]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/rs6000/rs6000.h
Merge in gcc2-ss-010999
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 93-8, 1999 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26
27 /* Names to predefine in the preprocessor for this target machine. */
28
29 #define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 -D_LONG_LONG \
30 -Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
31
32 /* Print subsidiary information on the compiler version in use. */
33 #define TARGET_VERSION ;
34
35 /* Default string to use for cpu if not specified. */
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT ((char *)0)
38 #endif
39
40 /* Tell the assembler to assume that all undefined names are external.
41
42 Don't do this until the fixed IBM assembler is more generally available.
43 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
44 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
45 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
46 will no longer be needed. */
47
48 /* #define ASM_SPEC "-u %(asm_cpu)" */
49
50 /* Define appropriate architecture macros for preprocessor depending on
51 target switches. */
52
53 #define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
54
55 /* Common CPP definitions used by CPP_SPEC among the various targets
56 for handling -mcpu=xxx switches. */
57 #define CPP_CPU_SPEC \
58 "%{!mcpu*: \
59 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
60 %{mpower2: -D_ARCH_PWR2} \
61 %{mpowerpc*: -D_ARCH_PPC} \
62 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
63 %{!mno-power: %{!mpower2: %(cpp_default)}}} \
64 %{mcpu=common: -D_ARCH_COM} \
65 %{mcpu=power: -D_ARCH_PWR} \
66 %{mcpu=power2: -D_ARCH_PWR2} \
67 %{mcpu=powerpc: -D_ARCH_PPC} \
68 %{mcpu=rios: -D_ARCH_PWR} \
69 %{mcpu=rios1: -D_ARCH_PWR} \
70 %{mcpu=rios2: -D_ARCH_PWR2} \
71 %{mcpu=rsc: -D_ARCH_PWR} \
72 %{mcpu=rsc1: -D_ARCH_PWR} \
73 %{mcpu=401: -D_ARCH_PPC} \
74 %{mcpu=403: -D_ARCH_PPC} \
75 %{mcpu=505: -D_ARCH_PPC} \
76 %{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
77 %{mcpu=602: -D_ARCH_PPC} \
78 %{mcpu=603: -D_ARCH_PPC} \
79 %{mcpu=603e: -D_ARCH_PPC} \
80 %{mcpu=ec603e: -D_ARCH_PPC} \
81 %{mcpu=604: -D_ARCH_PPC} \
82 %{mcpu=604e: -D_ARCH_PPC} \
83 %{mcpu=620: -D_ARCH_PPC} \
84 %{mcpu=740: -D_ARCH_PPC} \
85 %{mcpu=750: -D_ARCH_PPC} \
86 %{mcpu=801: -D_ARCH_PPC} \
87 %{mcpu=821: -D_ARCH_PPC} \
88 %{mcpu=823: -D_ARCH_PPC} \
89 %{mcpu=860: -D_ARCH_PPC}"
90
91 #ifndef CPP_DEFAULT_SPEC
92 #define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
93 #endif
94
95 #ifndef CPP_SYSV_SPEC
96 #define CPP_SYSV_SPEC ""
97 #endif
98
99 #ifndef CPP_ENDIAN_SPEC
100 #define CPP_ENDIAN_SPEC ""
101 #endif
102
103 #ifndef CPP_ENDIAN_DEFAULT_SPEC
104 #define CPP_ENDIAN_DEFAULT_SPEC ""
105 #endif
106
107 #ifndef CPP_SYSV_DEFAULT_SPEC
108 #define CPP_SYSV_DEFAULT_SPEC ""
109 #endif
110
111 /* Common ASM definitions used by ASM_SPEC among the various targets
112 for handling -mcpu=xxx switches. */
113 #define ASM_CPU_SPEC \
114 "%{!mcpu*: \
115 %{mpower: %{!mpower2: -mpwr}} \
116 %{mpower2: -mpwrx} \
117 %{mpowerpc*: -mppc} \
118 %{mno-power: %{!mpowerpc*: -mcom}} \
119 %{!mno-power: %{!mpower2: %(asm_default)}}} \
120 %{mcpu=common: -mcom} \
121 %{mcpu=power: -mpwr} \
122 %{mcpu=power2: -mpwrx} \
123 %{mcpu=powerpc: -mppc} \
124 %{mcpu=rios: -mpwr} \
125 %{mcpu=rios1: -mpwr} \
126 %{mcpu=rios2: -mpwrx} \
127 %{mcpu=rsc: -mpwr} \
128 %{mcpu=rsc1: -mpwr} \
129 %{mcpu=401: -mppc} \
130 %{mcpu=403: -mppc} \
131 %{mcpu=505: -mppc} \
132 %{mcpu=601: -m601} \
133 %{mcpu=602: -mppc} \
134 %{mcpu=603: -mppc} \
135 %{mcpu=603e: -mppc} \
136 %{mcpu=ec603e: -mppc} \
137 %{mcpu=604: -mppc} \
138 %{mcpu=604e: -mppc} \
139 %{mcpu=620: -mppc} \
140 %{mcpu=740: -mppc} \
141 %{mcpu=750: -mppc} \
142 %{mcpu=801: -mppc} \
143 %{mcpu=821: -mppc} \
144 %{mcpu=823: -mppc} \
145 %{mcpu=860: -mppc}"
146
147 #ifndef ASM_DEFAULT_SPEC
148 #define ASM_DEFAULT_SPEC ""
149 #endif
150
151 /* This macro defines names of additional specifications to put in the specs
152 that can be used in various specifications like CC1_SPEC. Its definition
153 is an initializer with a subgrouping for each command option.
154
155 Each subgrouping contains a string constant, that defines the
156 specification name, and a string constant that used by the GNU CC driver
157 program.
158
159 Do not define this macro if it does not need to do anything. */
160
161 #ifndef SUBTARGET_EXTRA_SPECS
162 #define SUBTARGET_EXTRA_SPECS
163 #endif
164
165 #define EXTRA_SPECS \
166 { "cpp_cpu", CPP_CPU_SPEC }, \
167 { "cpp_default", CPP_DEFAULT_SPEC }, \
168 { "cpp_sysv", CPP_SYSV_SPEC }, \
169 { "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
170 { "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
171 { "cpp_endian", CPP_ENDIAN_SPEC }, \
172 { "asm_cpu", ASM_CPU_SPEC }, \
173 { "asm_default", ASM_DEFAULT_SPEC }, \
174 { "link_syscalls", LINK_SYSCALLS_SPEC }, \
175 { "link_libg", LINK_LIBG_SPEC }, \
176 SUBTARGET_EXTRA_SPECS
177
178 /* Default location of syscalls.exp under AIX */
179 #ifndef CROSS_COMPILE
180 #define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
181 #else
182 #define LINK_SYSCALLS_SPEC ""
183 #endif
184
185 /* Default location of libg.exp under AIX */
186 #ifndef CROSS_COMPILE
187 #define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
188 #else
189 #define LINK_LIBG_SPEC ""
190 #endif
191
192 /* Define the options for the binder: Start text at 512, align all segments
193 to 512 bytes, and warn if there is text relocation.
194
195 The -bhalt:4 option supposedly changes the level at which ld will abort,
196 but it also suppresses warnings about multiply defined symbols and is
197 used by the AIX cc command. So we use it here.
198
199 -bnodelcsect undoes a poor choice of default relating to multiply-defined
200 csects. See AIX documentation for more information about this.
201
202 -bM:SRE tells the linker that the output file is Shared REusable. Note
203 that to actually build a shared library you will also need to specify an
204 export list with the -Wl,-bE option. */
205
206 #define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
207 %{static:-bnso %(link_syscalls) } \
208 %{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
209
210 /* Profiled library versions are used by linking with special directories. */
211 #define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
212 %{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
213
214 /* gcc must do the search itself to find libgcc.a, not use -l. */
215 #define LIBGCC_SPEC "libgcc.a%s"
216
217 /* Don't turn -B into -L if the argument specifies a relative file name. */
218 #define RELATIVE_PREFIX_NOT_LINKDIR
219
220 /* Architecture type. */
221
222 extern int target_flags;
223
224 /* Use POWER architecture instructions and MQ register. */
225 #define MASK_POWER 0x00000001
226
227 /* Use POWER2 extensions to POWER architecture. */
228 #define MASK_POWER2 0x00000002
229
230 /* Use PowerPC architecture instructions. */
231 #define MASK_POWERPC 0x00000004
232
233 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
234 #define MASK_PPC_GPOPT 0x00000008
235
236 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
237 #define MASK_PPC_GFXOPT 0x00000010
238
239 /* Use PowerPC-64 architecture instructions. */
240 #define MASK_POWERPC64 0x00000020
241
242 /* Use revised mnemonic names defined for PowerPC architecture. */
243 #define MASK_NEW_MNEMONICS 0x00000040
244
245 /* Disable placing fp constants in the TOC; can be turned on when the
246 TOC overflows. */
247 #define MASK_NO_FP_IN_TOC 0x00000080
248
249 /* Disable placing symbol+offset constants in the TOC; can be turned on when
250 the TOC overflows. */
251 #define MASK_NO_SUM_IN_TOC 0x00000100
252
253 /* Output only one TOC entry per module. Normally linking fails if
254 there are more than 16K unique variables/constants in an executable. With
255 this option, linking fails only if there are more than 16K modules, or
256 if there are more than 16K unique variables/constant in a single module.
257
258 This is at the cost of having 2 extra loads and one extra store per
259 function, and one less allocable register. */
260 #define MASK_MINIMAL_TOC 0x00000200
261
262 /* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
263 #define MASK_64BIT 0x00000400
264
265 /* Disable use of FPRs. */
266 #define MASK_SOFT_FLOAT 0x00000800
267
268 /* Enable load/store multiple, even on powerpc */
269 #define MASK_MULTIPLE 0x00001000
270 #define MASK_MULTIPLE_SET 0x00002000
271
272 /* Use string instructions for block moves */
273 #define MASK_STRING 0x00004000
274 #define MASK_STRING_SET 0x00008000
275
276 /* Disable update form of load/store */
277 #define MASK_NO_UPDATE 0x00010000
278
279 /* Disable fused multiply/add operations */
280 #define MASK_NO_FUSED_MADD 0x00020000
281
282 #define TARGET_POWER (target_flags & MASK_POWER)
283 #define TARGET_POWER2 (target_flags & MASK_POWER2)
284 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
285 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
286 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
287 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
288 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
289 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
290 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
291 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
292 #define TARGET_64BIT (target_flags & MASK_64BIT)
293 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
294 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
295 #define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
296 #define TARGET_STRING (target_flags & MASK_STRING)
297 #define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
298 #define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
299 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
300
301 #define TARGET_32BIT (! TARGET_64BIT)
302 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
303 #define TARGET_UPDATE (! TARGET_NO_UPDATE)
304 #define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
305
306 /* Pseudo target to indicate whether the object format is ELF
307 (to get around not having conditional compilation in the md file) */
308 #ifndef TARGET_ELF
309 #define TARGET_ELF 0
310 #endif
311
312 /* If this isn't V.4, don't support -mno-toc. */
313 #ifndef TARGET_NO_TOC
314 #define TARGET_NO_TOC 0
315 #define TARGET_TOC 1
316 #endif
317
318 /* Pseudo target to say whether this is Windows NT */
319 #ifndef TARGET_WINDOWS_NT
320 #define TARGET_WINDOWS_NT 0
321 #endif
322
323 /* Pseudo target to say whether this is MAC */
324 #ifndef TARGET_MACOS
325 #define TARGET_MACOS 0
326 #endif
327
328 /* Pseudo target to say whether this is AIX */
329 #ifndef TARGET_AIX
330 #if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
331 #define TARGET_AIX 0
332 #else
333 #define TARGET_AIX 1
334 #endif
335 #endif
336
337 #ifndef TARGET_XL_CALL
338 #define TARGET_XL_CALL 0
339 #endif
340
341 /* Run-time compilation parameters selecting different hardware subsets.
342
343 Macro to define tables used to set the flags.
344 This is a list in braces of pairs in braces,
345 each pair being { "NAME", VALUE }
346 where VALUE is the bits to set or minus the bits to clear.
347 An empty string NAME is used to identify the default VALUE. */
348
349 /* This is meant to be redefined in the host dependent files */
350 #ifndef SUBTARGET_SWITCHES
351 #define SUBTARGET_SWITCHES
352 #endif
353
354 #define TARGET_SWITCHES \
355 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
356 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
357 | MASK_POWER2)}, \
358 {"no-power2", - MASK_POWER2}, \
359 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
360 | MASK_STRING)}, \
361 {"powerpc", MASK_POWERPC}, \
362 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
363 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
364 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
365 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
366 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
367 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
368 {"powerpc64", MASK_POWERPC64}, \
369 {"no-powerpc64", - MASK_POWERPC64}, \
370 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
371 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
372 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
373 | MASK_MINIMAL_TOC)}, \
374 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
375 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
376 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
377 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
378 {"minimal-toc", MASK_MINIMAL_TOC}, \
379 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
380 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
381 {"hard-float", - MASK_SOFT_FLOAT}, \
382 {"soft-float", MASK_SOFT_FLOAT}, \
383 {"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
384 {"no-multiple", - MASK_MULTIPLE}, \
385 {"no-multiple", MASK_MULTIPLE_SET}, \
386 {"string", MASK_STRING | MASK_STRING_SET}, \
387 {"no-string", - MASK_STRING}, \
388 {"no-string", MASK_STRING_SET}, \
389 {"update", - MASK_NO_UPDATE}, \
390 {"no-update", MASK_NO_UPDATE}, \
391 {"fused-madd", - MASK_NO_FUSED_MADD}, \
392 {"no-fused-madd", MASK_NO_FUSED_MADD}, \
393 SUBTARGET_SWITCHES \
394 {"", TARGET_DEFAULT}}
395
396 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
397
398 /* Processor type. Order must match cpu attribute in MD file. */
399 enum processor_type
400 {
401 PROCESSOR_RIOS1,
402 PROCESSOR_RIOS2,
403 PROCESSOR_RS64A,
404 PROCESSOR_MPCCORE,
405 PROCESSOR_PPC403,
406 PROCESSOR_PPC601,
407 PROCESSOR_PPC603,
408 PROCESSOR_PPC604,
409 PROCESSOR_PPC604e,
410 PROCESSOR_PPC620,
411 PROCESSOR_PPC630,
412 PROCESSOR_PPC750
413 };
414
415 extern enum processor_type rs6000_cpu;
416
417 /* Recast the processor type to the cpu attribute. */
418 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
419
420 /* Define generic processor types based upon current deployment. */
421 #define PROCESSOR_COMMON PROCESSOR_PPC601
422 #define PROCESSOR_POWER PROCESSOR_RIOS1
423 #define PROCESSOR_POWERPC PROCESSOR_PPC604
424 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
425
426 /* Define the default processor. This is overridden by other tm.h files. */
427 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
428 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
429
430 /* Specify the dialect of assembler to use. New mnemonics is dialect one
431 and the old mnemonics are dialect zero. */
432 #define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
433
434 /* This macro is similar to `TARGET_SWITCHES' but defines names of
435 command options that have values. Its definition is an
436 initializer with a subgrouping for each command option.
437
438 Each subgrouping contains a string constant, that defines the
439 fixed part of the option name, and the address of a variable.
440 The variable, type `char *', is set to the variable part of the
441 given option if the fixed part matches. The actual option name
442 is made by appending `-m' to the specified name.
443
444 Here is an example which defines `-mshort-data-NUMBER'. If the
445 given option is `-mshort-data-512', the variable `m88k_short_data'
446 will be set to the string `"512"'.
447
448 extern char *m88k_short_data;
449 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
450
451 /* This is meant to be overridden in target specific files. */
452 #ifndef SUBTARGET_OPTIONS
453 #define SUBTARGET_OPTIONS
454 #endif
455
456 #define TARGET_OPTIONS \
457 { \
458 {"cpu=", &rs6000_select[1].string}, \
459 {"tune=", &rs6000_select[2].string}, \
460 {"debug-", &rs6000_debug_name}, \
461 {"debug=", &rs6000_debug_name}, \
462 SUBTARGET_OPTIONS \
463 }
464
465 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
466 struct rs6000_cpu_select
467 {
468 const char *string;
469 const char *name;
470 int set_tune_p;
471 int set_arch_p;
472 };
473
474 extern struct rs6000_cpu_select rs6000_select[];
475
476 /* Debug support */
477 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
478 extern int rs6000_debug_stack; /* debug stack applications */
479 extern int rs6000_debug_arg; /* debug argument handling */
480
481 #define TARGET_DEBUG_STACK rs6000_debug_stack
482 #define TARGET_DEBUG_ARG rs6000_debug_arg
483
484 /* Sometimes certain combinations of command options do not make sense
485 on a particular target machine. You can define a macro
486 `OVERRIDE_OPTIONS' to take account of this. This macro, if
487 defined, is executed once just after all the command options have
488 been parsed.
489
490 Don't use this macro to turn on various extra optimizations for
491 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
492
493 On the RS/6000 this is used to define the target cpu type. */
494
495 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
496
497 /* Define this to change the optimizations performed by default. */
498 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
499
500
501 /* Show we can debug even without a frame pointer. */
502 #define CAN_DEBUG_WITHOUT_FP
503 \f
504 /* target machine storage layout */
505
506 /* Define to support cross compilation to an RS6000 target. */
507 #define REAL_ARITHMETIC
508
509 /* Define this macro if it is advisable to hold scalars in registers
510 in a wider mode than that declared by the program. In such cases,
511 the value is constrained to be within the bounds of the declared
512 type, but kept valid in the wider mode. The signedness of the
513 extension may differ from that of the type. */
514
515 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
516 if (GET_MODE_CLASS (MODE) == MODE_INT \
517 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
518 (MODE) = word_mode;
519
520 /* Define this if function arguments should also be promoted using the above
521 procedure. */
522
523 #define PROMOTE_FUNCTION_ARGS
524
525 /* Likewise, if the function return value is promoted. */
526
527 #define PROMOTE_FUNCTION_RETURN
528
529 /* Define this if most significant bit is lowest numbered
530 in instructions that operate on numbered bit-fields. */
531 /* That is true on RS/6000. */
532 #define BITS_BIG_ENDIAN 1
533
534 /* Define this if most significant byte of a word is the lowest numbered. */
535 /* That is true on RS/6000. */
536 #define BYTES_BIG_ENDIAN 1
537
538 /* Define this if most significant word of a multiword number is lowest
539 numbered.
540
541 For RS/6000 we can decide arbitrarily since there are no machine
542 instructions for them. Might as well be consistent with bits and bytes. */
543 #define WORDS_BIG_ENDIAN 1
544
545 /* number of bits in an addressable storage unit */
546 #define BITS_PER_UNIT 8
547
548 /* Width in bits of a "word", which is the contents of a machine register.
549 Note that this is not necessarily the width of data type `int';
550 if using 16-bit ints on a 68000, this would still be 32.
551 But on a machine with 16-bit registers, this would be 16. */
552 #define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
553 #define MAX_BITS_PER_WORD 64
554
555 /* Width of a word, in units (bytes). */
556 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
557 #define MIN_UNITS_PER_WORD 4
558 #define UNITS_PER_FP_WORD 8
559
560 /* Type used for ptrdiff_t, as a string used in a declaration. */
561 #define PTRDIFF_TYPE "int"
562
563 /* Type used for wchar_t, as a string used in a declaration. */
564 #define WCHAR_TYPE "short unsigned int"
565
566 /* Width of wchar_t in bits. */
567 #define WCHAR_TYPE_SIZE 16
568
569 /* A C expression for the size in bits of the type `short' on the
570 target machine. If you don't define this, the default is half a
571 word. (If this would be less than one storage unit, it is
572 rounded up to one unit.) */
573 #define SHORT_TYPE_SIZE 16
574
575 /* A C expression for the size in bits of the type `int' on the
576 target machine. If you don't define this, the default is one
577 word. */
578 #define INT_TYPE_SIZE 32
579
580 /* A C expression for the size in bits of the type `long' on the
581 target machine. If you don't define this, the default is one
582 word. */
583 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
584 #define MAX_LONG_TYPE_SIZE 64
585
586 /* A C expression for the size in bits of the type `long long' on the
587 target machine. If you don't define this, the default is two
588 words. */
589 #define LONG_LONG_TYPE_SIZE 64
590
591 /* A C expression for the size in bits of the type `char' on the
592 target machine. If you don't define this, the default is one
593 quarter of a word. (If this would be less than one storage unit,
594 it is rounded up to one unit.) */
595 #define CHAR_TYPE_SIZE BITS_PER_UNIT
596
597 /* A C expression for the size in bits of the type `float' on the
598 target machine. If you don't define this, the default is one
599 word. */
600 #define FLOAT_TYPE_SIZE 32
601
602 /* A C expression for the size in bits of the type `double' on the
603 target machine. If you don't define this, the default is two
604 words. */
605 #define DOUBLE_TYPE_SIZE 64
606
607 /* A C expression for the size in bits of the type `long double' on
608 the target machine. If you don't define this, the default is two
609 words. */
610 #define LONG_DOUBLE_TYPE_SIZE 64
611
612 /* Width in bits of a pointer.
613 See also the macro `Pmode' defined below. */
614 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
615
616 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
617 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
618
619 /* Boundary (in *bits*) on which stack pointer should be aligned. */
620 #define STACK_BOUNDARY (TARGET_32BIT ? 64 : 128)
621
622 /* Allocation boundary (in *bits*) for the code of a function. */
623 #define FUNCTION_BOUNDARY 32
624
625 /* No data type wants to be aligned rounder than this. */
626 #define BIGGEST_ALIGNMENT 64
627
628 /* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
629 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
630 (TYPE_MODE (TREE_CODE (TREE_TYPE (FIELD)) == ARRAY_TYPE \
631 ? get_inner_array_type (FIELD) \
632 : TREE_TYPE (FIELD)) == DFmode \
633 ? MIN ((COMPUTED), 32) : (COMPUTED))
634
635 /* Alignment of field after `int : 0' in a structure. */
636 #define EMPTY_FIELD_BOUNDARY 32
637
638 /* Every structure's size must be a multiple of this. */
639 #define STRUCTURE_SIZE_BOUNDARY 8
640
641 /* A bitfield declared as `int' forces `int' alignment for the struct. */
642 #define PCC_BITFIELD_TYPE_MATTERS 1
643
644 /* AIX increases natural record alignment to doubleword if the first
645 field is an FP double while the FP fields remain word aligned. */
646 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
647 ((TREE_CODE (STRUCT) == RECORD_TYPE \
648 || TREE_CODE (STRUCT) == UNION_TYPE \
649 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
650 && TYPE_FIELDS (STRUCT) != 0 \
651 && DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
652 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
653 : MAX ((COMPUTED), (SPECIFIED)))
654
655 /* Make strings word-aligned so strcpy from constants will be faster. */
656 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
657 (TREE_CODE (EXP) == STRING_CST \
658 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
659
660 /* Make arrays of chars word-aligned for the same reasons. */
661 #define DATA_ALIGNMENT(TYPE, ALIGN) \
662 (TREE_CODE (TYPE) == ARRAY_TYPE \
663 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
664 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
665
666 /* Non-zero if move instructions will actually fail to work
667 when given unaligned data. */
668 #define STRICT_ALIGNMENT 0
669 \f
670 /* Standard register usage. */
671
672 /* Number of actual hardware registers.
673 The hardware registers are assigned numbers for the compiler
674 from 0 to just below FIRST_PSEUDO_REGISTER.
675 All registers that the compiler knows about must be given numbers,
676 even those that are not normally considered general registers.
677
678 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
679 an MQ register, a count register, a link register, and 8 condition
680 register fields, which we view here as separate registers.
681
682 In addition, the difference between the frame and argument pointers is
683 a function of the number of registers saved, so we need to have a
684 register for AP that will later be eliminated in favor of SP or FP.
685 This is a normal register, but it is fixed.
686
687 We also create a pseudo register for float/int conversions, that will
688 really represent the memory location used. It is represented here as
689 a register, in order to work around problems in allocating stack storage
690 in inline functions. */
691
692 #define FIRST_PSEUDO_REGISTER 77
693
694 /* 1 for registers that have pervasive standard uses
695 and are not available for the register allocator.
696
697 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
698
699 cr5 is not supposed to be used.
700
701 On System V implementations, r13 is fixed and not available for use. */
702
703 #ifndef FIXED_R13
704 #define FIXED_R13 0
705 #endif
706
707 #define FIXED_REGISTERS \
708 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
709 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
710 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
711 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
712 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
713
714 /* 1 for registers not available across function calls.
715 These must include the FIXED_REGISTERS and also any
716 registers that can be used without being saved.
717 The latter must include the registers where values are returned
718 and the register where structure-value addresses are passed.
719 Aside from that, you can include as many other registers as you like. */
720
721 #define CALL_USED_REGISTERS \
722 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
723 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
724 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
725 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
726 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
727
728 /* List the order in which to allocate registers. Each register must be
729 listed once, even those in FIXED_REGISTERS.
730
731 We allocate in the following order:
732 fp0 (not saved or used for anything)
733 fp13 - fp2 (not saved; incoming fp arg registers)
734 fp1 (not saved; return value)
735 fp31 - fp14 (saved; order given to save least number)
736 cr7, cr6 (not saved or special)
737 cr1 (not saved, but used for FP operations)
738 cr0 (not saved, but used for arithmetic operations)
739 cr4, cr3, cr2 (saved)
740 r0 (not saved; cannot be base reg)
741 r9 (not saved; best for TImode)
742 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
743 r3 (not saved; return value register)
744 r31 - r13 (saved; order given to save least number)
745 r12 (not saved; if used for DImode or DFmode would use r13)
746 mq (not saved; best to use it if we can)
747 ctr (not saved; when we have the choice ctr is better)
748 lr (saved)
749 cr5, r1, r2, ap, fpmem (fixed) */
750
751 #define REG_ALLOC_ORDER \
752 {32, \
753 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
754 33, \
755 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
756 50, 49, 48, 47, 46, \
757 75, 74, 69, 68, 72, 71, 70, \
758 0, \
759 9, 11, 10, 8, 7, 6, 5, 4, \
760 3, \
761 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
762 18, 17, 16, 15, 14, 13, 12, \
763 64, 66, 65, \
764 73, 1, 2, 67, 76}
765
766 /* True if register is floating-point. */
767 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
768
769 /* True if register is a condition register. */
770 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
771
772 /* True if register is condition register 0. */
773 #define CR0_REGNO_P(N) ((N) == 68)
774
775 /* True if register is a condition register, but not cr0. */
776 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
777
778 /* True if register is an integer register. */
779 #define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
780
781 /* True if register is the temporary memory location used for int/float
782 conversion. */
783 #define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
784
785 /* Return number of consecutive hard regs needed starting at reg REGNO
786 to hold something of mode MODE.
787 This is ordinarily the length in words of a value of mode MODE
788 but can be less for certain modes in special long registers.
789
790 POWER and PowerPC GPRs hold 32 bits worth;
791 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
792
793 #define HARD_REGNO_NREGS(REGNO, MODE) \
794 (FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
795 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
796 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
797
798 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
799 For POWER and PowerPC, the GPRs can hold any mode, but the float
800 registers only can hold floating modes and DImode, and CR register only
801 can hold CC modes. We cannot put TImode anywhere except general
802 register and it must be able to fit within the register set. */
803
804 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
805 (FP_REGNO_P (REGNO) ? \
806 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
807 || (GET_MODE_CLASS (MODE) == MODE_INT \
808 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
809 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
810 : FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
811 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
812 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
813 : 1)
814
815 /* Value is 1 if it is a good idea to tie two pseudo registers
816 when one has mode MODE1 and one has mode MODE2.
817 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
818 for any hard reg, then this must be 0 for correct output. */
819 #define MODES_TIEABLE_P(MODE1, MODE2) \
820 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
821 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
822 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
823 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
824 : GET_MODE_CLASS (MODE1) == MODE_CC \
825 ? GET_MODE_CLASS (MODE2) == MODE_CC \
826 : GET_MODE_CLASS (MODE2) == MODE_CC \
827 ? GET_MODE_CLASS (MODE1) == MODE_CC \
828 : 1)
829
830 /* A C expression returning the cost of moving data from a register of class
831 CLASS1 to one of CLASS2.
832
833 On the RS/6000, copying between floating-point and fixed-point
834 registers is expensive. */
835
836 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
837 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
838 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
839 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
840 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
841 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
842 || (CLASS1) == LINK_OR_CTR_REGS) \
843 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
844 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
845 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
846 : 2)
847
848 /* A C expressions returning the cost of moving data of MODE from a register to
849 or from memory.
850
851 On the RS/6000, bump this up a bit. */
852
853 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
854 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
855 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
856 ? 3 : 2) \
857 + 4)
858
859 /* Specify the cost of a branch insn; roughly the number of extra insns that
860 should be added to avoid a branch.
861
862 Set this to 3 on the RS/6000 since that is roughly the average cost of an
863 unscheduled conditional branch. */
864
865 #define BRANCH_COST 3
866
867 /* A C statement (sans semicolon) to update the integer variable COST
868 based on the relationship between INSN that is dependent on
869 DEP_INSN through the dependence LINK. The default is to make no
870 adjustment to COST. On the RS/6000, ignore the cost of anti- and
871 output-dependencies. In fact, output dependencies on the CR do have
872 a cost, but it is probably not worthwhile to track it. */
873
874 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
875 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
876
877 /* A C statement (sans semicolon) to update the integer scheduling priority
878 INSN_PRIORITY (INSN). Reduce the priority to execute the INSN earlier,
879 increase the priority to execute INSN later. Do not define this macro if
880 you do not need to adjust the scheduling priorities of insns. */
881
882 #define ADJUST_PRIORITY(INSN) \
883 INSN_PRIORITY (INSN) = rs6000_adjust_priority (INSN, INSN_PRIORITY (INSN))
884
885 /* Define this macro to change register usage conditional on target flags.
886 Set MQ register fixed (already call_used) if not POWER architecture
887 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
888 64-bit AIX reserves GPR13 for thread-private data.
889 Conditionally disable FPRs. */
890
891 #define CONDITIONAL_REGISTER_USAGE \
892 { \
893 if (! TARGET_POWER) \
894 fixed_regs[64] = 1; \
895 if (TARGET_64BIT) \
896 fixed_regs[13] = call_used_regs[13] = 1; \
897 if (TARGET_SOFT_FLOAT) \
898 for (i = 32; i < 64; i++) \
899 fixed_regs[i] = call_used_regs[i] = 1; \
900 if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
901 && flag_pic == 1) \
902 fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
903 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
904 }
905
906 /* Specify the registers used for certain standard purposes.
907 The values of these macros are register numbers. */
908
909 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
910 /* #define PC_REGNUM */
911
912 /* Register to use for pushing function arguments. */
913 #define STACK_POINTER_REGNUM 1
914
915 /* Base register for access to local variables of the function. */
916 #define FRAME_POINTER_REGNUM 31
917
918 /* Value should be nonzero if functions must have frame pointers.
919 Zero means the frame pointer need not be set up (and parms
920 may be accessed via the stack pointer) in functions that seem suitable.
921 This is computed in `reload', in reload1.c. */
922 #define FRAME_POINTER_REQUIRED 0
923
924 /* Base register for access to arguments of the function. */
925 #define ARG_POINTER_REGNUM 67
926
927 /* Place to put static chain when calling a function that requires it. */
928 #define STATIC_CHAIN_REGNUM 11
929
930 /* count register number for special purposes */
931 #define COUNT_REGISTER_REGNUM 66
932
933 /* Special register that represents memory, used for float/int conversions. */
934 #define FPMEM_REGNUM 76
935
936 /* Place that structure value return address is placed.
937
938 On the RS/6000, it is passed as an extra parameter. */
939 #define STRUCT_VALUE 0
940 \f
941 /* Define the classes of registers for register constraints in the
942 machine description. Also define ranges of constants.
943
944 One of the classes must always be named ALL_REGS and include all hard regs.
945 If there is more than one class, another class must be named NO_REGS
946 and contain no registers.
947
948 The name GENERAL_REGS must be the name of a class (or an alias for
949 another name such as ALL_REGS). This is the class of registers
950 that is allowed by "g" or "r" in a register constraint.
951 Also, registers outside this class are allocated only when
952 instructions express preferences for them.
953
954 The classes must be numbered in nondecreasing order; that is,
955 a larger-numbered class must never be contained completely
956 in a smaller-numbered class.
957
958 For any two classes, it is very desirable that there be another
959 class that represents their union. */
960
961 /* The RS/6000 has three types of registers, fixed-point, floating-point,
962 and condition registers, plus three special registers, MQ, CTR, and the
963 link register.
964
965 However, r0 is special in that it cannot be used as a base register.
966 So make a class for registers valid as base registers.
967
968 Also, cr0 is the only condition code register that can be used in
969 arithmetic insns, so make a separate class for it.
970
971 There is a special 'register' (76), which is not a register, but a
972 placeholder for memory allocated to convert between floating point and
973 integral types. This works around a problem where if we allocate memory
974 with allocate_stack_{local,temp} and the function is an inline function, the
975 memory allocated will clobber memory in the caller. So we use a special
976 register, and if that is used, we allocate stack space for it. */
977
978 enum reg_class
979 {
980 NO_REGS,
981 BASE_REGS,
982 GENERAL_REGS,
983 FLOAT_REGS,
984 NON_SPECIAL_REGS,
985 MQ_REGS,
986 LINK_REGS,
987 CTR_REGS,
988 LINK_OR_CTR_REGS,
989 SPECIAL_REGS,
990 SPEC_OR_GEN_REGS,
991 CR0_REGS,
992 CR_REGS,
993 NON_FLOAT_REGS,
994 FPMEM_REGS,
995 FLOAT_OR_FPMEM_REGS,
996 ALL_REGS,
997 LIM_REG_CLASSES
998 };
999
1000 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1001
1002 /* Give names of register classes as strings for dump file. */
1003
1004 #define REG_CLASS_NAMES \
1005 { \
1006 "NO_REGS", \
1007 "BASE_REGS", \
1008 "GENERAL_REGS", \
1009 "FLOAT_REGS", \
1010 "NON_SPECIAL_REGS", \
1011 "MQ_REGS", \
1012 "LINK_REGS", \
1013 "CTR_REGS", \
1014 "LINK_OR_CTR_REGS", \
1015 "SPECIAL_REGS", \
1016 "SPEC_OR_GEN_REGS", \
1017 "CR0_REGS", \
1018 "CR_REGS", \
1019 "NON_FLOAT_REGS", \
1020 "FPMEM_REGS", \
1021 "FLOAT_OR_FPMEM_REGS", \
1022 "ALL_REGS" \
1023 }
1024
1025 /* Define which registers fit in which classes.
1026 This is an initializer for a vector of HARD_REG_SET
1027 of length N_REG_CLASSES. */
1028
1029 #define REG_CLASS_CONTENTS \
1030 { \
1031 { 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1032 { 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
1033 { 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
1034 { 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
1035 { 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
1036 { 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
1037 { 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
1038 { 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
1039 { 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
1040 { 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
1041 { 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
1042 { 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
1043 { 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
1044 { 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
1045 { 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
1046 { 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
1047 { 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
1048 }
1049
1050 /* The same information, inverted:
1051 Return the class number of the smallest class containing
1052 reg number REGNO. This could be a conditional expression
1053 or could index an array. */
1054
1055 #define REGNO_REG_CLASS(REGNO) \
1056 ((REGNO) == 0 ? GENERAL_REGS \
1057 : (REGNO) < 32 ? BASE_REGS \
1058 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1059 : (REGNO) == 68 ? CR0_REGS \
1060 : CR_REGNO_P (REGNO) ? CR_REGS \
1061 : (REGNO) == 64 ? MQ_REGS \
1062 : (REGNO) == 65 ? LINK_REGS \
1063 : (REGNO) == 66 ? CTR_REGS \
1064 : (REGNO) == 67 ? BASE_REGS \
1065 : (REGNO) == 76 ? FPMEM_REGS \
1066 : NO_REGS)
1067
1068 /* The class value for index registers, and the one for base regs. */
1069 #define INDEX_REG_CLASS GENERAL_REGS
1070 #define BASE_REG_CLASS BASE_REGS
1071
1072 /* Get reg_class from a letter such as appears in the machine description. */
1073
1074 #define REG_CLASS_FROM_LETTER(C) \
1075 ((C) == 'f' ? FLOAT_REGS \
1076 : (C) == 'b' ? BASE_REGS \
1077 : (C) == 'h' ? SPECIAL_REGS \
1078 : (C) == 'q' ? MQ_REGS \
1079 : (C) == 'c' ? CTR_REGS \
1080 : (C) == 'l' ? LINK_REGS \
1081 : (C) == 'x' ? CR0_REGS \
1082 : (C) == 'y' ? CR_REGS \
1083 : (C) == 'z' ? FPMEM_REGS \
1084 : NO_REGS)
1085
1086 /* The letters I, J, K, L, M, N, and P in a register constraint string
1087 can be used to stand for particular ranges of immediate operands.
1088 This macro defines what the ranges are.
1089 C is the letter, and VALUE is a constant value.
1090 Return 1 if VALUE is in the range specified by C.
1091
1092 `I' is a signed 16-bit constant
1093 `J' is a constant with only the high-order 16 bits non-zero
1094 `K' is a constant with only the low-order 16 bits non-zero
1095 `L' is a signed 16-bit constant shifted left 16 bits
1096 `M' is a constant that is greater than 31
1097 `N' is a constant that is an exact power of two
1098 `O' is the constant zero
1099 `P' is a constant whose negation is a signed 16-bit constant */
1100
1101 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1102 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1103 : (C) == 'J' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff0000)) == 0 \
1104 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
1105 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1106 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1107 : (C) == 'M' ? (VALUE) > 31 \
1108 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
1109 : (C) == 'O' ? (VALUE) == 0 \
1110 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1111 : 0)
1112
1113 /* Similar, but for floating constants, and defining letters G and H.
1114 Here VALUE is the CONST_DOUBLE rtx itself.
1115
1116 We flag for special constants when we can copy the constant into
1117 a general register in two insns for DF/DI and one insn for SF.
1118
1119 'H' is used for DI/DF constants that take 3 insns. */
1120
1121 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1122 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1123 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1124 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1125 : 0)
1126
1127 /* Optional extra constraints for this machine.
1128
1129 'Q' means that is a memory operand that is just an offset from a reg.
1130 'R' is for AIX TOC entries.
1131 'S' is a constant that can be placed into a 64-bit mask operand
1132 'T' is a consatnt that can be placed into a 32-bit mask operand
1133 'U' is for V.4 small data references. */
1134
1135 #define EXTRA_CONSTRAINT(OP, C) \
1136 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1137 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
1138 : (C) == 'S' ? mask64_operand (OP, VOIDmode) \
1139 : (C) == 'T' ? mask_operand (OP, VOIDmode) \
1140 : (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1141 && small_data_operand (OP, GET_MODE (OP))) \
1142 : 0)
1143
1144 /* Given an rtx X being reloaded into a reg required to be
1145 in class CLASS, return the class of reg to actually use.
1146 In general this is just CLASS; but on some machines
1147 in some cases it is preferable to use a more restrictive class.
1148
1149 On the RS/6000, we have to return NO_REGS when we want to reload a
1150 floating-point CONST_DOUBLE to force it to be copied to memory. */
1151
1152 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1153 ((GET_CODE (X) == CONST_DOUBLE \
1154 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1155 ? NO_REGS : (CLASS))
1156
1157 /* Return the register class of a scratch register needed to copy IN into
1158 or out of a register in CLASS in MODE. If it can be done directly,
1159 NO_REGS is returned. */
1160
1161 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1162 secondary_reload_class (CLASS, MODE, IN)
1163
1164 /* If we are copying between FP registers and anything else, we need a memory
1165 location. */
1166
1167 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1168 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
1169
1170 /* Return the maximum number of consecutive registers
1171 needed to represent mode MODE in a register of class CLASS.
1172
1173 On RS/6000, this is the size of MODE in words,
1174 except in the FP regs, where a single reg is enough for two words. */
1175 #define CLASS_MAX_NREGS(CLASS, MODE) \
1176 (((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
1177 || (CLASS) == FLOAT_OR_FPMEM_REGS) \
1178 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1179 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1180
1181 /* If defined, gives a class of registers that cannot be used as the
1182 operand of a SUBREG that changes the size of the object. */
1183
1184 #define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
1185 \f
1186 /* Stack layout; function entry, exit and calling. */
1187
1188 /* Enumeration to give which calling sequence to use. */
1189 enum rs6000_abi {
1190 ABI_NONE,
1191 ABI_AIX, /* IBM's AIX */
1192 ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
1193 ABI_V4, /* System V.4/eabi */
1194 ABI_NT, /* Windows/NT */
1195 ABI_SOLARIS /* Solaris */
1196 };
1197
1198 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1199
1200 /* Default ABI to compile code for */
1201 #ifndef DEFAULT_ABI
1202 #define DEFAULT_ABI ABI_AIX
1203 /* The prefix to add to user-visible assembler symbols. */
1204 #define USER_LABEL_PREFIX "."
1205 #endif
1206
1207 /* Structure used to define the rs6000 stack */
1208 typedef struct rs6000_stack {
1209 int first_gp_reg_save; /* first callee saved GP register used */
1210 int first_fp_reg_save; /* first callee saved FP register used */
1211 int lr_save_p; /* true if the link reg needs to be saved */
1212 int cr_save_p; /* true if the CR reg needs to be saved */
1213 int toc_save_p; /* true if the TOC needs to be saved */
1214 int push_p; /* true if we need to allocate stack space */
1215 int calls_p; /* true if the function makes any calls */
1216 int main_p; /* true if this is main */
1217 int main_save_p; /* true if this is main and we need to save args */
1218 int fpmem_p; /* true if float/int conversion temp needed */
1219 enum rs6000_abi abi; /* which ABI to use */
1220 int gp_save_offset; /* offset to save GP regs from initial SP */
1221 int fp_save_offset; /* offset to save FP regs from initial SP */
1222 int lr_save_offset; /* offset to save LR from initial SP */
1223 int cr_save_offset; /* offset to save CR from initial SP */
1224 int toc_save_offset; /* offset to save the TOC pointer */
1225 int varargs_save_offset; /* offset to save the varargs registers */
1226 int main_save_offset; /* offset to save main's args */
1227 int fpmem_offset; /* offset for float/int conversion temp */
1228 int reg_size; /* register size (4 or 8) */
1229 int varargs_size; /* size to hold V.4 args passed in regs */
1230 int vars_size; /* variable save area size */
1231 int parm_size; /* outgoing parameter size */
1232 int main_size; /* size to hold saving main's args */
1233 int save_size; /* save area size */
1234 int fixed_size; /* fixed size of stack frame */
1235 int gp_size; /* size of saved GP registers */
1236 int fp_size; /* size of saved FP registers */
1237 int cr_size; /* size to hold CR if not in save_size */
1238 int lr_size; /* size to hold LR if not in save_size */
1239 int fpmem_size; /* size to hold float/int conversion */
1240 int toc_size; /* size to hold TOC if not in save_size */
1241 int total_size; /* total bytes allocated for stack */
1242 } rs6000_stack_t;
1243
1244 /* Define this if pushing a word on the stack
1245 makes the stack pointer a smaller address. */
1246 #define STACK_GROWS_DOWNWARD
1247
1248 /* Define this if the nominal address of the stack frame
1249 is at the high-address end of the local variables;
1250 that is, each additional local variable allocated
1251 goes at a more negative offset in the frame.
1252
1253 On the RS/6000, we grow upwards, from the area after the outgoing
1254 arguments. */
1255 /* #define FRAME_GROWS_DOWNWARD */
1256
1257 /* Size of the outgoing register save area */
1258 #define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
1259
1260 /* Size of the fixed area on the stack */
1261 #define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
1262
1263 /* MEM representing address to save the TOC register */
1264 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1265 plus_constant (stack_pointer_rtx, \
1266 (TARGET_32BIT ? 20 : 40)))
1267
1268 /* Offset & size for fpmem stack locations used for converting between
1269 float and integral types. */
1270 extern int rs6000_fpmem_offset;
1271 extern int rs6000_fpmem_size;
1272
1273 /* Size of the V.4 varargs area if needed */
1274 #define RS6000_VARARGS_AREA 0
1275
1276 /* Whether a V.4 varargs area is needed */
1277 extern int rs6000_sysv_varargs_p;
1278
1279 /* Align an address */
1280 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1281
1282 /* Initialize data used by insn expanders. This is called from
1283 init_emit, once for each function, before code is generated. */
1284 #define INIT_EXPANDERS rs6000_init_expanders ()
1285
1286 /* Size of V.4 varargs area in bytes */
1287 #define RS6000_VARARGS_SIZE \
1288 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1289
1290 /* Offset within stack frame to start allocating local variables at.
1291 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1292 first local allocated. Otherwise, it is the offset to the BEGINNING
1293 of the first local allocated.
1294
1295 On the RS/6000, the frame pointer is the same as the stack pointer,
1296 except for dynamic allocations. So we start after the fixed area and
1297 outgoing parameter area. */
1298
1299 #define STARTING_FRAME_OFFSET \
1300 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
1301 + RS6000_VARARGS_AREA \
1302 + RS6000_SAVE_AREA)
1303
1304 /* Offset from the stack pointer register to an item dynamically
1305 allocated on the stack, e.g., by `alloca'.
1306
1307 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1308 length of the outgoing arguments. The default is correct for most
1309 machines. See `function.c' for details. */
1310 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1311 (RS6000_ALIGN (current_function_outgoing_args_size, 8) \
1312 + (STACK_POINTER_OFFSET))
1313
1314 /* If we generate an insn to push BYTES bytes,
1315 this says how many the stack pointer really advances by.
1316 On RS/6000, don't define this because there are no push insns. */
1317 /* #define PUSH_ROUNDING(BYTES) */
1318
1319 /* Offset of first parameter from the argument pointer register value.
1320 On the RS/6000, we define the argument pointer to the start of the fixed
1321 area. */
1322 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1323
1324 /* Define this if stack space is still allocated for a parameter passed
1325 in a register. The value is the number of bytes allocated to this
1326 area. */
1327 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1328
1329 /* Define this if the above stack space is to be considered part of the
1330 space allocated by the caller. */
1331 #define OUTGOING_REG_PARM_STACK_SPACE
1332
1333 /* This is the difference between the logical top of stack and the actual sp.
1334
1335 For the RS/6000, sp points past the fixed area. */
1336 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1337
1338 /* Define this if the maximum size of all the outgoing args is to be
1339 accumulated and pushed during the prologue. The amount can be
1340 found in the variable current_function_outgoing_args_size. */
1341 #define ACCUMULATE_OUTGOING_ARGS
1342
1343 /* Value is the number of bytes of arguments automatically
1344 popped when returning from a subroutine call.
1345 FUNDECL is the declaration node of the function (as a tree),
1346 FUNTYPE is the data type of the function (as a tree),
1347 or for a library call it is an identifier node for the subroutine name.
1348 SIZE is the number of bytes of arguments passed on the stack. */
1349
1350 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1351
1352 /* Define how to find the value returned by a function.
1353 VALTYPE is the data type of the value (as a tree).
1354 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1355 otherwise, FUNC is 0.
1356
1357 On RS/6000 an integer value is in r3 and a floating-point value is in
1358 fp1, unless -msoft-float. */
1359
1360 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1361 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1362 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1363 || POINTER_TYPE_P (VALTYPE) \
1364 ? word_mode : TYPE_MODE (VALTYPE), \
1365 TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
1366
1367 /* Define how to find the value returned by a library function
1368 assuming the value has mode MODE. */
1369
1370 #define LIBCALL_VALUE(MODE) \
1371 gen_rtx_REG (MODE, (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1372 && TARGET_HARD_FLOAT ? 33 : 3))
1373
1374 /* The definition of this macro implies that there are cases where
1375 a scalar value cannot be returned in registers.
1376
1377 For the RS/6000, any structure or union type is returned in memory, except for
1378 Solaris, which returns structures <= 8 bytes in registers. */
1379
1380 #define RETURN_IN_MEMORY(TYPE) \
1381 (TYPE_MODE (TYPE) == BLKmode \
1382 && (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
1383
1384 /* Mode of stack savearea.
1385 FUNCTION is VOIDmode because calling convention maintains SP.
1386 BLOCK needs Pmode for SP.
1387 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1388 #define STACK_SAVEAREA_MODE(LEVEL) \
1389 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1390 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1391
1392 /* Minimum and maximum general purpose registers used to hold arguments. */
1393 #define GP_ARG_MIN_REG 3
1394 #define GP_ARG_MAX_REG 10
1395 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1396
1397 /* Minimum and maximum floating point registers used to hold arguments. */
1398 #define FP_ARG_MIN_REG 33
1399 #define FP_ARG_AIX_MAX_REG 45
1400 #define FP_ARG_V4_MAX_REG 40
1401 #define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
1402 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1403
1404 /* Return registers */
1405 #define GP_ARG_RETURN GP_ARG_MIN_REG
1406 #define FP_ARG_RETURN FP_ARG_MIN_REG
1407
1408 /* Flags for the call/call_value rtl operations set up by function_arg */
1409 #define CALL_NORMAL 0x00000000 /* no special processing */
1410 #define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
1411 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1412 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1413 #define CALL_LONG 0x00000008 /* always call indirect */
1414
1415 /* Define cutoff for using external functions to save floating point */
1416 #define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
1417
1418 /* 1 if N is a possible register number for a function value
1419 as seen by the caller.
1420
1421 On RS/6000, this is r3 and fp1. */
1422 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
1423
1424 /* 1 if N is a possible register number for function argument passing.
1425 On RS/6000, these are r3-r10 and fp1-fp13. */
1426 #define FUNCTION_ARG_REGNO_P(N) \
1427 (((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
1428 || ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
1429
1430 \f
1431 /* Define a data type for recording info about an argument list
1432 during the scan of that argument list. This data type should
1433 hold all necessary information about the function itself
1434 and about the args processed so far, enough to enable macros
1435 such as FUNCTION_ARG to determine where the next arg should go.
1436
1437 On the RS/6000, this is a structure. The first element is the number of
1438 total argument words, the second is used to store the next
1439 floating-point register number, and the third says how many more args we
1440 have prototype types for.
1441
1442 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1443 the next availible GP register, `fregno' is the next available FP
1444 register, and `words' is the number of words used on the stack.
1445
1446 The varargs/stdarg support requires that this structure's size
1447 be a multiple of sizeof(int). */
1448
1449 typedef struct rs6000_args
1450 {
1451 int words; /* # words used for passing GP registers */
1452 int fregno; /* next available FP register */
1453 int nargs_prototype; /* # args left in the current prototype */
1454 int orig_nargs; /* Original value of nargs_prototype */
1455 int prototype; /* Whether a prototype was defined */
1456 int call_cookie; /* Do special things for this call */
1457 int sysv_gregno; /* next available GP register */
1458 } CUMULATIVE_ARGS;
1459
1460 /* Define intermediate macro to compute the size (in registers) of an argument
1461 for the RS/6000. */
1462
1463 #define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
1464 (! (NAMED) ? 0 \
1465 : (MODE) != BLKmode \
1466 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1467 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1468
1469 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1470 for a call to a function whose data type is FNTYPE.
1471 For a library call, FNTYPE is 0. */
1472
1473 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1474 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
1475
1476 /* Similar, but when scanning the definition of a procedure. We always
1477 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1478
1479 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1480 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
1481
1482 /* Update the data in CUM to advance over an argument
1483 of mode MODE and data type TYPE.
1484 (TYPE is null for libcalls where that information may not be available.) */
1485
1486 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1487 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1488
1489 /* Non-zero if we can use a floating-point register to pass this arg. */
1490 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1491 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1492 && (CUM).fregno <= FP_ARG_MAX_REG \
1493 && TARGET_HARD_FLOAT)
1494
1495 /* Determine where to put an argument to a function.
1496 Value is zero to push the argument on the stack,
1497 or a hard register in which to store the argument.
1498
1499 MODE is the argument's machine mode.
1500 TYPE is the data type of the argument (as a tree).
1501 This is null for libcalls where that information may
1502 not be available.
1503 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1504 the preceding args and about the function being called.
1505 NAMED is nonzero if this argument is a named parameter
1506 (otherwise it is an extra parameter matching an ellipsis).
1507
1508 On RS/6000 the first eight words of non-FP are normally in registers
1509 and the rest are pushed. The first 13 FP args are in registers.
1510
1511 If this is floating-point and no prototype is specified, we use
1512 both an FP and integer register (or possibly FP reg and stack). Library
1513 functions (when TYPE is zero) always have the proper types for args,
1514 so we can pass the FP value just in one register. emit_library_function
1515 doesn't support EXPR_LIST anyway. */
1516
1517 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1518 function_arg (&CUM, MODE, TYPE, NAMED)
1519
1520 /* For an arg passed partly in registers and partly in memory,
1521 this is the number of registers used.
1522 For args passed entirely in registers or entirely in memory, zero. */
1523
1524 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1525 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1526
1527 /* A C expression that indicates when an argument must be passed by
1528 reference. If nonzero for an argument, a copy of that argument is
1529 made in memory and a pointer to the argument is passed instead of
1530 the argument itself. The pointer is passed in whatever way is
1531 appropriate for passing a pointer to that type. */
1532
1533 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1534 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1535
1536 /* If defined, a C expression which determines whether, and in which
1537 direction, to pad out an argument with extra space. The value
1538 should be of type `enum direction': either `upward' to pad above
1539 the argument, `downward' to pad below, or `none' to inhibit
1540 padding. */
1541
1542 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1543 (enum direction) function_arg_padding (MODE, TYPE)
1544
1545 /* If defined, a C expression that gives the alignment boundary, in bits,
1546 of an argument with the specified mode and type. If it is not defined,
1547 PARM_BOUNDARY is used for all arguments. */
1548
1549 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1550 function_arg_boundary (MODE, TYPE)
1551
1552 /* Perform any needed actions needed for a function that is receiving a
1553 variable number of arguments.
1554
1555 CUM is as above.
1556
1557 MODE and TYPE are the mode and type of the current parameter.
1558
1559 PRETEND_SIZE is a variable that should be set to the amount of stack
1560 that must be pushed by the prolog to pretend that our caller pushed
1561 it.
1562
1563 Normally, this macro will push all remaining incoming registers on the
1564 stack and set PRETEND_SIZE to the length of the registers pushed. */
1565
1566 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1567 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1568
1569 /* Define the `__builtin_va_list' type for the ABI. */
1570 #define BUILD_VA_LIST_TYPE(VALIST) \
1571 (VALIST) = rs6000_build_va_list ()
1572
1573 /* Implement `va_start' for varargs and stdarg. */
1574 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1575 rs6000_va_start (stdarg, valist, nextarg)
1576
1577 /* Implement `va_arg'. */
1578 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1579 rs6000_va_arg (valist, type)
1580
1581 /* This macro generates the assembly code for function entry.
1582 FILE is a stdio stream to output the code to.
1583 SIZE is an int: how many units of temporary storage to allocate.
1584 Refer to the array `regs_ever_live' to determine which registers
1585 to save; `regs_ever_live[I]' is nonzero if register number I
1586 is ever used in the function. This macro is responsible for
1587 knowing which registers should not be saved even if used. */
1588
1589 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1590
1591 /* Output assembler code to FILE to increment profiler label # LABELNO
1592 for profiling a function entry. */
1593
1594 #define FUNCTION_PROFILER(FILE, LABELNO) \
1595 output_function_profiler ((FILE), (LABELNO));
1596
1597 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1598 the stack pointer does not matter. No definition is equivalent to
1599 always zero.
1600
1601 On the RS/6000, this is non-zero because we can restore the stack from
1602 its backpointer, which we maintain. */
1603 #define EXIT_IGNORE_STACK 1
1604
1605 /* This macro generates the assembly code for function exit,
1606 on machines that need it. If FUNCTION_EPILOGUE is not defined
1607 then individual return instructions are generated for each
1608 return statement. Args are same as for FUNCTION_PROLOGUE.
1609
1610 The function epilogue should not depend on the current stack pointer!
1611 It should use the frame pointer only. This is mandatory because
1612 of alloca; we also take advantage of it to omit stack adjustments
1613 before returning. */
1614
1615 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1616
1617 /* A C compound statement that outputs the assembler code for a thunk function,
1618 used to implement C++ virtual function calls with multiple inheritance. The
1619 thunk acts as a wrapper around a virtual function, adjusting the implicit
1620 object parameter before handing control off to the real function.
1621
1622 First, emit code to add the integer DELTA to the location that contains the
1623 incoming first argument. Assume that this argument contains a pointer, and
1624 is the one used to pass the `this' pointer in C++. This is the incoming
1625 argument *before* the function prologue, e.g. `%o0' on a sparc. The
1626 addition must preserve the values of all other incoming arguments.
1627
1628 After the addition, emit code to jump to FUNCTION, which is a
1629 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch
1630 the return address. Hence returning from FUNCTION will return to whoever
1631 called the current `thunk'.
1632
1633 The effect must be as if FUNCTION had been called directly with the adjusted
1634 first argument. This macro is responsible for emitting all of the code for
1635 a thunk function; `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' are not
1636 invoked.
1637
1638 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been
1639 extracted from it.) It might possibly be useful on some targets, but
1640 probably not.
1641
1642 If you do not define this macro, the target-independent code in the C++
1643 frontend will generate a less efficient heavyweight thunk that calls
1644 FUNCTION instead of jumping to it. The generic approach does not support
1645 varargs. */
1646 #if TARGET_ELF
1647 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1648 output_mi_thunk (FILE, THUNK_FNDECL, DELTA, FUNCTION)
1649 #endif
1650 \f
1651 /* TRAMPOLINE_TEMPLATE deleted */
1652
1653 /* Length in units of the trampoline for entering a nested function. */
1654
1655 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1656
1657 /* Emit RTL insns to initialize the variable parts of a trampoline.
1658 FNADDR is an RTX for the address of the function's pure code.
1659 CXT is an RTX for the static chain value for the function. */
1660
1661 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1662 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1663 \f
1664 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1665 with arguments ARGS is a valid machine specific attribute for DECL.
1666 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1667
1668 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
1669 (rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
1670
1671 /* If defined, a C expression whose value is nonzero if IDENTIFIER
1672 with arguments ARGS is a valid machine specific attribute for TYPE.
1673 The attributes in ATTRIBUTES have previously been assigned to TYPE. */
1674
1675 #define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
1676 (rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
1677
1678 /* If defined, a C expression whose value is zero if the attributes on
1679 TYPE1 and TYPE2 are incompatible, one if they are compatible, and
1680 two if they are nearly compatible (which causes a warning to be
1681 generated). */
1682
1683 #define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
1684 (rs6000_comp_type_attributes (TYPE1, TYPE2))
1685
1686 /* If defined, a C statement that assigns default attributes to newly
1687 defined TYPE. */
1688
1689 #define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
1690 (rs6000_set_default_type_attributes (TYPE))
1691
1692 \f
1693 /* Definitions for __builtin_return_address and __builtin_frame_address.
1694 __builtin_return_address (0) should give link register (65), enable
1695 this. */
1696 /* This should be uncommented, so that the link register is used, but
1697 currently this would result in unmatched insns and spilling fixed
1698 registers so we'll leave it for another day. When these problems are
1699 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1700 (mrs) */
1701 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1702
1703 /* Number of bytes into the frame return addresses can be found. See
1704 rs6000_stack_info in rs6000.c for more information on how the different
1705 abi's store the return address. */
1706 #define RETURN_ADDRESS_OFFSET \
1707 ((DEFAULT_ABI == ABI_AIX \
1708 || DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
1709 (DEFAULT_ABI == ABI_V4 \
1710 || DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
1711 (DEFAULT_ABI == ABI_NT) ? -4 : \
1712 (fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
1713
1714 /* The current return address is in link register (65). The return address
1715 of anything farther back is accessed normally at an offset of 8 from the
1716 frame pointer. */
1717 #define RETURN_ADDR_RTX(count, frame) \
1718 ((count == -1) \
1719 ? gen_rtx_REG (Pmode, 65) \
1720 : gen_rtx_MEM (Pmode, \
1721 memory_address \
1722 (Pmode, \
1723 plus_constant (copy_to_reg \
1724 (gen_rtx_MEM (Pmode, \
1725 memory_address (Pmode, \
1726 frame))), \
1727 RETURN_ADDRESS_OFFSET))))
1728 \f
1729 /* Definitions for register eliminations.
1730
1731 We have two registers that can be eliminated on the RS/6000. First, the
1732 frame pointer register can often be eliminated in favor of the stack
1733 pointer register. Secondly, the argument pointer register can always be
1734 eliminated; it is replaced with either the stack or frame pointer.
1735
1736 In addition, we use the elimination mechanism to see if r30 is needed
1737 Initially we assume that it isn't. If it is, we spill it. This is done
1738 by making it an eliminable register. We replace it with itself so that
1739 if it isn't needed, then existing uses won't be modified. */
1740
1741 /* This is an array of structures. Each structure initializes one pair
1742 of eliminable registers. The "from" register number is given first,
1743 followed by "to". Eliminations of the same "from" register are listed
1744 in order of preference. */
1745 #define ELIMINABLE_REGS \
1746 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1747 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1748 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1749 { 30, 30} }
1750
1751 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1752 Frame pointer elimination is automatically handled.
1753
1754 For the RS/6000, if frame pointer elimination is being done, we would like
1755 to convert ap into fp, not sp.
1756
1757 We need r30 if -mminimal-toc was specified, and there are constant pool
1758 references. */
1759
1760 #define CAN_ELIMINATE(FROM, TO) \
1761 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1762 ? ! frame_pointer_needed \
1763 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1764 : 1)
1765
1766 /* Define the offset between two registers, one to be eliminated, and the other
1767 its replacement, at the start of a routine. */
1768 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1769 { \
1770 rs6000_stack_t *info = rs6000_stack_info (); \
1771 \
1772 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1773 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1774 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1775 (OFFSET) = info->total_size; \
1776 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1777 (OFFSET) = (info->push_p) ? info->total_size : 0; \
1778 else if ((FROM) == 30) \
1779 (OFFSET) = 0; \
1780 else \
1781 abort (); \
1782 }
1783 \f
1784 /* Addressing modes, and classification of registers for them. */
1785
1786 /* #define HAVE_POST_INCREMENT 0 */
1787 /* #define HAVE_POST_DECREMENT 0 */
1788
1789 #define HAVE_PRE_DECREMENT 1
1790 #define HAVE_PRE_INCREMENT 1
1791
1792 /* Macros to check register numbers against specific register classes. */
1793
1794 /* These assume that REGNO is a hard or pseudo reg number.
1795 They give nonzero only if REGNO is a hard reg of the suitable class
1796 or a pseudo reg currently allocated to a suitable hard reg.
1797 Since they use reg_renumber, they are safe only once reg_renumber
1798 has been allocated, which happens in local-alloc.c. */
1799
1800 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1801 ((REGNO) < FIRST_PSEUDO_REGISTER \
1802 ? (REGNO) <= 31 || (REGNO) == 67 \
1803 : (reg_renumber[REGNO] >= 0 \
1804 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1805
1806 #define REGNO_OK_FOR_BASE_P(REGNO) \
1807 ((REGNO) < FIRST_PSEUDO_REGISTER \
1808 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1809 : (reg_renumber[REGNO] > 0 \
1810 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1811 \f
1812 /* Maximum number of registers that can appear in a valid memory address. */
1813
1814 #define MAX_REGS_PER_ADDRESS 2
1815
1816 /* Recognize any constant value that is a valid address. */
1817
1818 #define CONSTANT_ADDRESS_P(X) \
1819 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1820 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1821 || GET_CODE (X) == HIGH)
1822
1823 /* Nonzero if the constant value X is a legitimate general operand.
1824 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1825
1826 On the RS/6000, all integer constants are acceptable, most won't be valid
1827 for particular insns, though. Only easy FP constants are
1828 acceptable. */
1829
1830 #define LEGITIMATE_CONSTANT_P(X) \
1831 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1832 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1833 || easy_fp_constant (X, GET_MODE (X)))
1834
1835 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1836 and check its validity for a certain class.
1837 We have two alternate definitions for each of them.
1838 The usual definition accepts all pseudo regs; the other rejects
1839 them unless they have been allocated suitable hard regs.
1840 The symbol REG_OK_STRICT causes the latter definition to be used.
1841
1842 Most source files want to accept pseudo regs in the hope that
1843 they will get allocated to the class that the insn wants them to be in.
1844 Source files for reload pass need to be strict.
1845 After reload, it makes no difference, since pseudo regs have
1846 been eliminated by then. */
1847
1848 #ifndef REG_OK_STRICT
1849
1850 /* Nonzero if X is a hard reg that can be used as an index
1851 or if it is a pseudo reg. */
1852 #define REG_OK_FOR_INDEX_P(X) \
1853 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1854
1855 /* Nonzero if X is a hard reg that can be used as a base reg
1856 or if it is a pseudo reg. */
1857 #define REG_OK_FOR_BASE_P(X) \
1858 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1859
1860 #else
1861
1862 /* Nonzero if X is a hard reg that can be used as an index. */
1863 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1864 /* Nonzero if X is a hard reg that can be used as a base reg. */
1865 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1866
1867 #endif
1868 \f
1869 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1870 that is a valid memory address for an instruction.
1871 The MODE argument is the machine mode for the MEM expression
1872 that wants to use this address.
1873
1874 On the RS/6000, there are four valid address: a SYMBOL_REF that
1875 refers to a constant pool entry of an address (or the sum of it
1876 plus a constant), a short (16-bit signed) constant plus a register,
1877 the sum of two registers, or a register indirect, possibly with an
1878 auto-increment. For DFmode and DImode with an constant plus register,
1879 we must ensure that both words are addressable or PowerPC64 with offset
1880 word aligned.
1881
1882 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1883 32-bit DImode, TImode), indexed addressing cannot be used because
1884 adjacent memory cells are accessed by adding word-sized offsets
1885 during assembly output. */
1886
1887 #define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
1888 (TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
1889 && CONSTANT_POOL_ADDRESS_P (X) \
1890 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1891
1892 /* AIX64 guaranteed to have 64 bit TOC alignment. */
1893 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1894 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
1895 || (TARGET_TOC \
1896 && GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1897 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1898 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1899
1900 #define LEGITIMATE_SMALL_DATA_P(MODE, X) \
1901 ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
1902 && !flag_pic && !TARGET_TOC \
1903 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
1904 && small_data_operand (X, MODE))
1905
1906 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1907 (GET_CODE (X) == CONST_INT \
1908 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1909
1910 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1911 (GET_CODE (X) == PLUS \
1912 && GET_CODE (XEXP (X, 0)) == REG \
1913 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1914 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1915 && (((MODE) != DFmode && (MODE) != DImode) \
1916 || (TARGET_32BIT \
1917 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
1918 : ! (INTVAL (XEXP (X, 1)) & 3))) \
1919 && ((MODE) != TImode \
1920 || (TARGET_32BIT \
1921 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
1922 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
1923 && ! (INTVAL (XEXP (X, 1)) & 3)))))
1924
1925 #define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1926 (GET_CODE (X) == PLUS \
1927 && GET_CODE (XEXP (X, 0)) == REG \
1928 && GET_CODE (XEXP (X, 1)) == REG \
1929 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1930 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1931 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1932 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1933
1934 #define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1935 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1936
1937 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
1938 (TARGET_ELF \
1939 && ! flag_pic && ! TARGET_TOC \
1940 && (MODE) != DImode \
1941 && (MODE) != TImode \
1942 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
1943 && GET_CODE (X) == LO_SUM \
1944 && GET_CODE (XEXP (X, 0)) == REG \
1945 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1946 && CONSTANT_P (XEXP (X, 1)))
1947
1948 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1949 { if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1950 goto ADDR; \
1951 if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
1952 && TARGET_UPDATE \
1953 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1954 goto ADDR; \
1955 if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
1956 goto ADDR; \
1957 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1958 goto ADDR; \
1959 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1960 goto ADDR; \
1961 if ((MODE) != TImode \
1962 && (TARGET_HARD_FLOAT || TARGET_POWERPC64 || (MODE) != DFmode) \
1963 && (TARGET_POWERPC64 || (MODE) != DImode) \
1964 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1965 goto ADDR; \
1966 if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
1967 goto ADDR; \
1968 }
1969 \f
1970 /* Try machine-dependent ways of modifying an illegitimate address
1971 to be legitimate. If we find one, return the new, valid address.
1972 This macro is used in only one place: `memory_address' in explow.c.
1973
1974 OLDX is the address as it was before break_out_memory_refs was called.
1975 In some cases it is useful to look at this to decide what needs to be done.
1976
1977 MODE and WIN are passed so that this macro can use
1978 GO_IF_LEGITIMATE_ADDRESS.
1979
1980 It is always safe for this macro to do nothing. It exists to recognize
1981 opportunities to optimize the output.
1982
1983 On RS/6000, first check for the sum of a register with a constant
1984 integer that is out of range. If so, generate code to add the
1985 constant with the low-order 16 bits masked to the register and force
1986 this result into another register (this can be done with `cau').
1987 Then generate an address of REG+(CONST&0xffff), allowing for the
1988 possibility of bit 16 being a one.
1989
1990 Then check for the sum of a register and something not constant, try to
1991 load the other things into a register and return the sum. */
1992
1993 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1994 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1995 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1996 && (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1997 { HOST_WIDE_INT high_int, low_int; \
1998 rtx sum; \
1999 high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
2000 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
2001 if (low_int & 0x8000) \
2002 high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
2003 sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2004 GEN_INT (high_int)), 0); \
2005 (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (low_int)); \
2006 goto WIN; \
2007 } \
2008 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
2009 && GET_CODE (XEXP (X, 1)) != CONST_INT \
2010 && (TARGET_HARD_FLOAT || TARGET_POWERPC64 || (MODE) != DFmode) \
2011 && (TARGET_POWERPC64 || (MODE) != DImode) \
2012 && (MODE) != TImode) \
2013 { \
2014 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2015 force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
2016 goto WIN; \
2017 } \
2018 else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
2019 && !flag_pic \
2020 && GET_CODE (X) != CONST_INT \
2021 && GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
2022 && (TARGET_HARD_FLOAT || (MODE) != DFmode) \
2023 && (MODE) != DImode && (MODE) != TImode) \
2024 { \
2025 rtx reg = gen_reg_rtx (Pmode); \
2026 emit_insn (gen_elf_high (reg, (X))); \
2027 (X) = gen_rtx_LO_SUM (Pmode, reg, (X)); \
2028 goto WIN; \
2029 } \
2030 }
2031
2032 /* Try a machine-dependent way of reloading an illegitimate address
2033 operand. If we find one, push the reload and jump to WIN. This
2034 macro is used in only one place: `find_reloads_address' in reload.c.
2035
2036 For RS/6000, we wish to handle large displacements off a base
2037 register by splitting the addend across an addiu/addis and the mem insn.
2038 This cuts number of extra insns needed from 3 to 1. */
2039
2040 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2041 do { \
2042 /* We must recognize output that we have already generated ourselves. */ \
2043 if (GET_CODE (X) == PLUS \
2044 && GET_CODE (XEXP (X, 0)) == PLUS \
2045 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
2046 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
2047 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
2048 { \
2049 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
2050 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2051 OPNUM, TYPE); \
2052 goto WIN; \
2053 } \
2054 if (GET_CODE (X) == PLUS \
2055 && GET_CODE (XEXP (X, 0)) == REG \
2056 && REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
2057 && REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
2058 && GET_CODE (XEXP (X, 1)) == CONST_INT) \
2059 { \
2060 HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
2061 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
2062 HOST_WIDE_INT high \
2063 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
2064 \
2065 /* Check for 32-bit overflow. */ \
2066 if (high + low != val) \
2067 break; \
2068 \
2069 /* Reload the high part into a base reg; leave the low part \
2070 in the mem directly. */ \
2071 \
2072 X = gen_rtx_PLUS (GET_MODE (X), \
2073 gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
2074 GEN_INT (high)), \
2075 GEN_INT (low)); \
2076 \
2077 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
2078 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2079 OPNUM, TYPE); \
2080 goto WIN; \
2081 } \
2082 } while (0)
2083
2084 /* Go to LABEL if ADDR (a legitimate address expression)
2085 has an effect that depends on the machine mode it is used for.
2086
2087 On the RS/6000 this is true if the address is valid with a zero offset
2088 but not with an offset of four (this means it cannot be used as an
2089 address for DImode or DFmode) or is a pre-increment or decrement. Since
2090 we know it is valid, we just check for an address that is not valid with
2091 an offset of four. */
2092
2093 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2094 { if (GET_CODE (ADDR) == PLUS \
2095 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2096 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2097 (TARGET_32BIT ? 4 : 8))) \
2098 goto LABEL; \
2099 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
2100 goto LABEL; \
2101 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
2102 goto LABEL; \
2103 if (GET_CODE (ADDR) == LO_SUM) \
2104 goto LABEL; \
2105 }
2106 \f
2107 /* The register number of the register used to address a table of
2108 static data addresses in memory. In some cases this register is
2109 defined by a processor's "application binary interface" (ABI).
2110 When this macro is defined, RTL is generated for this register
2111 once, as with the stack pointer and frame pointer registers. If
2112 this macro is not defined, it is up to the machine-dependent files
2113 to allocate such a register (if necessary). */
2114
2115 #define PIC_OFFSET_TABLE_REGNUM 30
2116
2117 /* Define this macro if the register defined by
2118 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2119 this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
2120
2121 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2122
2123 /* By generating position-independent code, when two different
2124 programs (A and B) share a common library (libC.a), the text of
2125 the library can be shared whether or not the library is linked at
2126 the same address for both programs. In some of these
2127 environments, position-independent code requires not only the use
2128 of different addressing modes, but also special code to enable the
2129 use of these addressing modes.
2130
2131 The `FINALIZE_PIC' macro serves as a hook to emit these special
2132 codes once the function is being compiled into assembly code, but
2133 not before. (It is not done before, because in the case of
2134 compiling an inline function, it would lead to multiple PIC
2135 prologues being included in functions which used inline functions
2136 and were compiled to assembly language.) */
2137
2138 /* #define FINALIZE_PIC */
2139
2140 /* A C expression that is nonzero if X is a legitimate immediate
2141 operand on the target machine when generating position independent
2142 code. You can assume that X satisfies `CONSTANT_P', so you need
2143 not check this. You can also assume FLAG_PIC is true, so you need
2144 not check it either. You need not define this macro if all
2145 constants (including `SYMBOL_REF') can be immediate operands when
2146 generating position independent code. */
2147
2148 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2149
2150 /* In rare cases, correct code generation requires extra machine
2151 dependent processing between the second jump optimization pass and
2152 delayed branch scheduling. On those machines, define this macro
2153 as a C statement to act on the code starting at INSN.
2154
2155 On the RS/6000, we use it to make sure the GOT_TOC register marker
2156 that FINALIZE_PIC is supposed to remove actually got removed. */
2157
2158 #define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
2159
2160 \f
2161 /* Define this if some processing needs to be done immediately before
2162 emitting code for an insn. */
2163
2164 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2165
2166 /* Specify the machine mode that this machine uses
2167 for the index in the tablejump instruction. */
2168 #define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
2169
2170 /* Define as C expression which evaluates to nonzero if the tablejump
2171 instruction expects the table to contain offsets from the address of the
2172 table.
2173 Do not define this if the table should contain absolute addresses. */
2174 #define CASE_VECTOR_PC_RELATIVE 1
2175
2176 /* Specify the tree operation to be used to convert reals to integers. */
2177 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2178
2179 /* This is the kind of divide that is easiest to do in the general case. */
2180 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2181
2182 /* Define this as 1 if `char' should by default be signed; else as 0. */
2183 #define DEFAULT_SIGNED_CHAR 0
2184
2185 /* This flag, if defined, says the same insns that convert to a signed fixnum
2186 also convert validly to an unsigned one. */
2187
2188 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2189
2190 /* Max number of bytes we can move from memory to memory
2191 in one reasonably fast instruction. */
2192 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2193 #define MAX_MOVE_MAX 8
2194
2195 /* Nonzero if access to memory by bytes is no faster than for words.
2196 Also non-zero if doing byte operations (specifically shifts) in registers
2197 is undesirable. */
2198 #define SLOW_BYTE_ACCESS 1
2199
2200 /* Define if operations between registers always perform the operation
2201 on the full register even if a narrower mode is specified. */
2202 #define WORD_REGISTER_OPERATIONS
2203
2204 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2205 will either zero-extend or sign-extend. The value of this macro should
2206 be the code that says which one of the two operations is implicitly
2207 done, NIL if none. */
2208 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2209
2210 /* Define if loading short immediate values into registers sign extends. */
2211 #define SHORT_IMMEDIATES_SIGN_EXTEND
2212 \f
2213 /* The RS/6000 uses the XCOFF format. */
2214
2215 #define XCOFF_DEBUGGING_INFO
2216
2217 /* Define if the object format being used is COFF or a superset. */
2218 #define OBJECT_FORMAT_COFF
2219
2220 /* Define the magic numbers that we recognize as COFF.
2221
2222 AIX 4.3 adds U803XTOCMAGIC (0757) for 64-bit objects, but collect2.c
2223 does not include files in the correct order to conditionally define
2224 the symbolic name in this macro.
2225
2226 The AIX linker accepts import/export files as object files,
2227 so accept "#!" (0x2321) magic number. */
2228 #define MY_ISCOFF(magic) \
2229 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC \
2230 || (magic) == U802TOCMAGIC || (magic) == 0757 || (magic) == 0x2321)
2231
2232 /* This is the only version of nm that collect2 can work with. */
2233 #define REAL_NM_FILE_NAME "/usr/ucb/nm"
2234
2235 /* We don't have GAS for the RS/6000 yet, so don't write out special
2236 .stabs in cc1plus. */
2237
2238 #define FASCIST_ASSEMBLER
2239
2240 /* AIX does not have any init/fini or ctor/dtor sections, so create
2241 static constructors and destructors as normal functions. */
2242 /* #define ASM_OUTPUT_CONSTRUCTOR(file, name) */
2243 /* #define ASM_OUTPUT_DESTRUCTOR(file, name) */
2244
2245 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2246 is done just by pretending it is already truncated. */
2247 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2248
2249 /* Specify the machine mode that pointers have.
2250 After generation of rtl, the compiler makes no further distinction
2251 between pointers and any other objects of this machine mode. */
2252 #define Pmode (TARGET_32BIT ? SImode : DImode)
2253
2254 /* Mode of a function address in a call instruction (for indexing purposes).
2255 Doesn't matter on RS/6000. */
2256 #define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
2257
2258 /* Define this if addresses of constant functions
2259 shouldn't be put through pseudo regs where they can be cse'd.
2260 Desirable on machines where ordinary constants are expensive
2261 but a CALL with constant address is cheap. */
2262 #define NO_FUNCTION_CSE
2263
2264 /* Define this to be nonzero if shift instructions ignore all but the low-order
2265 few bits.
2266
2267 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2268 have been dropped from the PowerPC architecture. */
2269
2270 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2271
2272 /* Use atexit for static constructors/destructors, instead of defining
2273 our own exit function. */
2274 #define HAVE_ATEXIT
2275
2276 /* Compute the cost of computing a constant rtl expression RTX
2277 whose rtx-code is CODE. The body of this macro is a portion
2278 of a switch statement. If the code is computed here,
2279 return it with a return statement. Otherwise, break from the switch.
2280
2281 On the RS/6000, if it is valid in the insn, it is free. So this
2282 always returns 0. */
2283
2284 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2285 case CONST_INT: \
2286 case CONST: \
2287 case LABEL_REF: \
2288 case SYMBOL_REF: \
2289 case CONST_DOUBLE: \
2290 case HIGH: \
2291 return 0;
2292
2293 /* Provide the costs of a rtl expression. This is in the body of a
2294 switch on CODE. */
2295
2296 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2297 case PLUS: \
2298 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2299 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
2300 + 0x8000) >= 0x10000) \
2301 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
2302 ? COSTS_N_INSNS (2) \
2303 : COSTS_N_INSNS (1)); \
2304 case AND: \
2305 case IOR: \
2306 case XOR: \
2307 return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
2308 && (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
2309 && ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
2310 ? COSTS_N_INSNS (2) \
2311 : COSTS_N_INSNS (1)); \
2312 case MULT: \
2313 switch (rs6000_cpu) \
2314 { \
2315 case PROCESSOR_RIOS1: \
2316 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2317 ? COSTS_N_INSNS (5) \
2318 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2319 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2320 case PROCESSOR_RS64A: \
2321 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2322 ? GET_MODE (XEXP (X, 1)) != DImode \
2323 ? COSTS_N_INSNS (20) : COSTS_N_INSNS (34) \
2324 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2325 ? COSTS_N_INSNS (12) : COSTS_N_INSNS (14)); \
2326 case PROCESSOR_RIOS2: \
2327 case PROCESSOR_MPCCORE: \
2328 case PROCESSOR_PPC604e: \
2329 return COSTS_N_INSNS (2); \
2330 case PROCESSOR_PPC601: \
2331 return COSTS_N_INSNS (5); \
2332 case PROCESSOR_PPC603: \
2333 case PROCESSOR_PPC750: \
2334 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2335 ? COSTS_N_INSNS (5) \
2336 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2337 ? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
2338 case PROCESSOR_PPC403: \
2339 case PROCESSOR_PPC604: \
2340 return COSTS_N_INSNS (4); \
2341 case PROCESSOR_PPC620: \
2342 case PROCESSOR_PPC630: \
2343 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
2344 ? GET_MODE (XEXP (X, 1)) != DImode \
2345 ? COSTS_N_INSNS (4) : COSTS_N_INSNS (7) \
2346 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
2347 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
2348 } \
2349 case DIV: \
2350 case MOD: \
2351 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2352 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
2353 return COSTS_N_INSNS (2); \
2354 /* otherwise fall through to normal divide. */ \
2355 case UDIV: \
2356 case UMOD: \
2357 switch (rs6000_cpu) \
2358 { \
2359 case PROCESSOR_RIOS1: \
2360 return COSTS_N_INSNS (19); \
2361 case PROCESSOR_RIOS2: \
2362 return COSTS_N_INSNS (13); \
2363 case PROCESSOR_RS64A: \
2364 return (GET_MODE (XEXP (X, 1)) != DImode \
2365 ? COSTS_N_INSNS (65) \
2366 : COSTS_N_INSNS (67)); \
2367 case PROCESSOR_MPCCORE: \
2368 return COSTS_N_INSNS (6); \
2369 case PROCESSOR_PPC403: \
2370 return COSTS_N_INSNS (33); \
2371 case PROCESSOR_PPC601: \
2372 return COSTS_N_INSNS (36); \
2373 case PROCESSOR_PPC603: \
2374 return COSTS_N_INSNS (37); \
2375 case PROCESSOR_PPC604: \
2376 case PROCESSOR_PPC604e: \
2377 return COSTS_N_INSNS (20); \
2378 case PROCESSOR_PPC620: \
2379 case PROCESSOR_PPC630: \
2380 return (GET_MODE (XEXP (X, 1)) != DImode \
2381 ? COSTS_N_INSNS (21) \
2382 : COSTS_N_INSNS (37)); \
2383 case PROCESSOR_PPC750: \
2384 return COSTS_N_INSNS (19); \
2385 } \
2386 case FFS: \
2387 return COSTS_N_INSNS (4); \
2388 case MEM: \
2389 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
2390 return 5;
2391
2392 /* Compute the cost of an address. This is meant to approximate the size
2393 and/or execution delay of an insn using that address. If the cost is
2394 approximated by the RTL complexity, including CONST_COSTS above, as
2395 is usually the case for CISC machines, this macro should not be defined.
2396 For aggressively RISCy machines, only one insn format is allowed, so
2397 this macro should be a constant. The value of this macro only matters
2398 for valid addresses.
2399
2400 For the RS/6000, everything is cost 0. */
2401
2402 #define ADDRESS_COST(RTX) 0
2403
2404 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2405 should be adjusted to reflect any required changes. This macro is used when
2406 there is some systematic length adjustment required that would be difficult
2407 to express in the length attribute. */
2408
2409 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2410
2411 /* Add any extra modes needed to represent the condition code.
2412
2413 For the RS/6000, we need separate modes when unsigned (logical) comparisons
2414 are being done and we need a separate mode for floating-point. We also
2415 use a mode for the case when we are comparing the results of two
2416 comparisons. */
2417
2418 #define EXTRA_CC_MODES \
2419 CC(CCUNSmode, "CCUNS") \
2420 CC(CCFPmode, "CCFP") \
2421 CC(CCEQmode, "CCEQ")
2422
2423 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2424 return the mode to be used for the comparison. For floating-point, CCFPmode
2425 should be used. CCUNSmode should be used for unsigned comparisons.
2426 CCEQmode should be used when we are doing an inequality comparison on
2427 the result of a comparison. CCmode should be used in all other cases. */
2428
2429 #define SELECT_CC_MODE(OP,X,Y) \
2430 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2431 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2432 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2433 ? CCEQmode : CCmode))
2434
2435 /* Define the information needed to generate branch and scc insns. This is
2436 stored from the compare operation. Note that we can't use "rtx" here
2437 since it hasn't been defined! */
2438
2439 extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
2440 extern int rs6000_compare_fp_p;
2441
2442 /* Set to non-zero by "fix" operation to indicate that itrunc and
2443 uitrunc must be defined. */
2444
2445 extern int rs6000_trunc_used;
2446
2447 /* Function names to call to do floating point truncation. */
2448
2449 #define RS6000_ITRUNC "__itrunc"
2450 #define RS6000_UITRUNC "__uitrunc"
2451
2452 /* Prefix and suffix to use to saving floating point */
2453 #ifndef SAVE_FP_PREFIX
2454 #define SAVE_FP_PREFIX "._savef"
2455 #define SAVE_FP_SUFFIX ""
2456 #endif
2457
2458 /* Prefix and suffix to use to restoring floating point */
2459 #ifndef RESTORE_FP_PREFIX
2460 #define RESTORE_FP_PREFIX "._restf"
2461 #define RESTORE_FP_SUFFIX ""
2462 #endif
2463
2464 /* Function name to call to do profiling. */
2465 #define RS6000_MCOUNT ".__mcount"
2466
2467 \f
2468 /* Control the assembler format that we output. */
2469
2470 /* A C string constant describing how to begin a comment in the target
2471 assembler language. The compiler assumes that the comment will end at
2472 the end of the line. */
2473 #define ASM_COMMENT_START " #"
2474
2475 /* Output at beginning of assembler file.
2476
2477 Initialize the section names for the RS/6000 at this point.
2478
2479 Specify filename, including full path, to assembler.
2480
2481 We want to go into the TOC section so at least one .toc will be emitted.
2482 Also, in order to output proper .bs/.es pairs, we need at least one static
2483 [RW] section emitted.
2484
2485 We then switch back to text to force the gcc2_compiled. label and the space
2486 allocated after it (when profiling) into the text section.
2487
2488 Finally, declare mcount when profiling to make the assembler happy. */
2489
2490 #define ASM_FILE_START(FILE) \
2491 { \
2492 rs6000_gen_section_name (&xcoff_bss_section_name, \
2493 main_input_filename, ".bss_"); \
2494 rs6000_gen_section_name (&xcoff_private_data_section_name, \
2495 main_input_filename, ".rw_"); \
2496 rs6000_gen_section_name (&xcoff_read_only_section_name, \
2497 main_input_filename, ".ro_"); \
2498 \
2499 fprintf (FILE, "\t.file\t\"%s\"\n", main_input_filename); \
2500 if (TARGET_64BIT) \
2501 fputs ("\t.machine\t\"ppc64\"\n", FILE); \
2502 toc_section (); \
2503 if (write_symbols != NO_DEBUG) \
2504 private_data_section (); \
2505 text_section (); \
2506 if (profile_flag) \
2507 fprintf (FILE, "\t.extern %s\n", RS6000_MCOUNT); \
2508 rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
2509 }
2510
2511 /* Output at end of assembler file.
2512
2513 On the RS/6000, referencing data should automatically pull in text. */
2514
2515 #define ASM_FILE_END(FILE) \
2516 { \
2517 text_section (); \
2518 fputs ("_section_.text:\n", FILE); \
2519 data_section (); \
2520 fputs ("\t.long _section_.text\n", FILE); \
2521 }
2522
2523 /* We define this to prevent the name mangler from putting dollar signs into
2524 function names. */
2525
2526 #define NO_DOLLAR_IN_LABEL
2527
2528 /* We define this to 0 so that gcc will never accept a dollar sign in a
2529 variable name. This is needed because the AIX assembler will not accept
2530 dollar signs. */
2531
2532 #define DOLLARS_IN_IDENTIFIERS 0
2533
2534 /* Implicit library calls should use memcpy, not bcopy, etc. */
2535
2536 #define TARGET_MEM_FUNCTIONS
2537
2538 /* Define the extra sections we need. We define three: one is the read-only
2539 data section which is used for constants. This is a csect whose name is
2540 derived from the name of the input file. The second is for initialized
2541 global variables. This is a csect whose name is that of the variable.
2542 The third is the TOC. */
2543
2544 #define EXTRA_SECTIONS \
2545 read_only_data, private_data, read_only_private_data, toc, bss
2546
2547 /* Define the name of our readonly data section. */
2548
2549 #define READONLY_DATA_SECTION read_only_data_section
2550
2551
2552 /* Define the name of the section to use for the exception tables.
2553 TODO: test and see if we can use read_only_data_section, if so,
2554 remove this. */
2555
2556 #define EXCEPTION_SECTION data_section
2557
2558 /* If we are referencing a function that is static or is known to be
2559 in this file, make the SYMBOL_REF special. We can use this to indicate
2560 that we can branch to this function without emitting a no-op after the
2561 call. Do not set this flag if the function is weakly defined. */
2562
2563 #define ENCODE_SECTION_INFO(DECL) \
2564 if (TREE_CODE (DECL) == FUNCTION_DECL \
2565 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL)) \
2566 && !DECL_WEAK (DECL)) \
2567 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
2568
2569 /* Indicate that jump tables go in the text section. */
2570
2571 #define JUMP_TABLES_IN_TEXT_SECTION 1
2572
2573 /* Define the routines to implement these extra sections.
2574 BIGGEST_ALIGNMENT is 64, so align the sections that much. */
2575
2576 #define EXTRA_SECTION_FUNCTIONS \
2577 \
2578 void \
2579 read_only_data_section () \
2580 { \
2581 if (in_section != read_only_data) \
2582 { \
2583 fprintf (asm_out_file, ".csect %s[RO],3\n", \
2584 xcoff_read_only_section_name); \
2585 in_section = read_only_data; \
2586 } \
2587 } \
2588 \
2589 void \
2590 private_data_section () \
2591 { \
2592 if (in_section != private_data) \
2593 { \
2594 fprintf (asm_out_file, ".csect %s[RW],3\n", \
2595 xcoff_private_data_section_name); \
2596 in_section = private_data; \
2597 } \
2598 } \
2599 \
2600 void \
2601 read_only_private_data_section () \
2602 { \
2603 if (in_section != read_only_private_data) \
2604 { \
2605 fprintf (asm_out_file, ".csect %s[RO],3\n", \
2606 xcoff_private_data_section_name); \
2607 in_section = read_only_private_data; \
2608 } \
2609 } \
2610 \
2611 void \
2612 toc_section () \
2613 { \
2614 if (TARGET_MINIMAL_TOC) \
2615 { \
2616 /* toc_section is always called at least once from ASM_FILE_START, \
2617 so this is guaranteed to always be defined once and only once \
2618 in each file. */ \
2619 if (! toc_initialized) \
2620 { \
2621 fputs (".toc\nLCTOC..0:\n", asm_out_file); \
2622 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
2623 toc_initialized = 1; \
2624 } \
2625 \
2626 if (in_section != toc) \
2627 fprintf (asm_out_file, ".csect toc_table[RW]%s\n", \
2628 (TARGET_32BIT ? "" : ",3")); \
2629 } \
2630 else \
2631 { \
2632 if (in_section != toc) \
2633 fputs (".toc\n", asm_out_file); \
2634 } \
2635 in_section = toc; \
2636 }
2637
2638 /* Flag to say the TOC is initialized */
2639 extern int toc_initialized;
2640
2641 /* This macro produces the initial definition of a function name.
2642 On the RS/6000, we need to place an extra '.' in the function name and
2643 output the function descriptor.
2644
2645 The csect for the function will have already been created by the
2646 `text_section' call previously done. We do have to go back to that
2647 csect, however. */
2648
2649 /* ??? What do the 16 and 044 in the .function line really mean? */
2650
2651 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
2652 { if (TREE_PUBLIC (DECL)) \
2653 { \
2654 fputs ("\t.globl .", FILE); \
2655 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2656 putc ('\n', FILE); \
2657 } \
2658 else \
2659 { \
2660 fputs ("\t.lglobl .", FILE); \
2661 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2662 putc ('\n', FILE); \
2663 } \
2664 fputs (".csect ", FILE); \
2665 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2666 fputs (TARGET_32BIT ? "[DS]\n" : "[DS],3\n", FILE); \
2667 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2668 fputs (":\n", FILE); \
2669 fputs (TARGET_32BIT ? "\t.long ." : "\t.llong .", FILE); \
2670 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2671 fputs (", TOC[tc0], 0\n", FILE); \
2672 fputs (".csect .text[PR]\n.", FILE); \
2673 RS6000_OUTPUT_BASENAME (FILE, NAME); \
2674 fputs (":\n", FILE); \
2675 if (write_symbols == XCOFF_DEBUG) \
2676 xcoffout_declare_function (FILE, DECL, NAME); \
2677 }
2678
2679 /* Return non-zero if this entry is to be written into the constant pool
2680 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
2681 containing one of them. If -mfp-in-toc (the default), we also do
2682 this for floating-point constants. We actually can only do this
2683 if the FP formats of the target and host machines are the same, but
2684 we can't check that since not every file that uses
2685 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
2686
2687 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
2688 (TARGET_TOC \
2689 && (GET_CODE (X) == SYMBOL_REF \
2690 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
2691 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
2692 || GET_CODE (X) == LABEL_REF \
2693 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
2694 && GET_CODE (X) == CONST_DOUBLE \
2695 && (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2696 || (TARGET_POWERPC64 && GET_MODE (X) == DImode)))))
2697 #if 0
2698 && BITS_PER_WORD == HOST_BITS_PER_INT)))
2699 #endif
2700
2701 /* Select section for constant in constant pool.
2702
2703 On RS/6000, all constants are in the private read-only data area.
2704 However, if this is being placed in the TOC it must be output as a
2705 toc entry. */
2706
2707 #define SELECT_RTX_SECTION(MODE, X) \
2708 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2709 toc_section (); \
2710 else \
2711 read_only_private_data_section (); \
2712 }
2713
2714 /* Macro to output a special constant pool entry. Go to WIN if we output
2715 it. Otherwise, it is written the usual way.
2716
2717 On the RS/6000, toc entries are handled this way. */
2718
2719 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2720 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
2721 { \
2722 output_toc (FILE, X, LABELNO); \
2723 goto WIN; \
2724 } \
2725 }
2726
2727 /* Select the section for an initialized data object.
2728
2729 On the RS/6000, we have a special section for all variables except those
2730 that are static. */
2731
2732 #define SELECT_SECTION(EXP,RELOC) \
2733 { \
2734 if ((TREE_CODE (EXP) == STRING_CST \
2735 && ! flag_writable_strings) \
2736 || (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
2737 && TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
2738 && DECL_INITIAL (EXP) \
2739 && (DECL_INITIAL (EXP) == error_mark_node \
2740 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
2741 && ! (RELOC))) \
2742 { \
2743 if (TREE_PUBLIC (EXP)) \
2744 read_only_data_section (); \
2745 else \
2746 read_only_private_data_section (); \
2747 } \
2748 else \
2749 { \
2750 if (TREE_PUBLIC (EXP)) \
2751 data_section (); \
2752 else \
2753 private_data_section (); \
2754 } \
2755 }
2756
2757 /* This outputs NAME to FILE up to the first null or '['. */
2758
2759 #define RS6000_OUTPUT_BASENAME(FILE, NAME) \
2760 { \
2761 const char *_p; \
2762 \
2763 STRIP_NAME_ENCODING (_p, (NAME)); \
2764 assemble_name ((FILE), _p); \
2765 }
2766
2767 /* Remove any trailing [DS] or the like from the symbol name. */
2768
2769 #define STRIP_NAME_ENCODING(VAR,NAME) \
2770 do \
2771 { \
2772 const char *_name = (NAME); \
2773 int _len; \
2774 if (_name[0] == '*') \
2775 _name++; \
2776 _len = strlen (_name); \
2777 if (_name[_len - 1] != ']') \
2778 (VAR) = _name; \
2779 else \
2780 { \
2781 char *_new_name = (char *) alloca (_len + 1); \
2782 strcpy (_new_name, _name); \
2783 _new_name[_len - 4] = '\0'; \
2784 (VAR) = _new_name; \
2785 } \
2786 } \
2787 while (0)
2788
2789 /* Output something to declare an external symbol to the assembler. Most
2790 assemblers don't need this.
2791
2792 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
2793 name. Normally we write this out along with the name. In the few cases
2794 where we can't, it gets stripped off. */
2795
2796 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
2797 { rtx _symref = XEXP (DECL_RTL (DECL), 0); \
2798 if ((TREE_CODE (DECL) == VAR_DECL \
2799 || TREE_CODE (DECL) == FUNCTION_DECL) \
2800 && (NAME)[strlen (NAME) - 1] != ']') \
2801 { \
2802 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
2803 strcpy (_name, XSTR (_symref, 0)); \
2804 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
2805 XSTR (_symref, 0) = _name; \
2806 } \
2807 fputs ("\t.extern ", FILE); \
2808 assemble_name (FILE, XSTR (_symref, 0)); \
2809 if (TREE_CODE (DECL) == FUNCTION_DECL) \
2810 { \
2811 fputs ("\n\t.extern .", FILE); \
2812 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
2813 } \
2814 putc ('\n', FILE); \
2815 }
2816
2817 /* Similar, but for libcall. We only have to worry about the function name,
2818 not that of the descriptor. */
2819
2820 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
2821 { fputs ("\t.extern .", FILE); \
2822 assemble_name (FILE, XSTR (FUN, 0)); \
2823 putc ('\n', FILE); \
2824 }
2825
2826 /* Output to assembler file text saying following lines
2827 may contain character constants, extra white space, comments, etc. */
2828
2829 #define ASM_APP_ON ""
2830
2831 /* Output to assembler file text saying following lines
2832 no longer contain unusual constructs. */
2833
2834 #define ASM_APP_OFF ""
2835
2836 /* Output before instructions.
2837 Text section for 64-bit target may contain 64-bit address jump table. */
2838
2839 #define TEXT_SECTION_ASM_OP (TARGET_32BIT \
2840 ? ".csect .text[PR]" : ".csect .text[PR],3")
2841
2842 /* Output before writable data.
2843 Align entire section to BIGGEST_ALIGNMENT. */
2844
2845 #define DATA_SECTION_ASM_OP ".csect .data[RW],3"
2846
2847 /* How to refer to registers in assembler output.
2848 This sequence is indexed by compiler's hard-register-number (see above). */
2849
2850 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2851
2852 #define REGISTER_NAMES \
2853 { \
2854 &rs6000_reg_names[ 0][0], /* r0 */ \
2855 &rs6000_reg_names[ 1][0], /* r1 */ \
2856 &rs6000_reg_names[ 2][0], /* r2 */ \
2857 &rs6000_reg_names[ 3][0], /* r3 */ \
2858 &rs6000_reg_names[ 4][0], /* r4 */ \
2859 &rs6000_reg_names[ 5][0], /* r5 */ \
2860 &rs6000_reg_names[ 6][0], /* r6 */ \
2861 &rs6000_reg_names[ 7][0], /* r7 */ \
2862 &rs6000_reg_names[ 8][0], /* r8 */ \
2863 &rs6000_reg_names[ 9][0], /* r9 */ \
2864 &rs6000_reg_names[10][0], /* r10 */ \
2865 &rs6000_reg_names[11][0], /* r11 */ \
2866 &rs6000_reg_names[12][0], /* r12 */ \
2867 &rs6000_reg_names[13][0], /* r13 */ \
2868 &rs6000_reg_names[14][0], /* r14 */ \
2869 &rs6000_reg_names[15][0], /* r15 */ \
2870 &rs6000_reg_names[16][0], /* r16 */ \
2871 &rs6000_reg_names[17][0], /* r17 */ \
2872 &rs6000_reg_names[18][0], /* r18 */ \
2873 &rs6000_reg_names[19][0], /* r19 */ \
2874 &rs6000_reg_names[20][0], /* r20 */ \
2875 &rs6000_reg_names[21][0], /* r21 */ \
2876 &rs6000_reg_names[22][0], /* r22 */ \
2877 &rs6000_reg_names[23][0], /* r23 */ \
2878 &rs6000_reg_names[24][0], /* r24 */ \
2879 &rs6000_reg_names[25][0], /* r25 */ \
2880 &rs6000_reg_names[26][0], /* r26 */ \
2881 &rs6000_reg_names[27][0], /* r27 */ \
2882 &rs6000_reg_names[28][0], /* r28 */ \
2883 &rs6000_reg_names[29][0], /* r29 */ \
2884 &rs6000_reg_names[30][0], /* r30 */ \
2885 &rs6000_reg_names[31][0], /* r31 */ \
2886 \
2887 &rs6000_reg_names[32][0], /* fr0 */ \
2888 &rs6000_reg_names[33][0], /* fr1 */ \
2889 &rs6000_reg_names[34][0], /* fr2 */ \
2890 &rs6000_reg_names[35][0], /* fr3 */ \
2891 &rs6000_reg_names[36][0], /* fr4 */ \
2892 &rs6000_reg_names[37][0], /* fr5 */ \
2893 &rs6000_reg_names[38][0], /* fr6 */ \
2894 &rs6000_reg_names[39][0], /* fr7 */ \
2895 &rs6000_reg_names[40][0], /* fr8 */ \
2896 &rs6000_reg_names[41][0], /* fr9 */ \
2897 &rs6000_reg_names[42][0], /* fr10 */ \
2898 &rs6000_reg_names[43][0], /* fr11 */ \
2899 &rs6000_reg_names[44][0], /* fr12 */ \
2900 &rs6000_reg_names[45][0], /* fr13 */ \
2901 &rs6000_reg_names[46][0], /* fr14 */ \
2902 &rs6000_reg_names[47][0], /* fr15 */ \
2903 &rs6000_reg_names[48][0], /* fr16 */ \
2904 &rs6000_reg_names[49][0], /* fr17 */ \
2905 &rs6000_reg_names[50][0], /* fr18 */ \
2906 &rs6000_reg_names[51][0], /* fr19 */ \
2907 &rs6000_reg_names[52][0], /* fr20 */ \
2908 &rs6000_reg_names[53][0], /* fr21 */ \
2909 &rs6000_reg_names[54][0], /* fr22 */ \
2910 &rs6000_reg_names[55][0], /* fr23 */ \
2911 &rs6000_reg_names[56][0], /* fr24 */ \
2912 &rs6000_reg_names[57][0], /* fr25 */ \
2913 &rs6000_reg_names[58][0], /* fr26 */ \
2914 &rs6000_reg_names[59][0], /* fr27 */ \
2915 &rs6000_reg_names[60][0], /* fr28 */ \
2916 &rs6000_reg_names[61][0], /* fr29 */ \
2917 &rs6000_reg_names[62][0], /* fr30 */ \
2918 &rs6000_reg_names[63][0], /* fr31 */ \
2919 \
2920 &rs6000_reg_names[64][0], /* mq */ \
2921 &rs6000_reg_names[65][0], /* lr */ \
2922 &rs6000_reg_names[66][0], /* ctr */ \
2923 &rs6000_reg_names[67][0], /* ap */ \
2924 \
2925 &rs6000_reg_names[68][0], /* cr0 */ \
2926 &rs6000_reg_names[69][0], /* cr1 */ \
2927 &rs6000_reg_names[70][0], /* cr2 */ \
2928 &rs6000_reg_names[71][0], /* cr3 */ \
2929 &rs6000_reg_names[72][0], /* cr4 */ \
2930 &rs6000_reg_names[73][0], /* cr5 */ \
2931 &rs6000_reg_names[74][0], /* cr6 */ \
2932 &rs6000_reg_names[75][0], /* cr7 */ \
2933 \
2934 &rs6000_reg_names[76][0], /* fpmem */ \
2935 }
2936
2937 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2938 following for it. Switch to use the alternate names since
2939 they are more mnemonic. */
2940
2941 #define DEBUG_REGISTER_NAMES \
2942 { \
2943 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2944 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2945 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2946 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2947 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2948 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2949 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2950 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2951 "mq", "lr", "ctr", "ap", \
2952 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2953 "fpmem" \
2954 }
2955
2956 /* Table of additional register names to use in user input. */
2957
2958 #define ADDITIONAL_REGISTER_NAMES \
2959 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2960 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2961 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2962 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2963 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2964 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2965 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2966 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2967 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2968 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2969 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2970 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2971 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2972 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2973 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2974 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2975 /* no additional names for: mq, lr, ctr, ap */ \
2976 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2977 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2978 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2979
2980 /* How to renumber registers for dbx and gdb. */
2981
2982 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2983
2984 /* Text to write out after a CALL that may be replaced by glue code by
2985 the loader. This depends on the AIX version. */
2986 #define RS6000_CALL_GLUE "cror 31,31,31"
2987
2988 /* This is how to output the definition of a user-level label named NAME,
2989 such as the label on a static function or variable NAME. */
2990
2991 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2992 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2993
2994 /* This is how to output a command to make the user-level label named NAME
2995 defined for reference from other files. */
2996
2997 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2998 do { fputs ("\t.globl ", FILE); \
2999 RS6000_OUTPUT_BASENAME (FILE, NAME); putc ('\n', FILE);} while (0)
3000
3001 /* This is how to output a reference to a user-level label named NAME.
3002 `assemble_name' uses this. */
3003
3004 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
3005 fputs (NAME, FILE)
3006
3007 /* This is how to output an internal numbered label where
3008 PREFIX is the class of label and NUM is the number within the class. */
3009
3010 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
3011 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
3012
3013 /* This is how to output an internal label prefix. rs6000.c uses this
3014 when generating traceback tables. */
3015
3016 #define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
3017 fprintf (FILE, "%s..", PREFIX)
3018
3019 /* This is how to output a label for a jump table. Arguments are the same as
3020 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
3021 passed. */
3022
3023 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
3024 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
3025
3026 /* This is how to store into the string LABEL
3027 the symbol_ref name of an internal numbered label where
3028 PREFIX is the class of label and NUM is the number within the class.
3029 This is suitable for output with `assemble_name'. */
3030
3031 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3032 sprintf (LABEL, "*%s..%d", PREFIX, NUM)
3033
3034 /* This is how to output an assembler line defining a `double' constant. */
3035
3036 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
3037 { \
3038 long t[2]; \
3039 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
3040 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
3041 t[0] & 0xffffffff, t[1] & 0xffffffff); \
3042 }
3043
3044 /* This is how to output an assembler line defining a `float' constant. */
3045
3046 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
3047 { \
3048 long t; \
3049 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
3050 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
3051 }
3052
3053 /* This is how to output an assembler line defining an `int' constant. */
3054
3055 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
3056 do { \
3057 if (TARGET_32BIT) \
3058 { \
3059 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
3060 UNITS_PER_WORD, 1); \
3061 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
3062 UNITS_PER_WORD, 1); \
3063 } \
3064 else \
3065 { \
3066 fputs ("\t.llong ", FILE); \
3067 output_addr_const (FILE, (VALUE)); \
3068 putc ('\n', FILE); \
3069 } \
3070 } while (0)
3071
3072 #define ASM_OUTPUT_INT(FILE,VALUE) \
3073 ( fputs ("\t.long ", FILE), \
3074 output_addr_const (FILE, (VALUE)), \
3075 putc ('\n', FILE))
3076
3077 /* Likewise for `char' and `short' constants. */
3078
3079 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
3080 ( fputs ("\t.short ", FILE), \
3081 output_addr_const (FILE, (VALUE)), \
3082 putc ('\n', FILE))
3083
3084 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
3085 ( fputs ("\t.byte ", FILE), \
3086 output_addr_const (FILE, (VALUE)), \
3087 putc ('\n', FILE))
3088
3089 /* This is how to output an assembler line for a numeric constant byte. */
3090
3091 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
3092 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
3093
3094 /* This is how to output an assembler line to define N characters starting
3095 at P to FILE. */
3096
3097 #define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
3098
3099 /* This is how to output an element of a case-vector that is absolute.
3100 (RS/6000 does not use such vectors, but we must define this macro
3101 anyway.) */
3102
3103 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3104 do { char buf[100]; \
3105 fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
3106 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
3107 assemble_name (FILE, buf); \
3108 putc ('\n', FILE); \
3109 } while (0)
3110
3111 /* This is how to output an element of a case-vector that is relative. */
3112
3113 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3114 do { char buf[100]; \
3115 fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
3116 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
3117 assemble_name (FILE, buf); \
3118 putc ('-', FILE); \
3119 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
3120 assemble_name (FILE, buf); \
3121 putc ('\n', FILE); \
3122 } while (0)
3123
3124 /* This is how to output an assembler line
3125 that says to advance the location counter
3126 to a multiple of 2**LOG bytes. */
3127
3128 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
3129 if ((LOG) != 0) \
3130 fprintf (FILE, "\t.align %d\n", (LOG))
3131
3132 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
3133 fprintf (FILE, "\t.space %d\n", (SIZE))
3134
3135 /* This says how to output an assembler line
3136 to define a global common symbol. */
3137
3138 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
3139 do { fputs (".comm ", (FILE)); \
3140 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
3141 if ( (SIZE) > 4) \
3142 fprintf ((FILE), ",%d,3\n", (SIZE)); \
3143 else \
3144 fprintf( (FILE), ",%d\n", (SIZE)); \
3145 } while (0)
3146
3147 /* This says how to output an assembler line
3148 to define a local common symbol.
3149 Alignment cannot be specified, but we can try to maintain
3150 alignment after preceding TOC section if it was aligned
3151 for 64-bit mode. */
3152
3153 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
3154 do { fputs (".lcomm ", (FILE)); \
3155 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
3156 fprintf ((FILE), ",%d,%s\n", (TARGET_32BIT ? (SIZE) : (ROUNDED)), \
3157 xcoff_bss_section_name); \
3158 } while (0)
3159
3160 /* Store in OUTPUT a string (made with alloca) containing
3161 an assembler-name for a local static variable named NAME.
3162 LABELNO is an integer which is different for each call. */
3163
3164 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3165 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3166 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3167
3168 /* Define the parentheses used to group arithmetic operations
3169 in assembler code. */
3170
3171 #define ASM_OPEN_PAREN "("
3172 #define ASM_CLOSE_PAREN ")"
3173
3174 /* Define results of standard character escape sequences. */
3175 #define TARGET_BELL 007
3176 #define TARGET_BS 010
3177 #define TARGET_TAB 011
3178 #define TARGET_NEWLINE 012
3179 #define TARGET_VT 013
3180 #define TARGET_FF 014
3181 #define TARGET_CR 015
3182
3183 /* Print operand X (an rtx) in assembler syntax to file FILE.
3184 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3185 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3186
3187 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3188
3189 /* Define which CODE values are valid. */
3190
3191 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3192 ((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
3193
3194 /* Print a memory address as an operand to reference that memory location. */
3195
3196 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3197
3198 /* Define the codes that are matched by predicates in rs6000.c. */
3199
3200 #define PREDICATE_CODES \
3201 {"short_cint_operand", {CONST_INT}}, \
3202 {"u_short_cint_operand", {CONST_INT}}, \
3203 {"non_short_cint_operand", {CONST_INT}}, \
3204 {"gpc_reg_operand", {SUBREG, REG}}, \
3205 {"cc_reg_operand", {SUBREG, REG}}, \
3206 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
3207 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
3208 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
3209 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
3210 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
3211 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
3212 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
3213 {"easy_fp_constant", {CONST_DOUBLE}}, \
3214 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
3215 {"lwa_operand", {SUBREG, MEM, REG}}, \
3216 {"volatile_mem_operand", {MEM}}, \
3217 {"offsettable_mem_operand", {MEM}}, \
3218 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
3219 {"add_operand", {SUBREG, REG, CONST_INT}}, \
3220 {"non_add_cint_operand", {CONST_INT}}, \
3221 {"and_operand", {SUBREG, REG, CONST_INT}}, \
3222 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3223 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
3224 {"non_logical_cint_operand", {CONST_INT}}, \
3225 {"mask_operand", {CONST_INT}}, \
3226 {"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
3227 {"count_register_operand", {REG}}, \
3228 {"fpmem_operand", {REG}}, \
3229 {"call_operand", {SYMBOL_REF, REG}}, \
3230 {"current_file_function_operand", {SYMBOL_REF}}, \
3231 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
3232 CONST_DOUBLE, SYMBOL_REF}}, \
3233 {"load_multiple_operation", {PARALLEL}}, \
3234 {"store_multiple_operation", {PARALLEL}}, \
3235 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
3236 GT, LEU, LTU, GEU, GTU}}, \
3237 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
3238 GT, LEU, LTU, GEU, GTU}}, \
3239 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
3240 GT, LEU, LTU, GEU, GTU}},
3241
3242 /* uncomment for disabling the corresponding default options */
3243 /* #define MACHINE_no_sched_interblock */
3244 /* #define MACHINE_no_sched_speculative */
3245 /* #define MACHINE_no_sched_speculative_load */
3246
3247 /* indicate that issue rate is defined for this machine
3248 (no need to use the default) */
3249 #define ISSUE_RATE get_issue_rate ()
3250
3251 /* General flags. */
3252 extern int flag_pic;
3253 extern int optimize;
3254 extern int flag_expensive_optimizations;
3255 extern int frame_pointer_needed;
3256
3257 /* Declare functions in rs6000.c */
3258 extern void optimization_options ();
3259 extern void output_options ();
3260 extern void rs6000_override_options ();
3261 extern void rs6000_file_start ();
3262 extern struct rtx_def *rs6000_float_const ();
3263 extern struct rtx_def *rs6000_got_register ();
3264 extern struct rtx_def *find_addr_reg();
3265 extern int direct_return ();
3266 extern int get_issue_rate ();
3267 extern int any_operand ();
3268 extern int short_cint_operand ();
3269 extern int u_short_cint_operand ();
3270 extern int non_short_cint_operand ();
3271 extern int gpc_reg_operand ();
3272 extern int cc_reg_operand ();
3273 extern int cc_reg_not_cr0_operand ();
3274 extern int reg_or_short_operand ();
3275 extern int reg_or_neg_short_operand ();
3276 extern int reg_or_u_short_operand ();
3277 extern int reg_or_cint_operand ();
3278 extern int got_operand ();
3279 extern int got_no_const_operand ();
3280 extern int num_insns_constant ();
3281 extern int easy_fp_constant ();
3282 extern int volatile_mem_operand ();
3283 extern int offsettable_mem_operand ();
3284 extern int mem_or_easy_const_operand ();
3285 extern int add_operand ();
3286 extern int non_add_cint_operand ();
3287 extern int non_logical_cint_operand ();
3288 extern int logical_operand ();
3289 extern int mask_operand ();
3290 extern int mask64_operand ();
3291 extern int and64_operand ();
3292 extern int and_operand ();
3293 extern int count_register_operand ();
3294 extern int fpmem_operand ();
3295 extern int reg_or_mem_operand ();
3296 extern int lwa_operand ();
3297 extern int call_operand ();
3298 extern int current_file_function_operand ();
3299 extern int input_operand ();
3300 extern int small_data_operand ();
3301 extern void init_cumulative_args ();
3302 extern void function_arg_advance ();
3303 extern int function_arg_boundary ();
3304 extern struct rtx_def *function_arg ();
3305 extern int function_arg_partial_nregs ();
3306 extern int function_arg_pass_by_reference ();
3307 extern void setup_incoming_varargs ();
3308 extern union tree_node *rs6000_va_list ();
3309 extern void rs6000_va_start ();
3310 extern struct rtx_def *rs6000_va_arg ();
3311 extern struct rtx_def *rs6000_stack_temp ();
3312 extern int expand_block_move ();
3313 extern int load_multiple_operation ();
3314 extern int store_multiple_operation ();
3315 extern int branch_comparison_operator ();
3316 extern int scc_comparison_operator ();
3317 extern int trap_comparison_operator ();
3318 extern int includes_lshift_p ();
3319 extern int includes_rshift_p ();
3320 extern int registers_ok_for_quad_peep ();
3321 extern int addrs_ok_for_quad_peep ();
3322 extern enum reg_class secondary_reload_class ();
3323 extern int ccr_bit ();
3324 extern void rs6000_finalize_pic ();
3325 extern void rs6000_reorg ();
3326 extern void rs6000_save_machine_status ();
3327 extern void rs6000_restore_machine_status ();
3328 extern void rs6000_init_expanders ();
3329 extern void print_operand ();
3330 extern void print_operand_address ();
3331 extern int first_reg_to_save ();
3332 extern int first_fp_reg_to_save ();
3333 extern int rs6000_makes_calls ();
3334 extern rs6000_stack_t *rs6000_stack_info ();
3335 extern void output_prolog ();
3336 extern void output_epilog ();
3337 extern void output_mi_thunk ();
3338 extern void output_toc ();
3339 extern void output_ascii ();
3340 extern void rs6000_gen_section_name ();
3341 extern void output_function_profiler ();
3342 extern int rs6000_adjust_cost ();
3343 extern int rs6000_adjust_priority ();
3344 extern void rs6000_trampoline_template ();
3345 extern int rs6000_trampoline_size ();
3346 extern void rs6000_initialize_trampoline ();
3347 extern void rs6000_output_load_toc_table ();
3348 extern int rs6000_comp_type_attributes ();
3349 extern int rs6000_valid_decl_attribute_p ();
3350 extern int rs6000_valid_type_attribute_p ();
3351 extern void rs6000_set_default_type_attributes ();
3352 extern struct rtx_def *rs6000_dll_import_ref ();
3353 extern struct rtx_def *rs6000_longcall_ref ();
3354 extern int function_arg_padding ();
3355 extern void toc_section ();
3356 extern void private_data_section ();
3357 extern void rs6000_fatal_bad_address ();
3358
3359 /* See nonlocal_goto_receiver for when this must be set. */
3360
3361 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_TOC && TARGET_MINIMAL_TOC)