. */
10762
10763 set_optab_libfunc (add_optab, TFmode, "_q_add");
10764 set_optab_libfunc (sub_optab, TFmode, "_q_sub");
10765 set_optab_libfunc (neg_optab, TFmode, "_q_neg");
10766 set_optab_libfunc (smul_optab, TFmode, "_q_mul");
10767 set_optab_libfunc (sdiv_optab, TFmode, "_q_div");
10768 if (TARGET_PPC_GPOPT || TARGET_POWER2)
10769 set_optab_libfunc (sqrt_optab, TFmode, "_q_sqrt");
10770
10771 set_optab_libfunc (eq_optab, TFmode, "_q_feq");
10772 set_optab_libfunc (ne_optab, TFmode, "_q_fne");
10773 set_optab_libfunc (gt_optab, TFmode, "_q_fgt");
10774 set_optab_libfunc (ge_optab, TFmode, "_q_fge");
10775 set_optab_libfunc (lt_optab, TFmode, "_q_flt");
10776 set_optab_libfunc (le_optab, TFmode, "_q_fle");
10777
10778 set_conv_libfunc (sext_optab, TFmode, SFmode, "_q_stoq");
10779 set_conv_libfunc (sext_optab, TFmode, DFmode, "_q_dtoq");
10780 set_conv_libfunc (trunc_optab, SFmode, TFmode, "_q_qtos");
10781 set_conv_libfunc (trunc_optab, DFmode, TFmode, "_q_qtod");
10782 set_conv_libfunc (sfix_optab, SImode, TFmode, "_q_qtoi");
10783 set_conv_libfunc (ufix_optab, SImode, TFmode, "_q_qtou");
10784 set_conv_libfunc (sfloat_optab, TFmode, SImode, "_q_itoq");
10785 set_conv_libfunc (ufloat_optab, TFmode, SImode, "_q_utoq");
10786 }
10787 }
10788
10789 \f
10790 /* Expand a block clear operation, and return 1 if successful. Return 0
10791 if we should let the compiler generate normal code.
10792
10793 operands[0] is the destination
10794 operands[1] is the length
10795 operands[3] is the alignment */
10796
10797 int
10798 expand_block_clear (rtx operands[])
10799 {
10800 rtx orig_dest = operands[0];
10801 rtx bytes_rtx = operands[1];
10802 rtx align_rtx = operands[3];
10803 bool constp = (GET_CODE (bytes_rtx) == CONST_INT);
10804 HOST_WIDE_INT align;
10805 HOST_WIDE_INT bytes;
10806 int offset;
10807 int clear_bytes;
10808 int clear_step;
10809
10810 /* If this is not a fixed size move, just call memcpy */
10811 if (! constp)
10812 return 0;
10813
10814 /* This must be a fixed size alignment */
10815 gcc_assert (GET_CODE (align_rtx) == CONST_INT);
10816 align = INTVAL (align_rtx) * BITS_PER_UNIT;
10817
10818 /* Anything to clear? */
10819 bytes = INTVAL (bytes_rtx);
10820 if (bytes <= 0)
10821 return 1;
10822
10823 /* Use the builtin memset after a point, to avoid huge code bloat.
10824 When optimize_size, avoid any significant code bloat; calling
10825 memset is about 4 instructions, so allow for one instruction to
10826 load zero and three to do clearing. */
10827 if (TARGET_ALTIVEC && align >= 128)
10828 clear_step = 16;
10829 else if (TARGET_POWERPC64 && align >= 32)
10830 clear_step = 8;
10831 else if (TARGET_SPE && align >= 64)
10832 clear_step = 8;
10833 else
10834 clear_step = 4;
10835
10836 if (optimize_size && bytes > 3 * clear_step)
10837 return 0;
10838 if (! optimize_size && bytes > 8 * clear_step)
10839 return 0;
10840
10841 for (offset = 0; bytes > 0; offset += clear_bytes, bytes -= clear_bytes)
10842 {
10843 enum machine_mode mode = BLKmode;
10844 rtx dest;
10845
10846 if (bytes >= 16 && TARGET_ALTIVEC && align >= 128)
10847 {
10848 clear_bytes = 16;
10849 mode = V4SImode;
10850 }
10851 else if (bytes >= 8 && TARGET_SPE && align >= 64)
10852 {
10853 clear_bytes = 8;
10854 mode = V2SImode;
10855 }
10856 else if (bytes >= 8 && TARGET_POWERPC64
10857 /* 64-bit loads and stores require word-aligned
10858 displacements. */
10859 && (align >= 64 || (!STRICT_ALIGNMENT && align >= 32)))
10860 {
10861 clear_bytes = 8;
10862 mode = DImode;
10863 }
10864 else if (bytes >= 4 && (align >= 32 || !STRICT_ALIGNMENT))
10865 { /* move 4 bytes */
10866 clear_bytes = 4;
10867 mode = SImode;
10868 }
10869 else if (bytes >= 2 && (align >= 16 || !STRICT_ALIGNMENT))
10870 { /* move 2 bytes */
10871 clear_bytes = 2;
10872 mode = HImode;
10873 }
10874 else /* move 1 byte at a time */
10875 {
10876 clear_bytes = 1;
10877 mode = QImode;
10878 }
10879
10880 dest = adjust_address (orig_dest, mode, offset);
10881
10882 emit_move_insn (dest, CONST0_RTX (mode));
10883 }
10884
10885 return 1;
10886 }
10887
10888 \f
10889 /* Expand a block move operation, and return 1 if successful. Return 0
10890 if we should let the compiler generate normal code.
10891
10892 operands[0] is the destination
10893 operands[1] is the source
10894 operands[2] is the length
10895 operands[3] is the alignment */
10896
10897 #define MAX_MOVE_REG 4
10898
10899 int
10900 expand_block_move (rtx operands[])
10901 {
10902 rtx orig_dest = operands[0];
10903 rtx orig_src = operands[1];
10904 rtx bytes_rtx = operands[2];
10905 rtx align_rtx = operands[3];
10906 int constp = (GET_CODE (bytes_rtx) == CONST_INT);
10907 int align;
10908 int bytes;
10909 int offset;
10910 int move_bytes;
10911 rtx stores[MAX_MOVE_REG];
10912 int num_reg = 0;
10913
10914 /* If this is not a fixed size move, just call memcpy */
10915 if (! constp)
10916 return 0;
10917
10918 /* This must be a fixed size alignment */
10919 gcc_assert (GET_CODE (align_rtx) == CONST_INT);
10920 align = INTVAL (align_rtx) * BITS_PER_UNIT;
10921
10922 /* Anything to move? */
10923 bytes = INTVAL (bytes_rtx);
10924 if (bytes <= 0)
10925 return 1;
10926
10927 /* store_one_arg depends on expand_block_move to handle at least the size of
10928 reg_parm_stack_space. */
10929 if (bytes > (TARGET_POWERPC64 ? 64 : 32))
10930 return 0;
10931
10932 for (offset = 0; bytes > 0; offset += move_bytes, bytes -= move_bytes)
10933 {
10934 union {
10935 rtx (*movmemsi) (rtx, rtx, rtx, rtx);
10936 rtx (*mov) (rtx, rtx);
10937 } gen_func;
10938 enum machine_mode mode = BLKmode;
10939 rtx src, dest;
10940
10941 /* Altivec first, since it will be faster than a string move
10942 when it applies, and usually not significantly larger. */
10943 if (TARGET_ALTIVEC && bytes >= 16 && align >= 128)
10944 {
10945 move_bytes = 16;
10946 mode = V4SImode;
10947 gen_func.mov = gen_movv4si;
10948 }
10949 else if (TARGET_SPE && bytes >= 8 && align >= 64)
10950 {
10951 move_bytes = 8;
10952 mode = V2SImode;
10953 gen_func.mov = gen_movv2si;
10954 }
10955 else if (TARGET_STRING
10956 && bytes > 24 /* move up to 32 bytes at a time */
10957 && ! fixed_regs[5]
10958 && ! fixed_regs[6]
10959 && ! fixed_regs[7]
10960 && ! fixed_regs[8]
10961 && ! fixed_regs[9]
10962 && ! fixed_regs[10]
10963 && ! fixed_regs[11]
10964 && ! fixed_regs[12])
10965 {
10966 move_bytes = (bytes > 32) ? 32 : bytes;
10967 gen_func.movmemsi = gen_movmemsi_8reg;
10968 }
10969 else if (TARGET_STRING
10970 && bytes > 16 /* move up to 24 bytes at a time */
10971 && ! fixed_regs[5]
10972 && ! fixed_regs[6]
10973 && ! fixed_regs[7]
10974 && ! fixed_regs[8]
10975 && ! fixed_regs[9]
10976 && ! fixed_regs[10])
10977 {
10978 move_bytes = (bytes > 24) ? 24 : bytes;
10979 gen_func.movmemsi = gen_movmemsi_6reg;
10980 }
10981 else if (TARGET_STRING
10982 && bytes > 8 /* move up to 16 bytes at a time */
10983 && ! fixed_regs[5]
10984 && ! fixed_regs[6]
10985 && ! fixed_regs[7]
10986 && ! fixed_regs[8])
10987 {
10988 move_bytes = (bytes > 16) ? 16 : bytes;
10989 gen_func.movmemsi = gen_movmemsi_4reg;
10990 }
10991 else if (bytes >= 8 && TARGET_POWERPC64
10992 /* 64-bit loads and stores require word-aligned
10993 displacements. */
10994 && (align >= 64 || (!STRICT_ALIGNMENT && align >= 32)))
10995 {
10996 move_bytes = 8;
10997 mode = DImode;
10998 gen_func.mov = gen_movdi;
10999 }
11000 else if (TARGET_STRING && bytes > 4 && !TARGET_POWERPC64)
11001 { /* move up to 8 bytes at a time */
11002 move_bytes = (bytes > 8) ? 8 : bytes;
11003 gen_func.movmemsi = gen_movmemsi_2reg;
11004 }
11005 else if (bytes >= 4 && (align >= 32 || !STRICT_ALIGNMENT))
11006 { /* move 4 bytes */
11007 move_bytes = 4;
11008 mode = SImode;
11009 gen_func.mov = gen_movsi;
11010 }
11011 else if (bytes >= 2 && (align >= 16 || !STRICT_ALIGNMENT))
11012 { /* move 2 bytes */
11013 move_bytes = 2;
11014 mode = HImode;
11015 gen_func.mov = gen_movhi;
11016 }
11017 else if (TARGET_STRING && bytes > 1)
11018 { /* move up to 4 bytes at a time */
11019 move_bytes = (bytes > 4) ? 4 : bytes;
11020 gen_func.movmemsi = gen_movmemsi_1reg;
11021 }
11022 else /* move 1 byte at a time */
11023 {
11024 move_bytes = 1;
11025 mode = QImode;
11026 gen_func.mov = gen_movqi;
11027 }
11028
11029 src = adjust_address (orig_src, mode, offset);
11030 dest = adjust_address (orig_dest, mode, offset);
11031
11032 if (mode != BLKmode)
11033 {
11034 rtx tmp_reg = gen_reg_rtx (mode);
11035
11036 emit_insn ((*gen_func.mov) (tmp_reg, src));
11037 stores[num_reg++] = (*gen_func.mov) (dest, tmp_reg);
11038 }
11039
11040 if (mode == BLKmode || num_reg >= MAX_MOVE_REG || bytes == move_bytes)
11041 {
11042 int i;
11043 for (i = 0; i < num_reg; i++)
11044 emit_insn (stores[i]);
11045 num_reg = 0;
11046 }
11047
11048 if (mode == BLKmode)
11049 {
11050 /* Move the address into scratch registers. The movmemsi
11051 patterns require zero offset. */
11052 if (!REG_P (XEXP (src, 0)))
11053 {
11054 rtx src_reg = copy_addr_to_reg (XEXP (src, 0));
11055 src = replace_equiv_address (src, src_reg);
11056 }
11057 set_mem_size (src, GEN_INT (move_bytes));
11058
11059 if (!REG_P (XEXP (dest, 0)))
11060 {
11061 rtx dest_reg = copy_addr_to_reg (XEXP (dest, 0));
11062 dest = replace_equiv_address (dest, dest_reg);
11063 }
11064 set_mem_size (dest, GEN_INT (move_bytes));
11065
11066 emit_insn ((*gen_func.movmemsi) (dest, src,
11067 GEN_INT (move_bytes & 31),
11068 align_rtx));
11069 }
11070 }
11071
11072 return 1;
11073 }
11074
11075 \f
11076 /* Return a string to perform a load_multiple operation.
11077 operands[0] is the vector.
11078 operands[1] is the source address.
11079 operands[2] is the first destination register. */
11080
11081 const char *
11082 rs6000_output_load_multiple (rtx operands[3])
11083 {
11084 /* We have to handle the case where the pseudo used to contain the address
11085 is assigned to one of the output registers. */
11086 int i, j;
11087 int words = XVECLEN (operands[0], 0);
11088 rtx xop[10];
11089
11090 if (XVECLEN (operands[0], 0) == 1)
11091 return "{l|lwz} %2,0(%1)";
11092
11093 for (i = 0; i < words; i++)
11094 if (refers_to_regno_p (REGNO (operands[2]) + i,
11095 REGNO (operands[2]) + i + 1, operands[1], 0))
11096 {
11097 if (i == words-1)
11098 {
11099 xop[0] = GEN_INT (4 * (words-1));
11100 xop[1] = operands[1];
11101 xop[2] = operands[2];
11102 output_asm_insn ("{lsi|lswi} %2,%1,%0\n\t{l|lwz} %1,%0(%1)", xop);
11103 return "";
11104 }
11105 else if (i == 0)
11106 {
11107 xop[0] = GEN_INT (4 * (words-1));
11108 xop[1] = operands[1];
11109 xop[2] = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
11110 output_asm_insn ("{cal %1,4(%1)|addi %1,%1,4}\n\t{lsi|lswi} %2,%1,%0\n\t{l|lwz} %1,-4(%1)", xop);
11111 return "";
11112 }
11113 else
11114 {
11115 for (j = 0; j < words; j++)
11116 if (j != i)
11117 {
11118 xop[0] = GEN_INT (j * 4);
11119 xop[1] = operands[1];
11120 xop[2] = gen_rtx_REG (SImode, REGNO (operands[2]) + j);
11121 output_asm_insn ("{l|lwz} %2,%0(%1)", xop);
11122 }
11123 xop[0] = GEN_INT (i * 4);
11124 xop[1] = operands[1];
11125 output_asm_insn ("{l|lwz} %1,%0(%1)", xop);
11126 return "";
11127 }
11128 }
11129
11130 return "{lsi|lswi} %2,%1,%N0";
11131 }
11132
11133 \f
11134 /* A validation routine: say whether CODE, a condition code, and MODE
11135 match. The other alternatives either don't make sense or should
11136 never be generated. */
11137
11138 void
11139 validate_condition_mode (enum rtx_code code, enum machine_mode mode)
11140 {
11141 gcc_assert ((GET_RTX_CLASS (code) == RTX_COMPARE
11142 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
11143 && GET_MODE_CLASS (mode) == MODE_CC);
11144
11145 /* These don't make sense. */
11146 gcc_assert ((code != GT && code != LT && code != GE && code != LE)
11147 || mode != CCUNSmode);
11148
11149 gcc_assert ((code != GTU && code != LTU && code != GEU && code != LEU)
11150 || mode == CCUNSmode);
11151
11152 gcc_assert (mode == CCFPmode
11153 || (code != ORDERED && code != UNORDERED
11154 && code != UNEQ && code != LTGT
11155 && code != UNGT && code != UNLT
11156 && code != UNGE && code != UNLE));
11157
11158 /* These should never be generated except for
11159 flag_finite_math_only. */
11160 gcc_assert (mode != CCFPmode
11161 || flag_finite_math_only
11162 || (code != LE && code != GE
11163 && code != UNEQ && code != LTGT
11164 && code != UNGT && code != UNLT));
11165
11166 /* These are invalid; the information is not there. */
11167 gcc_assert (mode != CCEQmode || code == EQ || code == NE);
11168 }
11169
11170 \f
11171 /* Return 1 if ANDOP is a mask that has no bits on that are not in the
11172 mask required to convert the result of a rotate insn into a shift
11173 left insn of SHIFTOP bits. Both are known to be SImode CONST_INT. */
11174
11175 int
11176 includes_lshift_p (rtx shiftop, rtx andop)
11177 {
11178 unsigned HOST_WIDE_INT shift_mask = ~(unsigned HOST_WIDE_INT) 0;
11179
11180 shift_mask <<= INTVAL (shiftop);
11181
11182 return (INTVAL (andop) & 0xffffffff & ~shift_mask) == 0;
11183 }
11184
11185 /* Similar, but for right shift. */
11186
11187 int
11188 includes_rshift_p (rtx shiftop, rtx andop)
11189 {
11190 unsigned HOST_WIDE_INT shift_mask = ~(unsigned HOST_WIDE_INT) 0;
11191
11192 shift_mask >>= INTVAL (shiftop);
11193
11194 return (INTVAL (andop) & 0xffffffff & ~shift_mask) == 0;
11195 }
11196
11197 /* Return 1 if ANDOP is a mask suitable for use with an rldic insn
11198 to perform a left shift. It must have exactly SHIFTOP least
11199 significant 0's, then one or more 1's, then zero or more 0's. */
11200
11201 int
11202 includes_rldic_lshift_p (rtx shiftop, rtx andop)
11203 {
11204 if (GET_CODE (andop) == CONST_INT)
11205 {
11206 HOST_WIDE_INT c, lsb, shift_mask;
11207
11208 c = INTVAL (andop);
11209 if (c == 0 || c == ~0)
11210 return 0;
11211
11212 shift_mask = ~0;
11213 shift_mask <<= INTVAL (shiftop);
11214
11215 /* Find the least significant one bit. */
11216 lsb = c & -c;
11217
11218 /* It must coincide with the LSB of the shift mask. */
11219 if (-lsb != shift_mask)
11220 return 0;
11221
11222 /* Invert to look for the next transition (if any). */
11223 c = ~c;
11224
11225 /* Remove the low group of ones (originally low group of zeros). */
11226 c &= -lsb;
11227
11228 /* Again find the lsb, and check we have all 1's above. */
11229 lsb = c & -c;
11230 return c == -lsb;
11231 }
11232 else if (GET_CODE (andop) == CONST_DOUBLE
11233 && (GET_MODE (andop) == VOIDmode || GET_MODE (andop) == DImode))
11234 {
11235 HOST_WIDE_INT low, high, lsb;
11236 HOST_WIDE_INT shift_mask_low, shift_mask_high;
11237
11238 low = CONST_DOUBLE_LOW (andop);
11239 if (HOST_BITS_PER_WIDE_INT < 64)
11240 high = CONST_DOUBLE_HIGH (andop);
11241
11242 if ((low == 0 && (HOST_BITS_PER_WIDE_INT >= 64 || high == 0))
11243 || (low == ~0 && (HOST_BITS_PER_WIDE_INT >= 64 || high == ~0)))
11244 return 0;
11245
11246 if (HOST_BITS_PER_WIDE_INT < 64 && low == 0)
11247 {
11248 shift_mask_high = ~0;
11249 if (INTVAL (shiftop) > 32)
11250 shift_mask_high <<= INTVAL (shiftop) - 32;
11251
11252 lsb = high & -high;
11253
11254 if (-lsb != shift_mask_high || INTVAL (shiftop) < 32)
11255 return 0;
11256
11257 high = ~high;
11258 high &= -lsb;
11259
11260 lsb = high & -high;
11261 return high == -lsb;
11262 }
11263
11264 shift_mask_low = ~0;
11265 shift_mask_low <<= INTVAL (shiftop);
11266
11267 lsb = low & -low;
11268
11269 if (-lsb != shift_mask_low)
11270 return 0;
11271
11272 if (HOST_BITS_PER_WIDE_INT < 64)
11273 high = ~high;
11274 low = ~low;
11275 low &= -lsb;
11276
11277 if (HOST_BITS_PER_WIDE_INT < 64 && low == 0)
11278 {
11279 lsb = high & -high;
11280 return high == -lsb;
11281 }
11282
11283 lsb = low & -low;
11284 return low == -lsb && (HOST_BITS_PER_WIDE_INT >= 64 || high == ~0);
11285 }
11286 else
11287 return 0;
11288 }
11289
11290 /* Return 1 if ANDOP is a mask suitable for use with an rldicr insn
11291 to perform a left shift. It must have SHIFTOP or more least
11292 significant 0's, with the remainder of the word 1's. */
11293
11294 int
11295 includes_rldicr_lshift_p (rtx shiftop, rtx andop)
11296 {
11297 if (GET_CODE (andop) == CONST_INT)
11298 {
11299 HOST_WIDE_INT c, lsb, shift_mask;
11300
11301 shift_mask = ~0;
11302 shift_mask <<= INTVAL (shiftop);
11303 c = INTVAL (andop);
11304
11305 /* Find the least significant one bit. */
11306 lsb = c & -c;
11307
11308 /* It must be covered by the shift mask.
11309 This test also rejects c == 0. */
11310 if ((lsb & shift_mask) == 0)
11311 return 0;
11312
11313 /* Check we have all 1's above the transition, and reject all 1's. */
11314 return c == -lsb && lsb != 1;
11315 }
11316 else if (GET_CODE (andop) == CONST_DOUBLE
11317 && (GET_MODE (andop) == VOIDmode || GET_MODE (andop) == DImode))
11318 {
11319 HOST_WIDE_INT low, lsb, shift_mask_low;
11320
11321 low = CONST_DOUBLE_LOW (andop);
11322
11323 if (HOST_BITS_PER_WIDE_INT < 64)
11324 {
11325 HOST_WIDE_INT high, shift_mask_high;
11326
11327 high = CONST_DOUBLE_HIGH (andop);
11328
11329 if (low == 0)
11330 {
11331 shift_mask_high = ~0;
11332 if (INTVAL (shiftop) > 32)
11333 shift_mask_high <<= INTVAL (shiftop) - 32;
11334
11335 lsb = high & -high;
11336
11337 if ((lsb & shift_mask_high) == 0)
11338 return 0;
11339
11340 return high == -lsb;
11341 }
11342 if (high != ~0)
11343 return 0;
11344 }
11345
11346 shift_mask_low = ~0;
11347 shift_mask_low <<= INTVAL (shiftop);
11348
11349 lsb = low & -low;
11350
11351 if ((lsb & shift_mask_low) == 0)
11352 return 0;
11353
11354 return low == -lsb && lsb != 1;
11355 }
11356 else
11357 return 0;
11358 }
11359
11360 /* Return 1 if operands will generate a valid arguments to rlwimi
11361 instruction for insert with right shift in 64-bit mode. The mask may
11362 not start on the first bit or stop on the last bit because wrap-around
11363 effects of instruction do not correspond to semantics of RTL insn. */
11364
11365 int
11366 insvdi_rshift_rlwimi_p (rtx sizeop, rtx startop, rtx shiftop)
11367 {
11368 if (INTVAL (startop) > 32
11369 && INTVAL (startop) < 64
11370 && INTVAL (sizeop) > 1
11371 && INTVAL (sizeop) + INTVAL (startop) < 64
11372 && INTVAL (shiftop) > 0
11373 && INTVAL (sizeop) + INTVAL (shiftop) < 32
11374 && (64 - (INTVAL (shiftop) & 63)) >= INTVAL (sizeop))
11375 return 1;
11376
11377 return 0;
11378 }
11379
11380 /* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates
11381 for lfq and stfq insns iff the registers are hard registers. */
11382
11383 int
11384 registers_ok_for_quad_peep (rtx reg1, rtx reg2)
11385 {
11386 /* We might have been passed a SUBREG. */
11387 if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
11388 return 0;
11389
11390 /* We might have been passed non floating point registers. */
11391 if (!FP_REGNO_P (REGNO (reg1))
11392 || !FP_REGNO_P (REGNO (reg2)))
11393 return 0;
11394
11395 return (REGNO (reg1) == REGNO (reg2) - 1);
11396 }
11397
11398 /* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn.
11399 addr1 and addr2 must be in consecutive memory locations
11400 (addr2 == addr1 + 8). */
11401
11402 int
11403 mems_ok_for_quad_peep (rtx mem1, rtx mem2)
11404 {
11405 rtx addr1, addr2;
11406 unsigned int reg1, reg2;
11407 int offset1, offset2;
11408
11409 /* The mems cannot be volatile. */
11410 if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2))
11411 return 0;
11412
11413 addr1 = XEXP (mem1, 0);
11414 addr2 = XEXP (mem2, 0);
11415
11416 /* Extract an offset (if used) from the first addr. */
11417 if (GET_CODE (addr1) == PLUS)
11418 {
11419 /* If not a REG, return zero. */
11420 if (GET_CODE (XEXP (addr1, 0)) != REG)
11421 return 0;
11422 else
11423 {
11424 reg1 = REGNO (XEXP (addr1, 0));
11425 /* The offset must be constant! */
11426 if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
11427 return 0;
11428 offset1 = INTVAL (XEXP (addr1, 1));
11429 }
11430 }
11431 else if (GET_CODE (addr1) != REG)
11432 return 0;
11433 else
11434 {
11435 reg1 = REGNO (addr1);
11436 /* This was a simple (mem (reg)) expression. Offset is 0. */
11437 offset1 = 0;
11438 }
11439
11440 /* And now for the second addr. */
11441 if (GET_CODE (addr2) == PLUS)
11442 {
11443 /* If not a REG, return zero. */
11444 if (GET_CODE (XEXP (addr2, 0)) != REG)
11445 return 0;
11446 else
11447 {
11448 reg2 = REGNO (XEXP (addr2, 0));
11449 /* The offset must be constant. */
11450 if (GET_CODE (XEXP (addr2, 1)) != CONST_INT)
11451 return 0;
11452 offset2 = INTVAL (XEXP (addr2, 1));
11453 }
11454 }
11455 else if (GET_CODE (addr2) != REG)
11456 return 0;
11457 else
11458 {
11459 reg2 = REGNO (addr2);
11460 /* This was a simple (mem (reg)) expression. Offset is 0. */
11461 offset2 = 0;
11462 }
11463
11464 /* Both of these must have the same base register. */
11465 if (reg1 != reg2)
11466 return 0;
11467
11468 /* The offset for the second addr must be 8 more than the first addr. */
11469 if (offset2 != offset1 + 8)
11470 return 0;
11471
11472 /* All the tests passed. addr1 and addr2 are valid for lfq or stfq
11473 instructions. */
11474 return 1;
11475 }
11476 \f
11477
11478 rtx
11479 rs6000_secondary_memory_needed_rtx (enum machine_mode mode)
11480 {
11481 static bool eliminated = false;
11482 if (mode != SDmode)
11483 return assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
11484 else
11485 {
11486 rtx mem = cfun->machine->sdmode_stack_slot;
11487 gcc_assert (mem != NULL_RTX);
11488
11489 if (!eliminated)
11490 {
11491 mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
11492 cfun->machine->sdmode_stack_slot = mem;
11493 eliminated = true;
11494 }
11495 return mem;
11496 }
11497 }
11498
11499 static tree
11500 rs6000_check_sdmode (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11501 {
11502 /* Don't walk into types. */
11503 if (*tp == NULL_TREE || *tp == error_mark_node || TYPE_P (*tp))
11504 {
11505 *walk_subtrees = 0;
11506 return NULL_TREE;
11507 }
11508
11509 switch (TREE_CODE (*tp))
11510 {
11511 case VAR_DECL:
11512 case PARM_DECL:
11513 case FIELD_DECL:
11514 case RESULT_DECL:
11515 case REAL_CST:
11516 case INDIRECT_REF:
11517 case ALIGN_INDIRECT_REF:
11518 case MISALIGNED_INDIRECT_REF:
11519 case VIEW_CONVERT_EXPR:
11520 if (TYPE_MODE (TREE_TYPE (*tp)) == SDmode)
11521 return *tp;
11522 break;
11523 default:
11524 break;
11525 }
11526
11527 return NULL_TREE;
11528 }
11529
11530
11531 /* Allocate a 64-bit stack slot to be used for copying SDmode
11532 values through if this function has any SDmode references. */
11533
11534 static void
11535 rs6000_alloc_sdmode_stack_slot (void)
11536 {
11537 tree t;
11538 basic_block bb;
11539 gimple_stmt_iterator gsi;
11540
11541 gcc_assert (cfun->machine->sdmode_stack_slot == NULL_RTX);
11542
11543 FOR_EACH_BB (bb)
11544 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
11545 {
11546 tree ret = walk_gimple_op (gsi_stmt (gsi), rs6000_check_sdmode, NULL);
11547 if (ret)
11548 {
11549 rtx stack = assign_stack_local (DDmode, GET_MODE_SIZE (DDmode), 0);
11550 cfun->machine->sdmode_stack_slot = adjust_address_nv (stack,
11551 SDmode, 0);
11552 return;
11553 }
11554 }
11555
11556 /* Check for any SDmode parameters of the function. */
11557 for (t = DECL_ARGUMENTS (cfun->decl); t; t = TREE_CHAIN (t))
11558 {
11559 if (TREE_TYPE (t) == error_mark_node)
11560 continue;
11561
11562 if (TYPE_MODE (TREE_TYPE (t)) == SDmode
11563 || TYPE_MODE (DECL_ARG_TYPE (t)) == SDmode)
11564 {
11565 rtx stack = assign_stack_local (DDmode, GET_MODE_SIZE (DDmode), 0);
11566 cfun->machine->sdmode_stack_slot = adjust_address_nv (stack,
11567 SDmode, 0);
11568 return;
11569 }
11570 }
11571 }
11572
11573 static void
11574 rs6000_instantiate_decls (void)
11575 {
11576 if (cfun->machine->sdmode_stack_slot != NULL_RTX)
11577 instantiate_decl_rtl (cfun->machine->sdmode_stack_slot);
11578 }
11579
11580 /* Return the register class of a scratch register needed to copy IN into
11581 or out of a register in RCLASS in MODE. If it can be done directly,
11582 NO_REGS is returned. */
11583
11584 enum reg_class
11585 rs6000_secondary_reload_class (enum reg_class rclass,
11586 enum machine_mode mode ATTRIBUTE_UNUSED,
11587 rtx in)
11588 {
11589 int regno;
11590
11591 if (TARGET_ELF || (DEFAULT_ABI == ABI_DARWIN
11592 #if TARGET_MACHO
11593 && MACHOPIC_INDIRECT
11594 #endif
11595 ))
11596 {
11597 /* We cannot copy a symbolic operand directly into anything
11598 other than BASE_REGS for TARGET_ELF. So indicate that a
11599 register from BASE_REGS is needed as an intermediate
11600 register.
11601
11602 On Darwin, pic addresses require a load from memory, which
11603 needs a base register. */
11604 if (rclass != BASE_REGS
11605 && (GET_CODE (in) == SYMBOL_REF
11606 || GET_CODE (in) == HIGH
11607 || GET_CODE (in) == LABEL_REF
11608 || GET_CODE (in) == CONST))
11609 return BASE_REGS;
11610 }
11611
11612 if (GET_CODE (in) == REG)
11613 {
11614 regno = REGNO (in);
11615 if (regno >= FIRST_PSEUDO_REGISTER)
11616 {
11617 regno = true_regnum (in);
11618 if (regno >= FIRST_PSEUDO_REGISTER)
11619 regno = -1;
11620 }
11621 }
11622 else if (GET_CODE (in) == SUBREG)
11623 {
11624 regno = true_regnum (in);
11625 if (regno >= FIRST_PSEUDO_REGISTER)
11626 regno = -1;
11627 }
11628 else
11629 regno = -1;
11630
11631 /* We can place anything into GENERAL_REGS and can put GENERAL_REGS
11632 into anything. */
11633 if (rclass == GENERAL_REGS || rclass == BASE_REGS
11634 || (regno >= 0 && INT_REGNO_P (regno)))
11635 return NO_REGS;
11636
11637 /* Constants, memory, and FP registers can go into FP registers. */
11638 if ((regno == -1 || FP_REGNO_P (regno))
11639 && (rclass == FLOAT_REGS || rclass == NON_SPECIAL_REGS))
11640 return (mode != SDmode) ? NO_REGS : GENERAL_REGS;
11641
11642 /* Memory, and AltiVec registers can go into AltiVec registers. */
11643 if ((regno == -1 || ALTIVEC_REGNO_P (regno))
11644 && rclass == ALTIVEC_REGS)
11645 return NO_REGS;
11646
11647 /* We can copy among the CR registers. */
11648 if ((rclass == CR_REGS || rclass == CR0_REGS)
11649 && regno >= 0 && CR_REGNO_P (regno))
11650 return NO_REGS;
11651
11652 /* Otherwise, we need GENERAL_REGS. */
11653 return GENERAL_REGS;
11654 }
11655 \f
11656 /* Given a comparison operation, return the bit number in CCR to test. We
11657 know this is a valid comparison.
11658
11659 SCC_P is 1 if this is for an scc. That means that %D will have been
11660 used instead of %C, so the bits will be in different places.
11661
11662 Return -1 if OP isn't a valid comparison for some reason. */
11663
11664 int
11665 ccr_bit (rtx op, int scc_p)
11666 {
11667 enum rtx_code code = GET_CODE (op);
11668 enum machine_mode cc_mode;
11669 int cc_regnum;
11670 int base_bit;
11671 rtx reg;
11672
11673 if (!COMPARISON_P (op))
11674 return -1;
11675
11676 reg = XEXP (op, 0);
11677
11678 gcc_assert (GET_CODE (reg) == REG && CR_REGNO_P (REGNO (reg)));
11679
11680 cc_mode = GET_MODE (reg);
11681 cc_regnum = REGNO (reg);
11682 base_bit = 4 * (cc_regnum - CR0_REGNO);
11683
11684 validate_condition_mode (code, cc_mode);
11685
11686 /* When generating a sCOND operation, only positive conditions are
11687 allowed. */
11688 gcc_assert (!scc_p
11689 || code == EQ || code == GT || code == LT || code == UNORDERED
11690 || code == GTU || code == LTU);
11691
11692 switch (code)
11693 {
11694 case NE:
11695 return scc_p ? base_bit + 3 : base_bit + 2;
11696 case EQ:
11697 return base_bit + 2;
11698 case GT: case GTU: case UNLE:
11699 return base_bit + 1;
11700 case LT: case LTU: case UNGE:
11701 return base_bit;
11702 case ORDERED: case UNORDERED:
11703 return base_bit + 3;
11704
11705 case GE: case GEU:
11706 /* If scc, we will have done a cror to put the bit in the
11707 unordered position. So test that bit. For integer, this is ! LT
11708 unless this is an scc insn. */
11709 return scc_p ? base_bit + 3 : base_bit;
11710
11711 case LE: case LEU:
11712 return scc_p ? base_bit + 3 : base_bit + 1;
11713
11714 default:
11715 gcc_unreachable ();
11716 }
11717 }
11718 \f
11719 /* Return the GOT register. */
11720
11721 rtx
11722 rs6000_got_register (rtx value ATTRIBUTE_UNUSED)
11723 {
11724 /* The second flow pass currently (June 1999) can't update
11725 regs_ever_live without disturbing other parts of the compiler, so
11726 update it here to make the prolog/epilogue code happy. */
11727 if (!can_create_pseudo_p ()
11728 && !df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM))
11729 df_set_regs_ever_live (RS6000_PIC_OFFSET_TABLE_REGNUM, true);
11730
11731 crtl->uses_pic_offset_table = 1;
11732
11733 return pic_offset_table_rtx;
11734 }
11735 \f
11736 /* Function to init struct machine_function.
11737 This will be called, via a pointer variable,
11738 from push_function_context. */
11739
11740 static struct machine_function *
11741 rs6000_init_machine_status (void)
11742 {
11743 return GGC_CNEW (machine_function);
11744 }
11745 \f
11746 /* These macros test for integers and extract the low-order bits. */
11747 #define INT_P(X) \
11748 ((GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE) \
11749 && GET_MODE (X) == VOIDmode)
11750
11751 #define INT_LOWPART(X) \
11752 (GET_CODE (X) == CONST_INT ? INTVAL (X) : CONST_DOUBLE_LOW (X))
11753
11754 int
11755 extract_MB (rtx op)
11756 {
11757 int i;
11758 unsigned long val = INT_LOWPART (op);
11759
11760 /* If the high bit is zero, the value is the first 1 bit we find
11761 from the left. */
11762 if ((val & 0x80000000) == 0)
11763 {
11764 gcc_assert (val & 0xffffffff);
11765
11766 i = 1;
11767 while (((val <<= 1) & 0x80000000) == 0)
11768 ++i;
11769 return i;
11770 }
11771
11772 /* If the high bit is set and the low bit is not, or the mask is all
11773 1's, the value is zero. */
11774 if ((val & 1) == 0 || (val & 0xffffffff) == 0xffffffff)
11775 return 0;
11776
11777 /* Otherwise we have a wrap-around mask. Look for the first 0 bit
11778 from the right. */
11779 i = 31;
11780 while (((val >>= 1) & 1) != 0)
11781 --i;
11782
11783 return i;
11784 }
11785
11786 int
11787 extract_ME (rtx op)
11788 {
11789 int i;
11790 unsigned long val = INT_LOWPART (op);
11791
11792 /* If the low bit is zero, the value is the first 1 bit we find from
11793 the right. */
11794 if ((val & 1) == 0)
11795 {
11796 gcc_assert (val & 0xffffffff);
11797
11798 i = 30;
11799 while (((val >>= 1) & 1) == 0)
11800 --i;
11801
11802 return i;
11803 }
11804
11805 /* If the low bit is set and the high bit is not, or the mask is all
11806 1's, the value is 31. */
11807 if ((val & 0x80000000) == 0 || (val & 0xffffffff) == 0xffffffff)
11808 return 31;
11809
11810 /* Otherwise we have a wrap-around mask. Look for the first 0 bit
11811 from the left. */
11812 i = 0;
11813 while (((val <<= 1) & 0x80000000) != 0)
11814 ++i;
11815
11816 return i;
11817 }
11818
11819 /* Locate some local-dynamic symbol still in use by this function
11820 so that we can print its name in some tls_ld pattern. */
11821
11822 static const char *
11823 rs6000_get_some_local_dynamic_name (void)
11824 {
11825 rtx insn;
11826
11827 if (cfun->machine->some_ld_name)
11828 return cfun->machine->some_ld_name;
11829
11830 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
11831 if (INSN_P (insn)
11832 && for_each_rtx (&PATTERN (insn),
11833 rs6000_get_some_local_dynamic_name_1, 0))
11834 return cfun->machine->some_ld_name;
11835
11836 gcc_unreachable ();
11837 }
11838
11839 /* Helper function for rs6000_get_some_local_dynamic_name. */
11840
11841 static int
11842 rs6000_get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
11843 {
11844 rtx x = *px;
11845
11846 if (GET_CODE (x) == SYMBOL_REF)
11847 {
11848 const char *str = XSTR (x, 0);
11849 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
11850 {
11851 cfun->machine->some_ld_name = str;
11852 return 1;
11853 }
11854 }
11855
11856 return 0;
11857 }
11858
11859 /* Write out a function code label. */
11860
11861 void
11862 rs6000_output_function_entry (FILE *file, const char *fname)
11863 {
11864 if (fname[0] != '.')
11865 {
11866 switch (DEFAULT_ABI)
11867 {
11868 default:
11869 gcc_unreachable ();
11870
11871 case ABI_AIX:
11872 if (DOT_SYMBOLS)
11873 putc ('.', file);
11874 else
11875 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "L.");
11876 break;
11877
11878 case ABI_V4:
11879 case ABI_DARWIN:
11880 break;
11881 }
11882 }
11883 if (TARGET_AIX)
11884 RS6000_OUTPUT_BASENAME (file, fname);
11885 else
11886 assemble_name (file, fname);
11887 }
11888
11889 /* Print an operand. Recognize special options, documented below. */
11890
11891 #if TARGET_ELF
11892 #define SMALL_DATA_RELOC ((rs6000_sdata == SDATA_EABI) ? "sda21" : "sdarel")
11893 #define SMALL_DATA_REG ((rs6000_sdata == SDATA_EABI) ? 0 : 13)
11894 #else
11895 #define SMALL_DATA_RELOC "sda21"
11896 #define SMALL_DATA_REG 0
11897 #endif
11898
11899 void
11900 print_operand (FILE *file, rtx x, int code)
11901 {
11902 int i;
11903 HOST_WIDE_INT val;
11904 unsigned HOST_WIDE_INT uval;
11905
11906 switch (code)
11907 {
11908 case '.':
11909 /* Write out an instruction after the call which may be replaced
11910 with glue code by the loader. This depends on the AIX version. */
11911 asm_fprintf (file, RS6000_CALL_GLUE);
11912 return;
11913
11914 /* %a is output_address. */
11915
11916 case 'A':
11917 /* If X is a constant integer whose low-order 5 bits are zero,
11918 write 'l'. Otherwise, write 'r'. This is a kludge to fix a bug
11919 in the AIX assembler where "sri" with a zero shift count
11920 writes a trash instruction. */
11921 if (GET_CODE (x) == CONST_INT && (INTVAL (x) & 31) == 0)
11922 putc ('l', file);
11923 else
11924 putc ('r', file);
11925 return;
11926
11927 case 'b':
11928 /* If constant, low-order 16 bits of constant, unsigned.
11929 Otherwise, write normally. */
11930 if (INT_P (x))
11931 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 0xffff);
11932 else
11933 print_operand (file, x, 0);
11934 return;
11935
11936 case 'B':
11937 /* If the low-order bit is zero, write 'r'; otherwise, write 'l'
11938 for 64-bit mask direction. */
11939 putc (((INT_LOWPART (x) & 1) == 0 ? 'r' : 'l'), file);
11940 return;
11941
11942 /* %c is output_addr_const if a CONSTANT_ADDRESS_P, otherwise
11943 output_operand. */
11944
11945 case 'c':
11946 /* X is a CR register. Print the number of the GT bit of the CR. */
11947 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
11948 output_operand_lossage ("invalid %%E value");
11949 else
11950 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 1);
11951 return;
11952
11953 case 'D':
11954 /* Like 'J' but get to the GT bit only. */
11955 gcc_assert (GET_CODE (x) == REG);
11956
11957 /* Bit 1 is GT bit. */
11958 i = 4 * (REGNO (x) - CR0_REGNO) + 1;
11959
11960 /* Add one for shift count in rlinm for scc. */
11961 fprintf (file, "%d", i + 1);
11962 return;
11963
11964 case 'E':
11965 /* X is a CR register. Print the number of the EQ bit of the CR */
11966 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
11967 output_operand_lossage ("invalid %%E value");
11968 else
11969 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 2);
11970 return;
11971
11972 case 'f':
11973 /* X is a CR register. Print the shift count needed to move it
11974 to the high-order four bits. */
11975 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
11976 output_operand_lossage ("invalid %%f value");
11977 else
11978 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO));
11979 return;
11980
11981 case 'F':
11982 /* Similar, but print the count for the rotate in the opposite
11983 direction. */
11984 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
11985 output_operand_lossage ("invalid %%F value");
11986 else
11987 fprintf (file, "%d", 32 - 4 * (REGNO (x) - CR0_REGNO));
11988 return;
11989
11990 case 'G':
11991 /* X is a constant integer. If it is negative, print "m",
11992 otherwise print "z". This is to make an aze or ame insn. */
11993 if (GET_CODE (x) != CONST_INT)
11994 output_operand_lossage ("invalid %%G value");
11995 else if (INTVAL (x) >= 0)
11996 putc ('z', file);
11997 else
11998 putc ('m', file);
11999 return;
12000
12001 case 'h':
12002 /* If constant, output low-order five bits. Otherwise, write
12003 normally. */
12004 if (INT_P (x))
12005 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 31);
12006 else
12007 print_operand (file, x, 0);
12008 return;
12009
12010 case 'H':
12011 /* If constant, output low-order six bits. Otherwise, write
12012 normally. */
12013 if (INT_P (x))
12014 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 63);
12015 else
12016 print_operand (file, x, 0);
12017 return;
12018
12019 case 'I':
12020 /* Print `i' if this is a constant, else nothing. */
12021 if (INT_P (x))
12022 putc ('i', file);
12023 return;
12024
12025 case 'j':
12026 /* Write the bit number in CCR for jump. */
12027 i = ccr_bit (x, 0);
12028 if (i == -1)
12029 output_operand_lossage ("invalid %%j code");
12030 else
12031 fprintf (file, "%d", i);
12032 return;
12033
12034 case 'J':
12035 /* Similar, but add one for shift count in rlinm for scc and pass
12036 scc flag to `ccr_bit'. */
12037 i = ccr_bit (x, 1);
12038 if (i == -1)
12039 output_operand_lossage ("invalid %%J code");
12040 else
12041 /* If we want bit 31, write a shift count of zero, not 32. */
12042 fprintf (file, "%d", i == 31 ? 0 : i + 1);
12043 return;
12044
12045 case 'k':
12046 /* X must be a constant. Write the 1's complement of the
12047 constant. */
12048 if (! INT_P (x))
12049 output_operand_lossage ("invalid %%k value");
12050 else
12051 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INT_LOWPART (x));
12052 return;
12053
12054 case 'K':
12055 /* X must be a symbolic constant on ELF. Write an
12056 expression suitable for an 'addi' that adds in the low 16
12057 bits of the MEM. */
12058 if (GET_CODE (x) != CONST)
12059 {
12060 print_operand_address (file, x);
12061 fputs ("@l", file);
12062 }
12063 else
12064 {
12065 if (GET_CODE (XEXP (x, 0)) != PLUS
12066 || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
12067 && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
12068 || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
12069 output_operand_lossage ("invalid %%K value");
12070 print_operand_address (file, XEXP (XEXP (x, 0), 0));
12071 fputs ("@l", file);
12072 /* For GNU as, there must be a non-alphanumeric character
12073 between 'l' and the number. The '-' is added by
12074 print_operand() already. */
12075 if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0)
12076 fputs ("+", file);
12077 print_operand (file, XEXP (XEXP (x, 0), 1), 0);
12078 }
12079 return;
12080
12081 /* %l is output_asm_label. */
12082
12083 case 'L':
12084 /* Write second word of DImode or DFmode reference. Works on register
12085 or non-indexed memory only. */
12086 if (GET_CODE (x) == REG)
12087 fputs (reg_names[REGNO (x) + 1], file);
12088 else if (GET_CODE (x) == MEM)
12089 {
12090 /* Handle possible auto-increment. Since it is pre-increment and
12091 we have already done it, we can just use an offset of word. */
12092 if (GET_CODE (XEXP (x, 0)) == PRE_INC
12093 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
12094 output_address (plus_constant (XEXP (XEXP (x, 0), 0),
12095 UNITS_PER_WORD));
12096 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
12097 output_address (plus_constant (XEXP (XEXP (x, 0), 0),
12098 UNITS_PER_WORD));
12099 else
12100 output_address (XEXP (adjust_address_nv (x, SImode,
12101 UNITS_PER_WORD),
12102 0));
12103
12104 if (small_data_operand (x, GET_MODE (x)))
12105 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
12106 reg_names[SMALL_DATA_REG]);
12107 }
12108 return;
12109
12110 case 'm':
12111 /* MB value for a mask operand. */
12112 if (! mask_operand (x, SImode))
12113 output_operand_lossage ("invalid %%m value");
12114
12115 fprintf (file, "%d", extract_MB (x));
12116 return;
12117
12118 case 'M':
12119 /* ME value for a mask operand. */
12120 if (! mask_operand (x, SImode))
12121 output_operand_lossage ("invalid %%M value");
12122
12123 fprintf (file, "%d", extract_ME (x));
12124 return;
12125
12126 /* %n outputs the negative of its operand. */
12127
12128 case 'N':
12129 /* Write the number of elements in the vector times 4. */
12130 if (GET_CODE (x) != PARALLEL)
12131 output_operand_lossage ("invalid %%N value");
12132 else
12133 fprintf (file, "%d", XVECLEN (x, 0) * 4);
12134 return;
12135
12136 case 'O':
12137 /* Similar, but subtract 1 first. */
12138 if (GET_CODE (x) != PARALLEL)
12139 output_operand_lossage ("invalid %%O value");
12140 else
12141 fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4);
12142 return;
12143
12144 case 'p':
12145 /* X is a CONST_INT that is a power of two. Output the logarithm. */
12146 if (! INT_P (x)
12147 || INT_LOWPART (x) < 0
12148 || (i = exact_log2 (INT_LOWPART (x))) < 0)
12149 output_operand_lossage ("invalid %%p value");
12150 else
12151 fprintf (file, "%d", i);
12152 return;
12153
12154 case 'P':
12155 /* The operand must be an indirect memory reference. The result
12156 is the register name. */
12157 if (GET_CODE (x) != MEM || GET_CODE (XEXP (x, 0)) != REG
12158 || REGNO (XEXP (x, 0)) >= 32)
12159 output_operand_lossage ("invalid %%P value");
12160 else
12161 fputs (reg_names[REGNO (XEXP (x, 0))], file);
12162 return;
12163
12164 case 'q':
12165 /* This outputs the logical code corresponding to a boolean
12166 expression. The expression may have one or both operands
12167 negated (if one, only the first one). For condition register
12168 logical operations, it will also treat the negated
12169 CR codes as NOTs, but not handle NOTs of them. */
12170 {
12171 const char *const *t = 0;
12172 const char *s;
12173 enum rtx_code code = GET_CODE (x);
12174 static const char * const tbl[3][3] = {
12175 { "and", "andc", "nor" },
12176 { "or", "orc", "nand" },
12177 { "xor", "eqv", "xor" } };
12178
12179 if (code == AND)
12180 t = tbl[0];
12181 else if (code == IOR)
12182 t = tbl[1];
12183 else if (code == XOR)
12184 t = tbl[2];
12185 else
12186 output_operand_lossage ("invalid %%q value");
12187
12188 if (GET_CODE (XEXP (x, 0)) != NOT)
12189 s = t[0];
12190 else
12191 {
12192 if (GET_CODE (XEXP (x, 1)) == NOT)
12193 s = t[2];
12194 else
12195 s = t[1];
12196 }
12197
12198 fputs (s, file);
12199 }
12200 return;
12201
12202 case 'Q':
12203 if (TARGET_MFCRF)
12204 fputc (',', file);
12205 /* FALLTHRU */
12206 else
12207 return;
12208
12209 case 'R':
12210 /* X is a CR register. Print the mask for `mtcrf'. */
12211 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
12212 output_operand_lossage ("invalid %%R value");
12213 else
12214 fprintf (file, "%d", 128 >> (REGNO (x) - CR0_REGNO));
12215 return;
12216
12217 case 's':
12218 /* Low 5 bits of 32 - value */
12219 if (! INT_P (x))
12220 output_operand_lossage ("invalid %%s value");
12221 else
12222 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (32 - INT_LOWPART (x)) & 31);
12223 return;
12224
12225 case 'S':
12226 /* PowerPC64 mask position. All 0's is excluded.
12227 CONST_INT 32-bit mask is considered sign-extended so any
12228 transition must occur within the CONST_INT, not on the boundary. */
12229 if (! mask64_operand (x, DImode))
12230 output_operand_lossage ("invalid %%S value");
12231
12232 uval = INT_LOWPART (x);
12233
12234 if (uval & 1) /* Clear Left */
12235 {
12236 #if HOST_BITS_PER_WIDE_INT > 64
12237 uval &= ((unsigned HOST_WIDE_INT) 1 << 64) - 1;
12238 #endif
12239 i = 64;
12240 }
12241 else /* Clear Right */
12242 {
12243 uval = ~uval;
12244 #if HOST_BITS_PER_WIDE_INT > 64
12245 uval &= ((unsigned HOST_WIDE_INT) 1 << 64) - 1;
12246 #endif
12247 i = 63;
12248 }
12249 while (uval != 0)
12250 --i, uval >>= 1;
12251 gcc_assert (i >= 0);
12252 fprintf (file, "%d", i);
12253 return;
12254
12255 case 't':
12256 /* Like 'J' but get to the OVERFLOW/UNORDERED bit. */
12257 gcc_assert (GET_CODE (x) == REG && GET_MODE (x) == CCmode);
12258
12259 /* Bit 3 is OV bit. */
12260 i = 4 * (REGNO (x) - CR0_REGNO) + 3;
12261
12262 /* If we want bit 31, write a shift count of zero, not 32. */
12263 fprintf (file, "%d", i == 31 ? 0 : i + 1);
12264 return;
12265
12266 case 'T':
12267 /* Print the symbolic name of a branch target register. */
12268 if (GET_CODE (x) != REG || (REGNO (x) != LR_REGNO
12269 && REGNO (x) != CTR_REGNO))
12270 output_operand_lossage ("invalid %%T value");
12271 else if (REGNO (x) == LR_REGNO)
12272 fputs (TARGET_NEW_MNEMONICS ? "lr" : "r", file);
12273 else
12274 fputs ("ctr", file);
12275 return;
12276
12277 case 'u':
12278 /* High-order 16 bits of constant for use in unsigned operand. */
12279 if (! INT_P (x))
12280 output_operand_lossage ("invalid %%u value");
12281 else
12282 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
12283 (INT_LOWPART (x) >> 16) & 0xffff);
12284 return;
12285
12286 case 'v':
12287 /* High-order 16 bits of constant for use in signed operand. */
12288 if (! INT_P (x))
12289 output_operand_lossage ("invalid %%v value");
12290 else
12291 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
12292 (INT_LOWPART (x) >> 16) & 0xffff);
12293 return;
12294
12295 case 'U':
12296 /* Print `u' if this has an auto-increment or auto-decrement. */
12297 if (GET_CODE (x) == MEM
12298 && (GET_CODE (XEXP (x, 0)) == PRE_INC
12299 || GET_CODE (XEXP (x, 0)) == PRE_DEC
12300 || GET_CODE (XEXP (x, 0)) == PRE_MODIFY))
12301 putc ('u', file);
12302 return;
12303
12304 case 'V':
12305 /* Print the trap code for this operand. */
12306 switch (GET_CODE (x))
12307 {
12308 case EQ:
12309 fputs ("eq", file); /* 4 */
12310 break;
12311 case NE:
12312 fputs ("ne", file); /* 24 */
12313 break;
12314 case LT:
12315 fputs ("lt", file); /* 16 */
12316 break;
12317 case LE:
12318 fputs ("le", file); /* 20 */
12319 break;
12320 case GT:
12321 fputs ("gt", file); /* 8 */
12322 break;
12323 case GE:
12324 fputs ("ge", file); /* 12 */
12325 break;
12326 case LTU:
12327 fputs ("llt", file); /* 2 */
12328 break;
12329 case LEU:
12330 fputs ("lle", file); /* 6 */
12331 break;
12332 case GTU:
12333 fputs ("lgt", file); /* 1 */
12334 break;
12335 case GEU:
12336 fputs ("lge", file); /* 5 */
12337 break;
12338 default:
12339 gcc_unreachable ();
12340 }
12341 break;
12342
12343 case 'w':
12344 /* If constant, low-order 16 bits of constant, signed. Otherwise, write
12345 normally. */
12346 if (INT_P (x))
12347 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
12348 ((INT_LOWPART (x) & 0xffff) ^ 0x8000) - 0x8000);
12349 else
12350 print_operand (file, x, 0);
12351 return;
12352
12353 case 'W':
12354 /* MB value for a PowerPC64 rldic operand. */
12355 val = (GET_CODE (x) == CONST_INT
12356 ? INTVAL (x) : CONST_DOUBLE_HIGH (x));
12357
12358 if (val < 0)
12359 i = -1;
12360 else
12361 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
12362 if ((val <<= 1) < 0)
12363 break;
12364
12365 #if HOST_BITS_PER_WIDE_INT == 32
12366 if (GET_CODE (x) == CONST_INT && i >= 0)
12367 i += 32; /* zero-extend high-part was all 0's */
12368 else if (GET_CODE (x) == CONST_DOUBLE && i == 32)
12369 {
12370 val = CONST_DOUBLE_LOW (x);
12371
12372 gcc_assert (val);
12373 if (val < 0)
12374 --i;
12375 else
12376 for ( ; i < 64; i++)
12377 if ((val <<= 1) < 0)
12378 break;
12379 }
12380 #endif
12381
12382 fprintf (file, "%d", i + 1);
12383 return;
12384
12385 case 'X':
12386 if (GET_CODE (x) == MEM
12387 && (legitimate_indexed_address_p (XEXP (x, 0), 0)
12388 || (GET_CODE (XEXP (x, 0)) == PRE_MODIFY
12389 && legitimate_indexed_address_p (XEXP (XEXP (x, 0), 1), 0))))
12390 putc ('x', file);
12391 return;
12392
12393 case 'Y':
12394 /* Like 'L', for third word of TImode */
12395 if (GET_CODE (x) == REG)
12396 fputs (reg_names[REGNO (x) + 2], file);
12397 else if (GET_CODE (x) == MEM)
12398 {
12399 if (GET_CODE (XEXP (x, 0)) == PRE_INC
12400 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
12401 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8));
12402 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
12403 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8));
12404 else
12405 output_address (XEXP (adjust_address_nv (x, SImode, 8), 0));
12406 if (small_data_operand (x, GET_MODE (x)))
12407 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
12408 reg_names[SMALL_DATA_REG]);
12409 }
12410 return;
12411
12412 case 'z':
12413 /* X is a SYMBOL_REF. Write out the name preceded by a
12414 period and without any trailing data in brackets. Used for function
12415 names. If we are configured for System V (or the embedded ABI) on
12416 the PowerPC, do not emit the period, since those systems do not use
12417 TOCs and the like. */
12418 gcc_assert (GET_CODE (x) == SYMBOL_REF);
12419
12420 /* Mark the decl as referenced so that cgraph will output the
12421 function. */
12422 if (SYMBOL_REF_DECL (x))
12423 mark_decl_referenced (SYMBOL_REF_DECL (x));
12424
12425 /* For macho, check to see if we need a stub. */
12426 if (TARGET_MACHO)
12427 {
12428 const char *name = XSTR (x, 0);
12429 #if TARGET_MACHO
12430 if (MACHOPIC_INDIRECT
12431 && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION)
12432 name = machopic_indirection_name (x, /*stub_p=*/true);
12433 #endif
12434 assemble_name (file, name);
12435 }
12436 else if (!DOT_SYMBOLS)
12437 assemble_name (file, XSTR (x, 0));
12438 else
12439 rs6000_output_function_entry (file, XSTR (x, 0));
12440 return;
12441
12442 case 'Z':
12443 /* Like 'L', for last word of TImode. */
12444 if (GET_CODE (x) == REG)
12445 fputs (reg_names[REGNO (x) + 3], file);
12446 else if (GET_CODE (x) == MEM)
12447 {
12448 if (GET_CODE (XEXP (x, 0)) == PRE_INC
12449 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
12450 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12));
12451 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
12452 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12));
12453 else
12454 output_address (XEXP (adjust_address_nv (x, SImode, 12), 0));
12455 if (small_data_operand (x, GET_MODE (x)))
12456 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
12457 reg_names[SMALL_DATA_REG]);
12458 }
12459 return;
12460
12461 /* Print AltiVec or SPE memory operand. */
12462 case 'y':
12463 {
12464 rtx tmp;
12465
12466 gcc_assert (GET_CODE (x) == MEM);
12467
12468 tmp = XEXP (x, 0);
12469
12470 /* Ugly hack because %y is overloaded. */
12471 if ((TARGET_SPE || TARGET_E500_DOUBLE)
12472 && (GET_MODE_SIZE (GET_MODE (x)) == 8
12473 || GET_MODE (x) == TFmode
12474 || GET_MODE (x) == TImode))
12475 {
12476 /* Handle [reg]. */
12477 if (GET_CODE (tmp) == REG)
12478 {
12479 fprintf (file, "0(%s)", reg_names[REGNO (tmp)]);
12480 break;
12481 }
12482 /* Handle [reg+UIMM]. */
12483 else if (GET_CODE (tmp) == PLUS &&
12484 GET_CODE (XEXP (tmp, 1)) == CONST_INT)
12485 {
12486 int x;
12487
12488 gcc_assert (GET_CODE (XEXP (tmp, 0)) == REG);
12489
12490 x = INTVAL (XEXP (tmp, 1));
12491 fprintf (file, "%d(%s)", x, reg_names[REGNO (XEXP (tmp, 0))]);
12492 break;
12493 }
12494
12495 /* Fall through. Must be [reg+reg]. */
12496 }
12497 if (TARGET_ALTIVEC
12498 && GET_CODE (tmp) == AND
12499 && GET_CODE (XEXP (tmp, 1)) == CONST_INT
12500 && INTVAL (XEXP (tmp, 1)) == -16)
12501 tmp = XEXP (tmp, 0);
12502 if (GET_CODE (tmp) == REG)
12503 fprintf (file, "0,%s", reg_names[REGNO (tmp)]);
12504 else
12505 {
12506 if (!GET_CODE (tmp) == PLUS
12507 || !REG_P (XEXP (tmp, 0))
12508 || !REG_P (XEXP (tmp, 1)))
12509 {
12510 output_operand_lossage ("invalid %%y value, try using the 'Z' constraint");
12511 break;
12512 }
12513
12514 if (REGNO (XEXP (tmp, 0)) == 0)
12515 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 1)) ],
12516 reg_names[ REGNO (XEXP (tmp, 0)) ]);
12517 else
12518 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 0)) ],
12519 reg_names[ REGNO (XEXP (tmp, 1)) ]);
12520 }
12521 break;
12522 }
12523
12524 case 0:
12525 if (GET_CODE (x) == REG)
12526 fprintf (file, "%s", reg_names[REGNO (x)]);
12527 else if (GET_CODE (x) == MEM)
12528 {
12529 /* We need to handle PRE_INC and PRE_DEC here, since we need to
12530 know the width from the mode. */
12531 if (GET_CODE (XEXP (x, 0)) == PRE_INC)
12532 fprintf (file, "%d(%s)", GET_MODE_SIZE (GET_MODE (x)),
12533 reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
12534 else if (GET_CODE (XEXP (x, 0)) == PRE_DEC)
12535 fprintf (file, "%d(%s)", - GET_MODE_SIZE (GET_MODE (x)),
12536 reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
12537 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
12538 output_address (XEXP (XEXP (x, 0), 1));
12539 else
12540 output_address (XEXP (x, 0));
12541 }
12542 else
12543 output_addr_const (file, x);
12544 return;
12545
12546 case '&':
12547 assemble_name (file, rs6000_get_some_local_dynamic_name ());
12548 return;
12549
12550 default:
12551 output_operand_lossage ("invalid %%xn code");
12552 }
12553 }
12554 \f
12555 /* Print the address of an operand. */
12556
12557 void
12558 print_operand_address (FILE *file, rtx x)
12559 {
12560 if (GET_CODE (x) == REG)
12561 fprintf (file, "0(%s)", reg_names[ REGNO (x) ]);
12562 else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST
12563 || GET_CODE (x) == LABEL_REF)
12564 {
12565 output_addr_const (file, x);
12566 if (small_data_operand (x, GET_MODE (x)))
12567 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
12568 reg_names[SMALL_DATA_REG]);
12569 else
12570 gcc_assert (!TARGET_TOC);
12571 }
12572 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG)
12573 {
12574 gcc_assert (REG_P (XEXP (x, 0)));
12575 if (REGNO (XEXP (x, 0)) == 0)
12576 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 1)) ],
12577 reg_names[ REGNO (XEXP (x, 0)) ]);
12578 else
12579 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 0)) ],
12580 reg_names[ REGNO (XEXP (x, 1)) ]);
12581 }
12582 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
12583 fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%s)",
12584 INTVAL (XEXP (x, 1)), reg_names[ REGNO (XEXP (x, 0)) ]);
12585 #if TARGET_ELF
12586 else if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == REG
12587 && CONSTANT_P (XEXP (x, 1)))
12588 {
12589 output_addr_const (file, XEXP (x, 1));
12590 fprintf (file, "@l(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
12591 }
12592 #endif
12593 #if TARGET_MACHO
12594 else if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == REG
12595 && CONSTANT_P (XEXP (x, 1)))
12596 {
12597 fprintf (file, "lo16(");
12598 output_addr_const (file, XEXP (x, 1));
12599 fprintf (file, ")(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
12600 }
12601 #endif
12602 else if (legitimate_constant_pool_address_p (x))
12603 {
12604 output_addr_const (file, XEXP (x, 1));
12605 fprintf (file, "(%s)", reg_names[REGNO (XEXP (x, 0))]);
12606 }
12607 else
12608 gcc_unreachable ();
12609 }
12610 \f
12611 /* Implement OUTPUT_ADDR_CONST_EXTRA for address X. */
12612
12613 bool
12614 rs6000_output_addr_const_extra (FILE *file, rtx x)
12615 {
12616 if (GET_CODE (x) == UNSPEC)
12617 switch (XINT (x, 1))
12618 {
12619 case UNSPEC_TOCREL:
12620 x = XVECEXP (x, 0, 0);
12621 gcc_assert (GET_CODE (x) == SYMBOL_REF);
12622 output_addr_const (file, x);
12623 if (!TARGET_AIX || (TARGET_ELF && TARGET_MINIMAL_TOC))
12624 {
12625 putc ('-', file);
12626 assemble_name (file, toc_label_name);
12627 }
12628 else if (TARGET_ELF)
12629 fputs ("@toc", file);
12630 return true;
12631
12632 #if TARGET_MACHO
12633 case UNSPEC_MACHOPIC_OFFSET:
12634 output_addr_const (file, XVECEXP (x, 0, 0));
12635 putc ('-', file);
12636 machopic_output_function_base_name (file);
12637 return true;
12638 #endif
12639 }
12640 return false;
12641 }
12642 \f
12643 /* Target hook for assembling integer objects. The PowerPC version has
12644 to handle fixup entries for relocatable code if RELOCATABLE_NEEDS_FIXUP
12645 is defined. It also needs to handle DI-mode objects on 64-bit
12646 targets. */
12647
12648 static bool
12649 rs6000_assemble_integer (rtx x, unsigned int size, int aligned_p)
12650 {
12651 #ifdef RELOCATABLE_NEEDS_FIXUP
12652 /* Special handling for SI values. */
12653 if (RELOCATABLE_NEEDS_FIXUP && size == 4 && aligned_p)
12654 {
12655 static int recurse = 0;
12656
12657 /* For -mrelocatable, we mark all addresses that need to be fixed up
12658 in the .fixup section. */
12659 if (TARGET_RELOCATABLE
12660 && in_section != toc_section
12661 && in_section != text_section
12662 && !unlikely_text_section_p (in_section)
12663 && !recurse
12664 && GET_CODE (x) != CONST_INT
12665 && GET_CODE (x) != CONST_DOUBLE
12666 && CONSTANT_P (x))
12667 {
12668 char buf[256];
12669
12670 recurse = 1;
12671 ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", fixuplabelno);
12672 fixuplabelno++;
12673 ASM_OUTPUT_LABEL (asm_out_file, buf);
12674 fprintf (asm_out_file, "\t.long\t(");
12675 output_addr_const (asm_out_file, x);
12676 fprintf (asm_out_file, ")@fixup\n");
12677 fprintf (asm_out_file, "\t.section\t\".fixup\",\"aw\"\n");
12678 ASM_OUTPUT_ALIGN (asm_out_file, 2);
12679 fprintf (asm_out_file, "\t.long\t");
12680 assemble_name (asm_out_file, buf);
12681 fprintf (asm_out_file, "\n\t.previous\n");
12682 recurse = 0;
12683 return true;
12684 }
12685 /* Remove initial .'s to turn a -mcall-aixdesc function
12686 address into the address of the descriptor, not the function
12687 itself. */
12688 else if (GET_CODE (x) == SYMBOL_REF
12689 && XSTR (x, 0)[0] == '.'
12690 && DEFAULT_ABI == ABI_AIX)
12691 {
12692 const char *name = XSTR (x, 0);
12693 while (*name == '.')
12694 name++;
12695
12696 fprintf (asm_out_file, "\t.long\t%s\n", name);
12697 return true;
12698 }
12699 }
12700 #endif /* RELOCATABLE_NEEDS_FIXUP */
12701 return default_assemble_integer (x, size, aligned_p);
12702 }
12703
12704 #ifdef HAVE_GAS_HIDDEN
12705 /* Emit an assembler directive to set symbol visibility for DECL to
12706 VISIBILITY_TYPE. */
12707
12708 static void
12709 rs6000_assemble_visibility (tree decl, int vis)
12710 {
12711 /* Functions need to have their entry point symbol visibility set as
12712 well as their descriptor symbol visibility. */
12713 if (DEFAULT_ABI == ABI_AIX
12714 && DOT_SYMBOLS
12715 && TREE_CODE (decl) == FUNCTION_DECL)
12716 {
12717 static const char * const visibility_types[] = {
12718 NULL, "internal", "hidden", "protected"
12719 };
12720
12721 const char *name, *type;
12722
12723 name = ((* targetm.strip_name_encoding)
12724 (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl))));
12725 type = visibility_types[vis];
12726
12727 fprintf (asm_out_file, "\t.%s\t%s\n", type, name);
12728 fprintf (asm_out_file, "\t.%s\t.%s\n", type, name);
12729 }
12730 else
12731 default_assemble_visibility (decl, vis);
12732 }
12733 #endif
12734 \f
12735 enum rtx_code
12736 rs6000_reverse_condition (enum machine_mode mode, enum rtx_code code)
12737 {
12738 /* Reversal of FP compares takes care -- an ordered compare
12739 becomes an unordered compare and vice versa. */
12740 if (mode == CCFPmode
12741 && (!flag_finite_math_only
12742 || code == UNLT || code == UNLE || code == UNGT || code == UNGE
12743 || code == UNEQ || code == LTGT))
12744 return reverse_condition_maybe_unordered (code);
12745 else
12746 return reverse_condition (code);
12747 }
12748
12749 /* Generate a compare for CODE. Return a brand-new rtx that
12750 represents the result of the compare. */
12751
12752 static rtx
12753 rs6000_generate_compare (enum rtx_code code)
12754 {
12755 enum machine_mode comp_mode;
12756 rtx compare_result;
12757
12758 if (rs6000_compare_fp_p)
12759 comp_mode = CCFPmode;
12760 else if (code == GTU || code == LTU
12761 || code == GEU || code == LEU)
12762 comp_mode = CCUNSmode;
12763 else if ((code == EQ || code == NE)
12764 && GET_CODE (rs6000_compare_op0) == SUBREG
12765 && GET_CODE (rs6000_compare_op1) == SUBREG
12766 && SUBREG_PROMOTED_UNSIGNED_P (rs6000_compare_op0)
12767 && SUBREG_PROMOTED_UNSIGNED_P (rs6000_compare_op1))
12768 /* These are unsigned values, perhaps there will be a later
12769 ordering compare that can be shared with this one.
12770 Unfortunately we cannot detect the signedness of the operands
12771 for non-subregs. */
12772 comp_mode = CCUNSmode;
12773 else
12774 comp_mode = CCmode;
12775
12776 /* First, the compare. */
12777 compare_result = gen_reg_rtx (comp_mode);
12778
12779 /* E500 FP compare instructions on the GPRs. Yuck! */
12780 if ((!TARGET_FPRS && TARGET_HARD_FLOAT)
12781 && rs6000_compare_fp_p)
12782 {
12783 rtx cmp, or_result, compare_result2;
12784 enum machine_mode op_mode = GET_MODE (rs6000_compare_op0);
12785
12786 if (op_mode == VOIDmode)
12787 op_mode = GET_MODE (rs6000_compare_op1);
12788
12789 /* The E500 FP compare instructions toggle the GT bit (CR bit 1) only.
12790 This explains the following mess. */
12791
12792 switch (code)
12793 {
12794 case EQ: case UNEQ: case NE: case LTGT:
12795 switch (op_mode)
12796 {
12797 case SFmode:
12798 cmp = flag_unsafe_math_optimizations
12799 ? gen_tstsfeq_gpr (compare_result, rs6000_compare_op0,
12800 rs6000_compare_op1)
12801 : gen_cmpsfeq_gpr (compare_result, rs6000_compare_op0,
12802 rs6000_compare_op1);
12803 break;
12804
12805 case DFmode:
12806 cmp = flag_unsafe_math_optimizations
12807 ? gen_tstdfeq_gpr (compare_result, rs6000_compare_op0,
12808 rs6000_compare_op1)
12809 : gen_cmpdfeq_gpr (compare_result, rs6000_compare_op0,
12810 rs6000_compare_op1);
12811 break;
12812
12813 case TFmode:
12814 cmp = flag_unsafe_math_optimizations
12815 ? gen_tsttfeq_gpr (compare_result, rs6000_compare_op0,
12816 rs6000_compare_op1)
12817 : gen_cmptfeq_gpr (compare_result, rs6000_compare_op0,
12818 rs6000_compare_op1);
12819 break;
12820
12821 default:
12822 gcc_unreachable ();
12823 }
12824 break;
12825
12826 case GT: case GTU: case UNGT: case UNGE: case GE: case GEU:
12827 switch (op_mode)
12828 {
12829 case SFmode:
12830 cmp = flag_unsafe_math_optimizations
12831 ? gen_tstsfgt_gpr (compare_result, rs6000_compare_op0,
12832 rs6000_compare_op1)
12833 : gen_cmpsfgt_gpr (compare_result, rs6000_compare_op0,
12834 rs6000_compare_op1);
12835 break;
12836
12837 case DFmode:
12838 cmp = flag_unsafe_math_optimizations
12839 ? gen_tstdfgt_gpr (compare_result, rs6000_compare_op0,
12840 rs6000_compare_op1)
12841 : gen_cmpdfgt_gpr (compare_result, rs6000_compare_op0,
12842 rs6000_compare_op1);
12843 break;
12844
12845 case TFmode:
12846 cmp = flag_unsafe_math_optimizations
12847 ? gen_tsttfgt_gpr (compare_result, rs6000_compare_op0,
12848 rs6000_compare_op1)
12849 : gen_cmptfgt_gpr (compare_result, rs6000_compare_op0,
12850 rs6000_compare_op1);
12851 break;
12852
12853 default:
12854 gcc_unreachable ();
12855 }
12856 break;
12857
12858 case LT: case LTU: case UNLT: case UNLE: case LE: case LEU:
12859 switch (op_mode)
12860 {
12861 case SFmode:
12862 cmp = flag_unsafe_math_optimizations
12863 ? gen_tstsflt_gpr (compare_result, rs6000_compare_op0,
12864 rs6000_compare_op1)
12865 : gen_cmpsflt_gpr (compare_result, rs6000_compare_op0,
12866 rs6000_compare_op1);
12867 break;
12868
12869 case DFmode:
12870 cmp = flag_unsafe_math_optimizations
12871 ? gen_tstdflt_gpr (compare_result, rs6000_compare_op0,
12872 rs6000_compare_op1)
12873 : gen_cmpdflt_gpr (compare_result, rs6000_compare_op0,
12874 rs6000_compare_op1);
12875 break;
12876
12877 case TFmode:
12878 cmp = flag_unsafe_math_optimizations
12879 ? gen_tsttflt_gpr (compare_result, rs6000_compare_op0,
12880 rs6000_compare_op1)
12881 : gen_cmptflt_gpr (compare_result, rs6000_compare_op0,
12882 rs6000_compare_op1);
12883 break;
12884
12885 default:
12886 gcc_unreachable ();
12887 }
12888 break;
12889 default:
12890 gcc_unreachable ();
12891 }
12892
12893 /* Synthesize LE and GE from LT/GT || EQ. */
12894 if (code == LE || code == GE || code == LEU || code == GEU)
12895 {
12896 emit_insn (cmp);
12897
12898 switch (code)
12899 {
12900 case LE: code = LT; break;
12901 case GE: code = GT; break;
12902 case LEU: code = LT; break;
12903 case GEU: code = GT; break;
12904 default: gcc_unreachable ();
12905 }
12906
12907 compare_result2 = gen_reg_rtx (CCFPmode);
12908
12909 /* Do the EQ. */
12910 switch (op_mode)
12911 {
12912 case SFmode:
12913 cmp = flag_unsafe_math_optimizations
12914 ? gen_tstsfeq_gpr (compare_result2, rs6000_compare_op0,
12915 rs6000_compare_op1)
12916 : gen_cmpsfeq_gpr (compare_result2, rs6000_compare_op0,
12917 rs6000_compare_op1);
12918 break;
12919
12920 case DFmode:
12921 cmp = flag_unsafe_math_optimizations
12922 ? gen_tstdfeq_gpr (compare_result2, rs6000_compare_op0,
12923 rs6000_compare_op1)
12924 : gen_cmpdfeq_gpr (compare_result2, rs6000_compare_op0,
12925 rs6000_compare_op1);
12926 break;
12927
12928 case TFmode:
12929 cmp = flag_unsafe_math_optimizations
12930 ? gen_tsttfeq_gpr (compare_result2, rs6000_compare_op0,
12931 rs6000_compare_op1)
12932 : gen_cmptfeq_gpr (compare_result2, rs6000_compare_op0,
12933 rs6000_compare_op1);
12934 break;
12935
12936 default:
12937 gcc_unreachable ();
12938 }
12939 emit_insn (cmp);
12940
12941 /* OR them together. */
12942 or_result = gen_reg_rtx (CCFPmode);
12943 cmp = gen_e500_cr_ior_compare (or_result, compare_result,
12944 compare_result2);
12945 compare_result = or_result;
12946 code = EQ;
12947 }
12948 else
12949 {
12950 if (code == NE || code == LTGT)
12951 code = NE;
12952 else
12953 code = EQ;
12954 }
12955
12956 emit_insn (cmp);
12957 }
12958 else
12959 {
12960 /* Generate XLC-compatible TFmode compare as PARALLEL with extra
12961 CLOBBERs to match cmptf_internal2 pattern. */
12962 if (comp_mode == CCFPmode && TARGET_XL_COMPAT
12963 && GET_MODE (rs6000_compare_op0) == TFmode
12964 && !TARGET_IEEEQUAD
12965 && TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_LONG_DOUBLE_128)
12966 emit_insn (gen_rtx_PARALLEL (VOIDmode,
12967 gen_rtvec (9,
12968 gen_rtx_SET (VOIDmode,
12969 compare_result,
12970 gen_rtx_COMPARE (comp_mode,
12971 rs6000_compare_op0,
12972 rs6000_compare_op1)),
12973 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
12974 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
12975 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
12976 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
12977 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
12978 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
12979 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
12980 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)))));
12981 else if (GET_CODE (rs6000_compare_op1) == UNSPEC
12982 && XINT (rs6000_compare_op1, 1) == UNSPEC_SP_TEST)
12983 {
12984 rtx op1 = XVECEXP (rs6000_compare_op1, 0, 0);
12985 comp_mode = CCEQmode;
12986 compare_result = gen_reg_rtx (CCEQmode);
12987 if (TARGET_64BIT)
12988 emit_insn (gen_stack_protect_testdi (compare_result,
12989 rs6000_compare_op0, op1));
12990 else
12991 emit_insn (gen_stack_protect_testsi (compare_result,
12992 rs6000_compare_op0, op1));
12993 }
12994 else
12995 emit_insn (gen_rtx_SET (VOIDmode, compare_result,
12996 gen_rtx_COMPARE (comp_mode,
12997 rs6000_compare_op0,
12998 rs6000_compare_op1)));
12999 }
13000
13001 /* Some kinds of FP comparisons need an OR operation;
13002 under flag_finite_math_only we don't bother. */
13003 if (rs6000_compare_fp_p
13004 && !flag_finite_math_only
13005 && !(TARGET_HARD_FLOAT && !TARGET_FPRS)
13006 && (code == LE || code == GE
13007 || code == UNEQ || code == LTGT
13008 || code == UNGT || code == UNLT))
13009 {
13010 enum rtx_code or1, or2;
13011 rtx or1_rtx, or2_rtx, compare2_rtx;
13012 rtx or_result = gen_reg_rtx (CCEQmode);
13013
13014 switch (code)
13015 {
13016 case LE: or1 = LT; or2 = EQ; break;
13017 case GE: or1 = GT; or2 = EQ; break;
13018 case UNEQ: or1 = UNORDERED; or2 = EQ; break;
13019 case LTGT: or1 = LT; or2 = GT; break;
13020 case UNGT: or1 = UNORDERED; or2 = GT; break;
13021 case UNLT: or1 = UNORDERED; or2 = LT; break;
13022 default: gcc_unreachable ();
13023 }
13024 validate_condition_mode (or1, comp_mode);
13025 validate_condition_mode (or2, comp_mode);
13026 or1_rtx = gen_rtx_fmt_ee (or1, SImode, compare_result, const0_rtx);
13027 or2_rtx = gen_rtx_fmt_ee (or2, SImode, compare_result, const0_rtx);
13028 compare2_rtx = gen_rtx_COMPARE (CCEQmode,
13029 gen_rtx_IOR (SImode, or1_rtx, or2_rtx),
13030 const_true_rtx);
13031 emit_insn (gen_rtx_SET (VOIDmode, or_result, compare2_rtx));
13032
13033 compare_result = or_result;
13034 code = EQ;
13035 }
13036
13037 validate_condition_mode (code, GET_MODE (compare_result));
13038
13039 return gen_rtx_fmt_ee (code, VOIDmode, compare_result, const0_rtx);
13040 }
13041
13042
13043 /* Emit the RTL for an sCOND pattern. */
13044
13045 void
13046 rs6000_emit_sCOND (enum rtx_code code, rtx result)
13047 {
13048 rtx condition_rtx;
13049 enum machine_mode op_mode;
13050 enum rtx_code cond_code;
13051
13052 condition_rtx = rs6000_generate_compare (code);
13053 cond_code = GET_CODE (condition_rtx);
13054
13055 if (rs6000_compare_fp_p
13056 && !TARGET_FPRS && TARGET_HARD_FLOAT)
13057 {
13058 rtx t;
13059
13060 PUT_MODE (condition_rtx, SImode);
13061 t = XEXP (condition_rtx, 0);
13062
13063 gcc_assert (cond_code == NE || cond_code == EQ);
13064
13065 if (cond_code == NE)
13066 emit_insn (gen_e500_flip_gt_bit (t, t));
13067
13068 emit_insn (gen_move_from_CR_gt_bit (result, t));
13069 return;
13070 }
13071
13072 if (cond_code == NE
13073 || cond_code == GE || cond_code == LE
13074 || cond_code == GEU || cond_code == LEU
13075 || cond_code == ORDERED || cond_code == UNGE || cond_code == UNLE)
13076 {
13077 rtx not_result = gen_reg_rtx (CCEQmode);
13078 rtx not_op, rev_cond_rtx;
13079 enum machine_mode cc_mode;
13080
13081 cc_mode = GET_MODE (XEXP (condition_rtx, 0));
13082
13083 rev_cond_rtx = gen_rtx_fmt_ee (rs6000_reverse_condition (cc_mode, cond_code),
13084 SImode, XEXP (condition_rtx, 0), const0_rtx);
13085 not_op = gen_rtx_COMPARE (CCEQmode, rev_cond_rtx, const0_rtx);
13086 emit_insn (gen_rtx_SET (VOIDmode, not_result, not_op));
13087 condition_rtx = gen_rtx_EQ (VOIDmode, not_result, const0_rtx);
13088 }
13089
13090 op_mode = GET_MODE (rs6000_compare_op0);
13091 if (op_mode == VOIDmode)
13092 op_mode = GET_MODE (rs6000_compare_op1);
13093
13094 if (TARGET_POWERPC64 && (op_mode == DImode || rs6000_compare_fp_p))
13095 {
13096 PUT_MODE (condition_rtx, DImode);
13097 convert_move (result, condition_rtx, 0);
13098 }
13099 else
13100 {
13101 PUT_MODE (condition_rtx, SImode);
13102 emit_insn (gen_rtx_SET (VOIDmode, result, condition_rtx));
13103 }
13104 }
13105
13106 /* Emit a branch of kind CODE to location LOC. */
13107
13108 void
13109 rs6000_emit_cbranch (enum rtx_code code, rtx loc)
13110 {
13111 rtx condition_rtx, loc_ref;
13112
13113 condition_rtx = rs6000_generate_compare (code);
13114 loc_ref = gen_rtx_LABEL_REF (VOIDmode, loc);
13115 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
13116 gen_rtx_IF_THEN_ELSE (VOIDmode, condition_rtx,
13117 loc_ref, pc_rtx)));
13118 }
13119
13120 /* Return the string to output a conditional branch to LABEL, which is
13121 the operand number of the label, or -1 if the branch is really a
13122 conditional return.
13123
13124 OP is the conditional expression. XEXP (OP, 0) is assumed to be a
13125 condition code register and its mode specifies what kind of
13126 comparison we made.
13127
13128 REVERSED is nonzero if we should reverse the sense of the comparison.
13129
13130 INSN is the insn. */
13131
13132 char *
13133 output_cbranch (rtx op, const char *label, int reversed, rtx insn)
13134 {
13135 static char string[64];
13136 enum rtx_code code = GET_CODE (op);
13137 rtx cc_reg = XEXP (op, 0);
13138 enum machine_mode mode = GET_MODE (cc_reg);
13139 int cc_regno = REGNO (cc_reg) - CR0_REGNO;
13140 int need_longbranch = label != NULL && get_attr_length (insn) == 8;
13141 int really_reversed = reversed ^ need_longbranch;
13142 char *s = string;
13143 const char *ccode;
13144 const char *pred;
13145 rtx note;
13146
13147 validate_condition_mode (code, mode);
13148
13149 /* Work out which way this really branches. We could use
13150 reverse_condition_maybe_unordered here always but this
13151 makes the resulting assembler clearer. */
13152 if (really_reversed)
13153 {
13154 /* Reversal of FP compares takes care -- an ordered compare
13155 becomes an unordered compare and vice versa. */
13156 if (mode == CCFPmode)
13157 code = reverse_condition_maybe_unordered (code);
13158 else
13159 code = reverse_condition (code);
13160 }
13161
13162 if ((!TARGET_FPRS && TARGET_HARD_FLOAT) && mode == CCFPmode)
13163 {
13164 /* The efscmp/tst* instructions twiddle bit 2, which maps nicely
13165 to the GT bit. */
13166 switch (code)
13167 {
13168 case EQ:
13169 /* Opposite of GT. */
13170 code = GT;
13171 break;
13172
13173 case NE:
13174 code = UNLE;
13175 break;
13176
13177 default:
13178 gcc_unreachable ();
13179 }
13180 }
13181
13182 switch (code)
13183 {
13184 /* Not all of these are actually distinct opcodes, but
13185 we distinguish them for clarity of the resulting assembler. */
13186 case NE: case LTGT:
13187 ccode = "ne"; break;
13188 case EQ: case UNEQ:
13189 ccode = "eq"; break;
13190 case GE: case GEU:
13191 ccode = "ge"; break;
13192 case GT: case GTU: case UNGT:
13193 ccode = "gt"; break;
13194 case LE: case LEU:
13195 ccode = "le"; break;
13196 case LT: case LTU: case UNLT:
13197 ccode = "lt"; break;
13198 case UNORDERED: ccode = "un"; break;
13199 case ORDERED: ccode = "nu"; break;
13200 case UNGE: ccode = "nl"; break;
13201 case UNLE: ccode = "ng"; break;
13202 default:
13203 gcc_unreachable ();
13204 }
13205
13206 /* Maybe we have a guess as to how likely the branch is.
13207 The old mnemonics don't have a way to specify this information. */
13208 pred = "";
13209 note = find_reg_note (insn, REG_BR_PROB, NULL_RTX);
13210 if (note != NULL_RTX)
13211 {
13212 /* PROB is the difference from 50%. */
13213 int prob = INTVAL (XEXP (note, 0)) - REG_BR_PROB_BASE / 2;
13214
13215 /* Only hint for highly probable/improbable branches on newer
13216 cpus as static prediction overrides processor dynamic
13217 prediction. For older cpus we may as well always hint, but
13218 assume not taken for branches that are very close to 50% as a
13219 mispredicted taken branch is more expensive than a
13220 mispredicted not-taken branch. */
13221 if (rs6000_always_hint
13222 || (abs (prob) > REG_BR_PROB_BASE / 100 * 48
13223 && br_prob_note_reliable_p (note)))
13224 {
13225 if (abs (prob) > REG_BR_PROB_BASE / 20
13226 && ((prob > 0) ^ need_longbranch))
13227 pred = "+";
13228 else
13229 pred = "-";
13230 }
13231 }
13232
13233 if (label == NULL)
13234 s += sprintf (s, "{b%sr|b%slr%s} ", ccode, ccode, pred);
13235 else
13236 s += sprintf (s, "{b%s|b%s%s} ", ccode, ccode, pred);
13237
13238 /* We need to escape any '%' characters in the reg_names string.
13239 Assume they'd only be the first character.... */
13240 if (reg_names[cc_regno + CR0_REGNO][0] == '%')
13241 *s++ = '%';
13242 s += sprintf (s, "%s", reg_names[cc_regno + CR0_REGNO]);
13243
13244 if (label != NULL)
13245 {
13246 /* If the branch distance was too far, we may have to use an
13247 unconditional branch to go the distance. */
13248 if (need_longbranch)
13249 s += sprintf (s, ",$+8\n\tb %s", label);
13250 else
13251 s += sprintf (s, ",%s", label);
13252 }
13253
13254 return string;
13255 }
13256
13257 /* Return the string to flip the GT bit on a CR. */
13258 char *
13259 output_e500_flip_gt_bit (rtx dst, rtx src)
13260 {
13261 static char string[64];
13262 int a, b;
13263
13264 gcc_assert (GET_CODE (dst) == REG && CR_REGNO_P (REGNO (dst))
13265 && GET_CODE (src) == REG && CR_REGNO_P (REGNO (src)));
13266
13267 /* GT bit. */
13268 a = 4 * (REGNO (dst) - CR0_REGNO) + 1;
13269 b = 4 * (REGNO (src) - CR0_REGNO) + 1;
13270
13271 sprintf (string, "crnot %d,%d", a, b);
13272 return string;
13273 }
13274
13275 /* Return insn index for the vector compare instruction for given CODE,
13276 and DEST_MODE, OP_MODE. Return INSN_NOT_AVAILABLE if valid insn is
13277 not available. */
13278
13279 static int
13280 get_vec_cmp_insn (enum rtx_code code,
13281 enum machine_mode dest_mode,
13282 enum machine_mode op_mode)
13283 {
13284 if (!TARGET_ALTIVEC)
13285 return INSN_NOT_AVAILABLE;
13286
13287 switch (code)
13288 {
13289 case EQ:
13290 if (dest_mode == V16QImode && op_mode == V16QImode)
13291 return UNSPEC_VCMPEQUB;
13292 if (dest_mode == V8HImode && op_mode == V8HImode)
13293 return UNSPEC_VCMPEQUH;
13294 if (dest_mode == V4SImode && op_mode == V4SImode)
13295 return UNSPEC_VCMPEQUW;
13296 if (dest_mode == V4SImode && op_mode == V4SFmode)
13297 return UNSPEC_VCMPEQFP;
13298 break;
13299 case GE:
13300 if (dest_mode == V4SImode && op_mode == V4SFmode)
13301 return UNSPEC_VCMPGEFP;
13302 case GT:
13303 if (dest_mode == V16QImode && op_mode == V16QImode)
13304 return UNSPEC_VCMPGTSB;
13305 if (dest_mode == V8HImode && op_mode == V8HImode)
13306 return UNSPEC_VCMPGTSH;
13307 if (dest_mode == V4SImode && op_mode == V4SImode)
13308 return UNSPEC_VCMPGTSW;
13309 if (dest_mode == V4SImode && op_mode == V4SFmode)
13310 return UNSPEC_VCMPGTFP;
13311 break;
13312 case GTU:
13313 if (dest_mode == V16QImode && op_mode == V16QImode)
13314 return UNSPEC_VCMPGTUB;
13315 if (dest_mode == V8HImode && op_mode == V8HImode)
13316 return UNSPEC_VCMPGTUH;
13317 if (dest_mode == V4SImode && op_mode == V4SImode)
13318 return UNSPEC_VCMPGTUW;
13319 break;
13320 default:
13321 break;
13322 }
13323 return INSN_NOT_AVAILABLE;
13324 }
13325
13326 /* Emit vector compare for operands OP0 and OP1 using code RCODE.
13327 DMODE is expected destination mode. This is a recursive function. */
13328
13329 static rtx
13330 rs6000_emit_vector_compare (enum rtx_code rcode,
13331 rtx op0, rtx op1,
13332 enum machine_mode dmode)
13333 {
13334 int vec_cmp_insn;
13335 rtx mask;
13336 enum machine_mode dest_mode;
13337 enum machine_mode op_mode = GET_MODE (op1);
13338
13339 gcc_assert (TARGET_ALTIVEC);
13340 gcc_assert (GET_MODE (op0) == GET_MODE (op1));
13341
13342 /* Floating point vector compare instructions uses destination V4SImode.
13343 Move destination to appropriate mode later. */
13344 if (dmode == V4SFmode)
13345 dest_mode = V4SImode;
13346 else
13347 dest_mode = dmode;
13348
13349 mask = gen_reg_rtx (dest_mode);
13350 vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);
13351
13352 if (vec_cmp_insn == INSN_NOT_AVAILABLE)
13353 {
13354 bool swap_operands = false;
13355 bool try_again = false;
13356 switch (rcode)
13357 {
13358 case LT:
13359 rcode = GT;
13360 swap_operands = true;
13361 try_again = true;
13362 break;
13363 case LTU:
13364 rcode = GTU;
13365 swap_operands = true;
13366 try_again = true;
13367 break;
13368 case NE:
13369 case UNLE:
13370 case UNLT:
13371 case UNGE:
13372 case UNGT:
13373 /* Invert condition and try again.
13374 e.g., A != B becomes ~(A==B). */
13375 {
13376 enum rtx_code rev_code;
13377 enum insn_code nor_code;
13378 rtx eq_rtx;
13379
13380 rev_code = reverse_condition_maybe_unordered (rcode);
13381 eq_rtx = rs6000_emit_vector_compare (rev_code, op0, op1,
13382 dest_mode);
13383
13384 nor_code = optab_handler (one_cmpl_optab, (int)dest_mode)->insn_code;
13385 gcc_assert (nor_code != CODE_FOR_nothing);
13386 emit_insn (GEN_FCN (nor_code) (mask, eq_rtx));
13387
13388 if (dmode != dest_mode)
13389 {
13390 rtx temp = gen_reg_rtx (dest_mode);
13391 convert_move (temp, mask, 0);
13392 return temp;
13393 }
13394 return mask;
13395 }
13396 break;
13397 case GE:
13398 case GEU:
13399 case LE:
13400 case LEU:
13401 /* Try GT/GTU/LT/LTU OR EQ */
13402 {
13403 rtx c_rtx, eq_rtx;
13404 enum insn_code ior_code;
13405 enum rtx_code new_code;
13406
13407 switch (rcode)
13408 {
13409 case GE:
13410 new_code = GT;
13411 break;
13412
13413 case GEU:
13414 new_code = GTU;
13415 break;
13416
13417 case LE:
13418 new_code = LT;
13419 break;
13420
13421 case LEU:
13422 new_code = LTU;
13423 break;
13424
13425 default:
13426 gcc_unreachable ();
13427 }
13428
13429 c_rtx = rs6000_emit_vector_compare (new_code,
13430 op0, op1, dest_mode);
13431 eq_rtx = rs6000_emit_vector_compare (EQ, op0, op1,
13432 dest_mode);
13433
13434 ior_code = optab_handler (ior_optab, (int)dest_mode)->insn_code;
13435 gcc_assert (ior_code != CODE_FOR_nothing);
13436 emit_insn (GEN_FCN (ior_code) (mask, c_rtx, eq_rtx));
13437 if (dmode != dest_mode)
13438 {
13439 rtx temp = gen_reg_rtx (dest_mode);
13440 convert_move (temp, mask, 0);
13441 return temp;
13442 }
13443 return mask;
13444 }
13445 break;
13446 default:
13447 gcc_unreachable ();
13448 }
13449
13450 if (try_again)
13451 {
13452 vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);
13453 /* You only get two chances. */
13454 gcc_assert (vec_cmp_insn != INSN_NOT_AVAILABLE);
13455 }
13456
13457 if (swap_operands)
13458 {
13459 rtx tmp;
13460 tmp = op0;
13461 op0 = op1;
13462 op1 = tmp;
13463 }
13464 }
13465
13466 emit_insn (gen_rtx_SET (VOIDmode, mask,
13467 gen_rtx_UNSPEC (dest_mode,
13468 gen_rtvec (2, op0, op1),
13469 vec_cmp_insn)));
13470 if (dmode != dest_mode)
13471 {
13472 rtx temp = gen_reg_rtx (dest_mode);
13473 convert_move (temp, mask, 0);
13474 return temp;
13475 }
13476 return mask;
13477 }
13478
13479 /* Return vector select instruction for MODE. Return INSN_NOT_AVAILABLE, if
13480 valid insn doesn exist for given mode. */
13481
13482 static int
13483 get_vsel_insn (enum machine_mode mode)
13484 {
13485 switch (mode)
13486 {
13487 case V4SImode:
13488 return UNSPEC_VSEL4SI;
13489 break;
13490 case V4SFmode:
13491 return UNSPEC_VSEL4SF;
13492 break;
13493 case V8HImode:
13494 return UNSPEC_VSEL8HI;
13495 break;
13496 case V16QImode:
13497 return UNSPEC_VSEL16QI;
13498 break;
13499 default:
13500 return INSN_NOT_AVAILABLE;
13501 break;
13502 }
13503 return INSN_NOT_AVAILABLE;
13504 }
13505
13506 /* Emit vector select insn where DEST is destination using
13507 operands OP1, OP2 and MASK. */
13508
13509 static void
13510 rs6000_emit_vector_select (rtx dest, rtx op1, rtx op2, rtx mask)
13511 {
13512 rtx t, temp;
13513 enum machine_mode dest_mode = GET_MODE (dest);
13514 int vsel_insn_index = get_vsel_insn (GET_MODE (dest));
13515
13516 temp = gen_reg_rtx (dest_mode);
13517
13518 /* For each vector element, select op1 when mask is 1 otherwise
13519 select op2. */
13520 t = gen_rtx_SET (VOIDmode, temp,
13521 gen_rtx_UNSPEC (dest_mode,
13522 gen_rtvec (3, op2, op1, mask),
13523 vsel_insn_index));
13524 emit_insn (t);
13525 emit_move_insn (dest, temp);
13526 return;
13527 }
13528
13529 /* Emit vector conditional expression.
13530 DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
13531 CC_OP0 and CC_OP1 are the two operands for the relation operation COND. */
13532
13533 int
13534 rs6000_emit_vector_cond_expr (rtx dest, rtx op1, rtx op2,
13535 rtx cond, rtx cc_op0, rtx cc_op1)
13536 {
13537 enum machine_mode dest_mode = GET_MODE (dest);
13538 enum rtx_code rcode = GET_CODE (cond);
13539 rtx mask;
13540
13541 if (!TARGET_ALTIVEC)
13542 return 0;
13543
13544 /* Get the vector mask for the given relational operations. */
13545 mask = rs6000_emit_vector_compare (rcode, cc_op0, cc_op1, dest_mode);
13546
13547 rs6000_emit_vector_select (dest, op1, op2, mask);
13548
13549 return 1;
13550 }
13551
13552 /* Emit a conditional move: move TRUE_COND to DEST if OP of the
13553 operands of the last comparison is nonzero/true, FALSE_COND if it
13554 is zero/false. Return 0 if the hardware has no such operation. */
13555
13556 int
13557 rs6000_emit_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
13558 {
13559 enum rtx_code code = GET_CODE (op);
13560 rtx op0 = rs6000_compare_op0;
13561 rtx op1 = rs6000_compare_op1;
13562 REAL_VALUE_TYPE c1;
13563 enum machine_mode compare_mode = GET_MODE (op0);
13564 enum machine_mode result_mode = GET_MODE (dest);
13565 rtx temp;
13566 bool is_against_zero;
13567
13568 /* These modes should always match. */
13569 if (GET_MODE (op1) != compare_mode
13570 /* In the isel case however, we can use a compare immediate, so
13571 op1 may be a small constant. */
13572 && (!TARGET_ISEL || !short_cint_operand (op1, VOIDmode)))
13573 return 0;
13574 if (GET_MODE (true_cond) != result_mode)
13575 return 0;
13576 if (GET_MODE (false_cond) != result_mode)
13577 return 0;
13578
13579 /* First, work out if the hardware can do this at all, or
13580 if it's too slow.... */
13581 if (! rs6000_compare_fp_p)
13582 {
13583 if (TARGET_ISEL)
13584 return rs6000_emit_int_cmove (dest, op, true_cond, false_cond);
13585 return 0;
13586 }
13587 else if (TARGET_HARD_FLOAT && !TARGET_FPRS
13588 && SCALAR_FLOAT_MODE_P (compare_mode))
13589 return 0;
13590
13591 is_against_zero = op1 == CONST0_RTX (compare_mode);
13592
13593 /* A floating-point subtract might overflow, underflow, or produce
13594 an inexact result, thus changing the floating-point flags, so it
13595 can't be generated if we care about that. It's safe if one side
13596 of the construct is zero, since then no subtract will be
13597 generated. */
13598 if (SCALAR_FLOAT_MODE_P (compare_mode)
13599 && flag_trapping_math && ! is_against_zero)
13600 return 0;
13601
13602 /* Eliminate half of the comparisons by switching operands, this
13603 makes the remaining code simpler. */
13604 if (code == UNLT || code == UNGT || code == UNORDERED || code == NE
13605 || code == LTGT || code == LT || code == UNLE)
13606 {
13607 code = reverse_condition_maybe_unordered (code);
13608 temp = true_cond;
13609 true_cond = false_cond;
13610 false_cond = temp;
13611 }
13612
13613 /* UNEQ and LTGT take four instructions for a comparison with zero,
13614 it'll probably be faster to use a branch here too. */
13615 if (code == UNEQ && HONOR_NANS (compare_mode))
13616 return 0;
13617
13618 if (GET_CODE (op1) == CONST_DOUBLE)
13619 REAL_VALUE_FROM_CONST_DOUBLE (c1, op1);
13620
13621 /* We're going to try to implement comparisons by performing
13622 a subtract, then comparing against zero. Unfortunately,
13623 Inf - Inf is NaN which is not zero, and so if we don't
13624 know that the operand is finite and the comparison
13625 would treat EQ different to UNORDERED, we can't do it. */
13626 if (HONOR_INFINITIES (compare_mode)
13627 && code != GT && code != UNGE
13628 && (GET_CODE (op1) != CONST_DOUBLE || real_isinf (&c1))
13629 /* Constructs of the form (a OP b ? a : b) are safe. */
13630 && ((! rtx_equal_p (op0, false_cond) && ! rtx_equal_p (op1, false_cond))
13631 || (! rtx_equal_p (op0, true_cond)
13632 && ! rtx_equal_p (op1, true_cond))))
13633 return 0;
13634
13635 /* At this point we know we can use fsel. */
13636
13637 /* Reduce the comparison to a comparison against zero. */
13638 if (! is_against_zero)
13639 {
13640 temp = gen_reg_rtx (compare_mode);
13641 emit_insn (gen_rtx_SET (VOIDmode, temp,
13642 gen_rtx_MINUS (compare_mode, op0, op1)));
13643 op0 = temp;
13644 op1 = CONST0_RTX (compare_mode);
13645 }
13646
13647 /* If we don't care about NaNs we can reduce some of the comparisons
13648 down to faster ones. */
13649 if (! HONOR_NANS (compare_mode))
13650 switch (code)
13651 {
13652 case GT:
13653 code = LE;
13654 temp = true_cond;
13655 true_cond = false_cond;
13656 false_cond = temp;
13657 break;
13658 case UNGE:
13659 code = GE;
13660 break;
13661 case UNEQ:
13662 code = EQ;
13663 break;
13664 default:
13665 break;
13666 }
13667
13668 /* Now, reduce everything down to a GE. */
13669 switch (code)
13670 {
13671 case GE:
13672 break;
13673
13674 case LE:
13675 temp = gen_reg_rtx (compare_mode);
13676 emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0)));
13677 op0 = temp;
13678 break;
13679
13680 case ORDERED:
13681 temp = gen_reg_rtx (compare_mode);
13682 emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_ABS (compare_mode, op0)));
13683 op0 = temp;
13684 break;
13685
13686 case EQ:
13687 temp = gen_reg_rtx (compare_mode);
13688 emit_insn (gen_rtx_SET (VOIDmode, temp,
13689 gen_rtx_NEG (compare_mode,
13690 gen_rtx_ABS (compare_mode, op0))));
13691 op0 = temp;
13692 break;
13693
13694 case UNGE:
13695 /* a UNGE 0 <-> (a GE 0 || -a UNLT 0) */
13696 temp = gen_reg_rtx (result_mode);
13697 emit_insn (gen_rtx_SET (VOIDmode, temp,
13698 gen_rtx_IF_THEN_ELSE (result_mode,
13699 gen_rtx_GE (VOIDmode,
13700 op0, op1),
13701 true_cond, false_cond)));
13702 false_cond = true_cond;
13703 true_cond = temp;
13704
13705 temp = gen_reg_rtx (compare_mode);
13706 emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0)));
13707 op0 = temp;
13708 break;
13709
13710 case GT:
13711 /* a GT 0 <-> (a GE 0 && -a UNLT 0) */
13712 temp = gen_reg_rtx (result_mode);
13713 emit_insn (gen_rtx_SET (VOIDmode, temp,
13714 gen_rtx_IF_THEN_ELSE (result_mode,
13715 gen_rtx_GE (VOIDmode,
13716 op0, op1),
13717 true_cond, false_cond)));
13718 true_cond = false_cond;
13719 false_cond = temp;
13720
13721 temp = gen_reg_rtx (compare_mode);
13722 emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0)));
13723 op0 = temp;
13724 break;
13725
13726 default:
13727 gcc_unreachable ();
13728 }
13729
13730 emit_insn (gen_rtx_SET (VOIDmode, dest,
13731 gen_rtx_IF_THEN_ELSE (result_mode,
13732 gen_rtx_GE (VOIDmode,
13733 op0, op1),
13734 true_cond, false_cond)));
13735 return 1;
13736 }
13737
13738 /* Same as above, but for ints (isel). */
13739
13740 static int
13741 rs6000_emit_int_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
13742 {
13743 rtx condition_rtx, cr;
13744
13745 /* All isel implementations thus far are 32-bits. */
13746 if (GET_MODE (rs6000_compare_op0) != SImode)
13747 return 0;
13748
13749 /* We still have to do the compare, because isel doesn't do a
13750 compare, it just looks at the CRx bits set by a previous compare
13751 instruction. */
13752 condition_rtx = rs6000_generate_compare (GET_CODE (op));
13753 cr = XEXP (condition_rtx, 0);
13754
13755 if (GET_MODE (cr) == CCmode)
13756 emit_insn (gen_isel_signed (dest, condition_rtx,
13757 true_cond, false_cond, cr));
13758 else
13759 emit_insn (gen_isel_unsigned (dest, condition_rtx,
13760 true_cond, false_cond, cr));
13761
13762 return 1;
13763 }
13764
13765 const char *
13766 output_isel (rtx *operands)
13767 {
13768 enum rtx_code code;
13769
13770 code = GET_CODE (operands[1]);
13771 if (code == GE || code == GEU || code == LE || code == LEU || code == NE)
13772 {
13773 PUT_CODE (operands[1], reverse_condition (code));
13774 return "isel %0,%3,%2,%j1";
13775 }
13776 else
13777 return "isel %0,%2,%3,%j1";
13778 }
13779
13780 void
13781 rs6000_emit_minmax (rtx dest, enum rtx_code code, rtx op0, rtx op1)
13782 {
13783 enum machine_mode mode = GET_MODE (op0);
13784 enum rtx_code c;
13785 rtx target;
13786
13787 if (code == SMAX || code == SMIN)
13788 c = GE;
13789 else
13790 c = GEU;
13791
13792 if (code == SMAX || code == UMAX)
13793 target = emit_conditional_move (dest, c, op0, op1, mode,
13794 op0, op1, mode, 0);
13795 else
13796 target = emit_conditional_move (dest, c, op0, op1, mode,
13797 op1, op0, mode, 0);
13798 gcc_assert (target);
13799 if (target != dest)
13800 emit_move_insn (dest, target);
13801 }
13802
13803 /* Emit instructions to perform a load-reserved/store-conditional operation.
13804 The operation performed is an atomic
13805 (set M (CODE:MODE M OP))
13806 If not NULL, BEFORE is atomically set to M before the operation, and
13807 AFTER is set to M after the operation (that is, (CODE:MODE M OP)).
13808 If SYNC_P then a memory barrier is emitted before the operation.
13809 Either OP or M may be wrapped in a NOT operation. */
13810
13811 void
13812 rs6000_emit_sync (enum rtx_code code, enum machine_mode mode,
13813 rtx m, rtx op, rtx before_param, rtx after_param,
13814 bool sync_p)
13815 {
13816 enum machine_mode used_mode;
13817 rtx the_op, set_before, set_after, set_atomic, cc_scratch, before, after;
13818 rtx used_m;
13819 rtvec vec;
13820 HOST_WIDE_INT imask = GET_MODE_MASK (mode);
13821 rtx shift = NULL_RTX;
13822
13823 if (sync_p)
13824 emit_insn (gen_lwsync ());
13825
13826 if (GET_CODE (m) == NOT)
13827 used_m = XEXP (m, 0);
13828 else
13829 used_m = m;
13830
13831 /* If this is smaller than SImode, we'll have to use SImode with
13832 adjustments. */
13833 if (mode == QImode || mode == HImode)
13834 {
13835 rtx newop, oldop;
13836
13837 if (MEM_ALIGN (used_m) >= 32)
13838 {
13839 int ishift = 0;
13840 if (BYTES_BIG_ENDIAN)
13841 ishift = GET_MODE_BITSIZE (SImode) - GET_MODE_BITSIZE (mode);
13842
13843 shift = GEN_INT (ishift);
13844 used_m = change_address (used_m, SImode, 0);
13845 }
13846 else
13847 {
13848 rtx addrSI, aligned_addr;
13849 int shift_mask = mode == QImode ? 0x18 : 0x10;
13850
13851 addrSI = gen_lowpart_common (SImode,
13852 force_reg (Pmode, XEXP (used_m, 0)));
13853 addrSI = force_reg (SImode, addrSI);
13854 shift = gen_reg_rtx (SImode);
13855
13856 emit_insn (gen_rlwinm (shift, addrSI, GEN_INT (3),
13857 GEN_INT (shift_mask)));
13858 emit_insn (gen_xorsi3 (shift, shift, GEN_INT (shift_mask)));
13859
13860 aligned_addr = expand_binop (Pmode, and_optab,
13861 XEXP (used_m, 0),
13862 GEN_INT (-4), NULL_RTX,
13863 1, OPTAB_LIB_WIDEN);
13864 used_m = change_address (used_m, SImode, aligned_addr);
13865 set_mem_align (used_m, 32);
13866 }
13867 /* It's safe to keep the old alias set of USED_M, because
13868 the operation is atomic and only affects the original
13869 USED_M. */
13870 if (GET_CODE (m) == NOT)
13871 m = gen_rtx_NOT (SImode, used_m);
13872 else
13873 m = used_m;
13874
13875 if (GET_CODE (op) == NOT)
13876 {
13877 oldop = lowpart_subreg (SImode, XEXP (op, 0), mode);
13878 oldop = gen_rtx_NOT (SImode, oldop);
13879 }
13880 else
13881 oldop = lowpart_subreg (SImode, op, mode);
13882
13883 switch (code)
13884 {
13885 case IOR:
13886 case XOR:
13887 newop = expand_binop (SImode, and_optab,
13888 oldop, GEN_INT (imask), NULL_RTX,
13889 1, OPTAB_LIB_WIDEN);
13890 emit_insn (gen_ashlsi3 (newop, newop, shift));
13891 break;
13892
13893 case AND:
13894 newop = expand_binop (SImode, ior_optab,
13895 oldop, GEN_INT (~imask), NULL_RTX,
13896 1, OPTAB_LIB_WIDEN);
13897 emit_insn (gen_rotlsi3 (newop, newop, shift));
13898 break;
13899
13900 case PLUS:
13901 case MINUS:
13902 {
13903 rtx mask;
13904
13905 newop = expand_binop (SImode, and_optab,
13906 oldop, GEN_INT (imask), NULL_RTX,
13907 1, OPTAB_LIB_WIDEN);
13908 emit_insn (gen_ashlsi3 (newop, newop, shift));
13909
13910 mask = gen_reg_rtx (SImode);
13911 emit_move_insn (mask, GEN_INT (imask));
13912 emit_insn (gen_ashlsi3 (mask, mask, shift));
13913
13914 if (code == PLUS)
13915 newop = gen_rtx_PLUS (SImode, m, newop);
13916 else
13917 newop = gen_rtx_MINUS (SImode, m, newop);
13918 newop = gen_rtx_AND (SImode, newop, mask);
13919 newop = gen_rtx_IOR (SImode, newop,
13920 gen_rtx_AND (SImode,
13921 gen_rtx_NOT (SImode, mask),
13922 m));
13923 break;
13924 }
13925
13926 default:
13927 gcc_unreachable ();
13928 }
13929
13930 if (GET_CODE (m) == NOT)
13931 {
13932 rtx mask, xorm;
13933
13934 mask = gen_reg_rtx (SImode);
13935 emit_move_insn (mask, GEN_INT (imask));
13936 emit_insn (gen_ashlsi3 (mask, mask, shift));
13937
13938 xorm = gen_rtx_XOR (SImode, used_m, mask);
13939 /* Depending on the value of 'op', the XOR or the operation might
13940 be able to be simplified away. */
13941 newop = simplify_gen_binary (code, SImode, xorm, newop);
13942 }
13943 op = newop;
13944 used_mode = SImode;
13945 before = gen_reg_rtx (used_mode);
13946 after = gen_reg_rtx (used_mode);
13947 }
13948 else
13949 {
13950 used_mode = mode;
13951 before = before_param;
13952 after = after_param;
13953
13954 if (before == NULL_RTX)
13955 before = gen_reg_rtx (used_mode);
13956 if (after == NULL_RTX)
13957 after = gen_reg_rtx (used_mode);
13958 }
13959
13960 if ((code == PLUS || code == MINUS || GET_CODE (m) == NOT)
13961 && used_mode != mode)
13962 the_op = op; /* Computed above. */
13963 else if (GET_CODE (op) == NOT && GET_CODE (m) != NOT)
13964 the_op = gen_rtx_fmt_ee (code, used_mode, op, m);
13965 else
13966 the_op = gen_rtx_fmt_ee (code, used_mode, m, op);
13967
13968 set_after = gen_rtx_SET (VOIDmode, after, the_op);
13969 set_before = gen_rtx_SET (VOIDmode, before, used_m);
13970 set_atomic = gen_rtx_SET (VOIDmode, used_m,
13971 gen_rtx_UNSPEC (used_mode,
13972 gen_rtvec (1, the_op),
13973 UNSPEC_SYNC_OP));
13974 cc_scratch = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (CCmode));
13975
13976 if ((code == PLUS || code == MINUS) && used_mode != mode)
13977 vec = gen_rtvec (5, set_after, set_before, set_atomic, cc_scratch,
13978 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (SImode)));
13979 else
13980 vec = gen_rtvec (4, set_after, set_before, set_atomic, cc_scratch);
13981 emit_insn (gen_rtx_PARALLEL (VOIDmode, vec));
13982
13983 /* Shift and mask the return values properly. */
13984 if (used_mode != mode && before_param)
13985 {
13986 emit_insn (gen_lshrsi3 (before, before, shift));
13987 convert_move (before_param, before, 1);
13988 }
13989
13990 if (used_mode != mode && after_param)
13991 {
13992 emit_insn (gen_lshrsi3 (after, after, shift));
13993 convert_move (after_param, after, 1);
13994 }
13995
13996 /* The previous sequence will end with a branch that's dependent on
13997 the conditional store, so placing an isync will ensure that no
13998 other instructions (especially, no load or store instructions)
13999 can start before the atomic operation completes. */
14000 if (sync_p)
14001 emit_insn (gen_isync ());
14002 }
14003
14004 /* A subroutine of the atomic operation splitters. Jump to LABEL if
14005 COND is true. Mark the jump as unlikely to be taken. */
14006
14007 static void
14008 emit_unlikely_jump (rtx cond, rtx label)
14009 {
14010 rtx very_unlikely = GEN_INT (REG_BR_PROB_BASE / 100 - 1);
14011 rtx x;
14012
14013 x = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, label, pc_rtx);
14014 x = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, x));
14015 REG_NOTES (x) = gen_rtx_EXPR_LIST (REG_BR_PROB, very_unlikely, NULL_RTX);
14016 }
14017
14018 /* A subroutine of the atomic operation splitters. Emit a load-locked
14019 instruction in MODE. */
14020
14021 static void
14022 emit_load_locked (enum machine_mode mode, rtx reg, rtx mem)
14023 {
14024 rtx (*fn) (rtx, rtx) = NULL;
14025 if (mode == SImode)
14026 fn = gen_load_locked_si;
14027 else if (mode == DImode)
14028 fn = gen_load_locked_di;
14029 emit_insn (fn (reg, mem));
14030 }
14031
14032 /* A subroutine of the atomic operation splitters. Emit a store-conditional
14033 instruction in MODE. */
14034
14035 static void
14036 emit_store_conditional (enum machine_mode mode, rtx res, rtx mem, rtx val)
14037 {
14038 rtx (*fn) (rtx, rtx, rtx) = NULL;
14039 if (mode == SImode)
14040 fn = gen_store_conditional_si;
14041 else if (mode == DImode)
14042 fn = gen_store_conditional_di;
14043
14044 /* Emit sync before stwcx. to address PPC405 Erratum. */
14045 if (PPC405_ERRATUM77)
14046 emit_insn (gen_memory_barrier ());
14047
14048 emit_insn (fn (res, mem, val));
14049 }
14050
14051 /* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
14052 to perform. MEM is the memory on which to operate. VAL is the second
14053 operand of the binary operator. BEFORE and AFTER are optional locations to
14054 return the value of MEM either before of after the operation. SCRATCH is
14055 a scratch register. */
14056
14057 void
14058 rs6000_split_atomic_op (enum rtx_code code, rtx mem, rtx val,
14059 rtx before, rtx after, rtx scratch)
14060 {
14061 enum machine_mode mode = GET_MODE (mem);
14062 rtx label, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);
14063
14064 emit_insn (gen_lwsync ());
14065
14066 label = gen_label_rtx ();
14067 emit_label (label);
14068 label = gen_rtx_LABEL_REF (VOIDmode, label);
14069
14070 if (before == NULL_RTX)
14071 before = scratch;
14072 emit_load_locked (mode, before, mem);
14073
14074 if (code == NOT)
14075 x = gen_rtx_AND (mode, gen_rtx_NOT (mode, before), val);
14076 else if (code == AND)
14077 x = gen_rtx_UNSPEC (mode, gen_rtvec (2, before, val), UNSPEC_AND);
14078 else
14079 x = gen_rtx_fmt_ee (code, mode, before, val);
14080
14081 if (after != NULL_RTX)
14082 emit_insn (gen_rtx_SET (VOIDmode, after, copy_rtx (x)));
14083 emit_insn (gen_rtx_SET (VOIDmode, scratch, x));
14084
14085 emit_store_conditional (mode, cond, mem, scratch);
14086
14087 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14088 emit_unlikely_jump (x, label);
14089
14090 emit_insn (gen_isync ());
14091 }
14092
14093 /* Expand an atomic compare and swap operation. MEM is the memory on which
14094 to operate. OLDVAL is the old value to be compared. NEWVAL is the new
14095 value to be stored. SCRATCH is a scratch GPR. */
14096
14097 void
14098 rs6000_split_compare_and_swap (rtx retval, rtx mem, rtx oldval, rtx newval,
14099 rtx scratch)
14100 {
14101 enum machine_mode mode = GET_MODE (mem);
14102 rtx label1, label2, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);
14103
14104 emit_insn (gen_lwsync ());
14105
14106 label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14107 label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14108 emit_label (XEXP (label1, 0));
14109
14110 emit_load_locked (mode, retval, mem);
14111
14112 x = gen_rtx_COMPARE (CCmode, retval, oldval);
14113 emit_insn (gen_rtx_SET (VOIDmode, cond, x));
14114
14115 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14116 emit_unlikely_jump (x, label2);
14117
14118 emit_move_insn (scratch, newval);
14119 emit_store_conditional (mode, cond, mem, scratch);
14120
14121 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14122 emit_unlikely_jump (x, label1);
14123
14124 emit_insn (gen_isync ());
14125 emit_label (XEXP (label2, 0));
14126 }
14127
14128 /* Expand an atomic test and set operation. MEM is the memory on which
14129 to operate. VAL is the value set. SCRATCH is a scratch GPR. */
14130
14131 void
14132 rs6000_split_lock_test_and_set (rtx retval, rtx mem, rtx val, rtx scratch)
14133 {
14134 enum machine_mode mode = GET_MODE (mem);
14135 rtx label, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);
14136
14137 label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14138 emit_label (XEXP (label, 0));
14139
14140 emit_load_locked (mode, retval, mem);
14141 emit_move_insn (scratch, val);
14142 emit_store_conditional (mode, cond, mem, scratch);
14143
14144 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14145 emit_unlikely_jump (x, label);
14146
14147 emit_insn (gen_isync ());
14148 }
14149
14150 void
14151 rs6000_expand_compare_and_swapqhi (rtx dst, rtx mem, rtx oldval, rtx newval)
14152 {
14153 enum machine_mode mode = GET_MODE (mem);
14154 rtx addrSI, align, wdst, shift, mask;
14155 HOST_WIDE_INT shift_mask = mode == QImode ? 0x18 : 0x10;
14156 HOST_WIDE_INT imask = GET_MODE_MASK (mode);
14157
14158 /* Shift amount for subword relative to aligned word. */
14159 addrSI = force_reg (GET_MODE (XEXP (mem, 0)), XEXP (mem, 0));
14160 addrSI = force_reg (SImode, gen_lowpart_common (SImode, addrSI));
14161 shift = gen_reg_rtx (SImode);
14162 emit_insn (gen_rlwinm (shift, addrSI, GEN_INT (3),
14163 GEN_INT (shift_mask)));
14164 emit_insn (gen_xorsi3 (shift, shift, GEN_INT (shift_mask)));
14165
14166 /* Shift and mask old value into position within word. */
14167 oldval = convert_modes (SImode, mode, oldval, 1);
14168 oldval = expand_binop (SImode, and_optab,
14169 oldval, GEN_INT (imask), NULL_RTX,
14170 1, OPTAB_LIB_WIDEN);
14171 emit_insn (gen_ashlsi3 (oldval, oldval, shift));
14172
14173 /* Shift and mask new value into position within word. */
14174 newval = convert_modes (SImode, mode, newval, 1);
14175 newval = expand_binop (SImode, and_optab,
14176 newval, GEN_INT (imask), NULL_RTX,
14177 1, OPTAB_LIB_WIDEN);
14178 emit_insn (gen_ashlsi3 (newval, newval, shift));
14179
14180 /* Mask for insertion. */
14181 mask = gen_reg_rtx (SImode);
14182 emit_move_insn (mask, GEN_INT (imask));
14183 emit_insn (gen_ashlsi3 (mask, mask, shift));
14184
14185 /* Address of aligned word containing subword. */
14186 align = expand_binop (Pmode, and_optab, XEXP (mem, 0), GEN_INT (-4),
14187 NULL_RTX, 1, OPTAB_LIB_WIDEN);
14188 mem = change_address (mem, SImode, align);
14189 set_mem_align (mem, 32);
14190 MEM_VOLATILE_P (mem) = 1;
14191
14192 wdst = gen_reg_rtx (SImode);
14193 emit_insn (gen_sync_compare_and_swapqhi_internal (wdst, mask,
14194 oldval, newval, mem));
14195
14196 /* Shift the result back. */
14197 emit_insn (gen_lshrsi3 (wdst, wdst, shift));
14198
14199 emit_move_insn (dst, gen_lowpart (mode, wdst));
14200 }
14201
14202 void
14203 rs6000_split_compare_and_swapqhi (rtx dest, rtx mask,
14204 rtx oldval, rtx newval, rtx mem,
14205 rtx scratch)
14206 {
14207 rtx label1, label2, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);
14208
14209 emit_insn (gen_lwsync ());
14210 label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14211 label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
14212 emit_label (XEXP (label1, 0));
14213
14214 emit_load_locked (SImode, scratch, mem);
14215
14216 /* Mask subword within loaded value for comparison with oldval.
14217 Use UNSPEC_AND to avoid clobber.*/
14218 emit_insn (gen_rtx_SET (SImode, dest,
14219 gen_rtx_UNSPEC (SImode,
14220 gen_rtvec (2, scratch, mask),
14221 UNSPEC_AND)));
14222
14223 x = gen_rtx_COMPARE (CCmode, dest, oldval);
14224 emit_insn (gen_rtx_SET (VOIDmode, cond, x));
14225
14226 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14227 emit_unlikely_jump (x, label2);
14228
14229 /* Clear subword within loaded value for insertion of new value. */
14230 emit_insn (gen_rtx_SET (SImode, scratch,
14231 gen_rtx_AND (SImode,
14232 gen_rtx_NOT (SImode, mask), scratch)));
14233 emit_insn (gen_iorsi3 (scratch, scratch, newval));
14234 emit_store_conditional (SImode, cond, mem, scratch);
14235
14236 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
14237 emit_unlikely_jump (x, label1);
14238
14239 emit_insn (gen_isync ());
14240 emit_label (XEXP (label2, 0));
14241 }
14242
14243
14244 /* Emit instructions to move SRC to DST. Called by splitters for
14245 multi-register moves. It will emit at most one instruction for
14246 each register that is accessed; that is, it won't emit li/lis pairs
14247 (or equivalent for 64-bit code). One of SRC or DST must be a hard
14248 register. */
14249
14250 void
14251 rs6000_split_multireg_move (rtx dst, rtx src)
14252 {
14253 /* The register number of the first register being moved. */
14254 int reg;
14255 /* The mode that is to be moved. */
14256 enum machine_mode mode;
14257 /* The mode that the move is being done in, and its size. */
14258 enum machine_mode reg_mode;
14259 int reg_mode_size;
14260 /* The number of registers that will be moved. */
14261 int nregs;
14262
14263 reg = REG_P (dst) ? REGNO (dst) : REGNO (src);
14264 mode = GET_MODE (dst);
14265 nregs = hard_regno_nregs[reg][mode];
14266 if (FP_REGNO_P (reg))
14267 reg_mode = DECIMAL_FLOAT_MODE_P (mode) ? DDmode :
14268 ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? DFmode : SFmode);
14269 else if (ALTIVEC_REGNO_P (reg))
14270 reg_mode = V16QImode;
14271 else if (TARGET_E500_DOUBLE && mode == TFmode)
14272 reg_mode = DFmode;
14273 else
14274 reg_mode = word_mode;
14275 reg_mode_size = GET_MODE_SIZE (reg_mode);
14276
14277 gcc_assert (reg_mode_size * nregs == GET_MODE_SIZE (mode));
14278
14279 if (REG_P (src) && REG_P (dst) && (REGNO (src) < REGNO (dst)))
14280 {
14281 /* Move register range backwards, if we might have destructive
14282 overlap. */
14283 int i;
14284 for (i = nregs - 1; i >= 0; i--)
14285 emit_insn (gen_rtx_SET (VOIDmode,
14286 simplify_gen_subreg (reg_mode, dst, mode,
14287 i * reg_mode_size),
14288 simplify_gen_subreg (reg_mode, src, mode,
14289 i * reg_mode_size)));
14290 }
14291 else
14292 {
14293 int i;
14294 int j = -1;
14295 bool used_update = false;
14296
14297 if (MEM_P (src) && INT_REGNO_P (reg))
14298 {
14299 rtx breg;
14300
14301 if (GET_CODE (XEXP (src, 0)) == PRE_INC
14302 || GET_CODE (XEXP (src, 0)) == PRE_DEC)
14303 {
14304 rtx delta_rtx;
14305 breg = XEXP (XEXP (src, 0), 0);
14306 delta_rtx = (GET_CODE (XEXP (src, 0)) == PRE_INC
14307 ? GEN_INT (GET_MODE_SIZE (GET_MODE (src)))
14308 : GEN_INT (-GET_MODE_SIZE (GET_MODE (src))));
14309 emit_insn (TARGET_32BIT
14310 ? gen_addsi3 (breg, breg, delta_rtx)
14311 : gen_adddi3 (breg, breg, delta_rtx));
14312 src = replace_equiv_address (src, breg);
14313 }
14314 else if (! rs6000_offsettable_memref_p (src))
14315 {
14316 rtx basereg;
14317 basereg = gen_rtx_REG (Pmode, reg);
14318 emit_insn (gen_rtx_SET (VOIDmode, basereg, XEXP (src, 0)));
14319 src = replace_equiv_address (src, basereg);
14320 }
14321
14322 breg = XEXP (src, 0);
14323 if (GET_CODE (breg) == PLUS || GET_CODE (breg) == LO_SUM)
14324 breg = XEXP (breg, 0);
14325
14326 /* If the base register we are using to address memory is
14327 also a destination reg, then change that register last. */
14328 if (REG_P (breg)
14329 && REGNO (breg) >= REGNO (dst)
14330 && REGNO (breg) < REGNO (dst) + nregs)
14331 j = REGNO (breg) - REGNO (dst);
14332 }
14333
14334 if (GET_CODE (dst) == MEM && INT_REGNO_P (reg))
14335 {
14336 rtx breg;
14337
14338 if (GET_CODE (XEXP (dst, 0)) == PRE_INC
14339 || GET_CODE (XEXP (dst, 0)) == PRE_DEC)
14340 {
14341 rtx delta_rtx;
14342 breg = XEXP (XEXP (dst, 0), 0);
14343 delta_rtx = (GET_CODE (XEXP (dst, 0)) == PRE_INC
14344 ? GEN_INT (GET_MODE_SIZE (GET_MODE (dst)))
14345 : GEN_INT (-GET_MODE_SIZE (GET_MODE (dst))));
14346
14347 /* We have to update the breg before doing the store.
14348 Use store with update, if available. */
14349
14350 if (TARGET_UPDATE)
14351 {
14352 rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
14353 emit_insn (TARGET_32BIT
14354 ? (TARGET_POWERPC64
14355 ? gen_movdi_si_update (breg, breg, delta_rtx, nsrc)
14356 : gen_movsi_update (breg, breg, delta_rtx, nsrc))
14357 : gen_movdi_di_update (breg, breg, delta_rtx, nsrc));
14358 used_update = true;
14359 }
14360 else
14361 emit_insn (TARGET_32BIT
14362 ? gen_addsi3 (breg, breg, delta_rtx)
14363 : gen_adddi3 (breg, breg, delta_rtx));
14364 dst = replace_equiv_address (dst, breg);
14365 }
14366 else
14367 gcc_assert (rs6000_offsettable_memref_p (dst));
14368 }
14369
14370 for (i = 0; i < nregs; i++)
14371 {
14372 /* Calculate index to next subword. */
14373 ++j;
14374 if (j == nregs)
14375 j = 0;
14376
14377 /* If compiler already emitted move of first word by
14378 store with update, no need to do anything. */
14379 if (j == 0 && used_update)
14380 continue;
14381
14382 emit_insn (gen_rtx_SET (VOIDmode,
14383 simplify_gen_subreg (reg_mode, dst, mode,
14384 j * reg_mode_size),
14385 simplify_gen_subreg (reg_mode, src, mode,
14386 j * reg_mode_size)));
14387 }
14388 }
14389 }
14390
14391 \f
14392 /* This page contains routines that are used to determine what the
14393 function prologue and epilogue code will do and write them out. */
14394
14395 /* Return the first fixed-point register that is required to be
14396 saved. 32 if none. */
14397
14398 int
14399 first_reg_to_save (void)
14400 {
14401 int first_reg;
14402
14403 /* Find lowest numbered live register. */
14404 for (first_reg = 13; first_reg <= 31; first_reg++)
14405 if (df_regs_ever_live_p (first_reg)
14406 && (! call_used_regs[first_reg]
14407 || (first_reg == RS6000_PIC_OFFSET_TABLE_REGNUM
14408 && ((DEFAULT_ABI == ABI_V4 && flag_pic != 0)
14409 || (DEFAULT_ABI == ABI_DARWIN && flag_pic)
14410 || (TARGET_TOC && TARGET_MINIMAL_TOC)))))
14411 break;
14412
14413 #if TARGET_MACHO
14414 if (flag_pic
14415 && crtl->uses_pic_offset_table
14416 && first_reg > RS6000_PIC_OFFSET_TABLE_REGNUM)
14417 return RS6000_PIC_OFFSET_TABLE_REGNUM;
14418 #endif
14419
14420 return first_reg;
14421 }
14422
14423 /* Similar, for FP regs. */
14424
14425 int
14426 first_fp_reg_to_save (void)
14427 {
14428 int first_reg;
14429
14430 /* Find lowest numbered live register. */
14431 for (first_reg = 14 + 32; first_reg <= 63; first_reg++)
14432 if (df_regs_ever_live_p (first_reg))
14433 break;
14434
14435 return first_reg;
14436 }
14437
14438 /* Similar, for AltiVec regs. */
14439
14440 static int
14441 first_altivec_reg_to_save (void)
14442 {
14443 int i;
14444
14445 /* Stack frame remains as is unless we are in AltiVec ABI. */
14446 if (! TARGET_ALTIVEC_ABI)
14447 return LAST_ALTIVEC_REGNO + 1;
14448
14449 /* On Darwin, the unwind routines are compiled without
14450 TARGET_ALTIVEC, and use save_world to save/restore the
14451 altivec registers when necessary. */
14452 if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
14453 && ! TARGET_ALTIVEC)
14454 return FIRST_ALTIVEC_REGNO + 20;
14455
14456 /* Find lowest numbered live register. */
14457 for (i = FIRST_ALTIVEC_REGNO + 20; i <= LAST_ALTIVEC_REGNO; ++i)
14458 if (df_regs_ever_live_p (i))
14459 break;
14460
14461 return i;
14462 }
14463
14464 /* Return a 32-bit mask of the AltiVec registers we need to set in
14465 VRSAVE. Bit n of the return value is 1 if Vn is live. The MSB in
14466 the 32-bit word is 0. */
14467
14468 static unsigned int
14469 compute_vrsave_mask (void)
14470 {
14471 unsigned int i, mask = 0;
14472
14473 /* On Darwin, the unwind routines are compiled without
14474 TARGET_ALTIVEC, and use save_world to save/restore the
14475 call-saved altivec registers when necessary. */
14476 if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
14477 && ! TARGET_ALTIVEC)
14478 mask |= 0xFFF;
14479
14480 /* First, find out if we use _any_ altivec registers. */
14481 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
14482 if (df_regs_ever_live_p (i))
14483 mask |= ALTIVEC_REG_BIT (i);
14484
14485 if (mask == 0)
14486 return mask;
14487
14488 /* Next, remove the argument registers from the set. These must
14489 be in the VRSAVE mask set by the caller, so we don't need to add
14490 them in again. More importantly, the mask we compute here is
14491 used to generate CLOBBERs in the set_vrsave insn, and we do not
14492 wish the argument registers to die. */
14493 for (i = crtl->args.info.vregno - 1; i >= ALTIVEC_ARG_MIN_REG; --i)
14494 mask &= ~ALTIVEC_REG_BIT (i);
14495
14496 /* Similarly, remove the return value from the set. */
14497 {
14498 bool yes = false;
14499 diddle_return_value (is_altivec_return_reg, &yes);
14500 if (yes)
14501 mask &= ~ALTIVEC_REG_BIT (ALTIVEC_ARG_RETURN);
14502 }
14503
14504 return mask;
14505 }
14506
14507 /* For a very restricted set of circumstances, we can cut down the
14508 size of prologues/epilogues by calling our own save/restore-the-world
14509 routines. */
14510
14511 static void
14512 compute_save_world_info (rs6000_stack_t *info_ptr)
14513 {
14514 info_ptr->world_save_p = 1;
14515 info_ptr->world_save_p
14516 = (WORLD_SAVE_P (info_ptr)
14517 && DEFAULT_ABI == ABI_DARWIN
14518 && ! (cfun->calls_setjmp && flag_exceptions)
14519 && info_ptr->first_fp_reg_save == FIRST_SAVED_FP_REGNO
14520 && info_ptr->first_gp_reg_save == FIRST_SAVED_GP_REGNO
14521 && info_ptr->first_altivec_reg_save == FIRST_SAVED_ALTIVEC_REGNO
14522 && info_ptr->cr_save_p);
14523
14524 /* This will not work in conjunction with sibcalls. Make sure there
14525 are none. (This check is expensive, but seldom executed.) */
14526 if (WORLD_SAVE_P (info_ptr))
14527 {
14528 rtx insn;
14529 for ( insn = get_last_insn_anywhere (); insn; insn = PREV_INSN (insn))
14530 if ( GET_CODE (insn) == CALL_INSN
14531 && SIBLING_CALL_P (insn))
14532 {
14533 info_ptr->world_save_p = 0;
14534 break;
14535 }
14536 }
14537
14538 if (WORLD_SAVE_P (info_ptr))
14539 {
14540 /* Even if we're not touching VRsave, make sure there's room on the
14541 stack for it, if it looks like we're calling SAVE_WORLD, which
14542 will attempt to save it. */
14543 info_ptr->vrsave_size = 4;
14544
14545 /* If we are going to save the world, we need to save the link register too. */
14546 info_ptr->lr_save_p = 1;
14547
14548 /* "Save" the VRsave register too if we're saving the world. */
14549 if (info_ptr->vrsave_mask == 0)
14550 info_ptr->vrsave_mask = compute_vrsave_mask ();
14551
14552 /* Because the Darwin register save/restore routines only handle
14553 F14 .. F31 and V20 .. V31 as per the ABI, perform a consistency
14554 check. */
14555 gcc_assert (info_ptr->first_fp_reg_save >= FIRST_SAVED_FP_REGNO
14556 && (info_ptr->first_altivec_reg_save
14557 >= FIRST_SAVED_ALTIVEC_REGNO));
14558 }
14559 return;
14560 }
14561
14562
14563 static void
14564 is_altivec_return_reg (rtx reg, void *xyes)
14565 {
14566 bool *yes = (bool *) xyes;
14567 if (REGNO (reg) == ALTIVEC_ARG_RETURN)
14568 *yes = true;
14569 }
14570
14571 \f
14572 /* Calculate the stack information for the current function. This is
14573 complicated by having two separate calling sequences, the AIX calling
14574 sequence and the V.4 calling sequence.
14575
14576 AIX (and Darwin/Mac OS X) stack frames look like:
14577 32-bit 64-bit
14578 SP----> +---------------------------------------+
14579 | back chain to caller | 0 0
14580 +---------------------------------------+
14581 | saved CR | 4 8 (8-11)
14582 +---------------------------------------+
14583 | saved LR | 8 16
14584 +---------------------------------------+
14585 | reserved for compilers | 12 24
14586 +---------------------------------------+
14587 | reserved for binders | 16 32
14588 +---------------------------------------+
14589 | saved TOC pointer | 20 40
14590 +---------------------------------------+
14591 | Parameter save area (P) | 24 48
14592 +---------------------------------------+
14593 | Alloca space (A) | 24+P etc.
14594 +---------------------------------------+
14595 | Local variable space (L) | 24+P+A
14596 +---------------------------------------+
14597 | Float/int conversion temporary (X) | 24+P+A+L
14598 +---------------------------------------+
14599 | Save area for AltiVec registers (W) | 24+P+A+L+X
14600 +---------------------------------------+
14601 | AltiVec alignment padding (Y) | 24+P+A+L+X+W
14602 +---------------------------------------+
14603 | Save area for VRSAVE register (Z) | 24+P+A+L+X+W+Y
14604 +---------------------------------------+
14605 | Save area for GP registers (G) | 24+P+A+X+L+X+W+Y+Z
14606 +---------------------------------------+
14607 | Save area for FP registers (F) | 24+P+A+X+L+X+W+Y+Z+G
14608 +---------------------------------------+
14609 old SP->| back chain to caller's caller |
14610 +---------------------------------------+
14611
14612 The required alignment for AIX configurations is two words (i.e., 8
14613 or 16 bytes).
14614
14615
14616 V.4 stack frames look like:
14617
14618 SP----> +---------------------------------------+
14619 | back chain to caller | 0
14620 +---------------------------------------+
14621 | caller's saved LR | 4
14622 +---------------------------------------+
14623 | Parameter save area (P) | 8
14624 +---------------------------------------+
14625 | Alloca space (A) | 8+P
14626 +---------------------------------------+
14627 | Varargs save area (V) | 8+P+A
14628 +---------------------------------------+
14629 | Local variable space (L) | 8+P+A+V
14630 +---------------------------------------+
14631 | Float/int conversion temporary (X) | 8+P+A+V+L
14632 +---------------------------------------+
14633 | Save area for AltiVec registers (W) | 8+P+A+V+L+X
14634 +---------------------------------------+
14635 | AltiVec alignment padding (Y) | 8+P+A+V+L+X+W
14636 +---------------------------------------+
14637 | Save area for VRSAVE register (Z) | 8+P+A+V+L+X+W+Y
14638 +---------------------------------------+
14639 | SPE: area for 64-bit GP registers |
14640 +---------------------------------------+
14641 | SPE alignment padding |
14642 +---------------------------------------+
14643 | saved CR (C) | 8+P+A+V+L+X+W+Y+Z
14644 +---------------------------------------+
14645 | Save area for GP registers (G) | 8+P+A+V+L+X+W+Y+Z+C
14646 +---------------------------------------+
14647 | Save area for FP registers (F) | 8+P+A+V+L+X+W+Y+Z+C+G
14648 +---------------------------------------+
14649 old SP->| back chain to caller's caller |
14650 +---------------------------------------+
14651
14652 The required alignment for V.4 is 16 bytes, or 8 bytes if -meabi is
14653 given. (But note below and in sysv4.h that we require only 8 and
14654 may round up the size of our stack frame anyways. The historical
14655 reason is early versions of powerpc-linux which didn't properly
14656 align the stack at program startup. A happy side-effect is that
14657 -mno-eabi libraries can be used with -meabi programs.)
14658
14659 The EABI configuration defaults to the V.4 layout. However,
14660 the stack alignment requirements may differ. If -mno-eabi is not
14661 given, the required stack alignment is 8 bytes; if -mno-eabi is
14662 given, the required alignment is 16 bytes. (But see V.4 comment
14663 above.) */
14664
14665 #ifndef ABI_STACK_BOUNDARY
14666 #define ABI_STACK_BOUNDARY STACK_BOUNDARY
14667 #endif
14668
14669 static rs6000_stack_t *
14670 rs6000_stack_info (void)
14671 {
14672 static rs6000_stack_t info;
14673 rs6000_stack_t *info_ptr = &info;
14674 int reg_size = TARGET_32BIT ? 4 : 8;
14675 int ehrd_size;
14676 int save_align;
14677 int first_gp;
14678 HOST_WIDE_INT non_fixed_size;
14679
14680 memset (&info, 0, sizeof (info));
14681
14682 if (TARGET_SPE)
14683 {
14684 /* Cache value so we don't rescan instruction chain over and over. */
14685 if (cfun->machine->insn_chain_scanned_p == 0)
14686 cfun->machine->insn_chain_scanned_p
14687 = spe_func_has_64bit_regs_p () + 1;
14688 info_ptr->spe_64bit_regs_used = cfun->machine->insn_chain_scanned_p - 1;
14689 }
14690
14691 /* Select which calling sequence. */
14692 info_ptr->abi = DEFAULT_ABI;
14693
14694 /* Calculate which registers need to be saved & save area size. */
14695 info_ptr->first_gp_reg_save = first_reg_to_save ();
14696 /* Assume that we will have to save RS6000_PIC_OFFSET_TABLE_REGNUM,
14697 even if it currently looks like we won't. Reload may need it to
14698 get at a constant; if so, it will have already created a constant
14699 pool entry for it. */
14700 if (((TARGET_TOC && TARGET_MINIMAL_TOC)
14701 || (flag_pic == 1 && DEFAULT_ABI == ABI_V4)
14702 || (flag_pic && DEFAULT_ABI == ABI_DARWIN))
14703 && crtl->uses_const_pool
14704 && info_ptr->first_gp_reg_save > RS6000_PIC_OFFSET_TABLE_REGNUM)
14705 first_gp = RS6000_PIC_OFFSET_TABLE_REGNUM;
14706 else
14707 first_gp = info_ptr->first_gp_reg_save;
14708
14709 info_ptr->gp_size = reg_size * (32 - first_gp);
14710
14711 /* For the SPE, we have an additional upper 32-bits on each GPR.
14712 Ideally we should save the entire 64-bits only when the upper
14713 half is used in SIMD instructions. Since we only record
14714 registers live (not the size they are used in), this proves
14715 difficult because we'd have to traverse the instruction chain at
14716 the right time, taking reload into account. This is a real pain,
14717 so we opt to save the GPRs in 64-bits always if but one register
14718 gets used in 64-bits. Otherwise, all the registers in the frame
14719 get saved in 32-bits.
14720
14721 So... since when we save all GPRs (except the SP) in 64-bits, the
14722 traditional GP save area will be empty. */
14723 if (TARGET_SPE_ABI && info_ptr->spe_64bit_regs_used != 0)
14724 info_ptr->gp_size = 0;
14725
14726 info_ptr->first_fp_reg_save = first_fp_reg_to_save ();
14727 info_ptr->fp_size = 8 * (64 - info_ptr->first_fp_reg_save);
14728
14729 info_ptr->first_altivec_reg_save = first_altivec_reg_to_save ();
14730 info_ptr->altivec_size = 16 * (LAST_ALTIVEC_REGNO + 1
14731 - info_ptr->first_altivec_reg_save);
14732
14733 /* Does this function call anything? */
14734 info_ptr->calls_p = (! current_function_is_leaf
14735 || cfun->machine->ra_needs_full_frame);
14736
14737 /* Determine if we need to save the link register. */
14738 if ((DEFAULT_ABI == ABI_AIX
14739 && crtl->profile
14740 && !TARGET_PROFILE_KERNEL)
14741 #ifdef TARGET_RELOCATABLE
14742 || (TARGET_RELOCATABLE && (get_pool_size () != 0))
14743 #endif
14744 || (info_ptr->first_fp_reg_save != 64
14745 && !FP_SAVE_INLINE (info_ptr->first_fp_reg_save))
14746 || (DEFAULT_ABI == ABI_V4 && cfun->calls_alloca)
14747 || info_ptr->calls_p
14748 || rs6000_ra_ever_killed ())
14749 {
14750 info_ptr->lr_save_p = 1;
14751 df_set_regs_ever_live (LR_REGNO, true);
14752 }
14753
14754 /* Determine if we need to save the condition code registers. */
14755 if (df_regs_ever_live_p (CR2_REGNO)
14756 || df_regs_ever_live_p (CR3_REGNO)
14757 || df_regs_ever_live_p (CR4_REGNO))
14758 {
14759 info_ptr->cr_save_p = 1;
14760 if (DEFAULT_ABI == ABI_V4)
14761 info_ptr->cr_size = reg_size;
14762 }
14763
14764 /* If the current function calls __builtin_eh_return, then we need
14765 to allocate stack space for registers that will hold data for
14766 the exception handler. */
14767 if (crtl->calls_eh_return)
14768 {
14769 unsigned int i;
14770 for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i)
14771 continue;
14772
14773 /* SPE saves EH registers in 64-bits. */
14774 ehrd_size = i * (TARGET_SPE_ABI
14775 && info_ptr->spe_64bit_regs_used != 0
14776 ? UNITS_PER_SPE_WORD : UNITS_PER_WORD);
14777 }
14778 else
14779 ehrd_size = 0;
14780
14781 /* Determine various sizes. */
14782 info_ptr->reg_size = reg_size;
14783 info_ptr->fixed_size = RS6000_SAVE_AREA;
14784 info_ptr->vars_size = RS6000_ALIGN (get_frame_size (), 8);
14785 info_ptr->parm_size = RS6000_ALIGN (crtl->outgoing_args_size,
14786 TARGET_ALTIVEC ? 16 : 8);
14787 if (FRAME_GROWS_DOWNWARD)
14788 info_ptr->vars_size
14789 += RS6000_ALIGN (info_ptr->fixed_size + info_ptr->vars_size
14790 + info_ptr->parm_size,
14791 ABI_STACK_BOUNDARY / BITS_PER_UNIT)
14792 - (info_ptr->fixed_size + info_ptr->vars_size
14793 + info_ptr->parm_size);
14794
14795 if (TARGET_SPE_ABI && info_ptr->spe_64bit_regs_used != 0)
14796 info_ptr->spe_gp_size = 8 * (32 - first_gp);
14797 else
14798 info_ptr->spe_gp_size = 0;
14799
14800 if (TARGET_ALTIVEC_ABI)
14801 info_ptr->vrsave_mask = compute_vrsave_mask ();
14802 else
14803 info_ptr->vrsave_mask = 0;
14804
14805 if (TARGET_ALTIVEC_VRSAVE && info_ptr->vrsave_mask)
14806 info_ptr->vrsave_size = 4;
14807 else
14808 info_ptr->vrsave_size = 0;
14809
14810 compute_save_world_info (info_ptr);
14811
14812 /* Calculate the offsets. */
14813 switch (DEFAULT_ABI)
14814 {
14815 case ABI_NONE:
14816 default:
14817 gcc_unreachable ();
14818
14819 case ABI_AIX:
14820 case ABI_DARWIN:
14821 info_ptr->fp_save_offset = - info_ptr->fp_size;
14822 info_ptr->gp_save_offset = info_ptr->fp_save_offset - info_ptr->gp_size;
14823
14824 if (TARGET_ALTIVEC_ABI)
14825 {
14826 info_ptr->vrsave_save_offset
14827 = info_ptr->gp_save_offset - info_ptr->vrsave_size;
14828
14829 /* Align stack so vector save area is on a quadword boundary.
14830 The padding goes above the vectors. */
14831 if (info_ptr->altivec_size != 0)
14832 info_ptr->altivec_padding_size
14833 = info_ptr->vrsave_save_offset & 0xF;
14834 else
14835 info_ptr->altivec_padding_size = 0;
14836
14837 info_ptr->altivec_save_offset
14838 = info_ptr->vrsave_save_offset
14839 - info_ptr->altivec_padding_size
14840 - info_ptr->altivec_size;
14841 gcc_assert (info_ptr->altivec_size == 0
14842 || info_ptr->altivec_save_offset % 16 == 0);
14843
14844 /* Adjust for AltiVec case. */
14845 info_ptr->ehrd_offset = info_ptr->altivec_save_offset - ehrd_size;
14846 }
14847 else
14848 info_ptr->ehrd_offset = info_ptr->gp_save_offset - ehrd_size;
14849 info_ptr->cr_save_offset = reg_size; /* first word when 64-bit. */
14850 info_ptr->lr_save_offset = 2*reg_size;
14851 break;
14852
14853 case ABI_V4:
14854 info_ptr->fp_save_offset = - info_ptr->fp_size;
14855 info_ptr->gp_save_offset = info_ptr->fp_save_offset - info_ptr->gp_size;
14856 info_ptr->cr_save_offset = info_ptr->gp_save_offset - info_ptr->cr_size;
14857
14858 if (TARGET_SPE_ABI && info_ptr->spe_64bit_regs_used != 0)
14859 {
14860 /* Align stack so SPE GPR save area is aligned on a
14861 double-word boundary. */
14862 if (info_ptr->spe_gp_size != 0 && info_ptr->cr_save_offset != 0)
14863 info_ptr->spe_padding_size
14864 = 8 - (-info_ptr->cr_save_offset % 8);
14865 else
14866 info_ptr->spe_padding_size = 0;
14867
14868 info_ptr->spe_gp_save_offset
14869 = info_ptr->cr_save_offset
14870 - info_ptr->spe_padding_size
14871 - info_ptr->spe_gp_size;
14872
14873 /* Adjust for SPE case. */
14874 info_ptr->ehrd_offset = info_ptr->spe_gp_save_offset;
14875 }
14876 else if (TARGET_ALTIVEC_ABI)
14877 {
14878 info_ptr->vrsave_save_offset
14879 = info_ptr->cr_save_offset - info_ptr->vrsave_size;
14880
14881 /* Align stack so vector save area is on a quadword boundary. */
14882 if (info_ptr->altivec_size != 0)
14883 info_ptr->altivec_padding_size
14884 = 16 - (-info_ptr->vrsave_save_offset % 16);
14885 else
14886 info_ptr->altivec_padding_size = 0;
14887
14888 info_ptr->altivec_save_offset
14889 = info_ptr->vrsave_save_offset
14890 - info_ptr->altivec_padding_size
14891 - info_ptr->altivec_size;
14892
14893 /* Adjust for AltiVec case. */
14894 info_ptr->ehrd_offset = info_ptr->altivec_save_offset;
14895 }
14896 else
14897 info_ptr->ehrd_offset = info_ptr->cr_save_offset;
14898 info_ptr->ehrd_offset -= ehrd_size;
14899 info_ptr->lr_save_offset = reg_size;
14900 break;
14901 }
14902
14903 save_align = (TARGET_ALTIVEC_ABI || DEFAULT_ABI == ABI_DARWIN) ? 16 : 8;
14904 info_ptr->save_size = RS6000_ALIGN (info_ptr->fp_size
14905 + info_ptr->gp_size
14906 + info_ptr->altivec_size
14907 + info_ptr->altivec_padding_size
14908 + info_ptr->spe_gp_size
14909 + info_ptr->spe_padding_size
14910 + ehrd_size
14911 + info_ptr->cr_size
14912 + info_ptr->vrsave_size,
14913 save_align);
14914
14915 non_fixed_size = (info_ptr->vars_size
14916 + info_ptr->parm_size
14917 + info_ptr->save_size);
14918
14919 info_ptr->total_size = RS6000_ALIGN (non_fixed_size + info_ptr->fixed_size,
14920 ABI_STACK_BOUNDARY / BITS_PER_UNIT);
14921
14922 /* Determine if we need to allocate any stack frame:
14923
14924 For AIX we need to push the stack if a frame pointer is needed
14925 (because the stack might be dynamically adjusted), if we are
14926 debugging, if we make calls, or if the sum of fp_save, gp_save,
14927 and local variables are more than the space needed to save all
14928 non-volatile registers: 32-bit: 18*8 + 19*4 = 220 or 64-bit: 18*8
14929 + 18*8 = 288 (GPR13 reserved).
14930
14931 For V.4 we don't have the stack cushion that AIX uses, but assume
14932 that the debugger can handle stackless frames. */
14933
14934 if (info_ptr->calls_p)
14935 info_ptr->push_p = 1;
14936
14937 else if (DEFAULT_ABI == ABI_V4)
14938 info_ptr->push_p = non_fixed_size != 0;
14939
14940 else if (frame_pointer_needed)
14941 info_ptr->push_p = 1;
14942
14943 else if (TARGET_XCOFF && write_symbols != NO_DEBUG)
14944 info_ptr->push_p = 1;
14945
14946 else
14947 info_ptr->push_p = non_fixed_size > (TARGET_32BIT ? 220 : 288);
14948
14949 /* Zero offsets if we're not saving those registers. */
14950 if (info_ptr->fp_size == 0)
14951 info_ptr->fp_save_offset = 0;
14952
14953 if (info_ptr->gp_size == 0)
14954 info_ptr->gp_save_offset = 0;
14955
14956 if (! TARGET_ALTIVEC_ABI || info_ptr->altivec_size == 0)
14957 info_ptr->altivec_save_offset = 0;
14958
14959 if (! TARGET_ALTIVEC_ABI || info_ptr->vrsave_mask == 0)
14960 info_ptr->vrsave_save_offset = 0;
14961
14962 if (! TARGET_SPE_ABI
14963 || info_ptr->spe_64bit_regs_used == 0
14964 || info_ptr->spe_gp_size == 0)
14965 info_ptr->spe_gp_save_offset = 0;
14966
14967 if (! info_ptr->lr_save_p)
14968 info_ptr->lr_save_offset = 0;
14969
14970 if (! info_ptr->cr_save_p)
14971 info_ptr->cr_save_offset = 0;
14972
14973 return info_ptr;
14974 }
14975
14976 /* Return true if the current function uses any GPRs in 64-bit SIMD
14977 mode. */
14978
14979 static bool
14980 spe_func_has_64bit_regs_p (void)
14981 {
14982 rtx insns, insn;
14983
14984 /* Functions that save and restore all the call-saved registers will
14985 need to save/restore the registers in 64-bits. */
14986 if (crtl->calls_eh_return
14987 || cfun->calls_setjmp
14988 || crtl->has_nonlocal_goto)
14989 return true;
14990
14991 insns = get_insns ();
14992
14993 for (insn = NEXT_INSN (insns); insn != NULL_RTX; insn = NEXT_INSN (insn))
14994 {
14995 if (INSN_P (insn))
14996 {
14997 rtx i;
14998
14999 /* FIXME: This should be implemented with attributes...
15000
15001 (set_attr "spe64" "true")....then,
15002 if (get_spe64(insn)) return true;
15003
15004 It's the only reliable way to do the stuff below. */
15005
15006 i = PATTERN (insn);
15007 if (GET_CODE (i) == SET)
15008 {
15009 enum machine_mode mode = GET_MODE (SET_SRC (i));
15010
15011 if (SPE_VECTOR_MODE (mode))
15012 return true;
15013 if (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode))
15014 return true;
15015 }
15016 }
15017 }
15018
15019 return false;
15020 }
15021
15022 static void
15023 debug_stack_info (rs6000_stack_t *info)
15024 {
15025 const char *abi_string;
15026
15027 if (! info)
15028 info = rs6000_stack_info ();
15029
15030 fprintf (stderr, "\nStack information for function %s:\n",
15031 ((current_function_decl && DECL_NAME (current_function_decl))
15032 ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
15033 : "<unknown>"));
15034
15035 switch (info->abi)
15036 {
15037 default: abi_string = "Unknown"; break;
15038 case ABI_NONE: abi_string = "NONE"; break;
15039 case ABI_AIX: abi_string = "AIX"; break;
15040 case ABI_DARWIN: abi_string = "Darwin"; break;
15041 case ABI_V4: abi_string = "V.4"; break;
15042 }
15043
15044 fprintf (stderr, "\tABI = %5s\n", abi_string);
15045
15046 if (TARGET_ALTIVEC_ABI)
15047 fprintf (stderr, "\tALTIVEC ABI extensions enabled.\n");
15048
15049 if (TARGET_SPE_ABI)
15050 fprintf (stderr, "\tSPE ABI extensions enabled.\n");
15051
15052 if (info->first_gp_reg_save != 32)
15053 fprintf (stderr, "\tfirst_gp_reg_save = %5d\n", info->first_gp_reg_save);
15054
15055 if (info->first_fp_reg_save != 64)
15056 fprintf (stderr, "\tfirst_fp_reg_save = %5d\n", info->first_fp_reg_save);
15057
15058 if (info->first_altivec_reg_save <= LAST_ALTIVEC_REGNO)
15059 fprintf (stderr, "\tfirst_altivec_reg_save = %5d\n",
15060 info->first_altivec_reg_save);
15061
15062 if (info->lr_save_p)
15063 fprintf (stderr, "\tlr_save_p = %5d\n", info->lr_save_p);
15064
15065 if (info->cr_save_p)
15066 fprintf (stderr, "\tcr_save_p = %5d\n", info->cr_save_p);
15067
15068 if (info->vrsave_mask)
15069 fprintf (stderr, "\tvrsave_mask = 0x%x\n", info->vrsave_mask);
15070
15071 if (info->push_p)
15072 fprintf (stderr, "\tpush_p = %5d\n", info->push_p);
15073
15074 if (info->calls_p)
15075 fprintf (stderr, "\tcalls_p = %5d\n", info->calls_p);
15076
15077 if (info->gp_save_offset)
15078 fprintf (stderr, "\tgp_save_offset = %5d\n", info->gp_save_offset);
15079
15080 if (info->fp_save_offset)
15081 fprintf (stderr, "\tfp_save_offset = %5d\n", info->fp_save_offset);
15082
15083 if (info->altivec_save_offset)
15084 fprintf (stderr, "\taltivec_save_offset = %5d\n",
15085 info->altivec_save_offset);
15086
15087 if (info->spe_gp_save_offset)
15088 fprintf (stderr, "\tspe_gp_save_offset = %5d\n",
15089 info->spe_gp_save_offset);
15090
15091 if (info->vrsave_save_offset)
15092 fprintf (stderr, "\tvrsave_save_offset = %5d\n",
15093 info->vrsave_save_offset);
15094
15095 if (info->lr_save_offset)
15096 fprintf (stderr, "\tlr_save_offset = %5d\n", info->lr_save_offset);
15097
15098 if (info->cr_save_offset)
15099 fprintf (stderr, "\tcr_save_offset = %5d\n", info->cr_save_offset);
15100
15101 if (info->varargs_save_offset)
15102 fprintf (stderr, "\tvarargs_save_offset = %5d\n", info->varargs_save_offset);
15103
15104 if (info->total_size)
15105 fprintf (stderr, "\ttotal_size = "HOST_WIDE_INT_PRINT_DEC"\n",
15106 info->total_size);
15107
15108 if (info->vars_size)
15109 fprintf (stderr, "\tvars_size = "HOST_WIDE_INT_PRINT_DEC"\n",
15110 info->vars_size);
15111
15112 if (info->parm_size)
15113 fprintf (stderr, "\tparm_size = %5d\n", info->parm_size);
15114
15115 if (info->fixed_size)
15116 fprintf (stderr, "\tfixed_size = %5d\n", info->fixed_size);
15117
15118 if (info->gp_size)
15119 fprintf (stderr, "\tgp_size = %5d\n", info->gp_size);
15120
15121 if (info->spe_gp_size)
15122 fprintf (stderr, "\tspe_gp_size = %5d\n", info->spe_gp_size);
15123
15124 if (info->fp_size)
15125 fprintf (stderr, "\tfp_size = %5d\n", info->fp_size);
15126
15127 if (info->altivec_size)
15128 fprintf (stderr, "\taltivec_size = %5d\n", info->altivec_size);
15129
15130 if (info->vrsave_size)
15131 fprintf (stderr, "\tvrsave_size = %5d\n", info->vrsave_size);
15132
15133 if (info->altivec_padding_size)
15134 fprintf (stderr, "\taltivec_padding_size= %5d\n",
15135 info->altivec_padding_size);
15136
15137 if (info->spe_padding_size)
15138 fprintf (stderr, "\tspe_padding_size = %5d\n",
15139 info->spe_padding_size);
15140
15141 if (info->cr_size)
15142 fprintf (stderr, "\tcr_size = %5d\n", info->cr_size);
15143
15144 if (info->save_size)
15145 fprintf (stderr, "\tsave_size = %5d\n", info->save_size);
15146
15147 if (info->reg_size != 4)
15148 fprintf (stderr, "\treg_size = %5d\n", info->reg_size);
15149
15150 fprintf (stderr, "\n");
15151 }
15152
15153 rtx
15154 rs6000_return_addr (int count, rtx frame)
15155 {
15156 /* Currently we don't optimize very well between prolog and body
15157 code and for PIC code the code can be actually quite bad, so
15158 don't try to be too clever here. */
15159 if (count != 0 || (DEFAULT_ABI != ABI_AIX && flag_pic))
15160 {
15161 cfun->machine->ra_needs_full_frame = 1;
15162
15163 return
15164 gen_rtx_MEM
15165 (Pmode,
15166 memory_address
15167 (Pmode,
15168 plus_constant (copy_to_reg
15169 (gen_rtx_MEM (Pmode,
15170 memory_address (Pmode, frame))),
15171 RETURN_ADDRESS_OFFSET)));
15172 }
15173
15174 cfun->machine->ra_need_lr = 1;
15175 return get_hard_reg_initial_val (Pmode, LR_REGNO);
15176 }
15177
15178 /* Say whether a function is a candidate for sibcall handling or not.
15179 We do not allow indirect calls to be optimized into sibling calls.
15180 Also, we can't do it if there are any vector parameters; there's
15181 nowhere to put the VRsave code so it works; note that functions with
15182 vector parameters are required to have a prototype, so the argument
15183 type info must be available here. (The tail recursion case can work
15184 with vector parameters, but there's no way to distinguish here.) */
15185 static bool
15186 rs6000_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
15187 {
15188 tree type;
15189 if (decl)
15190 {
15191 if (TARGET_ALTIVEC_VRSAVE)
15192 {
15193 for (type = TYPE_ARG_TYPES (TREE_TYPE (decl));
15194 type; type = TREE_CHAIN (type))
15195 {
15196 if (TREE_CODE (TREE_VALUE (type)) == VECTOR_TYPE)
15197 return false;
15198 }
15199 }
15200 if (DEFAULT_ABI == ABI_DARWIN
15201 || ((*targetm.binds_local_p) (decl)
15202 && (DEFAULT_ABI != ABI_AIX || !DECL_EXTERNAL (decl))))
15203 {
15204 tree attr_list = TYPE_ATTRIBUTES (TREE_TYPE (decl));
15205
15206 if (!lookup_attribute ("longcall", attr_list)
15207 || lookup_attribute ("shortcall", attr_list))
15208 return true;
15209 }
15210 }
15211 return false;
15212 }
15213
15214 /* NULL if INSN insn is valid within a low-overhead loop.
15215 Otherwise return why doloop cannot be applied.
15216 PowerPC uses the COUNT register for branch on table instructions. */
15217
15218 static const char *
15219 rs6000_invalid_within_doloop (const_rtx insn)
15220 {
15221 if (CALL_P (insn))
15222 return "Function call in the loop.";
15223
15224 if (JUMP_P (insn)
15225 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
15226 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
15227 return "Computed branch in the loop.";
15228
15229 return NULL;
15230 }
15231
15232 static int
15233 rs6000_ra_ever_killed (void)
15234 {
15235 rtx top;
15236 rtx reg;
15237 rtx insn;
15238
15239 if (crtl->is_thunk)
15240 return 0;
15241
15242 /* regs_ever_live has LR marked as used if any sibcalls are present,
15243 but this should not force saving and restoring in the
15244 pro/epilogue. Likewise, reg_set_between_p thinks a sibcall
15245 clobbers LR, so that is inappropriate. */
15246
15247 /* Also, the prologue can generate a store into LR that
15248 doesn't really count, like this:
15249
15250 move LR->R0
15251 bcl to set PIC register
15252 move LR->R31
15253 move R0->LR
15254
15255 When we're called from the epilogue, we need to avoid counting
15256 this as a store. */
15257
15258 push_topmost_sequence ();
15259 top = get_insns ();
15260 pop_topmost_sequence ();
15261 reg = gen_rtx_REG (Pmode, LR_REGNO);
15262
15263 for (insn = NEXT_INSN (top); insn != NULL_RTX; insn = NEXT_INSN (insn))
15264 {
15265 if (INSN_P (insn))
15266 {
15267 if (CALL_P (insn))
15268 {
15269 if (!SIBLING_CALL_P (insn))
15270 return 1;
15271 }
15272 else if (find_regno_note (insn, REG_INC, LR_REGNO))
15273 return 1;
15274 else if (set_of (reg, insn) != NULL_RTX
15275 && !prologue_epilogue_contains (insn))
15276 return 1;
15277 }
15278 }
15279 return 0;
15280 }
15281 \f
15282 /* Emit instructions needed to load the TOC register.
15283 This is only needed when TARGET_TOC, TARGET_MINIMAL_TOC, and there is
15284 a constant pool; or for SVR4 -fpic. */
15285
15286 void
15287 rs6000_emit_load_toc_table (int fromprolog)
15288 {
15289 rtx dest;
15290 dest = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
15291
15292 if (TARGET_ELF && TARGET_SECURE_PLT && DEFAULT_ABI != ABI_AIX && flag_pic)
15293 {
15294 char buf[30];
15295 rtx lab, tmp1, tmp2, got;
15296
15297 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
15298 lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
15299 if (flag_pic == 2)
15300 got = gen_rtx_SYMBOL_REF (Pmode, toc_label_name);
15301 else
15302 got = rs6000_got_sym ();
15303 tmp1 = tmp2 = dest;
15304 if (!fromprolog)
15305 {
15306 tmp1 = gen_reg_rtx (Pmode);
15307 tmp2 = gen_reg_rtx (Pmode);
15308 }
15309 emit_insn (gen_load_toc_v4_PIC_1 (lab));
15310 emit_move_insn (tmp1,
15311 gen_rtx_REG (Pmode, LR_REGNO));
15312 emit_insn (gen_load_toc_v4_PIC_3b (tmp2, tmp1, got, lab));
15313 emit_insn (gen_load_toc_v4_PIC_3c (dest, tmp2, got, lab));
15314 }
15315 else if (TARGET_ELF && DEFAULT_ABI == ABI_V4 && flag_pic == 1)
15316 {
15317 emit_insn (gen_load_toc_v4_pic_si ());
15318 emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
15319 }
15320 else if (TARGET_ELF && DEFAULT_ABI != ABI_AIX && flag_pic == 2)
15321 {
15322 char buf[30];
15323 rtx temp0 = (fromprolog
15324 ? gen_rtx_REG (Pmode, 0)
15325 : gen_reg_rtx (Pmode));
15326
15327 if (fromprolog)
15328 {
15329 rtx symF, symL;
15330
15331 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
15332 symF = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
15333
15334 ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno);
15335 symL = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
15336
15337 emit_insn (gen_load_toc_v4_PIC_1 (symF));
15338 emit_move_insn (dest,
15339 gen_rtx_REG (Pmode, LR_REGNO));
15340 emit_insn (gen_load_toc_v4_PIC_2 (temp0, dest, symL, symF));
15341 }
15342 else
15343 {
15344 rtx tocsym;
15345
15346 tocsym = gen_rtx_SYMBOL_REF (Pmode, toc_label_name);
15347 emit_insn (gen_load_toc_v4_PIC_1b (tocsym));
15348 emit_move_insn (dest,
15349 gen_rtx_REG (Pmode, LR_REGNO));
15350 emit_move_insn (temp0, gen_rtx_MEM (Pmode, dest));
15351 }
15352 emit_insn (gen_addsi3 (dest, temp0, dest));
15353 }
15354 else if (TARGET_ELF && !TARGET_AIX && flag_pic == 0 && TARGET_MINIMAL_TOC)
15355 {
15356 /* This is for AIX code running in non-PIC ELF32. */
15357 char buf[30];
15358 rtx realsym;
15359 ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 1);
15360 realsym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
15361
15362 emit_insn (gen_elf_high (dest, realsym));
15363 emit_insn (gen_elf_low (dest, dest, realsym));
15364 }
15365 else
15366 {
15367 gcc_assert (DEFAULT_ABI == ABI_AIX);
15368
15369 if (TARGET_32BIT)
15370 emit_insn (gen_load_toc_aix_si (dest));
15371 else
15372 emit_insn (gen_load_toc_aix_di (dest));
15373 }
15374 }
15375
15376 /* Emit instructions to restore the link register after determining where
15377 its value has been stored. */
15378
15379 void
15380 rs6000_emit_eh_reg_restore (rtx source, rtx scratch)
15381 {
15382 rs6000_stack_t *info = rs6000_stack_info ();
15383 rtx operands[2];
15384
15385 operands[0] = source;
15386 operands[1] = scratch;
15387
15388 if (info->lr_save_p)
15389 {
15390 rtx frame_rtx = stack_pointer_rtx;
15391 HOST_WIDE_INT sp_offset = 0;
15392 rtx tmp;
15393
15394 if (frame_pointer_needed
15395 || cfun->calls_alloca
15396 || info->total_size > 32767)
15397 {
15398 tmp = gen_frame_mem (Pmode, frame_rtx);
15399 emit_move_insn (operands[1], tmp);
15400 frame_rtx = operands[1];
15401 }
15402 else if (info->push_p)
15403 sp_offset = info->total_size;
15404
15405 tmp = plus_constant (frame_rtx, info->lr_save_offset + sp_offset);
15406 tmp = gen_frame_mem (Pmode, tmp);
15407 emit_move_insn (tmp, operands[0]);
15408 }
15409 else
15410 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNO), operands[0]);
15411 }
15412
15413 static GTY(()) alias_set_type set = -1;
15414
15415 alias_set_type
15416 get_TOC_alias_set (void)
15417 {
15418 if (set == -1)
15419 set = new_alias_set ();
15420 return set;
15421 }
15422
15423 /* This returns nonzero if the current function uses the TOC. This is
15424 determined by the presence of (use (unspec ... UNSPEC_TOC)), which
15425 is generated by the ABI_V4 load_toc_* patterns. */
15426 #if TARGET_ELF
15427 static int
15428 uses_TOC (void)
15429 {
15430 rtx insn;
15431
15432 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
15433 if (INSN_P (insn))
15434 {
15435 rtx pat = PATTERN (insn);
15436 int i;
15437
15438 if (GET_CODE (pat) == PARALLEL)
15439 for (i = 0; i < XVECLEN (pat, 0); i++)
15440 {
15441 rtx sub = XVECEXP (pat, 0, i);
15442 if (GET_CODE (sub) == USE)
15443 {
15444 sub = XEXP (sub, 0);
15445 if (GET_CODE (sub) == UNSPEC
15446 && XINT (sub, 1) == UNSPEC_TOC)
15447 return 1;
15448 }
15449 }
15450 }
15451 return 0;
15452 }
15453 #endif
15454
15455 rtx
15456 create_TOC_reference (rtx symbol)
15457 {
15458 if (!can_create_pseudo_p ())
15459 df_set_regs_ever_live (TOC_REGISTER, true);
15460 return gen_rtx_PLUS (Pmode,
15461 gen_rtx_REG (Pmode, TOC_REGISTER),
15462 gen_rtx_CONST (Pmode,
15463 gen_rtx_UNSPEC (Pmode, gen_rtvec (1, symbol), UNSPEC_TOCREL)));
15464 }
15465
15466 /* If _Unwind_* has been called from within the same module,
15467 toc register is not guaranteed to be saved to 40(1) on function
15468 entry. Save it there in that case. */
15469
15470 void
15471 rs6000_aix_emit_builtin_unwind_init (void)
15472 {
15473 rtx mem;
15474 rtx stack_top = gen_reg_rtx (Pmode);
15475 rtx opcode_addr = gen_reg_rtx (Pmode);
15476 rtx opcode = gen_reg_rtx (SImode);
15477 rtx tocompare = gen_reg_rtx (SImode);
15478 rtx no_toc_save_needed = gen_label_rtx ();
15479
15480 mem = gen_frame_mem (Pmode, hard_frame_pointer_rtx);
15481 emit_move_insn (stack_top, mem);
15482
15483 mem = gen_frame_mem (Pmode,
15484 gen_rtx_PLUS (Pmode, stack_top,
15485 GEN_INT (2 * GET_MODE_SIZE (Pmode))));
15486 emit_move_insn (opcode_addr, mem);
15487 emit_move_insn (opcode, gen_rtx_MEM (SImode, opcode_addr));
15488 emit_move_insn (tocompare, gen_int_mode (TARGET_32BIT ? 0x80410014
15489 : 0xE8410028, SImode));
15490
15491 do_compare_rtx_and_jump (opcode, tocompare, EQ, 1,
15492 SImode, NULL_RTX, NULL_RTX,
15493 no_toc_save_needed);
15494
15495 mem = gen_frame_mem (Pmode,
15496 gen_rtx_PLUS (Pmode, stack_top,
15497 GEN_INT (5 * GET_MODE_SIZE (Pmode))));
15498 emit_move_insn (mem, gen_rtx_REG (Pmode, 2));
15499 emit_label (no_toc_save_needed);
15500 }
15501 \f
15502 /* This ties together stack memory (MEM with an alias set of frame_alias_set)
15503 and the change to the stack pointer. */
15504
15505 static void
15506 rs6000_emit_stack_tie (void)
15507 {
15508 rtx mem = gen_frame_mem (BLKmode,
15509 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM));
15510
15511 emit_insn (gen_stack_tie (mem));
15512 }
15513
15514 /* Emit the correct code for allocating stack space, as insns.
15515 If COPY_R12, make sure a copy of the old frame is left in r12.
15516 If COPY_R11, make sure a copy of the old frame is left in r11,
15517 in preference to r12 if COPY_R12.
15518 The generated code may use hard register 0 as a temporary. */
15519
15520 static void
15521 rs6000_emit_allocate_stack (HOST_WIDE_INT size, int copy_r12, int copy_r11)
15522 {
15523 rtx insn;
15524 rtx stack_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
15525 rtx tmp_reg = gen_rtx_REG (Pmode, 0);
15526 rtx todec = gen_int_mode (-size, Pmode);
15527
15528 if (INTVAL (todec) != -size)
15529 {
15530 warning (0, "stack frame too large");
15531 emit_insn (gen_trap ());
15532 return;
15533 }
15534
15535 if (crtl->limit_stack)
15536 {
15537 if (REG_P (stack_limit_rtx)
15538 && REGNO (stack_limit_rtx) > 1
15539 && REGNO (stack_limit_rtx) <= 31)
15540 {
15541 emit_insn (TARGET_32BIT
15542 ? gen_addsi3 (tmp_reg,
15543 stack_limit_rtx,
15544 GEN_INT (size))
15545 : gen_adddi3 (tmp_reg,
15546 stack_limit_rtx,
15547 GEN_INT (size)));
15548
15549 emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg,
15550 const0_rtx));
15551 }
15552 else if (GET_CODE (stack_limit_rtx) == SYMBOL_REF
15553 && TARGET_32BIT
15554 && DEFAULT_ABI == ABI_V4)
15555 {
15556 rtx toload = gen_rtx_CONST (VOIDmode,
15557 gen_rtx_PLUS (Pmode,
15558 stack_limit_rtx,
15559 GEN_INT (size)));
15560
15561 emit_insn (gen_elf_high (tmp_reg, toload));
15562 emit_insn (gen_elf_low (tmp_reg, tmp_reg, toload));
15563 emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg,
15564 const0_rtx));
15565 }
15566 else
15567 warning (0, "stack limit expression is not supported");
15568 }
15569
15570 if (copy_r12 || copy_r11 || ! TARGET_UPDATE)
15571 emit_move_insn (copy_r11
15572 ? gen_rtx_REG (Pmode, 11)
15573 : gen_rtx_REG (Pmode, 12),
15574 stack_reg);
15575
15576 if (TARGET_UPDATE)
15577 {
15578 rtx par, set, mem;
15579
15580 if (size > 32767)
15581 {
15582 /* Need a note here so that try_split doesn't get confused. */
15583 if (get_last_insn () == NULL_RTX)
15584 emit_note (NOTE_INSN_DELETED);
15585 insn = emit_move_insn (tmp_reg, todec);
15586 try_split (PATTERN (insn), insn, 0);
15587 todec = tmp_reg;
15588 }
15589
15590 insn = emit_insn (TARGET_32BIT
15591 ? gen_movsi_update (stack_reg, stack_reg,
15592 todec, stack_reg)
15593 : gen_movdi_di_update (stack_reg, stack_reg,
15594 todec, stack_reg));
15595 /* Since we didn't use gen_frame_mem to generate the MEM, grab
15596 it now and set the alias set/attributes. The above gen_*_update
15597 calls will generate a PARALLEL with the MEM set being the first
15598 operation. */
15599 par = PATTERN (insn);
15600 gcc_assert (GET_CODE (par) == PARALLEL);
15601 set = XVECEXP (par, 0, 0);
15602 gcc_assert (GET_CODE (set) == SET);
15603 mem = SET_DEST (set);
15604 gcc_assert (MEM_P (mem));
15605 MEM_NOTRAP_P (mem) = 1;
15606 set_mem_alias_set (mem, get_frame_alias_set ());
15607 }
15608 else
15609 {
15610 insn = emit_insn (TARGET_32BIT
15611 ? gen_addsi3 (stack_reg, stack_reg, todec)
15612 : gen_adddi3 (stack_reg, stack_reg, todec));
15613 emit_move_insn (gen_frame_mem (Pmode, stack_reg),
15614 copy_r11
15615 ? gen_rtx_REG (Pmode, 11)
15616 : gen_rtx_REG (Pmode, 12));
15617 }
15618
15619 RTX_FRAME_RELATED_P (insn) = 1;
15620 REG_NOTES (insn) =
15621 gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
15622 gen_rtx_SET (VOIDmode, stack_reg,
15623 gen_rtx_PLUS (Pmode, stack_reg,
15624 GEN_INT (-size))),
15625 REG_NOTES (insn));
15626 }
15627
15628 /* Add to 'insn' a note which is PATTERN (INSN) but with REG replaced
15629 with (plus:P (reg 1) VAL), and with REG2 replaced with RREG if REG2
15630 is not NULL. It would be nice if dwarf2out_frame_debug_expr could
15631 deduce these equivalences by itself so it wasn't necessary to hold
15632 its hand so much. */
15633
15634 static void
15635 rs6000_frame_related (rtx insn, rtx reg, HOST_WIDE_INT val,
15636 rtx reg2, rtx rreg)
15637 {
15638 rtx real, temp;
15639
15640 /* copy_rtx will not make unique copies of registers, so we need to
15641 ensure we don't have unwanted sharing here. */
15642 if (reg == reg2)
15643 reg = gen_raw_REG (GET_MODE (reg), REGNO (reg));
15644
15645 if (reg == rreg)
15646 reg = gen_raw_REG (GET_MODE (reg), REGNO (reg));
15647
15648 real = copy_rtx (PATTERN (insn));
15649
15650 if (reg2 != NULL_RTX)
15651 real = replace_rtx (real, reg2, rreg);
15652
15653 real = replace_rtx (real, reg,
15654 gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode,
15655 STACK_POINTER_REGNUM),
15656 GEN_INT (val)));
15657
15658 /* We expect that 'real' is either a SET or a PARALLEL containing
15659 SETs (and possibly other stuff). In a PARALLEL, all the SETs
15660 are important so they all have to be marked RTX_FRAME_RELATED_P. */
15661
15662 if (GET_CODE (real) == SET)
15663 {
15664 rtx set = real;
15665
15666 temp = simplify_rtx (SET_SRC (set));
15667 if (temp)
15668 SET_SRC (set) = temp;
15669 temp = simplify_rtx (SET_DEST (set));
15670 if (temp)
15671 SET_DEST (set) = temp;
15672 if (GET_CODE (SET_DEST (set)) == MEM)
15673 {
15674 temp = simplify_rtx (XEXP (SET_DEST (set), 0));
15675 if (temp)
15676 XEXP (SET_DEST (set), 0) = temp;
15677 }
15678 }
15679 else
15680 {
15681 int i;
15682
15683 gcc_assert (GET_CODE (real) == PARALLEL);
15684 for (i = 0; i < XVECLEN (real, 0); i++)
15685 if (GET_CODE (XVECEXP (real, 0, i)) == SET)
15686 {
15687 rtx set = XVECEXP (real, 0, i);
15688
15689 temp = simplify_rtx (SET_SRC (set));
15690 if (temp)
15691 SET_SRC (set) = temp;
15692 temp = simplify_rtx (SET_DEST (set));
15693 if (temp)
15694 SET_DEST (set) = temp;
15695 if (GET_CODE (SET_DEST (set)) == MEM)
15696 {
15697 temp = simplify_rtx (XEXP (SET_DEST (set), 0));
15698 if (temp)
15699 XEXP (SET_DEST (set), 0) = temp;
15700 }
15701 RTX_FRAME_RELATED_P (set) = 1;
15702 }
15703 }
15704
15705 RTX_FRAME_RELATED_P (insn) = 1;
15706 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
15707 real,
15708 REG_NOTES (insn));
15709 }
15710
15711 /* Returns an insn that has a vrsave set operation with the
15712 appropriate CLOBBERs. */
15713
15714 static rtx
15715 generate_set_vrsave (rtx reg, rs6000_stack_t *info, int epiloguep)
15716 {
15717 int nclobs, i;
15718 rtx insn, clobs[TOTAL_ALTIVEC_REGS + 1];
15719 rtx vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
15720
15721 clobs[0]
15722 = gen_rtx_SET (VOIDmode,
15723 vrsave,
15724 gen_rtx_UNSPEC_VOLATILE (SImode,
15725 gen_rtvec (2, reg, vrsave),
15726 UNSPECV_SET_VRSAVE));
15727
15728 nclobs = 1;
15729
15730 /* We need to clobber the registers in the mask so the scheduler
15731 does not move sets to VRSAVE before sets of AltiVec registers.
15732
15733 However, if the function receives nonlocal gotos, reload will set
15734 all call saved registers live. We will end up with:
15735
15736 (set (reg 999) (mem))
15737 (parallel [ (set (reg vrsave) (unspec blah))
15738 (clobber (reg 999))])
15739
15740 The clobber will cause the store into reg 999 to be dead, and
15741 flow will attempt to delete an epilogue insn. In this case, we
15742 need an unspec use/set of the register. */
15743
15744 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
15745 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
15746 {
15747 if (!epiloguep || call_used_regs [i])
15748 clobs[nclobs++] = gen_rtx_CLOBBER (VOIDmode,
15749 gen_rtx_REG (V4SImode, i));
15750 else
15751 {
15752 rtx reg = gen_rtx_REG (V4SImode, i);
15753
15754 clobs[nclobs++]
15755 = gen_rtx_SET (VOIDmode,
15756 reg,
15757 gen_rtx_UNSPEC (V4SImode,
15758 gen_rtvec (1, reg), 27));
15759 }
15760 }
15761
15762 insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nclobs));
15763
15764 for (i = 0; i < nclobs; ++i)
15765 XVECEXP (insn, 0, i) = clobs[i];
15766
15767 return insn;
15768 }
15769
15770 /* Save a register into the frame, and emit RTX_FRAME_RELATED_P notes.
15771 Save REGNO into [FRAME_REG + OFFSET] in mode MODE. */
15772
15773 static void
15774 emit_frame_save (rtx frame_reg, rtx frame_ptr, enum machine_mode mode,
15775 unsigned int regno, int offset, HOST_WIDE_INT total_size)
15776 {
15777 rtx reg, offset_rtx, insn, mem, addr, int_rtx;
15778 rtx replacea, replaceb;
15779
15780 int_rtx = GEN_INT (offset);
15781
15782 /* Some cases that need register indexed addressing. */
15783 if ((TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
15784 || (TARGET_E500_DOUBLE && mode == DFmode)
15785 || (TARGET_SPE_ABI
15786 && SPE_VECTOR_MODE (mode)
15787 && !SPE_CONST_OFFSET_OK (offset)))
15788 {
15789 /* Whomever calls us must make sure r11 is available in the
15790 flow path of instructions in the prologue. */
15791 offset_rtx = gen_rtx_REG (Pmode, 11);
15792 emit_move_insn (offset_rtx, int_rtx);
15793
15794 replacea = offset_rtx;
15795 replaceb = int_rtx;
15796 }
15797 else
15798 {
15799 offset_rtx = int_rtx;
15800 replacea = NULL_RTX;
15801 replaceb = NULL_RTX;
15802 }
15803
15804 reg = gen_rtx_REG (mode, regno);
15805 addr = gen_rtx_PLUS (Pmode, frame_reg, offset_rtx);
15806 mem = gen_frame_mem (mode, addr);
15807
15808 insn = emit_move_insn (mem, reg);
15809
15810 rs6000_frame_related (insn, frame_ptr, total_size, replacea, replaceb);
15811 }
15812
15813 /* Emit an offset memory reference suitable for a frame store, while
15814 converting to a valid addressing mode. */
15815
15816 static rtx
15817 gen_frame_mem_offset (enum machine_mode mode, rtx reg, int offset)
15818 {
15819 rtx int_rtx, offset_rtx;
15820
15821 int_rtx = GEN_INT (offset);
15822
15823 if ((TARGET_SPE_ABI && SPE_VECTOR_MODE (mode))
15824 || (TARGET_E500_DOUBLE && mode == DFmode))
15825 {
15826 offset_rtx = gen_rtx_REG (Pmode, FIXED_SCRATCH);
15827 emit_move_insn (offset_rtx, int_rtx);
15828 }
15829 else
15830 offset_rtx = int_rtx;
15831
15832 return gen_frame_mem (mode, gen_rtx_PLUS (Pmode, reg, offset_rtx));
15833 }
15834
15835 /* Look for user-defined global regs. We should not save and restore these,
15836 and cannot use stmw/lmw if there are any in its range. */
15837
15838 static bool
15839 no_global_regs_above (int first, bool gpr)
15840 {
15841 int i;
15842 for (i = first; i < gpr ? 32 : 64 ; i++)
15843 if (global_regs[i])
15844 return false;
15845 return true;
15846 }
15847
15848 #ifndef TARGET_FIX_AND_CONTINUE
15849 #define TARGET_FIX_AND_CONTINUE 0
15850 #endif
15851
15852 /* It's really GPR 13 and FPR 14, but we need the smaller of the two. */
15853 #define FIRST_SAVRES_REGISTER FIRST_SAVED_GP_REGNO
15854 #define LAST_SAVRES_REGISTER 31
15855 #define N_SAVRES_REGISTERS (LAST_SAVRES_REGISTER - FIRST_SAVRES_REGISTER + 1)
15856
15857 static GTY(()) rtx savres_routine_syms[N_SAVRES_REGISTERS][8];
15858
15859 /* Return the symbol for an out-of-line register save/restore routine.
15860 We are saving/restoring GPRs if GPR is true. */
15861
15862 static rtx
15863 rs6000_savres_routine_sym (rs6000_stack_t *info, bool savep, bool gpr, bool exitp)
15864 {
15865 int regno = gpr ? info->first_gp_reg_save : (info->first_fp_reg_save - 32);
15866 rtx sym;
15867 int select = ((savep ? 1 : 0) << 2
15868 | (gpr
15869 /* On the SPE, we never have any FPRs, but we do have
15870 32/64-bit versions of the routines. */
15871 ? (TARGET_SPE_ABI && info->spe_64bit_regs_used ? 1 : 0)
15872 : 0) << 1
15873 | (exitp ? 1: 0));
15874
15875 /* Don't generate bogus routine names. */
15876 gcc_assert (FIRST_SAVRES_REGISTER <= regno && regno <= LAST_SAVRES_REGISTER);
15877
15878 sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select];
15879
15880 if (sym == NULL)
15881 {
15882 char name[30];
15883 const char *action;
15884 const char *regkind;
15885 const char *exit_suffix;
15886
15887 action = savep ? "save" : "rest";
15888
15889 /* SPE has slightly different names for its routines depending on
15890 whether we are saving 32-bit or 64-bit registers. */
15891 if (TARGET_SPE_ABI)
15892 {
15893 /* No floating point saves on the SPE. */
15894 gcc_assert (gpr);
15895
15896 regkind = info->spe_64bit_regs_used ? "64gpr" : "32gpr";
15897 }
15898 else
15899 regkind = gpr ? "gpr" : "fpr";
15900
15901 exit_suffix = exitp ? "_x" : "";
15902
15903 sprintf (name, "_%s%s_%d%s", action, regkind, regno, exit_suffix);
15904
15905 sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select]
15906 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
15907 }
15908
15909 return sym;
15910 }
15911
15912 /* Emit a sequence of insns, including a stack tie if needed, for
15913 resetting the stack pointer. If SAVRES is true, then don't reset the
15914 stack pointer, but move the base of the frame into r11 for use by
15915 out-of-line register restore routines. */
15916
15917 static void
15918 rs6000_emit_stack_reset (rs6000_stack_t *info,
15919 rtx sp_reg_rtx, rtx frame_reg_rtx,
15920 int sp_offset, bool savres)
15921 {
15922 /* This blockage is needed so that sched doesn't decide to move
15923 the sp change before the register restores. */
15924 if (frame_reg_rtx != sp_reg_rtx
15925 || (TARGET_SPE_ABI
15926 && info->spe_64bit_regs_used != 0
15927 && info->first_gp_reg_save != 32))
15928 rs6000_emit_stack_tie ();
15929
15930 if (frame_reg_rtx != sp_reg_rtx)
15931 {
15932 rs6000_emit_stack_tie ();
15933 if (sp_offset != 0)
15934 emit_insn (gen_addsi3 (sp_reg_rtx, frame_reg_rtx,
15935 GEN_INT (sp_offset)));
15936 else if (!savres)
15937 emit_move_insn (sp_reg_rtx, frame_reg_rtx);
15938 }
15939 else if (sp_offset != 0)
15940 {
15941 /* If we are restoring registers out-of-line, we will be using the
15942 "exit" variants of the restore routines, which will reset the
15943 stack for us. But we do need to point r11 into the right place
15944 for those routines. */
15945 rtx dest_reg = (savres
15946 ? gen_rtx_REG (Pmode, 11)
15947 : sp_reg_rtx);
15948
15949 emit_insn (TARGET_32BIT
15950 ? gen_addsi3 (dest_reg, sp_reg_rtx,
15951 GEN_INT (sp_offset))
15952 : gen_adddi3 (dest_reg, sp_reg_rtx,
15953 GEN_INT (sp_offset)));
15954 }
15955 }
15956
15957 /* Construct a parallel rtx describing the effect of a call to an
15958 out-of-line register save/restore routine. */
15959
15960 static rtx
15961 rs6000_make_savres_rtx (rs6000_stack_t *info,
15962 rtx frame_reg_rtx, int save_area_offset,
15963 enum machine_mode reg_mode,
15964 bool savep, bool gpr, bool exitp)
15965 {
15966 int i;
15967 int offset, start_reg, end_reg, n_regs;
15968 int reg_size = GET_MODE_SIZE (reg_mode);
15969 rtx sym;
15970 rtvec p;
15971
15972 offset = 0;
15973 start_reg = (gpr
15974 ? info->first_gp_reg_save
15975 : info->first_fp_reg_save);
15976 end_reg = gpr ? 32 : 64;
15977 n_regs = end_reg - start_reg;
15978 p = rtvec_alloc ((exitp ? 4 : 3) + n_regs);
15979
15980 /* If we're saving registers, then we should never say we're exiting. */
15981 gcc_assert ((savep && !exitp) || !savep);
15982
15983 if (exitp)
15984 RTVEC_ELT (p, offset++) = gen_rtx_RETURN (VOIDmode);
15985
15986 RTVEC_ELT (p, offset++)
15987 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 65));
15988
15989 sym = rs6000_savres_routine_sym (info, savep, gpr, exitp);
15990 RTVEC_ELT (p, offset++) = gen_rtx_USE (VOIDmode, sym);
15991 RTVEC_ELT (p, offset++) = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 11));
15992
15993 for (i = 0; i < end_reg - start_reg; i++)
15994 {
15995 rtx addr, reg, mem;
15996 reg = gen_rtx_REG (reg_mode, start_reg + i);
15997 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
15998 GEN_INT (save_area_offset + reg_size*i));
15999 mem = gen_frame_mem (reg_mode, addr);
16000
16001 RTVEC_ELT (p, i + offset) = gen_rtx_SET (VOIDmode,
16002 savep ? mem : reg,
16003 savep ? reg : mem);
16004 }
16005
16006 return gen_rtx_PARALLEL (VOIDmode, p);
16007 }
16008
16009 /* Determine whether the gp REG is really used. */
16010
16011 static bool
16012 rs6000_reg_live_or_pic_offset_p (int reg)
16013 {
16014 return ((df_regs_ever_live_p (reg)
16015 && (!call_used_regs[reg]
16016 || (reg == RS6000_PIC_OFFSET_TABLE_REGNUM
16017 && TARGET_TOC && TARGET_MINIMAL_TOC)))
16018 || (reg == RS6000_PIC_OFFSET_TABLE_REGNUM
16019 && ((DEFAULT_ABI == ABI_V4 && flag_pic != 0)
16020 || (DEFAULT_ABI == ABI_DARWIN && flag_pic))));
16021 }
16022
16023 enum {
16024 SAVRES_MULTIPLE = 0x1,
16025 SAVRES_INLINE_FPRS = 0x2,
16026 SAVRES_INLINE_GPRS = 0x4
16027 };
16028
16029 /* Determine the strategy for savings/restoring registers. */
16030
16031 static int
16032 rs6000_savres_strategy (rs6000_stack_t *info, bool savep,
16033 int using_static_chain_p, int sibcall)
16034 {
16035 bool using_multiple_p;
16036 bool common;
16037 bool savres_fprs_inline;
16038 bool savres_gprs_inline;
16039 bool noclobber_global_gprs
16040 = no_global_regs_above (info->first_gp_reg_save, /*gpr=*/true);
16041
16042 using_multiple_p = (TARGET_MULTIPLE && ! TARGET_POWERPC64
16043 && (!TARGET_SPE_ABI
16044 || info->spe_64bit_regs_used == 0)
16045 && info->first_gp_reg_save < 31
16046 && noclobber_global_gprs);
16047 /* Don't bother to try to save things out-of-line if r11 is occupied
16048 by the static chain. It would require too much fiddling and the
16049 static chain is rarely used anyway. */
16050 common = (using_static_chain_p
16051 || sibcall
16052 || crtl->calls_eh_return
16053 || !info->lr_save_p
16054 || cfun->machine->ra_need_lr
16055 || info->total_size > 32767);
16056 savres_fprs_inline = (common
16057 || info->first_fp_reg_save == 64
16058 || !no_global_regs_above (info->first_fp_reg_save,
16059 /*gpr=*/false)
16060 || FP_SAVE_INLINE (info->first_fp_reg_save));
16061 savres_gprs_inline = (common
16062 /* Saving CR interferes with the exit routines
16063 used on the SPE, so just punt here. */
16064 || (!savep
16065 && TARGET_SPE_ABI
16066 && info->spe_64bit_regs_used != 0
16067 && info->cr_save_p != 0)
16068 || info->first_gp_reg_save == 32
16069 || !noclobber_global_gprs
16070 || GP_SAVE_INLINE (info->first_gp_reg_save));
16071
16072 if (savep)
16073 /* If we are going to use store multiple, then don't even bother
16074 with the out-of-line routines, since the store-multiple instruction
16075 will always be smaller. */
16076 savres_gprs_inline = savres_gprs_inline || using_multiple_p;
16077 else
16078 {
16079 /* The situation is more complicated with load multiple. We'd
16080 prefer to use the out-of-line routines for restores, since the
16081 "exit" out-of-line routines can handle the restore of LR and
16082 the frame teardown. But we can only use the out-of-line
16083 routines if we know that we've used store multiple or
16084 out-of-line routines in the prologue, i.e. if we've saved all
16085 the registers from first_gp_reg_save. Otherwise, we risk
16086 loading garbage from the stack. Furthermore, we can only use
16087 the "exit" out-of-line gpr restore if we haven't saved any
16088 fprs. */
16089 bool saved_all = !savres_gprs_inline || using_multiple_p;
16090
16091 if (saved_all && info->first_fp_reg_save != 64)
16092 /* We can't use the exit routine; use load multiple if it's
16093 available. */
16094 savres_gprs_inline = savres_gprs_inline || using_multiple_p;
16095 }
16096
16097 return (using_multiple_p
16098 | (savres_fprs_inline << 1)
16099 | (savres_gprs_inline << 2));
16100 }
16101
16102 /* Emit function prologue as insns. */
16103
16104 void
16105 rs6000_emit_prologue (void)
16106 {
16107 rs6000_stack_t *info = rs6000_stack_info ();
16108 enum machine_mode reg_mode = Pmode;
16109 int reg_size = TARGET_32BIT ? 4 : 8;
16110 rtx sp_reg_rtx = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
16111 rtx frame_ptr_rtx = gen_rtx_REG (Pmode, 12);
16112 rtx frame_reg_rtx = sp_reg_rtx;
16113 rtx cr_save_rtx = NULL_RTX;
16114 rtx insn;
16115 int strategy;
16116 int saving_FPRs_inline;
16117 int saving_GPRs_inline;
16118 int using_store_multiple;
16119 int using_static_chain_p = (cfun->static_chain_decl != NULL_TREE
16120 && df_regs_ever_live_p (STATIC_CHAIN_REGNUM)
16121 && !call_used_regs[STATIC_CHAIN_REGNUM]);
16122 HOST_WIDE_INT sp_offset = 0;
16123
16124 if (TARGET_FIX_AND_CONTINUE)
16125 {
16126 /* gdb on darwin arranges to forward a function from the old
16127 address by modifying the first 5 instructions of the function
16128 to branch to the overriding function. This is necessary to
16129 permit function pointers that point to the old function to
16130 actually forward to the new function. */
16131 emit_insn (gen_nop ());
16132 emit_insn (gen_nop ());
16133 emit_insn (gen_nop ());
16134 emit_insn (gen_nop ());
16135 emit_insn (gen_nop ());
16136 }
16137
16138 if (TARGET_SPE_ABI && info->spe_64bit_regs_used != 0)
16139 {
16140 reg_mode = V2SImode;
16141 reg_size = 8;
16142 }
16143
16144 strategy = rs6000_savres_strategy (info, /*savep=*/true,
16145 /*static_chain_p=*/using_static_chain_p,
16146 /*sibcall=*/0);
16147 using_store_multiple = strategy & SAVRES_MULTIPLE;
16148 saving_FPRs_inline = strategy & SAVRES_INLINE_FPRS;
16149 saving_GPRs_inline = strategy & SAVRES_INLINE_GPRS;
16150
16151 /* For V.4, update stack before we do any saving and set back pointer. */
16152 if (! WORLD_SAVE_P (info)
16153 && info->push_p
16154 && (DEFAULT_ABI == ABI_V4
16155 || crtl->calls_eh_return))
16156 {
16157 bool need_r11 = (TARGET_SPE
16158 ? (!saving_GPRs_inline
16159 && info->spe_64bit_regs_used == 0)
16160 : (!saving_FPRs_inline || !saving_GPRs_inline));
16161 if (info->total_size < 32767)
16162 sp_offset = info->total_size;
16163 else
16164 frame_reg_rtx = (need_r11
16165 ? gen_rtx_REG (Pmode, 11)
16166 : frame_ptr_rtx);
16167 rs6000_emit_allocate_stack (info->total_size,
16168 (frame_reg_rtx != sp_reg_rtx
16169 && (info->cr_save_p
16170 || info->lr_save_p
16171 || info->first_fp_reg_save < 64
16172 || info->first_gp_reg_save < 32
16173 )),
16174 need_r11);
16175 if (frame_reg_rtx != sp_reg_rtx)
16176 rs6000_emit_stack_tie ();
16177 }
16178
16179 /* Handle world saves specially here. */
16180 if (WORLD_SAVE_P (info))
16181 {
16182 int i, j, sz;
16183 rtx treg;
16184 rtvec p;
16185 rtx reg0;
16186
16187 /* save_world expects lr in r0. */
16188 reg0 = gen_rtx_REG (Pmode, 0);
16189 if (info->lr_save_p)
16190 {
16191 insn = emit_move_insn (reg0,
16192 gen_rtx_REG (Pmode, LR_REGNO));
16193 RTX_FRAME_RELATED_P (insn) = 1;
16194 }
16195
16196 /* The SAVE_WORLD and RESTORE_WORLD routines make a number of
16197 assumptions about the offsets of various bits of the stack
16198 frame. */
16199 gcc_assert (info->gp_save_offset == -220
16200 && info->fp_save_offset == -144
16201 && info->lr_save_offset == 8
16202 && info->cr_save_offset == 4
16203 && info->push_p
16204 && info->lr_save_p
16205 && (!crtl->calls_eh_return
16206 || info->ehrd_offset == -432)
16207 && info->vrsave_save_offset == -224
16208 && info->altivec_save_offset == -416);
16209
16210 treg = gen_rtx_REG (SImode, 11);
16211 emit_move_insn (treg, GEN_INT (-info->total_size));
16212
16213 /* SAVE_WORLD takes the caller's LR in R0 and the frame size
16214 in R11. It also clobbers R12, so beware! */
16215
16216 /* Preserve CR2 for save_world prologues */
16217 sz = 5;
16218 sz += 32 - info->first_gp_reg_save;
16219 sz += 64 - info->first_fp_reg_save;
16220 sz += LAST_ALTIVEC_REGNO - info->first_altivec_reg_save + 1;
16221 p = rtvec_alloc (sz);
16222 j = 0;
16223 RTVEC_ELT (p, j++) = gen_rtx_CLOBBER (VOIDmode,
16224 gen_rtx_REG (SImode,
16225 LR_REGNO));
16226 RTVEC_ELT (p, j++) = gen_rtx_USE (VOIDmode,
16227 gen_rtx_SYMBOL_REF (Pmode,
16228 "*save_world"));
16229 /* We do floats first so that the instruction pattern matches
16230 properly. */
16231 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
16232 {
16233 rtx reg = gen_rtx_REG (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
16234 ? DFmode : SFmode),
16235 info->first_fp_reg_save + i);
16236 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16237 GEN_INT (info->fp_save_offset
16238 + sp_offset + 8 * i));
16239 rtx mem = gen_frame_mem (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
16240 ? DFmode : SFmode), addr);
16241
16242 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
16243 }
16244 for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
16245 {
16246 rtx reg = gen_rtx_REG (V4SImode, info->first_altivec_reg_save + i);
16247 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16248 GEN_INT (info->altivec_save_offset
16249 + sp_offset + 16 * i));
16250 rtx mem = gen_frame_mem (V4SImode, addr);
16251
16252 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
16253 }
16254 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
16255 {
16256 rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16257 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16258 GEN_INT (info->gp_save_offset
16259 + sp_offset + reg_size * i));
16260 rtx mem = gen_frame_mem (reg_mode, addr);
16261
16262 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
16263 }
16264
16265 {
16266 /* CR register traditionally saved as CR2. */
16267 rtx reg = gen_rtx_REG (reg_mode, CR2_REGNO);
16268 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16269 GEN_INT (info->cr_save_offset
16270 + sp_offset));
16271 rtx mem = gen_frame_mem (reg_mode, addr);
16272
16273 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
16274 }
16275 /* Explain about use of R0. */
16276 if (info->lr_save_p)
16277 {
16278 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16279 GEN_INT (info->lr_save_offset
16280 + sp_offset));
16281 rtx mem = gen_frame_mem (reg_mode, addr);
16282
16283 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg0);
16284 }
16285 /* Explain what happens to the stack pointer. */
16286 {
16287 rtx newval = gen_rtx_PLUS (Pmode, sp_reg_rtx, treg);
16288 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, sp_reg_rtx, newval);
16289 }
16290
16291 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
16292 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16293 treg, GEN_INT (-info->total_size));
16294 sp_offset = info->total_size;
16295 }
16296
16297 /* If we use the link register, get it into r0. */
16298 if (!WORLD_SAVE_P (info) && info->lr_save_p)
16299 {
16300 rtx addr, reg, mem;
16301
16302 insn = emit_move_insn (gen_rtx_REG (Pmode, 0),
16303 gen_rtx_REG (Pmode, LR_REGNO));
16304 RTX_FRAME_RELATED_P (insn) = 1;
16305
16306 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16307 GEN_INT (info->lr_save_offset + sp_offset));
16308 reg = gen_rtx_REG (Pmode, 0);
16309 mem = gen_rtx_MEM (Pmode, addr);
16310 /* This should not be of rs6000_sr_alias_set, because of
16311 __builtin_return_address. */
16312
16313 insn = emit_move_insn (mem, reg);
16314 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16315 NULL_RTX, NULL_RTX);
16316 }
16317
16318 /* If we need to save CR, put it into r12. */
16319 if (!WORLD_SAVE_P (info) && info->cr_save_p && frame_reg_rtx != frame_ptr_rtx)
16320 {
16321 rtx set;
16322
16323 cr_save_rtx = gen_rtx_REG (SImode, 12);
16324 insn = emit_insn (gen_movesi_from_cr (cr_save_rtx));
16325 RTX_FRAME_RELATED_P (insn) = 1;
16326 /* Now, there's no way that dwarf2out_frame_debug_expr is going
16327 to understand '(unspec:SI [(reg:CC 68) ...] UNSPEC_MOVESI_FROM_CR)'.
16328 But that's OK. All we have to do is specify that _one_ condition
16329 code register is saved in this stack slot. The thrower's epilogue
16330 will then restore all the call-saved registers.
16331 We use CR2_REGNO (70) to be compatible with gcc-2.95 on Linux. */
16332 set = gen_rtx_SET (VOIDmode, cr_save_rtx,
16333 gen_rtx_REG (SImode, CR2_REGNO));
16334 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
16335 set,
16336 REG_NOTES (insn));
16337 }
16338
16339 /* Do any required saving of fpr's. If only one or two to save, do
16340 it ourselves. Otherwise, call function. */
16341 if (!WORLD_SAVE_P (info) && saving_FPRs_inline)
16342 {
16343 int i;
16344 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
16345 if ((df_regs_ever_live_p (info->first_fp_reg_save+i)
16346 && ! call_used_regs[info->first_fp_reg_save+i]))
16347 emit_frame_save (frame_reg_rtx, frame_ptr_rtx,
16348 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
16349 ? DFmode : SFmode,
16350 info->first_fp_reg_save + i,
16351 info->fp_save_offset + sp_offset + 8 * i,
16352 info->total_size);
16353 }
16354 else if (!WORLD_SAVE_P (info) && info->first_fp_reg_save != 64)
16355 {
16356 rtx par;
16357
16358 par = rs6000_make_savres_rtx (info, frame_reg_rtx,
16359 info->fp_save_offset + sp_offset,
16360 DFmode,
16361 /*savep=*/true, /*gpr=*/false,
16362 /*exitp=*/false);
16363 insn = emit_insn (par);
16364 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16365 NULL_RTX, NULL_RTX);
16366 }
16367
16368 /* Save GPRs. This is done as a PARALLEL if we are using
16369 the store-multiple instructions. */
16370 if (!WORLD_SAVE_P (info)
16371 && TARGET_SPE_ABI
16372 && info->spe_64bit_regs_used != 0
16373 && info->first_gp_reg_save != 32)
16374 {
16375 int i;
16376 rtx spe_save_area_ptr;
16377
16378 /* Determine whether we can address all of the registers that need
16379 to be saved with an offset from the stack pointer that fits in
16380 the small const field for SPE memory instructions. */
16381 int spe_regs_addressable_via_sp
16382 = (SPE_CONST_OFFSET_OK(info->spe_gp_save_offset + sp_offset
16383 + (32 - info->first_gp_reg_save - 1) * reg_size)
16384 && saving_GPRs_inline);
16385 int spe_offset;
16386
16387 if (spe_regs_addressable_via_sp)
16388 {
16389 spe_save_area_ptr = frame_reg_rtx;
16390 spe_offset = info->spe_gp_save_offset + sp_offset;
16391 }
16392 else
16393 {
16394 /* Make r11 point to the start of the SPE save area. We need
16395 to be careful here if r11 is holding the static chain. If
16396 it is, then temporarily save it in r0. We would use r0 as
16397 our base register here, but using r0 as a base register in
16398 loads and stores means something different from what we
16399 would like. */
16400 int ool_adjust = (saving_GPRs_inline
16401 ? 0
16402 : (info->first_gp_reg_save
16403 - (FIRST_SAVRES_REGISTER+1))*8);
16404 HOST_WIDE_INT offset = (info->spe_gp_save_offset
16405 + sp_offset - ool_adjust);
16406
16407 if (using_static_chain_p)
16408 {
16409 rtx r0 = gen_rtx_REG (Pmode, 0);
16410 gcc_assert (info->first_gp_reg_save > 11);
16411
16412 emit_move_insn (r0, gen_rtx_REG (Pmode, 11));
16413 }
16414
16415 spe_save_area_ptr = gen_rtx_REG (Pmode, 11);
16416 insn = emit_insn (gen_addsi3 (spe_save_area_ptr,
16417 frame_reg_rtx,
16418 GEN_INT (offset)));
16419 /* We need to make sure the move to r11 gets noted for
16420 properly outputting unwind information. */
16421 if (!saving_GPRs_inline)
16422 rs6000_frame_related (insn, frame_reg_rtx, offset,
16423 NULL_RTX, NULL_RTX);
16424 spe_offset = 0;
16425 }
16426
16427 if (saving_GPRs_inline)
16428 {
16429 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
16430 if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
16431 {
16432 rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16433 rtx offset, addr, mem;
16434
16435 /* We're doing all this to ensure that the offset fits into
16436 the immediate offset of 'evstdd'. */
16437 gcc_assert (SPE_CONST_OFFSET_OK (reg_size * i + spe_offset));
16438
16439 offset = GEN_INT (reg_size * i + spe_offset);
16440 addr = gen_rtx_PLUS (Pmode, spe_save_area_ptr, offset);
16441 mem = gen_rtx_MEM (V2SImode, addr);
16442
16443 insn = emit_move_insn (mem, reg);
16444
16445 rs6000_frame_related (insn, spe_save_area_ptr,
16446 info->spe_gp_save_offset
16447 + sp_offset + reg_size * i,
16448 offset, const0_rtx);
16449 }
16450 }
16451 else
16452 {
16453 rtx par;
16454
16455 par = rs6000_make_savres_rtx (info, gen_rtx_REG (Pmode, 11),
16456 0, reg_mode,
16457 /*savep=*/true, /*gpr=*/true,
16458 /*exitp=*/false);
16459 insn = emit_insn (par);
16460 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16461 NULL_RTX, NULL_RTX);
16462 }
16463
16464
16465 /* Move the static chain pointer back. */
16466 if (using_static_chain_p && !spe_regs_addressable_via_sp)
16467 emit_move_insn (gen_rtx_REG (Pmode, 11), gen_rtx_REG (Pmode, 0));
16468 }
16469 else if (!WORLD_SAVE_P (info) && !saving_GPRs_inline)
16470 {
16471 rtx par;
16472
16473 /* Need to adjust r11 if we saved any FPRs. */
16474 if (info->first_fp_reg_save != 64)
16475 {
16476 rtx r11 = gen_rtx_REG (reg_mode, 11);
16477 rtx offset = GEN_INT (info->total_size
16478 + (-8 * (64-info->first_fp_reg_save)));
16479 rtx ptr_reg = (sp_reg_rtx == frame_reg_rtx
16480 ? sp_reg_rtx : r11);
16481
16482 emit_insn (TARGET_32BIT
16483 ? gen_addsi3 (r11, ptr_reg, offset)
16484 : gen_adddi3 (r11, ptr_reg, offset));
16485 }
16486
16487 par = rs6000_make_savres_rtx (info, frame_reg_rtx,
16488 info->gp_save_offset + sp_offset,
16489 reg_mode,
16490 /*savep=*/true, /*gpr=*/true,
16491 /*exitp=*/false);
16492 insn = emit_insn (par);
16493 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16494 NULL_RTX, NULL_RTX);
16495 }
16496 else if (!WORLD_SAVE_P (info) && using_store_multiple)
16497 {
16498 rtvec p;
16499 int i;
16500 p = rtvec_alloc (32 - info->first_gp_reg_save);
16501 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
16502 {
16503 rtx addr, reg, mem;
16504 reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16505 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16506 GEN_INT (info->gp_save_offset
16507 + sp_offset
16508 + reg_size * i));
16509 mem = gen_frame_mem (reg_mode, addr);
16510
16511 RTVEC_ELT (p, i) = gen_rtx_SET (VOIDmode, mem, reg);
16512 }
16513 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
16514 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16515 NULL_RTX, NULL_RTX);
16516 }
16517 else if (!WORLD_SAVE_P (info))
16518 {
16519 int i;
16520 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
16521 if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
16522 {
16523 rtx addr, reg, mem;
16524 reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16525
16526 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16527 GEN_INT (info->gp_save_offset
16528 + sp_offset
16529 + reg_size * i));
16530 mem = gen_frame_mem (reg_mode, addr);
16531
16532 insn = emit_move_insn (mem, reg);
16533 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16534 NULL_RTX, NULL_RTX);
16535 }
16536 }
16537
16538 /* ??? There's no need to emit actual instructions here, but it's the
16539 easiest way to get the frame unwind information emitted. */
16540 if (crtl->calls_eh_return)
16541 {
16542 unsigned int i, regno;
16543
16544 /* In AIX ABI we need to pretend we save r2 here. */
16545 if (TARGET_AIX)
16546 {
16547 rtx addr, reg, mem;
16548
16549 reg = gen_rtx_REG (reg_mode, 2);
16550 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16551 GEN_INT (sp_offset + 5 * reg_size));
16552 mem = gen_frame_mem (reg_mode, addr);
16553
16554 insn = emit_move_insn (mem, reg);
16555 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16556 NULL_RTX, NULL_RTX);
16557 PATTERN (insn) = gen_blockage ();
16558 }
16559
16560 for (i = 0; ; ++i)
16561 {
16562 regno = EH_RETURN_DATA_REGNO (i);
16563 if (regno == INVALID_REGNUM)
16564 break;
16565
16566 emit_frame_save (frame_reg_rtx, frame_ptr_rtx, reg_mode, regno,
16567 info->ehrd_offset + sp_offset
16568 + reg_size * (int) i,
16569 info->total_size);
16570 }
16571 }
16572
16573 /* Save CR if we use any that must be preserved. */
16574 if (!WORLD_SAVE_P (info) && info->cr_save_p)
16575 {
16576 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16577 GEN_INT (info->cr_save_offset + sp_offset));
16578 rtx mem = gen_frame_mem (SImode, addr);
16579 /* See the large comment above about why CR2_REGNO is used. */
16580 rtx magic_eh_cr_reg = gen_rtx_REG (SImode, CR2_REGNO);
16581
16582 /* If r12 was used to hold the original sp, copy cr into r0 now
16583 that it's free. */
16584 if (REGNO (frame_reg_rtx) == 12)
16585 {
16586 rtx set;
16587
16588 cr_save_rtx = gen_rtx_REG (SImode, 0);
16589 insn = emit_insn (gen_movesi_from_cr (cr_save_rtx));
16590 RTX_FRAME_RELATED_P (insn) = 1;
16591 set = gen_rtx_SET (VOIDmode, cr_save_rtx, magic_eh_cr_reg);
16592 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
16593 set,
16594 REG_NOTES (insn));
16595
16596 }
16597 insn = emit_move_insn (mem, cr_save_rtx);
16598
16599 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16600 NULL_RTX, NULL_RTX);
16601 }
16602
16603 /* Update stack and set back pointer unless this is V.4,
16604 for which it was done previously. */
16605 if (!WORLD_SAVE_P (info) && info->push_p
16606 && !(DEFAULT_ABI == ABI_V4 || crtl->calls_eh_return))
16607 {
16608 if (info->total_size < 32767)
16609 sp_offset = info->total_size;
16610 else
16611 frame_reg_rtx = frame_ptr_rtx;
16612 rs6000_emit_allocate_stack (info->total_size,
16613 (frame_reg_rtx != sp_reg_rtx
16614 && ((info->altivec_size != 0)
16615 || (info->vrsave_mask != 0)
16616 )),
16617 FALSE);
16618 if (frame_reg_rtx != sp_reg_rtx)
16619 rs6000_emit_stack_tie ();
16620 }
16621
16622 /* Set frame pointer, if needed. */
16623 if (frame_pointer_needed)
16624 {
16625 insn = emit_move_insn (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
16626 sp_reg_rtx);
16627 RTX_FRAME_RELATED_P (insn) = 1;
16628 }
16629
16630 /* Save AltiVec registers if needed. Save here because the red zone does
16631 not include AltiVec registers. */
16632 if (!WORLD_SAVE_P (info) && TARGET_ALTIVEC_ABI && info->altivec_size != 0)
16633 {
16634 int i;
16635
16636 /* There should be a non inline version of this, for when we
16637 are saving lots of vector registers. */
16638 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
16639 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
16640 {
16641 rtx areg, savereg, mem;
16642 int offset;
16643
16644 offset = info->altivec_save_offset + sp_offset
16645 + 16 * (i - info->first_altivec_reg_save);
16646
16647 savereg = gen_rtx_REG (V4SImode, i);
16648
16649 areg = gen_rtx_REG (Pmode, 0);
16650 emit_move_insn (areg, GEN_INT (offset));
16651
16652 /* AltiVec addressing mode is [reg+reg]. */
16653 mem = gen_frame_mem (V4SImode,
16654 gen_rtx_PLUS (Pmode, frame_reg_rtx, areg));
16655
16656 insn = emit_move_insn (mem, savereg);
16657
16658 rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
16659 areg, GEN_INT (offset));
16660 }
16661 }
16662
16663 /* VRSAVE is a bit vector representing which AltiVec registers
16664 are used. The OS uses this to determine which vector
16665 registers to save on a context switch. We need to save
16666 VRSAVE on the stack frame, add whatever AltiVec registers we
16667 used in this function, and do the corresponding magic in the
16668 epilogue. */
16669
16670 if (TARGET_ALTIVEC && TARGET_ALTIVEC_VRSAVE
16671 && info->vrsave_mask != 0)
16672 {
16673 rtx reg, mem, vrsave;
16674 int offset;
16675
16676 /* Get VRSAVE onto a GPR. Note that ABI_V4 might be using r12
16677 as frame_reg_rtx and r11 as the static chain pointer for
16678 nested functions. */
16679 reg = gen_rtx_REG (SImode, 0);
16680 vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
16681 if (TARGET_MACHO)
16682 emit_insn (gen_get_vrsave_internal (reg));
16683 else
16684 emit_insn (gen_rtx_SET (VOIDmode, reg, vrsave));
16685
16686 if (!WORLD_SAVE_P (info))
16687 {
16688 /* Save VRSAVE. */
16689 offset = info->vrsave_save_offset + sp_offset;
16690 mem = gen_frame_mem (SImode,
16691 gen_rtx_PLUS (Pmode, frame_reg_rtx,
16692 GEN_INT (offset)));
16693 insn = emit_move_insn (mem, reg);
16694 }
16695
16696 /* Include the registers in the mask. */
16697 emit_insn (gen_iorsi3 (reg, reg, GEN_INT ((int) info->vrsave_mask)));
16698
16699 insn = emit_insn (generate_set_vrsave (reg, info, 0));
16700 }
16701
16702 /* If we are using RS6000_PIC_OFFSET_TABLE_REGNUM, we need to set it up. */
16703 if ((TARGET_TOC && TARGET_MINIMAL_TOC && get_pool_size () != 0)
16704 || (DEFAULT_ABI == ABI_V4
16705 && (flag_pic == 1 || (flag_pic && TARGET_SECURE_PLT))
16706 && df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM)))
16707 {
16708 /* If emit_load_toc_table will use the link register, we need to save
16709 it. We use R12 for this purpose because emit_load_toc_table
16710 can use register 0. This allows us to use a plain 'blr' to return
16711 from the procedure more often. */
16712 int save_LR_around_toc_setup = (TARGET_ELF
16713 && DEFAULT_ABI != ABI_AIX
16714 && flag_pic
16715 && ! info->lr_save_p
16716 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0);
16717 if (save_LR_around_toc_setup)
16718 {
16719 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
16720
16721 insn = emit_move_insn (frame_ptr_rtx, lr);
16722 RTX_FRAME_RELATED_P (insn) = 1;
16723
16724 rs6000_emit_load_toc_table (TRUE);
16725
16726 insn = emit_move_insn (lr, frame_ptr_rtx);
16727 RTX_FRAME_RELATED_P (insn) = 1;
16728 }
16729 else
16730 rs6000_emit_load_toc_table (TRUE);
16731 }
16732
16733 #if TARGET_MACHO
16734 if (DEFAULT_ABI == ABI_DARWIN
16735 && flag_pic && crtl->uses_pic_offset_table)
16736 {
16737 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
16738 rtx src = gen_rtx_SYMBOL_REF (Pmode, MACHOPIC_FUNCTION_BASE_NAME);
16739
16740 /* Save and restore LR locally around this call (in R0). */
16741 if (!info->lr_save_p)
16742 emit_move_insn (gen_rtx_REG (Pmode, 0), lr);
16743
16744 emit_insn (gen_load_macho_picbase (src));
16745
16746 emit_move_insn (gen_rtx_REG (Pmode,
16747 RS6000_PIC_OFFSET_TABLE_REGNUM),
16748 lr);
16749
16750 if (!info->lr_save_p)
16751 emit_move_insn (lr, gen_rtx_REG (Pmode, 0));
16752 }
16753 #endif
16754 }
16755
16756 /* Write function prologue. */
16757
16758 static void
16759 rs6000_output_function_prologue (FILE *file,
16760 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
16761 {
16762 rs6000_stack_t *info = rs6000_stack_info ();
16763
16764 if (TARGET_DEBUG_STACK)
16765 debug_stack_info (info);
16766
16767 /* Write .extern for any function we will call to save and restore
16768 fp values. */
16769 if (info->first_fp_reg_save < 64
16770 && !FP_SAVE_INLINE (info->first_fp_reg_save))
16771 fprintf (file, "\t.extern %s%d%s\n\t.extern %s%d%s\n",
16772 SAVE_FP_PREFIX, info->first_fp_reg_save - 32, SAVE_FP_SUFFIX,
16773 RESTORE_FP_PREFIX, info->first_fp_reg_save - 32, RESTORE_FP_SUFFIX);
16774
16775 /* Write .extern for AIX common mode routines, if needed. */
16776 if (! TARGET_POWER && ! TARGET_POWERPC && ! common_mode_defined)
16777 {
16778 fputs ("\t.extern __mulh\n", file);
16779 fputs ("\t.extern __mull\n", file);
16780 fputs ("\t.extern __divss\n", file);
16781 fputs ("\t.extern __divus\n", file);
16782 fputs ("\t.extern __quoss\n", file);
16783 fputs ("\t.extern __quous\n", file);
16784 common_mode_defined = 1;
16785 }
16786
16787 if (! HAVE_prologue)
16788 {
16789 start_sequence ();
16790
16791 /* A NOTE_INSN_DELETED is supposed to be at the start and end of
16792 the "toplevel" insn chain. */
16793 emit_note (NOTE_INSN_DELETED);
16794 rs6000_emit_prologue ();
16795 emit_note (NOTE_INSN_DELETED);
16796
16797 /* Expand INSN_ADDRESSES so final() doesn't crash. */
16798 {
16799 rtx insn;
16800 unsigned addr = 0;
16801 for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
16802 {
16803 INSN_ADDRESSES_NEW (insn, addr);
16804 addr += 4;
16805 }
16806 }
16807
16808 if (TARGET_DEBUG_STACK)
16809 debug_rtx_list (get_insns (), 100);
16810 final (get_insns (), file, FALSE);
16811 end_sequence ();
16812 }
16813
16814 rs6000_pic_labelno++;
16815 }
16816
16817 /* Non-zero if vmx regs are restored before the frame pop, zero if
16818 we restore after the pop when possible. */
16819 #define ALWAYS_RESTORE_ALTIVEC_BEFORE_POP 0
16820
16821 /* Reload CR from REG. */
16822
16823 static void
16824 rs6000_restore_saved_cr (rtx reg, int using_mfcr_multiple)
16825 {
16826 int count = 0;
16827 int i;
16828
16829 if (using_mfcr_multiple)
16830 {
16831 for (i = 0; i < 8; i++)
16832 if (df_regs_ever_live_p (CR0_REGNO+i) && ! call_used_regs[CR0_REGNO+i])
16833 count++;
16834 gcc_assert (count);
16835 }
16836
16837 if (using_mfcr_multiple && count > 1)
16838 {
16839 rtvec p;
16840 int ndx;
16841
16842 p = rtvec_alloc (count);
16843
16844 ndx = 0;
16845 for (i = 0; i < 8; i++)
16846 if (df_regs_ever_live_p (CR0_REGNO+i) && ! call_used_regs[CR0_REGNO+i])
16847 {
16848 rtvec r = rtvec_alloc (2);
16849 RTVEC_ELT (r, 0) = reg;
16850 RTVEC_ELT (r, 1) = GEN_INT (1 << (7-i));
16851 RTVEC_ELT (p, ndx) =
16852 gen_rtx_SET (VOIDmode, gen_rtx_REG (CCmode, CR0_REGNO+i),
16853 gen_rtx_UNSPEC (CCmode, r, UNSPEC_MOVESI_TO_CR));
16854 ndx++;
16855 }
16856 emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
16857 gcc_assert (ndx == count);
16858 }
16859 else
16860 for (i = 0; i < 8; i++)
16861 if (df_regs_ever_live_p (CR0_REGNO+i) && ! call_used_regs[CR0_REGNO+i])
16862 {
16863 emit_insn (gen_movsi_to_cr_one (gen_rtx_REG (CCmode,
16864 CR0_REGNO+i),
16865 reg));
16866 }
16867 }
16868
16869 /* Emit function epilogue as insns.
16870
16871 At present, dwarf2out_frame_debug_expr doesn't understand
16872 register restores, so we don't bother setting RTX_FRAME_RELATED_P
16873 anywhere in the epilogue. Most of the insns below would in any case
16874 need special notes to explain where r11 is in relation to the stack. */
16875
16876 void
16877 rs6000_emit_epilogue (int sibcall)
16878 {
16879 rs6000_stack_t *info;
16880 int restoring_GPRs_inline;
16881 int restoring_FPRs_inline;
16882 int using_load_multiple;
16883 int using_mtcr_multiple;
16884 int use_backchain_to_restore_sp;
16885 int restore_lr;
16886 int strategy;
16887 int sp_offset = 0;
16888 rtx sp_reg_rtx = gen_rtx_REG (Pmode, 1);
16889 rtx frame_reg_rtx = sp_reg_rtx;
16890 enum machine_mode reg_mode = Pmode;
16891 int reg_size = TARGET_32BIT ? 4 : 8;
16892 int i;
16893
16894 info = rs6000_stack_info ();
16895
16896 if (TARGET_SPE_ABI && info->spe_64bit_regs_used != 0)
16897 {
16898 reg_mode = V2SImode;
16899 reg_size = 8;
16900 }
16901
16902 strategy = rs6000_savres_strategy (info, /*savep=*/false,
16903 /*static_chain_p=*/0, sibcall);
16904 using_load_multiple = strategy & SAVRES_MULTIPLE;
16905 restoring_FPRs_inline = strategy & SAVRES_INLINE_FPRS;
16906 restoring_GPRs_inline = strategy & SAVRES_INLINE_GPRS;
16907 using_mtcr_multiple = (rs6000_cpu == PROCESSOR_PPC601
16908 || rs6000_cpu == PROCESSOR_PPC603
16909 || rs6000_cpu == PROCESSOR_PPC750
16910 || optimize_size);
16911 /* Restore via the backchain when we have a large frame, since this
16912 is more efficient than an addis, addi pair. The second condition
16913 here will not trigger at the moment; We don't actually need a
16914 frame pointer for alloca, but the generic parts of the compiler
16915 give us one anyway. */
16916 use_backchain_to_restore_sp = (info->total_size > 32767
16917 || info->total_size
16918 + (info->lr_save_p ? info->lr_save_offset : 0)
16919 > 32767
16920 || (cfun->calls_alloca
16921 && !frame_pointer_needed));
16922 restore_lr = (info->lr_save_p
16923 && restoring_GPRs_inline
16924 && restoring_FPRs_inline);
16925
16926 if (WORLD_SAVE_P (info))
16927 {
16928 int i, j;
16929 char rname[30];
16930 const char *alloc_rname;
16931 rtvec p;
16932
16933 /* eh_rest_world_r10 will return to the location saved in the LR
16934 stack slot (which is not likely to be our caller.)
16935 Input: R10 -- stack adjustment. Clobbers R0, R11, R12, R7, R8.
16936 rest_world is similar, except any R10 parameter is ignored.
16937 The exception-handling stuff that was here in 2.95 is no
16938 longer necessary. */
16939
16940 p = rtvec_alloc (9
16941 + 1
16942 + 32 - info->first_gp_reg_save
16943 + LAST_ALTIVEC_REGNO + 1 - info->first_altivec_reg_save
16944 + 63 + 1 - info->first_fp_reg_save);
16945
16946 strcpy (rname, ((crtl->calls_eh_return) ?
16947 "*eh_rest_world_r10" : "*rest_world"));
16948 alloc_rname = ggc_strdup (rname);
16949
16950 j = 0;
16951 RTVEC_ELT (p, j++) = gen_rtx_RETURN (VOIDmode);
16952 RTVEC_ELT (p, j++) = gen_rtx_USE (VOIDmode,
16953 gen_rtx_REG (Pmode,
16954 LR_REGNO));
16955 RTVEC_ELT (p, j++)
16956 = gen_rtx_USE (VOIDmode, gen_rtx_SYMBOL_REF (Pmode, alloc_rname));
16957 /* The instruction pattern requires a clobber here;
16958 it is shared with the restVEC helper. */
16959 RTVEC_ELT (p, j++)
16960 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 11));
16961
16962 {
16963 /* CR register traditionally saved as CR2. */
16964 rtx reg = gen_rtx_REG (reg_mode, CR2_REGNO);
16965 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16966 GEN_INT (info->cr_save_offset));
16967 rtx mem = gen_frame_mem (reg_mode, addr);
16968
16969 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
16970 }
16971
16972 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
16973 {
16974 rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
16975 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16976 GEN_INT (info->gp_save_offset
16977 + reg_size * i));
16978 rtx mem = gen_frame_mem (reg_mode, addr);
16979
16980 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
16981 }
16982 for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
16983 {
16984 rtx reg = gen_rtx_REG (V4SImode, info->first_altivec_reg_save + i);
16985 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16986 GEN_INT (info->altivec_save_offset
16987 + 16 * i));
16988 rtx mem = gen_frame_mem (V4SImode, addr);
16989
16990 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
16991 }
16992 for (i = 0; info->first_fp_reg_save + i <= 63; i++)
16993 {
16994 rtx reg = gen_rtx_REG (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
16995 ? DFmode : SFmode),
16996 info->first_fp_reg_save + i);
16997 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
16998 GEN_INT (info->fp_save_offset
16999 + 8 * i));
17000 rtx mem = gen_frame_mem (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
17001 ? DFmode : SFmode), addr);
17002
17003 RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
17004 }
17005 RTVEC_ELT (p, j++)
17006 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 0));
17007 RTVEC_ELT (p, j++)
17008 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 12));
17009 RTVEC_ELT (p, j++)
17010 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 7));
17011 RTVEC_ELT (p, j++)
17012 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 8));
17013 RTVEC_ELT (p, j++)
17014 = gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, 10));
17015 emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
17016
17017 return;
17018 }
17019
17020 /* frame_reg_rtx + sp_offset points to the top of this stack frame. */
17021 if (info->push_p)
17022 sp_offset = info->total_size;
17023
17024 /* Restore AltiVec registers if we must do so before adjusting the
17025 stack. */
17026 if (TARGET_ALTIVEC_ABI
17027 && info->altivec_size != 0
17028 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17029 || (DEFAULT_ABI != ABI_V4
17030 && info->altivec_save_offset < (TARGET_32BIT ? -220 : -288))))
17031 {
17032 int i;
17033
17034 if (use_backchain_to_restore_sp)
17035 {
17036 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17037 emit_move_insn (frame_reg_rtx,
17038 gen_rtx_MEM (Pmode, sp_reg_rtx));
17039 sp_offset = 0;
17040 }
17041 else if (frame_pointer_needed)
17042 frame_reg_rtx = hard_frame_pointer_rtx;
17043
17044 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
17045 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
17046 {
17047 rtx addr, areg, mem;
17048
17049 areg = gen_rtx_REG (Pmode, 0);
17050 emit_move_insn
17051 (areg, GEN_INT (info->altivec_save_offset
17052 + sp_offset
17053 + 16 * (i - info->first_altivec_reg_save)));
17054
17055 /* AltiVec addressing mode is [reg+reg]. */
17056 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
17057 mem = gen_frame_mem (V4SImode, addr);
17058
17059 emit_move_insn (gen_rtx_REG (V4SImode, i), mem);
17060 }
17061 }
17062
17063 /* Restore VRSAVE if we must do so before adjusting the stack. */
17064 if (TARGET_ALTIVEC
17065 && TARGET_ALTIVEC_VRSAVE
17066 && info->vrsave_mask != 0
17067 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17068 || (DEFAULT_ABI != ABI_V4
17069 && info->vrsave_save_offset < (TARGET_32BIT ? -220 : -288))))
17070 {
17071 rtx addr, mem, reg;
17072
17073 if (frame_reg_rtx == sp_reg_rtx)
17074 {
17075 if (use_backchain_to_restore_sp)
17076 {
17077 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17078 emit_move_insn (frame_reg_rtx,
17079 gen_rtx_MEM (Pmode, sp_reg_rtx));
17080 sp_offset = 0;
17081 }
17082 else if (frame_pointer_needed)
17083 frame_reg_rtx = hard_frame_pointer_rtx;
17084 }
17085
17086 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17087 GEN_INT (info->vrsave_save_offset + sp_offset));
17088 mem = gen_frame_mem (SImode, addr);
17089 reg = gen_rtx_REG (SImode, 12);
17090 emit_move_insn (reg, mem);
17091
17092 emit_insn (generate_set_vrsave (reg, info, 1));
17093 }
17094
17095 /* If we have a large stack frame, restore the old stack pointer
17096 using the backchain. */
17097 if (use_backchain_to_restore_sp)
17098 {
17099 if (frame_reg_rtx == sp_reg_rtx)
17100 {
17101 /* Under V.4, don't reset the stack pointer until after we're done
17102 loading the saved registers. */
17103 if (DEFAULT_ABI == ABI_V4)
17104 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17105
17106 emit_move_insn (frame_reg_rtx,
17107 gen_rtx_MEM (Pmode, sp_reg_rtx));
17108 sp_offset = 0;
17109 }
17110 else if (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17111 && DEFAULT_ABI == ABI_V4)
17112 /* frame_reg_rtx has been set up by the altivec restore. */
17113 ;
17114 else
17115 {
17116 emit_move_insn (sp_reg_rtx, frame_reg_rtx);
17117 frame_reg_rtx = sp_reg_rtx;
17118 }
17119 }
17120 /* If we have a frame pointer, we can restore the old stack pointer
17121 from it. */
17122 else if (frame_pointer_needed)
17123 {
17124 frame_reg_rtx = sp_reg_rtx;
17125 if (DEFAULT_ABI == ABI_V4)
17126 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17127
17128 emit_insn (TARGET_32BIT
17129 ? gen_addsi3 (frame_reg_rtx, hard_frame_pointer_rtx,
17130 GEN_INT (info->total_size))
17131 : gen_adddi3 (frame_reg_rtx, hard_frame_pointer_rtx,
17132 GEN_INT (info->total_size)));
17133 sp_offset = 0;
17134 }
17135 else if (info->push_p
17136 && DEFAULT_ABI != ABI_V4
17137 && !crtl->calls_eh_return)
17138 {
17139 emit_insn (TARGET_32BIT
17140 ? gen_addsi3 (sp_reg_rtx, sp_reg_rtx,
17141 GEN_INT (info->total_size))
17142 : gen_adddi3 (sp_reg_rtx, sp_reg_rtx,
17143 GEN_INT (info->total_size)));
17144 sp_offset = 0;
17145 }
17146
17147 /* Restore AltiVec registers if we have not done so already. */
17148 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17149 && TARGET_ALTIVEC_ABI
17150 && info->altivec_size != 0
17151 && (DEFAULT_ABI == ABI_V4
17152 || info->altivec_save_offset >= (TARGET_32BIT ? -220 : -288)))
17153 {
17154 int i;
17155
17156 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
17157 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
17158 {
17159 rtx addr, areg, mem;
17160
17161 areg = gen_rtx_REG (Pmode, 0);
17162 emit_move_insn
17163 (areg, GEN_INT (info->altivec_save_offset
17164 + sp_offset
17165 + 16 * (i - info->first_altivec_reg_save)));
17166
17167 /* AltiVec addressing mode is [reg+reg]. */
17168 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
17169 mem = gen_frame_mem (V4SImode, addr);
17170
17171 emit_move_insn (gen_rtx_REG (V4SImode, i), mem);
17172 }
17173 }
17174
17175 /* Restore VRSAVE if we have not done so already. */
17176 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
17177 && TARGET_ALTIVEC
17178 && TARGET_ALTIVEC_VRSAVE
17179 && info->vrsave_mask != 0
17180 && (DEFAULT_ABI == ABI_V4
17181 || info->vrsave_save_offset >= (TARGET_32BIT ? -220 : -288)))
17182 {
17183 rtx addr, mem, reg;
17184
17185 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17186 GEN_INT (info->vrsave_save_offset + sp_offset));
17187 mem = gen_frame_mem (SImode, addr);
17188 reg = gen_rtx_REG (SImode, 12);
17189 emit_move_insn (reg, mem);
17190
17191 emit_insn (generate_set_vrsave (reg, info, 1));
17192 }
17193
17194 /* Get the old lr if we saved it. If we are restoring registers
17195 out-of-line, then the out-of-line routines can do this for us. */
17196 if (restore_lr)
17197 {
17198 rtx mem = gen_frame_mem_offset (Pmode, frame_reg_rtx,
17199 info->lr_save_offset + sp_offset);
17200
17201 emit_move_insn (gen_rtx_REG (Pmode, 0), mem);
17202 }
17203
17204 /* Get the old cr if we saved it. */
17205 if (info->cr_save_p)
17206 {
17207 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17208 GEN_INT (info->cr_save_offset + sp_offset));
17209 rtx mem = gen_frame_mem (SImode, addr);
17210
17211 emit_move_insn (gen_rtx_REG (SImode, 12), mem);
17212 }
17213
17214 /* Set LR here to try to overlap restores below. */
17215 if (restore_lr)
17216 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNO),
17217 gen_rtx_REG (Pmode, 0));
17218
17219 /* Load exception handler data registers, if needed. */
17220 if (crtl->calls_eh_return)
17221 {
17222 unsigned int i, regno;
17223
17224 if (TARGET_AIX)
17225 {
17226 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17227 GEN_INT (sp_offset + 5 * reg_size));
17228 rtx mem = gen_frame_mem (reg_mode, addr);
17229
17230 emit_move_insn (gen_rtx_REG (reg_mode, 2), mem);
17231 }
17232
17233 for (i = 0; ; ++i)
17234 {
17235 rtx mem;
17236
17237 regno = EH_RETURN_DATA_REGNO (i);
17238 if (regno == INVALID_REGNUM)
17239 break;
17240
17241 mem = gen_frame_mem_offset (reg_mode, frame_reg_rtx,
17242 info->ehrd_offset + sp_offset
17243 + reg_size * (int) i);
17244
17245 emit_move_insn (gen_rtx_REG (reg_mode, regno), mem);
17246 }
17247 }
17248
17249 /* Restore GPRs. This is done as a PARALLEL if we are using
17250 the load-multiple instructions. */
17251 if (TARGET_SPE_ABI
17252 && info->spe_64bit_regs_used != 0
17253 && info->first_gp_reg_save != 32)
17254 {
17255 /* Determine whether we can address all of the registers that need
17256 to be saved with an offset from the stack pointer that fits in
17257 the small const field for SPE memory instructions. */
17258 int spe_regs_addressable_via_sp
17259 = (SPE_CONST_OFFSET_OK(info->spe_gp_save_offset + sp_offset
17260 + (32 - info->first_gp_reg_save - 1) * reg_size)
17261 && restoring_GPRs_inline);
17262 int spe_offset;
17263
17264 if (spe_regs_addressable_via_sp)
17265 spe_offset = info->spe_gp_save_offset + sp_offset;
17266 else
17267 {
17268 rtx old_frame_reg_rtx = frame_reg_rtx;
17269 /* Make r11 point to the start of the SPE save area. We worried about
17270 not clobbering it when we were saving registers in the prologue.
17271 There's no need to worry here because the static chain is passed
17272 anew to every function. */
17273 int ool_adjust = (restoring_GPRs_inline
17274 ? 0
17275 : (info->first_gp_reg_save
17276 - (FIRST_SAVRES_REGISTER+1))*8);
17277
17278 if (frame_reg_rtx == sp_reg_rtx)
17279 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
17280 emit_insn (gen_addsi3 (frame_reg_rtx, old_frame_reg_rtx,
17281 GEN_INT (info->spe_gp_save_offset
17282 + sp_offset
17283 - ool_adjust)));
17284 /* Keep the invariant that frame_reg_rtx + sp_offset points
17285 at the top of the stack frame. */
17286 sp_offset = -info->spe_gp_save_offset;
17287
17288 spe_offset = 0;
17289 }
17290
17291 if (restoring_GPRs_inline)
17292 {
17293 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
17294 if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
17295 {
17296 rtx offset, addr, mem;
17297
17298 /* We're doing all this to ensure that the immediate offset
17299 fits into the immediate field of 'evldd'. */
17300 gcc_assert (SPE_CONST_OFFSET_OK (spe_offset + reg_size * i));
17301
17302 offset = GEN_INT (spe_offset + reg_size * i);
17303 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, offset);
17304 mem = gen_rtx_MEM (V2SImode, addr);
17305
17306 emit_move_insn (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
17307 mem);
17308 }
17309 }
17310 else
17311 {
17312 rtx par;
17313
17314 par = rs6000_make_savres_rtx (info, gen_rtx_REG (Pmode, 11),
17315 0, reg_mode,
17316 /*savep=*/false, /*gpr=*/true,
17317 /*exitp=*/true);
17318 emit_jump_insn (par);
17319
17320 /* We don't want anybody else emitting things after we jumped
17321 back. */
17322 return;
17323 }
17324 }
17325 else if (!restoring_GPRs_inline)
17326 {
17327 /* We are jumping to an out-of-line function. */
17328 bool can_use_exit = info->first_fp_reg_save == 64;
17329 rtx par;
17330
17331 /* Emit stack reset code if we need it. */
17332 if (can_use_exit)
17333 rs6000_emit_stack_reset (info, sp_reg_rtx, frame_reg_rtx,
17334 sp_offset, can_use_exit);
17335 else
17336 emit_insn (gen_addsi3 (gen_rtx_REG (Pmode, 11),
17337 sp_reg_rtx,
17338 GEN_INT (sp_offset - info->fp_size)));
17339
17340 par = rs6000_make_savres_rtx (info, frame_reg_rtx,
17341 info->gp_save_offset, reg_mode,
17342 /*savep=*/false, /*gpr=*/true,
17343 /*exitp=*/can_use_exit);
17344
17345 if (can_use_exit)
17346 {
17347 if (info->cr_save_p)
17348 rs6000_restore_saved_cr (gen_rtx_REG (SImode, 12),
17349 using_mtcr_multiple);
17350
17351 emit_jump_insn (par);
17352
17353 /* We don't want anybody else emitting things after we jumped
17354 back. */
17355 return;
17356 }
17357 else
17358 emit_insn (par);
17359 }
17360 else if (using_load_multiple)
17361 {
17362 rtvec p;
17363 p = rtvec_alloc (32 - info->first_gp_reg_save);
17364 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
17365 {
17366 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17367 GEN_INT (info->gp_save_offset
17368 + sp_offset
17369 + reg_size * i));
17370 rtx mem = gen_frame_mem (reg_mode, addr);
17371
17372 RTVEC_ELT (p, i) =
17373 gen_rtx_SET (VOIDmode,
17374 gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
17375 mem);
17376 }
17377 emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
17378 }
17379 else
17380 {
17381 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
17382 if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
17383 {
17384 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17385 GEN_INT (info->gp_save_offset
17386 + sp_offset
17387 + reg_size * i));
17388 rtx mem = gen_frame_mem (reg_mode, addr);
17389
17390 emit_move_insn (gen_rtx_REG (reg_mode,
17391 info->first_gp_reg_save + i), mem);
17392 }
17393 }
17394
17395 /* Restore fpr's if we need to do it without calling a function. */
17396 if (restoring_FPRs_inline)
17397 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
17398 if ((df_regs_ever_live_p (info->first_fp_reg_save+i)
17399 && ! call_used_regs[info->first_fp_reg_save+i]))
17400 {
17401 rtx addr, mem;
17402 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
17403 GEN_INT (info->fp_save_offset
17404 + sp_offset
17405 + 8 * i));
17406 mem = gen_frame_mem (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
17407 ? DFmode : SFmode), addr);
17408
17409 emit_move_insn (gen_rtx_REG (((TARGET_HARD_FLOAT
17410 && TARGET_DOUBLE_FLOAT)
17411 ? DFmode : SFmode),
17412 info->first_fp_reg_save + i),
17413 mem);
17414 }
17415
17416 /* If we saved cr, restore it here. Just those that were used. */
17417 if (info->cr_save_p)
17418 rs6000_restore_saved_cr (gen_rtx_REG (SImode, 12), using_mtcr_multiple);
17419
17420 /* If this is V.4, unwind the stack pointer after all of the loads
17421 have been done. */
17422 rs6000_emit_stack_reset (info, sp_reg_rtx, frame_reg_rtx,
17423 sp_offset, !restoring_FPRs_inline);
17424
17425 if (crtl->calls_eh_return)
17426 {
17427 rtx sa = EH_RETURN_STACKADJ_RTX;
17428 emit_insn (TARGET_32BIT
17429 ? gen_addsi3 (sp_reg_rtx, sp_reg_rtx, sa)
17430 : gen_adddi3 (sp_reg_rtx, sp_reg_rtx, sa));
17431 }
17432
17433 if (!sibcall)
17434 {
17435 rtvec p;
17436 if (! restoring_FPRs_inline)
17437 p = rtvec_alloc (4 + 64 - info->first_fp_reg_save);
17438 else
17439 p = rtvec_alloc (2);
17440
17441 RTVEC_ELT (p, 0) = gen_rtx_RETURN (VOIDmode);
17442 RTVEC_ELT (p, 1) = (restoring_FPRs_inline
17443 ? gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 65))
17444 : gen_rtx_CLOBBER (VOIDmode,
17445 gen_rtx_REG (Pmode, 65)));
17446
17447 /* If we have to restore more than two FP registers, branch to the
17448 restore function. It will return to our caller. */
17449 if (! restoring_FPRs_inline)
17450 {
17451 int i;
17452 rtx sym;
17453
17454 sym = rs6000_savres_routine_sym (info,
17455 /*savep=*/false,
17456 /*gpr=*/false,
17457 /*exitp=*/true);
17458 RTVEC_ELT (p, 2) = gen_rtx_USE (VOIDmode, sym);
17459 RTVEC_ELT (p, 3) = gen_rtx_USE (VOIDmode,
17460 gen_rtx_REG (Pmode, 11));
17461 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
17462 {
17463 rtx addr, mem;
17464 addr = gen_rtx_PLUS (Pmode, sp_reg_rtx,
17465 GEN_INT (info->fp_save_offset + 8*i));
17466 mem = gen_frame_mem (DFmode, addr);
17467
17468 RTVEC_ELT (p, i+4) =
17469 gen_rtx_SET (VOIDmode,
17470 gen_rtx_REG (DFmode, info->first_fp_reg_save + i),
17471 mem);
17472 }
17473 }
17474
17475 emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
17476 }
17477 }
17478
17479 /* Write function epilogue. */
17480
17481 static void
17482 rs6000_output_function_epilogue (FILE *file,
17483 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
17484 {
17485 if (! HAVE_epilogue)
17486 {
17487 rtx insn = get_last_insn ();
17488 /* If the last insn was a BARRIER, we don't have to write anything except
17489 the trace table. */
17490 if (GET_CODE (insn) == NOTE)
17491 insn = prev_nonnote_insn (insn);
17492 if (insn == 0 || GET_CODE (insn) != BARRIER)
17493 {
17494 /* This is slightly ugly, but at least we don't have two
17495 copies of the epilogue-emitting code. */
17496 start_sequence ();
17497
17498 /* A NOTE_INSN_DELETED is supposed to be at the start
17499 and end of the "toplevel" insn chain. */
17500 emit_note (NOTE_INSN_DELETED);
17501 rs6000_emit_epilogue (FALSE);
17502 emit_note (NOTE_INSN_DELETED);
17503
17504 /* Expand INSN_ADDRESSES so final() doesn't crash. */
17505 {
17506 rtx insn;
17507 unsigned addr = 0;
17508 for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
17509 {
17510 INSN_ADDRESSES_NEW (insn, addr);
17511 addr += 4;
17512 }
17513 }
17514
17515 if (TARGET_DEBUG_STACK)
17516 debug_rtx_list (get_insns (), 100);
17517 final (get_insns (), file, FALSE);
17518 end_sequence ();
17519 }
17520 }
17521
17522 #if TARGET_MACHO
17523 macho_branch_islands ();
17524 /* Mach-O doesn't support labels at the end of objects, so if
17525 it looks like we might want one, insert a NOP. */
17526 {
17527 rtx insn = get_last_insn ();
17528 while (insn
17529 && NOTE_P (insn)
17530 && NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL)
17531 insn = PREV_INSN (insn);
17532 if (insn
17533 && (LABEL_P (insn)
17534 || (NOTE_P (insn)
17535 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL)))
17536 fputs ("\tnop\n", file);
17537 }
17538 #endif
17539
17540 /* Output a traceback table here. See /usr/include/sys/debug.h for info
17541 on its format.
17542
17543 We don't output a traceback table if -finhibit-size-directive was
17544 used. The documentation for -finhibit-size-directive reads
17545 ``don't output a @code{.size} assembler directive, or anything
17546 else that would cause trouble if the function is split in the
17547 middle, and the two halves are placed at locations far apart in
17548 memory.'' The traceback table has this property, since it
17549 includes the offset from the start of the function to the
17550 traceback table itself.
17551
17552 System V.4 Powerpc's (and the embedded ABI derived from it) use a
17553 different traceback table. */
17554 if (DEFAULT_ABI == ABI_AIX && ! flag_inhibit_size_directive
17555 && rs6000_traceback != traceback_none && !crtl->is_thunk)
17556 {
17557 const char *fname = NULL;
17558 const char *language_string = lang_hooks.name;
17559 int fixed_parms = 0, float_parms = 0, parm_info = 0;
17560 int i;
17561 int optional_tbtab;
17562 rs6000_stack_t *info = rs6000_stack_info ();
17563
17564 if (rs6000_traceback == traceback_full)
17565 optional_tbtab = 1;
17566 else if (rs6000_traceback == traceback_part)
17567 optional_tbtab = 0;
17568 else
17569 optional_tbtab = !optimize_size && !TARGET_ELF;
17570
17571 if (optional_tbtab)
17572 {
17573 fname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
17574 while (*fname == '.') /* V.4 encodes . in the name */
17575 fname++;
17576
17577 /* Need label immediately before tbtab, so we can compute
17578 its offset from the function start. */
17579 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
17580 ASM_OUTPUT_LABEL (file, fname);
17581 }
17582
17583 /* The .tbtab pseudo-op can only be used for the first eight
17584 expressions, since it can't handle the possibly variable
17585 length fields that follow. However, if you omit the optional
17586 fields, the assembler outputs zeros for all optional fields
17587 anyways, giving each variable length field is minimum length
17588 (as defined in sys/debug.h). Thus we can not use the .tbtab
17589 pseudo-op at all. */
17590
17591 /* An all-zero word flags the start of the tbtab, for debuggers
17592 that have to find it by searching forward from the entry
17593 point or from the current pc. */
17594 fputs ("\t.long 0\n", file);
17595
17596 /* Tbtab format type. Use format type 0. */
17597 fputs ("\t.byte 0,", file);
17598
17599 /* Language type. Unfortunately, there does not seem to be any
17600 official way to discover the language being compiled, so we
17601 use language_string.
17602 C is 0. Fortran is 1. Pascal is 2. Ada is 3. C++ is 9.
17603 Java is 13. Objective-C is 14. Objective-C++ isn't assigned
17604 a number, so for now use 9. */
17605 if (! strcmp (language_string, "GNU C"))
17606 i = 0;
17607 else if (! strcmp (language_string, "GNU F77")
17608 || ! strcmp (language_string, "GNU Fortran"))
17609 i = 1;
17610 else if (! strcmp (language_string, "GNU Pascal"))
17611 i = 2;
17612 else if (! strcmp (language_string, "GNU Ada"))
17613 i = 3;
17614 else if (! strcmp (language_string, "GNU C++")
17615 || ! strcmp (language_string, "GNU Objective-C++"))
17616 i = 9;
17617 else if (! strcmp (language_string, "GNU Java"))
17618 i = 13;
17619 else if (! strcmp (language_string, "GNU Objective-C"))
17620 i = 14;
17621 else
17622 gcc_unreachable ();
17623 fprintf (file, "%d,", i);
17624
17625 /* 8 single bit fields: global linkage (not set for C extern linkage,
17626 apparently a PL/I convention?), out-of-line epilogue/prologue, offset
17627 from start of procedure stored in tbtab, internal function, function
17628 has controlled storage, function has no toc, function uses fp,
17629 function logs/aborts fp operations. */
17630 /* Assume that fp operations are used if any fp reg must be saved. */
17631 fprintf (file, "%d,",
17632 (optional_tbtab << 5) | ((info->first_fp_reg_save != 64) << 1));
17633
17634 /* 6 bitfields: function is interrupt handler, name present in
17635 proc table, function calls alloca, on condition directives
17636 (controls stack walks, 3 bits), saves condition reg, saves
17637 link reg. */
17638 /* The `function calls alloca' bit seems to be set whenever reg 31 is
17639 set up as a frame pointer, even when there is no alloca call. */
17640 fprintf (file, "%d,",
17641 ((optional_tbtab << 6)
17642 | ((optional_tbtab & frame_pointer_needed) << 5)
17643 | (info->cr_save_p << 1)
17644 | (info->lr_save_p)));
17645
17646 /* 3 bitfields: saves backchain, fixup code, number of fpr saved
17647 (6 bits). */
17648 fprintf (file, "%d,",
17649 (info->push_p << 7) | (64 - info->first_fp_reg_save));
17650
17651 /* 2 bitfields: spare bits (2 bits), number of gpr saved (6 bits). */
17652 fprintf (file, "%d,", (32 - first_reg_to_save ()));
17653
17654 if (optional_tbtab)
17655 {
17656 /* Compute the parameter info from the function decl argument
17657 list. */
17658 tree decl;
17659 int next_parm_info_bit = 31;
17660
17661 for (decl = DECL_ARGUMENTS (current_function_decl);
17662 decl; decl = TREE_CHAIN (decl))
17663 {
17664 rtx parameter = DECL_INCOMING_RTL (decl);
17665 enum machine_mode mode = GET_MODE (parameter);
17666
17667 if (GET_CODE (parameter) == REG)
17668 {
17669 if (SCALAR_FLOAT_MODE_P (mode))
17670 {
17671 int bits;
17672
17673 float_parms++;
17674
17675 switch (mode)
17676 {
17677 case SFmode:
17678 case SDmode:
17679 bits = 0x2;
17680 break;
17681
17682 case DFmode:
17683 case DDmode:
17684 case TFmode:
17685 case TDmode:
17686 bits = 0x3;
17687 break;
17688
17689 default:
17690 gcc_unreachable ();
17691 }
17692
17693 /* If only one bit will fit, don't or in this entry. */
17694 if (next_parm_info_bit > 0)
17695 parm_info |= (bits << (next_parm_info_bit - 1));
17696 next_parm_info_bit -= 2;
17697 }
17698 else
17699 {
17700 fixed_parms += ((GET_MODE_SIZE (mode)
17701 + (UNITS_PER_WORD - 1))
17702 / UNITS_PER_WORD);
17703 next_parm_info_bit -= 1;
17704 }
17705 }
17706 }
17707 }
17708
17709 /* Number of fixed point parameters. */
17710 /* This is actually the number of words of fixed point parameters; thus
17711 an 8 byte struct counts as 2; and thus the maximum value is 8. */
17712 fprintf (file, "%d,", fixed_parms);
17713
17714 /* 2 bitfields: number of floating point parameters (7 bits), parameters
17715 all on stack. */
17716 /* This is actually the number of fp registers that hold parameters;
17717 and thus the maximum value is 13. */
17718 /* Set parameters on stack bit if parameters are not in their original
17719 registers, regardless of whether they are on the stack? Xlc
17720 seems to set the bit when not optimizing. */
17721 fprintf (file, "%d\n", ((float_parms << 1) | (! optimize)));
17722
17723 if (! optional_tbtab)
17724 return;
17725
17726 /* Optional fields follow. Some are variable length. */
17727
17728 /* Parameter types, left adjusted bit fields: 0 fixed, 10 single float,
17729 11 double float. */
17730 /* There is an entry for each parameter in a register, in the order that
17731 they occur in the parameter list. Any intervening arguments on the
17732 stack are ignored. If the list overflows a long (max possible length
17733 34 bits) then completely leave off all elements that don't fit. */
17734 /* Only emit this long if there was at least one parameter. */
17735 if (fixed_parms || float_parms)
17736 fprintf (file, "\t.long %d\n", parm_info);
17737
17738 /* Offset from start of code to tb table. */
17739 fputs ("\t.long ", file);
17740 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
17741 if (TARGET_AIX)
17742 RS6000_OUTPUT_BASENAME (file, fname);
17743 else
17744 assemble_name (file, fname);
17745 putc ('-', file);
17746 rs6000_output_function_entry (file, fname);
17747 putc ('\n', file);
17748
17749 /* Interrupt handler mask. */
17750 /* Omit this long, since we never set the interrupt handler bit
17751 above. */
17752
17753 /* Number of CTL (controlled storage) anchors. */
17754 /* Omit this long, since the has_ctl bit is never set above. */
17755
17756 /* Displacement into stack of each CTL anchor. */
17757 /* Omit this list of longs, because there are no CTL anchors. */
17758
17759 /* Length of function name. */
17760 if (*fname == '*')
17761 ++fname;
17762 fprintf (file, "\t.short %d\n", (int) strlen (fname));
17763
17764 /* Function name. */
17765 assemble_string (fname, strlen (fname));
17766
17767 /* Register for alloca automatic storage; this is always reg 31.
17768 Only emit this if the alloca bit was set above. */
17769 if (frame_pointer_needed)
17770 fputs ("\t.byte 31\n", file);
17771
17772 fputs ("\t.align 2\n", file);
17773 }
17774 }
17775 \f
17776 /* A C compound statement that outputs the assembler code for a thunk
17777 function, used to implement C++ virtual function calls with
17778 multiple inheritance. The thunk acts as a wrapper around a virtual
17779 function, adjusting the implicit object parameter before handing
17780 control off to the real function.
17781
17782 First, emit code to add the integer DELTA to the location that
17783 contains the incoming first argument. Assume that this argument
17784 contains a pointer, and is the one used to pass the `this' pointer
17785 in C++. This is the incoming argument *before* the function
17786 prologue, e.g. `%o0' on a sparc. The addition must preserve the
17787 values of all other incoming arguments.
17788
17789 After the addition, emit code to jump to FUNCTION, which is a
17790 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does
17791 not touch the return address. Hence returning from FUNCTION will
17792 return to whoever called the current `thunk'.
17793
17794 The effect must be as if FUNCTION had been called directly with the
17795 adjusted first argument. This macro is responsible for emitting
17796 all of the code for a thunk function; output_function_prologue()
17797 and output_function_epilogue() are not invoked.
17798
17799 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already
17800 been extracted from it.) It might possibly be useful on some
17801 targets, but probably not.
17802
17803 If you do not define this macro, the target-independent code in the
17804 C++ frontend will generate a less efficient heavyweight thunk that
17805 calls FUNCTION instead of jumping to it. The generic approach does
17806 not support varargs. */
17807
17808 static void
17809 rs6000_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
17810 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
17811 tree function)
17812 {
17813 rtx this_rtx, insn, funexp;
17814
17815 reload_completed = 1;
17816 epilogue_completed = 1;
17817
17818 /* Mark the end of the (empty) prologue. */
17819 emit_note (NOTE_INSN_PROLOGUE_END);
17820
17821 /* Find the "this" pointer. If the function returns a structure,
17822 the structure return pointer is in r3. */
17823 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
17824 this_rtx = gen_rtx_REG (Pmode, 4);
17825 else
17826 this_rtx = gen_rtx_REG (Pmode, 3);
17827
17828 /* Apply the constant offset, if required. */
17829 if (delta)
17830 {
17831 rtx delta_rtx = GEN_INT (delta);
17832 emit_insn (TARGET_32BIT
17833 ? gen_addsi3 (this_rtx, this_rtx, delta_rtx)
17834 : gen_adddi3 (this_rtx, this_rtx, delta_rtx));
17835 }
17836
17837 /* Apply the offset from the vtable, if required. */
17838 if (vcall_offset)
17839 {
17840 rtx vcall_offset_rtx = GEN_INT (vcall_offset);
17841 rtx tmp = gen_rtx_REG (Pmode, 12);
17842
17843 emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx));
17844 if (((unsigned HOST_WIDE_INT) vcall_offset) + 0x8000 >= 0x10000)
17845 {
17846 emit_insn (TARGET_32BIT
17847 ? gen_addsi3 (tmp, tmp, vcall_offset_rtx)
17848 : gen_adddi3 (tmp, tmp, vcall_offset_rtx));
17849 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
17850 }
17851 else
17852 {
17853 rtx loc = gen_rtx_PLUS (Pmode, tmp, vcall_offset_rtx);
17854
17855 emit_move_insn (tmp, gen_rtx_MEM (Pmode, loc));
17856 }
17857 emit_insn (TARGET_32BIT
17858 ? gen_addsi3 (this_rtx, this_rtx, tmp)
17859 : gen_adddi3 (this_rtx, this_rtx, tmp));
17860 }
17861
17862 /* Generate a tail call to the target function. */
17863 if (!TREE_USED (function))
17864 {
17865 assemble_external (function);
17866 TREE_USED (function) = 1;
17867 }
17868 funexp = XEXP (DECL_RTL (function), 0);
17869 funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
17870
17871 #if TARGET_MACHO
17872 if (MACHOPIC_INDIRECT)
17873 funexp = machopic_indirect_call_target (funexp);
17874 #endif
17875
17876 /* gen_sibcall expects reload to convert scratch pseudo to LR so we must
17877 generate sibcall RTL explicitly. */
17878 insn = emit_call_insn (
17879 gen_rtx_PARALLEL (VOIDmode,
17880 gen_rtvec (4,
17881 gen_rtx_CALL (VOIDmode,
17882 funexp, const0_rtx),
17883 gen_rtx_USE (VOIDmode, const0_rtx),
17884 gen_rtx_USE (VOIDmode,
17885 gen_rtx_REG (SImode,
17886 LR_REGNO)),
17887 gen_rtx_RETURN (VOIDmode))));
17888 SIBLING_CALL_P (insn) = 1;
17889 emit_barrier ();
17890
17891 /* Run just enough of rest_of_compilation to get the insns emitted.
17892 There's not really enough bulk here to make other passes such as
17893 instruction scheduling worth while. Note that use_thunk calls
17894 assemble_start_function and assemble_end_function. */
17895 insn = get_insns ();
17896 insn_locators_alloc ();
17897 shorten_branches (insn);
17898 final_start_function (insn, file, 1);
17899 final (insn, file, 1);
17900 final_end_function ();
17901 free_after_compilation (cfun);
17902
17903 reload_completed = 0;
17904 epilogue_completed = 0;
17905 }
17906 \f
17907 /* A quick summary of the various types of 'constant-pool tables'
17908 under PowerPC:
17909
17910 Target Flags Name One table per
17911 AIX (none) AIX TOC object file
17912 AIX -mfull-toc AIX TOC object file
17913 AIX -mminimal-toc AIX minimal TOC translation unit
17914 SVR4/EABI (none) SVR4 SDATA object file
17915 SVR4/EABI -fpic SVR4 pic object file
17916 SVR4/EABI -fPIC SVR4 PIC translation unit
17917 SVR4/EABI -mrelocatable EABI TOC function
17918 SVR4/EABI -maix AIX TOC object file
17919 SVR4/EABI -maix -mminimal-toc
17920 AIX minimal TOC translation unit
17921
17922 Name Reg. Set by entries contains:
17923 made by addrs? fp? sum?
17924
17925 AIX TOC 2 crt0 as Y option option
17926 AIX minimal TOC 30 prolog gcc Y Y option
17927 SVR4 SDATA 13 crt0 gcc N Y N
17928 SVR4 pic 30 prolog ld Y not yet N
17929 SVR4 PIC 30 prolog gcc Y option option
17930 EABI TOC 30 prolog gcc Y option option
17931
17932 */
17933
17934 /* Hash functions for the hash table. */
17935
17936 static unsigned
17937 rs6000_hash_constant (rtx k)
17938 {
17939 enum rtx_code code = GET_CODE (k);
17940 enum machine_mode mode = GET_MODE (k);
17941 unsigned result = (code << 3) ^ mode;
17942 const char *format;
17943 int flen, fidx;
17944
17945 format = GET_RTX_FORMAT (code);
17946 flen = strlen (format);
17947 fidx = 0;
17948
17949 switch (code)
17950 {
17951 case LABEL_REF:
17952 return result * 1231 + (unsigned) INSN_UID (XEXP (k, 0));
17953
17954 case CONST_DOUBLE:
17955 if (mode != VOIDmode)
17956 return real_hash (CONST_DOUBLE_REAL_VALUE (k)) * result;
17957 flen = 2;
17958 break;
17959
17960 case CODE_LABEL:
17961 fidx = 3;
17962 break;
17963
17964 default:
17965 break;
17966 }
17967
17968 for (; fidx < flen; fidx++)
17969 switch (format[fidx])
17970 {
17971 case 's':
17972 {
17973 unsigned i, len;
17974 const char *str = XSTR (k, fidx);
17975 len = strlen (str);
17976 result = result * 613 + len;
17977 for (i = 0; i < len; i++)
17978 result = result * 613 + (unsigned) str[i];
17979 break;
17980 }
17981 case 'u':
17982 case 'e':
17983 result = result * 1231 + rs6000_hash_constant (XEXP (k, fidx));
17984 break;
17985 case 'i':
17986 case 'n':
17987 result = result * 613 + (unsigned) XINT (k, fidx);
17988 break;
17989 case 'w':
17990 if (sizeof (unsigned) >= sizeof (HOST_WIDE_INT))
17991 result = result * 613 + (unsigned) XWINT (k, fidx);
17992 else
17993 {
17994 size_t i;
17995 for (i = 0; i < sizeof (HOST_WIDE_INT) / sizeof (unsigned); i++)
17996 result = result * 613 + (unsigned) (XWINT (k, fidx)
17997 >> CHAR_BIT * i);
17998 }
17999 break;
18000 case '0':
18001 break;
18002 default:
18003 gcc_unreachable ();
18004 }
18005
18006 return result;
18007 }
18008
18009 static unsigned
18010 toc_hash_function (const void *hash_entry)
18011 {
18012 const struct toc_hash_struct *thc =
18013 (const struct toc_hash_struct *) hash_entry;
18014 return rs6000_hash_constant (thc->key) ^ thc->key_mode;
18015 }
18016
18017 /* Compare H1 and H2 for equivalence. */
18018
18019 static int
18020 toc_hash_eq (const void *h1, const void *h2)
18021 {
18022 rtx r1 = ((const struct toc_hash_struct *) h1)->key;
18023 rtx r2 = ((const struct toc_hash_struct *) h2)->key;
18024
18025 if (((const struct toc_hash_struct *) h1)->key_mode
18026 != ((const struct toc_hash_struct *) h2)->key_mode)
18027 return 0;
18028
18029 return rtx_equal_p (r1, r2);
18030 }
18031
18032 /* These are the names given by the C++ front-end to vtables, and
18033 vtable-like objects. Ideally, this logic should not be here;
18034 instead, there should be some programmatic way of inquiring as
18035 to whether or not an object is a vtable. */
18036
18037 #define VTABLE_NAME_P(NAME) \
18038 (strncmp ("_vt.", name, strlen ("_vt.")) == 0 \
18039 || strncmp ("_ZTV", name, strlen ("_ZTV")) == 0 \
18040 || strncmp ("_ZTT", name, strlen ("_ZTT")) == 0 \
18041 || strncmp ("_ZTI", name, strlen ("_ZTI")) == 0 \
18042 || strncmp ("_ZTC", name, strlen ("_ZTC")) == 0)
18043
18044 #ifdef NO_DOLLAR_IN_LABEL
18045 /* Return a GGC-allocated character string translating dollar signs in
18046 input NAME to underscores. Used by XCOFF ASM_OUTPUT_LABELREF. */
18047
18048 const char *
18049 rs6000_xcoff_strip_dollar (const char *name)
18050 {
18051 char *strip, *p;
18052 int len;
18053
18054 p = strchr (name, '$');
18055
18056 if (p == 0 || p == name)
18057 return name;
18058
18059 len = strlen (name);
18060 strip = (char *) alloca (len + 1);
18061 strcpy (strip, name);
18062 p = strchr (strip, '$');
18063 while (p)
18064 {
18065 *p = '_';
18066 p = strchr (p + 1, '$');
18067 }
18068
18069 return ggc_alloc_string (strip, len);
18070 }
18071 #endif
18072
18073 void
18074 rs6000_output_symbol_ref (FILE *file, rtx x)
18075 {
18076 /* Currently C++ toc references to vtables can be emitted before it
18077 is decided whether the vtable is public or private. If this is
18078 the case, then the linker will eventually complain that there is
18079 a reference to an unknown section. Thus, for vtables only,
18080 we emit the TOC reference to reference the symbol and not the
18081 section. */
18082 const char *name = XSTR (x, 0);
18083
18084 if (VTABLE_NAME_P (name))
18085 {
18086 RS6000_OUTPUT_BASENAME (file, name);
18087 }
18088 else
18089 assemble_name (file, name);
18090 }
18091
18092 /* Output a TOC entry. We derive the entry name from what is being
18093 written. */
18094
18095 void
18096 output_toc (FILE *file, rtx x, int labelno, enum machine_mode mode)
18097 {
18098 char buf[256];
18099 const char *name = buf;
18100 const char *real_name;
18101 rtx base = x;
18102 HOST_WIDE_INT offset = 0;
18103
18104 gcc_assert (!TARGET_NO_TOC);
18105
18106 /* When the linker won't eliminate them, don't output duplicate
18107 TOC entries (this happens on AIX if there is any kind of TOC,
18108 and on SVR4 under -fPIC or -mrelocatable). Don't do this for
18109 CODE_LABELs. */
18110 if (TARGET_TOC && GET_CODE (x) != LABEL_REF)
18111 {
18112 struct toc_hash_struct *h;
18113 void * * found;
18114
18115 /* Create toc_hash_table. This can't be done at OVERRIDE_OPTIONS
18116 time because GGC is not initialized at that point. */
18117 if (toc_hash_table == NULL)
18118 toc_hash_table = htab_create_ggc (1021, toc_hash_function,
18119 toc_hash_eq, NULL);
18120
18121 h = GGC_NEW (struct toc_hash_struct);
18122 h->key = x;
18123 h->key_mode = mode;
18124 h->labelno = labelno;
18125
18126 found = htab_find_slot (toc_hash_table, h, 1);
18127 if (*found == NULL)
18128 *found = h;
18129 else /* This is indeed a duplicate.
18130 Set this label equal to that label. */
18131 {
18132 fputs ("\t.set ", file);
18133 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
18134 fprintf (file, "%d,", labelno);
18135 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
18136 fprintf (file, "%d\n", ((*(const struct toc_hash_struct **)
18137 found)->labelno));
18138 return;
18139 }
18140 }
18141
18142 /* If we're going to put a double constant in the TOC, make sure it's
18143 aligned properly when strict alignment is on. */
18144 if (GET_CODE (x) == CONST_DOUBLE
18145 && STRICT_ALIGNMENT
18146 && GET_MODE_BITSIZE (mode) >= 64
18147 && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) {
18148 ASM_OUTPUT_ALIGN (file, 3);
18149 }
18150
18151 (*targetm.asm_out.internal_label) (file, "LC", labelno);
18152
18153 /* Handle FP constants specially. Note that if we have a minimal
18154 TOC, things we put here aren't actually in the TOC, so we can allow
18155 FP constants. */
18156 if (GET_CODE (x) == CONST_DOUBLE &&
18157 (GET_MODE (x) == TFmode || GET_MODE (x) == TDmode))
18158 {
18159 REAL_VALUE_TYPE rv;
18160 long k[4];
18161
18162 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
18163 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
18164 REAL_VALUE_TO_TARGET_DECIMAL128 (rv, k);
18165 else
18166 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
18167
18168 if (TARGET_64BIT)
18169 {
18170 if (TARGET_MINIMAL_TOC)
18171 fputs (DOUBLE_INT_ASM_OP, file);
18172 else
18173 fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
18174 k[0] & 0xffffffff, k[1] & 0xffffffff,
18175 k[2] & 0xffffffff, k[3] & 0xffffffff);
18176 fprintf (file, "0x%lx%08lx,0x%lx%08lx\n",
18177 k[0] & 0xffffffff, k[1] & 0xffffffff,
18178 k[2] & 0xffffffff, k[3] & 0xffffffff);
18179 return;
18180 }
18181 else
18182 {
18183 if (TARGET_MINIMAL_TOC)
18184 fputs ("\t.long ", file);
18185 else
18186 fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
18187 k[0] & 0xffffffff, k[1] & 0xffffffff,
18188 k[2] & 0xffffffff, k[3] & 0xffffffff);
18189 fprintf (file, "0x%lx,0x%lx,0x%lx,0x%lx\n",
18190 k[0] & 0xffffffff, k[1] & 0xffffffff,
18191 k[2] & 0xffffffff, k[3] & 0xffffffff);
18192 return;
18193 }
18194 }
18195 else if (GET_CODE (x) == CONST_DOUBLE &&
18196 (GET_MODE (x) == DFmode || GET_MODE (x) == DDmode))
18197 {
18198 REAL_VALUE_TYPE rv;
18199 long k[2];
18200
18201 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
18202
18203 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
18204 REAL_VALUE_TO_TARGET_DECIMAL64 (rv, k);
18205 else
18206 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
18207
18208 if (TARGET_64BIT)
18209 {
18210 if (TARGET_MINIMAL_TOC)
18211 fputs (DOUBLE_INT_ASM_OP, file);
18212 else
18213 fprintf (file, "\t.tc FD_%lx_%lx[TC],",
18214 k[0] & 0xffffffff, k[1] & 0xffffffff);
18215 fprintf (file, "0x%lx%08lx\n",
18216 k[0] & 0xffffffff, k[1] & 0xffffffff);
18217 return;
18218 }
18219 else
18220 {
18221 if (TARGET_MINIMAL_TOC)
18222 fputs ("\t.long ", file);
18223 else
18224 fprintf (file, "\t.tc FD_%lx_%lx[TC],",
18225 k[0] & 0xffffffff, k[1] & 0xffffffff);
18226 fprintf (file, "0x%lx,0x%lx\n",
18227 k[0] & 0xffffffff, k[1] & 0xffffffff);
18228 return;
18229 }
18230 }
18231 else if (GET_CODE (x) == CONST_DOUBLE &&
18232 (GET_MODE (x) == SFmode || GET_MODE (x) == SDmode))
18233 {
18234 REAL_VALUE_TYPE rv;
18235 long l;
18236
18237 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
18238 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
18239 REAL_VALUE_TO_TARGET_DECIMAL32 (rv, l);
18240 else
18241 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
18242
18243 if (TARGET_64BIT)
18244 {
18245 if (TARGET_MINIMAL_TOC)
18246 fputs (DOUBLE_INT_ASM_OP, file);
18247 else
18248 fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
18249 fprintf (file, "0x%lx00000000\n", l & 0xffffffff);
18250 return;
18251 }
18252 else
18253 {
18254 if (TARGET_MINIMAL_TOC)
18255 fputs ("\t.long ", file);
18256 else
18257 fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
18258 fprintf (file, "0x%lx\n", l & 0xffffffff);
18259 return;
18260 }
18261 }
18262 else if (GET_MODE (x) == VOIDmode
18263 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
18264 {
18265 unsigned HOST_WIDE_INT low;
18266 HOST_WIDE_INT high;
18267
18268 if (GET_CODE (x) == CONST_DOUBLE)
18269 {
18270 low = CONST_DOUBLE_LOW (x);
18271 high = CONST_DOUBLE_HIGH (x);
18272 }
18273 else
18274 #if HOST_BITS_PER_WIDE_INT == 32
18275 {
18276 low = INTVAL (x);
18277 high = (low & 0x80000000) ? ~0 : 0;
18278 }
18279 #else
18280 {
18281 low = INTVAL (x) & 0xffffffff;
18282 high = (HOST_WIDE_INT) INTVAL (x) >> 32;
18283 }
18284 #endif
18285
18286 /* TOC entries are always Pmode-sized, but since this
18287 is a bigendian machine then if we're putting smaller
18288 integer constants in the TOC we have to pad them.
18289 (This is still a win over putting the constants in
18290 a separate constant pool, because then we'd have
18291 to have both a TOC entry _and_ the actual constant.)
18292
18293 For a 32-bit target, CONST_INT values are loaded and shifted
18294 entirely within `low' and can be stored in one TOC entry. */
18295
18296 /* It would be easy to make this work, but it doesn't now. */
18297 gcc_assert (!TARGET_64BIT || POINTER_SIZE >= GET_MODE_BITSIZE (mode));
18298
18299 if (POINTER_SIZE > GET_MODE_BITSIZE (mode))
18300 {
18301 #if HOST_BITS_PER_WIDE_INT == 32
18302 lshift_double (low, high, POINTER_SIZE - GET_MODE_BITSIZE (mode),
18303 POINTER_SIZE, &low, &high, 0);
18304 #else
18305 low |= high << 32;
18306 low <<= POINTER_SIZE - GET_MODE_BITSIZE (mode);
18307 high = (HOST_WIDE_INT) low >> 32;
18308 low &= 0xffffffff;
18309 #endif
18310 }
18311
18312 if (TARGET_64BIT)
18313 {
18314 if (TARGET_MINIMAL_TOC)
18315 fputs (DOUBLE_INT_ASM_OP, file);
18316 else
18317 fprintf (file, "\t.tc ID_%lx_%lx[TC],",
18318 (long) high & 0xffffffff, (long) low & 0xffffffff);
18319 fprintf (file, "0x%lx%08lx\n",
18320 (long) high & 0xffffffff, (long) low & 0xffffffff);
18321 return;
18322 }
18323 else
18324 {
18325 if (POINTER_SIZE < GET_MODE_BITSIZE (mode))
18326 {
18327 if (TARGET_MINIMAL_TOC)
18328 fputs ("\t.long ", file);
18329 else
18330 fprintf (file, "\t.tc ID_%lx_%lx[TC],",
18331 (long) high & 0xffffffff, (long) low & 0xffffffff);
18332 fprintf (file, "0x%lx,0x%lx\n",
18333 (long) high & 0xffffffff, (long) low & 0xffffffff);
18334 }
18335 else
18336 {
18337 if (TARGET_MINIMAL_TOC)
18338 fputs ("\t.long ", file);
18339 else
18340 fprintf (file, "\t.tc IS_%lx[TC],", (long) low & 0xffffffff);
18341 fprintf (file, "0x%lx\n", (long) low & 0xffffffff);
18342 }
18343 return;
18344 }
18345 }
18346
18347 if (GET_CODE (x) == CONST)
18348 {
18349 gcc_assert (GET_CODE (XEXP (x, 0)) == PLUS);
18350
18351 base = XEXP (XEXP (x, 0), 0);
18352 offset = INTVAL (XEXP (XEXP (x, 0), 1));
18353 }
18354
18355 switch (GET_CODE (base))
18356 {
18357 case SYMBOL_REF:
18358 name = XSTR (base, 0);
18359 break;
18360
18361 case LABEL_REF:
18362 ASM_GENERATE_INTERNAL_LABEL (buf, "L",
18363 CODE_LABEL_NUMBER (XEXP (base, 0)));
18364 break;
18365
18366 case CODE_LABEL:
18367 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (base));
18368 break;
18369
18370 default:
18371 gcc_unreachable ();
18372 }
18373
18374 real_name = (*targetm.strip_name_encoding) (name);
18375 if (TARGET_MINIMAL_TOC)
18376 fputs (TARGET_32BIT ? "\t.long " : DOUBLE_INT_ASM_OP, file);
18377 else
18378 {
18379 fprintf (file, "\t.tc %s", real_name);
18380
18381 if (offset < 0)
18382 fprintf (file, ".N" HOST_WIDE_INT_PRINT_UNSIGNED, - offset);
18383 else if (offset)
18384 fprintf (file, ".P" HOST_WIDE_INT_PRINT_UNSIGNED, offset);
18385
18386 fputs ("[TC],", file);
18387 }
18388
18389 /* Currently C++ toc references to vtables can be emitted before it
18390 is decided whether the vtable is public or private. If this is
18391 the case, then the linker will eventually complain that there is
18392 a TOC reference to an unknown section. Thus, for vtables only,
18393 we emit the TOC reference to reference the symbol and not the
18394 section. */
18395 if (VTABLE_NAME_P (name))
18396 {
18397 RS6000_OUTPUT_BASENAME (file, name);
18398 if (offset < 0)
18399 fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset);
18400 else if (offset > 0)
18401 fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
18402 }
18403 else
18404 output_addr_const (file, x);
18405 putc ('\n', file);
18406 }
18407 \f
18408 /* Output an assembler pseudo-op to write an ASCII string of N characters
18409 starting at P to FILE.
18410
18411 On the RS/6000, we have to do this using the .byte operation and
18412 write out special characters outside the quoted string.
18413 Also, the assembler is broken; very long strings are truncated,
18414 so we must artificially break them up early. */
18415
18416 void
18417 output_ascii (FILE *file, const char *p, int n)
18418 {
18419 char c;
18420 int i, count_string;
18421 const char *for_string = "\t.byte \"";
18422 const char *for_decimal = "\t.byte ";
18423 const char *to_close = NULL;
18424
18425 count_string = 0;
18426 for (i = 0; i < n; i++)
18427 {
18428 c = *p++;
18429 if (c >= ' ' && c < 0177)
18430 {
18431 if (for_string)
18432 fputs (for_string, file);
18433 putc (c, file);
18434
18435 /* Write two quotes to get one. */
18436 if (c == '"')
18437 {
18438 putc (c, file);
18439 ++count_string;
18440 }
18441
18442 for_string = NULL;
18443 for_decimal = "\"\n\t.byte ";
18444 to_close = "\"\n";
18445 ++count_string;
18446
18447 if (count_string >= 512)
18448 {
18449 fputs (to_close, file);
18450
18451 for_string = "\t.byte \"";
18452 for_decimal = "\t.byte ";
18453 to_close = NULL;
18454 count_string = 0;
18455 }
18456 }
18457 else
18458 {
18459 if (for_decimal)
18460 fputs (for_decimal, file);
18461 fprintf (file, "%d", c);
18462
18463 for_string = "\n\t.byte \"";
18464 for_decimal = ", ";
18465 to_close = "\n";
18466 count_string = 0;
18467 }
18468 }
18469
18470 /* Now close the string if we have written one. Then end the line. */
18471 if (to_close)
18472 fputs (to_close, file);
18473 }
18474 \f
18475 /* Generate a unique section name for FILENAME for a section type
18476 represented by SECTION_DESC. Output goes into BUF.
18477
18478 SECTION_DESC can be any string, as long as it is different for each
18479 possible section type.
18480
18481 We name the section in the same manner as xlc. The name begins with an
18482 underscore followed by the filename (after stripping any leading directory
18483 names) with the last period replaced by the string SECTION_DESC. If
18484 FILENAME does not contain a period, SECTION_DESC is appended to the end of
18485 the name. */
18486
18487 void
18488 rs6000_gen_section_name (char **buf, const char *filename,
18489 const char *section_desc)
18490 {
18491 const char *q, *after_last_slash, *last_period = 0;
18492 char *p;
18493 int len;
18494
18495 after_last_slash = filename;
18496 for (q = filename; *q; q++)
18497 {
18498 if (*q == '/')
18499 after_last_slash = q + 1;
18500 else if (*q == '.')
18501 last_period = q;
18502 }
18503
18504 len = strlen (after_last_slash) + strlen (section_desc) + 2;
18505 *buf = (char *) xmalloc (len);
18506
18507 p = *buf;
18508 *p++ = '_';
18509
18510 for (q = after_last_slash; *q; q++)
18511 {
18512 if (q == last_period)
18513 {
18514 strcpy (p, section_desc);
18515 p += strlen (section_desc);
18516 break;
18517 }
18518
18519 else if (ISALNUM (*q))
18520 *p++ = *q;
18521 }
18522
18523 if (last_period == 0)
18524 strcpy (p, section_desc);
18525 else
18526 *p = '\0';
18527 }
18528 \f
18529 /* Emit profile function. */
18530
18531 void
18532 output_profile_hook (int labelno ATTRIBUTE_UNUSED)
18533 {
18534 /* Non-standard profiling for kernels, which just saves LR then calls
18535 _mcount without worrying about arg saves. The idea is to change
18536 the function prologue as little as possible as it isn't easy to
18537 account for arg save/restore code added just for _mcount. */
18538 if (TARGET_PROFILE_KERNEL)
18539 return;
18540
18541 if (DEFAULT_ABI == ABI_AIX)
18542 {
18543 #ifndef NO_PROFILE_COUNTERS
18544 # define NO_PROFILE_COUNTERS 0
18545 #endif
18546 if (NO_PROFILE_COUNTERS)
18547 emit_library_call (init_one_libfunc (RS6000_MCOUNT), 0, VOIDmode, 0);
18548 else
18549 {
18550 char buf[30];
18551 const char *label_name;
18552 rtx fun;
18553
18554 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
18555 label_name = (*targetm.strip_name_encoding) (ggc_strdup (buf));
18556 fun = gen_rtx_SYMBOL_REF (Pmode, label_name);
18557
18558 emit_library_call (init_one_libfunc (RS6000_MCOUNT), 0, VOIDmode, 1,
18559 fun, Pmode);
18560 }
18561 }
18562 else if (DEFAULT_ABI == ABI_DARWIN)
18563 {
18564 const char *mcount_name = RS6000_MCOUNT;
18565 int caller_addr_regno = LR_REGNO;
18566
18567 /* Be conservative and always set this, at least for now. */
18568 crtl->uses_pic_offset_table = 1;
18569
18570 #if TARGET_MACHO
18571 /* For PIC code, set up a stub and collect the caller's address
18572 from r0, which is where the prologue puts it. */
18573 if (MACHOPIC_INDIRECT
18574 && crtl->uses_pic_offset_table)
18575 caller_addr_regno = 0;
18576 #endif
18577 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mcount_name),
18578 0, VOIDmode, 1,
18579 gen_rtx_REG (Pmode, caller_addr_regno), Pmode);
18580 }
18581 }
18582
18583 /* Write function profiler code. */
18584
18585 void
18586 output_function_profiler (FILE *file, int labelno)
18587 {
18588 char buf[100];
18589
18590 switch (DEFAULT_ABI)
18591 {
18592 default:
18593 gcc_unreachable ();
18594
18595 case ABI_V4:
18596 if (!TARGET_32BIT)
18597 {
18598 warning (0, "no profiling of 64-bit code for this ABI");
18599 return;
18600 }
18601 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
18602 fprintf (file, "\tmflr %s\n", reg_names[0]);
18603 if (NO_PROFILE_COUNTERS)
18604 {
18605 asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
18606 reg_names[0], reg_names[1]);
18607 }
18608 else if (TARGET_SECURE_PLT && flag_pic)
18609 {
18610 asm_fprintf (file, "\tbcl 20,31,1f\n1:\n\t{st|stw} %s,4(%s)\n",
18611 reg_names[0], reg_names[1]);
18612 asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
18613 asm_fprintf (file, "\t{cau|addis} %s,%s,",
18614 reg_names[12], reg_names[12]);
18615 assemble_name (file, buf);
18616 asm_fprintf (file, "-1b@ha\n\t{cal|la} %s,", reg_names[0]);
18617 assemble_name (file, buf);
18618 asm_fprintf (file, "-1b@l(%s)\n", reg_names[12]);
18619 }
18620 else if (flag_pic == 1)
18621 {
18622 fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file);
18623 asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
18624 reg_names[0], reg_names[1]);
18625 asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
18626 asm_fprintf (file, "\t{l|lwz} %s,", reg_names[0]);
18627 assemble_name (file, buf);
18628 asm_fprintf (file, "@got(%s)\n", reg_names[12]);
18629 }
18630 else if (flag_pic > 1)
18631 {
18632 asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
18633 reg_names[0], reg_names[1]);
18634 /* Now, we need to get the address of the label. */
18635 fputs ("\tbcl 20,31,1f\n\t.long ", file);
18636 assemble_name (file, buf);
18637 fputs ("-.\n1:", file);
18638 asm_fprintf (file, "\tmflr %s\n", reg_names[11]);
18639 asm_fprintf (file, "\t{l|lwz} %s,0(%s)\n",
18640 reg_names[0], reg_names[11]);
18641 asm_fprintf (file, "\t{cax|add} %s,%s,%s\n",
18642 reg_names[0], reg_names[0], reg_names[11]);
18643 }
18644 else
18645 {
18646 asm_fprintf (file, "\t{liu|lis} %s,", reg_names[12]);
18647 assemble_name (file, buf);
18648 fputs ("@ha\n", file);
18649 asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
18650 reg_names[0], reg_names[1]);
18651 asm_fprintf (file, "\t{cal|la} %s,", reg_names[0]);
18652 assemble_name (file, buf);
18653 asm_fprintf (file, "@l(%s)\n", reg_names[12]);
18654 }
18655
18656 /* ABI_V4 saves the static chain reg with ASM_OUTPUT_REG_PUSH. */
18657 fprintf (file, "\tbl %s%s\n",
18658 RS6000_MCOUNT, flag_pic ? "@plt" : "");
18659 break;
18660
18661 case ABI_AIX:
18662 case ABI_DARWIN:
18663 if (!TARGET_PROFILE_KERNEL)
18664 {
18665 /* Don't do anything, done in output_profile_hook (). */
18666 }
18667 else
18668 {
18669 gcc_assert (!TARGET_32BIT);
18670
18671 asm_fprintf (file, "\tmflr %s\n", reg_names[0]);
18672 asm_fprintf (file, "\tstd %s,16(%s)\n", reg_names[0], reg_names[1]);
18673
18674 if (cfun->static_chain_decl != NULL)
18675 {
18676 asm_fprintf (file, "\tstd %s,24(%s)\n",
18677 reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
18678 fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
18679 asm_fprintf (file, "\tld %s,24(%s)\n",
18680 reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
18681 }
18682 else
18683 fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
18684 }
18685 break;
18686 }
18687 }
18688
18689 \f
18690
18691 /* The following variable value is the last issued insn. */
18692
18693 static rtx last_scheduled_insn;
18694
18695 /* The following variable helps to balance issuing of load and
18696 store instructions */
18697
18698 static int load_store_pendulum;
18699
18700 /* Power4 load update and store update instructions are cracked into a
18701 load or store and an integer insn which are executed in the same cycle.
18702 Branches have their own dispatch slot which does not count against the
18703 GCC issue rate, but it changes the program flow so there are no other
18704 instructions to issue in this cycle. */
18705
18706 static int
18707 rs6000_variable_issue (FILE *stream ATTRIBUTE_UNUSED,
18708 int verbose ATTRIBUTE_UNUSED,
18709 rtx insn, int more)
18710 {
18711 last_scheduled_insn = insn;
18712 if (GET_CODE (PATTERN (insn)) == USE
18713 || GET_CODE (PATTERN (insn)) == CLOBBER)
18714 {
18715 cached_can_issue_more = more;
18716 return cached_can_issue_more;
18717 }
18718
18719 if (insn_terminates_group_p (insn, current_group))
18720 {
18721 cached_can_issue_more = 0;
18722 return cached_can_issue_more;
18723 }
18724
18725 /* If no reservation, but reach here */
18726 if (recog_memoized (insn) < 0)
18727 return more;
18728
18729 if (rs6000_sched_groups)
18730 {
18731 if (is_microcoded_insn (insn))
18732 cached_can_issue_more = 0;
18733 else if (is_cracked_insn (insn))
18734 cached_can_issue_more = more > 2 ? more - 2 : 0;
18735 else
18736 cached_can_issue_more = more - 1;
18737
18738 return cached_can_issue_more;
18739 }
18740
18741 if (rs6000_cpu_attr == CPU_CELL && is_nonpipeline_insn (insn))
18742 return 0;
18743
18744 cached_can_issue_more = more - 1;
18745 return cached_can_issue_more;
18746 }
18747
18748 /* Adjust the cost of a scheduling dependency. Return the new cost of
18749 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
18750
18751 static int
18752 rs6000_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
18753 {
18754 enum attr_type attr_type;
18755
18756 if (! recog_memoized (insn))
18757 return 0;
18758
18759 switch (REG_NOTE_KIND (link))
18760 {
18761 case REG_DEP_TRUE:
18762 {
18763 /* Data dependency; DEP_INSN writes a register that INSN reads
18764 some cycles later. */
18765
18766 /* Separate a load from a narrower, dependent store. */
18767 if (rs6000_sched_groups
18768 && GET_CODE (PATTERN (insn)) == SET
18769 && GET_CODE (PATTERN (dep_insn)) == SET
18770 && GET_CODE (XEXP (PATTERN (insn), 1)) == MEM
18771 && GET_CODE (XEXP (PATTERN (dep_insn), 0)) == MEM
18772 && (GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (insn), 1)))
18773 > GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (dep_insn), 0)))))
18774 return cost + 14;
18775
18776 attr_type = get_attr_type (insn);
18777
18778 switch (attr_type)
18779 {
18780 case TYPE_JMPREG:
18781 /* Tell the first scheduling pass about the latency between
18782 a mtctr and bctr (and mtlr and br/blr). The first
18783 scheduling pass will not know about this latency since
18784 the mtctr instruction, which has the latency associated
18785 to it, will be generated by reload. */
18786 return TARGET_POWER ? 5 : 4;
18787 case TYPE_BRANCH:
18788 /* Leave some extra cycles between a compare and its
18789 dependent branch, to inhibit expensive mispredicts. */
18790 if ((rs6000_cpu_attr == CPU_PPC603
18791 || rs6000_cpu_attr == CPU_PPC604
18792 || rs6000_cpu_attr == CPU_PPC604E
18793 || rs6000_cpu_attr == CPU_PPC620
18794 || rs6000_cpu_attr == CPU_PPC630
18795 || rs6000_cpu_attr == CPU_PPC750
18796 || rs6000_cpu_attr == CPU_PPC7400
18797 || rs6000_cpu_attr == CPU_PPC7450
18798 || rs6000_cpu_attr == CPU_POWER4
18799 || rs6000_cpu_attr == CPU_POWER5
18800 || rs6000_cpu_attr == CPU_CELL)
18801 && recog_memoized (dep_insn)
18802 && (INSN_CODE (dep_insn) >= 0))
18803
18804 switch (get_attr_type (dep_insn))
18805 {
18806 case TYPE_CMP:
18807 case TYPE_COMPARE:
18808 case TYPE_DELAYED_COMPARE:
18809 case TYPE_IMUL_COMPARE:
18810 case TYPE_LMUL_COMPARE:
18811 case TYPE_FPCOMPARE:
18812 case TYPE_CR_LOGICAL:
18813 case TYPE_DELAYED_CR:
18814 return cost + 2;
18815 default:
18816 break;
18817 }
18818 break;
18819
18820 case TYPE_STORE:
18821 case TYPE_STORE_U:
18822 case TYPE_STORE_UX:
18823 case TYPE_FPSTORE:
18824 case TYPE_FPSTORE_U:
18825 case TYPE_FPSTORE_UX:
18826 if ((rs6000_cpu == PROCESSOR_POWER6)
18827 && recog_memoized (dep_insn)
18828 && (INSN_CODE (dep_insn) >= 0))
18829 {
18830
18831 if (GET_CODE (PATTERN (insn)) != SET)
18832 /* If this happens, we have to extend this to schedule
18833 optimally. Return default for now. */
18834 return cost;
18835
18836 /* Adjust the cost for the case where the value written
18837 by a fixed point operation is used as the address
18838 gen value on a store. */
18839 switch (get_attr_type (dep_insn))
18840 {
18841 case TYPE_LOAD:
18842 case TYPE_LOAD_U:
18843 case TYPE_LOAD_UX:
18844 case TYPE_CNTLZ:
18845 {
18846 if (! store_data_bypass_p (dep_insn, insn))
18847 return 4;
18848 break;
18849 }
18850 case TYPE_LOAD_EXT:
18851 case TYPE_LOAD_EXT_U:
18852 case TYPE_LOAD_EXT_UX:
18853 case TYPE_VAR_SHIFT_ROTATE:
18854 case TYPE_VAR_DELAYED_COMPARE:
18855 {
18856 if (! store_data_bypass_p (dep_insn, insn))
18857 return 6;
18858 break;
18859 }
18860 case TYPE_INTEGER:
18861 case TYPE_COMPARE:
18862 case TYPE_FAST_COMPARE:
18863 case TYPE_EXTS:
18864 case TYPE_SHIFT:
18865 case TYPE_INSERT_WORD:
18866 case TYPE_INSERT_DWORD:
18867 case TYPE_FPLOAD_U:
18868 case TYPE_FPLOAD_UX:
18869 case TYPE_STORE_U:
18870 case TYPE_STORE_UX:
18871 case TYPE_FPSTORE_U:
18872 case TYPE_FPSTORE_UX:
18873 {
18874 if (! store_data_bypass_p (dep_insn, insn))
18875 return 3;
18876 break;
18877 }
18878 case TYPE_IMUL:
18879 case TYPE_IMUL2:
18880 case TYPE_IMUL3:
18881 case TYPE_LMUL:
18882 case TYPE_IMUL_COMPARE:
18883 case TYPE_LMUL_COMPARE:
18884 {
18885 if (! store_data_bypass_p (dep_insn, insn))
18886 return 17;
18887 break;
18888 }
18889 case TYPE_IDIV:
18890 {
18891 if (! store_data_bypass_p (dep_insn, insn))
18892 return 45;
18893 break;
18894 }
18895 case TYPE_LDIV:
18896 {
18897 if (! store_data_bypass_p (dep_insn, insn))
18898 return 57;
18899 break;
18900 }
18901 default:
18902 break;
18903 }
18904 }
18905 break;
18906
18907 case TYPE_LOAD:
18908 case TYPE_LOAD_U:
18909 case TYPE_LOAD_UX:
18910 case TYPE_LOAD_EXT:
18911 case TYPE_LOAD_EXT_U:
18912 case TYPE_LOAD_EXT_UX:
18913 if ((rs6000_cpu == PROCESSOR_POWER6)
18914 && recog_memoized (dep_insn)
18915 && (INSN_CODE (dep_insn) >= 0))
18916 {
18917
18918 /* Adjust the cost for the case where the value written
18919 by a fixed point instruction is used within the address
18920 gen portion of a subsequent load(u)(x) */
18921 switch (get_attr_type (dep_insn))
18922 {
18923 case TYPE_LOAD:
18924 case TYPE_LOAD_U:
18925 case TYPE_LOAD_UX:
18926 case TYPE_CNTLZ:
18927 {
18928 if (set_to_load_agen (dep_insn, insn))
18929 return 4;
18930 break;
18931 }
18932 case TYPE_LOAD_EXT:
18933 case TYPE_LOAD_EXT_U:
18934 case TYPE_LOAD_EXT_UX:
18935 case TYPE_VAR_SHIFT_ROTATE:
18936 case TYPE_VAR_DELAYED_COMPARE:
18937 {
18938 if (set_to_load_agen (dep_insn, insn))
18939 return 6;
18940 break;
18941 }
18942 case TYPE_INTEGER:
18943 case TYPE_COMPARE:
18944 case TYPE_FAST_COMPARE:
18945 case TYPE_EXTS:
18946 case TYPE_SHIFT:
18947 case TYPE_INSERT_WORD:
18948 case TYPE_INSERT_DWORD:
18949 case TYPE_FPLOAD_U:
18950 case TYPE_FPLOAD_UX:
18951 case TYPE_STORE_U:
18952 case TYPE_STORE_UX:
18953 case TYPE_FPSTORE_U:
18954 case TYPE_FPSTORE_UX:
18955 {
18956 if (set_to_load_agen (dep_insn, insn))
18957 return 3;
18958 break;
18959 }
18960 case TYPE_IMUL:
18961 case TYPE_IMUL2:
18962 case TYPE_IMUL3:
18963 case TYPE_LMUL:
18964 case TYPE_IMUL_COMPARE:
18965 case TYPE_LMUL_COMPARE:
18966 {
18967 if (set_to_load_agen (dep_insn, insn))
18968 return 17;
18969 break;
18970 }
18971 case TYPE_IDIV:
18972 {
18973 if (set_to_load_agen (dep_insn, insn))
18974 return 45;
18975 break;
18976 }
18977 case TYPE_LDIV:
18978 {
18979 if (set_to_load_agen (dep_insn, insn))
18980 return 57;
18981 break;
18982 }
18983 default:
18984 break;
18985 }
18986 }
18987 break;
18988
18989 case TYPE_FPLOAD:
18990 if ((rs6000_cpu == PROCESSOR_POWER6)
18991 && recog_memoized (dep_insn)
18992 && (INSN_CODE (dep_insn) >= 0)
18993 && (get_attr_type (dep_insn) == TYPE_MFFGPR))
18994 return 2;
18995
18996 default:
18997 break;
18998 }
18999
19000 /* Fall out to return default cost. */
19001 }
19002 break;
19003
19004 case REG_DEP_OUTPUT:
19005 /* Output dependency; DEP_INSN writes a register that INSN writes some
19006 cycles later. */
19007 if ((rs6000_cpu == PROCESSOR_POWER6)
19008 && recog_memoized (dep_insn)
19009 && (INSN_CODE (dep_insn) >= 0))
19010 {
19011 attr_type = get_attr_type (insn);
19012
19013 switch (attr_type)
19014 {
19015 case TYPE_FP:
19016 if (get_attr_type (dep_insn) == TYPE_FP)
19017 return 1;
19018 break;
19019 case TYPE_FPLOAD:
19020 if (get_attr_type (dep_insn) == TYPE_MFFGPR)
19021 return 2;
19022 break;
19023 default:
19024 break;
19025 }
19026 }
19027 case REG_DEP_ANTI:
19028 /* Anti dependency; DEP_INSN reads a register that INSN writes some
19029 cycles later. */
19030 return 0;
19031
19032 default:
19033 gcc_unreachable ();
19034 }
19035
19036 return cost;
19037 }
19038
19039 /* The function returns a true if INSN is microcoded.
19040 Return false otherwise. */
19041
19042 static bool
19043 is_microcoded_insn (rtx insn)
19044 {
19045 if (!insn || !INSN_P (insn)
19046 || GET_CODE (PATTERN (insn)) == USE
19047 || GET_CODE (PATTERN (insn)) == CLOBBER)
19048 return false;
19049
19050 if (rs6000_cpu_attr == CPU_CELL)
19051 return get_attr_cell_micro (insn) == CELL_MICRO_ALWAYS;
19052
19053 if (rs6000_sched_groups)
19054 {
19055 enum attr_type type = get_attr_type (insn);
19056 if (type == TYPE_LOAD_EXT_U
19057 || type == TYPE_LOAD_EXT_UX
19058 || type == TYPE_LOAD_UX
19059 || type == TYPE_STORE_UX
19060 || type == TYPE_MFCR)
19061 return true;
19062 }
19063
19064 return false;
19065 }
19066
19067 /* The function returns true if INSN is cracked into 2 instructions
19068 by the processor (and therefore occupies 2 issue slots). */
19069
19070 static bool
19071 is_cracked_insn (rtx insn)
19072 {
19073 if (!insn || !INSN_P (insn)
19074 || GET_CODE (PATTERN (insn)) == USE
19075 || GET_CODE (PATTERN (insn)) == CLOBBER)
19076 return false;
19077
19078 if (rs6000_sched_groups)
19079 {
19080 enum attr_type type = get_attr_type (insn);
19081 if (type == TYPE_LOAD_U || type == TYPE_STORE_U
19082 || type == TYPE_FPLOAD_U || type == TYPE_FPSTORE_U
19083 || type == TYPE_FPLOAD_UX || type == TYPE_FPSTORE_UX
19084 || type == TYPE_LOAD_EXT || type == TYPE_DELAYED_CR
19085 || type == TYPE_COMPARE || type == TYPE_DELAYED_COMPARE
19086 || type == TYPE_IMUL_COMPARE || type == TYPE_LMUL_COMPARE
19087 || type == TYPE_IDIV || type == TYPE_LDIV
19088 || type == TYPE_INSERT_WORD)
19089 return true;
19090 }
19091
19092 return false;
19093 }
19094
19095 /* The function returns true if INSN can be issued only from
19096 the branch slot. */
19097
19098 static bool
19099 is_branch_slot_insn (rtx insn)
19100 {
19101 if (!insn || !INSN_P (insn)
19102 || GET_CODE (PATTERN (insn)) == USE
19103 || GET_CODE (PATTERN (insn)) == CLOBBER)
19104 return false;
19105
19106 if (rs6000_sched_groups)
19107 {
19108 enum attr_type type = get_attr_type (insn);
19109 if (type == TYPE_BRANCH || type == TYPE_JMPREG)
19110 return true;
19111 return false;
19112 }
19113
19114 return false;
19115 }
19116
19117 /* The function returns true if out_inst sets a value that is
19118 used in the address generation computation of in_insn */
19119 static bool
19120 set_to_load_agen (rtx out_insn, rtx in_insn)
19121 {
19122 rtx out_set, in_set;
19123
19124 /* For performance reasons, only handle the simple case where
19125 both loads are a single_set. */
19126 out_set = single_set (out_insn);
19127 if (out_set)
19128 {
19129 in_set = single_set (in_insn);
19130 if (in_set)
19131 return reg_mentioned_p (SET_DEST (out_set), SET_SRC (in_set));
19132 }
19133
19134 return false;
19135 }
19136
19137 /* The function returns true if the target storage location of
19138 out_insn is adjacent to the target storage location of in_insn */
19139 /* Return 1 if memory locations are adjacent. */
19140
19141 static bool
19142 adjacent_mem_locations (rtx insn1, rtx insn2)
19143 {
19144
19145 rtx a = get_store_dest (PATTERN (insn1));
19146 rtx b = get_store_dest (PATTERN (insn2));
19147
19148 if ((GET_CODE (XEXP (a, 0)) == REG
19149 || (GET_CODE (XEXP (a, 0)) == PLUS
19150 && GET_CODE (XEXP (XEXP (a, 0), 1)) == CONST_INT))
19151 && (GET_CODE (XEXP (b, 0)) == REG
19152 || (GET_CODE (XEXP (b, 0)) == PLUS
19153 && GET_CODE (XEXP (XEXP (b, 0), 1)) == CONST_INT)))
19154 {
19155 HOST_WIDE_INT val0 = 0, val1 = 0, val_diff;
19156 rtx reg0, reg1;
19157
19158 if (GET_CODE (XEXP (a, 0)) == PLUS)
19159 {
19160 reg0 = XEXP (XEXP (a, 0), 0);
19161 val0 = INTVAL (XEXP (XEXP (a, 0), 1));
19162 }
19163 else
19164 reg0 = XEXP (a, 0);
19165
19166 if (GET_CODE (XEXP (b, 0)) == PLUS)
19167 {
19168 reg1 = XEXP (XEXP (b, 0), 0);
19169 val1 = INTVAL (XEXP (XEXP (b, 0), 1));
19170 }
19171 else
19172 reg1 = XEXP (b, 0);
19173
19174 val_diff = val1 - val0;
19175
19176 return ((REGNO (reg0) == REGNO (reg1))
19177 && ((MEM_SIZE (a) && val_diff == INTVAL (MEM_SIZE (a)))
19178 || (MEM_SIZE (b) && val_diff == -INTVAL (MEM_SIZE (b)))));
19179 }
19180
19181 return false;
19182 }
19183
19184 /* A C statement (sans semicolon) to update the integer scheduling
19185 priority INSN_PRIORITY (INSN). Increase the priority to execute the
19186 INSN earlier, reduce the priority to execute INSN later. Do not
19187 define this macro if you do not need to adjust the scheduling
19188 priorities of insns. */
19189
19190 static int
19191 rs6000_adjust_priority (rtx insn ATTRIBUTE_UNUSED, int priority)
19192 {
19193 /* On machines (like the 750) which have asymmetric integer units,
19194 where one integer unit can do multiply and divides and the other
19195 can't, reduce the priority of multiply/divide so it is scheduled
19196 before other integer operations. */
19197
19198 #if 0
19199 if (! INSN_P (insn))
19200 return priority;
19201
19202 if (GET_CODE (PATTERN (insn)) == USE)
19203 return priority;
19204
19205 switch (rs6000_cpu_attr) {
19206 case CPU_PPC750:
19207 switch (get_attr_type (insn))
19208 {
19209 default:
19210 break;
19211
19212 case TYPE_IMUL:
19213 case TYPE_IDIV:
19214 fprintf (stderr, "priority was %#x (%d) before adjustment\n",
19215 priority, priority);
19216 if (priority >= 0 && priority < 0x01000000)
19217 priority >>= 3;
19218 break;
19219 }
19220 }
19221 #endif
19222
19223 if (insn_must_be_first_in_group (insn)
19224 && reload_completed
19225 && current_sched_info->sched_max_insns_priority
19226 && rs6000_sched_restricted_insns_priority)
19227 {
19228
19229 /* Prioritize insns that can be dispatched only in the first
19230 dispatch slot. */
19231 if (rs6000_sched_restricted_insns_priority == 1)
19232 /* Attach highest priority to insn. This means that in
19233 haifa-sched.c:ready_sort(), dispatch-slot restriction considerations
19234 precede 'priority' (critical path) considerations. */
19235 return current_sched_info->sched_max_insns_priority;
19236 else if (rs6000_sched_restricted_insns_priority == 2)
19237 /* Increase priority of insn by a minimal amount. This means that in
19238 haifa-sched.c:ready_sort(), only 'priority' (critical path)
19239 considerations precede dispatch-slot restriction considerations. */
19240 return (priority + 1);
19241 }
19242
19243 if (rs6000_cpu == PROCESSOR_POWER6
19244 && ((load_store_pendulum == -2 && is_load_insn (insn))
19245 || (load_store_pendulum == 2 && is_store_insn (insn))))
19246 /* Attach highest priority to insn if the scheduler has just issued two
19247 stores and this instruction is a load, or two loads and this instruction
19248 is a store. Power6 wants loads and stores scheduled alternately
19249 when possible */
19250 return current_sched_info->sched_max_insns_priority;
19251
19252 return priority;
19253 }
19254
19255 /* Return true if the instruction is nonpipelined on the Cell. */
19256 static bool
19257 is_nonpipeline_insn (rtx insn)
19258 {
19259 enum attr_type type;
19260 if (!insn || !INSN_P (insn)
19261 || GET_CODE (PATTERN (insn)) == USE
19262 || GET_CODE (PATTERN (insn)) == CLOBBER)
19263 return false;
19264
19265 type = get_attr_type (insn);
19266 if (type == TYPE_IMUL
19267 || type == TYPE_IMUL2
19268 || type == TYPE_IMUL3
19269 || type == TYPE_LMUL
19270 || type == TYPE_IDIV
19271 || type == TYPE_LDIV
19272 || type == TYPE_SDIV
19273 || type == TYPE_DDIV
19274 || type == TYPE_SSQRT
19275 || type == TYPE_DSQRT
19276 || type == TYPE_MFCR
19277 || type == TYPE_MFCRF
19278 || type == TYPE_MFJMPR)
19279 {
19280 return true;
19281 }
19282 return false;
19283 }
19284
19285
19286 /* Return how many instructions the machine can issue per cycle. */
19287
19288 static int
19289 rs6000_issue_rate (void)
19290 {
19291 /* Use issue rate of 1 for first scheduling pass to decrease degradation. */
19292 if (!reload_completed)
19293 return 1;
19294
19295 switch (rs6000_cpu_attr) {
19296 case CPU_RIOS1: /* ? */
19297 case CPU_RS64A:
19298 case CPU_PPC601: /* ? */
19299 case CPU_PPC7450:
19300 return 3;
19301 case CPU_PPC440:
19302 case CPU_PPC603:
19303 case CPU_PPC750:
19304 case CPU_PPC7400:
19305 case CPU_PPC8540:
19306 case CPU_CELL:
19307 case CPU_PPCE300C2:
19308 case CPU_PPCE300C3:
19309 case CPU_PPCE500MC:
19310 return 2;
19311 case CPU_RIOS2:
19312 case CPU_PPC604:
19313 case CPU_PPC604E:
19314 case CPU_PPC620:
19315 case CPU_PPC630:
19316 return 4;
19317 case CPU_POWER4:
19318 case CPU_POWER5:
19319 case CPU_POWER6:
19320 return 5;
19321 default:
19322 return 1;
19323 }
19324 }
19325
19326 /* Return how many instructions to look ahead for better insn
19327 scheduling. */
19328
19329 static int
19330 rs6000_use_sched_lookahead (void)
19331 {
19332 if (rs6000_cpu_attr == CPU_PPC8540)
19333 return 4;
19334 if (rs6000_cpu_attr == CPU_CELL)
19335 return (reload_completed ? 8 : 0);
19336 return 0;
19337 }
19338
19339 /* We are choosing insn from the ready queue. Return nonzero if INSN can be chosen. */
19340 static int
19341 rs6000_use_sched_lookahead_guard (rtx insn)
19342 {
19343 if (rs6000_cpu_attr != CPU_CELL)
19344 return 1;
19345
19346 if (insn == NULL_RTX || !INSN_P (insn))
19347 abort ();
19348
19349 if (!reload_completed
19350 || is_nonpipeline_insn (insn)
19351 || is_microcoded_insn (insn))
19352 return 0;
19353
19354 return 1;
19355 }
19356
19357 /* Determine is PAT refers to memory. */
19358
19359 static bool
19360 is_mem_ref (rtx pat)
19361 {
19362 const char * fmt;
19363 int i, j;
19364 bool ret = false;
19365
19366 /* stack_tie does not produce any real memory traffic. */
19367 if (GET_CODE (pat) == UNSPEC
19368 && XINT (pat, 1) == UNSPEC_TIE)
19369 return false;
19370
19371 if (GET_CODE (pat) == MEM)
19372 return true;
19373
19374 /* Recursively process the pattern. */
19375 fmt = GET_RTX_FORMAT (GET_CODE (pat));
19376
19377 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0 && !ret; i--)
19378 {
19379 if (fmt[i] == 'e')
19380 ret |= is_mem_ref (XEXP (pat, i));
19381 else if (fmt[i] == 'E')
19382 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
19383 ret |= is_mem_ref (XVECEXP (pat, i, j));
19384 }
19385
19386 return ret;
19387 }
19388
19389 /* Determine if PAT is a PATTERN of a load insn. */
19390
19391 static bool
19392 is_load_insn1 (rtx pat)
19393 {
19394 if (!pat || pat == NULL_RTX)
19395 return false;
19396
19397 if (GET_CODE (pat) == SET)
19398 return is_mem_ref (SET_SRC (pat));
19399
19400 if (GET_CODE (pat) == PARALLEL)
19401 {
19402 int i;
19403
19404 for (i = 0; i < XVECLEN (pat, 0); i++)
19405 if (is_load_insn1 (XVECEXP (pat, 0, i)))
19406 return true;
19407 }
19408
19409 return false;
19410 }
19411
19412 /* Determine if INSN loads from memory. */
19413
19414 static bool
19415 is_load_insn (rtx insn)
19416 {
19417 if (!insn || !INSN_P (insn))
19418 return false;
19419
19420 if (GET_CODE (insn) == CALL_INSN)
19421 return false;
19422
19423 return is_load_insn1 (PATTERN (insn));
19424 }
19425
19426 /* Determine if PAT is a PATTERN of a store insn. */
19427
19428 static bool
19429 is_store_insn1 (rtx pat)
19430 {
19431 if (!pat || pat == NULL_RTX)
19432 return false;
19433
19434 if (GET_CODE (pat) == SET)
19435 return is_mem_ref (SET_DEST (pat));
19436
19437 if (GET_CODE (pat) == PARALLEL)
19438 {
19439 int i;
19440
19441 for (i = 0; i < XVECLEN (pat, 0); i++)
19442 if (is_store_insn1 (XVECEXP (pat, 0, i)))
19443 return true;
19444 }
19445
19446 return false;
19447 }
19448
19449 /* Determine if INSN stores to memory. */
19450
19451 static bool
19452 is_store_insn (rtx insn)
19453 {
19454 if (!insn || !INSN_P (insn))
19455 return false;
19456
19457 return is_store_insn1 (PATTERN (insn));
19458 }
19459
19460 /* Return the dest of a store insn. */
19461
19462 static rtx
19463 get_store_dest (rtx pat)
19464 {
19465 gcc_assert (is_store_insn1 (pat));
19466
19467 if (GET_CODE (pat) == SET)
19468 return SET_DEST (pat);
19469 else if (GET_CODE (pat) == PARALLEL)
19470 {
19471 int i;
19472
19473 for (i = 0; i < XVECLEN (pat, 0); i++)
19474 {
19475 rtx inner_pat = XVECEXP (pat, 0, i);
19476 if (GET_CODE (inner_pat) == SET
19477 && is_mem_ref (SET_DEST (inner_pat)))
19478 return inner_pat;
19479 }
19480 }
19481 /* We shouldn't get here, because we should have either a simple
19482 store insn or a store with update which are covered above. */
19483 gcc_unreachable();
19484 }
19485
19486 /* Returns whether the dependence between INSN and NEXT is considered
19487 costly by the given target. */
19488
19489 static bool
19490 rs6000_is_costly_dependence (dep_t dep, int cost, int distance)
19491 {
19492 rtx insn;
19493 rtx next;
19494
19495 /* If the flag is not enabled - no dependence is considered costly;
19496 allow all dependent insns in the same group.
19497 This is the most aggressive option. */
19498 if (rs6000_sched_costly_dep == no_dep_costly)
19499 return false;
19500
19501 /* If the flag is set to 1 - a dependence is always considered costly;
19502 do not allow dependent instructions in the same group.
19503 This is the most conservative option. */
19504 if (rs6000_sched_costly_dep == all_deps_costly)
19505 return true;
19506
19507 insn = DEP_PRO (dep);
19508 next = DEP_CON (dep);
19509
19510 if (rs6000_sched_costly_dep == store_to_load_dep_costly
19511 && is_load_insn (next)
19512 && is_store_insn (insn))
19513 /* Prevent load after store in the same group. */
19514 return true;
19515
19516 if (rs6000_sched_costly_dep == true_store_to_load_dep_costly
19517 && is_load_insn (next)
19518 && is_store_insn (insn)
19519 && DEP_TYPE (dep) == REG_DEP_TRUE)
19520 /* Prevent load after store in the same group if it is a true
19521 dependence. */
19522 return true;
19523
19524 /* The flag is set to X; dependences with latency >= X are considered costly,
19525 and will not be scheduled in the same group. */
19526 if (rs6000_sched_costly_dep <= max_dep_latency
19527 && ((cost - distance) >= (int)rs6000_sched_costly_dep))
19528 return true;
19529
19530 return false;
19531 }
19532
19533 /* Return the next insn after INSN that is found before TAIL is reached,
19534 skipping any "non-active" insns - insns that will not actually occupy
19535 an issue slot. Return NULL_RTX if such an insn is not found. */
19536
19537 static rtx
19538 get_next_active_insn (rtx insn, rtx tail)
19539 {
19540 if (insn == NULL_RTX || insn == tail)
19541 return NULL_RTX;
19542
19543 while (1)
19544 {
19545 insn = NEXT_INSN (insn);
19546 if (insn == NULL_RTX || insn == tail)
19547 return NULL_RTX;
19548
19549 if (CALL_P (insn)
19550 || JUMP_P (insn)
19551 || (NONJUMP_INSN_P (insn)
19552 && GET_CODE (PATTERN (insn)) != USE
19553 && GET_CODE (PATTERN (insn)) != CLOBBER
19554 && INSN_CODE (insn) != CODE_FOR_stack_tie))
19555 break;
19556 }
19557 return insn;
19558 }
19559
19560 /* We are about to begin issuing insns for this clock cycle. */
19561
19562 static int
19563 rs6000_sched_reorder (FILE *dump ATTRIBUTE_UNUSED, int sched_verbose,
19564 rtx *ready ATTRIBUTE_UNUSED,
19565 int *pn_ready ATTRIBUTE_UNUSED,
19566 int clock_var ATTRIBUTE_UNUSED)
19567 {
19568 int n_ready = *pn_ready;
19569
19570 if (sched_verbose)
19571 fprintf (dump, "// rs6000_sched_reorder :\n");
19572
19573 /* Reorder the ready list, if the second to last ready insn
19574 is a nonepipeline insn. */
19575 if (rs6000_cpu_attr == CPU_CELL && n_ready > 1)
19576 {
19577 if (is_nonpipeline_insn (ready[n_ready - 1])
19578 && (recog_memoized (ready[n_ready - 2]) > 0))
19579 /* Simply swap first two insns. */
19580 {
19581 rtx tmp = ready[n_ready - 1];
19582 ready[n_ready - 1] = ready[n_ready - 2];
19583 ready[n_ready - 2] = tmp;
19584 }
19585 }
19586
19587 if (rs6000_cpu == PROCESSOR_POWER6)
19588 load_store_pendulum = 0;
19589
19590 return rs6000_issue_rate ();
19591 }
19592
19593 /* Like rs6000_sched_reorder, but called after issuing each insn. */
19594
19595 static int
19596 rs6000_sched_reorder2 (FILE *dump, int sched_verbose, rtx *ready,
19597 int *pn_ready, int clock_var ATTRIBUTE_UNUSED)
19598 {
19599 if (sched_verbose)
19600 fprintf (dump, "// rs6000_sched_reorder2 :\n");
19601
19602 /* For Power6, we need to handle some special cases to try and keep the
19603 store queue from overflowing and triggering expensive flushes.
19604
19605 This code monitors how load and store instructions are being issued
19606 and skews the ready list one way or the other to increase the likelihood
19607 that a desired instruction is issued at the proper time.
19608
19609 A couple of things are done. First, we maintain a "load_store_pendulum"
19610 to track the current state of load/store issue.
19611
19612 - If the pendulum is at zero, then no loads or stores have been
19613 issued in the current cycle so we do nothing.
19614
19615 - If the pendulum is 1, then a single load has been issued in this
19616 cycle and we attempt to locate another load in the ready list to
19617 issue with it.
19618
19619 - If the pendulum is -2, then two stores have already been
19620 issued in this cycle, so we increase the priority of the first load
19621 in the ready list to increase it's likelihood of being chosen first
19622 in the next cycle.
19623
19624 - If the pendulum is -1, then a single store has been issued in this
19625 cycle and we attempt to locate another store in the ready list to
19626 issue with it, preferring a store to an adjacent memory location to
19627 facilitate store pairing in the store queue.
19628
19629 - If the pendulum is 2, then two loads have already been
19630 issued in this cycle, so we increase the priority of the first store
19631 in the ready list to increase it's likelihood of being chosen first
19632 in the next cycle.
19633
19634 - If the pendulum < -2 or > 2, then do nothing.
19635
19636 Note: This code covers the most common scenarios. There exist non
19637 load/store instructions which make use of the LSU and which
19638 would need to be accounted for to strictly model the behavior
19639 of the machine. Those instructions are currently unaccounted
19640 for to help minimize compile time overhead of this code.
19641 */
19642 if (rs6000_cpu == PROCESSOR_POWER6 && last_scheduled_insn)
19643 {
19644 int pos;
19645 int i;
19646 rtx tmp;
19647
19648 if (is_store_insn (last_scheduled_insn))
19649 /* Issuing a store, swing the load_store_pendulum to the left */
19650 load_store_pendulum--;
19651 else if (is_load_insn (last_scheduled_insn))
19652 /* Issuing a load, swing the load_store_pendulum to the right */
19653 load_store_pendulum++;
19654 else
19655 return cached_can_issue_more;
19656
19657 /* If the pendulum is balanced, or there is only one instruction on
19658 the ready list, then all is well, so return. */
19659 if ((load_store_pendulum == 0) || (*pn_ready <= 1))
19660 return cached_can_issue_more;
19661
19662 if (load_store_pendulum == 1)
19663 {
19664 /* A load has been issued in this cycle. Scan the ready list
19665 for another load to issue with it */
19666 pos = *pn_ready-1;
19667
19668 while (pos >= 0)
19669 {
19670 if (is_load_insn (ready[pos]))
19671 {
19672 /* Found a load. Move it to the head of the ready list,
19673 and adjust it's priority so that it is more likely to
19674 stay there */
19675 tmp = ready[pos];
19676 for (i=pos; i<*pn_ready-1; i++)
19677 ready[i] = ready[i + 1];
19678 ready[*pn_ready-1] = tmp;
19679
19680 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
19681 INSN_PRIORITY (tmp)++;
19682 break;
19683 }
19684 pos--;
19685 }
19686 }
19687 else if (load_store_pendulum == -2)
19688 {
19689 /* Two stores have been issued in this cycle. Increase the
19690 priority of the first load in the ready list to favor it for
19691 issuing in the next cycle. */
19692 pos = *pn_ready-1;
19693
19694 while (pos >= 0)
19695 {
19696 if (is_load_insn (ready[pos])
19697 && !sel_sched_p ()
19698 && INSN_PRIORITY_KNOWN (ready[pos]))
19699 {
19700 INSN_PRIORITY (ready[pos])++;
19701
19702 /* Adjust the pendulum to account for the fact that a load
19703 was found and increased in priority. This is to prevent
19704 increasing the priority of multiple loads */
19705 load_store_pendulum--;
19706
19707 break;
19708 }
19709 pos--;
19710 }
19711 }
19712 else if (load_store_pendulum == -1)
19713 {
19714 /* A store has been issued in this cycle. Scan the ready list for
19715 another store to issue with it, preferring a store to an adjacent
19716 memory location */
19717 int first_store_pos = -1;
19718
19719 pos = *pn_ready-1;
19720
19721 while (pos >= 0)
19722 {
19723 if (is_store_insn (ready[pos]))
19724 {
19725 /* Maintain the index of the first store found on the
19726 list */
19727 if (first_store_pos == -1)
19728 first_store_pos = pos;
19729
19730 if (is_store_insn (last_scheduled_insn)
19731 && adjacent_mem_locations (last_scheduled_insn,ready[pos]))
19732 {
19733 /* Found an adjacent store. Move it to the head of the
19734 ready list, and adjust it's priority so that it is
19735 more likely to stay there */
19736 tmp = ready[pos];
19737 for (i=pos; i<*pn_ready-1; i++)
19738 ready[i] = ready[i + 1];
19739 ready[*pn_ready-1] = tmp;
19740
19741 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
19742 INSN_PRIORITY (tmp)++;
19743
19744 first_store_pos = -1;
19745
19746 break;
19747 };
19748 }
19749 pos--;
19750 }
19751
19752 if (first_store_pos >= 0)
19753 {
19754 /* An adjacent store wasn't found, but a non-adjacent store was,
19755 so move the non-adjacent store to the front of the ready
19756 list, and adjust its priority so that it is more likely to
19757 stay there. */
19758 tmp = ready[first_store_pos];
19759 for (i=first_store_pos; i<*pn_ready-1; i++)
19760 ready[i] = ready[i + 1];
19761 ready[*pn_ready-1] = tmp;
19762 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
19763 INSN_PRIORITY (tmp)++;
19764 }
19765 }
19766 else if (load_store_pendulum == 2)
19767 {
19768 /* Two loads have been issued in this cycle. Increase the priority
19769 of the first store in the ready list to favor it for issuing in
19770 the next cycle. */
19771 pos = *pn_ready-1;
19772
19773 while (pos >= 0)
19774 {
19775 if (is_store_insn (ready[pos])
19776 && !sel_sched_p ()
19777 && INSN_PRIORITY_KNOWN (ready[pos]))
19778 {
19779 INSN_PRIORITY (ready[pos])++;
19780
19781 /* Adjust the pendulum to account for the fact that a store
19782 was found and increased in priority. This is to prevent
19783 increasing the priority of multiple stores */
19784 load_store_pendulum++;
19785
19786 break;
19787 }
19788 pos--;
19789 }
19790 }
19791 }
19792
19793 return cached_can_issue_more;
19794 }
19795
19796 /* Return whether the presence of INSN causes a dispatch group termination
19797 of group WHICH_GROUP.
19798
19799 If WHICH_GROUP == current_group, this function will return true if INSN
19800 causes the termination of the current group (i.e, the dispatch group to
19801 which INSN belongs). This means that INSN will be the last insn in the
19802 group it belongs to.
19803
19804 If WHICH_GROUP == previous_group, this function will return true if INSN
19805 causes the termination of the previous group (i.e, the dispatch group that
19806 precedes the group to which INSN belongs). This means that INSN will be
19807 the first insn in the group it belongs to). */
19808
19809 static bool
19810 insn_terminates_group_p (rtx insn, enum group_termination which_group)
19811 {
19812 bool first, last;
19813
19814 if (! insn)
19815 return false;
19816
19817 first = insn_must_be_first_in_group (insn);
19818 last = insn_must_be_last_in_group (insn);
19819
19820 if (first && last)
19821 return true;
19822
19823 if (which_group == current_group)
19824 return last;
19825 else if (which_group == previous_group)
19826 return first;
19827
19828 return false;
19829 }
19830
19831
19832 static bool
19833 insn_must_be_first_in_group (rtx insn)
19834 {
19835 enum attr_type type;
19836
19837 if (!insn
19838 || insn == NULL_RTX
19839 || GET_CODE (insn) == NOTE
19840 || GET_CODE (PATTERN (insn)) == USE
19841 || GET_CODE (PATTERN (insn)) == CLOBBER)
19842 return false;
19843
19844 switch (rs6000_cpu)
19845 {
19846 case PROCESSOR_POWER5:
19847 if (is_cracked_insn (insn))
19848 return true;
19849 case PROCESSOR_POWER4:
19850 if (is_microcoded_insn (insn))
19851 return true;
19852
19853 if (!rs6000_sched_groups)
19854 return false;
19855
19856 type = get_attr_type (insn);
19857
19858 switch (type)
19859 {
19860 case TYPE_MFCR:
19861 case TYPE_MFCRF:
19862 case TYPE_MTCR:
19863 case TYPE_DELAYED_CR:
19864 case TYPE_CR_LOGICAL:
19865 case TYPE_MTJMPR:
19866 case TYPE_MFJMPR:
19867 case TYPE_IDIV:
19868 case TYPE_LDIV:
19869 case TYPE_LOAD_L:
19870 case TYPE_STORE_C:
19871 case TYPE_ISYNC:
19872 case TYPE_SYNC:
19873 return true;
19874 default:
19875 break;
19876 }
19877 break;
19878 case PROCESSOR_POWER6:
19879 type = get_attr_type (insn);
19880
19881 switch (type)
19882 {
19883 case TYPE_INSERT_DWORD:
19884 case TYPE_EXTS:
19885 case TYPE_CNTLZ:
19886 case TYPE_SHIFT:
19887 case TYPE_VAR_SHIFT_ROTATE:
19888 case TYPE_TRAP:
19889 case TYPE_IMUL:
19890 case TYPE_IMUL2:
19891 case TYPE_IMUL3:
19892 case TYPE_LMUL:
19893 case TYPE_IDIV:
19894 case TYPE_INSERT_WORD:
19895 case TYPE_DELAYED_COMPARE:
19896 case TYPE_IMUL_COMPARE:
19897 case TYPE_LMUL_COMPARE:
19898 case TYPE_FPCOMPARE:
19899 case TYPE_MFCR:
19900 case TYPE_MTCR:
19901 case TYPE_MFJMPR:
19902 case TYPE_MTJMPR:
19903 case TYPE_ISYNC:
19904 case TYPE_SYNC:
19905 case TYPE_LOAD_L:
19906 case TYPE_STORE_C:
19907 case TYPE_LOAD_U:
19908 case TYPE_LOAD_UX:
19909 case TYPE_LOAD_EXT_UX:
19910 case TYPE_STORE_U:
19911 case TYPE_STORE_UX:
19912 case TYPE_FPLOAD_U:
19913 case TYPE_FPLOAD_UX:
19914 case TYPE_FPSTORE_U:
19915 case TYPE_FPSTORE_UX:
19916 return true;
19917 default:
19918 break;
19919 }
19920 break;
19921 default:
19922 break;
19923 }
19924
19925 return false;
19926 }
19927
19928 static bool
19929 insn_must_be_last_in_group (rtx insn)
19930 {
19931 enum attr_type type;
19932
19933 if (!insn
19934 || insn == NULL_RTX
19935 || GET_CODE (insn) == NOTE
19936 || GET_CODE (PATTERN (insn)) == USE
19937 || GET_CODE (PATTERN (insn)) == CLOBBER)
19938 return false;
19939
19940 switch (rs6000_cpu) {
19941 case PROCESSOR_POWER4:
19942 case PROCESSOR_POWER5:
19943 if (is_microcoded_insn (insn))
19944 return true;
19945
19946 if (is_branch_slot_insn (insn))
19947 return true;
19948
19949 break;
19950 case PROCESSOR_POWER6:
19951 type = get_attr_type (insn);
19952
19953 switch (type)
19954 {
19955 case TYPE_EXTS:
19956 case TYPE_CNTLZ:
19957 case TYPE_SHIFT:
19958 case TYPE_VAR_SHIFT_ROTATE:
19959 case TYPE_TRAP:
19960 case TYPE_IMUL:
19961 case TYPE_IMUL2:
19962 case TYPE_IMUL3:
19963 case TYPE_LMUL:
19964 case TYPE_IDIV:
19965 case TYPE_DELAYED_COMPARE:
19966 case TYPE_IMUL_COMPARE:
19967 case TYPE_LMUL_COMPARE:
19968 case TYPE_FPCOMPARE:
19969 case TYPE_MFCR:
19970 case TYPE_MTCR:
19971 case TYPE_MFJMPR:
19972 case TYPE_MTJMPR:
19973 case TYPE_ISYNC:
19974 case TYPE_SYNC:
19975 case TYPE_LOAD_L:
19976 case TYPE_STORE_C:
19977 return true;
19978 default:
19979 break;
19980 }
19981 break;
19982 default:
19983 break;
19984 }
19985
19986 return false;
19987 }
19988
19989 /* Return true if it is recommended to keep NEXT_INSN "far" (in a separate
19990 dispatch group) from the insns in GROUP_INSNS. Return false otherwise. */
19991
19992 static bool
19993 is_costly_group (rtx *group_insns, rtx next_insn)
19994 {
19995 int i;
19996 int issue_rate = rs6000_issue_rate ();
19997
19998 for (i = 0; i < issue_rate; i++)
19999 {
20000 sd_iterator_def sd_it;
20001 dep_t dep;
20002 rtx insn = group_insns[i];
20003
20004 if (!insn)
20005 continue;
20006
20007 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
20008 {
20009 rtx next = DEP_CON (dep);
20010
20011 if (next == next_insn
20012 && rs6000_is_costly_dependence (dep, dep_cost (dep), 0))
20013 return true;
20014 }
20015 }
20016
20017 return false;
20018 }
20019
20020 /* Utility of the function redefine_groups.
20021 Check if it is too costly to schedule NEXT_INSN together with GROUP_INSNS
20022 in the same dispatch group. If so, insert nops before NEXT_INSN, in order
20023 to keep it "far" (in a separate group) from GROUP_INSNS, following
20024 one of the following schemes, depending on the value of the flag
20025 -minsert_sched_nops = X:
20026 (1) X == sched_finish_regroup_exact: insert exactly as many nops as needed
20027 in order to force NEXT_INSN into a separate group.
20028 (2) X < sched_finish_regroup_exact: insert exactly X nops.
20029 GROUP_END, CAN_ISSUE_MORE and GROUP_COUNT record the state after nop
20030 insertion (has a group just ended, how many vacant issue slots remain in the
20031 last group, and how many dispatch groups were encountered so far). */
20032
20033 static int
20034 force_new_group (int sched_verbose, FILE *dump, rtx *group_insns,
20035 rtx next_insn, bool *group_end, int can_issue_more,
20036 int *group_count)
20037 {
20038 rtx nop;
20039 bool force;
20040 int issue_rate = rs6000_issue_rate ();
20041 bool end = *group_end;
20042 int i;
20043
20044 if (next_insn == NULL_RTX)
20045 return can_issue_more;
20046
20047 if (rs6000_sched_insert_nops > sched_finish_regroup_exact)
20048 return can_issue_more;
20049
20050 force = is_costly_group (group_insns, next_insn);
20051 if (!force)
20052 return can_issue_more;
20053
20054 if (sched_verbose > 6)
20055 fprintf (dump,"force: group count = %d, can_issue_more = %d\n",
20056 *group_count ,can_issue_more);
20057
20058 if (rs6000_sched_insert_nops == sched_finish_regroup_exact)
20059 {
20060 if (*group_end)
20061 can_issue_more = 0;
20062
20063 /* Since only a branch can be issued in the last issue_slot, it is
20064 sufficient to insert 'can_issue_more - 1' nops if next_insn is not
20065 a branch. If next_insn is a branch, we insert 'can_issue_more' nops;
20066 in this case the last nop will start a new group and the branch
20067 will be forced to the new group. */
20068 if (can_issue_more && !is_branch_slot_insn (next_insn))
20069 can_issue_more--;
20070
20071 while (can_issue_more > 0)
20072 {
20073 nop = gen_nop ();
20074 emit_insn_before (nop, next_insn);
20075 can_issue_more--;
20076 }
20077
20078 *group_end = true;
20079 return 0;
20080 }
20081
20082 if (rs6000_sched_insert_nops < sched_finish_regroup_exact)
20083 {
20084 int n_nops = rs6000_sched_insert_nops;
20085
20086 /* Nops can't be issued from the branch slot, so the effective
20087 issue_rate for nops is 'issue_rate - 1'. */
20088 if (can_issue_more == 0)
20089 can_issue_more = issue_rate;
20090 can_issue_more--;
20091 if (can_issue_more == 0)
20092 {
20093 can_issue_more = issue_rate - 1;
20094 (*group_count)++;
20095 end = true;
20096 for (i = 0; i < issue_rate; i++)
20097 {
20098 group_insns[i] = 0;
20099 }
20100 }
20101
20102 while (n_nops > 0)
20103 {
20104 nop = gen_nop ();
20105 emit_insn_before (nop, next_insn);
20106 if (can_issue_more == issue_rate - 1) /* new group begins */
20107 end = false;
20108 can_issue_more--;
20109 if (can_issue_more == 0)
20110 {
20111 can_issue_more = issue_rate - 1;
20112 (*group_count)++;
20113 end = true;
20114 for (i = 0; i < issue_rate; i++)
20115 {
20116 group_insns[i] = 0;
20117 }
20118 }
20119 n_nops--;
20120 }
20121
20122 /* Scale back relative to 'issue_rate' (instead of 'issue_rate - 1'). */
20123 can_issue_more++;
20124
20125 /* Is next_insn going to start a new group? */
20126 *group_end
20127 = (end
20128 || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
20129 || (can_issue_more <= 2 && is_cracked_insn (next_insn))
20130 || (can_issue_more < issue_rate &&
20131 insn_terminates_group_p (next_insn, previous_group)));
20132 if (*group_end && end)
20133 (*group_count)--;
20134
20135 if (sched_verbose > 6)
20136 fprintf (dump, "done force: group count = %d, can_issue_more = %d\n",
20137 *group_count, can_issue_more);
20138 return can_issue_more;
20139 }
20140
20141 return can_issue_more;
20142 }
20143
20144 /* This function tries to synch the dispatch groups that the compiler "sees"
20145 with the dispatch groups that the processor dispatcher is expected to
20146 form in practice. It tries to achieve this synchronization by forcing the
20147 estimated processor grouping on the compiler (as opposed to the function
20148 'pad_goups' which tries to force the scheduler's grouping on the processor).
20149
20150 The function scans the insn sequence between PREV_HEAD_INSN and TAIL and
20151 examines the (estimated) dispatch groups that will be formed by the processor
20152 dispatcher. It marks these group boundaries to reflect the estimated
20153 processor grouping, overriding the grouping that the scheduler had marked.
20154 Depending on the value of the flag '-minsert-sched-nops' this function can
20155 force certain insns into separate groups or force a certain distance between
20156 them by inserting nops, for example, if there exists a "costly dependence"
20157 between the insns.
20158
20159 The function estimates the group boundaries that the processor will form as
20160 follows: It keeps track of how many vacant issue slots are available after
20161 each insn. A subsequent insn will start a new group if one of the following
20162 4 cases applies:
20163 - no more vacant issue slots remain in the current dispatch group.
20164 - only the last issue slot, which is the branch slot, is vacant, but the next
20165 insn is not a branch.
20166 - only the last 2 or less issue slots, including the branch slot, are vacant,
20167 which means that a cracked insn (which occupies two issue slots) can't be
20168 issued in this group.
20169 - less than 'issue_rate' slots are vacant, and the next insn always needs to
20170 start a new group. */
20171
20172 static int
20173 redefine_groups (FILE *dump, int sched_verbose, rtx prev_head_insn, rtx tail)
20174 {
20175 rtx insn, next_insn;
20176 int issue_rate;
20177 int can_issue_more;
20178 int slot, i;
20179 bool group_end;
20180 int group_count = 0;
20181 rtx *group_insns;
20182
20183 /* Initialize. */
20184 issue_rate = rs6000_issue_rate ();
20185 group_insns = XALLOCAVEC (rtx, issue_rate);
20186 for (i = 0; i < issue_rate; i++)
20187 {
20188 group_insns[i] = 0;
20189 }
20190 can_issue_more = issue_rate;
20191 slot = 0;
20192 insn = get_next_active_insn (prev_head_insn, tail);
20193 group_end = false;
20194
20195 while (insn != NULL_RTX)
20196 {
20197 slot = (issue_rate - can_issue_more);
20198 group_insns[slot] = insn;
20199 can_issue_more =
20200 rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
20201 if (insn_terminates_group_p (insn, current_group))
20202 can_issue_more = 0;
20203
20204 next_insn = get_next_active_insn (insn, tail);
20205 if (next_insn == NULL_RTX)
20206 return group_count + 1;
20207
20208 /* Is next_insn going to start a new group? */
20209 group_end
20210 = (can_issue_more == 0
20211 || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
20212 || (can_issue_more <= 2 && is_cracked_insn (next_insn))
20213 || (can_issue_more < issue_rate &&
20214 insn_terminates_group_p (next_insn, previous_group)));
20215
20216 can_issue_more = force_new_group (sched_verbose, dump, group_insns,
20217 next_insn, &group_end, can_issue_more,
20218 &group_count);
20219
20220 if (group_end)
20221 {
20222 group_count++;
20223 can_issue_more = 0;
20224 for (i = 0; i < issue_rate; i++)
20225 {
20226 group_insns[i] = 0;
20227 }
20228 }
20229
20230 if (GET_MODE (next_insn) == TImode && can_issue_more)
20231 PUT_MODE (next_insn, VOIDmode);
20232 else if (!can_issue_more && GET_MODE (next_insn) != TImode)
20233 PUT_MODE (next_insn, TImode);
20234
20235 insn = next_insn;
20236 if (can_issue_more == 0)
20237 can_issue_more = issue_rate;
20238 } /* while */
20239
20240 return group_count;
20241 }
20242
20243 /* Scan the insn sequence between PREV_HEAD_INSN and TAIL and examine the
20244 dispatch group boundaries that the scheduler had marked. Pad with nops
20245 any dispatch groups which have vacant issue slots, in order to force the
20246 scheduler's grouping on the processor dispatcher. The function
20247 returns the number of dispatch groups found. */
20248
20249 static int
20250 pad_groups (FILE *dump, int sched_verbose, rtx prev_head_insn, rtx tail)
20251 {
20252 rtx insn, next_insn;
20253 rtx nop;
20254 int issue_rate;
20255 int can_issue_more;
20256 int group_end;
20257 int group_count = 0;
20258
20259 /* Initialize issue_rate. */
20260 issue_rate = rs6000_issue_rate ();
20261 can_issue_more = issue_rate;
20262
20263 insn = get_next_active_insn (prev_head_insn, tail);
20264 next_insn = get_next_active_insn (insn, tail);
20265
20266 while (insn != NULL_RTX)
20267 {
20268 can_issue_more =
20269 rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
20270
20271 group_end = (next_insn == NULL_RTX || GET_MODE (next_insn) == TImode);
20272
20273 if (next_insn == NULL_RTX)
20274 break;
20275
20276 if (group_end)
20277 {
20278 /* If the scheduler had marked group termination at this location
20279 (between insn and next_insn), and neither insn nor next_insn will
20280 force group termination, pad the group with nops to force group
20281 termination. */
20282 if (can_issue_more
20283 && (rs6000_sched_insert_nops == sched_finish_pad_groups)
20284 && !insn_terminates_group_p (insn, current_group)
20285 && !insn_terminates_group_p (next_insn, previous_group))
20286 {
20287 if (!is_branch_slot_insn (next_insn))
20288 can_issue_more--;
20289
20290 while (can_issue_more)
20291 {
20292 nop = gen_nop ();
20293 emit_insn_before (nop, next_insn);
20294 can_issue_more--;
20295 }
20296 }
20297
20298 can_issue_more = issue_rate;
20299 group_count++;
20300 }
20301
20302 insn = next_insn;
20303 next_insn = get_next_active_insn (insn, tail);
20304 }
20305
20306 return group_count;
20307 }
20308
20309 /* We're beginning a new block. Initialize data structures as necessary. */
20310
20311 static void
20312 rs6000_sched_init (FILE *dump ATTRIBUTE_UNUSED,
20313 int sched_verbose ATTRIBUTE_UNUSED,
20314 int max_ready ATTRIBUTE_UNUSED)
20315 {
20316 last_scheduled_insn = NULL_RTX;
20317 load_store_pendulum = 0;
20318 }
20319
20320 /* The following function is called at the end of scheduling BB.
20321 After reload, it inserts nops at insn group bundling. */
20322
20323 static void
20324 rs6000_sched_finish (FILE *dump, int sched_verbose)
20325 {
20326 int n_groups;
20327
20328 if (sched_verbose)
20329 fprintf (dump, "=== Finishing schedule.\n");
20330
20331 if (reload_completed && rs6000_sched_groups)
20332 {
20333 /* Do not run sched_finish hook when selective scheduling enabled. */
20334 if (sel_sched_p ())
20335 return;
20336
20337 if (rs6000_sched_insert_nops == sched_finish_none)
20338 return;
20339
20340 if (rs6000_sched_insert_nops == sched_finish_pad_groups)
20341 n_groups = pad_groups (dump, sched_verbose,
20342 current_sched_info->prev_head,
20343 current_sched_info->next_tail);
20344 else
20345 n_groups = redefine_groups (dump, sched_verbose,
20346 current_sched_info->prev_head,
20347 current_sched_info->next_tail);
20348
20349 if (sched_verbose >= 6)
20350 {
20351 fprintf (dump, "ngroups = %d\n", n_groups);
20352 print_rtl (dump, current_sched_info->prev_head);
20353 fprintf (dump, "Done finish_sched\n");
20354 }
20355 }
20356 }
20357
20358 struct _rs6000_sched_context
20359 {
20360 short cached_can_issue_more;
20361 rtx last_scheduled_insn;
20362 int load_store_pendulum;
20363 };
20364
20365 typedef struct _rs6000_sched_context rs6000_sched_context_def;
20366 typedef rs6000_sched_context_def *rs6000_sched_context_t;
20367
20368 /* Allocate store for new scheduling context. */
20369 static void *
20370 rs6000_alloc_sched_context (void)
20371 {
20372 return xmalloc (sizeof (rs6000_sched_context_def));
20373 }
20374
20375 /* If CLEAN_P is true then initializes _SC with clean data,
20376 and from the global context otherwise. */
20377 static void
20378 rs6000_init_sched_context (void *_sc, bool clean_p)
20379 {
20380 rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;
20381
20382 if (clean_p)
20383 {
20384 sc->cached_can_issue_more = 0;
20385 sc->last_scheduled_insn = NULL_RTX;
20386 sc->load_store_pendulum = 0;
20387 }
20388 else
20389 {
20390 sc->cached_can_issue_more = cached_can_issue_more;
20391 sc->last_scheduled_insn = last_scheduled_insn;
20392 sc->load_store_pendulum = load_store_pendulum;
20393 }
20394 }
20395
20396 /* Sets the global scheduling context to the one pointed to by _SC. */
20397 static void
20398 rs6000_set_sched_context (void *_sc)
20399 {
20400 rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;
20401
20402 gcc_assert (sc != NULL);
20403
20404 cached_can_issue_more = sc->cached_can_issue_more;
20405 last_scheduled_insn = sc->last_scheduled_insn;
20406 load_store_pendulum = sc->load_store_pendulum;
20407 }
20408
20409 /* Free _SC. */
20410 static void
20411 rs6000_free_sched_context (void *_sc)
20412 {
20413 gcc_assert (_sc != NULL);
20414
20415 free (_sc);
20416 }
20417
20418 \f
20419 /* Length in units of the trampoline for entering a nested function. */
20420
20421 int
20422 rs6000_trampoline_size (void)
20423 {
20424 int ret = 0;
20425
20426 switch (DEFAULT_ABI)
20427 {
20428 default:
20429 gcc_unreachable ();
20430
20431 case ABI_AIX:
20432 ret = (TARGET_32BIT) ? 12 : 24;
20433 break;
20434
20435 case ABI_DARWIN:
20436 case ABI_V4:
20437 ret = (TARGET_32BIT) ? 40 : 48;
20438 break;
20439 }
20440
20441 return ret;
20442 }
20443
20444 /* Emit RTL insns to initialize the variable parts of a trampoline.
20445 FNADDR is an RTX for the address of the function's pure code.
20446 CXT is an RTX for the static chain value for the function. */
20447
20448 void
20449 rs6000_initialize_trampoline (rtx addr, rtx fnaddr, rtx cxt)
20450 {
20451 int regsize = (TARGET_32BIT) ? 4 : 8;
20452 rtx ctx_reg = force_reg (Pmode, cxt);
20453
20454 switch (DEFAULT_ABI)
20455 {
20456 default:
20457 gcc_unreachable ();
20458
20459 /* Macros to shorten the code expansions below. */
20460 #define MEM_DEREF(addr) gen_rtx_MEM (Pmode, memory_address (Pmode, addr))
20461 #define MEM_PLUS(addr,offset) \
20462 gen_rtx_MEM (Pmode, memory_address (Pmode, plus_constant (addr, offset)))
20463
20464 /* Under AIX, just build the 3 word function descriptor */
20465 case ABI_AIX:
20466 {
20467 rtx fn_reg = gen_reg_rtx (Pmode);
20468 rtx toc_reg = gen_reg_rtx (Pmode);
20469 emit_move_insn (fn_reg, MEM_DEREF (fnaddr));
20470 emit_move_insn (toc_reg, MEM_PLUS (fnaddr, regsize));
20471 emit_move_insn (MEM_DEREF (addr), fn_reg);
20472 emit_move_insn (MEM_PLUS (addr, regsize), toc_reg);
20473 emit_move_insn (MEM_PLUS (addr, 2*regsize), ctx_reg);
20474 }
20475 break;
20476
20477 /* Under V.4/eabi/darwin, __trampoline_setup does the real work. */
20478 case ABI_DARWIN:
20479 case ABI_V4:
20480 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__trampoline_setup"),
20481 FALSE, VOIDmode, 4,
20482 addr, Pmode,
20483 GEN_INT (rs6000_trampoline_size ()), SImode,
20484 fnaddr, Pmode,
20485 ctx_reg, Pmode);
20486 break;
20487 }
20488
20489 return;
20490 }
20491
20492 \f
20493 /* Table of valid machine attributes. */
20494
20495 const struct attribute_spec rs6000_attribute_table[] =
20496 {
20497 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
20498 { "altivec", 1, 1, false, true, false, rs6000_handle_altivec_attribute },
20499 { "longcall", 0, 0, false, true, true, rs6000_handle_longcall_attribute },
20500 { "shortcall", 0, 0, false, true, true, rs6000_handle_longcall_attribute },
20501 { "ms_struct", 0, 0, false, false, false, rs6000_handle_struct_attribute },
20502 { "gcc_struct", 0, 0, false, false, false, rs6000_handle_struct_attribute },
20503 #ifdef SUBTARGET_ATTRIBUTE_TABLE
20504 SUBTARGET_ATTRIBUTE_TABLE,
20505 #endif
20506 { NULL, 0, 0, false, false, false, NULL }
20507 };
20508
20509 /* Handle the "altivec" attribute. The attribute may have
20510 arguments as follows:
20511
20512 __attribute__((altivec(vector__)))
20513 __attribute__((altivec(pixel__))) (always followed by 'unsigned short')
20514 __attribute__((altivec(bool__))) (always followed by 'unsigned')
20515
20516 and may appear more than once (e.g., 'vector bool char') in a
20517 given declaration. */
20518
20519 static tree
20520 rs6000_handle_altivec_attribute (tree *node,
20521 tree name ATTRIBUTE_UNUSED,
20522 tree args,
20523 int flags ATTRIBUTE_UNUSED,
20524 bool *no_add_attrs)
20525 {
20526 tree type = *node, result = NULL_TREE;
20527 enum machine_mode mode;
20528 int unsigned_p;
20529 char altivec_type
20530 = ((args && TREE_CODE (args) == TREE_LIST && TREE_VALUE (args)
20531 && TREE_CODE (TREE_VALUE (args)) == IDENTIFIER_NODE)
20532 ? *IDENTIFIER_POINTER (TREE_VALUE (args))
20533 : '?');
20534
20535 while (POINTER_TYPE_P (type)
20536 || TREE_CODE (type) == FUNCTION_TYPE
20537 || TREE_CODE (type) == METHOD_TYPE
20538 || TREE_CODE (type) == ARRAY_TYPE)
20539 type = TREE_TYPE (type);
20540
20541 mode = TYPE_MODE (type);
20542
20543 /* Check for invalid AltiVec type qualifiers. */
20544 if (type == long_unsigned_type_node || type == long_integer_type_node)
20545 {
20546 if (TARGET_64BIT)
20547 error ("use of %<long%> in AltiVec types is invalid for 64-bit code");
20548 else if (rs6000_warn_altivec_long)
20549 warning (0, "use of %<long%> in AltiVec types is deprecated; use %<int%>");
20550 }
20551 else if (type == long_long_unsigned_type_node
20552 || type == long_long_integer_type_node)
20553 error ("use of %<long long%> in AltiVec types is invalid");
20554 else if (type == double_type_node)
20555 error ("use of %<double%> in AltiVec types is invalid");
20556 else if (type == long_double_type_node)
20557 error ("use of %<long double%> in AltiVec types is invalid");
20558 else if (type == boolean_type_node)
20559 error ("use of boolean types in AltiVec types is invalid");
20560 else if (TREE_CODE (type) == COMPLEX_TYPE)
20561 error ("use of %<complex%> in AltiVec types is invalid");
20562 else if (DECIMAL_FLOAT_MODE_P (mode))
20563 error ("use of decimal floating point types in AltiVec types is invalid");
20564
20565 switch (altivec_type)
20566 {
20567 case 'v':
20568 unsigned_p = TYPE_UNSIGNED (type);
20569 switch (mode)
20570 {
20571 case SImode:
20572 result = (unsigned_p ? unsigned_V4SI_type_node : V4SI_type_node);
20573 break;
20574 case HImode:
20575 result = (unsigned_p ? unsigned_V8HI_type_node : V8HI_type_node);
20576 break;
20577 case QImode:
20578 result = (unsigned_p ? unsigned_V16QI_type_node : V16QI_type_node);
20579 break;
20580 case SFmode: result = V4SF_type_node; break;
20581 /* If the user says 'vector int bool', we may be handed the 'bool'
20582 attribute _before_ the 'vector' attribute, and so select the
20583 proper type in the 'b' case below. */
20584 case V4SImode: case V8HImode: case V16QImode: case V4SFmode:
20585 result = type;
20586 default: break;
20587 }
20588 break;
20589 case 'b':
20590 switch (mode)
20591 {
20592 case SImode: case V4SImode: result = bool_V4SI_type_node; break;
20593 case HImode: case V8HImode: result = bool_V8HI_type_node; break;
20594 case QImode: case V16QImode: result = bool_V16QI_type_node;
20595 default: break;
20596 }
20597 break;
20598 case 'p':
20599 switch (mode)
20600 {
20601 case V8HImode: result = pixel_V8HI_type_node;
20602 default: break;
20603 }
20604 default: break;
20605 }
20606
20607 /* Propagate qualifiers attached to the element type
20608 onto the vector type. */
20609 if (result && result != type && TYPE_QUALS (type))
20610 result = build_qualified_type (result, TYPE_QUALS (type));
20611
20612 *no_add_attrs = true; /* No need to hang on to the attribute. */
20613
20614 if (result)
20615 *node = lang_hooks.types.reconstruct_complex_type (*node, result);
20616
20617 return NULL_TREE;
20618 }
20619
20620 /* AltiVec defines four built-in scalar types that serve as vector
20621 elements; we must teach the compiler how to mangle them. */
20622
20623 static const char *
20624 rs6000_mangle_type (const_tree type)
20625 {
20626 type = TYPE_MAIN_VARIANT (type);
20627
20628 if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE
20629 && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
20630 return NULL;
20631
20632 if (type == bool_char_type_node) return "U6__boolc";
20633 if (type == bool_short_type_node) return "U6__bools";
20634 if (type == pixel_type_node) return "u7__pixel";
20635 if (type == bool_int_type_node) return "U6__booli";
20636
20637 /* Mangle IBM extended float long double as `g' (__float128) on
20638 powerpc*-linux where long-double-64 previously was the default. */
20639 if (TYPE_MAIN_VARIANT (type) == long_double_type_node
20640 && TARGET_ELF
20641 && TARGET_LONG_DOUBLE_128
20642 && !TARGET_IEEEQUAD)
20643 return "g";
20644
20645 /* For all other types, use normal C++ mangling. */
20646 return NULL;
20647 }
20648
20649 /* Handle a "longcall" or "shortcall" attribute; arguments as in
20650 struct attribute_spec.handler. */
20651
20652 static tree
20653 rs6000_handle_longcall_attribute (tree *node, tree name,
20654 tree args ATTRIBUTE_UNUSED,
20655 int flags ATTRIBUTE_UNUSED,
20656 bool *no_add_attrs)
20657 {
20658 if (TREE_CODE (*node) != FUNCTION_TYPE
20659 && TREE_CODE (*node) != FIELD_DECL
20660 && TREE_CODE (*node) != TYPE_DECL)
20661 {
20662 warning (OPT_Wattributes, "%qs attribute only applies to functions",
20663 IDENTIFIER_POINTER (name));
20664 *no_add_attrs = true;
20665 }
20666
20667 return NULL_TREE;
20668 }
20669
20670 /* Set longcall attributes on all functions declared when
20671 rs6000_default_long_calls is true. */
20672 static void
20673 rs6000_set_default_type_attributes (tree type)
20674 {
20675 if (rs6000_default_long_calls
20676 && (TREE_CODE (type) == FUNCTION_TYPE
20677 || TREE_CODE (type) == METHOD_TYPE))
20678 TYPE_ATTRIBUTES (type) = tree_cons (get_identifier ("longcall"),
20679 NULL_TREE,
20680 TYPE_ATTRIBUTES (type));
20681
20682 #if TARGET_MACHO
20683 darwin_set_default_type_attributes (type);
20684 #endif
20685 }
20686
20687 /* Return a reference suitable for calling a function with the
20688 longcall attribute. */
20689
20690 rtx
20691 rs6000_longcall_ref (rtx call_ref)
20692 {
20693 const char *call_name;
20694 tree node;
20695
20696 if (GET_CODE (call_ref) != SYMBOL_REF)
20697 return call_ref;
20698
20699 /* System V adds '.' to the internal name, so skip them. */
20700 call_name = XSTR (call_ref, 0);
20701 if (*call_name == '.')
20702 {
20703 while (*call_name == '.')
20704 call_name++;
20705
20706 node = get_identifier (call_name);
20707 call_ref = gen_rtx_SYMBOL_REF (VOIDmode, IDENTIFIER_POINTER (node));
20708 }
20709
20710 return force_reg (Pmode, call_ref);
20711 }
20712 \f
20713 #ifndef TARGET_USE_MS_BITFIELD_LAYOUT
20714 #define TARGET_USE_MS_BITFIELD_LAYOUT 0
20715 #endif
20716
20717 /* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in
20718 struct attribute_spec.handler. */
20719 static tree
20720 rs6000_handle_struct_attribute (tree *node, tree name,
20721 tree args ATTRIBUTE_UNUSED,
20722 int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
20723 {
20724 tree *type = NULL;
20725 if (DECL_P (*node))
20726 {
20727 if (TREE_CODE (*node) == TYPE_DECL)
20728 type = &TREE_TYPE (*node);
20729 }
20730 else
20731 type = node;
20732
20733 if (!(type && (TREE_CODE (*type) == RECORD_TYPE
20734 || TREE_CODE (*type) == UNION_TYPE)))
20735 {
20736 warning (OPT_Wattributes, "%qs attribute ignored", IDENTIFIER_POINTER (name));
20737 *no_add_attrs = true;
20738 }
20739
20740 else if ((is_attribute_p ("ms_struct", name)
20741 && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type)))
20742 || ((is_attribute_p ("gcc_struct", name)
20743 && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type)))))
20744 {
20745 warning (OPT_Wattributes, "%qs incompatible attribute ignored",
20746 IDENTIFIER_POINTER (name));
20747 *no_add_attrs = true;
20748 }
20749
20750 return NULL_TREE;
20751 }
20752
20753 static bool
20754 rs6000_ms_bitfield_layout_p (const_tree record_type)
20755 {
20756 return (TARGET_USE_MS_BITFIELD_LAYOUT &&
20757 !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type)))
20758 || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type));
20759 }
20760 \f
20761 #ifdef USING_ELFOS_H
20762
20763 /* A get_unnamed_section callback, used for switching to toc_section. */
20764
20765 static void
20766 rs6000_elf_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED)
20767 {
20768 if (DEFAULT_ABI == ABI_AIX
20769 && TARGET_MINIMAL_TOC
20770 && !TARGET_RELOCATABLE)
20771 {
20772 if (!toc_initialized)
20773 {
20774 toc_initialized = 1;
20775 fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
20776 (*targetm.asm_out.internal_label) (asm_out_file, "LCTOC", 0);
20777 fprintf (asm_out_file, "\t.tc ");
20778 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1[TC],");
20779 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
20780 fprintf (asm_out_file, "\n");
20781
20782 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
20783 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
20784 fprintf (asm_out_file, " = .+32768\n");
20785 }
20786 else
20787 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
20788 }
20789 else if (DEFAULT_ABI == ABI_AIX && !TARGET_RELOCATABLE)
20790 fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
20791 else
20792 {
20793 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
20794 if (!toc_initialized)
20795 {
20796 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
20797 fprintf (asm_out_file, " = .+32768\n");
20798 toc_initialized = 1;
20799 }
20800 }
20801 }
20802
20803 /* Implement TARGET_ASM_INIT_SECTIONS. */
20804
20805 static void
20806 rs6000_elf_asm_init_sections (void)
20807 {
20808 toc_section
20809 = get_unnamed_section (0, rs6000_elf_output_toc_section_asm_op, NULL);
20810
20811 sdata2_section
20812 = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
20813 SDATA2_SECTION_ASM_OP);
20814 }
20815
20816 /* Implement TARGET_SELECT_RTX_SECTION. */
20817
20818 static section *
20819 rs6000_elf_select_rtx_section (enum machine_mode mode, rtx x,
20820 unsigned HOST_WIDE_INT align)
20821 {
20822 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
20823 return toc_section;
20824 else
20825 return default_elf_select_rtx_section (mode, x, align);
20826 }
20827 \f
20828 /* For a SYMBOL_REF, set generic flags and then perform some
20829 target-specific processing.
20830
20831 When the AIX ABI is requested on a non-AIX system, replace the
20832 function name with the real name (with a leading .) rather than the
20833 function descriptor name. This saves a lot of overriding code to
20834 read the prefixes. */
20835
20836 static void
20837 rs6000_elf_encode_section_info (tree decl, rtx rtl, int first)
20838 {
20839 default_encode_section_info (decl, rtl, first);
20840
20841 if (first
20842 && TREE_CODE (decl) == FUNCTION_DECL
20843 && !TARGET_AIX
20844 && DEFAULT_ABI == ABI_AIX)
20845 {
20846 rtx sym_ref = XEXP (rtl, 0);
20847 size_t len = strlen (XSTR (sym_ref, 0));
20848 char *str = XALLOCAVEC (char, len + 2);
20849 str[0] = '.';
20850 memcpy (str + 1, XSTR (sym_ref, 0), len + 1);
20851 XSTR (sym_ref, 0) = ggc_alloc_string (str, len + 1);
20852 }
20853 }
20854
20855 static inline bool
20856 compare_section_name (const char *section, const char *templ)
20857 {
20858 int len;
20859
20860 len = strlen (templ);
20861 return (strncmp (section, templ, len) == 0
20862 && (section[len] == 0 || section[len] == '.'));
20863 }
20864
20865 bool
20866 rs6000_elf_in_small_data_p (const_tree decl)
20867 {
20868 if (rs6000_sdata == SDATA_NONE)
20869 return false;
20870
20871 /* We want to merge strings, so we never consider them small data. */
20872 if (TREE_CODE (decl) == STRING_CST)
20873 return false;
20874
20875 /* Functions are never in the small data area. */
20876 if (TREE_CODE (decl) == FUNCTION_DECL)
20877 return false;
20878
20879 if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl))
20880 {
20881 const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
20882 if (compare_section_name (section, ".sdata")
20883 || compare_section_name (section, ".sdata2")
20884 || compare_section_name (section, ".gnu.linkonce.s")
20885 || compare_section_name (section, ".sbss")
20886 || compare_section_name (section, ".sbss2")
20887 || compare_section_name (section, ".gnu.linkonce.sb")
20888 || strcmp (section, ".PPC.EMB.sdata0") == 0
20889 || strcmp (section, ".PPC.EMB.sbss0") == 0)
20890 return true;
20891 }
20892 else
20893 {
20894 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
20895
20896 if (size > 0
20897 && (unsigned HOST_WIDE_INT) size <= g_switch_value
20898 /* If it's not public, and we're not going to reference it there,
20899 there's no need to put it in the small data section. */
20900 && (rs6000_sdata != SDATA_DATA || TREE_PUBLIC (decl)))
20901 return true;
20902 }
20903
20904 return false;
20905 }
20906
20907 #endif /* USING_ELFOS_H */
20908 \f
20909 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. */
20910
20911 static bool
20912 rs6000_use_blocks_for_constant_p (enum machine_mode mode, const_rtx x)
20913 {
20914 return !ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode);
20915 }
20916 \f
20917 /* Return a REG that occurs in ADDR with coefficient 1.
20918 ADDR can be effectively incremented by incrementing REG.
20919
20920 r0 is special and we must not select it as an address
20921 register by this routine since our caller will try to
20922 increment the returned register via an "la" instruction. */
20923
20924 rtx
20925 find_addr_reg (rtx addr)
20926 {
20927 while (GET_CODE (addr) == PLUS)
20928 {
20929 if (GET_CODE (XEXP (addr, 0)) == REG
20930 && REGNO (XEXP (addr, 0)) != 0)
20931 addr = XEXP (addr, 0);
20932 else if (GET_CODE (XEXP (addr, 1)) == REG
20933 && REGNO (XEXP (addr, 1)) != 0)
20934 addr = XEXP (addr, 1);
20935 else if (CONSTANT_P (XEXP (addr, 0)))
20936 addr = XEXP (addr, 1);
20937 else if (CONSTANT_P (XEXP (addr, 1)))
20938 addr = XEXP (addr, 0);
20939 else
20940 gcc_unreachable ();
20941 }
20942 gcc_assert (GET_CODE (addr) == REG && REGNO (addr) != 0);
20943 return addr;
20944 }
20945
20946 void
20947 rs6000_fatal_bad_address (rtx op)
20948 {
20949 fatal_insn ("bad address", op);
20950 }
20951
20952 #if TARGET_MACHO
20953
20954 static tree branch_island_list = 0;
20955
20956 /* Remember to generate a branch island for far calls to the given
20957 function. */
20958
20959 static void
20960 add_compiler_branch_island (tree label_name, tree function_name,
20961 int line_number)
20962 {
20963 tree branch_island = build_tree_list (function_name, label_name);
20964 TREE_TYPE (branch_island) = build_int_cst (NULL_TREE, line_number);
20965 TREE_CHAIN (branch_island) = branch_island_list;
20966 branch_island_list = branch_island;
20967 }
20968
20969 #define BRANCH_ISLAND_LABEL_NAME(BRANCH_ISLAND) TREE_VALUE (BRANCH_ISLAND)
20970 #define BRANCH_ISLAND_FUNCTION_NAME(BRANCH_ISLAND) TREE_PURPOSE (BRANCH_ISLAND)
20971 #define BRANCH_ISLAND_LINE_NUMBER(BRANCH_ISLAND) \
20972 TREE_INT_CST_LOW (TREE_TYPE (BRANCH_ISLAND))
20973
20974 /* Generate far-jump branch islands for everything on the
20975 branch_island_list. Invoked immediately after the last instruction
20976 of the epilogue has been emitted; the branch-islands must be
20977 appended to, and contiguous with, the function body. Mach-O stubs
20978 are generated in machopic_output_stub(). */
20979
20980 static void
20981 macho_branch_islands (void)
20982 {
20983 char tmp_buf[512];
20984 tree branch_island;
20985
20986 for (branch_island = branch_island_list;
20987 branch_island;
20988 branch_island = TREE_CHAIN (branch_island))
20989 {
20990 const char *label =
20991 IDENTIFIER_POINTER (BRANCH_ISLAND_LABEL_NAME (branch_island));
20992 const char *name =
20993 IDENTIFIER_POINTER (BRANCH_ISLAND_FUNCTION_NAME (branch_island));
20994 char name_buf[512];
20995 /* Cheap copy of the details from the Darwin ASM_OUTPUT_LABELREF(). */
20996 if (name[0] == '*' || name[0] == '&')
20997 strcpy (name_buf, name+1);
20998 else
20999 {
21000 name_buf[0] = '_';
21001 strcpy (name_buf+1, name);
21002 }
21003 strcpy (tmp_buf, "\n");
21004 strcat (tmp_buf, label);
21005 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
21006 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
21007 dbxout_stabd (N_SLINE, BRANCH_ISLAND_LINE_NUMBER (branch_island));
21008 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
21009 if (flag_pic)
21010 {
21011 strcat (tmp_buf, ":\n\tmflr r0\n\tbcl 20,31,");
21012 strcat (tmp_buf, label);
21013 strcat (tmp_buf, "_pic\n");
21014 strcat (tmp_buf, label);
21015 strcat (tmp_buf, "_pic:\n\tmflr r11\n");
21016
21017 strcat (tmp_buf, "\taddis r11,r11,ha16(");
21018 strcat (tmp_buf, name_buf);
21019 strcat (tmp_buf, " - ");
21020 strcat (tmp_buf, label);
21021 strcat (tmp_buf, "_pic)\n");
21022
21023 strcat (tmp_buf, "\tmtlr r0\n");
21024
21025 strcat (tmp_buf, "\taddi r12,r11,lo16(");
21026 strcat (tmp_buf, name_buf);
21027 strcat (tmp_buf, " - ");
21028 strcat (tmp_buf, label);
21029 strcat (tmp_buf, "_pic)\n");
21030
21031 strcat (tmp_buf, "\tmtctr r12\n\tbctr\n");
21032 }
21033 else
21034 {
21035 strcat (tmp_buf, ":\nlis r12,hi16(");
21036 strcat (tmp_buf, name_buf);
21037 strcat (tmp_buf, ")\n\tori r12,r12,lo16(");
21038 strcat (tmp_buf, name_buf);
21039 strcat (tmp_buf, ")\n\tmtctr r12\n\tbctr");
21040 }
21041 output_asm_insn (tmp_buf, 0);
21042 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
21043 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
21044 dbxout_stabd (N_SLINE, BRANCH_ISLAND_LINE_NUMBER (branch_island));
21045 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
21046 }
21047
21048 branch_island_list = 0;
21049 }
21050
21051 /* NO_PREVIOUS_DEF checks in the link list whether the function name is
21052 already there or not. */
21053
21054 static int
21055 no_previous_def (tree function_name)
21056 {
21057 tree branch_island;
21058 for (branch_island = branch_island_list;
21059 branch_island;
21060 branch_island = TREE_CHAIN (branch_island))
21061 if (function_name == BRANCH_ISLAND_FUNCTION_NAME (branch_island))
21062 return 0;
21063 return 1;
21064 }
21065
21066 /* GET_PREV_LABEL gets the label name from the previous definition of
21067 the function. */
21068
21069 static tree
21070 get_prev_label (tree function_name)
21071 {
21072 tree branch_island;
21073 for (branch_island = branch_island_list;
21074 branch_island;
21075 branch_island = TREE_CHAIN (branch_island))
21076 if (function_name == BRANCH_ISLAND_FUNCTION_NAME (branch_island))
21077 return BRANCH_ISLAND_LABEL_NAME (branch_island);
21078 return 0;
21079 }
21080
21081 #ifndef DARWIN_LINKER_GENERATES_ISLANDS
21082 #define DARWIN_LINKER_GENERATES_ISLANDS 0
21083 #endif
21084
21085 /* KEXTs still need branch islands. */
21086 #define DARWIN_GENERATE_ISLANDS (!DARWIN_LINKER_GENERATES_ISLANDS \
21087 || flag_mkernel || flag_apple_kext)
21088
21089 /* INSN is either a function call or a millicode call. It may have an
21090 unconditional jump in its delay slot.
21091
21092 CALL_DEST is the routine we are calling. */
21093
21094 char *
21095 output_call (rtx insn, rtx *operands, int dest_operand_number,
21096 int cookie_operand_number)
21097 {
21098 static char buf[256];
21099 if (DARWIN_GENERATE_ISLANDS
21100 && GET_CODE (operands[dest_operand_number]) == SYMBOL_REF
21101 && (INTVAL (operands[cookie_operand_number]) & CALL_LONG))
21102 {
21103 tree labelname;
21104 tree funname = get_identifier (XSTR (operands[dest_operand_number], 0));
21105
21106 if (no_previous_def (funname))
21107 {
21108 rtx label_rtx = gen_label_rtx ();
21109 char *label_buf, temp_buf[256];
21110 ASM_GENERATE_INTERNAL_LABEL (temp_buf, "L",
21111 CODE_LABEL_NUMBER (label_rtx));
21112 label_buf = temp_buf[0] == '*' ? temp_buf + 1 : temp_buf;
21113 labelname = get_identifier (label_buf);
21114 add_compiler_branch_island (labelname, funname, insn_line (insn));
21115 }
21116 else
21117 labelname = get_prev_label (funname);
21118
21119 /* "jbsr foo, L42" is Mach-O for "Link as 'bl foo' if a 'bl'
21120 instruction will reach 'foo', otherwise link as 'bl L42'".
21121 "L42" should be a 'branch island', that will do a far jump to
21122 'foo'. Branch islands are generated in
21123 macho_branch_islands(). */
21124 sprintf (buf, "jbsr %%z%d,%.246s",
21125 dest_operand_number, IDENTIFIER_POINTER (labelname));
21126 }
21127 else
21128 sprintf (buf, "bl %%z%d", dest_operand_number);
21129 return buf;
21130 }
21131
21132 /* Generate PIC and indirect symbol stubs. */
21133
21134 void
21135 machopic_output_stub (FILE *file, const char *symb, const char *stub)
21136 {
21137 unsigned int length;
21138 char *symbol_name, *lazy_ptr_name;
21139 char *local_label_0;
21140 static int label = 0;
21141
21142 /* Lose our funky encoding stuff so it doesn't contaminate the stub. */
21143 symb = (*targetm.strip_name_encoding) (symb);
21144
21145
21146 length = strlen (symb);
21147 symbol_name = XALLOCAVEC (char, length + 32);
21148 GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length);
21149
21150 lazy_ptr_name = XALLOCAVEC (char, length + 32);
21151 GEN_LAZY_PTR_NAME_FOR_SYMBOL (lazy_ptr_name, symb, length);
21152
21153 if (flag_pic == 2)
21154 switch_to_section (darwin_sections[machopic_picsymbol_stub1_section]);
21155 else
21156 switch_to_section (darwin_sections[machopic_symbol_stub1_section]);
21157
21158 if (flag_pic == 2)
21159 {
21160 fprintf (file, "\t.align 5\n");
21161
21162 fprintf (file, "%s:\n", stub);
21163 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
21164
21165 label++;
21166 local_label_0 = XALLOCAVEC (char, sizeof ("\"L00000000000$spb\""));
21167 sprintf (local_label_0, "\"L%011d$spb\"", label);
21168
21169 fprintf (file, "\tmflr r0\n");
21170 fprintf (file, "\tbcl 20,31,%s\n", local_label_0);
21171 fprintf (file, "%s:\n\tmflr r11\n", local_label_0);
21172 fprintf (file, "\taddis r11,r11,ha16(%s-%s)\n",
21173 lazy_ptr_name, local_label_0);
21174 fprintf (file, "\tmtlr r0\n");
21175 fprintf (file, "\t%s r12,lo16(%s-%s)(r11)\n",
21176 (TARGET_64BIT ? "ldu" : "lwzu"),
21177 lazy_ptr_name, local_label_0);
21178 fprintf (file, "\tmtctr r12\n");
21179 fprintf (file, "\tbctr\n");
21180 }
21181 else
21182 {
21183 fprintf (file, "\t.align 4\n");
21184
21185 fprintf (file, "%s:\n", stub);
21186 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
21187
21188 fprintf (file, "\tlis r11,ha16(%s)\n", lazy_ptr_name);
21189 fprintf (file, "\t%s r12,lo16(%s)(r11)\n",
21190 (TARGET_64BIT ? "ldu" : "lwzu"),
21191 lazy_ptr_name);
21192 fprintf (file, "\tmtctr r12\n");
21193 fprintf (file, "\tbctr\n");
21194 }
21195
21196 switch_to_section (darwin_sections[machopic_lazy_symbol_ptr_section]);
21197 fprintf (file, "%s:\n", lazy_ptr_name);
21198 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
21199 fprintf (file, "%sdyld_stub_binding_helper\n",
21200 (TARGET_64BIT ? DOUBLE_INT_ASM_OP : "\t.long\t"));
21201 }
21202
21203 /* Legitimize PIC addresses. If the address is already
21204 position-independent, we return ORIG. Newly generated
21205 position-independent addresses go into a reg. This is REG if non
21206 zero, otherwise we allocate register(s) as necessary. */
21207
21208 #define SMALL_INT(X) ((UINTVAL (X) + 0x8000) < 0x10000)
21209
21210 rtx
21211 rs6000_machopic_legitimize_pic_address (rtx orig, enum machine_mode mode,
21212 rtx reg)
21213 {
21214 rtx base, offset;
21215
21216 if (reg == NULL && ! reload_in_progress && ! reload_completed)
21217 reg = gen_reg_rtx (Pmode);
21218
21219 if (GET_CODE (orig) == CONST)
21220 {
21221 rtx reg_temp;
21222
21223 if (GET_CODE (XEXP (orig, 0)) == PLUS
21224 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
21225 return orig;
21226
21227 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
21228
21229 /* Use a different reg for the intermediate value, as
21230 it will be marked UNCHANGING. */
21231 reg_temp = !can_create_pseudo_p () ? reg : gen_reg_rtx (Pmode);
21232 base = rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 0),
21233 Pmode, reg_temp);
21234 offset =
21235 rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 1),
21236 Pmode, reg);
21237
21238 if (GET_CODE (offset) == CONST_INT)
21239 {
21240 if (SMALL_INT (offset))
21241 return plus_constant (base, INTVAL (offset));
21242 else if (! reload_in_progress && ! reload_completed)
21243 offset = force_reg (Pmode, offset);
21244 else
21245 {
21246 rtx mem = force_const_mem (Pmode, orig);
21247 return machopic_legitimize_pic_address (mem, Pmode, reg);
21248 }
21249 }
21250 return gen_rtx_PLUS (Pmode, base, offset);
21251 }
21252
21253 /* Fall back on generic machopic code. */
21254 return machopic_legitimize_pic_address (orig, mode, reg);
21255 }
21256
21257 /* Output a .machine directive for the Darwin assembler, and call
21258 the generic start_file routine. */
21259
21260 static void
21261 rs6000_darwin_file_start (void)
21262 {
21263 static const struct
21264 {
21265 const char *arg;
21266 const char *name;
21267 int if_set;
21268 } mapping[] = {
21269 { "ppc64", "ppc64", MASK_64BIT },
21270 { "970", "ppc970", MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64 },
21271 { "power4", "ppc970", 0 },
21272 { "G5", "ppc970", 0 },
21273 { "7450", "ppc7450", 0 },
21274 { "7400", "ppc7400", MASK_ALTIVEC },
21275 { "G4", "ppc7400", 0 },
21276 { "750", "ppc750", 0 },
21277 { "740", "ppc750", 0 },
21278 { "G3", "ppc750", 0 },
21279 { "604e", "ppc604e", 0 },
21280 { "604", "ppc604", 0 },
21281 { "603e", "ppc603", 0 },
21282 { "603", "ppc603", 0 },
21283 { "601", "ppc601", 0 },
21284 { NULL, "ppc", 0 } };
21285 const char *cpu_id = "";
21286 size_t i;
21287
21288 rs6000_file_start ();
21289 darwin_file_start ();
21290
21291 /* Determine the argument to -mcpu=. Default to G3 if not specified. */
21292 for (i = 0; i < ARRAY_SIZE (rs6000_select); i++)
21293 if (rs6000_select[i].set_arch_p && rs6000_select[i].string
21294 && rs6000_select[i].string[0] != '\0')
21295 cpu_id = rs6000_select[i].string;
21296
21297 /* Look through the mapping array. Pick the first name that either
21298 matches the argument, has a bit set in IF_SET that is also set
21299 in the target flags, or has a NULL name. */
21300
21301 i = 0;
21302 while (mapping[i].arg != NULL
21303 && strcmp (mapping[i].arg, cpu_id) != 0
21304 && (mapping[i].if_set & target_flags) == 0)
21305 i++;
21306
21307 fprintf (asm_out_file, "\t.machine %s\n", mapping[i].name);
21308 }
21309
21310 #endif /* TARGET_MACHO */
21311
21312 #if TARGET_ELF
21313 static int
21314 rs6000_elf_reloc_rw_mask (void)
21315 {
21316 if (flag_pic)
21317 return 3;
21318 else if (DEFAULT_ABI == ABI_AIX)
21319 return 2;
21320 else
21321 return 0;
21322 }
21323
21324 /* Record an element in the table of global constructors. SYMBOL is
21325 a SYMBOL_REF of the function to be called; PRIORITY is a number
21326 between 0 and MAX_INIT_PRIORITY.
21327
21328 This differs from default_named_section_asm_out_constructor in
21329 that we have special handling for -mrelocatable. */
21330
21331 static void
21332 rs6000_elf_asm_out_constructor (rtx symbol, int priority)
21333 {
21334 const char *section = ".ctors";
21335 char buf[16];
21336
21337 if (priority != DEFAULT_INIT_PRIORITY)
21338 {
21339 sprintf (buf, ".ctors.%.5u",
21340 /* Invert the numbering so the linker puts us in the proper
21341 order; constructors are run from right to left, and the
21342 linker sorts in increasing order. */
21343 MAX_INIT_PRIORITY - priority);
21344 section = buf;
21345 }
21346
21347 switch_to_section (get_section (section, SECTION_WRITE, NULL));
21348 assemble_align (POINTER_SIZE);
21349
21350 if (TARGET_RELOCATABLE)
21351 {
21352 fputs ("\t.long (", asm_out_file);
21353 output_addr_const (asm_out_file, symbol);
21354 fputs (")@fixup\n", asm_out_file);
21355 }
21356 else
21357 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
21358 }
21359
21360 static void
21361 rs6000_elf_asm_out_destructor (rtx symbol, int priority)
21362 {
21363 const char *section = ".dtors";
21364 char buf[16];
21365
21366 if (priority != DEFAULT_INIT_PRIORITY)
21367 {
21368 sprintf (buf, ".dtors.%.5u",
21369 /* Invert the numbering so the linker puts us in the proper
21370 order; constructors are run from right to left, and the
21371 linker sorts in increasing order. */
21372 MAX_INIT_PRIORITY - priority);
21373 section = buf;
21374 }
21375
21376 switch_to_section (get_section (section, SECTION_WRITE, NULL));
21377 assemble_align (POINTER_SIZE);
21378
21379 if (TARGET_RELOCATABLE)
21380 {
21381 fputs ("\t.long (", asm_out_file);
21382 output_addr_const (asm_out_file, symbol);
21383 fputs (")@fixup\n", asm_out_file);
21384 }
21385 else
21386 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
21387 }
21388
21389 void
21390 rs6000_elf_declare_function_name (FILE *file, const char *name, tree decl)
21391 {
21392 if (TARGET_64BIT)
21393 {
21394 fputs ("\t.section\t\".opd\",\"aw\"\n\t.align 3\n", file);
21395 ASM_OUTPUT_LABEL (file, name);
21396 fputs (DOUBLE_INT_ASM_OP, file);
21397 rs6000_output_function_entry (file, name);
21398 fputs (",.TOC.@tocbase,0\n\t.previous\n", file);
21399 if (DOT_SYMBOLS)
21400 {
21401 fputs ("\t.size\t", file);
21402 assemble_name (file, name);
21403 fputs (",24\n\t.type\t.", file);
21404 assemble_name (file, name);
21405 fputs (",@function\n", file);
21406 if (TREE_PUBLIC (decl) && ! DECL_WEAK (decl))
21407 {
21408 fputs ("\t.globl\t.", file);
21409 assemble_name (file, name);
21410 putc ('\n', file);
21411 }
21412 }
21413 else
21414 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
21415 ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
21416 rs6000_output_function_entry (file, name);
21417 fputs (":\n", file);
21418 return;
21419 }
21420
21421 if (TARGET_RELOCATABLE
21422 && !TARGET_SECURE_PLT
21423 && (get_pool_size () != 0 || crtl->profile)
21424 && uses_TOC ())
21425 {
21426 char buf[256];
21427
21428 (*targetm.asm_out.internal_label) (file, "LCL", rs6000_pic_labelno);
21429
21430 ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 1);
21431 fprintf (file, "\t.long ");
21432 assemble_name (file, buf);
21433 putc ('-', file);
21434 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
21435 assemble_name (file, buf);
21436 putc ('\n', file);
21437 }
21438
21439 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
21440 ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
21441
21442 if (DEFAULT_ABI == ABI_AIX)
21443 {
21444 const char *desc_name, *orig_name;
21445
21446 orig_name = (*targetm.strip_name_encoding) (name);
21447 desc_name = orig_name;
21448 while (*desc_name == '.')
21449 desc_name++;
21450
21451 if (TREE_PUBLIC (decl))
21452 fprintf (file, "\t.globl %s\n", desc_name);
21453
21454 fprintf (file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
21455 fprintf (file, "%s:\n", desc_name);
21456 fprintf (file, "\t.long %s\n", orig_name);
21457 fputs ("\t.long _GLOBAL_OFFSET_TABLE_\n", file);
21458 if (DEFAULT_ABI == ABI_AIX)
21459 fputs ("\t.long 0\n", file);
21460 fprintf (file, "\t.previous\n");
21461 }
21462 ASM_OUTPUT_LABEL (file, name);
21463 }
21464
21465 static void
21466 rs6000_elf_end_indicate_exec_stack (void)
21467 {
21468 if (TARGET_32BIT)
21469 file_end_indicate_exec_stack ();
21470 }
21471 #endif
21472
21473 #if TARGET_XCOFF
21474 static void
21475 rs6000_xcoff_asm_output_anchor (rtx symbol)
21476 {
21477 char buffer[100];
21478
21479 sprintf (buffer, "$ + " HOST_WIDE_INT_PRINT_DEC,
21480 SYMBOL_REF_BLOCK_OFFSET (symbol));
21481 ASM_OUTPUT_DEF (asm_out_file, XSTR (symbol, 0), buffer);
21482 }
21483
21484 static void
21485 rs6000_xcoff_asm_globalize_label (FILE *stream, const char *name)
21486 {
21487 fputs (GLOBAL_ASM_OP, stream);
21488 RS6000_OUTPUT_BASENAME (stream, name);
21489 putc ('\n', stream);
21490 }
21491
21492 /* A get_unnamed_decl callback, used for read-only sections. PTR
21493 points to the section string variable. */
21494
21495 static void
21496 rs6000_xcoff_output_readonly_section_asm_op (const void *directive)
21497 {
21498 fprintf (asm_out_file, "\t.csect %s[RO],%s\n",
21499 *(const char *const *) directive,
21500 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
21501 }
21502
21503 /* Likewise for read-write sections. */
21504
21505 static void
21506 rs6000_xcoff_output_readwrite_section_asm_op (const void *directive)
21507 {
21508 fprintf (asm_out_file, "\t.csect %s[RW],%s\n",
21509 *(const char *const *) directive,
21510 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
21511 }
21512
21513 /* A get_unnamed_section callback, used for switching to toc_section. */
21514
21515 static void
21516 rs6000_xcoff_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED)
21517 {
21518 if (TARGET_MINIMAL_TOC)
21519 {
21520 /* toc_section is always selected at least once from
21521 rs6000_xcoff_file_start, so this is guaranteed to
21522 always be defined once and only once in each file. */
21523 if (!toc_initialized)
21524 {
21525 fputs ("\t.toc\nLCTOC..1:\n", asm_out_file);
21526 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file);
21527 toc_initialized = 1;
21528 }
21529 fprintf (asm_out_file, "\t.csect toc_table[RW]%s\n",
21530 (TARGET_32BIT ? "" : ",3"));
21531 }
21532 else
21533 fputs ("\t.toc\n", asm_out_file);
21534 }
21535
21536 /* Implement TARGET_ASM_INIT_SECTIONS. */
21537
21538 static void
21539 rs6000_xcoff_asm_init_sections (void)
21540 {
21541 read_only_data_section
21542 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
21543 &xcoff_read_only_section_name);
21544
21545 private_data_section
21546 = get_unnamed_section (SECTION_WRITE,
21547 rs6000_xcoff_output_readwrite_section_asm_op,
21548 &xcoff_private_data_section_name);
21549
21550 read_only_private_data_section
21551 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
21552 &xcoff_private_data_section_name);
21553
21554 toc_section
21555 = get_unnamed_section (0, rs6000_xcoff_output_toc_section_asm_op, NULL);
21556
21557 readonly_data_section = read_only_data_section;
21558 exception_section = data_section;
21559 }
21560
21561 static int
21562 rs6000_xcoff_reloc_rw_mask (void)
21563 {
21564 return 3;
21565 }
21566
21567 static void
21568 rs6000_xcoff_asm_named_section (const char *name, unsigned int flags,
21569 tree decl ATTRIBUTE_UNUSED)
21570 {
21571 int smclass;
21572 static const char * const suffix[3] = { "PR", "RO", "RW" };
21573
21574 if (flags & SECTION_CODE)
21575 smclass = 0;
21576 else if (flags & SECTION_WRITE)
21577 smclass = 2;
21578 else
21579 smclass = 1;
21580
21581 fprintf (asm_out_file, "\t.csect %s%s[%s],%u\n",
21582 (flags & SECTION_CODE) ? "." : "",
21583 name, suffix[smclass], flags & SECTION_ENTSIZE);
21584 }
21585
21586 static section *
21587 rs6000_xcoff_select_section (tree decl, int reloc,
21588 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
21589 {
21590 if (decl_readonly_section (decl, reloc))
21591 {
21592 if (TREE_PUBLIC (decl))
21593 return read_only_data_section;
21594 else
21595 return read_only_private_data_section;
21596 }
21597 else
21598 {
21599 if (TREE_PUBLIC (decl))
21600 return data_section;
21601 else
21602 return private_data_section;
21603 }
21604 }
21605
21606 static void
21607 rs6000_xcoff_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
21608 {
21609 const char *name;
21610
21611 /* Use select_section for private and uninitialized data. */
21612 if (!TREE_PUBLIC (decl)
21613 || DECL_COMMON (decl)
21614 || DECL_INITIAL (decl) == NULL_TREE
21615 || DECL_INITIAL (decl) == error_mark_node
21616 || (flag_zero_initialized_in_bss
21617 && initializer_zerop (DECL_INITIAL (decl))))
21618 return;
21619
21620 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
21621 name = (*targetm.strip_name_encoding) (name);
21622 DECL_SECTION_NAME (decl) = build_string (strlen (name), name);
21623 }
21624
21625 /* Select section for constant in constant pool.
21626
21627 On RS/6000, all constants are in the private read-only data area.
21628 However, if this is being placed in the TOC it must be output as a
21629 toc entry. */
21630
21631 static section *
21632 rs6000_xcoff_select_rtx_section (enum machine_mode mode, rtx x,
21633 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
21634 {
21635 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
21636 return toc_section;
21637 else
21638 return read_only_private_data_section;
21639 }
21640
21641 /* Remove any trailing [DS] or the like from the symbol name. */
21642
21643 static const char *
21644 rs6000_xcoff_strip_name_encoding (const char *name)
21645 {
21646 size_t len;
21647 if (*name == '*')
21648 name++;
21649 len = strlen (name);
21650 if (name[len - 1] == ']')
21651 return ggc_alloc_string (name, len - 4);
21652 else
21653 return name;
21654 }
21655
21656 /* Section attributes. AIX is always PIC. */
21657
21658 static unsigned int
21659 rs6000_xcoff_section_type_flags (tree decl, const char *name, int reloc)
21660 {
21661 unsigned int align;
21662 unsigned int flags = default_section_type_flags (decl, name, reloc);
21663
21664 /* Align to at least UNIT size. */
21665 if (flags & SECTION_CODE)
21666 align = MIN_UNITS_PER_WORD;
21667 else
21668 /* Increase alignment of large objects if not already stricter. */
21669 align = MAX ((DECL_ALIGN (decl) / BITS_PER_UNIT),
21670 int_size_in_bytes (TREE_TYPE (decl)) > MIN_UNITS_PER_WORD
21671 ? UNITS_PER_FP_WORD : MIN_UNITS_PER_WORD);
21672
21673 return flags | (exact_log2 (align) & SECTION_ENTSIZE);
21674 }
21675
21676 /* Output at beginning of assembler file.
21677
21678 Initialize the section names for the RS/6000 at this point.
21679
21680 Specify filename, including full path, to assembler.
21681
21682 We want to go into the TOC section so at least one .toc will be emitted.
21683 Also, in order to output proper .bs/.es pairs, we need at least one static
21684 [RW] section emitted.
21685
21686 Finally, declare mcount when profiling to make the assembler happy. */
21687
21688 static void
21689 rs6000_xcoff_file_start (void)
21690 {
21691 rs6000_gen_section_name (&xcoff_bss_section_name,
21692 main_input_filename, ".bss_");
21693 rs6000_gen_section_name (&xcoff_private_data_section_name,
21694 main_input_filename, ".rw_");
21695 rs6000_gen_section_name (&xcoff_read_only_section_name,
21696 main_input_filename, ".ro_");
21697
21698 fputs ("\t.file\t", asm_out_file);
21699 output_quoted_string (asm_out_file, main_input_filename);
21700 fputc ('\n', asm_out_file);
21701 if (write_symbols != NO_DEBUG)
21702 switch_to_section (private_data_section);
21703 switch_to_section (text_section);
21704 if (profile_flag)
21705 fprintf (asm_out_file, "\t.extern %s\n", RS6000_MCOUNT);
21706 rs6000_file_start ();
21707 }
21708
21709 /* Output at end of assembler file.
21710 On the RS/6000, referencing data should automatically pull in text. */
21711
21712 static void
21713 rs6000_xcoff_file_end (void)
21714 {
21715 switch_to_section (text_section);
21716 fputs ("_section_.text:\n", asm_out_file);
21717 switch_to_section (data_section);
21718 fputs (TARGET_32BIT
21719 ? "\t.long _section_.text\n" : "\t.llong _section_.text\n",
21720 asm_out_file);
21721 }
21722 #endif /* TARGET_XCOFF */
21723
21724 /* Compute a (partial) cost for rtx X. Return true if the complete
21725 cost has been computed, and false if subexpressions should be
21726 scanned. In either case, *TOTAL contains the cost result. */
21727
21728 static bool
21729 rs6000_rtx_costs (rtx x, int code, int outer_code, int *total,
21730 bool speed)
21731 {
21732 enum machine_mode mode = GET_MODE (x);
21733
21734 switch (code)
21735 {
21736 /* On the RS/6000, if it is valid in the insn, it is free. */
21737 case CONST_INT:
21738 if (((outer_code == SET
21739 || outer_code == PLUS
21740 || outer_code == MINUS)
21741 && (satisfies_constraint_I (x)
21742 || satisfies_constraint_L (x)))
21743 || (outer_code == AND
21744 && (satisfies_constraint_K (x)
21745 || (mode == SImode
21746 ? satisfies_constraint_L (x)
21747 : satisfies_constraint_J (x))
21748 || mask_operand (x, mode)
21749 || (mode == DImode
21750 && mask64_operand (x, DImode))))
21751 || ((outer_code == IOR || outer_code == XOR)
21752 && (satisfies_constraint_K (x)
21753 || (mode == SImode
21754 ? satisfies_constraint_L (x)
21755 : satisfies_constraint_J (x))))
21756 || outer_code == ASHIFT
21757 || outer_code == ASHIFTRT
21758 || outer_code == LSHIFTRT
21759 || outer_code == ROTATE
21760 || outer_code == ROTATERT
21761 || outer_code == ZERO_EXTRACT
21762 || (outer_code == MULT
21763 && satisfies_constraint_I (x))
21764 || ((outer_code == DIV || outer_code == UDIV
21765 || outer_code == MOD || outer_code == UMOD)
21766 && exact_log2 (INTVAL (x)) >= 0)
21767 || (outer_code == COMPARE
21768 && (satisfies_constraint_I (x)
21769 || satisfies_constraint_K (x)))
21770 || (outer_code == EQ
21771 && (satisfies_constraint_I (x)
21772 || satisfies_constraint_K (x)
21773 || (mode == SImode
21774 ? satisfies_constraint_L (x)
21775 : satisfies_constraint_J (x))))
21776 || (outer_code == GTU
21777 && satisfies_constraint_I (x))
21778 || (outer_code == LTU
21779 && satisfies_constraint_P (x)))
21780 {
21781 *total = 0;
21782 return true;
21783 }
21784 else if ((outer_code == PLUS
21785 && reg_or_add_cint_operand (x, VOIDmode))
21786 || (outer_code == MINUS
21787 && reg_or_sub_cint_operand (x, VOIDmode))
21788 || ((outer_code == SET
21789 || outer_code == IOR
21790 || outer_code == XOR)
21791 && (INTVAL (x)
21792 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) == 0))
21793 {
21794 *total = COSTS_N_INSNS (1);
21795 return true;
21796 }
21797 /* FALLTHRU */
21798
21799 case CONST_DOUBLE:
21800 if (mode == DImode && code == CONST_DOUBLE)
21801 {
21802 if ((outer_code == IOR || outer_code == XOR)
21803 && CONST_DOUBLE_HIGH (x) == 0
21804 && (CONST_DOUBLE_LOW (x)
21805 & ~ (unsigned HOST_WIDE_INT) 0xffff) == 0)
21806 {
21807 *total = 0;
21808 return true;
21809 }
21810 else if ((outer_code == AND && and64_2_operand (x, DImode))
21811 || ((outer_code == SET
21812 || outer_code == IOR
21813 || outer_code == XOR)
21814 && CONST_DOUBLE_HIGH (x) == 0))
21815 {
21816 *total = COSTS_N_INSNS (1);
21817 return true;
21818 }
21819 }
21820 /* FALLTHRU */
21821
21822 case CONST:
21823 case HIGH:
21824 case SYMBOL_REF:
21825 case MEM:
21826 /* When optimizing for size, MEM should be slightly more expensive
21827 than generating address, e.g., (plus (reg) (const)).
21828 L1 cache latency is about two instructions. */
21829 *total = !speed ? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (2);
21830 return true;
21831
21832 case LABEL_REF:
21833 *total = 0;
21834 return true;
21835
21836 case PLUS:
21837 if (mode == DFmode)
21838 {
21839 if (GET_CODE (XEXP (x, 0)) == MULT)
21840 {
21841 /* FNMA accounted in outer NEG. */
21842 if (outer_code == NEG)
21843 *total = rs6000_cost->dmul - rs6000_cost->fp;
21844 else
21845 *total = rs6000_cost->dmul;
21846 }
21847 else
21848 *total = rs6000_cost->fp;
21849 }
21850 else if (mode == SFmode)
21851 {
21852 /* FNMA accounted in outer NEG. */
21853 if (outer_code == NEG && GET_CODE (XEXP (x, 0)) == MULT)
21854 *total = 0;
21855 else
21856 *total = rs6000_cost->fp;
21857 }
21858 else
21859 *total = COSTS_N_INSNS (1);
21860 return false;
21861
21862 case MINUS:
21863 if (mode == DFmode)
21864 {
21865 if (GET_CODE (XEXP (x, 0)) == MULT
21866 || GET_CODE (XEXP (x, 1)) == MULT)
21867 {
21868 /* FNMA accounted in outer NEG. */
21869 if (outer_code == NEG)
21870 *total = rs6000_cost->dmul - rs6000_cost->fp;
21871 else
21872 *total = rs6000_cost->dmul;
21873 }
21874 else
21875 *total = rs6000_cost->fp;
21876 }
21877 else if (mode == SFmode)
21878 {
21879 /* FNMA accounted in outer NEG. */
21880 if (outer_code == NEG && GET_CODE (XEXP (x, 0)) == MULT)
21881 *total = 0;
21882 else
21883 *total = rs6000_cost->fp;
21884 }
21885 else
21886 *total = COSTS_N_INSNS (1);
21887 return false;
21888
21889 case MULT:
21890 if (GET_CODE (XEXP (x, 1)) == CONST_INT
21891 && satisfies_constraint_I (XEXP (x, 1)))
21892 {
21893 if (INTVAL (XEXP (x, 1)) >= -256
21894 && INTVAL (XEXP (x, 1)) <= 255)
21895 *total = rs6000_cost->mulsi_const9;
21896 else
21897 *total = rs6000_cost->mulsi_const;
21898 }
21899 /* FMA accounted in outer PLUS/MINUS. */
21900 else if ((mode == DFmode || mode == SFmode)
21901 && (outer_code == PLUS || outer_code == MINUS))
21902 *total = 0;
21903 else if (mode == DFmode)
21904 *total = rs6000_cost->dmul;
21905 else if (mode == SFmode)
21906 *total = rs6000_cost->fp;
21907 else if (mode == DImode)
21908 *total = rs6000_cost->muldi;
21909 else
21910 *total = rs6000_cost->mulsi;
21911 return false;
21912
21913 case DIV:
21914 case MOD:
21915 if (FLOAT_MODE_P (mode))
21916 {
21917 *total = mode == DFmode ? rs6000_cost->ddiv
21918 : rs6000_cost->sdiv;
21919 return false;
21920 }
21921 /* FALLTHRU */
21922
21923 case UDIV:
21924 case UMOD:
21925 if (GET_CODE (XEXP (x, 1)) == CONST_INT
21926 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
21927 {
21928 if (code == DIV || code == MOD)
21929 /* Shift, addze */
21930 *total = COSTS_N_INSNS (2);
21931 else
21932 /* Shift */
21933 *total = COSTS_N_INSNS (1);
21934 }
21935 else
21936 {
21937 if (GET_MODE (XEXP (x, 1)) == DImode)
21938 *total = rs6000_cost->divdi;
21939 else
21940 *total = rs6000_cost->divsi;
21941 }
21942 /* Add in shift and subtract for MOD. */
21943 if (code == MOD || code == UMOD)
21944 *total += COSTS_N_INSNS (2);
21945 return false;
21946
21947 case CTZ:
21948 case FFS:
21949 *total = COSTS_N_INSNS (4);
21950 return false;
21951
21952 case POPCOUNT:
21953 *total = COSTS_N_INSNS (6);
21954 return false;
21955
21956 case NOT:
21957 if (outer_code == AND || outer_code == IOR || outer_code == XOR)
21958 {
21959 *total = 0;
21960 return false;
21961 }
21962 /* FALLTHRU */
21963
21964 case AND:
21965 case CLZ:
21966 case IOR:
21967 case XOR:
21968 case ZERO_EXTRACT:
21969 *total = COSTS_N_INSNS (1);
21970 return false;
21971
21972 case ASHIFT:
21973 case ASHIFTRT:
21974 case LSHIFTRT:
21975 case ROTATE:
21976 case ROTATERT:
21977 /* Handle mul_highpart. */
21978 if (outer_code == TRUNCATE
21979 && GET_CODE (XEXP (x, 0)) == MULT)
21980 {
21981 if (mode == DImode)
21982 *total = rs6000_cost->muldi;
21983 else
21984 *total = rs6000_cost->mulsi;
21985 return true;
21986 }
21987 else if (outer_code == AND)
21988 *total = 0;
21989 else
21990 *total = COSTS_N_INSNS (1);
21991 return false;
21992
21993 case SIGN_EXTEND:
21994 case ZERO_EXTEND:
21995 if (GET_CODE (XEXP (x, 0)) == MEM)
21996 *total = 0;
21997 else
21998 *total = COSTS_N_INSNS (1);
21999 return false;
22000
22001 case COMPARE:
22002 case NEG:
22003 case ABS:
22004 if (!FLOAT_MODE_P (mode))
22005 {
22006 *total = COSTS_N_INSNS (1);
22007 return false;
22008 }
22009 /* FALLTHRU */
22010
22011 case FLOAT:
22012 case UNSIGNED_FLOAT:
22013 case FIX:
22014 case UNSIGNED_FIX:
22015 case FLOAT_TRUNCATE:
22016 *total = rs6000_cost->fp;
22017 return false;
22018
22019 case FLOAT_EXTEND:
22020 if (mode == DFmode)
22021 *total = 0;
22022 else
22023 *total = rs6000_cost->fp;
22024 return false;
22025
22026 case UNSPEC:
22027 switch (XINT (x, 1))
22028 {
22029 case UNSPEC_FRSP:
22030 *total = rs6000_cost->fp;
22031 return true;
22032
22033 default:
22034 break;
22035 }
22036 break;
22037
22038 case CALL:
22039 case IF_THEN_ELSE:
22040 if (!speed)
22041 {
22042 *total = COSTS_N_INSNS (1);
22043 return true;
22044 }
22045 else if (FLOAT_MODE_P (mode)
22046 && TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT && TARGET_FPRS)
22047 {
22048 *total = rs6000_cost->fp;
22049 return false;
22050 }
22051 break;
22052
22053 case EQ:
22054 case GTU:
22055 case LTU:
22056 /* Carry bit requires mode == Pmode.
22057 NEG or PLUS already counted so only add one. */
22058 if (mode == Pmode
22059 && (outer_code == NEG || outer_code == PLUS))
22060 {
22061 *total = COSTS_N_INSNS (1);
22062 return true;
22063 }
22064 if (outer_code == SET)
22065 {
22066 if (XEXP (x, 1) == const0_rtx)
22067 {
22068 *total = COSTS_N_INSNS (2);
22069 return true;
22070 }
22071 else if (mode == Pmode)
22072 {
22073 *total = COSTS_N_INSNS (3);
22074 return false;
22075 }
22076 }
22077 /* FALLTHRU */
22078
22079 case GT:
22080 case LT:
22081 case UNORDERED:
22082 if (outer_code == SET && (XEXP (x, 1) == const0_rtx))
22083 {
22084 *total = COSTS_N_INSNS (2);
22085 return true;
22086 }
22087 /* CC COMPARE. */
22088 if (outer_code == COMPARE)
22089 {
22090 *total = 0;
22091 return true;
22092 }
22093 break;
22094
22095 default:
22096 break;
22097 }
22098
22099 return false;
22100 }
22101
22102 /* A C expression returning the cost of moving data from a register of class
22103 CLASS1 to one of CLASS2. */
22104
22105 int
22106 rs6000_register_move_cost (enum machine_mode mode,
22107 enum reg_class from, enum reg_class to)
22108 {
22109 /* Moves from/to GENERAL_REGS. */
22110 if (reg_classes_intersect_p (to, GENERAL_REGS)
22111 || reg_classes_intersect_p (from, GENERAL_REGS))
22112 {
22113 if (! reg_classes_intersect_p (to, GENERAL_REGS))
22114 from = to;
22115
22116 if (from == FLOAT_REGS || from == ALTIVEC_REGS)
22117 return (rs6000_memory_move_cost (mode, from, 0)
22118 + rs6000_memory_move_cost (mode, GENERAL_REGS, 0));
22119
22120 /* It's more expensive to move CR_REGS than CR0_REGS because of the
22121 shift. */
22122 else if (from == CR_REGS)
22123 return 4;
22124
22125 /* Power6 has slower LR/CTR moves so make them more expensive than
22126 memory in order to bias spills to memory .*/
22127 else if (rs6000_cpu == PROCESSOR_POWER6
22128 && reg_classes_intersect_p (from, LINK_OR_CTR_REGS))
22129 return 6 * hard_regno_nregs[0][mode];
22130
22131 else
22132 /* A move will cost one instruction per GPR moved. */
22133 return 2 * hard_regno_nregs[0][mode];
22134 }
22135
22136 /* Moving between two similar registers is just one instruction. */
22137 else if (reg_classes_intersect_p (to, from))
22138 return (mode == TFmode || mode == TDmode) ? 4 : 2;
22139
22140 /* Everything else has to go through GENERAL_REGS. */
22141 else
22142 return (rs6000_register_move_cost (mode, GENERAL_REGS, to)
22143 + rs6000_register_move_cost (mode, from, GENERAL_REGS));
22144 }
22145
22146 /* A C expressions returning the cost of moving data of MODE from a register to
22147 or from memory. */
22148
22149 int
22150 rs6000_memory_move_cost (enum machine_mode mode, enum reg_class rclass,
22151 int in ATTRIBUTE_UNUSED)
22152 {
22153 if (reg_classes_intersect_p (rclass, GENERAL_REGS))
22154 return 4 * hard_regno_nregs[0][mode];
22155 else if (reg_classes_intersect_p (rclass, FLOAT_REGS))
22156 return 4 * hard_regno_nregs[32][mode];
22157 else if (reg_classes_intersect_p (rclass, ALTIVEC_REGS))
22158 return 4 * hard_regno_nregs[FIRST_ALTIVEC_REGNO][mode];
22159 else
22160 return 4 + rs6000_register_move_cost (mode, rclass, GENERAL_REGS);
22161 }
22162
22163 /* Returns a code for a target-specific builtin that implements
22164 reciprocal of the function, or NULL_TREE if not available. */
22165
22166 static tree
22167 rs6000_builtin_reciprocal (unsigned int fn, bool md_fn,
22168 bool sqrt ATTRIBUTE_UNUSED)
22169 {
22170 if (! (TARGET_RECIP && TARGET_PPC_GFXOPT && !optimize_size
22171 && flag_finite_math_only && !flag_trapping_math
22172 && flag_unsafe_math_optimizations))
22173 return NULL_TREE;
22174
22175 if (md_fn)
22176 return NULL_TREE;
22177 else
22178 switch (fn)
22179 {
22180 case BUILT_IN_SQRTF:
22181 return rs6000_builtin_decls[RS6000_BUILTIN_RSQRTF];
22182
22183 default:
22184 return NULL_TREE;
22185 }
22186 }
22187
22188 /* Newton-Raphson approximation of single-precision floating point divide n/d.
22189 Assumes no trapping math and finite arguments. */
22190
22191 void
22192 rs6000_emit_swdivsf (rtx dst, rtx n, rtx d)
22193 {
22194 rtx x0, e0, e1, y1, u0, v0, one;
22195
22196 x0 = gen_reg_rtx (SFmode);
22197 e0 = gen_reg_rtx (SFmode);
22198 e1 = gen_reg_rtx (SFmode);
22199 y1 = gen_reg_rtx (SFmode);
22200 u0 = gen_reg_rtx (SFmode);
22201 v0 = gen_reg_rtx (SFmode);
22202 one = force_reg (SFmode, CONST_DOUBLE_FROM_REAL_VALUE (dconst1, SFmode));
22203
22204 /* x0 = 1./d estimate */
22205 emit_insn (gen_rtx_SET (VOIDmode, x0,
22206 gen_rtx_UNSPEC (SFmode, gen_rtvec (1, d),
22207 UNSPEC_FRES)));
22208 /* e0 = 1. - d * x0 */
22209 emit_insn (gen_rtx_SET (VOIDmode, e0,
22210 gen_rtx_MINUS (SFmode, one,
22211 gen_rtx_MULT (SFmode, d, x0))));
22212 /* e1 = e0 + e0 * e0 */
22213 emit_insn (gen_rtx_SET (VOIDmode, e1,
22214 gen_rtx_PLUS (SFmode,
22215 gen_rtx_MULT (SFmode, e0, e0), e0)));
22216 /* y1 = x0 + e1 * x0 */
22217 emit_insn (gen_rtx_SET (VOIDmode, y1,
22218 gen_rtx_PLUS (SFmode,
22219 gen_rtx_MULT (SFmode, e1, x0), x0)));
22220 /* u0 = n * y1 */
22221 emit_insn (gen_rtx_SET (VOIDmode, u0,
22222 gen_rtx_MULT (SFmode, n, y1)));
22223 /* v0 = n - d * u0 */
22224 emit_insn (gen_rtx_SET (VOIDmode, v0,
22225 gen_rtx_MINUS (SFmode, n,
22226 gen_rtx_MULT (SFmode, d, u0))));
22227 /* dst = u0 + v0 * y1 */
22228 emit_insn (gen_rtx_SET (VOIDmode, dst,
22229 gen_rtx_PLUS (SFmode,
22230 gen_rtx_MULT (SFmode, v0, y1), u0)));
22231 }
22232
22233 /* Newton-Raphson approximation of double-precision floating point divide n/d.
22234 Assumes no trapping math and finite arguments. */
22235
22236 void
22237 rs6000_emit_swdivdf (rtx dst, rtx n, rtx d)
22238 {
22239 rtx x0, e0, e1, e2, y1, y2, y3, u0, v0, one;
22240
22241 x0 = gen_reg_rtx (DFmode);
22242 e0 = gen_reg_rtx (DFmode);
22243 e1 = gen_reg_rtx (DFmode);
22244 e2 = gen_reg_rtx (DFmode);
22245 y1 = gen_reg_rtx (DFmode);
22246 y2 = gen_reg_rtx (DFmode);
22247 y3 = gen_reg_rtx (DFmode);
22248 u0 = gen_reg_rtx (DFmode);
22249 v0 = gen_reg_rtx (DFmode);
22250 one = force_reg (DFmode, CONST_DOUBLE_FROM_REAL_VALUE (dconst1, DFmode));
22251
22252 /* x0 = 1./d estimate */
22253 emit_insn (gen_rtx_SET (VOIDmode, x0,
22254 gen_rtx_UNSPEC (DFmode, gen_rtvec (1, d),
22255 UNSPEC_FRES)));
22256 /* e0 = 1. - d * x0 */
22257 emit_insn (gen_rtx_SET (VOIDmode, e0,
22258 gen_rtx_MINUS (DFmode, one,
22259 gen_rtx_MULT (SFmode, d, x0))));
22260 /* y1 = x0 + e0 * x0 */
22261 emit_insn (gen_rtx_SET (VOIDmode, y1,
22262 gen_rtx_PLUS (DFmode,
22263 gen_rtx_MULT (DFmode, e0, x0), x0)));
22264 /* e1 = e0 * e0 */
22265 emit_insn (gen_rtx_SET (VOIDmode, e1,
22266 gen_rtx_MULT (DFmode, e0, e0)));
22267 /* y2 = y1 + e1 * y1 */
22268 emit_insn (gen_rtx_SET (VOIDmode, y2,
22269 gen_rtx_PLUS (DFmode,
22270 gen_rtx_MULT (DFmode, e1, y1), y1)));
22271 /* e2 = e1 * e1 */
22272 emit_insn (gen_rtx_SET (VOIDmode, e2,
22273 gen_rtx_MULT (DFmode, e1, e1)));
22274 /* y3 = y2 + e2 * y2 */
22275 emit_insn (gen_rtx_SET (VOIDmode, y3,
22276 gen_rtx_PLUS (DFmode,
22277 gen_rtx_MULT (DFmode, e2, y2), y2)));
22278 /* u0 = n * y3 */
22279 emit_insn (gen_rtx_SET (VOIDmode, u0,
22280 gen_rtx_MULT (DFmode, n, y3)));
22281 /* v0 = n - d * u0 */
22282 emit_insn (gen_rtx_SET (VOIDmode, v0,
22283 gen_rtx_MINUS (DFmode, n,
22284 gen_rtx_MULT (DFmode, d, u0))));
22285 /* dst = u0 + v0 * y3 */
22286 emit_insn (gen_rtx_SET (VOIDmode, dst,
22287 gen_rtx_PLUS (DFmode,
22288 gen_rtx_MULT (DFmode, v0, y3), u0)));
22289 }
22290
22291
22292 /* Newton-Raphson approximation of single-precision floating point rsqrt.
22293 Assumes no trapping math and finite arguments. */
22294
22295 void
22296 rs6000_emit_swrsqrtsf (rtx dst, rtx src)
22297 {
22298 rtx x0, x1, x2, y1, u0, u1, u2, v0, v1, v2, t0,
22299 half, one, halfthree, c1, cond, label;
22300
22301 x0 = gen_reg_rtx (SFmode);
22302 x1 = gen_reg_rtx (SFmode);
22303 x2 = gen_reg_rtx (SFmode);
22304 y1 = gen_reg_rtx (SFmode);
22305 u0 = gen_reg_rtx (SFmode);
22306 u1 = gen_reg_rtx (SFmode);
22307 u2 = gen_reg_rtx (SFmode);
22308 v0 = gen_reg_rtx (SFmode);
22309 v1 = gen_reg_rtx (SFmode);
22310 v2 = gen_reg_rtx (SFmode);
22311 t0 = gen_reg_rtx (SFmode);
22312 halfthree = gen_reg_rtx (SFmode);
22313 cond = gen_rtx_REG (CCFPmode, CR1_REGNO);
22314 label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
22315
22316 /* check 0.0, 1.0, NaN, Inf by testing src * src = src */
22317 emit_insn (gen_rtx_SET (VOIDmode, t0,
22318 gen_rtx_MULT (SFmode, src, src)));
22319
22320 emit_insn (gen_rtx_SET (VOIDmode, cond,
22321 gen_rtx_COMPARE (CCFPmode, t0, src)));
22322 c1 = gen_rtx_EQ (VOIDmode, cond, const0_rtx);
22323 emit_unlikely_jump (c1, label);
22324
22325 half = force_reg (SFmode, CONST_DOUBLE_FROM_REAL_VALUE (dconsthalf, SFmode));
22326 one = force_reg (SFmode, CONST_DOUBLE_FROM_REAL_VALUE (dconst1, SFmode));
22327
22328 /* halfthree = 1.5 = 1.0 + 0.5 */
22329 emit_insn (gen_rtx_SET (VOIDmode, halfthree,
22330 gen_rtx_PLUS (SFmode, one, half)));
22331
22332 /* x0 = rsqrt estimate */
22333 emit_insn (gen_rtx_SET (VOIDmode, x0,
22334 gen_rtx_UNSPEC (SFmode, gen_rtvec (1, src),
22335 UNSPEC_RSQRT)));
22336
22337 /* y1 = 0.5 * src = 1.5 * src - src -> fewer constants */
22338 emit_insn (gen_rtx_SET (VOIDmode, y1,
22339 gen_rtx_MINUS (SFmode,
22340 gen_rtx_MULT (SFmode, src, halfthree),
22341 src)));
22342
22343 /* x1 = x0 * (1.5 - y1 * (x0 * x0)) */
22344 emit_insn (gen_rtx_SET (VOIDmode, u0,
22345 gen_rtx_MULT (SFmode, x0, x0)));
22346 emit_insn (gen_rtx_SET (VOIDmode, v0,
22347 gen_rtx_MINUS (SFmode,
22348 halfthree,
22349 gen_rtx_MULT (SFmode, y1, u0))));
22350 emit_insn (gen_rtx_SET (VOIDmode, x1,
22351 gen_rtx_MULT (SFmode, x0, v0)));
22352
22353 /* x2 = x1 * (1.5 - y1 * (x1 * x1)) */
22354 emit_insn (gen_rtx_SET (VOIDmode, u1,
22355 gen_rtx_MULT (SFmode, x1, x1)));
22356 emit_insn (gen_rtx_SET (VOIDmode, v1,
22357 gen_rtx_MINUS (SFmode,
22358 halfthree,
22359 gen_rtx_MULT (SFmode, y1, u1))));
22360 emit_insn (gen_rtx_SET (VOIDmode, x2,
22361 gen_rtx_MULT (SFmode, x1, v1)));
22362
22363 /* dst = x2 * (1.5 - y1 * (x2 * x2)) */
22364 emit_insn (gen_rtx_SET (VOIDmode, u2,
22365 gen_rtx_MULT (SFmode, x2, x2)));
22366 emit_insn (gen_rtx_SET (VOIDmode, v2,
22367 gen_rtx_MINUS (SFmode,
22368 halfthree,
22369 gen_rtx_MULT (SFmode, y1, u2))));
22370 emit_insn (gen_rtx_SET (VOIDmode, dst,
22371 gen_rtx_MULT (SFmode, x2, v2)));
22372
22373 emit_label (XEXP (label, 0));
22374 }
22375
22376 /* Emit popcount intrinsic on TARGET_POPCNTB targets. DST is the
22377 target, and SRC is the argument operand. */
22378
22379 void
22380 rs6000_emit_popcount (rtx dst, rtx src)
22381 {
22382 enum machine_mode mode = GET_MODE (dst);
22383 rtx tmp1, tmp2;
22384
22385 tmp1 = gen_reg_rtx (mode);
22386
22387 if (mode == SImode)
22388 {
22389 emit_insn (gen_popcntbsi2 (tmp1, src));
22390 tmp2 = expand_mult (SImode, tmp1, GEN_INT (0x01010101),
22391 NULL_RTX, 0);
22392 tmp2 = force_reg (SImode, tmp2);
22393 emit_insn (gen_lshrsi3 (dst, tmp2, GEN_INT (24)));
22394 }
22395 else
22396 {
22397 emit_insn (gen_popcntbdi2 (tmp1, src));
22398 tmp2 = expand_mult (DImode, tmp1,
22399 GEN_INT ((HOST_WIDE_INT)
22400 0x01010101 << 32 | 0x01010101),
22401 NULL_RTX, 0);
22402 tmp2 = force_reg (DImode, tmp2);
22403 emit_insn (gen_lshrdi3 (dst, tmp2, GEN_INT (56)));
22404 }
22405 }
22406
22407
22408 /* Emit parity intrinsic on TARGET_POPCNTB targets. DST is the
22409 target, and SRC is the argument operand. */
22410
22411 void
22412 rs6000_emit_parity (rtx dst, rtx src)
22413 {
22414 enum machine_mode mode = GET_MODE (dst);
22415 rtx tmp;
22416
22417 tmp = gen_reg_rtx (mode);
22418 if (mode == SImode)
22419 {
22420 /* Is mult+shift >= shift+xor+shift+xor? */
22421 if (rs6000_cost->mulsi_const >= COSTS_N_INSNS (3))
22422 {
22423 rtx tmp1, tmp2, tmp3, tmp4;
22424
22425 tmp1 = gen_reg_rtx (SImode);
22426 emit_insn (gen_popcntbsi2 (tmp1, src));
22427
22428 tmp2 = gen_reg_rtx (SImode);
22429 emit_insn (gen_lshrsi3 (tmp2, tmp1, GEN_INT (16)));
22430 tmp3 = gen_reg_rtx (SImode);
22431 emit_insn (gen_xorsi3 (tmp3, tmp1, tmp2));
22432
22433 tmp4 = gen_reg_rtx (SImode);
22434 emit_insn (gen_lshrsi3 (tmp4, tmp3, GEN_INT (8)));
22435 emit_insn (gen_xorsi3 (tmp, tmp3, tmp4));
22436 }
22437 else
22438 rs6000_emit_popcount (tmp, src);
22439 emit_insn (gen_andsi3 (dst, tmp, const1_rtx));
22440 }
22441 else
22442 {
22443 /* Is mult+shift >= shift+xor+shift+xor+shift+xor? */
22444 if (rs6000_cost->muldi >= COSTS_N_INSNS (5))
22445 {
22446 rtx tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
22447
22448 tmp1 = gen_reg_rtx (DImode);
22449 emit_insn (gen_popcntbdi2 (tmp1, src));
22450
22451 tmp2 = gen_reg_rtx (DImode);
22452 emit_insn (gen_lshrdi3 (tmp2, tmp1, GEN_INT (32)));
22453 tmp3 = gen_reg_rtx (DImode);
22454 emit_insn (gen_xordi3 (tmp3, tmp1, tmp2));
22455
22456 tmp4 = gen_reg_rtx (DImode);
22457 emit_insn (gen_lshrdi3 (tmp4, tmp3, GEN_INT (16)));
22458 tmp5 = gen_reg_rtx (DImode);
22459 emit_insn (gen_xordi3 (tmp5, tmp3, tmp4));
22460
22461 tmp6 = gen_reg_rtx (DImode);
22462 emit_insn (gen_lshrdi3 (tmp6, tmp5, GEN_INT (8)));
22463 emit_insn (gen_xordi3 (tmp, tmp5, tmp6));
22464 }
22465 else
22466 rs6000_emit_popcount (tmp, src);
22467 emit_insn (gen_anddi3 (dst, tmp, const1_rtx));
22468 }
22469 }
22470
22471 /* Return an RTX representing where to find the function value of a
22472 function returning MODE. */
22473 static rtx
22474 rs6000_complex_function_value (enum machine_mode mode)
22475 {
22476 unsigned int regno;
22477 rtx r1, r2;
22478 enum machine_mode inner = GET_MODE_INNER (mode);
22479 unsigned int inner_bytes = GET_MODE_SIZE (inner);
22480
22481 if (FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT && TARGET_FPRS)
22482 regno = FP_ARG_RETURN;
22483 else
22484 {
22485 regno = GP_ARG_RETURN;
22486
22487 /* 32-bit is OK since it'll go in r3/r4. */
22488 if (TARGET_32BIT && inner_bytes >= 4)
22489 return gen_rtx_REG (mode, regno);
22490 }
22491
22492 if (inner_bytes >= 8)
22493 return gen_rtx_REG (mode, regno);
22494
22495 r1 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno),
22496 const0_rtx);
22497 r2 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno + 1),
22498 GEN_INT (inner_bytes));
22499 return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r2));
22500 }
22501
22502 /* Define how to find the value returned by a function.
22503 VALTYPE is the data type of the value (as a tree).
22504 If the precise function being called is known, FUNC is its FUNCTION_DECL;
22505 otherwise, FUNC is 0.
22506
22507 On the SPE, both FPs and vectors are returned in r3.
22508
22509 On RS/6000 an integer value is in r3 and a floating-point value is in
22510 fp1, unless -msoft-float. */
22511
22512 rtx
22513 rs6000_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
22514 {
22515 enum machine_mode mode;
22516 unsigned int regno;
22517
22518 /* Special handling for structs in darwin64. */
22519 if (rs6000_darwin64_abi
22520 && TYPE_MODE (valtype) == BLKmode
22521 && TREE_CODE (valtype) == RECORD_TYPE
22522 && int_size_in_bytes (valtype) > 0)
22523 {
22524 CUMULATIVE_ARGS valcum;
22525 rtx valret;
22526
22527 valcum.words = 0;
22528 valcum.fregno = FP_ARG_MIN_REG;
22529 valcum.vregno = ALTIVEC_ARG_MIN_REG;
22530 /* Do a trial code generation as if this were going to be passed as
22531 an argument; if any part goes in memory, we return NULL. */
22532 valret = rs6000_darwin64_record_arg (&valcum, valtype, 1, true);
22533 if (valret)
22534 return valret;
22535 /* Otherwise fall through to standard ABI rules. */
22536 }
22537
22538 if (TARGET_32BIT && TARGET_POWERPC64 && TYPE_MODE (valtype) == DImode)
22539 {
22540 /* Long long return value need be split in -mpowerpc64, 32bit ABI. */
22541 return gen_rtx_PARALLEL (DImode,
22542 gen_rtvec (2,
22543 gen_rtx_EXPR_LIST (VOIDmode,
22544 gen_rtx_REG (SImode, GP_ARG_RETURN),
22545 const0_rtx),
22546 gen_rtx_EXPR_LIST (VOIDmode,
22547 gen_rtx_REG (SImode,
22548 GP_ARG_RETURN + 1),
22549 GEN_INT (4))));
22550 }
22551 if (TARGET_32BIT && TARGET_POWERPC64 && TYPE_MODE (valtype) == DCmode)
22552 {
22553 return gen_rtx_PARALLEL (DCmode,
22554 gen_rtvec (4,
22555 gen_rtx_EXPR_LIST (VOIDmode,
22556 gen_rtx_REG (SImode, GP_ARG_RETURN),
22557 const0_rtx),
22558 gen_rtx_EXPR_LIST (VOIDmode,
22559 gen_rtx_REG (SImode,
22560 GP_ARG_RETURN + 1),
22561 GEN_INT (4)),
22562 gen_rtx_EXPR_LIST (VOIDmode,
22563 gen_rtx_REG (SImode,
22564 GP_ARG_RETURN + 2),
22565 GEN_INT (8)),
22566 gen_rtx_EXPR_LIST (VOIDmode,
22567 gen_rtx_REG (SImode,
22568 GP_ARG_RETURN + 3),
22569 GEN_INT (12))));
22570 }
22571
22572 mode = TYPE_MODE (valtype);
22573 if ((INTEGRAL_TYPE_P (valtype) && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
22574 || POINTER_TYPE_P (valtype))
22575 mode = TARGET_32BIT ? SImode : DImode;
22576
22577 if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT && TARGET_FPRS)
22578 /* _Decimal128 must use an even/odd register pair. */
22579 regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
22580 else if (SCALAR_FLOAT_TYPE_P (valtype) && TARGET_HARD_FLOAT && TARGET_FPRS)
22581 regno = FP_ARG_RETURN;
22582 else if (TREE_CODE (valtype) == COMPLEX_TYPE
22583 && targetm.calls.split_complex_arg)
22584 return rs6000_complex_function_value (mode);
22585 else if (TREE_CODE (valtype) == VECTOR_TYPE
22586 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI
22587 && ALTIVEC_VECTOR_MODE (mode))
22588 regno = ALTIVEC_ARG_RETURN;
22589 else if (TARGET_E500_DOUBLE && TARGET_HARD_FLOAT
22590 && (mode == DFmode || mode == DCmode
22591 || mode == TFmode || mode == TCmode))
22592 return spe_build_register_parallel (mode, GP_ARG_RETURN);
22593 else
22594 regno = GP_ARG_RETURN;
22595
22596 return gen_rtx_REG (mode, regno);
22597 }
22598
22599 /* Define how to find the value returned by a library function
22600 assuming the value has mode MODE. */
22601 rtx
22602 rs6000_libcall_value (enum machine_mode mode)
22603 {
22604 unsigned int regno;
22605
22606 if (TARGET_32BIT && TARGET_POWERPC64 && mode == DImode)
22607 {
22608 /* Long long return value need be split in -mpowerpc64, 32bit ABI. */
22609 return gen_rtx_PARALLEL (DImode,
22610 gen_rtvec (2,
22611 gen_rtx_EXPR_LIST (VOIDmode,
22612 gen_rtx_REG (SImode, GP_ARG_RETURN),
22613 const0_rtx),
22614 gen_rtx_EXPR_LIST (VOIDmode,
22615 gen_rtx_REG (SImode,
22616 GP_ARG_RETURN + 1),
22617 GEN_INT (4))));
22618 }
22619
22620 if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT && TARGET_FPRS)
22621 /* _Decimal128 must use an even/odd register pair. */
22622 regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
22623 else if (SCALAR_FLOAT_MODE_P (mode)
22624 && TARGET_HARD_FLOAT && TARGET_FPRS)
22625 regno = FP_ARG_RETURN;
22626 else if (ALTIVEC_VECTOR_MODE (mode)
22627 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)
22628 regno = ALTIVEC_ARG_RETURN;
22629 else if (COMPLEX_MODE_P (mode) && targetm.calls.split_complex_arg)
22630 return rs6000_complex_function_value (mode);
22631 else if (TARGET_E500_DOUBLE && TARGET_HARD_FLOAT
22632 && (mode == DFmode || mode == DCmode
22633 || mode == TFmode || mode == TCmode))
22634 return spe_build_register_parallel (mode, GP_ARG_RETURN);
22635 else
22636 regno = GP_ARG_RETURN;
22637
22638 return gen_rtx_REG (mode, regno);
22639 }
22640
22641 /* Define the offset between two registers, FROM to be eliminated and its
22642 replacement TO, at the start of a routine. */
22643 HOST_WIDE_INT
22644 rs6000_initial_elimination_offset (int from, int to)
22645 {
22646 rs6000_stack_t *info = rs6000_stack_info ();
22647 HOST_WIDE_INT offset;
22648
22649 if (from == HARD_FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
22650 offset = info->push_p ? 0 : -info->total_size;
22651 else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
22652 {
22653 offset = info->push_p ? 0 : -info->total_size;
22654 if (FRAME_GROWS_DOWNWARD)
22655 offset += info->fixed_size + info->vars_size + info->parm_size;
22656 }
22657 else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
22658 offset = FRAME_GROWS_DOWNWARD
22659 ? info->fixed_size + info->vars_size + info->parm_size
22660 : 0;
22661 else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
22662 offset = info->total_size;
22663 else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
22664 offset = info->push_p ? info->total_size : 0;
22665 else if (from == RS6000_PIC_OFFSET_TABLE_REGNUM)
22666 offset = 0;
22667 else
22668 gcc_unreachable ();
22669
22670 return offset;
22671 }
22672
22673 /* Return true if TYPE is a SPE or AltiVec opaque type. */
22674
22675 static bool
22676 rs6000_is_opaque_type (const_tree type)
22677 {
22678 return (type == opaque_V2SI_type_node
22679 || type == opaque_V2SF_type_node
22680 || type == opaque_V4SI_type_node);
22681 }
22682
22683 static rtx
22684 rs6000_dwarf_register_span (rtx reg)
22685 {
22686 unsigned regno;
22687
22688 if (TARGET_SPE
22689 && (SPE_VECTOR_MODE (GET_MODE (reg))
22690 || (TARGET_E500_DOUBLE
22691 && (GET_MODE (reg) == DFmode || GET_MODE (reg) == DDmode))))
22692 ;
22693 else
22694 return NULL_RTX;
22695
22696 regno = REGNO (reg);
22697
22698 /* The duality of the SPE register size wreaks all kinds of havoc.
22699 This is a way of distinguishing r0 in 32-bits from r0 in
22700 64-bits. */
22701 return
22702 gen_rtx_PARALLEL (VOIDmode,
22703 BYTES_BIG_ENDIAN
22704 ? gen_rtvec (2,
22705 gen_rtx_REG (SImode, regno + 1200),
22706 gen_rtx_REG (SImode, regno))
22707 : gen_rtvec (2,
22708 gen_rtx_REG (SImode, regno),
22709 gen_rtx_REG (SImode, regno + 1200)));
22710 }
22711
22712 /* Fill in sizes for SPE register high parts in table used by unwinder. */
22713
22714 static void
22715 rs6000_init_dwarf_reg_sizes_extra (tree address)
22716 {
22717 if (TARGET_SPE)
22718 {
22719 int i;
22720 enum machine_mode mode = TYPE_MODE (char_type_node);
22721 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
22722 rtx mem = gen_rtx_MEM (BLKmode, addr);
22723 rtx value = gen_int_mode (4, mode);
22724
22725 for (i = 1201; i < 1232; i++)
22726 {
22727 int column = DWARF_REG_TO_UNWIND_COLUMN (i);
22728 HOST_WIDE_INT offset
22729 = DWARF_FRAME_REGNUM (column) * GET_MODE_SIZE (mode);
22730
22731 emit_move_insn (adjust_address (mem, mode, offset), value);
22732 }
22733 }
22734 }
22735
22736 /* Map internal gcc register numbers to DWARF2 register numbers. */
22737
22738 unsigned int
22739 rs6000_dbx_register_number (unsigned int regno)
22740 {
22741 if (regno <= 63 || write_symbols != DWARF2_DEBUG)
22742 return regno;
22743 if (regno == MQ_REGNO)
22744 return 100;
22745 if (regno == LR_REGNO)
22746 return 108;
22747 if (regno == CTR_REGNO)
22748 return 109;
22749 if (CR_REGNO_P (regno))
22750 return regno - CR0_REGNO + 86;
22751 if (regno == XER_REGNO)
22752 return 101;
22753 if (ALTIVEC_REGNO_P (regno))
22754 return regno - FIRST_ALTIVEC_REGNO + 1124;
22755 if (regno == VRSAVE_REGNO)
22756 return 356;
22757 if (regno == VSCR_REGNO)
22758 return 67;
22759 if (regno == SPE_ACC_REGNO)
22760 return 99;
22761 if (regno == SPEFSCR_REGNO)
22762 return 612;
22763 /* SPE high reg number. We get these values of regno from
22764 rs6000_dwarf_register_span. */
22765 gcc_assert (regno >= 1200 && regno < 1232);
22766 return regno;
22767 }
22768
22769 /* target hook eh_return_filter_mode */
22770 static enum machine_mode
22771 rs6000_eh_return_filter_mode (void)
22772 {
22773 return TARGET_32BIT ? SImode : word_mode;
22774 }
22775
22776 /* Target hook for scalar_mode_supported_p. */
22777 static bool
22778 rs6000_scalar_mode_supported_p (enum machine_mode mode)
22779 {
22780 if (DECIMAL_FLOAT_MODE_P (mode))
22781 return true;
22782 else
22783 return default_scalar_mode_supported_p (mode);
22784 }
22785
22786 /* Target hook for vector_mode_supported_p. */
22787 static bool
22788 rs6000_vector_mode_supported_p (enum machine_mode mode)
22789 {
22790
22791 if (TARGET_PAIRED_FLOAT && PAIRED_VECTOR_MODE (mode))
22792 return true;
22793
22794 if (TARGET_SPE && SPE_VECTOR_MODE (mode))
22795 return true;
22796
22797 else if (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (mode))
22798 return true;
22799
22800 else
22801 return false;
22802 }
22803
22804 /* Target hook for invalid_arg_for_unprototyped_fn. */
22805 static const char *
22806 invalid_arg_for_unprototyped_fn (const_tree typelist, const_tree funcdecl, const_tree val)
22807 {
22808 return (!rs6000_darwin64_abi
22809 && typelist == 0
22810 && TREE_CODE (TREE_TYPE (val)) == VECTOR_TYPE
22811 && (funcdecl == NULL_TREE
22812 || (TREE_CODE (funcdecl) == FUNCTION_DECL
22813 && DECL_BUILT_IN_CLASS (funcdecl) != BUILT_IN_MD)))
22814 ? N_("AltiVec argument passed to unprototyped function")
22815 : NULL;
22816 }
22817
22818 /* For TARGET_SECURE_PLT 32-bit PIC code we can save PIC register
22819 setup by using __stack_chk_fail_local hidden function instead of
22820 calling __stack_chk_fail directly. Otherwise it is better to call
22821 __stack_chk_fail directly. */
22822
22823 static tree
22824 rs6000_stack_protect_fail (void)
22825 {
22826 return (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
22827 ? default_hidden_stack_protect_fail ()
22828 : default_external_stack_protect_fail ();
22829 }
22830
22831 void
22832 rs6000_final_prescan_insn (rtx insn, rtx *operand ATTRIBUTE_UNUSED,
22833 int num_operands ATTRIBUTE_UNUSED)
22834 {
22835 if (rs6000_warn_cell_microcode)
22836 {
22837 const char *temp;
22838 int insn_code_number = recog_memoized (insn);
22839 location_t location = locator_location (INSN_LOCATOR (insn));
22840
22841 /* Punt on insns we cannot recognize. */
22842 if (insn_code_number < 0)
22843 return;
22844
22845 temp = get_insn_template (insn_code_number, insn);
22846
22847 if (get_attr_cell_micro (insn) == CELL_MICRO_ALWAYS)
22848 warning_at (location, OPT_mwarn_cell_microcode,
22849 "emitting microcode insn %s\t[%s] #%d",
22850 temp, insn_data[INSN_CODE (insn)].name, INSN_UID (insn));
22851 else if (get_attr_cell_micro (insn) == CELL_MICRO_CONDITIONAL)
22852 warning_at (location, OPT_mwarn_cell_microcode,
22853 "emitting conditional microcode insn %s\t[%s] #%d",
22854 temp, insn_data[INSN_CODE (insn)].name, INSN_UID (insn));
22855 }
22856 }
22857
22858 #include "gt-rs6000.h"