]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/s390/s390.h
Turn CONSTANT_ALIGNMENT into a hook
[thirdparty/gcc.git] / gcc / config / s390 / s390.h
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999-2017 Free Software Foundation, Inc.
3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
4 Ulrich Weigand (uweigand@de.ibm.com).
5 Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #ifndef _S390_H
24 #define _S390_H
25
26 /* Optional architectural facilities supported by the processor. */
27
28 enum processor_flags
29 {
30 PF_IEEE_FLOAT = 1,
31 PF_ZARCH = 2,
32 PF_LONG_DISPLACEMENT = 4,
33 PF_EXTIMM = 8,
34 PF_DFP = 16,
35 PF_Z10 = 32,
36 PF_Z196 = 64,
37 PF_ZEC12 = 128,
38 PF_TX = 256,
39 PF_Z13 = 512,
40 PF_VX = 1024,
41 PF_ARCH12 = 2048,
42 PF_VXE = 4096
43 };
44
45 /* This is necessary to avoid a warning about comparing different enum
46 types. */
47 #define s390_tune_attr ((enum attr_cpu)(s390_tune > PROCESSOR_2964_Z13 ? PROCESSOR_2964_Z13 : s390_tune ))
48
49 /* These flags indicate that the generated code should run on a cpu
50 providing the respective hardware facility regardless of the
51 current cpu mode (ESA or z/Architecture). */
52
53 #define TARGET_CPU_IEEE_FLOAT \
54 (s390_arch_flags & PF_IEEE_FLOAT)
55 #define TARGET_CPU_IEEE_FLOAT_P(opts) \
56 (opts->x_s390_arch_flags & PF_IEEE_FLOAT)
57 #define TARGET_CPU_ZARCH \
58 (s390_arch_flags & PF_ZARCH)
59 #define TARGET_CPU_ZARCH_P(opts) \
60 (opts->x_s390_arch_flags & PF_ZARCH)
61 #define TARGET_CPU_LONG_DISPLACEMENT \
62 (s390_arch_flags & PF_LONG_DISPLACEMENT)
63 #define TARGET_CPU_LONG_DISPLACEMENT_P(opts) \
64 (opts->x_s390_arch_flags & PF_LONG_DISPLACEMENT)
65 #define TARGET_CPU_EXTIMM \
66 (s390_arch_flags & PF_EXTIMM)
67 #define TARGET_CPU_EXTIMM_P(opts) \
68 (opts->x_s390_arch_flags & PF_EXTIMM)
69 #define TARGET_CPU_DFP \
70 (s390_arch_flags & PF_DFP)
71 #define TARGET_CPU_DFP_P(opts) \
72 (opts->x_s390_arch_flags & PF_DFP)
73 #define TARGET_CPU_Z10 \
74 (s390_arch_flags & PF_Z10)
75 #define TARGET_CPU_Z10_P(opts) \
76 (opts->x_s390_arch_flags & PF_Z10)
77 #define TARGET_CPU_Z196 \
78 (s390_arch_flags & PF_Z196)
79 #define TARGET_CPU_Z196_P(opts) \
80 (opts->x_s390_arch_flags & PF_Z196)
81 #define TARGET_CPU_ZEC12 \
82 (s390_arch_flags & PF_ZEC12)
83 #define TARGET_CPU_ZEC12_P(opts) \
84 (opts->x_s390_arch_flags & PF_ZEC12)
85 #define TARGET_CPU_HTM \
86 (s390_arch_flags & PF_TX)
87 #define TARGET_CPU_HTM_P(opts) \
88 (opts->x_s390_arch_flags & PF_TX)
89 #define TARGET_CPU_Z13 \
90 (s390_arch_flags & PF_Z13)
91 #define TARGET_CPU_Z13_P(opts) \
92 (opts->x_s390_arch_flags & PF_Z13)
93 #define TARGET_CPU_VX \
94 (s390_arch_flags & PF_VX)
95 #define TARGET_CPU_VX_P(opts) \
96 (opts->x_s390_arch_flags & PF_VX)
97 #define TARGET_CPU_ARCH12 \
98 (s390_arch_flags & PF_ARCH12)
99 #define TARGET_CPU_ARCH12_P(opts) \
100 (opts->x_s390_arch_flags & PF_ARCH12)
101 #define TARGET_CPU_VXE \
102 (s390_arch_flags & PF_VXE)
103 #define TARGET_CPU_VXE_P(opts) \
104 (opts->x_s390_arch_flags & PF_VXE)
105
106 #define TARGET_HARD_FLOAT_P(opts) (!TARGET_SOFT_FLOAT_P(opts))
107
108 /* These flags indicate that the generated code should run on a cpu
109 providing the respective hardware facility when run in
110 z/Architecture mode. */
111
112 #define TARGET_LONG_DISPLACEMENT \
113 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
114 #define TARGET_LONG_DISPLACEMENT_P(opts) \
115 (TARGET_ZARCH_P (opts->x_target_flags) \
116 && TARGET_CPU_LONG_DISPLACEMENT_P (opts))
117 #define TARGET_EXTIMM \
118 (TARGET_ZARCH && TARGET_CPU_EXTIMM)
119 #define TARGET_EXTIMM_P(opts) \
120 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_EXTIMM_P (opts))
121 #define TARGET_DFP \
122 (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
123 #define TARGET_DFP_P(opts) \
124 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_DFP_P (opts) \
125 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
126 #define TARGET_Z10 \
127 (TARGET_ZARCH && TARGET_CPU_Z10)
128 #define TARGET_Z10_P(opts) \
129 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z10_P (opts))
130 #define TARGET_Z196 \
131 (TARGET_ZARCH && TARGET_CPU_Z196)
132 #define TARGET_Z196_P(opts) \
133 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z196_P (opts))
134 #define TARGET_ZEC12 \
135 (TARGET_ZARCH && TARGET_CPU_ZEC12)
136 #define TARGET_ZEC12_P(opts) \
137 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ZEC12_P (opts))
138 #define TARGET_HTM (TARGET_OPT_HTM)
139 #define TARGET_HTM_P(opts) (TARGET_OPT_HTM_P (opts->x_target_flags))
140 #define TARGET_Z13 \
141 (TARGET_ZARCH && TARGET_CPU_Z13)
142 #define TARGET_Z13_P(opts) \
143 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z13_P (opts))
144 #define TARGET_VX \
145 (TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT)
146 #define TARGET_VX_P(opts) \
147 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_VX_P (opts) \
148 && TARGET_OPT_VX_P (opts->x_target_flags) \
149 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
150 #define TARGET_ARCH12 (TARGET_ZARCH && TARGET_CPU_ARCH12)
151 #define TARGET_ARCH12_P(opts) \
152 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ARCH12_P (opts))
153 #define TARGET_VXE \
154 (TARGET_VX && TARGET_CPU_VXE)
155 #define TARGET_VXE_P(opts) \
156 (TARGET_VX_P (opts) && TARGET_CPU_VXE_P (opts))
157
158 #ifdef HAVE_AS_MACHINE_MACHINEMODE
159 #define S390_USE_TARGET_ATTRIBUTE 1
160 #else
161 #define S390_USE_TARGET_ATTRIBUTE 0
162 #endif
163
164 #ifdef HAVE_AS_ARCHITECTURE_MODIFIERS
165 #define S390_USE_ARCHITECTURE_MODIFIERS 1
166 #else
167 #define S390_USE_ARCHITECTURE_MODIFIERS 0
168 #endif
169
170 #if S390_USE_TARGET_ATTRIBUTE
171 /* For switching between functions with different target attributes. */
172 #define SWITCHABLE_TARGET 1
173 #endif
174
175 #define TARGET_SUPPORTS_WIDE_INT 1
176
177 /* Use the ABI introduced with IBM z13:
178 - pass vector arguments <= 16 bytes in VRs
179 - align *all* vector types to 8 bytes */
180 #define TARGET_VX_ABI TARGET_VX
181
182 #define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
183
184 /* Run-time target specification. */
185
186 /* Defaults for option flags defined only on some subtargets. */
187 #ifndef TARGET_TPF_PROFILING
188 #define TARGET_TPF_PROFILING 0
189 #endif
190
191 /* This will be overridden by OS headers. */
192 #define TARGET_TPF 0
193
194 /* Target CPU builtins. */
195 #define TARGET_CPU_CPP_BUILTINS() s390_cpu_cpp_builtins (pfile)
196
197 #ifdef DEFAULT_TARGET_64BIT
198 #define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP \
199 | MASK_OPT_HTM | MASK_OPT_VX)
200 #else
201 #define TARGET_DEFAULT 0
202 #endif
203
204 /* Support for configure-time defaults. */
205 #define OPTION_DEFAULT_SPECS \
206 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
207 { "arch", "%{!march=*:-march=%(VALUE)}" }, \
208 { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
209
210 #ifdef __s390__
211 extern const char *s390_host_detect_local_cpu (int argc, const char **argv);
212 # define EXTRA_SPEC_FUNCTIONS \
213 { "local_cpu_detect", s390_host_detect_local_cpu },
214
215 #define MARCH_MTUNE_NATIVE_SPECS \
216 "%{mtune=native:%<mtune=native %:local_cpu_detect(tune)} " \
217 "%{march=native:%<march=native" \
218 " %:local_cpu_detect(arch %{mesa|mzarch:mesa_mzarch})}"
219 #else
220 # define MARCH_MTUNE_NATIVE_SPECS ""
221 #endif
222
223 #ifdef DEFAULT_TARGET_64BIT
224 #define S390_TARGET_BITS_STRING "64"
225 #else
226 #define S390_TARGET_BITS_STRING "31"
227 #endif
228
229 /* Defaulting rules. */
230 #define DRIVER_SELF_SPECS \
231 MARCH_MTUNE_NATIVE_SPECS, \
232 "%{!m31:%{!m64:-m" S390_TARGET_BITS_STRING "}}", \
233 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
234 "%{!march=*:-march=z900}"
235
236 /* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
237 #define S390_TDC_POSITIVE_ZERO (1 << 11)
238 #define S390_TDC_NEGATIVE_ZERO (1 << 10)
239 #define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
240 #define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
241 #define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
242 #define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
243 #define S390_TDC_POSITIVE_INFINITY (1 << 5)
244 #define S390_TDC_NEGATIVE_INFINITY (1 << 4)
245 #define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
246 #define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
247 #define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
248 #define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
249
250 /* The following values are different for DFP. */
251 #define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
252 #define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
253 #define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
254 #define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
255
256 /* For signbit, the BFP-DFP-difference makes no difference. */
257 #define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
258 | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
259 | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
260 | S390_TDC_NEGATIVE_INFINITY \
261 | S390_TDC_NEGATIVE_QUIET_NAN \
262 | S390_TDC_NEGATIVE_SIGNALING_NAN )
263
264 #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
265 | S390_TDC_NEGATIVE_INFINITY )
266
267 /* Target machine storage layout. */
268
269 /* Everything is big-endian. */
270 #define BITS_BIG_ENDIAN 1
271 #define BYTES_BIG_ENDIAN 1
272 #define WORDS_BIG_ENDIAN 1
273
274 #define STACK_SIZE_MODE (Pmode)
275
276 #ifndef IN_LIBGCC2
277
278 /* Width of a word, in units (bytes). */
279 #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
280
281 /* Width of a pointer. To be used instead of UNITS_PER_WORD in
282 ABI-relevant contexts. This always matches
283 GET_MODE_SIZE (Pmode). */
284 #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
285 #define MIN_UNITS_PER_WORD 4
286 #define MAX_BITS_PER_WORD 64
287 #else
288
289 /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
290 the library should export TImode functions or not. Thus, we have
291 to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
292 #ifdef __s390x__
293 #define UNITS_PER_WORD 8
294 #else
295 #define UNITS_PER_WORD 4
296 #endif
297 #endif
298
299 /* Width of a pointer, in bits. */
300 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
301
302 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
303 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
304
305 /* Boundary (in *bits*) on which stack pointer should be aligned. */
306 #define STACK_BOUNDARY 64
307
308 /* Allocation boundary (in *bits*) for the code of a function. */
309 #define FUNCTION_BOUNDARY 64
310
311 /* There is no point aligning anything to a rounder boundary than this. */
312 #define BIGGEST_ALIGNMENT 64
313
314 /* Alignment of field after `int : 0' in a structure. */
315 #define EMPTY_FIELD_BOUNDARY 32
316
317 /* Alignment on even addresses for LARL instruction. */
318 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
319
320 /* Alignment is not required by the hardware. */
321 #define STRICT_ALIGNMENT 0
322
323 /* Mode of stack savearea.
324 FUNCTION is VOIDmode because calling convention maintains SP.
325 BLOCK needs Pmode for SP.
326 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
327 #define STACK_SAVEAREA_MODE(LEVEL) \
328 ((LEVEL) == SAVE_FUNCTION ? VOIDmode \
329 : (LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
330
331
332 /* Type layout. */
333
334 /* Sizes in bits of the source language data types. */
335 #define SHORT_TYPE_SIZE 16
336 #define INT_TYPE_SIZE 32
337 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
338 #define LONG_LONG_TYPE_SIZE 64
339 #define FLOAT_TYPE_SIZE 32
340 #define DOUBLE_TYPE_SIZE 64
341 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
342
343 /* Work around target_flags dependency in ada/targtyps.c. */
344 #define WIDEST_HARDWARE_FP_SIZE 64
345
346 /* We use "unsigned char" as default. */
347 #define DEFAULT_SIGNED_CHAR 0
348
349
350 /* Register usage. */
351
352 /* We have 16 general purpose registers (registers 0-15),
353 and 16 floating point registers (registers 16-31).
354 (On non-IEEE machines, we have only 4 fp registers.)
355
356 Amongst the general purpose registers, some are used
357 for specific purposes:
358 GPR 11: Hard frame pointer (if needed)
359 GPR 12: Global offset table pointer (if needed)
360 GPR 13: Literal pool base register
361 GPR 14: Return address register
362 GPR 15: Stack pointer
363
364 Registers 32-35 are 'fake' hard registers that do not
365 correspond to actual hardware:
366 Reg 32: Argument pointer
367 Reg 33: Condition code
368 Reg 34: Frame pointer
369 Reg 35: Return address pointer
370
371 Registers 36 and 37 are mapped to access registers
372 0 and 1, used to implement thread-local storage.
373
374 Reg 38-53: Vector registers v16-v31 */
375
376 #define FIRST_PSEUDO_REGISTER 54
377
378 /* Standard register usage. */
379 #define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
380 #define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
381 #define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
382 #define CC_REGNO_P(N) ((N) == 33)
383 #define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
384 #define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
385 #define VECTOR_NOFP_REGNO_P(N) ((N) >= 38 && (N) <= 53)
386 #define VECTOR_REGNO_P(N) (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N))
387
388 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
389 #define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
390 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
391 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
392 #define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
393 #define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
394 #define VECTOR_NOFP_REG_P(X) (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X)))
395 #define VECTOR_REG_P(X) (REG_P (X) && VECTOR_REGNO_P (REGNO (X)))
396
397 /* Set up fixed registers and calling convention:
398
399 GPRs 0-5 are always call-clobbered,
400 GPRs 6-15 are always call-saved.
401 GPR 12 is fixed if used as GOT pointer.
402 GPR 13 is always fixed (as literal pool pointer).
403 GPR 14 is always fixed on S/390 machines (as return address).
404 GPR 15 is always fixed (as stack pointer).
405 The 'fake' hard registers are call-clobbered and fixed.
406 The access registers are call-saved and fixed.
407
408 On 31-bit, FPRs 18-19 are call-clobbered;
409 on 64-bit, FPRs 24-31 are call-clobbered.
410 The remaining FPRs are call-saved.
411
412 All non-FP vector registers are call-clobbered v16-v31. */
413
414 #define FIXED_REGISTERS \
415 { 0, 0, 0, 0, \
416 0, 0, 0, 0, \
417 0, 0, 0, 0, \
418 0, 1, 1, 1, \
419 0, 0, 0, 0, \
420 0, 0, 0, 0, \
421 0, 0, 0, 0, \
422 0, 0, 0, 0, \
423 1, 1, 1, 1, \
424 1, 1, \
425 0, 0, 0, 0, \
426 0, 0, 0, 0, \
427 0, 0, 0, 0, \
428 0, 0, 0, 0 }
429
430 #define CALL_USED_REGISTERS \
431 { 1, 1, 1, 1, \
432 1, 1, 0, 0, \
433 0, 0, 0, 0, \
434 0, 1, 1, 1, \
435 1, 1, 1, 1, \
436 1, 1, 1, 1, \
437 1, 1, 1, 1, \
438 1, 1, 1, 1, \
439 1, 1, 1, 1, \
440 1, 1, \
441 1, 1, 1, 1, \
442 1, 1, 1, 1, \
443 1, 1, 1, 1, \
444 1, 1, 1, 1 }
445
446 #define CALL_REALLY_USED_REGISTERS \
447 { 1, 1, 1, 1, /* r0 - r15 */ \
448 1, 1, 0, 0, \
449 0, 0, 0, 0, \
450 0, 0, 0, 0, \
451 1, 1, 1, 1, /* f0 (16) - f15 (31) */ \
452 1, 1, 1, 1, \
453 1, 1, 1, 1, \
454 1, 1, 1, 1, \
455 1, 1, 1, 1, /* arg, cc, fp, ret addr */ \
456 0, 0, /* a0 (36), a1 (37) */ \
457 1, 1, 1, 1, /* v16 (38) - v23 (45) */ \
458 1, 1, 1, 1, \
459 1, 1, 1, 1, /* v24 (46) - v31 (53) */ \
460 1, 1, 1, 1 }
461
462 /* Preferred register allocation order. */
463 #define REG_ALLOC_ORDER \
464 { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
465 16, 17, 18, 19, 20, 21, 22, 23, \
466 24, 25, 26, 27, 28, 29, 30, 31, \
467 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, \
468 15, 32, 33, 34, 35, 36, 37 }
469
470
471 #define HARD_REGNO_RENAME_OK(FROM, TO) \
472 s390_hard_regno_rename_ok ((FROM), (TO))
473
474 /* Maximum number of registers to represent a value of mode MODE
475 in a register of class CLASS. */
476 #define CLASS_MAX_NREGS(CLASS, MODE) \
477 s390_class_max_nregs ((CLASS), (MODE))
478
479 /* We can reverse a CC mode safely if we know whether it comes from a
480 floating point compare or not. With the vector modes it is encoded
481 as part of the mode.
482 FIXME: It might make sense to do this for other cc modes as well. */
483 #define REVERSIBLE_CC_MODE(MODE) \
484 ((MODE) == CCVIALLmode || (MODE) == CCVIANYmode \
485 || (MODE) == CCVFALLmode || (MODE) == CCVFANYmode)
486
487 /* Given a condition code and a mode, return the inverse condition. */
488 #define REVERSE_CONDITION(CODE, MODE) s390_reverse_condition (MODE, CODE)
489
490
491 /* Register classes. */
492
493 /* We use the following register classes:
494 GENERAL_REGS All general purpose registers
495 ADDR_REGS All general purpose registers except %r0
496 (These registers can be used in address generation)
497 FP_REGS All floating point registers
498 CC_REGS The condition code register
499 ACCESS_REGS The access registers
500
501 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
502 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
503 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
504 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
505
506 NO_REGS No registers
507 ALL_REGS All registers
508
509 Note that the 'fake' frame pointer and argument pointer registers
510 are included amongst the address registers here. */
511
512 enum reg_class
513 {
514 NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
515 ADDR_CC_REGS, GENERAL_CC_REGS,
516 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
517 VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS,
518 ALL_REGS, LIM_REG_CLASSES
519 };
520 #define N_REG_CLASSES (int) LIM_REG_CLASSES
521
522 #define REG_CLASS_NAMES \
523 { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
524 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
525 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", \
526 "VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS", \
527 "ALL_REGS" }
528
529 /* Class -> register mapping. */
530 #define REG_CLASS_CONTENTS \
531 { \
532 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
533 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
534 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
535 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
536 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
537 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
538 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
539 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
540 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
541 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
542 { 0xffff0000, 0x003fffc0 }, /* VEC_REGS */ \
543 { 0xfffffffe, 0x003fffcd }, /* ADDR_VEC_REGS */ \
544 { 0xffffffff, 0x003fffcd }, /* GENERAL_VEC_REGS */ \
545 { 0xffffffff, 0x003fffff }, /* ALL_REGS */ \
546 }
547
548 /* In some case register allocation order is not enough for IRA to
549 generate a good code. The following macro (if defined) increases
550 cost of REGNO for a pseudo approximately by pseudo usage frequency
551 multiplied by the macro value.
552
553 We avoid usage of BASE_REGNUM by nonzero macro value because the
554 reload can decide not to use the hard register because some
555 constant was forced to be in memory. */
556 #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
557 ((regno) != BASE_REGNUM ? 0.0 : 0.5)
558
559 /* Register -> class mapping. */
560 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
561 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
562
563 /* ADDR_REGS can be used as base or index register. */
564 #define INDEX_REG_CLASS ADDR_REGS
565 #define BASE_REG_CLASS ADDR_REGS
566
567 /* Check whether REGNO is a hard register of the suitable class
568 or a pseudo register currently allocated to one such. */
569 #define REGNO_OK_FOR_INDEX_P(REGNO) \
570 (((REGNO) < FIRST_PSEUDO_REGISTER \
571 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
572 || ADDR_REGNO_P (reg_renumber[REGNO]))
573 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
574
575
576 /* Stack layout and calling conventions. */
577
578 /* Our stack grows from higher to lower addresses. However, local variables
579 are accessed by positive offsets, and function arguments are stored at
580 increasing addresses. */
581 #define STACK_GROWS_DOWNWARD 1
582 #define FRAME_GROWS_DOWNWARD 1
583 /* #undef ARGS_GROW_DOWNWARD */
584
585 /* The basic stack layout looks like this: the stack pointer points
586 to the register save area for called functions. Above that area
587 is the location to place outgoing arguments. Above those follow
588 dynamic allocations (alloca), and finally the local variables. */
589
590 /* Offset from stack-pointer to first location of outgoing args. */
591 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
592
593 /* Offset within stack frame to start allocating local variables at. */
594 #define STARTING_FRAME_OFFSET 0
595
596 /* Offset from the stack pointer register to an item dynamically
597 allocated on the stack, e.g., by `alloca'. */
598 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
599 (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
600
601 /* Offset of first parameter from the argument pointer register value.
602 We have a fake argument pointer register that points directly to
603 the argument area. */
604 #define FIRST_PARM_OFFSET(FNDECL) 0
605
606 /* Defining this macro makes __builtin_frame_address(0) and
607 __builtin_return_address(0) work with -fomit-frame-pointer. */
608 #define INITIAL_FRAME_ADDRESS_RTX \
609 (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
610
611 /* The return address of the current frame is retrieved
612 from the initial value of register RETURN_REGNUM.
613 For frames farther back, we use the stack slot where
614 the corresponding RETURN_REGNUM register was saved. */
615 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
616 (TARGET_PACKED_STACK ? \
617 plus_constant (Pmode, (FRAME), \
618 STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
619
620 /* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
621 builtin_frame_address. Otherwise arg pointer -
622 STACK_POINTER_OFFSET would be returned for
623 __builtin_frame_address(0) what might result in an address pointing
624 somewhere into the middle of the local variables since the packed
625 stack layout generally does not need all the bytes in the register
626 save area. */
627 #define FRAME_ADDR_RTX(FRAME) \
628 DYNAMIC_CHAIN_ADDRESS ((FRAME))
629
630 #define RETURN_ADDR_RTX(COUNT, FRAME) \
631 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
632
633 /* In 31-bit mode, we need to mask off the high bit of return addresses. */
634 #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
635
636
637 /* Exception handling. */
638
639 /* Describe calling conventions for DWARF-2 exception handling. */
640 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
641 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
642 #define DWARF_FRAME_RETURN_COLUMN 14
643
644 /* Describe how we implement __builtin_eh_return. */
645 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
646 #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
647
648 /* Select a format to encode pointers in exception handling data. */
649 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
650 (flag_pic \
651 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
652 : DW_EH_PE_absptr)
653
654 /* Register save slot alignment. */
655 #define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
656
657 /* Let the assembler generate debug line info. */
658 #define DWARF2_ASM_LINE_DEBUG_INFO 1
659
660 /* Define the dwarf register mapping.
661 v16-v31 -> 68-83
662 rX -> X otherwise */
663 #define DBX_REGISTER_NUMBER(regno) \
664 (((regno) >= 38 && (regno) <= 53) ? (regno) + 30 : (regno))
665
666 /* Frame registers. */
667
668 #define STACK_POINTER_REGNUM 15
669 #define FRAME_POINTER_REGNUM 34
670 #define HARD_FRAME_POINTER_REGNUM 11
671 #define ARG_POINTER_REGNUM 32
672 #define RETURN_ADDRESS_POINTER_REGNUM 35
673
674 /* The static chain must be call-clobbered, but not used for
675 function argument passing. As register 1 is clobbered by
676 the trampoline code, we only have one option. */
677 #define STATIC_CHAIN_REGNUM 0
678
679 /* Number of hardware registers that go into the DWARF-2 unwind info.
680 To avoid ABI incompatibility, this number must not change even as
681 'fake' hard registers are added or removed. */
682 #define DWARF_FRAME_REGISTERS 34
683
684
685 /* Frame pointer and argument pointer elimination. */
686
687 #define ELIMINABLE_REGS \
688 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
689 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
690 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
691 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
692 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
693 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
694 { BASE_REGNUM, BASE_REGNUM }}
695
696 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
697 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
698
699
700 /* Stack arguments. */
701
702 /* We need current_function_outgoing_args to be valid. */
703 #define ACCUMULATE_OUTGOING_ARGS 1
704
705
706 /* Register arguments. */
707
708 typedef struct s390_arg_structure
709 {
710 int gprs; /* gpr so far */
711 int fprs; /* fpr so far */
712 int vrs; /* vr so far */
713 }
714 CUMULATIVE_ARGS;
715
716 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
717 ((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0)
718
719 #define FIRST_VEC_ARG_REGNO 46
720 #define LAST_VEC_ARG_REGNO 53
721
722 /* Arguments can be placed in general registers 2 to 6, or in floating
723 point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
724 bit. */
725 #define FUNCTION_ARG_REGNO_P(N) \
726 (((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17 \
727 || (TARGET_64BIT && ((N) == 18 || (N) == 19)) \
728 || (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO)))
729
730
731 /* Only gpr 2, fpr 0, and v24 are ever used as return registers. */
732 #define FUNCTION_VALUE_REGNO_P(N) \
733 ((N) == 2 || (N) == 16 \
734 || (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO))
735
736
737 /* Function entry and exit. */
738
739 /* When returning from a function, the stack pointer does not matter. */
740 #define EXIT_IGNORE_STACK 1
741
742
743 /* Profiling. */
744
745 #define FUNCTION_PROFILER(FILE, LABELNO) \
746 s390_function_profiler ((FILE), ((LABELNO)))
747
748 #define PROFILE_BEFORE_PROLOGUE 1
749
750
751 /* Trampolines for nested functions. */
752
753 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
754 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
755
756 /* Addressing modes, and classification of registers for them. */
757
758 /* Recognize any constant value that is a valid address. */
759 #define CONSTANT_ADDRESS_P(X) 0
760
761 /* Maximum number of registers that can appear in a valid memory address. */
762 #define MAX_REGS_PER_ADDRESS 2
763
764 /* This definition replaces the formerly used 'm' constraint with a
765 different constraint letter in order to avoid changing semantics of
766 the 'm' constraint when accepting new address formats in
767 TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
768 must not be used in insn definitions or inline assemblies. */
769 #define TARGET_MEM_CONSTRAINT 'e'
770
771 /* Try a machine-dependent way of reloading an illegitimate address
772 operand. If we find one, push the reload and jump to WIN. This
773 macro is used in only one place: `find_reloads_address' in reload.c. */
774 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
775 do { \
776 rtx new_rtx = legitimize_reload_address ((AD), (MODE), \
777 (OPNUM), (int)(TYPE)); \
778 if (new_rtx) \
779 { \
780 (AD) = new_rtx; \
781 goto WIN; \
782 } \
783 } while (0)
784
785 /* Helper macro for s390.c and s390.md to check for symbolic constants. */
786 #define SYMBOLIC_CONST(X) \
787 (GET_CODE (X) == SYMBOL_REF \
788 || GET_CODE (X) == LABEL_REF \
789 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
790
791 #define TLS_SYMBOLIC_CONST(X) \
792 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
793 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
794
795
796 /* Condition codes. */
797
798 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
799 return the mode to be used for the comparison. */
800 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
801
802 /* Relative costs of operations. */
803
804 /* A C expression for the cost of a branch instruction. A value of 1
805 is the default; other values are interpreted relative to that. */
806 #define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
807
808 /* Nonzero if access to memory by bytes is slow and undesirable. */
809 #define SLOW_BYTE_ACCESS 1
810
811 /* An integer expression for the size in bits of the largest integer machine
812 mode that should actually be used. We allow pairs of registers. */
813 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
814
815 /* The maximum number of bytes that a single instruction can move quickly
816 between memory and registers or between two memory locations. */
817 #define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
818 #define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
819 #define MAX_MOVE_MAX 16
820
821 /* Don't perform CSE on function addresses. */
822 #define NO_FUNCTION_CSE 1
823
824 /* This value is used in tree-sra to decide whether it might benefical
825 to split a struct move into several word-size moves. For S/390
826 only small values make sense here since struct moves are relatively
827 cheap thanks to mvc so the small default value chosen for archs
828 with memmove patterns should be ok. But this value is multiplied
829 in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
830 here to compensate for that factor since mvc costs exactly the same
831 on 31 and 64 bit. */
832 #define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
833
834
835 /* Sections. */
836
837 /* Output before read-only data. */
838 #define TEXT_SECTION_ASM_OP ".text"
839
840 /* Output before writable (initialized) data. */
841 #define DATA_SECTION_ASM_OP ".data"
842
843 /* Output before writable (uninitialized) data. */
844 #define BSS_SECTION_ASM_OP ".bss"
845
846 /* S/390 constant pool breaks the devices in crtstuff.c to control section
847 in where code resides. We have to write it as asm code. */
848 #ifndef __s390x__
849 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
850 asm (SECTION_OP "\n\
851 bras\t%r2,1f\n\
852 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
853 1: l\t%r3,0(%r2)\n\
854 bas\t%r14,0(%r3,%r2)\n\
855 .previous");
856 #endif
857
858
859 /* Position independent code. */
860
861 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
862
863 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
864
865 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
866 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
867 #endif
868
869
870 /* Assembler file format. */
871
872 /* Character to start a comment. */
873 #define ASM_COMMENT_START "#"
874
875 /* Declare an uninitialized external linkage data object. */
876 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
877 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
878
879 /* Globalizing directive for a label. */
880 #define GLOBAL_ASM_OP ".globl "
881
882 /* Advance the location counter to a multiple of 2**LOG bytes. */
883 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
884 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
885
886 /* Advance the location counter by SIZE bytes. */
887 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
888 fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
889
890 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
891 #define LOCAL_LABEL_PREFIX "."
892
893 #define LABEL_ALIGN(LABEL) \
894 s390_label_align ((LABEL))
895
896 /* How to refer to registers in assembler output. This sequence is
897 indexed by compiler's hard-register-number (see above). */
898 #define REGISTER_NAMES \
899 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
900 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
901 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
902 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
903 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1", \
904 "%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23", \
905 "%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31" \
906 }
907
908 #define ADDITIONAL_REGISTER_NAMES \
909 { { "v0", 16 }, { "v2", 17 }, { "v4", 18 }, { "v6", 19 }, \
910 { "v1", 20 }, { "v3", 21 }, { "v5", 22 }, { "v7", 23 }, \
911 { "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 }, \
912 { "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } };
913
914 /* Print operand X (an rtx) in assembler syntax to file FILE. */
915 #define PRINT_OPERAND(FILE, X, CODE) print_operand ((FILE), (X), (CODE))
916 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address ((FILE), (ADDR))
917
918 /* Output an element of a case-vector that is absolute. */
919 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
920 do { \
921 char buf[32]; \
922 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
923 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
924 assemble_name ((FILE), buf); \
925 fputc ('\n', (FILE)); \
926 } while (0)
927
928 /* Output an element of a case-vector that is relative. */
929 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
930 do { \
931 char buf[32]; \
932 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
933 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
934 assemble_name ((FILE), buf); \
935 fputc ('-', (FILE)); \
936 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
937 assemble_name ((FILE), buf); \
938 fputc ('\n', (FILE)); \
939 } while (0)
940
941 /* Mark the return register as used by the epilogue so that we can
942 use it in unadorned (return) and (simple_return) instructions. */
943 #define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)
944
945 #undef ASM_OUTPUT_FUNCTION_LABEL
946 #define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
947 s390_asm_output_function_label ((FILE), (NAME), (DECL))
948
949 #if S390_USE_TARGET_ATTRIBUTE
950 /* Hook to output .machine and .machinemode at start of function. */
951 #undef ASM_OUTPUT_FUNCTION_PREFIX
952 #define ASM_OUTPUT_FUNCTION_PREFIX s390_asm_output_function_prefix
953
954 /* Hook to output .machine and .machinemode at end of function. */
955 #undef ASM_DECLARE_FUNCTION_SIZE
956 #define ASM_DECLARE_FUNCTION_SIZE s390_asm_declare_function_size
957 #endif
958
959 /* Miscellaneous parameters. */
960
961 /* Specify the machine mode that this machine uses for the index in the
962 tablejump instruction. */
963 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
964
965 /* Specify the machine mode that pointers have.
966 After generation of rtl, the compiler makes no further distinction
967 between pointers and any other objects of this machine mode. */
968 #define Pmode (TARGET_64BIT ? DImode : SImode)
969
970 /* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
971 #define POINTERS_EXTEND_UNSIGNED -1
972
973 /* A function address in a call instruction is a byte address (for
974 indexing purposes) so give the MEM rtx a byte's mode. */
975 #define FUNCTION_MODE QImode
976
977 /* Specify the value which is used when clz operand is zero. */
978 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
979
980 /* Machine-specific symbol_ref flags. */
981 #define SYMBOL_FLAG_ALIGN_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
982 #define SYMBOL_FLAG_ALIGN_MASK \
983 ((SYMBOL_FLAG_MACH_DEP << 0) | (SYMBOL_FLAG_MACH_DEP << 1))
984
985 #define SYMBOL_FLAG_SET_ALIGN(X, A) \
986 (SYMBOL_REF_FLAGS (X) = (SYMBOL_REF_FLAGS (X) & ~SYMBOL_FLAG_ALIGN_MASK) \
987 | (A << SYMBOL_FLAG_ALIGN_SHIFT))
988
989 #define SYMBOL_FLAG_GET_ALIGN(X) \
990 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN_MASK) >> SYMBOL_FLAG_ALIGN_SHIFT)
991
992 /* Helpers to access symbol_ref flags. They are used in
993 check_symref_alignment() and larl_operand to detect if the
994 available alignment matches the required one. We do not use
995 a positive check like _ALIGN2 because in that case we would have
996 to annotate every symbol_ref. However, we only want to touch
997 the symbol_refs that can be misaligned and assume that the others
998 are correctly aligned. Hence, if a symbol_ref does not have
999 a _NOTALIGN flag it is supposed to be correctly aligned. */
1000 #define SYMBOL_FLAG_SET_NOTALIGN2(X) SYMBOL_FLAG_SET_ALIGN((X), 1)
1001 #define SYMBOL_FLAG_SET_NOTALIGN4(X) SYMBOL_FLAG_SET_ALIGN((X), 2)
1002 #define SYMBOL_FLAG_SET_NOTALIGN8(X) SYMBOL_FLAG_SET_ALIGN((X), 3)
1003
1004 #define SYMBOL_FLAG_NOTALIGN2_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 1)
1005 #define SYMBOL_FLAG_NOTALIGN4_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 2 \
1006 || SYMBOL_FLAG_GET_ALIGN(X) == 1)
1007 #define SYMBOL_FLAG_NOTALIGN8_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 3 \
1008 || SYMBOL_FLAG_GET_ALIGN(X) == 2 \
1009 || SYMBOL_FLAG_GET_ALIGN(X) == 1)
1010
1011 /* Check whether integer displacement is in range for a short displacement. */
1012 #define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095)
1013
1014 /* Check whether integer displacement is in range. */
1015 #define DISP_IN_RANGE(d) \
1016 (TARGET_LONG_DISPLACEMENT \
1017 ? ((d) >= -524288 && (d) <= 524287) \
1018 : SHORT_DISP_IN_RANGE(d))
1019
1020 /* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
1021 #define READ_CAN_USE_WRITE_PREFETCH 1
1022
1023 extern const int processor_flags_table[];
1024
1025 /* The truth element value for vector comparisons. Our instructions
1026 always generate -1 in that case. */
1027 #define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
1028
1029 /* Target pragma. */
1030
1031 /* resolve_overloaded_builtin can not be defined the normal way since
1032 it is defined in code which technically belongs to the
1033 front-end. */
1034 #define REGISTER_TARGET_PRAGMAS() \
1035 do { \
1036 s390_register_target_pragmas (); \
1037 } while (0)
1038
1039 #endif /* S390_H */