]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/sh/sh.h
Turn HARD_REGNO_NREGS into a target hook
[thirdparty/gcc.git] / gcc / config / sh / sh.h
1 /* Definitions of target machine for GNU compiler for Renesas / SuperH SH.
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Contributed by Steve Chamberlain (sac@cygnus.com).
4 Improved by Jim Wilson (wilson@cygnus.com).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_SH_H
23 #define GCC_SH_H
24
25 #include "config/vxworks-dummy.h"
26
27 /* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
28 include it here, because bconfig.h is also included by gencodes.c . */
29 /* ??? No longer true. */
30 extern int code_for_indirect_jump_scratch;
31
32 #define TARGET_CPU_CPP_BUILTINS() sh_cpu_cpp_builtins (pfile)
33
34 /* Value should be nonzero if functions must have frame pointers.
35 Zero means the frame pointer need not be set up (and parms may be accessed
36 via the stack pointer) in functions that seem suitable. */
37
38 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
39 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
40 #endif
41
42 \f
43 /* Nonzero if this is an ELF target - compile time only */
44 #define TARGET_ELF 0
45
46 /* Nonzero if we should generate code using type 2E insns. */
47 #define TARGET_SH2E (TARGET_SH2 && TARGET_SH_E)
48
49 /* Nonzero if we should generate code using type 2A insns. */
50 #define TARGET_SH2A TARGET_HARD_SH2A
51 /* Nonzero if we should generate code using type 2A SF insns. */
52 #define TARGET_SH2A_SINGLE (TARGET_SH2A && TARGET_SH2E)
53 /* Nonzero if we should generate code using type 2A DF insns. */
54 #define TARGET_SH2A_DOUBLE (TARGET_HARD_SH2A_DOUBLE && TARGET_SH2A)
55
56 /* Nonzero if we should generate code using type 3E insns. */
57 #define TARGET_SH3E (TARGET_SH3 && TARGET_SH_E)
58
59 /* Nonzero if we schedule for a superscalar implementation. */
60 #define TARGET_SUPERSCALAR (TARGET_HARD_SH4 || TARGET_SH2A)
61
62 /* Nonzero if a double-precision FPU is available. */
63 #define TARGET_FPU_DOUBLE (TARGET_SH4 || TARGET_SH2A_DOUBLE)
64
65 /* Nonzero if an FPU is available. */
66 #define TARGET_FPU_ANY (TARGET_SH2E || TARGET_FPU_DOUBLE)
67
68 /* Nonzero if we're generating code for SH4a, unless the use of the
69 FPU is disabled (which makes it compatible with SH4al-dsp). */
70 #define TARGET_SH4A_FP (TARGET_SH4A && TARGET_FPU_ANY)
71
72
73 /* This is not used by the SH2E calling convention */
74 #define TARGET_VARARGS_PRETEND_ARGS(FUN_DECL) \
75 (! TARGET_SH2E \
76 && ! (TARGET_HITACHI || sh_attr_renesas_p (FUN_DECL)))
77
78 #ifndef TARGET_CPU_DEFAULT
79 #define TARGET_CPU_DEFAULT SELECT_SH1
80 #define SUPPORT_SH1 1
81 #define SUPPORT_SH2E 1
82 #define SUPPORT_SH4 1
83 #define SUPPORT_SH4_SINGLE 1
84 #define SUPPORT_SH2A 1
85 #define SUPPORT_SH2A_SINGLE 1
86 #endif
87
88 #define TARGET_DIVIDE_CALL_DIV1 (sh_div_strategy == SH_DIV_CALL_DIV1)
89 #define TARGET_DIVIDE_CALL_FP (sh_div_strategy == SH_DIV_CALL_FP)
90 #define TARGET_DIVIDE_CALL_TABLE (sh_div_strategy == SH_DIV_CALL_TABLE)
91
92 #define SELECT_SH1 (MASK_SH1)
93 #define SELECT_SH2 (MASK_SH2 | SELECT_SH1)
94 #define SELECT_SH2E (MASK_SH_E | MASK_SH2 | MASK_SH1 \
95 | MASK_FPU_SINGLE)
96 #define SELECT_SH2A (MASK_SH_E | MASK_HARD_SH2A \
97 | MASK_HARD_SH2A_DOUBLE \
98 | MASK_SH2 | MASK_SH1)
99 #define SELECT_SH2A_NOFPU (MASK_HARD_SH2A | MASK_SH2 | MASK_SH1)
100 #define SELECT_SH2A_SINGLE_ONLY (MASK_SH_E | MASK_HARD_SH2A | MASK_SH2 \
101 | MASK_SH1 | MASK_FPU_SINGLE \
102 | MASK_FPU_SINGLE_ONLY)
103 #define SELECT_SH2A_SINGLE (MASK_SH_E | MASK_HARD_SH2A \
104 | MASK_FPU_SINGLE | MASK_HARD_SH2A_DOUBLE \
105 | MASK_SH2 | MASK_SH1)
106 #define SELECT_SH3 (MASK_SH3 | SELECT_SH2)
107 #define SELECT_SH3E (MASK_SH_E | MASK_FPU_SINGLE | SELECT_SH3)
108 #define SELECT_SH4_NOFPU (MASK_HARD_SH4 | SELECT_SH3)
109 #define SELECT_SH4_SINGLE_ONLY (MASK_HARD_SH4 | SELECT_SH3E \
110 | MASK_FPU_SINGLE_ONLY)
111 #define SELECT_SH4 (MASK_SH4 | MASK_SH_E | MASK_HARD_SH4 \
112 | SELECT_SH3)
113 #define SELECT_SH4_SINGLE (MASK_FPU_SINGLE | SELECT_SH4)
114 #define SELECT_SH4A_NOFPU (MASK_SH4A | SELECT_SH4_NOFPU)
115 #define SELECT_SH4A_SINGLE_ONLY (MASK_SH4A | SELECT_SH4_SINGLE_ONLY)
116 #define SELECT_SH4A (MASK_SH4A | SELECT_SH4)
117 #define SELECT_SH4A_SINGLE (MASK_SH4A | SELECT_SH4_SINGLE)
118
119 #if SUPPORT_SH1
120 #define SUPPORT_SH2 1
121 #endif
122 #if SUPPORT_SH2
123 #define SUPPORT_SH3 1
124 #define SUPPORT_SH2A_NOFPU 1
125 #endif
126 #if SUPPORT_SH3
127 #define SUPPORT_SH4_NOFPU 1
128 #endif
129 #if SUPPORT_SH4_NOFPU
130 #define SUPPORT_SH4A_NOFPU 1
131 #define SUPPORT_SH4AL 1
132 #endif
133
134 #if SUPPORT_SH2E
135 #define SUPPORT_SH3E 1
136 #define SUPPORT_SH2A_SINGLE_ONLY 1
137 #endif
138 #if SUPPORT_SH3E
139 #define SUPPORT_SH4_SINGLE_ONLY 1
140 #endif
141 #if SUPPORT_SH4_SINGLE_ONLY
142 #define SUPPORT_SH4A_SINGLE_ONLY 1
143 #endif
144
145 #if SUPPORT_SH4
146 #define SUPPORT_SH4A 1
147 #endif
148
149 #if SUPPORT_SH4_SINGLE
150 #define SUPPORT_SH4A_SINGLE 1
151 #endif
152
153 /* Reset all target-selection flags. */
154 #define MASK_ARCH (MASK_SH1 | MASK_SH2 | MASK_SH3 | MASK_SH_E | MASK_SH4 \
155 | MASK_HARD_SH2A | MASK_HARD_SH2A_DOUBLE | MASK_SH4A \
156 | MASK_HARD_SH4 | MASK_FPU_SINGLE \
157 | MASK_FPU_SINGLE_ONLY)
158
159 /* This defaults us to big-endian. */
160 #ifndef TARGET_ENDIAN_DEFAULT
161 #define TARGET_ENDIAN_DEFAULT 0
162 #endif
163
164 #ifndef TARGET_OPT_DEFAULT
165 #define TARGET_OPT_DEFAULT 0
166 #endif
167
168 #define TARGET_DEFAULT \
169 (TARGET_CPU_DEFAULT | TARGET_ENDIAN_DEFAULT | TARGET_OPT_DEFAULT)
170
171 #ifndef SH_MULTILIB_CPU_DEFAULT
172 #define SH_MULTILIB_CPU_DEFAULT "m1"
173 #endif
174
175 #if TARGET_ENDIAN_DEFAULT
176 #define MULTILIB_DEFAULTS { "ml", SH_MULTILIB_CPU_DEFAULT }
177 #else
178 #define MULTILIB_DEFAULTS { "mb", SH_MULTILIB_CPU_DEFAULT }
179 #endif
180
181 #define CPP_SPEC " %(subtarget_cpp_spec) "
182
183 #ifndef SUBTARGET_CPP_SPEC
184 #define SUBTARGET_CPP_SPEC ""
185 #endif
186
187 #ifndef SUBTARGET_EXTRA_SPECS
188 #define SUBTARGET_EXTRA_SPECS
189 #endif
190
191 #define EXTRA_SPECS \
192 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
193 { "link_emul_prefix", LINK_EMUL_PREFIX }, \
194 { "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL }, \
195 { "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX }, \
196 { "subtarget_link_spec", SUBTARGET_LINK_SPEC }, \
197 { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC }, \
198 { "subtarget_asm_relax_spec", SUBTARGET_ASM_RELAX_SPEC }, \
199 { "subtarget_asm_isa_spec", SUBTARGET_ASM_ISA_SPEC }, \
200 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
201 SUBTARGET_EXTRA_SPECS
202
203 #if TARGET_CPU_DEFAULT & MASK_HARD_SH4
204 #define SUBTARGET_ASM_RELAX_SPEC "%{!m1:%{!m2:%{!m3*:-isa=sh4-up}}}"
205 #else
206 #define SUBTARGET_ASM_RELAX_SPEC "%{m4*:-isa=sh4-up}"
207 #endif
208
209 /* Define which ISA type to pass to the assembler.
210 For SH4 we pass SH4A to allow using some instructions that are available
211 on some SH4 variants, but officially are part of the SH4A ISA. */
212 #define SH_ASM_SPEC \
213 "%(subtarget_asm_endian_spec) %{mrelax:-relax %(subtarget_asm_relax_spec)} \
214 %(subtarget_asm_isa_spec) %(subtarget_asm_spec) \
215 %{m1:--isa=sh} \
216 %{m2:--isa=sh2} \
217 %{m2e:--isa=sh2e} \
218 %{m3:--isa=sh3} \
219 %{m3e:--isa=sh3e} \
220 %{m4:--isa=sh4a} \
221 %{m4-single:--isa=sh4a} \
222 %{m4-single-only:--isa=sh4a} \
223 %{m4-nofpu:--isa=sh4a-nofpu} \
224 %{m4a:--isa=sh4a} \
225 %{m4a-single:--isa=sh4a} \
226 %{m4a-single-only:--isa=sh4a} \
227 %{m4a-nofpu:--isa=sh4a-nofpu} \
228 %{m2a:--isa=sh2a} \
229 %{m2a-single:--isa=sh2a} \
230 %{m2a-single-only:--isa=sh2a} \
231 %{m2a-nofpu:--isa=sh2a-nofpu} \
232 %{m4al:-dsp}"
233
234 #define ASM_SPEC SH_ASM_SPEC
235
236 #ifndef SUBTARGET_ASM_ENDIAN_SPEC
237 #if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
238 #define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
239 #else
240 #define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
241 #endif
242 #endif
243
244 #if STRICT_NOFPU == 1
245 /* Strict nofpu means that the compiler should tell the assembler
246 to reject FPU instructions. E.g. from ASM inserts. */
247 #if TARGET_CPU_DEFAULT & MASK_HARD_SH4 && !(TARGET_CPU_DEFAULT & MASK_SH_E)
248 #define SUBTARGET_ASM_ISA_SPEC "%{!m1:%{!m2:%{!m3*:%{m4-nofpu|!m4*:-isa=sh4-nofpu}}}}"
249 #else
250
251 #define SUBTARGET_ASM_ISA_SPEC \
252 "%{m4-nofpu:-isa=sh4-nofpu} " ASM_ISA_DEFAULT_SPEC
253 #endif
254 #else /* ! STRICT_NOFPU */
255 #define SUBTARGET_ASM_ISA_SPEC ASM_ISA_DEFAULT_SPEC
256 #endif
257
258 #ifndef SUBTARGET_ASM_SPEC
259 #define SUBTARGET_ASM_SPEC "%{mfdpic:--fdpic}"
260 #endif
261
262 #if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
263 #define LINK_EMUL_PREFIX "sh%{!mb:l}"
264 #else
265 #define LINK_EMUL_PREFIX "sh%{ml:l}"
266 #endif
267
268 #define LINK_DEFAULT_CPU_EMUL ""
269 #define ASM_ISA_DEFAULT_SPEC ""
270
271 #define SUBTARGET_LINK_EMUL_SUFFIX "%{mfdpic:_fd}"
272 #define SUBTARGET_LINK_SPEC ""
273
274 /* Go via SH_LINK_SPEC to avoid code replication. */
275 #define LINK_SPEC SH_LINK_SPEC
276
277 #define SH_LINK_SPEC "\
278 -m %(link_emul_prefix)\
279 %{!m1:%{!m2:%{!m3*:%{!m4*:%(link_default_cpu_emul)}}}}\
280 %(subtarget_link_emul_suffix) \
281 %{mrelax:-relax} %(subtarget_link_spec)"
282
283 #ifndef SH_DIV_STR_FOR_SIZE
284 #define SH_DIV_STR_FOR_SIZE "call"
285 #endif
286
287 /* SH2A does not support little-endian. Catch such combinations
288 taking into account the default configuration. */
289 #if TARGET_ENDIAN_DEFAULT == MASK_BIG_ENDIAN
290 #define IS_LITTLE_ENDIAN_OPTION "%{ml:"
291 #else
292 #define IS_LITTLE_ENDIAN_OPTION "%{!mb:"
293 #endif
294
295 #if TARGET_CPU_DEFAULT & MASK_HARD_SH2A
296 #define UNSUPPORTED_SH2A IS_LITTLE_ENDIAN_OPTION \
297 "%{m2a*|!m1:%{!m2*:%{!m3*:%{!m4*:%eSH2a does not support little-endian}}}}}"
298 #else
299 #define UNSUPPORTED_SH2A IS_LITTLE_ENDIAN_OPTION \
300 "%{m2a*:%eSH2a does not support little-endian}}"
301 #endif
302
303 #ifdef FDPIC_DEFAULT
304 #define FDPIC_SELF_SPECS "%{!mno-fdpic:-mfdpic}"
305 #else
306 #define FDPIC_SELF_SPECS
307 #endif
308
309 #undef DRIVER_SELF_SPECS
310 #define DRIVER_SELF_SPECS UNSUPPORTED_SH2A SUBTARGET_DRIVER_SELF_SPECS \
311 FDPIC_SELF_SPECS
312
313 #undef SUBTARGET_DRIVER_SELF_SPECS
314 #define SUBTARGET_DRIVER_SELF_SPECS
315
316 #define ASSEMBLER_DIALECT assembler_dialect
317
318 extern int assembler_dialect;
319
320 enum sh_divide_strategy_e {
321 /* SH1 .. SH4 strategies. Because of the small number of registers
322 available, the compiler uses knowledge of the actual set of registers
323 being clobbered by the different functions called. */
324 SH_DIV_CALL_DIV1, /* No FPU, medium size, highest latency. */
325 SH_DIV_CALL_FP, /* FPU needed, small size, high latency. */
326 SH_DIV_CALL_TABLE, /* No FPU, large size, medium latency. */
327 SH_DIV_INTRINSIC
328 };
329
330 extern enum sh_divide_strategy_e sh_div_strategy;
331
332 #ifndef SH_DIV_STRATEGY_DEFAULT
333 #define SH_DIV_STRATEGY_DEFAULT SH_DIV_CALL_DIV1
334 #endif
335
336 #ifdef __cplusplus
337
338 /* Atomic model. */
339 struct sh_atomic_model
340 {
341 enum enum_type
342 {
343 none = 0,
344 soft_gusa,
345 hard_llcs,
346 soft_tcb,
347 soft_imask,
348
349 num_models
350 };
351
352 /* If strict is set, disallow mixing of different models, as it would
353 happen on SH4A. */
354 bool strict;
355 enum_type type;
356
357 /* Name string as it was specified on the command line. */
358 const char* name;
359
360 /* Name string as it is used in C/C++ defines. */
361 const char* cdef_name;
362
363 /* GBR offset variable for TCB model. */
364 int tcb_gbr_offset;
365 };
366
367 extern const sh_atomic_model& selected_atomic_model (void);
368
369 /* Shortcuts to check the currently selected atomic model. */
370 #define TARGET_ATOMIC_ANY \
371 (selected_atomic_model ().type != sh_atomic_model::none)
372
373 #define TARGET_ATOMIC_STRICT \
374 (selected_atomic_model ().strict)
375
376 #define TARGET_ATOMIC_SOFT_GUSA \
377 (selected_atomic_model ().type == sh_atomic_model::soft_gusa)
378
379 #define TARGET_ATOMIC_HARD_LLCS \
380 (selected_atomic_model ().type == sh_atomic_model::hard_llcs)
381
382 #define TARGET_ATOMIC_SOFT_TCB \
383 (selected_atomic_model ().type == sh_atomic_model::soft_tcb)
384
385 #define TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX \
386 GEN_INT (selected_atomic_model ().tcb_gbr_offset)
387
388 #define TARGET_ATOMIC_SOFT_IMASK \
389 (selected_atomic_model ().type == sh_atomic_model::soft_imask)
390
391 #endif // __cplusplus
392
393 #define SUBTARGET_OVERRIDE_OPTIONS (void) 0
394
395 \f
396 /* Target machine storage layout. */
397
398 #define TARGET_BIG_ENDIAN (!TARGET_LITTLE_ENDIAN)
399
400 #define SH_REG_MSW_OFFSET (TARGET_LITTLE_ENDIAN ? 1 : 0)
401 #define SH_REG_LSW_OFFSET (TARGET_LITTLE_ENDIAN ? 0 : 1)
402
403 /* Define this if most significant bit is lowest numbered
404 in instructions that operate on numbered bit-fields. */
405 #define BITS_BIG_ENDIAN 0
406
407 /* Define this if most significant byte of a word is the lowest numbered. */
408 #define BYTES_BIG_ENDIAN TARGET_BIG_ENDIAN
409
410 /* Define this if most significant word of a multiword number is the lowest
411 numbered. */
412 #define WORDS_BIG_ENDIAN TARGET_BIG_ENDIAN
413
414 #define MAX_BITS_PER_WORD 64
415
416 /* Width in bits of an `int'. We want just 32-bits, even if words are
417 longer. */
418 #define INT_TYPE_SIZE 32
419
420 /* Width in bits of a `long'. */
421 #define LONG_TYPE_SIZE (32)
422
423 /* Width in bits of a `long long'. */
424 #define LONG_LONG_TYPE_SIZE 64
425
426 /* Width in bits of a `long double'. */
427 #define LONG_DOUBLE_TYPE_SIZE 64
428
429 /* Width of a word, in units (bytes). */
430 #define UNITS_PER_WORD (4)
431 #define MIN_UNITS_PER_WORD 4
432
433 /* Scaling factor for Dwarf data offsets for CFI information.
434 The dwarf2out.c default would use -UNITS_PER_WORD. */
435 #define DWARF_CIE_DATA_ALIGNMENT -4
436
437 /* Width in bits of a pointer.
438 See also the macro `Pmode' defined below. */
439 #define POINTER_SIZE (32)
440
441 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
442 #define PARM_BOUNDARY (32)
443
444 /* Boundary (in *bits*) on which stack pointer should be aligned. */
445 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
446
447 /* The log (base 2) of the cache line size, in bytes. Processors prior to
448 SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
449 The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
450 #define CACHE_LOG (TARGET_HARD_SH4 ? 5 : TARGET_SH2 ? 4 : 2)
451
452 /* ABI given & required minimum allocation boundary (in *bits*) for the
453 code of a function. */
454 #define FUNCTION_BOUNDARY (16)
455
456 /* Alignment of field after `int : 0' in a structure. */
457 #define EMPTY_FIELD_BOUNDARY 32
458
459 /* No data type wants to be aligned rounder than this. */
460 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
461
462 /* The best alignment to use in cases where we have a choice. */
463 #define FASTEST_ALIGNMENT (32)
464
465 /* Make strings word-aligned so strcpy from constants will be faster. */
466 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
467 ((TREE_CODE (EXP) == STRING_CST \
468 && (ALIGN) < FASTEST_ALIGNMENT) \
469 ? FASTEST_ALIGNMENT : (ALIGN))
470
471 /* get_mode_alignment assumes complex values are always held in multiple
472 registers, but that is not the case on the SH; CQImode and CHImode are
473 held in a single integer register. */
474 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
475 ((GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_INT \
476 || GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_FLOAT) \
477 ? (unsigned) MIN (BIGGEST_ALIGNMENT, GET_MODE_BITSIZE (TYPE_MODE (TYPE))) \
478 : (unsigned) DATA_ALIGNMENT(TYPE, ALIGN))
479
480 /* Make arrays of chars word-aligned for the same reasons. */
481 #define DATA_ALIGNMENT(TYPE, ALIGN) \
482 (TREE_CODE (TYPE) == ARRAY_TYPE \
483 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
484 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
485
486 /* Number of bits which any structure or union's size must be a
487 multiple of. Each structure or union's size is rounded up to a
488 multiple of this. */
489 #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
490
491 /* Set this nonzero if move instructions will actually fail to work
492 when given unaligned data. */
493 #define STRICT_ALIGNMENT 1
494
495 /* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */
496 #define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
497 barrier_align (LABEL_AFTER_BARRIER)
498
499 #define LOOP_ALIGN(A_LABEL) sh_loop_align (A_LABEL)
500
501 #define LABEL_ALIGN(A_LABEL) \
502 ( \
503 (PREV_INSN (A_LABEL) \
504 && NONJUMP_INSN_P (PREV_INSN (A_LABEL)) \
505 && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \
506 && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN) \
507 /* explicit alignment insn in constant tables. */ \
508 ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \
509 : 0)
510
511 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
512 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
513
514 /* The base two logarithm of the known minimum alignment of an insn length. */
515 #define INSN_LENGTH_ALIGNMENT(A_INSN) \
516 (NONJUMP_INSN_P (A_INSN) \
517 ? 1 \
518 : JUMP_P (A_INSN) || CALL_P (A_INSN) \
519 ? 1 \
520 : CACHE_LOG)
521 \f
522 /* Standard register usage. */
523
524 /* Register allocation for the Renesas calling convention:
525
526 r0 arg return
527 r1..r3 scratch
528 r4..r7 args in
529 r8..r13 call saved
530 r14 frame pointer/call saved
531 r15 stack pointer
532 ap arg pointer (doesn't really exist, always eliminated)
533 pr subroutine return address
534 t t bit
535 mach multiply/accumulate result, high part
536 macl multiply/accumulate result, low part.
537 fpul fp/int communication register
538 rap return address pointer register
539 fr0 fp arg return
540 fr1..fr3 scratch floating point registers
541 fr4..fr11 fp args in
542 fr12..fr15 call saved floating point registers */
543
544 #define MAX_REGISTER_NAME_LENGTH 6
545 extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
546
547 #define SH_REGISTER_NAMES_INITIALIZER \
548 { \
549 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
550 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
551 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
552 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
553 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
554 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
555 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
556 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
557 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
558 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
559 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
560 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
561 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
562 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
563 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
564 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
565 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
566 "xd0", "xd2", "xd4", "xd6", "xd8", "xd10", "xd12", "xd14", \
567 "gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", \
568 "rap", "sfp", "fpscr0", "fpscr1" \
569 }
570
571 #define REGNAMES_ARR_INDEX_1(index) \
572 (sh_register_names[index])
573 #define REGNAMES_ARR_INDEX_2(index) \
574 REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
575 #define REGNAMES_ARR_INDEX_4(index) \
576 REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
577 #define REGNAMES_ARR_INDEX_8(index) \
578 REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
579 #define REGNAMES_ARR_INDEX_16(index) \
580 REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
581 #define REGNAMES_ARR_INDEX_32(index) \
582 REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
583 #define REGNAMES_ARR_INDEX_64(index) \
584 REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
585
586 #define REGISTER_NAMES \
587 { \
588 REGNAMES_ARR_INDEX_64 (0), \
589 REGNAMES_ARR_INDEX_64 (64), \
590 REGNAMES_ARR_INDEX_8 (128), \
591 REGNAMES_ARR_INDEX_8 (136), \
592 REGNAMES_ARR_INDEX_8 (144), \
593 REGNAMES_ARR_INDEX_4 (152) \
594 }
595
596 #define ADDREGNAMES_SIZE 32
597 #define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
598 extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
599 [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
600
601 #define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER \
602 { \
603 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", \
604 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30", \
605 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46", \
606 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62" \
607 }
608
609 #define ADDREGNAMES_REGNO(index) \
610 ((index < 32) ? (FIRST_FP_REG + (index) * 2) \
611 : (-1))
612
613 #define ADDREGNAMES_ARR_INDEX_1(index) \
614 { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
615 #define ADDREGNAMES_ARR_INDEX_2(index) \
616 ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
617 #define ADDREGNAMES_ARR_INDEX_4(index) \
618 ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
619 #define ADDREGNAMES_ARR_INDEX_8(index) \
620 ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
621 #define ADDREGNAMES_ARR_INDEX_16(index) \
622 ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
623 #define ADDREGNAMES_ARR_INDEX_32(index) \
624 ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
625
626 #define ADDITIONAL_REGISTER_NAMES \
627 { \
628 ADDREGNAMES_ARR_INDEX_32 (0) \
629 }
630
631 /* Number of actual hardware registers.
632 The hardware registers are assigned numbers for the compiler
633 from 0 to just below FIRST_PSEUDO_REGISTER.
634 All registers that the compiler knows about must be given numbers,
635 even those that are not normally considered general registers. */
636
637 /* There are many other relevant definitions in sh.md's md_constants. */
638
639 #define FIRST_GENERAL_REG R0_REG
640 #define LAST_GENERAL_REG (FIRST_GENERAL_REG + (15))
641 #define FIRST_FP_REG DR0_REG
642 #define LAST_FP_REG (FIRST_FP_REG + (TARGET_SH2E ? 15 : -1))
643 #define FIRST_XD_REG XD0_REG
644 #define LAST_XD_REG (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
645
646 /* Registers that can be accessed through bank0 or bank1 depending on sr.md. */
647 #define FIRST_BANKED_REG R0_REG
648 #define LAST_BANKED_REG R7_REG
649
650 #define BANKED_REGISTER_P(REGNO) \
651 IN_RANGE ((REGNO), \
652 (unsigned HOST_WIDE_INT) FIRST_BANKED_REG, \
653 (unsigned HOST_WIDE_INT) LAST_BANKED_REG)
654
655 #define GENERAL_REGISTER_P(REGNO) \
656 IN_RANGE ((REGNO), \
657 (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
658 (unsigned HOST_WIDE_INT) LAST_GENERAL_REG)
659
660 #define GENERAL_OR_AP_REGISTER_P(REGNO) \
661 (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG) \
662 || ((REGNO) == FRAME_POINTER_REGNUM))
663
664 #define FP_REGISTER_P(REGNO) \
665 ((int) (REGNO) >= FIRST_FP_REG && (int) (REGNO) <= LAST_FP_REG)
666
667 #define XD_REGISTER_P(REGNO) \
668 ((int) (REGNO) >= FIRST_XD_REG && (int) (REGNO) <= LAST_XD_REG)
669
670 #define FP_OR_XD_REGISTER_P(REGNO) \
671 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
672
673 #define FP_ANY_REGISTER_P(REGNO) \
674 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
675
676 #define SPECIAL_REGISTER_P(REGNO) \
677 ((REGNO) == GBR_REG || (REGNO) == T_REG \
678 || (REGNO) == MACH_REG || (REGNO) == MACL_REG \
679 || (REGNO) == FPSCR_MODES_REG || (REGNO) == FPSCR_STAT_REG)
680
681 #define VALID_REGISTER_P(REGNO) \
682 (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
683 || XD_REGISTER_P (REGNO) \
684 || (REGNO) == AP_REG || (REGNO) == RAP_REG \
685 || (REGNO) == FRAME_POINTER_REGNUM \
686 || ((SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
687 || (TARGET_SH2E && (REGNO) == FPUL_REG))
688
689 /* The mode that should be generally used to store a register by
690 itself in the stack, or to load it back. */
691 #define REGISTER_NATURAL_MODE(REGNO) \
692 (FP_REGISTER_P (REGNO) ? E_SFmode \
693 : XD_REGISTER_P (REGNO) ? E_DFmode : E_SImode)
694
695
696 #define FIRST_PSEUDO_REGISTER 156
697
698 /* Don't count soft frame pointer. */
699 #define DWARF_FRAME_REGISTERS (153)
700
701 /* 1 for registers that have pervasive standard uses
702 and are not available for the register allocator.
703
704 Mach register is fixed 'cause it's only 10 bits wide for SH1.
705 It is 32 bits wide for SH2. */
706 #define FIXED_REGISTERS \
707 { \
708 /* Regular registers. */ \
709 0, 0, 0, 0, 0, 0, 0, 0, \
710 0, 0, 0, 0, 0, 0, 0, 1, \
711 /* r16 is reserved, r18 is the former pr. */ \
712 1, 0, 0, 0, 0, 0, 0, 0, \
713 /* r24 is reserved for the OS; r25, for the assembler or linker. */ \
714 /* r26 is a global variable data pointer; r27 is for constants. */ \
715 1, 1, 1, 1, 0, 0, 0, 0, \
716 0, 0, 0, 0, 0, 0, 0, 0, \
717 0, 0, 0, 0, 0, 0, 0, 0, \
718 0, 0, 0, 0, 0, 0, 0, 0, \
719 0, 0, 0, 0, 0, 0, 0, 1, \
720 /* FP registers. */ \
721 0, 0, 0, 0, 0, 0, 0, 0, \
722 0, 0, 0, 0, 0, 0, 0, 0, \
723 0, 0, 0, 0, 0, 0, 0, 0, \
724 0, 0, 0, 0, 0, 0, 0, 0, \
725 0, 0, 0, 0, 0, 0, 0, 0, \
726 0, 0, 0, 0, 0, 0, 0, 0, \
727 0, 0, 0, 0, 0, 0, 0, 0, \
728 0, 0, 0, 0, 0, 0, 0, 0, \
729 /* Branch target registers. */ \
730 0, 0, 0, 0, 0, 0, 0, 0, \
731 /* XD registers. */ \
732 0, 0, 0, 0, 0, 0, 0, 0, \
733 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
734 1, 1, 1, 1, 1, 1, 0, 1, \
735 /*"rap", "sfp","fpscr0","fpscr1" */ \
736 1, 1, 1, 1, \
737 }
738
739 /* 1 for registers not available across function calls.
740 These must include the FIXED_REGISTERS and also any
741 registers that can be used without being saved.
742 The latter must include the registers where values are returned
743 and the register where structure-value addresses are passed.
744 Aside from that, you can include as many other registers as you like. */
745 #define CALL_USED_REGISTERS \
746 { \
747 /* Regular registers. */ \
748 1, 1, 1, 1, 1, 1, 1, 1, \
749 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
750 Only the lower 32bits of R10-R14 are guaranteed to be preserved \
751 across SH5 function calls. */ \
752 0, 0, 0, 0, 0, 0, 0, 1, \
753 1, 1, 1, 1, 1, 1, 1, 1, \
754 1, 1, 1, 1, 0, 0, 0, 0, \
755 0, 0, 0, 0, 1, 1, 1, 1, \
756 1, 1, 1, 1, 0, 0, 0, 0, \
757 0, 0, 0, 0, 0, 0, 0, 0, \
758 0, 0, 0, 0, 1, 1, 1, 1, \
759 /* FP registers. */ \
760 1, 1, 1, 1, 1, 1, 1, 1, \
761 1, 1, 1, 1, 0, 0, 0, 0, \
762 1, 1, 1, 1, 1, 1, 1, 1, \
763 1, 1, 1, 1, 1, 1, 1, 1, \
764 1, 1, 1, 1, 0, 0, 0, 0, \
765 0, 0, 0, 0, 0, 0, 0, 0, \
766 0, 0, 0, 0, 0, 0, 0, 0, \
767 0, 0, 0, 0, 0, 0, 0, 0, \
768 /* Branch target registers. */ \
769 1, 1, 1, 1, 1, 0, 0, 0, \
770 /* XD registers. */ \
771 1, 1, 1, 1, 1, 1, 0, 0, \
772 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
773 1, 1, 1, 1, 1, 1, 1, 1, \
774 /*"rap", "sfp","fpscr0","fpscr1" */ \
775 1, 1, 1, 1, \
776 }
777
778 /* CALL_REALLY_USED_REGISTERS is used as a default setting, which is then
779 overridden by -fcall-saved-* and -fcall-used-* options and then by
780 TARGET_CONDITIONAL_REGISTER_USAGE. There we might want to make a
781 register call-used, yet fixed, like PIC_OFFSET_TABLE_REGNUM. */
782 #define CALL_REALLY_USED_REGISTERS \
783 { \
784 /* Regular registers. */ \
785 1, 1, 1, 1, 1, 1, 1, 1, \
786 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
787 Only the lower 32bits of R10-R14 are guaranteed to be preserved \
788 across SH5 function calls. */ \
789 0, 0, 0, 0, 0, 0, 0, 1, \
790 1, 1, 1, 1, 1, 1, 1, 1, \
791 1, 1, 1, 1, 0, 0, 0, 0, \
792 0, 0, 0, 0, 1, 1, 1, 1, \
793 1, 1, 1, 1, 0, 0, 0, 0, \
794 0, 0, 0, 0, 0, 0, 0, 0, \
795 0, 0, 0, 0, 1, 1, 1, 1, \
796 /* FP registers. */ \
797 1, 1, 1, 1, 1, 1, 1, 1, \
798 1, 1, 1, 1, 0, 0, 0, 0, \
799 1, 1, 1, 1, 1, 1, 1, 1, \
800 1, 1, 1, 1, 1, 1, 1, 1, \
801 1, 1, 1, 1, 0, 0, 0, 0, \
802 0, 0, 0, 0, 0, 0, 0, 0, \
803 0, 0, 0, 0, 0, 0, 0, 0, \
804 0, 0, 0, 0, 0, 0, 0, 0, \
805 /* Branch target registers. */ \
806 1, 1, 1, 1, 1, 0, 0, 0, \
807 /* XD registers. */ \
808 1, 1, 1, 1, 1, 1, 0, 0, \
809 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
810 0, 1, 1, 1, 1, 1, 1, 1, \
811 /*"rap", "sfp","fpscr0","fpscr1" */ \
812 1, 1, 0, 0, \
813 }
814
815 /* Specify the modes required to caller save a given hard regno. */
816 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
817 sh_hard_regno_caller_save_mode ((REGNO), (NREGS), (MODE))
818
819 /* A C expression that is nonzero if hard register NEW_REG can be
820 considered for use as a rename register for OLD_REG register */
821 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
822 sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
823
824 /* Specify the registers used for certain standard purposes.
825 The values of these macros are register numbers. */
826
827 /* Define this if the program counter is overloaded on a register. */
828 /* #define PC_REGNUM 15*/
829
830 /* Register to use for pushing function arguments. */
831 #define STACK_POINTER_REGNUM SP_REG
832
833 /* Base register for access to local variables of the function. */
834 #define HARD_FRAME_POINTER_REGNUM FP_REG
835
836 /* Base register for access to local variables of the function. */
837 #define FRAME_POINTER_REGNUM 153
838
839 /* Fake register that holds the address on the stack of the
840 current function's return address. */
841 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
842
843 /* Register to hold the addressing base for position independent
844 code access to data items. */
845 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REG : INVALID_REGNUM)
846
847 /* For FDPIC, the FDPIC register is call-clobbered (otherwise PLT
848 entries would need to handle saving and restoring it). */
849 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED TARGET_FDPIC
850
851 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
852
853 /* Definitions for register eliminations.
854
855 We have three registers that can be eliminated on the SH. First, the
856 frame pointer register can often be eliminated in favor of the stack
857 pointer register. Secondly, the argument pointer register can always be
858 eliminated; it is replaced with either the stack or frame pointer.
859 Third, there is the return address pointer, which can also be replaced
860 with either the stack or the frame pointer.
861
862 This is an array of structures. Each structure initializes one pair
863 of eliminable registers. The "from" register number is given first,
864 followed by "to". Eliminations of the same "from" register are listed
865 in order of preference.
866
867 If you add any registers here that are not actually hard registers,
868 and that have any alternative of elimination that doesn't always
869 apply, you need to amend calc_live_regs to exclude it, because
870 reload spills all eliminable registers where it sees an
871 can_eliminate == 0 entry, thus making them 'live' .
872 If you add any hard registers that can be eliminated in different
873 ways, you have to patch reload to spill them only when all alternatives
874 of elimination fail. */
875 #define ELIMINABLE_REGS \
876 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
877 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
878 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
879 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
880 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
881 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
882 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},}
883
884 /* Define the offset between two registers, one to be eliminated, and the other
885 its replacement, at the start of a routine. */
886 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
887 OFFSET = initial_elimination_offset ((FROM), (TO))
888
889 /* Base register for access to arguments of the function. */
890 #define ARG_POINTER_REGNUM AP_REG
891
892 /* Register in which the static-chain is passed to a function. */
893 #define STATIC_CHAIN_REGNUM (3)
894
895 /* Don't default to pcc-struct-return, because we have already specified
896 exactly how to return structures in the TARGET_RETURN_IN_MEMORY
897 target hook. */
898 #define DEFAULT_PCC_STRUCT_RETURN 0
899
900 \f
901 /* Define the classes of registers for register constraints in the
902 machine description. Also define ranges of constants.
903
904 One of the classes must always be named ALL_REGS and include all hard regs.
905 If there is more than one class, another class must be named NO_REGS
906 and contain no registers.
907
908 The name GENERAL_REGS must be the name of a class (or an alias for
909 another name such as ALL_REGS). This is the class of registers
910 that is allowed by "g" or "r" in a register constraint.
911 Also, registers outside this class are allocated only when
912 instructions express preferences for them.
913
914 The classes must be numbered in nondecreasing order; that is,
915 a larger-numbered class must never be contained completely
916 in a smaller-numbered class.
917
918 For any two classes, it is very desirable that there be another
919 class that represents their union.
920
921 The SH has two sorts of general registers, R0 and the rest. R0 can
922 be used as the destination of some of the arithmetic ops. There are
923 also some special purpose registers; the T bit register, the
924 Procedure Return Register and the Multiply Accumulate Registers.
925
926 Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
927 reg_class_subunion. We don't want to have an actual union class
928 of these, because it would only be used when both classes are calculated
929 to give the same cost, but there is only one FPUL register.
930 Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
931 applying to the actual instruction alternative considered. E.g., the
932 y/r alternative of movsi_ie is considered to have no more cost that
933 the r/r alternative, which is patently untrue. */
934 enum reg_class
935 {
936 NO_REGS,
937 R0_REGS,
938 PR_REGS,
939 T_REGS,
940 MAC_REGS,
941 FPUL_REGS,
942 SIBCALL_REGS,
943 NON_SP_REGS,
944 GENERAL_REGS,
945 FP0_REGS,
946 FP_REGS,
947 DF_REGS,
948 FPSCR_REGS,
949 GENERAL_FP_REGS,
950 GENERAL_DF_REGS,
951 TARGET_REGS,
952 ALL_REGS,
953 LIM_REG_CLASSES
954 };
955
956 #define N_REG_CLASSES (int) LIM_REG_CLASSES
957
958 /* Give names of register classes as strings for dump file. */
959 #define REG_CLASS_NAMES \
960 { \
961 "NO_REGS", \
962 "R0_REGS", \
963 "PR_REGS", \
964 "T_REGS", \
965 "MAC_REGS", \
966 "FPUL_REGS", \
967 "SIBCALL_REGS", \
968 "NON_SP_REGS", \
969 "GENERAL_REGS", \
970 "FP0_REGS", \
971 "FP_REGS", \
972 "DF_REGS", \
973 "FPSCR_REGS", \
974 "GENERAL_FP_REGS", \
975 "GENERAL_DF_REGS", \
976 "TARGET_REGS", \
977 "ALL_REGS", \
978 }
979
980 /* Define which registers fit in which classes.
981 This is an initializer for a vector of HARD_REG_SET
982 of length N_REG_CLASSES. */
983 #define REG_CLASS_CONTENTS \
984 { \
985 /* NO_REGS: */ \
986 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
987 /* R0_REGS: */ \
988 { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
989 /* PR_REGS: */ \
990 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, \
991 /* T_REGS: */ \
992 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 }, \
993 /* MAC_REGS: */ \
994 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 }, \
995 /* FPUL_REGS: */ \
996 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00400000 }, \
997 /* SIBCALL_REGS: Initialized in TARGET_CONDITIONAL_REGISTER_USAGE. */ \
998 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
999 /* NON_SP_REGS: */ \
1000 { 0xffff7fff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 }, \
1001 /* GENERAL_REGS: */ \
1002 { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 }, \
1003 /* FP0_REGS: */ \
1004 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 }, \
1005 /* FP_REGS: */ \
1006 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
1007 /* DF_REGS: */ \
1008 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
1009 /* FPSCR_REGS: */ \
1010 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 }, \
1011 /* GENERAL_FP_REGS: */ \
1012 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03020000 }, \
1013 /* GENERAL_DF_REGS: */ \
1014 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0302ff00 }, \
1015 /* TARGET_REGS: */ \
1016 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff }, \
1017 /* ALL_REGS: */ \
1018 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0fffffff }, \
1019 }
1020
1021 /* The same information, inverted:
1022 Return the class number of the smallest class containing
1023 reg number REGNO. This could be a conditional expression
1024 or could index an array. */
1025 extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
1026 #define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
1027
1028 /* When this hook returns true for MODE, the compiler allows
1029 registers explicitly used in the rtl to be used as spill registers
1030 but prevents the compiler from extending the lifetime of these
1031 registers. */
1032 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1033 sh_small_register_classes_for_mode_p
1034
1035 /* The order in which register should be allocated. */
1036 /* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
1037 and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
1038 spilled or used otherwise, we better have the FP_REGS allocated first. */
1039 #define REG_ALLOC_ORDER \
1040 {/* Caller-saved FPRs */ \
1041 65, 66, 67, 68, 69, 70, 71, 64, \
1042 72, 73, 74, 75, 80, 81, 82, 83, \
1043 84, 85, 86, 87, 88, 89, 90, 91, \
1044 92, 93, 94, 95, 96, 97, 98, 99, \
1045 /* Callee-saved FPRs */ \
1046 76, 77, 78, 79,100,101,102,103, \
1047 104,105,106,107,108,109,110,111, \
1048 112,113,114,115,116,117,118,119, \
1049 120,121,122,123,124,125,126,127, \
1050 136,137,138,139,140,141,142,143, \
1051 /* FPSCR */ 151, \
1052 /* Caller-saved GPRs (except 8/9 on SH1-4) */ \
1053 1, 2, 3, 7, 6, 5, 4, 0, \
1054 8, 9, 17, 19, 20, 21, 22, 23, \
1055 36, 37, 38, 39, 40, 41, 42, 43, \
1056 60, 61, 62, \
1057 /* SH1-4 callee-saved saved GPRs / SH5 partially-saved GPRs */ \
1058 10, 11, 12, 13, 14, 18, \
1059 /* SH5 callee-saved GPRs */ \
1060 28, 29, 30, 31, 32, 33, 34, 35, \
1061 44, 45, 46, 47, 48, 49, 50, 51, \
1062 52, 53, 54, 55, 56, 57, 58, 59, \
1063 /* FPUL */ 150, \
1064 /* Fixed registers */ \
1065 15, 16, 24, 25, 26, 27, 63,144, \
1066 145,146,147,148,149,152,153,154,155 }
1067
1068 /* The class value for index registers, and the one for base regs. */
1069 #define INDEX_REG_CLASS R0_REGS
1070 #define BASE_REG_CLASS GENERAL_REGS
1071 \f
1072 /* Defines for sh.md and constraints.md. */
1073
1074 #define CONST_OK_FOR_I08(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
1075 && ((HOST_WIDE_INT)(VALUE)) <= 127)
1076
1077 #define CONST_OK_FOR_K08(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
1078 && ((HOST_WIDE_INT)(VALUE)) <= 255)
1079
1080 #define ZERO_EXTRACT_ANDMASK(EXTRACT_SZ_RTX, EXTRACT_POS_RTX)\
1081 (((1 << INTVAL (EXTRACT_SZ_RTX)) - 1) << INTVAL (EXTRACT_POS_RTX))
1082
1083 /* Return the maximum number of consecutive registers
1084 needed to represent mode MODE in a register of class CLASS.
1085
1086 If TARGET_SHMEDIA, we need two FP registers per word.
1087 Otherwise we will need at most one register per word. */
1088 #define CLASS_MAX_NREGS(CLASS, MODE) \
1089 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1090
1091 /* If defined, gives a class of registers that cannot be used as the
1092 operand of a SUBREG that changes the mode of the object illegally.
1093 ??? We need to renumber the internal numbers for the frnn registers
1094 when in little endian in order to allow mode size changes. */
1095 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1096 sh_cannot_change_mode_class (FROM, TO, CLASS)
1097 \f
1098 /* Stack layout; function entry, exit and calling. */
1099
1100 /* Define the number of registers that can hold parameters.
1101 These macros are used only in other macro definitions below. */
1102 #define NPARM_REGS(MODE) \
1103 (TARGET_FPU_ANY && (MODE) == SFmode \
1104 ? 8 \
1105 : TARGET_FPU_DOUBLE \
1106 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1107 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1108 ? 8 \
1109 : 4)
1110
1111 #define FIRST_PARM_REG (FIRST_GENERAL_REG + 4)
1112 #define FIRST_RET_REG (FIRST_GENERAL_REG + 0)
1113
1114 #define FIRST_FP_PARM_REG (FIRST_FP_REG + 4)
1115 #define FIRST_FP_RET_REG FIRST_FP_REG
1116
1117 /* Define this if pushing a word on the stack
1118 makes the stack pointer a smaller address. */
1119 #define STACK_GROWS_DOWNWARD 1
1120
1121 /* Define this macro to nonzero if the addresses of local variable slots
1122 are at negative offsets from the frame pointer. */
1123 #define FRAME_GROWS_DOWNWARD 1
1124
1125 /* Offset from the frame pointer to the first local variable slot to
1126 be allocated. */
1127 #define STARTING_FRAME_OFFSET 0
1128
1129 /* If we generate an insn to push BYTES bytes,
1130 this says how many the stack pointer really advances by. */
1131 /* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
1132 When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
1133 do correct alignment. */
1134 #if 0
1135 #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
1136 #endif
1137
1138 /* Offset of first parameter from the argument pointer register value. */
1139 #define FIRST_PARM_OFFSET(FNDECL) 0
1140
1141 /* Value is the number of bytes of arguments automatically popped when
1142 calling a subroutine.
1143 CUM is the accumulated argument list. */
1144 #define CALL_POPS_ARGS(CUM) (0)
1145
1146 /* Some subroutine macros specific to this machine. */
1147
1148 #define BASE_RETURN_VALUE_REG(MODE) \
1149 ((TARGET_FPU_ANY && ((MODE) == SFmode)) \
1150 ? FIRST_FP_RET_REG \
1151 : TARGET_FPU_ANY && (MODE) == SCmode \
1152 ? FIRST_FP_RET_REG \
1153 : (TARGET_FPU_DOUBLE \
1154 && ((MODE) == DFmode || (MODE) == SFmode \
1155 || (MODE) == DCmode || (MODE) == SCmode )) \
1156 ? FIRST_FP_RET_REG \
1157 : FIRST_RET_REG)
1158
1159 #define BASE_ARG_REG(MODE) \
1160 ((TARGET_SH2E && ((MODE) == SFmode)) \
1161 ? FIRST_FP_PARM_REG \
1162 : TARGET_FPU_DOUBLE \
1163 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1164 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1165 ? FIRST_FP_PARM_REG \
1166 : FIRST_PARM_REG)
1167
1168 /* 1 if N is a possible register number for function argument passing. */
1169 /* ??? There are some callers that pass REGNO as int, and others that pass
1170 it as unsigned. We get warnings unless we do casts everywhere. */
1171 #define FUNCTION_ARG_REGNO_P(REGNO) \
1172 (((unsigned) (REGNO) >= (unsigned) FIRST_PARM_REG \
1173 && (unsigned) (REGNO) < (unsigned) (FIRST_PARM_REG + NPARM_REGS (SImode)))\
1174 || (TARGET_FPU_ANY \
1175 && (unsigned) (REGNO) >= (unsigned) FIRST_FP_PARM_REG \
1176 && (unsigned) (REGNO) < (unsigned) (FIRST_FP_PARM_REG \
1177 + NPARM_REGS (SFmode))))
1178 \f
1179 #ifdef __cplusplus
1180
1181 /* Define a data type for recording info about an argument list
1182 during the scan of that argument list. This data type should
1183 hold all necessary information about the function itself
1184 and about the args processed so far, enough to enable macros
1185 such as FUNCTION_ARG to determine where the next arg should go.
1186
1187 On SH, this is a single integer, which is a number of words
1188 of arguments scanned so far (including the invisible argument,
1189 if any, which holds the structure-value-address).
1190 Thus NARGREGS or more means all following args should go on the stack. */
1191
1192 enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1193
1194 struct sh_args
1195 {
1196 /* How many SH_ARG_INT and how many SH_ARG_FLOAT args there are. */
1197 int arg_count[2];
1198
1199 bool force_mem;
1200
1201 /* Nonzero if a prototype is available for the function. */
1202 bool prototype_p;
1203
1204 /* The number of an odd floating-point register, that should be used
1205 for the next argument of type float. */
1206 int free_single_fp_reg;
1207
1208 /* Whether we're processing an outgoing function call. */
1209 bool outgoing;
1210
1211 /* This is set to nonzero when the call in question must use the Renesas ABI,
1212 even without the -mrenesas option. */
1213 bool renesas_abi;
1214 };
1215
1216 typedef sh_args CUMULATIVE_ARGS;
1217
1218 /* Set when processing a function with interrupt attribute. */
1219 extern bool current_function_interrupt;
1220
1221 #endif // __cplusplus
1222
1223 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1224 for a call to a function whose data type is FNTYPE.
1225 For a library call, FNTYPE is 0.
1226
1227 On SH, the offset always starts at 0: the first parm reg is always
1228 the same reg for a given argument class.
1229
1230 For TARGET_HITACHI, the structure value pointer is passed in memory. */
1231 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1232 sh_init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL),\
1233 (N_NAMED_ARGS), VOIDmode)
1234
1235 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1236 sh_init_cumulative_args (& (CUM), NULL_TREE, (LIBNAME), NULL_TREE, 0, (MODE))
1237
1238 /* By accident we got stuck with passing SCmode on SH4 little endian
1239 in two registers that are nominally successive - which is different from
1240 two single SFmode values, where we take endianness translation into
1241 account. That does not work at all if an odd number of registers is
1242 already in use, so that got fixed, but library functions are still more
1243 likely to use complex numbers without mixing them with SFmode arguments
1244 (which in C would have to be structures), so for the sake of ABI
1245 compatibility the way SCmode values are passed when an even number of
1246 FP registers is in use remains different from a pair of SFmode values for
1247 now.
1248 I.e.:
1249 foo (double); a: fr5,fr4
1250 foo (float a, float b); a: fr5 b: fr4
1251 foo (__complex float a); a.real fr4 a.imag: fr5 - for consistency,
1252 this should be the other way round...
1253 foo (float a, __complex float b); a: fr5 b.real: fr4 b.imag: fr7 */
1254 #define FUNCTION_ARG_SCmode_WART 1
1255
1256 /* Minimum alignment for an argument to be passed by callee-copy
1257 reference. We need such arguments to be aligned to 8 byte
1258 boundaries, because they'll be loaded using quad loads. */
1259 #define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
1260
1261 /* Perform any needed actions needed for a function that is receiving a
1262 variable number of arguments. */
1263
1264 /* Call the function profiler with a given profile label.
1265 We use two .aligns, so as to make sure that both the .long is aligned
1266 on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
1267 from the trapa instruction. */
1268 #define FUNCTION_PROFILER(STREAM,LABELNO) \
1269 { \
1270 fprintf((STREAM), "\t.align\t2\n"); \
1271 fprintf((STREAM), "\ttrapa\t#33\n"); \
1272 fprintf((STREAM), "\t.align\t2\n"); \
1273 asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
1274 }
1275
1276 /* Define this macro if the code for function profiling should come
1277 before the function prologue. Normally, the profiling code comes
1278 after. */
1279 #define PROFILE_BEFORE_PROLOGUE
1280
1281 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1282 the stack pointer does not matter. The value is tested only in
1283 functions that have frame pointers.
1284 No definition is equivalent to always zero. */
1285 #define EXIT_IGNORE_STACK 1
1286
1287 /*
1288 On the SH, the trampoline looks like
1289 2 0002 D202 mov.l l2,r2
1290 1 0000 D301 mov.l l1,r3
1291 3 0004 422B jmp @r2
1292 4 0006 0009 nop
1293 5 0008 00000000 l1: .long area
1294 6 000c 00000000 l2: .long function */
1295
1296 /* Length in units of the trampoline for entering a nested function. */
1297 #define TRAMPOLINE_SIZE (TARGET_FDPIC ? 32 : 16)
1298
1299 /* Alignment required for a trampoline in bits. */
1300 #define TRAMPOLINE_ALIGNMENT \
1301 ((CACHE_LOG < 3 \
1302 || (optimize_size && ! (TARGET_HARD_SH4))) ? 32 \
1303 : 64)
1304
1305 /* A C expression whose value is RTL representing the value of the return
1306 address for the frame COUNT steps up from the current frame.
1307 FRAMEADDR is already the frame pointer of the COUNT frame, so we
1308 can ignore COUNT. */
1309 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1310 (((COUNT) == 0) ? sh_get_pr_initial_val () : NULL_RTX)
1311
1312 /* A C expression whose value is RTL representing the location of the
1313 incoming return address at the beginning of any function, before the
1314 prologue. This RTL is either a REG, indicating that the return
1315 value is saved in REG, or a MEM representing a location in
1316 the stack. */
1317 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, PR_REG)
1318 \f
1319 /* Addressing modes, and classification of registers for them. */
1320 #define HAVE_POST_INCREMENT TARGET_SH1
1321 #define HAVE_PRE_DECREMENT TARGET_SH1
1322
1323 #define USE_LOAD_POST_INCREMENT(mode) TARGET_SH1
1324 #define USE_LOAD_PRE_DECREMENT(mode) TARGET_SH2A
1325 #define USE_STORE_POST_INCREMENT(mode) TARGET_SH2A
1326 #define USE_STORE_PRE_DECREMENT(mode) TARGET_SH1
1327
1328 /* If a memory clear move would take CLEAR_RATIO or more simple
1329 move-instruction pairs, we will do a setmem instead. */
1330
1331 #define CLEAR_RATIO(speed) ((speed) ? 15 : 3)
1332
1333 /* Macros to check register numbers against specific register classes. */
1334
1335 /* These assume that REGNO is a hard or pseudo reg number.
1336 They give nonzero only if REGNO is a hard reg of the suitable class
1337 or a pseudo reg currently allocated to a suitable hard reg.
1338 Since they use reg_renumber, they are safe only once reg_renumber
1339 has been allocated, which happens in reginfo.c during register
1340 allocation. */
1341 #define REGNO_OK_FOR_BASE_P(REGNO) \
1342 (GENERAL_OR_AP_REGISTER_P (REGNO) \
1343 || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
1344 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1345 ((REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
1346
1347 /* True if SYMBOL + OFFSET constants must refer to something within
1348 SYMBOL's section. */
1349 #define SH_OFFSETS_MUST_BE_WITHIN_SECTIONS_P TARGET_FDPIC
1350
1351 /* Maximum number of registers that can appear in a valid memory
1352 address. */
1353 #define MAX_REGS_PER_ADDRESS 2
1354
1355 /* Recognize any constant value that is a valid address. */
1356 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
1357
1358 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1359 and check its validity for a certain class.
1360 The suitable hard regs are always accepted and all pseudo regs
1361 are also accepted if STRICT is not set. */
1362
1363 /* Nonzero if X is a reg that can be used as a base reg. */
1364 #define REG_OK_FOR_BASE_P(X, STRICT) \
1365 (GENERAL_OR_AP_REGISTER_P (REGNO (X)) \
1366 || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1367
1368 /* Nonzero if X is a reg that can be used as an index. */
1369 #define REG_OK_FOR_INDEX_P(X, STRICT) \
1370 ((REGNO (X) == R0_REG) \
1371 || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1372
1373 /* Nonzero if X/OFFSET is a reg that can be used as an index. */
1374 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET, STRICT) \
1375 ((REGNO (X) == R0_REG && OFFSET == 0) \
1376 || (!STRICT && REGNO (X) >= FIRST_PSEUDO_REGISTER))
1377
1378 /* Macros for extra constraints. */
1379
1380 #define IS_PC_RELATIVE_LOAD_ADDR_P(OP) \
1381 ((GET_CODE ((OP)) == LABEL_REF) \
1382 || (GET_CODE ((OP)) == CONST \
1383 && GET_CODE (XEXP ((OP), 0)) == PLUS \
1384 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF \
1385 && CONST_INT_P (XEXP (XEXP ((OP), 0), 1))))
1386
1387 #define IS_NON_EXPLICIT_CONSTANT_P(OP) \
1388 (CONSTANT_P (OP) \
1389 && !CONST_INT_P (OP) \
1390 && GET_CODE (OP) != CONST_DOUBLE \
1391 && (!flag_pic \
1392 || (LEGITIMATE_PIC_OPERAND_P (OP) \
1393 && !PIC_ADDR_P (OP) \
1394 && GET_CODE (OP) != LABEL_REF)))
1395
1396 #define GOT_ENTRY_P(OP) \
1397 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1398 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
1399
1400 #define GOTPLT_ENTRY_P(OP) \
1401 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1402 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
1403
1404 #define UNSPEC_GOTOFF_P(OP) \
1405 (GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF)
1406
1407 #define GOTOFF_P(OP) \
1408 (GET_CODE (OP) == CONST \
1409 && (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \
1410 || (GET_CODE (XEXP ((OP), 0)) == PLUS \
1411 && UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \
1412 && CONST_INT_P (XEXP (XEXP ((OP), 0), 1)))))
1413
1414 #define PIC_ADDR_P(OP) \
1415 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1416 && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
1417
1418 #define PCREL_SYMOFF_P(OP) \
1419 (GET_CODE (OP) == CONST \
1420 && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
1421 && XINT (XEXP ((OP), 0), 1) == UNSPEC_PCREL_SYMOFF)
1422
1423 #define NON_PIC_REFERENCE_P(OP) \
1424 (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
1425 || (GET_CODE (OP) == CONST \
1426 && (GET_CODE (XEXP ((OP), 0)) == LABEL_REF \
1427 || GET_CODE (XEXP ((OP), 0)) == SYMBOL_REF)) \
1428 || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
1429 && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
1430 || GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF) \
1431 && CONST_INT_P (XEXP (XEXP ((OP), 0), 1))))
1432
1433 #define PIC_REFERENCE_P(OP) \
1434 (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
1435 || GOTOFF_P (OP) || PIC_ADDR_P (OP))
1436
1437 #define MAYBE_BASE_REGISTER_RTX_P(X, STRICT) \
1438 ((REG_P (X) && REG_OK_FOR_BASE_P (X, STRICT)) \
1439 || (GET_CODE (X) == SUBREG \
1440 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
1441 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
1442 && REG_P (SUBREG_REG (X)) \
1443 && REG_OK_FOR_BASE_P (SUBREG_REG (X), STRICT)))
1444
1445 /* Since this must be r0, which is a single register class, we must check
1446 SUBREGs more carefully, to be sure that we don't accept one that extends
1447 outside the class. */
1448 #define MAYBE_INDEX_REGISTER_RTX_P(X, STRICT) \
1449 ((REG_P (X) && REG_OK_FOR_INDEX_P (X, STRICT)) \
1450 || (GET_CODE (X) == SUBREG \
1451 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
1452 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
1453 && REG_P (SUBREG_REG (X)) \
1454 && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X), STRICT)))
1455
1456 #ifdef REG_OK_STRICT
1457 #define BASE_REGISTER_RTX_P(X) MAYBE_BASE_REGISTER_RTX_P(X, true)
1458 #define INDEX_REGISTER_RTX_P(X) MAYBE_INDEX_REGISTER_RTX_P(X, true)
1459 #else
1460 #define BASE_REGISTER_RTX_P(X) MAYBE_BASE_REGISTER_RTX_P(X, false)
1461 #define INDEX_REGISTER_RTX_P(X) MAYBE_INDEX_REGISTER_RTX_P(X, false)
1462 #endif
1463
1464 \f
1465 /* A C compound statement that attempts to replace X, which is an address
1466 that needs reloading, with a valid memory address for an operand of
1467 mode MODE. WIN is a C statement label elsewhere in the code. */
1468 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1469 do { \
1470 if (sh_legitimize_reload_address (&(X), (MODE), (OPNUM), (TYPE))) \
1471 goto WIN; \
1472 } while (0)
1473 \f
1474 /* Specify the machine mode that this machine uses
1475 for the index in the tablejump instruction. */
1476 #define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode)
1477
1478 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
1479 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
1480 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
1481 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
1482 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
1483 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
1484 : SImode)
1485
1486 /* Define as C expression which evaluates to nonzero if the tablejump
1487 instruction expects the table to contain offsets from the address of the
1488 table.
1489 Do not define this if the table should contain absolute addresses. */
1490 #define CASE_VECTOR_PC_RELATIVE 1
1491
1492 /* Define it here, so that it doesn't get bumped to 64-bits on SHmedia. */
1493 #define FLOAT_TYPE_SIZE 32
1494
1495 /* Since the SH2e has only `float' support, it is desirable to make all
1496 floating point types equivalent to `float'. */
1497 #define DOUBLE_TYPE_SIZE (TARGET_FPU_SINGLE_ONLY ? 32 : 64)
1498
1499 /* 'char' is signed by default. */
1500 #define DEFAULT_SIGNED_CHAR 1
1501
1502 /* The type of size_t unsigned int. */
1503 #define SIZE_TYPE ("unsigned int")
1504
1505 #undef PTRDIFF_TYPE
1506 #define PTRDIFF_TYPE ("int")
1507
1508 #define WCHAR_TYPE "short unsigned int"
1509 #define WCHAR_TYPE_SIZE 16
1510
1511 #define SH_ELF_WCHAR_TYPE "long int"
1512
1513 /* Max number of bytes we can move from memory to memory
1514 in one reasonably fast instruction. */
1515 #define MOVE_MAX (4)
1516
1517 /* Maximum value possibly taken by MOVE_MAX. Must be defined whenever
1518 MOVE_MAX is not a compile-time constant. */
1519 #define MAX_MOVE_MAX 8
1520
1521 /* Max number of bytes we want move_by_pieces to be able to copy
1522 efficiently. */
1523 #define MOVE_MAX_PIECES (TARGET_SH4 ? 8 : 4)
1524
1525 /* Define if operations between registers always perform the operation
1526 on the full register even if a narrower mode is specified. */
1527 #define WORD_REGISTER_OPERATIONS 1
1528
1529 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1530 will either zero-extend or sign-extend. The value of this macro should
1531 be the code that says which one of the two operations is implicitly
1532 done, UNKNOWN if none. */
1533 #define LOAD_EXTEND_OP(MODE) ((MODE) != SImode ? SIGN_EXTEND : UNKNOWN)
1534
1535 /* Define if loading short immediate values into registers sign extends. */
1536 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1537
1538 /* Nonzero if access to memory by bytes is no faster than for words. */
1539 #define SLOW_BYTE_ACCESS 1
1540
1541 /* Nonzero if the target supports dynamic shift instructions
1542 like shad and shld. */
1543 #define TARGET_DYNSHIFT (TARGET_SH3 || TARGET_SH2A)
1544
1545 /* The cost of using the dynamic shift insns (shad, shld) are the same
1546 if they are available. If they are not available a library function will
1547 be emitted instead, which is more expensive. */
1548 #define SH_DYNAMIC_SHIFT_COST (TARGET_DYNSHIFT ? 1 : 20)
1549
1550 /* Defining SHIFT_COUNT_TRUNCATED tells the combine pass that code like
1551 (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1552 This is not generally true when hardware dynamic shifts (shad, shld) are
1553 used, because they check the sign bit _before_ the modulo op. The sign
1554 bit determines whether it is a left shift or a right shift:
1555 if (Y < 0)
1556 return X << (Y & 31);
1557 else
1558 return X >> (-Y) & 31);
1559
1560 The dynamic shift library routines in lib1funcs.S do not use the sign bit
1561 like the hardware dynamic shifts and truncate the shift count to 31.
1562 We define SHIFT_COUNT_TRUNCATED to 0 and express the implied shift count
1563 truncation in the library function call patterns, as this gives slightly
1564 more compact code. */
1565 #define SHIFT_COUNT_TRUNCATED (0)
1566
1567 /* All integers have the same format so truncation is easy. */
1568 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) (true)
1569
1570 /* Define this if addresses of constant functions
1571 shouldn't be put through pseudo regs where they can be cse'd.
1572 Desirable on machines where ordinary constants are expensive
1573 but a CALL with constant address is cheap. */
1574 /*#define NO_FUNCTION_CSE 1*/
1575
1576 /* The machine modes of pointers and functions. */
1577 #define Pmode (SImode)
1578 #define FUNCTION_MODE Pmode
1579
1580 /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
1581 are actually function calls with some special constraints on arguments
1582 and register usage.
1583
1584 These macros tell reorg that the references to arguments and
1585 register clobbers for insns of type sfunc do not appear to happen
1586 until after the millicode call. This allows reorg to put insns
1587 which set the argument registers into the delay slot of the millicode
1588 call -- thus they act more like traditional CALL_INSNs.
1589
1590 get_attr_is_sfunc will try to recognize the given insn, so make sure to
1591 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1592 in particular. */
1593
1594 #define INSN_SETS_ARE_DELAYED(X) \
1595 ((NONJUMP_INSN_P (X) \
1596 && GET_CODE (PATTERN (X)) != SEQUENCE \
1597 && GET_CODE (PATTERN (X)) != USE \
1598 && GET_CODE (PATTERN (X)) != CLOBBER \
1599 && get_attr_is_sfunc (X)))
1600
1601 #define INSN_REFERENCES_ARE_DELAYED(X) \
1602 ((NONJUMP_INSN_P (X) \
1603 && GET_CODE (PATTERN (X)) != SEQUENCE \
1604 && GET_CODE (PATTERN (X)) != USE \
1605 && GET_CODE (PATTERN (X)) != CLOBBER \
1606 && get_attr_is_sfunc (X)))
1607
1608 \f
1609 /* Position Independent Code. */
1610
1611 /* We can't directly access anything that contains a symbol,
1612 nor can we indirect via the constant pool. */
1613 #define LEGITIMATE_PIC_OPERAND_P(X) \
1614 ((! nonpic_symbol_mentioned_p (X) \
1615 && (GET_CODE (X) != SYMBOL_REF \
1616 || ! CONSTANT_POOL_ADDRESS_P (X) \
1617 || ! nonpic_symbol_mentioned_p (get_pool_constant (X)))))
1618
1619 #define SYMBOLIC_CONST_P(X) \
1620 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
1621 && nonpic_symbol_mentioned_p (X))
1622 \f
1623 /* Compute extra cost of moving data between one register class
1624 and another. */
1625
1626 /* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
1627 uses this information. Hence, the general register <-> floating point
1628 register information here is not used for SFmode. */
1629 #define REGCLASS_HAS_GENERAL_REG(CLASS) \
1630 ((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS || (CLASS) == NON_SP_REGS \
1631 || ((CLASS) == SIBCALL_REGS))
1632
1633 #define REGCLASS_HAS_FP_REG(CLASS) \
1634 ((CLASS) == FP0_REGS || (CLASS) == FP_REGS \
1635 || (CLASS) == DF_REGS)
1636
1637 /* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
1638 would be so that people with slow memory systems could generate
1639 different code that does fewer memory accesses. */
1640
1641 /* A C expression for the cost of a branch instruction. A value of 1
1642 is the default; other values are interpreted relative to that. */
1643 #define BRANCH_COST(speed_p, predictable_p) sh_branch_cost
1644 \f
1645 /* Assembler output control. */
1646
1647 /* A C string constant describing how to begin a comment in the target
1648 assembler language. The compiler assumes that the comment will end at
1649 the end of the line. */
1650 #define ASM_COMMENT_START "!"
1651
1652 #define ASM_APP_ON ""
1653 #define ASM_APP_OFF ""
1654 #define FILE_ASM_OP "\t.file\n"
1655 #define SET_ASM_OP "\t.set\t"
1656
1657 /* How to change between sections. */
1658 #define TEXT_SECTION_ASM_OP "\t.text"
1659 #define DATA_SECTION_ASM_OP "\t.data"
1660
1661 #if defined CRT_BEGIN || defined CRT_END
1662 /* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant. */
1663 #undef TEXT_SECTION_ASM_OP
1664 #define TEXT_SECTION_ASM_OP "\t.text"
1665 #endif
1666
1667 #ifndef BSS_SECTION_ASM_OP
1668 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1669 #endif
1670
1671 #ifndef ASM_OUTPUT_ALIGNED_BSS
1672 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1673 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1674 #endif
1675
1676 /* Define this so that jump tables go in same section as the current function,
1677 which could be text or it could be a user defined section. */
1678 #define JUMP_TABLES_IN_TEXT_SECTION 1
1679
1680 #undef DO_GLOBAL_CTORS_BODY
1681 #define DO_GLOBAL_CTORS_BODY \
1682 { \
1683 typedef void (*pfunc) (void); \
1684 extern pfunc __ctors[]; \
1685 extern pfunc __ctors_end[]; \
1686 pfunc *p; \
1687 for (p = __ctors_end; p > __ctors; ) \
1688 { \
1689 (*--p)(); \
1690 } \
1691 }
1692
1693 #undef DO_GLOBAL_DTORS_BODY
1694 #define DO_GLOBAL_DTORS_BODY \
1695 { \
1696 typedef void (*pfunc) (void); \
1697 extern pfunc __dtors[]; \
1698 extern pfunc __dtors_end[]; \
1699 pfunc *p; \
1700 for (p = __dtors; p < __dtors_end; p++) \
1701 { \
1702 (*p)(); \
1703 } \
1704 }
1705
1706 #define ASM_OUTPUT_REG_PUSH(file, v) \
1707 { \
1708 fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v)); \
1709 }
1710
1711 #define ASM_OUTPUT_REG_POP(file, v) \
1712 { \
1713 fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v)); \
1714 }
1715
1716 /* DBX register number for a given compiler register number. */
1717 /* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
1718 to match gdb. */
1719 /* expand_builtin_init_dwarf_reg_sizes uses this to test if a
1720 register exists, so we should return -1 for invalid register numbers. */
1721 #define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
1722
1723 #define SH_DBX_REGISTER_NUMBER(REGNO) \
1724 (IN_RANGE ((REGNO), \
1725 (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
1726 FIRST_GENERAL_REG + 15U) \
1727 ? ((unsigned) (REGNO) - FIRST_GENERAL_REG) \
1728 : ((int) (REGNO) >= FIRST_FP_REG \
1729 && ((int) (REGNO) \
1730 <= (FIRST_FP_REG + (TARGET_SH2E ? 15 : -1)))) \
1731 ? ((unsigned) (REGNO) - FIRST_FP_REG + 25) \
1732 : XD_REGISTER_P (REGNO) \
1733 ? ((unsigned) (REGNO) - FIRST_XD_REG + 87) \
1734 : (REGNO) == PR_REG \
1735 ? (17) \
1736 : (REGNO) == GBR_REG \
1737 ? (18) \
1738 : (REGNO) == MACH_REG \
1739 ? (20) \
1740 : (REGNO) == MACL_REG \
1741 ? (21) \
1742 : (REGNO) == T_REG \
1743 ? (22) \
1744 : (REGNO) == FPUL_REG \
1745 ? (23) \
1746 : (REGNO) == FPSCR_REG \
1747 ? (24) \
1748 : (unsigned) -1)
1749
1750 /* This is how to output an assembler line
1751 that says to advance the location counter
1752 to a multiple of 2**LOG bytes. */
1753
1754 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1755 if ((LOG) != 0) \
1756 fprintf ((FILE), "\t.align %d\n", (LOG))
1757
1758 /* Globalizing directive for a label. */
1759 #define GLOBAL_ASM_OP "\t.global\t"
1760
1761 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
1762
1763 /* Output a relative address table. */
1764 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
1765 switch (GET_MODE (BODY)) \
1766 { \
1767 case E_SImode: \
1768 asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
1769 break; \
1770 case E_HImode: \
1771 asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
1772 break; \
1773 case E_QImode: \
1774 asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
1775 break; \
1776 default: \
1777 break; \
1778 }
1779
1780 /* Output an absolute table element. */
1781 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
1782 if (! optimize || TARGET_BIGTABLE) \
1783 asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
1784 else \
1785 asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));
1786
1787 \f
1788 /* A C statement to be executed just prior to the output of
1789 assembler code for INSN, to modify the extracted operands so
1790 they will be output differently.
1791
1792 Here the argument OPVEC is the vector containing the operands
1793 extracted from INSN, and NOPERANDS is the number of elements of
1794 the vector which contain meaningful data for this insn.
1795 The contents of this vector are what will be used to convert the insn
1796 template into assembler code, so you can change the assembler output
1797 by changing the contents of the vector. */
1798 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
1799 final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
1800
1801 /* Which processor to schedule for. The elements of the enumeration must
1802 match exactly the cpu attribute in the sh.md file. */
1803 enum processor_type {
1804 PROCESSOR_SH1,
1805 PROCESSOR_SH2,
1806 PROCESSOR_SH2E,
1807 PROCESSOR_SH2A,
1808 PROCESSOR_SH3,
1809 PROCESSOR_SH3E,
1810 PROCESSOR_SH4,
1811 PROCESSOR_SH4A
1812 };
1813
1814 #define sh_cpu_attr ((enum attr_cpu)sh_cpu)
1815 extern enum processor_type sh_cpu;
1816
1817 enum mdep_reorg_phase_e
1818 {
1819 SH_BEFORE_MDEP_REORG,
1820 SH_INSERT_USES_LABELS,
1821 SH_SHORTEN_BRANCHES0,
1822 SH_FIXUP_PCLOAD,
1823 SH_SHORTEN_BRANCHES1,
1824 SH_AFTER_MDEP_REORG
1825 };
1826
1827 extern enum mdep_reorg_phase_e mdep_reorg_phase;
1828
1829 /* Handle Renesas compiler's pragmas. */
1830 #define REGISTER_TARGET_PRAGMAS() do { \
1831 c_register_pragma (0, "interrupt", sh_pr_interrupt); \
1832 c_register_pragma (0, "trapa", sh_pr_trapa); \
1833 c_register_pragma (0, "nosave_low_regs", sh_pr_nosave_low_regs); \
1834 } while (0)
1835
1836 extern tree sh_deferred_function_attributes;
1837 extern tree *sh_deferred_function_attributes_tail;
1838
1839
1840 \f
1841 /* Instructions with unfilled delay slots take up an
1842 extra two bytes for the nop in the delay slot.
1843 sh-dsp parallel processing insns are four bytes long. */
1844 #define ADJUST_INSN_LENGTH(X, LENGTH) \
1845 (LENGTH) += sh_insn_length_adjustment (X);
1846 \f
1847 /* Define this macro if it is advisable to hold scalars in registers
1848 in a wider mode than that declared by the program. In such cases,
1849 the value is constrained to be within the bounds of the declared
1850 type, but kept valid in the wider mode. The signedness of the
1851 extension may differ from that of the type.
1852
1853 Leaving the unsignedp unchanged gives better code than always setting it
1854 to 0. This is despite the fact that we have only signed char and short
1855 load instructions. */
1856 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1857 if (GET_MODE_CLASS (MODE) == MODE_INT \
1858 && GET_MODE_SIZE (MODE) < 4/* ! UNITS_PER_WORD */)\
1859 (UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)), (MODE) = SImode;
1860
1861 #define MAX_FIXED_MODE_SIZE (64)
1862
1863 /* Better to allocate once the maximum space for outgoing args in the
1864 prologue rather than duplicate around each call. */
1865 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1866
1867 #define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
1868
1869 #define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_FPU_DOUBLE)
1870
1871 #define ACTUAL_NORMAL_MODE(ENTITY) \
1872 (TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
1873
1874 #define NORMAL_MODE(ENTITY) \
1875 (sh_cfun_interrupt_handler_p () \
1876 ? (TARGET_FMOVD ? FP_MODE_DOUBLE : FP_MODE_NONE) \
1877 : ACTUAL_NORMAL_MODE (ENTITY))
1878
1879 #define EPILOGUE_USES(REGNO) (TARGET_FPU_ANY && REGNO == FPSCR_REG)
1880
1881 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (PR_REG))
1882
1883 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 4U : INVALID_REGNUM)
1884
1885 #define EH_RETURN_STACKADJ_REGNO STATIC_CHAIN_REGNUM
1886 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
1887
1888 /* We have to distinguish between code and data, so that we apply
1889 datalabel where and only where appropriate. Use sdataN for data. */
1890 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1891 ((TARGET_FDPIC \
1892 ? ((GLOBAL) ? DW_EH_PE_indirect | DW_EH_PE_datarel : DW_EH_PE_pcrel) \
1893 : ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
1894 | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr))) \
1895 | ((CODE) ? 0 : DW_EH_PE_sdata4))
1896
1897 /* Handle special EH pointer encodings. Absolute, pc-relative, and
1898 indirect are handled automatically. */
1899 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1900 do { \
1901 if (((ENCODING) & 0xf) != DW_EH_PE_sdata4 \
1902 && ((ENCODING) & 0xf) != DW_EH_PE_sdata8) \
1903 { \
1904 gcc_assert (GET_CODE (ADDR) == SYMBOL_REF); \
1905 SYMBOL_REF_FLAGS (ADDR) |= SYMBOL_FLAG_FUNCTION; \
1906 if (0) goto DONE; \
1907 } \
1908 if (TARGET_FDPIC \
1909 && ((ENCODING) & 0xf0) == (DW_EH_PE_indirect | DW_EH_PE_datarel)) \
1910 { \
1911 fputs ("\t.ualong ", FILE); \
1912 output_addr_const (FILE, ADDR); \
1913 if (GET_CODE (ADDR) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (ADDR)) \
1914 fputs ("@GOTFUNCDESC", FILE); \
1915 else \
1916 fputs ("@GOT", FILE); \
1917 goto DONE; \
1918 } \
1919 } while (0)
1920
1921 #if (defined CRT_BEGIN || defined CRT_END)
1922 /* SH constant pool breaks the devices in crtstuff.c to control section
1923 in where code resides. We have to write it as asm code. */
1924 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1925 asm (SECTION_OP "\n\
1926 mov.l 1f,r1\n\
1927 mova 2f,r0\n\
1928 braf r1\n\
1929 lds r0,pr\n\
1930 0: .p2align 2\n\
1931 1: .long " USER_LABEL_PREFIX #FUNC " - 0b\n\
1932 2:\n" TEXT_SECTION_ASM_OP);
1933 #endif /* (defined CRT_BEGIN || defined CRT_END) */
1934
1935 #endif /* ! GCC_SH_H */