]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/sparc/sparc.h
Merge in gcc2-ss-010999
[thirdparty/gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 88, 89, 92, 94-98, 1999 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5 at Cygnus Support.
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Note that some other tm.h files include this one and then override
25 whatever definitions are necessary. */
26
27 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
28 /* #define SPARC_BI_ARCH */
29
30 /* Macro used later in this file to determine default architecture. */
31 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
32
33 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
34 architectures to compile for. We allow targets to choose compile time or
35 runtime selection. */
36 #ifdef SPARC_BI_ARCH
37 #ifdef IN_LIBGCC2
38 #if defined(__sparcv9) || defined(__sparcv_v9) || defined(__arch64__)
39 #define TARGET_ARCH32 0
40 #else
41 #define TARGET_ARCH32 1
42 #endif /* V9 sparc */
43 #else
44 #define TARGET_ARCH32 (! TARGET_64BIT)
45 #endif /* IN_LIBGCC2 */
46 #else
47 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
48 #endif /* SPARC_BI_ARCH */
49 #define TARGET_ARCH64 (! TARGET_ARCH32)
50
51 /* Code model selection.
52 -mcmodel is used to select the v9 code model.
53 Different code models aren't supported for v7/8 code.
54
55 TARGET_CM_32: 32 bit address space, top 32 bits = 0,
56 pointers are 32 bits. Note that this isn't intended
57 to imply a v7/8 abi.
58
59 TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
60 avoid generating %uhi and %ulo terms,
61 pointers are 64 bits.
62
63 TARGET_CM_MEDMID: 64 bit address space.
64 The executable must be in the low 16 TB of memory.
65 This corresponds to the low 44 bits, and the %[hml]44
66 relocs are used. The text segment has a maximum size
67 of 31 bits.
68
69 TARGET_CM_MEDANY: 64 bit address space.
70 The text and data segments have a maximum size of 31
71 bits and may be located anywhere. The maximum offset
72 from any instruction to the label _GLOBAL_OFFSET_TABLE_
73 is 31 bits.
74
75 TARGET_CM_EMBMEDANY: 64 bit address space.
76 The text and data segments have a maximum size of 31 bits
77 and may be located anywhere. Register %g4 contains
78 the start address of the data segment.
79 */
80
81 enum cmodel {
82 CM_32,
83 CM_MEDLOW,
84 CM_MEDMID,
85 CM_MEDANY,
86 CM_EMBMEDANY
87 };
88
89 /* Value of -mcmodel specified by user. */
90 extern const char *sparc_cmodel_string;
91 /* One of CM_FOO. */
92 extern enum cmodel sparc_cmodel;
93
94 /* V9 code model selection. */
95 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
96 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
97 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
98 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
99
100 #define SPARC_DEFAULT_CMODEL CM_MEDLOW
101
102 /* This is call-clobbered in the normal ABI, but is reserved in the
103 home grown (aka upward compatible) embedded ABI. */
104 #define EMBMEDANY_BASE_REG "%g4"
105 \f
106 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
107 and specified by the user via --with-cpu=foo.
108 This specifies the cpu implementation, not the architecture size. */
109 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
110 capable cpu's. */
111 #define TARGET_CPU_sparc 0
112 #define TARGET_CPU_v7 0 /* alias for previous */
113 #define TARGET_CPU_sparclet 1
114 #define TARGET_CPU_sparclite 2
115 #define TARGET_CPU_v8 3 /* generic v8 implementation */
116 #define TARGET_CPU_supersparc 4
117 #define TARGET_CPU_hypersparc 5
118 #define TARGET_CPU_sparc86x 6
119 #define TARGET_CPU_sparclite86x 6
120 #define TARGET_CPU_v9 7 /* generic v9 implementation */
121 #define TARGET_CPU_sparcv9 7 /* alias */
122 #define TARGET_CPU_sparc64 7 /* alias */
123 #define TARGET_CPU_ultrasparc 8
124
125 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
126 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
127
128 #define CPP_CPU32_DEFAULT_SPEC ""
129 #define ASM_CPU32_DEFAULT_SPEC ""
130
131 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
132 /* ??? What does Sun's CC pass? */
133 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
134 /* ??? It's not clear how other assemblers will handle this, so by default
135 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
136 is handled in sol2.h. */
137 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
138 #endif
139 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
140 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
141 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
142 #endif
143
144 #else
145
146 #define CPP_CPU64_DEFAULT_SPEC ""
147 #define ASM_CPU64_DEFAULT_SPEC ""
148
149 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
150 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
151 #define CPP_CPU32_DEFAULT_SPEC ""
152 #define ASM_CPU32_DEFAULT_SPEC ""
153 #endif
154
155 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
156 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
157 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
158 #endif
159
160 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
161 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
162 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
163 #endif
164
165 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
166 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
167 #define ASM_CPU32_DEFAULT_SPEC ""
168 #endif
169
170 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
171 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
172 #define ASM_CPU32_DEFAULT_SPEC ""
173 #endif
174
175 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
176 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
177 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
178 #endif
179
180 #endif
181
182 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
183 Unrecognized value in TARGET_CPU_DEFAULT.
184 #endif
185
186 #ifdef SPARC_BI_ARCH
187
188 #define CPP_CPU_DEFAULT_SPEC \
189 (DEFAULT_ARCH32_P ? "\
190 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
191 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
192 " : "\
193 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
194 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
195 ")
196 #define ASM_CPU_DEFAULT_SPEC \
197 (DEFAULT_ARCH32_P ? "\
198 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
199 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
200 " : "\
201 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
202 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
203 ")
204
205 #else /* !SPARC_BI_ARCH */
206
207 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
208 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
209
210 #endif /* !SPARC_BI_ARCH */
211
212 /* Names to predefine in the preprocessor for this target machine.
213 ??? It would be nice to not include any subtarget specific values here,
214 however there's no way to portably provide subtarget values to
215 CPP_PREFINES. Also, -D values in CPP_SUBTARGET_SPEC don't get turned into
216 foo, __foo and __foo__. */
217
218 #define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -Asystem(unix) -Asystem(bsd)"
219
220 /* Define macros to distinguish architectures. */
221
222 /* Common CPP definitions used by CPP_SPEC amongst the various targets
223 for handling -mcpu=xxx switches. */
224 #define CPP_CPU_SPEC "\
225 %{mcypress:} \
226 %{msparclite:-D__sparclite__} \
227 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
228 %{mv8:-D__sparc_v8__} \
229 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
230 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
231 %{mcpu=sparclite:-D__sparclite__} \
232 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
233 %{mcpu=v8:-D__sparc_v8__} \
234 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
235 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
236 %{mcpu=sparclite86x:-D__sparclite86x__} \
237 %{mcpu=v9:-D__sparc_v9__} \
238 %{mcpu=ultrasparc:-D__sparc_v9__} \
239 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
240 "
241
242 /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
243 the right varags.h file when bootstrapping. */
244 /* ??? It's not clear what value we want to use for -Acpu/machine for
245 sparc64 in 32 bit environments, so for now we only use `sparc64' in
246 64 bit environments. */
247
248 #ifdef SPARC_BI_ARCH
249
250 #define CPP_ARCH32_SPEC "-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int \
251 -D__GCC_NEW_VARARGS__ -Acpu(sparc) -Amachine(sparc)"
252 #define CPP_ARCH64_SPEC "-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int \
253 -D__arch64__ -Acpu(sparc64) -Amachine(sparc64)"
254
255 #else
256
257 #define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu(sparc) -Amachine(sparc)"
258 #define CPP_ARCH64_SPEC "-D__arch64__ -Acpu(sparc64) -Amachine(sparc64)"
259
260 #endif
261
262 #define CPP_ARCH_DEFAULT_SPEC \
263 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
264
265 #define CPP_ARCH_SPEC "\
266 %{m32:%(cpp_arch32)} \
267 %{m64:%(cpp_arch64)} \
268 %{!m32:%{!m64:%(cpp_arch_default)}} \
269 "
270
271 /* Macros to distinguish endianness. */
272 #define CPP_ENDIAN_SPEC "\
273 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
274 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
275
276 /* Macros to distinguish the particular subtarget. */
277 #define CPP_SUBTARGET_SPEC ""
278
279 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
280
281 /* Prevent error on `-sun4' and `-target sun4' options. */
282 /* This used to translate -dalign to -malign, but that is no good
283 because it can't turn off the usual meaning of making debugging dumps. */
284 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
285 ??? Delete support for -m<cpu> for 2.9. */
286
287 #define CC1_SPEC "\
288 %{sun4:} %{target:} \
289 %{mcypress:-mcpu=cypress} \
290 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
291 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
292 "
293
294 /* Override in target specific files. */
295 #define ASM_CPU_SPEC "\
296 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
297 %{msparclite:-Asparclite} \
298 %{mf930:-Asparclite} %{mf934:-Asparclite} \
299 %{mcpu=sparclite:-Asparclite} \
300 %{mcpu=sparclite86x:-Asparclite} \
301 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
302 %{mv8plus:-Av8plus} \
303 %{mcpu=v9:-Av9} \
304 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
305 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
306 "
307
308 /* Word size selection, among other things.
309 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
310
311 #define ASM_ARCH32_SPEC "-32"
312 #define ASM_ARCH64_SPEC "-64"
313 #define ASM_ARCH_DEFAULT_SPEC \
314 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
315
316 #define ASM_ARCH_SPEC "\
317 %{m32:%(asm_arch32)} \
318 %{m64:%(asm_arch64)} \
319 %{!m32:%{!m64:%(asm_arch_default)}} \
320 "
321
322 /* Special flags to the Sun-4 assembler when using pipe for input. */
323
324 #define ASM_SPEC "\
325 %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
326 %(asm_cpu) \
327 "
328
329 #define LIB_SPEC "%{!shared:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}}"
330
331 /* Provide required defaults for linker -e and -d switches. */
332
333 #define LINK_SPEC \
334 "%{!shared:%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp} %{static:-Bstatic} \
335 %{assert*} %{shared:%{!mimpure-text:-assert pure-text}}"
336
337 /* This macro defines names of additional specifications to put in the specs
338 that can be used in various specifications like CC1_SPEC. Its definition
339 is an initializer with a subgrouping for each command option.
340
341 Each subgrouping contains a string constant, that defines the
342 specification name, and a string constant that used by the GNU CC driver
343 program.
344
345 Do not define this macro if it does not need to do anything. */
346
347 #define EXTRA_SPECS \
348 { "cpp_cpu", CPP_CPU_SPEC }, \
349 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
350 { "cpp_arch32", CPP_ARCH32_SPEC }, \
351 { "cpp_arch64", CPP_ARCH64_SPEC }, \
352 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
353 { "cpp_arch", CPP_ARCH_SPEC }, \
354 { "cpp_endian", CPP_ENDIAN_SPEC }, \
355 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
356 { "asm_cpu", ASM_CPU_SPEC }, \
357 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
358 { "asm_arch32", ASM_ARCH32_SPEC }, \
359 { "asm_arch64", ASM_ARCH64_SPEC }, \
360 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
361 { "asm_arch", ASM_ARCH_SPEC }, \
362 SUBTARGET_EXTRA_SPECS
363
364 #define SUBTARGET_EXTRA_SPECS
365 \f
366 #ifdef SPARC_BI_ARCH
367 #define NO_BUILTIN_PTRDIFF_TYPE
368 #define NO_BUILTIN_SIZE_TYPE
369 #endif
370 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
371 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
372
373 /* ??? This should be 32 bits for v9 but what can we do? */
374 #define WCHAR_TYPE "short unsigned int"
375 #define WCHAR_TYPE_SIZE 16
376 #define MAX_WCHAR_TYPE_SIZE 16
377
378 /* Show we can debug even without a frame pointer. */
379 #define CAN_DEBUG_WITHOUT_FP
380
381 /* To make profiling work with -f{pic,PIC}, we need to emit the profiling
382 code into the rtl. Also, if we are profiling, we cannot eliminate
383 the frame pointer (because the return address will get smashed). */
384
385 void sparc_override_options ();
386
387 #define OVERRIDE_OPTIONS \
388 do { \
389 if (profile_flag || profile_block_flag || profile_arc_flag) \
390 { \
391 if (flag_pic) \
392 { \
393 const char *pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC";\
394 warning ("%s and profiling conflict: disabling %s", \
395 pic_string, pic_string); \
396 flag_pic = 0; \
397 } \
398 flag_omit_frame_pointer = 0; \
399 } \
400 sparc_override_options (); \
401 SUBTARGET_OVERRIDE_OPTIONS; \
402 } while (0)
403
404 /* This is meant to be redefined in the host dependent files. */
405 #define SUBTARGET_OVERRIDE_OPTIONS
406
407 /* These compiler options take an argument. We ignore -target for now. */
408
409 #define WORD_SWITCH_TAKES_ARG(STR) \
410 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
411 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
412
413 /* Print subsidiary information on the compiler version in use. */
414
415 #define TARGET_VERSION fprintf (stderr, " (sparc)");
416
417 /* Generate DBX debugging information. */
418
419 #define DBX_DEBUGGING_INFO
420 \f
421 /* Run-time compilation parameters selecting different hardware subsets. */
422
423 extern int target_flags;
424
425 /* Nonzero if we should generate code to use the fpu. */
426 #define MASK_FPU 1
427 #define TARGET_FPU (target_flags & MASK_FPU)
428
429 /* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
430 use fast return insns, but lose some generality. */
431 #define MASK_EPILOGUE 2
432 #define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE)
433
434 /* Nonzero if we should assume that double pointers might be unaligned.
435 This can happen when linking gcc compiled code with other compilers,
436 because the ABI only guarantees 4 byte alignment. */
437 #define MASK_UNALIGNED_DOUBLES 4
438 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
439
440 /* Nonzero means that we should generate code for a v8 sparc. */
441 #define MASK_V8 0x8
442 #define TARGET_V8 (target_flags & MASK_V8)
443
444 /* Nonzero means that we should generate code for a sparclite.
445 This enables the sparclite specific instructions, but does not affect
446 whether FPU instructions are emitted. */
447 #define MASK_SPARCLITE 0x10
448 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
449
450 /* Nonzero if we're compiling for the sparclet. */
451 #define MASK_SPARCLET 0x20
452 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
453
454 /* Nonzero if we're compiling for v9 sparc.
455 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
456 the word size is 64. */
457 #define MASK_V9 0x40
458 #define TARGET_V9 (target_flags & MASK_V9)
459
460 /* Non-zero to generate code that uses the instructions deprecated in
461 the v9 architecture. This option only applies to v9 systems. */
462 /* ??? This isn't user selectable yet. It's used to enable such insns
463 on 32 bit v9 systems and for the moment they're permanently disabled
464 on 64 bit v9 systems. */
465 #define MASK_DEPRECATED_V8_INSNS 0x80
466 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
467
468 /* Mask of all CPU selection flags. */
469 #define MASK_ISA \
470 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
471
472 /* Non-zero means don't pass `-assert pure-text' to the linker. */
473 #define MASK_IMPURE_TEXT 0x100
474 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
475
476 /* Nonzero means that we should generate code using a flat register window
477 model, i.e. no save/restore instructions are generated, which is
478 compatible with normal sparc code.
479 The frame pointer is %i7 instead of %fp. */
480 #define MASK_FLAT 0x200
481 #define TARGET_FLAT (target_flags & MASK_FLAT)
482
483 /* Nonzero means use the registers that the Sparc ABI reserves for
484 application software. This must be the default to coincide with the
485 setting in FIXED_REGISTERS. */
486 #define MASK_APP_REGS 0x400
487 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
488
489 /* Option to select how quad word floating point is implemented.
490 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
491 Otherwise, we use the SPARC ABI quad library functions. */
492 #define MASK_HARD_QUAD 0x800
493 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
494
495 /* Non-zero on little-endian machines. */
496 /* ??? Little endian support currently only exists for sparclet-aout and
497 sparc64-elf configurations. May eventually want to expand the support
498 to all targets, but for now it's kept local to only those two. */
499 #define MASK_LITTLE_ENDIAN 0x1000
500 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
501
502 /* 0x2000, 0x4000 are unused */
503
504 /* Nonzero if pointers are 64 bits.
505 At the moment it must follow architecture size flag. */
506 #define MASK_PTR64 0x8000
507 #define TARGET_PTR64 (target_flags & MASK_PTR64)
508
509 /* Nonzero if generating code to run in a 64 bit environment.
510 This is intended to only be used by TARGET_ARCH{32,64} as they are the
511 mechanism used to control compile time or run time selection. */
512 #define MASK_64BIT 0x10000
513 #define TARGET_64BIT (target_flags & MASK_64BIT)
514
515 /* 0x20000,0x40000 unused */
516
517 /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
518 adding 2047 to %sp. This option is for v9 only and is the default. */
519 #define MASK_STACK_BIAS 0x80000
520 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
521
522 /* Non-zero means %g0 is a normal register.
523 We still clobber it as necessary, but we can't rely on it always having
524 a zero value.
525 We don't bother to support this in true 64 bit mode. */
526 #define MASK_LIVE_G0 0x100000
527 #define TARGET_LIVE_G0 (target_flags & MASK_LIVE_G0)
528
529 /* Non-zero means the cpu has broken `save' and `restore' insns, only
530 the trivial versions work (save %g0,%g0,%g0; restore %g0,%g0,%g0).
531 We assume the environment will properly handle or otherwise avoid
532 trouble associated with an interrupt occurring after the `save' or trap
533 occurring during it. */
534 #define MASK_BROKEN_SAVERESTORE 0x200000
535 #define TARGET_BROKEN_SAVERESTORE (target_flags & MASK_BROKEN_SAVERESTORE)
536
537 /* Non-zero means -m{,no-}fpu was passed on the command line. */
538 #define MASK_FPU_SET 0x400000
539 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
540
541 /* Use the UltraSPARC Visual Instruction Set extensions. */
542 #define MASK_VIS 0x1000000
543 #define TARGET_VIS (target_flags & MASK_VIS)
544
545 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
546 the current out and global registers and Linux 2.2+ as well. */
547 #define MASK_V8PLUS 0x2000000
548 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
549
550 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
551 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
552 to get high 32 bits. False in V8+ or V9 because multiply stores
553 a 64 bit result in a register. */
554
555 #define TARGET_HARD_MUL32 \
556 ((TARGET_V8 || TARGET_SPARCLITE \
557 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
558 && ! TARGET_V8PLUS && TARGET_ARCH32)
559
560 #define TARGET_HARD_MUL \
561 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
562 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
563
564
565 /* Macro to define tables used to set the flags.
566 This is a list in braces of pairs in braces,
567 each pair being { "NAME", VALUE }
568 where VALUE is the bits to set or minus the bits to clear.
569 An empty string NAME is used to identify the default VALUE. */
570
571 #define TARGET_SWITCHES \
572 { {"fpu", MASK_FPU | MASK_FPU_SET, "Use hardware fp" }, \
573 {"no-fpu", -MASK_FPU, "Do not use hardware fp" }, \
574 {"no-fpu", MASK_FPU_SET, "Do not use hardware fp" }, \
575 {"hard-float", MASK_FPU | MASK_FPU_SET, "Use hardware fp" }, \
576 {"soft-float", -MASK_FPU, "Do not use hardware fp" }, \
577 {"soft-float", MASK_FPU_SET, "Do not use hardware fp" }, \
578 {"epilogue", MASK_EPILOGUE, "Use FUNCTION_EPILOGUE" }, \
579 {"no-epilogue", -MASK_EPILOGUE, "Do not use FUNCTION_EPILOGUE" }, \
580 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, "Assume possible double misalignment" },\
581 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, "Assume all doubles are aligned" }, \
582 {"impure-text", MASK_IMPURE_TEXT, "Pass -assert pure-text to linker" }, \
583 {"no-impure-text", -MASK_IMPURE_TEXT, "Do not pass -assert pure-text to linker" }, \
584 {"flat", MASK_FLAT, "Use flat register window model" }, \
585 {"no-flat", -MASK_FLAT, "Do not use flat register window model" }, \
586 {"app-regs", MASK_APP_REGS, "Use ABI reserved registers" }, \
587 {"no-app-regs", -MASK_APP_REGS, "Do not use ABI reserved registers" }, \
588 {"hard-quad-float", MASK_HARD_QUAD, "Use hardware quad fp instructions" }, \
589 {"soft-quad-float", -MASK_HARD_QUAD, "Do not use hardware quad fp instructions" }, \
590 {"v8plus", MASK_V8PLUS, "Compile for v8plus ABI" }, \
591 {"no-v8plus", -MASK_V8PLUS, "Do not compile for v8plus ABI" }, \
592 {"vis", MASK_VIS, "Utilize Visual Instruction Set" }, \
593 {"no-vis", -MASK_VIS, "Do not utilize Visual Instruction Set" }, \
594 /* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \
595 {"cypress", 0, "Optimize for Cypress processors" }, \
596 {"sparclite", 0, "Optimize for SparcLite processors" }, \
597 {"f930", 0, "Optimize for F930 processors" }, \
598 {"f934", 0, "Optimize for F934 processors" }, \
599 {"v8", 0, "Use V8 Sparc ISA" }, \
600 {"supersparc", 0, "Optimize for SuperSparc processors" }, \
601 /* End of deprecated options. */ \
602 {"ptr64", MASK_PTR64, "Pointers are 64-bit" }, \
603 {"ptr32", -MASK_PTR64, "Pointers are 32-bit" }, \
604 {"32", -MASK_64BIT, "Use 32-bit ABI" }, \
605 {"64", MASK_64BIT, "Use 64-bit ABI" }, \
606 {"stack-bias", MASK_STACK_BIAS, "Use stack bias" }, \
607 {"no-stack-bias", -MASK_STACK_BIAS, "Do not use stack bias" }, \
608 SUBTARGET_SWITCHES \
609 { "", TARGET_DEFAULT, ""}}
610
611 /* MASK_APP_REGS must always be the default because that's what
612 FIXED_REGISTERS is set to and -ffixed- is processed before
613 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
614 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU)
615
616 /* This is meant to be redefined in target specific files. */
617 #define SUBTARGET_SWITCHES
618
619 /* Processor type.
620 These must match the values for the cpu attribute in sparc.md. */
621 enum processor_type {
622 PROCESSOR_V7,
623 PROCESSOR_CYPRESS,
624 PROCESSOR_V8,
625 PROCESSOR_SUPERSPARC,
626 PROCESSOR_SPARCLITE,
627 PROCESSOR_F930,
628 PROCESSOR_F934,
629 PROCESSOR_HYPERSPARC,
630 PROCESSOR_SPARCLITE86X,
631 PROCESSOR_SPARCLET,
632 PROCESSOR_TSC701,
633 PROCESSOR_V9,
634 PROCESSOR_ULTRASPARC
635 };
636
637 /* This is set from -m{cpu,tune}=xxx. */
638 extern enum processor_type sparc_cpu;
639
640 /* Recast the cpu class to be the cpu attribute.
641 Every file includes us, but not every file includes insn-attr.h. */
642 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
643
644 /* This macro is similar to `TARGET_SWITCHES' but defines names of
645 command options that have values. Its definition is an
646 initializer with a subgrouping for each command option.
647
648 Each subgrouping contains a string constant, that defines the
649 fixed part of the option name, and the address of a variable.
650 The variable, type `char *', is set to the variable part of the
651 given option if the fixed part matches. The actual option name
652 is made by appending `-m' to the specified name.
653
654 Here is an example which defines `-mshort-data-NUMBER'. If the
655 given option is `-mshort-data-512', the variable `m88k_short_data'
656 will be set to the string `"512"'.
657
658 extern char *m88k_short_data;
659 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
660
661 #define TARGET_OPTIONS \
662 { \
663 { "cpu=", &sparc_select[1].string, "Use features of and schedule code for given CPU" }, \
664 { "tune=", &sparc_select[2].string, "Schedule code for given CPU" }, \
665 { "cmodel=", &sparc_cmodel_string, "Use given Sparc code model" }, \
666 SUBTARGET_OPTIONS \
667 }
668
669 /* This is meant to be redefined in target specific files. */
670 #define SUBTARGET_OPTIONS
671
672 /* sparc_select[0] is reserved for the default cpu. */
673 struct sparc_cpu_select
674 {
675 const char *string;
676 const char *name;
677 int set_tune_p;
678 int set_arch_p;
679 };
680
681 extern struct sparc_cpu_select sparc_select[];
682 \f
683 /* target machine storage layout */
684
685 /* Define for cross-compilation to a sparc target with no TFmode from a host
686 with a different float format (e.g. VAX). */
687 #define REAL_ARITHMETIC
688
689 /* Define this if most significant bit is lowest numbered
690 in instructions that operate on numbered bit-fields. */
691 #define BITS_BIG_ENDIAN 1
692
693 /* Define this if most significant byte of a word is the lowest numbered. */
694 #define BYTES_BIG_ENDIAN 1
695
696 /* Define this if most significant word of a multiword number is the lowest
697 numbered. */
698 #define WORDS_BIG_ENDIAN 1
699
700 /* Define this to set the endianness to use in libgcc2.c, which can
701 not depend on target_flags. */
702 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
703 #define LIBGCC2_WORDS_BIG_ENDIAN 0
704 #else
705 #define LIBGCC2_WORDS_BIG_ENDIAN 1
706 #endif
707
708 /* number of bits in an addressable storage unit */
709 #define BITS_PER_UNIT 8
710
711 /* Width in bits of a "word", which is the contents of a machine register.
712 Note that this is not necessarily the width of data type `int';
713 if using 16-bit ints on a 68000, this would still be 32.
714 But on a machine with 16-bit registers, this would be 16. */
715 #define BITS_PER_WORD (TARGET_ARCH64 ? 64 : 32)
716 #define MAX_BITS_PER_WORD 64
717
718 /* Width of a word, in units (bytes). */
719 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
720 #define MIN_UNITS_PER_WORD 4
721
722 /* Now define the sizes of the C data types. */
723
724 #define SHORT_TYPE_SIZE 16
725 #define INT_TYPE_SIZE 32
726 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
727 #define LONG_LONG_TYPE_SIZE 64
728 #define FLOAT_TYPE_SIZE 32
729 #define DOUBLE_TYPE_SIZE 64
730
731 #if defined (SPARC_BI_ARCH)
732 #define MAX_LONG_TYPE_SIZE 64
733 #endif
734
735 #if 0
736 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
737 Instead, it is enabled in sol2.h, because it does work under Solaris. */
738 /* Define for support of TFmode long double and REAL_ARITHMETIC.
739 Sparc ABI says that long double is 4 words. */
740 #define LONG_DOUBLE_TYPE_SIZE 128
741 #endif
742
743 /* Width in bits of a pointer.
744 See also the macro `Pmode' defined below. */
745 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
746
747 /* A macro to update MODE and UNSIGNEDP when an object whose type
748 is TYPE and which has the specified mode and signedness is to be
749 stored in a register. This macro is only called when TYPE is a
750 scalar type. */
751 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
752 if (TARGET_ARCH64 \
753 && GET_MODE_CLASS (MODE) == MODE_INT \
754 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
755 { \
756 (MODE) = DImode; \
757 }
758
759 /* Define this macro if the promotion described by PROMOTE_MODE
760 should also be done for outgoing function arguments. */
761 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
762 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
763 for this value. */
764 #define PROMOTE_FUNCTION_ARGS
765
766 /* Define this macro if the promotion described by PROMOTE_MODE
767 should also be done for the return value of functions.
768 If this macro is defined, FUNCTION_VALUE must perform the same
769 promotions done by PROMOTE_MODE. */
770 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
771 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
772 for this value. */
773 #define PROMOTE_FUNCTION_RETURN
774
775 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
776 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
777
778 /* Boundary (in *bits*) on which stack pointer should be aligned. */
779 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
780
781 /* ALIGN FRAMES on double word boundaries */
782
783 #define SPARC_STACK_ALIGN(LOC) \
784 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
785
786 /* Allocation boundary (in *bits*) for the code of a function. */
787 #define FUNCTION_BOUNDARY 32
788
789 /* Alignment of field after `int : 0' in a structure. */
790 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
791
792 /* Every structure's size must be a multiple of this. */
793 #define STRUCTURE_SIZE_BOUNDARY 8
794
795 /* A bitfield declared as `int' forces `int' alignment for the struct. */
796 #define PCC_BITFIELD_TYPE_MATTERS 1
797
798 /* No data type wants to be aligned rounder than this. */
799 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
800
801 /* The best alignment to use in cases where we have a choice. */
802 #define FASTEST_ALIGNMENT 64
803
804 /* Make strings word-aligned so strcpy from constants will be faster. */
805 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
806 ((TREE_CODE (EXP) == STRING_CST \
807 && (ALIGN) < FASTEST_ALIGNMENT) \
808 ? FASTEST_ALIGNMENT : (ALIGN))
809
810 /* Make arrays of chars word-aligned for the same reasons. */
811 #define DATA_ALIGNMENT(TYPE, ALIGN) \
812 (TREE_CODE (TYPE) == ARRAY_TYPE \
813 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
814 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
815
816 /* Set this nonzero if move instructions will actually fail to work
817 when given unaligned data. */
818 #define STRICT_ALIGNMENT 1
819
820 /* Things that must be doubleword aligned cannot go in the text section,
821 because the linker fails to align the text section enough!
822 Put them in the data section. This macro is only used in this file. */
823 #define MAX_TEXT_ALIGN 32
824
825 /* This forces all variables and constants to the data section when PIC.
826 This is because the SunOS 4 shared library scheme thinks everything in
827 text is a function, and patches the address to point to a loader stub. */
828 /* This is defined to zero for every system which doesn't use the a.out object
829 file format. */
830 #ifndef SUNOS4_SHARED_LIBRARIES
831 #define SUNOS4_SHARED_LIBRARIES 0
832 #endif
833
834 /* This is defined differently for v9 in a cover file. */
835 #define SELECT_SECTION(T,RELOC) \
836 { \
837 if (TREE_CODE (T) == VAR_DECL) \
838 { \
839 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
840 && DECL_INITIAL (T) \
841 && (DECL_INITIAL (T) == error_mark_node \
842 || TREE_CONSTANT (DECL_INITIAL (T))) \
843 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
844 && ! (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
845 text_section (); \
846 else \
847 data_section (); \
848 } \
849 else if (TREE_CODE (T) == CONSTRUCTOR) \
850 { \
851 if (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES)) \
852 data_section (); \
853 } \
854 else if (TREE_CODE_CLASS (TREE_CODE (T)) == 'c') \
855 { \
856 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
857 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN \
858 || (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
859 data_section (); \
860 else \
861 text_section (); \
862 } \
863 }
864
865 /* Use text section for a constant
866 unless we need more alignment than that offers. */
867 /* This is defined differently for v9 in a cover file. */
868 #define SELECT_RTX_SECTION(MODE, X) \
869 { \
870 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
871 && ! (flag_pic && (symbolic_operand (X) || SUNOS4_SHARED_LIBRARIES))) \
872 text_section (); \
873 else \
874 data_section (); \
875 }
876 \f
877 /* Standard register usage. */
878
879 /* Number of actual hardware registers.
880 The hardware registers are assigned numbers for the compiler
881 from 0 to just below FIRST_PSEUDO_REGISTER.
882 All registers that the compiler knows about must be given numbers,
883 even those that are not normally considered general registers.
884
885 SPARC has 32 integer registers and 32 floating point registers.
886 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
887 accessible. We still account for them to simplify register computations
888 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
889 32+32+32+4 == 100.
890 Register 100 is used as the integer condition code register. */
891
892 #define FIRST_PSEUDO_REGISTER 101
893
894 #define SPARC_FIRST_FP_REG 32
895 /* Additional V9 fp regs. */
896 #define SPARC_FIRST_V9_FP_REG 64
897 #define SPARC_LAST_V9_FP_REG 95
898 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
899 #define SPARC_FIRST_V9_FCC_REG 96
900 #define SPARC_LAST_V9_FCC_REG 99
901 /* V8 fcc reg. */
902 #define SPARC_FCC_REG 96
903 /* Integer CC reg. We don't distinguish %icc from %xcc. */
904 #define SPARC_ICC_REG 100
905
906 /* Nonzero if REGNO is an fp reg. */
907 #define SPARC_FP_REG_P(REGNO) \
908 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
909
910 /* Argument passing regs. */
911 #define SPARC_OUTGOING_INT_ARG_FIRST 8
912 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
913 #define SPARC_FP_ARG_FIRST 32
914
915 /* 1 for registers that have pervasive standard uses
916 and are not available for the register allocator.
917
918 On non-v9 systems:
919 g1 is free to use as temporary.
920 g2-g4 are reserved for applications. Gcc normally uses them as
921 temporaries, but this can be disabled via the -mno-app-regs option.
922 g5 through g7 are reserved for the operating system.
923
924 On v9 systems:
925 g1,g5 are free to use as temporaries, and are free to use between calls
926 if the call is to an external function via the PLT.
927 g4 is free to use as a temporary in the non-embedded case.
928 g4 is reserved in the embedded case.
929 g2-g3 are reserved for applications. Gcc normally uses them as
930 temporaries, but this can be disabled via the -mno-app-regs option.
931 g6-g7 are reserved for the operating system (or application in
932 embedded case).
933 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
934 currently be a fixed register until this pattern is rewritten.
935 Register 1 is also used when restoring call-preserved registers in large
936 stack frames.
937
938 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
939 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
940 */
941
942 #define FIXED_REGISTERS \
943 {1, 0, 0, 0, 0, 0, 1, 1, \
944 0, 0, 0, 0, 0, 0, 1, 0, \
945 0, 0, 0, 0, 0, 0, 0, 0, \
946 0, 0, 0, 0, 0, 0, 1, 1, \
947 \
948 0, 0, 0, 0, 0, 0, 0, 0, \
949 0, 0, 0, 0, 0, 0, 0, 0, \
950 0, 0, 0, 0, 0, 0, 0, 0, \
951 0, 0, 0, 0, 0, 0, 0, 0, \
952 \
953 0, 0, 0, 0, 0, 0, 0, 0, \
954 0, 0, 0, 0, 0, 0, 0, 0, \
955 0, 0, 0, 0, 0, 0, 0, 0, \
956 0, 0, 0, 0, 0, 0, 0, 0, \
957 \
958 0, 0, 0, 0, 0}
959
960 /* 1 for registers not available across function calls.
961 These must include the FIXED_REGISTERS and also any
962 registers that can be used without being saved.
963 The latter must include the registers where values are returned
964 and the register where structure-value addresses are passed.
965 Aside from that, you can include as many other registers as you like. */
966
967 #define CALL_USED_REGISTERS \
968 {1, 1, 1, 1, 1, 1, 1, 1, \
969 1, 1, 1, 1, 1, 1, 1, 1, \
970 0, 0, 0, 0, 0, 0, 0, 0, \
971 0, 0, 0, 0, 0, 0, 1, 1, \
972 \
973 1, 1, 1, 1, 1, 1, 1, 1, \
974 1, 1, 1, 1, 1, 1, 1, 1, \
975 1, 1, 1, 1, 1, 1, 1, 1, \
976 1, 1, 1, 1, 1, 1, 1, 1, \
977 \
978 1, 1, 1, 1, 1, 1, 1, 1, \
979 1, 1, 1, 1, 1, 1, 1, 1, \
980 1, 1, 1, 1, 1, 1, 1, 1, \
981 1, 1, 1, 1, 1, 1, 1, 1, \
982 \
983 1, 1, 1, 1, 1}
984
985 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
986 they won't be allocated. */
987
988 #define CONDITIONAL_REGISTER_USAGE \
989 do \
990 { \
991 if (flag_pic) \
992 { \
993 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
994 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
995 } \
996 if (TARGET_ARCH32) \
997 { \
998 fixed_regs[5] = 1; \
999 } \
1000 if (TARGET_LIVE_G0) \
1001 fixed_regs[0] = 0; \
1002 if (! TARGET_V9) \
1003 { \
1004 int regno; \
1005 for (regno = SPARC_FIRST_V9_FP_REG; \
1006 regno <= SPARC_LAST_V9_FP_REG; \
1007 regno++) \
1008 fixed_regs[regno] = 1; \
1009 /* %fcc0 is used by v8 and v9. */ \
1010 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
1011 regno <= SPARC_LAST_V9_FCC_REG; \
1012 regno++) \
1013 fixed_regs[regno] = 1; \
1014 } \
1015 if (! TARGET_FPU) \
1016 { \
1017 int regno; \
1018 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
1019 fixed_regs[regno] = 1; \
1020 } \
1021 /* Don't unfix g2-g4 if they were fixed with -ffixed-. */ \
1022 fixed_regs[2] |= ! TARGET_APP_REGS; \
1023 fixed_regs[3] |= ! TARGET_APP_REGS; \
1024 fixed_regs[4] |= ! TARGET_APP_REGS || TARGET_CM_EMBMEDANY; \
1025 if (TARGET_FLAT) \
1026 { \
1027 /* Let the compiler believe the frame pointer is still \
1028 %fp, but output it as %i7. */ \
1029 fixed_regs[31] = 1; \
1030 reg_names[FRAME_POINTER_REGNUM] = "%i7"; \
1031 /* ??? This is a hack to disable leaf functions. */ \
1032 global_regs[7] = 1; \
1033 } \
1034 if (profile_block_flag) \
1035 { \
1036 /* %g1 and %g2 must be fixed, because BLOCK_PROFILER \
1037 uses them. */ \
1038 fixed_regs[1] = 1; \
1039 fixed_regs[2] = 1; \
1040 } \
1041 } \
1042 while (0)
1043
1044 /* Return number of consecutive hard regs needed starting at reg REGNO
1045 to hold something of mode MODE.
1046 This is ordinarily the length in words of a value of mode MODE
1047 but can be less for certain modes in special long registers.
1048
1049 On SPARC, ordinary registers hold 32 bits worth;
1050 this means both integer and floating point registers.
1051 On v9, integer regs hold 64 bits worth; floating point regs hold
1052 32 bits worth (this includes the new fp regs as even the odd ones are
1053 included in the hard register count). */
1054
1055 #define HARD_REGNO_NREGS(REGNO, MODE) \
1056 (TARGET_ARCH64 \
1057 ? ((REGNO) < 32 \
1058 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1059 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1060 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1061
1062 /* A subreg in 64 bit mode will have the wrong offset for a floating point
1063 register. The least significant part is at offset 1, compared to 0 for
1064 integer registers. This only applies when FMODE is a larger mode.
1065 We also need to handle a special case of TF-->DF conversions. */
1066 #define ALTER_HARD_SUBREG(TMODE, WORD, FMODE, REGNO) \
1067 (TARGET_ARCH64 \
1068 && (REGNO) >= SPARC_FIRST_FP_REG \
1069 && (REGNO) <= SPARC_LAST_V9_FP_REG \
1070 && (TMODE) == SImode \
1071 && !((FMODE) == QImode || (FMODE) == HImode) \
1072 ? ((REGNO) + 1) \
1073 : ((TMODE) == DFmode && (FMODE) == TFmode) \
1074 ? ((REGNO) + ((WORD) * 2)) \
1075 : ((REGNO) + (WORD)))
1076
1077 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1078 See sparc.c for how we initialize this. */
1079 extern int *hard_regno_mode_classes;
1080 extern int sparc_mode_class[];
1081 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1082 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1083
1084 /* Value is 1 if it is a good idea to tie two pseudo registers
1085 when one has mode MODE1 and one has mode MODE2.
1086 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1087 for any hard reg, then this must be 0 for correct output.
1088
1089 For V9: SFmode can't be combined with other float modes, because they can't
1090 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1091 registers, but SFmode will. */
1092 #define MODES_TIEABLE_P(MODE1, MODE2) \
1093 ((MODE1) == (MODE2) \
1094 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1095 && (! TARGET_V9 \
1096 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1097 || (MODE1 != SFmode && MODE2 != SFmode)))))
1098
1099 /* Specify the registers used for certain standard purposes.
1100 The values of these macros are register numbers. */
1101
1102 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1103 /* #define PC_REGNUM */
1104
1105 /* Register to use for pushing function arguments. */
1106 #define STACK_POINTER_REGNUM 14
1107
1108 /* Actual top-of-stack address is 92/176 greater than the contents of the
1109 stack pointer register for !v9/v9. That is:
1110 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1111 address, and 6*4 bytes for the 6 register parameters.
1112 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1113 parameter regs. */
1114 #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
1115
1116 /* The stack bias (amount by which the hardware register is offset by). */
1117 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1118
1119 /* Is stack biased? */
1120 #define STACK_BIAS SPARC_STACK_BIAS
1121
1122 /* Base register for access to local variables of the function. */
1123 #define FRAME_POINTER_REGNUM 30
1124
1125 #if 0
1126 /* Register that is used for the return address for the flat model. */
1127 #define RETURN_ADDR_REGNUM 15
1128 #endif
1129
1130 /* Value should be nonzero if functions must have frame pointers.
1131 Zero means the frame pointer need not be set up (and parms
1132 may be accessed via the stack pointer) in functions that seem suitable.
1133 This is computed in `reload', in reload1.c.
1134 Used in flow.c, global.c, and reload1.c.
1135
1136 Being a non-leaf function does not mean a frame pointer is needed in the
1137 flat window model. However, the debugger won't be able to backtrace through
1138 us with out it. */
1139 #define FRAME_POINTER_REQUIRED \
1140 (TARGET_FLAT ? (current_function_calls_alloca || current_function_varargs \
1141 || !leaf_function_p ()) \
1142 : ! (leaf_function_p () && only_leaf_regs_used ()))
1143
1144 /* C statement to store the difference between the frame pointer
1145 and the stack pointer values immediately after the function prologue.
1146
1147 Note, we always pretend that this is a leaf function because if
1148 it's not, there's no point in trying to eliminate the
1149 frame pointer. If it is a leaf function, we guessed right! */
1150 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
1151 ((VAR) = (TARGET_FLAT ? sparc_flat_compute_frame_size (get_frame_size ()) \
1152 : compute_frame_size (get_frame_size (), 1)))
1153
1154 /* Base register for access to arguments of the function. */
1155 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1156
1157 /* Register in which static-chain is passed to a function. This must
1158 not be a register used by the prologue. */
1159 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1160
1161 /* Register which holds offset table for position-independent
1162 data references. */
1163
1164 #define PIC_OFFSET_TABLE_REGNUM 23
1165
1166 #define FINALIZE_PIC finalize_pic ()
1167
1168 /* Pick a default value we can notice from override_options:
1169 !v9: Default is on.
1170 v9: Default is off. */
1171
1172 #define DEFAULT_PCC_STRUCT_RETURN -1
1173
1174 /* Sparc ABI says that quad-precision floats and all structures are returned
1175 in memory.
1176 For v9: unions <= 32 bytes in size are returned in int regs,
1177 structures up to 32 bytes are returned in int and fp regs. */
1178
1179 #define RETURN_IN_MEMORY(TYPE) \
1180 (TARGET_ARCH32 \
1181 ? (TYPE_MODE (TYPE) == BLKmode \
1182 || TYPE_MODE (TYPE) == TFmode \
1183 || TYPE_MODE (TYPE) == TCmode) \
1184 : (TYPE_MODE (TYPE) == BLKmode \
1185 && int_size_in_bytes (TYPE) > 32))
1186
1187 /* Functions which return large structures get the address
1188 to place the wanted value at offset 64 from the frame.
1189 Must reserve 64 bytes for the in and local registers.
1190 v9: Functions which return large structures get the address to place the
1191 wanted value from an invisible first argument. */
1192 /* Used only in other #defines in this file. */
1193 #define STRUCT_VALUE_OFFSET 64
1194
1195 #define STRUCT_VALUE \
1196 (TARGET_ARCH64 \
1197 ? 0 \
1198 : gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1199 STRUCT_VALUE_OFFSET)))
1200
1201 #define STRUCT_VALUE_INCOMING \
1202 (TARGET_ARCH64 \
1203 ? 0 \
1204 : gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, \
1205 STRUCT_VALUE_OFFSET)))
1206 \f
1207 /* Define the classes of registers for register constraints in the
1208 machine description. Also define ranges of constants.
1209
1210 One of the classes must always be named ALL_REGS and include all hard regs.
1211 If there is more than one class, another class must be named NO_REGS
1212 and contain no registers.
1213
1214 The name GENERAL_REGS must be the name of a class (or an alias for
1215 another name such as ALL_REGS). This is the class of registers
1216 that is allowed by "g" or "r" in a register constraint.
1217 Also, registers outside this class are allocated only when
1218 instructions express preferences for them.
1219
1220 The classes must be numbered in nondecreasing order; that is,
1221 a larger-numbered class must never be contained completely
1222 in a smaller-numbered class.
1223
1224 For any two classes, it is very desirable that there be another
1225 class that represents their union. */
1226
1227 /* The SPARC has various kinds of registers: general, floating point,
1228 and condition codes [well, it has others as well, but none that we
1229 care directly about].
1230
1231 For v9 we must distinguish between the upper and lower floating point
1232 registers because the upper ones can't hold SFmode values.
1233 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1234 satisfying a group need for a class will also satisfy a single need for
1235 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1236 regs.
1237
1238 It is important that one class contains all the general and all the standard
1239 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1240 because reg_class_record() will bias the selection in favor of fp regs,
1241 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1242 because FP_REGS > GENERAL_REGS.
1243
1244 It is also important that one class contain all the general and all the
1245 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1246 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1247 allocate_reload_reg() to bypass it causing an abort because the compiler
1248 thinks it doesn't have a spill reg when in fact it does.
1249
1250 v9 also has 4 floating point condition code registers. Since we don't
1251 have a class that is the union of FPCC_REGS with either of the others,
1252 it is important that it appear first. Otherwise the compiler will die
1253 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1254 constraints.
1255
1256 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1257 may try to use it to hold an SImode value. See register_operand.
1258 ??? Should %fcc[0123] be handled similarly?
1259 */
1260
1261 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1262 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1263 ALL_REGS, LIM_REG_CLASSES };
1264
1265 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1266
1267 /* Give names of register classes as strings for dump file. */
1268
1269 #define REG_CLASS_NAMES \
1270 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1271 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1272 "ALL_REGS" }
1273
1274 /* Define which registers fit in which classes.
1275 This is an initializer for a vector of HARD_REG_SET
1276 of length N_REG_CLASSES. */
1277
1278 #define REG_CLASS_CONTENTS \
1279 {{0, 0, 0, 0}, {0, 0, 0, 0xf}, {0xffff, 0, 0, 0}, \
1280 {-1, 0, 0, 0}, {0, -1, 0, 0}, {0, -1, -1, 0}, \
1281 {-1, -1, 0, 0}, {-1, -1, -1, 0}, {-1, -1, -1, 0x1f}}
1282
1283 /* The same information, inverted:
1284 Return the class number of the smallest class containing
1285 reg number REGNO. This could be a conditional expression
1286 or could index an array. */
1287
1288 extern enum reg_class sparc_regno_reg_class[];
1289
1290 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1291
1292 /* This is the order in which to allocate registers normally.
1293
1294 We put %f0/%f1 last among the float registers, so as to make it more
1295 likely that a pseudo-register which dies in the float return register
1296 will get allocated to the float return register, thus saving a move
1297 instruction at the end of the function. */
1298
1299 #define REG_ALLOC_ORDER \
1300 { 8, 9, 10, 11, 12, 13, 2, 3, \
1301 15, 16, 17, 18, 19, 20, 21, 22, \
1302 23, 24, 25, 26, 27, 28, 29, 31, \
1303 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
1304 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1305 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1306 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1307 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1308 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1309 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1310 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1311 32, 33, /* %f0,%f1 */ \
1312 96, 97, 98, 99, 100, /* %fcc0-3, %icc */ \
1313 1, 4, 5, 6, 7, 0, 14, 30}
1314
1315 /* This is the order in which to allocate registers for
1316 leaf functions. If all registers can fit in the "i" registers,
1317 then we have the possibility of having a leaf function. */
1318
1319 #define REG_LEAF_ALLOC_ORDER \
1320 { 2, 3, 24, 25, 26, 27, 28, 29, \
1321 15, 8, 9, 10, 11, 12, 13, \
1322 16, 17, 18, 19, 20, 21, 22, 23, \
1323 34, 35, 36, 37, 38, 39, \
1324 40, 41, 42, 43, 44, 45, 46, 47, \
1325 48, 49, 50, 51, 52, 53, 54, 55, \
1326 56, 57, 58, 59, 60, 61, 62, 63, \
1327 64, 65, 66, 67, 68, 69, 70, 71, \
1328 72, 73, 74, 75, 76, 77, 78, 79, \
1329 80, 81, 82, 83, 84, 85, 86, 87, \
1330 88, 89, 90, 91, 92, 93, 94, 95, \
1331 32, 33, \
1332 96, 97, 98, 99, 100, \
1333 1, 4, 5, 6, 7, 0, 14, 30, 31}
1334
1335 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1336
1337 /* ??? %g7 is not a leaf register to effectively #undef LEAF_REGISTERS when
1338 -mflat is used. Function only_leaf_regs_used will return 0 if a global
1339 register is used and is not permitted in a leaf function. We make %g7
1340 a global reg if -mflat and voila. Since %g7 is a system register and is
1341 fixed it won't be used by gcc anyway. */
1342
1343 #define LEAF_REGISTERS \
1344 { 1, 1, 1, 1, 1, 1, 1, 0, \
1345 0, 0, 0, 0, 0, 0, 1, 0, \
1346 0, 0, 0, 0, 0, 0, 0, 0, \
1347 1, 1, 1, 1, 1, 1, 0, 1, \
1348 1, 1, 1, 1, 1, 1, 1, 1, \
1349 1, 1, 1, 1, 1, 1, 1, 1, \
1350 1, 1, 1, 1, 1, 1, 1, 1, \
1351 1, 1, 1, 1, 1, 1, 1, 1, \
1352 1, 1, 1, 1, 1, 1, 1, 1, \
1353 1, 1, 1, 1, 1, 1, 1, 1, \
1354 1, 1, 1, 1, 1, 1, 1, 1, \
1355 1, 1, 1, 1, 1, 1, 1, 1, \
1356 1, 1, 1, 1, 1}
1357
1358 extern char leaf_reg_remap[];
1359 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1360
1361 /* The class value for index registers, and the one for base regs. */
1362 #define INDEX_REG_CLASS GENERAL_REGS
1363 #define BASE_REG_CLASS GENERAL_REGS
1364
1365 /* Local macro to handle the two v9 classes of FP regs. */
1366 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1367
1368 /* Get reg_class from a letter such as appears in the machine description.
1369 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1370 .md file for v8 and v9.
1371 'd' and 'b' are used for single and double precision VIS operations,
1372 if TARGET_VIS.
1373 'h' is used for V8+ 64 bit global and out registers. */
1374
1375 #define REG_CLASS_FROM_LETTER(C) \
1376 (TARGET_V9 \
1377 ? ((C) == 'f' ? FP_REGS \
1378 : (C) == 'e' ? EXTRA_FP_REGS \
1379 : (C) == 'c' ? FPCC_REGS \
1380 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1381 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1382 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1383 : NO_REGS) \
1384 : ((C) == 'f' ? FP_REGS \
1385 : (C) == 'e' ? FP_REGS \
1386 : (C) == 'c' ? FPCC_REGS \
1387 : NO_REGS))
1388
1389 /* The letters I, J, K, L and M in a register constraint string
1390 can be used to stand for particular ranges of immediate operands.
1391 This macro defines what the ranges are.
1392 C is the letter, and VALUE is a constant value.
1393 Return 1 if VALUE is in the range specified by C.
1394
1395 `I' is used for the range of constants an insn can actually contain.
1396 `J' is used for the range which is just zero (since that is R0).
1397 `K' is used for constants which can be loaded with a single sethi insn.
1398 `L' is used for the range of constants supported by the movcc insns.
1399 `M' is used for the range of constants supported by the movrcc insns. */
1400
1401 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1402 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1403 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1404 /* 10 and 11 bit immediates are only used for a few specific insns.
1405 SMALL_INT is used throughout the port so we continue to use it. */
1406 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1407 /* 13 bit immediate, considering only the low 32 bits */
1408 #define SMALL_INT32(X) (SPARC_SIMM13_P ((int)INTVAL (X) & 0xffffffff))
1409 #define SPARC_SETHI_P(X) \
1410 (((unsigned HOST_WIDE_INT) (X) & ~(unsigned HOST_WIDE_INT) 0xfffffc00) == 0)
1411
1412 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1413 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1414 : (C) == 'J' ? (VALUE) == 0 \
1415 : (C) == 'K' ? SPARC_SETHI_P (VALUE) \
1416 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1417 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1418 : 0)
1419
1420 /* Similar, but for floating constants, and defining letters G and H.
1421 Here VALUE is the CONST_DOUBLE rtx itself. */
1422
1423 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1424 ((C) == 'G' ? fp_zero_operand (VALUE) \
1425 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1426 : 0)
1427
1428 /* Given an rtx X being reloaded into a reg required to be
1429 in class CLASS, return the class of reg to actually use.
1430 In general this is just CLASS; but on some machines
1431 in some cases it is preferable to use a more restrictive class. */
1432 /* - We can't load constants into FP registers. We can't load any FP
1433 constant if an 'E' constraint fails to match it.
1434 - Try and reload integer constants (symbolic or otherwise) back into
1435 registers directly, rather than having them dumped to memory. */
1436
1437 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1438 (CONSTANT_P (X) \
1439 ? ((FP_REG_CLASS_P (CLASS) \
1440 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1441 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
1442 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
1443 ? NO_REGS \
1444 : (!FP_REG_CLASS_P (CLASS) \
1445 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1446 ? GENERAL_REGS \
1447 : (CLASS)) \
1448 : (CLASS))
1449
1450 /* Return the register class of a scratch register needed to load IN into
1451 a register of class CLASS in MODE.
1452
1453 We need a temporary when loading/storing a HImode/QImode value
1454 between memory and the FPU registers. This can happen when combine puts
1455 a paradoxical subreg in a float/fix conversion insn. */
1456
1457 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1458 ((FP_REG_CLASS_P (CLASS) \
1459 && ((MODE) == HImode || (MODE) == QImode) \
1460 && (GET_CODE (IN) == MEM \
1461 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1462 && true_regnum (IN) == -1))) \
1463 ? GENERAL_REGS \
1464 : (((TARGET_CM_MEDANY \
1465 && symbolic_operand ((IN), (MODE))) \
1466 || (TARGET_CM_EMBMEDANY \
1467 && text_segment_operand ((IN), (MODE)))) \
1468 && !flag_pic) \
1469 ? GENERAL_REGS \
1470 : NO_REGS)
1471
1472 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1473 ((FP_REG_CLASS_P (CLASS) \
1474 && ((MODE) == HImode || (MODE) == QImode) \
1475 && (GET_CODE (IN) == MEM \
1476 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1477 && true_regnum (IN) == -1))) \
1478 ? GENERAL_REGS \
1479 : (((TARGET_CM_MEDANY \
1480 && symbolic_operand ((IN), (MODE))) \
1481 || (TARGET_CM_EMBMEDANY \
1482 && text_segment_operand ((IN), (MODE)))) \
1483 && !flag_pic) \
1484 ? GENERAL_REGS \
1485 : NO_REGS)
1486
1487 /* On SPARC it is not possible to directly move data between
1488 GENERAL_REGS and FP_REGS. */
1489 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1490 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1491
1492 /* Return the stack location to use for secondary memory needed reloads.
1493 We want to use the reserved location just below the frame pointer.
1494 However, we must ensure that there is a frame, so use assign_stack_local
1495 if the frame size is zero. */
1496 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1497 (get_frame_size () == 0 \
1498 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1499 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1500 STARTING_FRAME_OFFSET)))
1501
1502 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1503 because the movsi and movsf patterns don't handle r/f moves.
1504 For v8 we copy the default definition. */
1505 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1506 (TARGET_ARCH64 \
1507 ? (GET_MODE_BITSIZE (MODE) < 32 \
1508 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1509 : MODE) \
1510 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1511 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1512 : MODE))
1513
1514 /* Return the maximum number of consecutive registers
1515 needed to represent mode MODE in a register of class CLASS. */
1516 /* On SPARC, this is the size of MODE in words. */
1517 #define CLASS_MAX_NREGS(CLASS, MODE) \
1518 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1519 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1520 \f
1521 /* Stack layout; function entry, exit and calling. */
1522
1523 /* Define the number of register that can hold parameters.
1524 This macro is only used in other macro definitions below and in sparc.c.
1525 MODE is the mode of the argument.
1526 !v9: All args are passed in %o0-%o5.
1527 v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1528 See the description in sparc.c. */
1529 #define NPARM_REGS(MODE) \
1530 (TARGET_ARCH64 \
1531 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1532 : 6)
1533
1534 /* Define this if pushing a word on the stack
1535 makes the stack pointer a smaller address. */
1536 #define STACK_GROWS_DOWNWARD
1537
1538 /* Define this if the nominal address of the stack frame
1539 is at the high-address end of the local variables;
1540 that is, each additional local variable allocated
1541 goes at a more negative offset in the frame. */
1542 #define FRAME_GROWS_DOWNWARD
1543
1544 /* Offset within stack frame to start allocating local variables at.
1545 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1546 first local allocated. Otherwise, it is the offset to the BEGINNING
1547 of the first local allocated. */
1548 /* This allows space for one TFmode floating point value. */
1549 #define STARTING_FRAME_OFFSET \
1550 (TARGET_ARCH64 ? (SPARC_STACK_BIAS - 16) \
1551 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1552
1553 /* If we generate an insn to push BYTES bytes,
1554 this says how many the stack pointer really advances by.
1555 On SPARC, don't define this because there are no push insns. */
1556 /* #define PUSH_ROUNDING(BYTES) */
1557
1558 /* Offset of first parameter from the argument pointer register value.
1559 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1560 even if this function isn't going to use it.
1561 v9: This is 128 for the ins and locals. */
1562 #define FIRST_PARM_OFFSET(FNDECL) \
1563 (TARGET_ARCH64 ? (SPARC_STACK_BIAS + 16 * UNITS_PER_WORD) \
1564 : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD))
1565
1566 /* Offset from the argument pointer register value to the CFA. */
1567
1568 #define ARG_POINTER_CFA_OFFSET SPARC_STACK_BIAS
1569
1570 /* When a parameter is passed in a register, stack space is still
1571 allocated for it.
1572 !v9: All 6 possible integer registers have backing store allocated.
1573 v9: Only space for the arguments passed is allocated. */
1574 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1575 meaning to the backend. Further, we need to be able to detect if a
1576 varargs/unprototyped function is called, as they may want to spill more
1577 registers than we've provided space. Ugly, ugly. So for now we retain
1578 all 6 slots even for v9. */
1579 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1580
1581 /* Keep the stack pointer constant throughout the function.
1582 This is both an optimization and a necessity: longjmp
1583 doesn't behave itself when the stack pointer moves within
1584 the function! */
1585 #define ACCUMULATE_OUTGOING_ARGS
1586
1587 /* Value is the number of bytes of arguments automatically
1588 popped when returning from a subroutine call.
1589 FUNDECL is the declaration node of the function (as a tree),
1590 FUNTYPE is the data type of the function (as a tree),
1591 or for a library call it is an identifier node for the subroutine name.
1592 SIZE is the number of bytes of arguments passed on the stack. */
1593
1594 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1595
1596 /* Some subroutine macros specific to this machine.
1597 When !TARGET_FPU, put float return values in the general registers,
1598 since we don't have any fp registers. */
1599 #define BASE_RETURN_VALUE_REG(MODE) \
1600 (TARGET_ARCH64 \
1601 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1602 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1603
1604 #define BASE_OUTGOING_VALUE_REG(MODE) \
1605 (TARGET_ARCH64 \
1606 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1607 : TARGET_FLAT ? 8 : 24) \
1608 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1609 : (TARGET_FLAT ? 8 : 24)))
1610
1611 #define BASE_PASSING_ARG_REG(MODE) \
1612 (TARGET_ARCH64 \
1613 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1614 : 8)
1615
1616 /* ??? FIXME -- seems wrong for v9 structure passing... */
1617 #define BASE_INCOMING_ARG_REG(MODE) \
1618 (TARGET_ARCH64 \
1619 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1620 : TARGET_FLAT ? 8 : 24) \
1621 : (TARGET_FLAT ? 8 : 24))
1622
1623 /* Define this macro if the target machine has "register windows". This
1624 C expression returns the register number as seen by the called function
1625 corresponding to register number OUT as seen by the calling function.
1626 Return OUT if register number OUT is not an outbound register. */
1627
1628 #define INCOMING_REGNO(OUT) \
1629 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1630
1631 /* Define this macro if the target machine has "register windows". This
1632 C expression returns the register number as seen by the calling function
1633 corresponding to register number IN as seen by the called function.
1634 Return IN if register number IN is not an inbound register. */
1635
1636 #define OUTGOING_REGNO(IN) \
1637 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1638
1639 /* Define how to find the value returned by a function.
1640 VALTYPE is the data type of the value (as a tree).
1641 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1642 otherwise, FUNC is 0. */
1643
1644 /* On SPARC the value is found in the first "output" register. */
1645
1646 extern struct rtx_def *function_value ();
1647 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1648 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1649
1650 /* But the called function leaves it in the first "input" register. */
1651
1652 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1653 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1654
1655 /* Define how to find the value returned by a library function
1656 assuming the value has mode MODE. */
1657
1658 #define LIBCALL_VALUE(MODE) \
1659 function_value (NULL_TREE, (MODE), 1)
1660
1661 /* 1 if N is a possible register number for a function value
1662 as seen by the caller.
1663 On SPARC, the first "output" reg is used for integer values,
1664 and the first floating point register is used for floating point values. */
1665
1666 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1667
1668 /* Define the size of space to allocate for the return value of an
1669 untyped_call. */
1670
1671 #define APPLY_RESULT_SIZE 16
1672
1673 /* 1 if N is a possible register number for function argument passing.
1674 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1675
1676 #define FUNCTION_ARG_REGNO_P(N) \
1677 (TARGET_ARCH64 \
1678 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1679 : ((N) >= 8 && (N) <= 13))
1680 \f
1681 /* Define a data type for recording info about an argument list
1682 during the scan of that argument list. This data type should
1683 hold all necessary information about the function itself
1684 and about the args processed so far, enough to enable macros
1685 such as FUNCTION_ARG to determine where the next arg should go.
1686
1687 On SPARC (!v9), this is a single integer, which is a number of words
1688 of arguments scanned so far (including the invisible argument,
1689 if any, which holds the structure-value-address).
1690 Thus 7 or more means all following args should go on the stack.
1691
1692 For v9, we also need to know whether a prototype is present. */
1693
1694 struct sparc_args {
1695 int words; /* number of words passed so far */
1696 int prototype_p; /* non-zero if a prototype is present */
1697 int libcall_p; /* non-zero if a library call */
1698 };
1699 #define CUMULATIVE_ARGS struct sparc_args
1700
1701 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1702 for a call to a function whose data type is FNTYPE.
1703 For a library call, FNTYPE is 0. */
1704
1705 extern void init_cumulative_args ();
1706 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1707 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT));
1708
1709 /* Update the data in CUM to advance over an argument
1710 of mode MODE and data type TYPE.
1711 TYPE is null for libcalls where that information may not be available. */
1712
1713 extern void function_arg_advance ();
1714 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1715 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1716
1717 /* Determine where to put an argument to a function.
1718 Value is zero to push the argument on the stack,
1719 or a hard register in which to store the argument.
1720
1721 MODE is the argument's machine mode.
1722 TYPE is the data type of the argument (as a tree).
1723 This is null for libcalls where that information may
1724 not be available.
1725 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1726 the preceding args and about the function being called.
1727 NAMED is nonzero if this argument is a named parameter
1728 (otherwise it is an extra parameter matching an ellipsis). */
1729
1730 extern struct rtx_def *function_arg ();
1731 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1732 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1733
1734 /* Define where a function finds its arguments.
1735 This is different from FUNCTION_ARG because of register windows. */
1736
1737 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1738 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1739
1740 /* For an arg passed partly in registers and partly in memory,
1741 this is the number of registers used.
1742 For args passed entirely in registers or entirely in memory, zero. */
1743
1744 extern int function_arg_partial_nregs ();
1745 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1746 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1747
1748 /* A C expression that indicates when an argument must be passed by reference.
1749 If nonzero for an argument, a copy of that argument is made in memory and a
1750 pointer to the argument is passed instead of the argument itself.
1751 The pointer is passed in whatever way is appropriate for passing a pointer
1752 to that type. */
1753
1754 extern int function_arg_pass_by_reference ();
1755 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1756 function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1757
1758 /* If defined, a C expression which determines whether, and in which direction,
1759 to pad out an argument with extra space. The value should be of type
1760 `enum direction': either `upward' to pad above the argument,
1761 `downward' to pad below, or `none' to inhibit padding. */
1762
1763 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1764 function_arg_padding ((MODE), (TYPE))
1765
1766 /* If defined, a C expression that gives the alignment boundary, in bits,
1767 of an argument with the specified mode and type. If it is not defined,
1768 PARM_BOUNDARY is used for all arguments.
1769 For sparc64, objects requiring 16 byte alignment are passed that way. */
1770
1771 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1772 ((TARGET_ARCH64 \
1773 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1774 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1775 ? 128 : PARM_BOUNDARY)
1776 \f
1777 /* Define the information needed to generate branch and scc insns. This is
1778 stored from the compare operation. Note that we can't use "rtx" here
1779 since it hasn't been defined! */
1780
1781 extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1782
1783 /* Define the function that build the compare insn for scc and bcc. */
1784
1785 extern struct rtx_def *gen_compare_reg ();
1786
1787 /* This function handles all v9 scc insns */
1788
1789 extern int gen_v9_scc ();
1790 \f
1791 /* Generate the special assembly code needed to tell the assembler whatever
1792 it might need to know about the return value of a function.
1793
1794 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1795 information to the assembler relating to peephole optimization (done in
1796 the assembler). */
1797
1798 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1799 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1800
1801 /* Output the label for a function definition. */
1802
1803 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1804 do { \
1805 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
1806 ASM_OUTPUT_LABEL (FILE, NAME); \
1807 } while (0)
1808
1809 /* Output the special assembly code needed to tell the assembler some
1810 register is used as global register variable. */
1811
1812 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1813 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1814 do { \
1815 if (TARGET_ARCH64) \
1816 { \
1817 int __end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1818 int __reg; \
1819 extern char sparc_hard_reg_printed[8]; \
1820 for (__reg = (REGNO); __reg < 8 && __reg < __end; __reg++) \
1821 if ((__reg & ~1) == 2 || (__reg & ~1) == 6) \
1822 { \
1823 if (__reg == (REGNO)) \
1824 fprintf ((FILE), "\t.register\t%%g%d, %s\n", __reg, (NAME)); \
1825 else \
1826 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1827 __reg, __reg - (REGNO), (NAME)); \
1828 sparc_hard_reg_printed[__reg] = 1; \
1829 } \
1830 } \
1831 } while (0)
1832 #endif
1833
1834 /* This macro generates the assembly code for function entry.
1835 FILE is a stdio stream to output the code to.
1836 SIZE is an int: how many units of temporary storage to allocate.
1837 Refer to the array `regs_ever_live' to determine which registers
1838 to save; `regs_ever_live[I]' is nonzero if register number I
1839 is ever used in the function. This macro is responsible for
1840 knowing which registers should not be saved even if used. */
1841
1842 /* On SPARC, move-double insns between fpu and cpu need an 8-byte block
1843 of memory. If any fpu reg is used in the function, we allocate
1844 such a block here, at the bottom of the frame, just in case it's needed.
1845
1846 If this function is a leaf procedure, then we may choose not
1847 to do a "save" insn. The decision about whether or not
1848 to do this is made in regclass.c. */
1849
1850 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1851 (TARGET_FLAT ? sparc_flat_output_function_prologue (FILE, (int)SIZE) \
1852 : output_function_prologue (FILE, (int)SIZE, \
1853 current_function_uses_only_leaf_regs))
1854 \f
1855 /* Output assembler code to FILE to increment profiler label # LABELNO
1856 for profiling a function entry. */
1857
1858 #define FUNCTION_PROFILER(FILE, LABELNO) \
1859 sparc_function_profiler(FILE, LABELNO)
1860
1861 /* Set the name of the mcount function for the system. */
1862
1863 #define MCOUNT_FUNCTION "*mcount"
1864
1865 /* The following macro shall output assembler code to FILE
1866 to initialize basic-block profiling. */
1867
1868 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1869 sparc_function_block_profiler(FILE, BLOCK_OR_LABEL)
1870
1871 /* The following macro shall output assembler code to FILE
1872 to increment a counter associated with basic block number BLOCKNO. */
1873
1874 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1875 sparc_block_profiler (FILE, BLOCKNO)
1876
1877 /* The following macro shall output assembler code to FILE
1878 to indicate a return from function during basic-block profiling. */
1879
1880 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1881 sparc_function_block_profiler_exit(FILE)
1882
1883 /* The function `__bb_trace_func' is called in every basic block
1884 and is not allowed to change the machine state. Saving (restoring)
1885 the state can either be done in the BLOCK_PROFILER macro,
1886 before calling function (rsp. after returning from function)
1887 `__bb_trace_func', or it can be done inside the function by
1888 defining the macros:
1889
1890 MACHINE_STATE_SAVE(ID)
1891 MACHINE_STATE_RESTORE(ID)
1892
1893 In the latter case care must be taken, that the prologue code
1894 of function `__bb_trace_func' does not already change the
1895 state prior to saving it with MACHINE_STATE_SAVE.
1896
1897 The parameter `ID' is a string identifying a unique macro use.
1898
1899 On sparc it is sufficient to save the psw register to memory.
1900 Unfortunately the psw register can be read in supervisor mode only,
1901 so we read only the condition codes by using branch instructions
1902 and hope that this is enough. */
1903
1904 #define MACHINE_STATE_SAVE(ID) \
1905 int ms_flags, ms_saveret; \
1906 asm volatile( \
1907 "mov %%g0,%0\n\
1908 be,a LFLGNZ"ID"\n\
1909 or %0,4,%0\n\
1910 LFLGNZ"ID":\n\
1911 bcs,a LFLGNC"ID"\n\
1912 or %0,1,%0\n\
1913 LFLGNC"ID":\n\
1914 bvs,a LFLGNV"ID"\n\
1915 or %0,2,%0\n\
1916 LFLGNV"ID":\n\
1917 bneg,a LFLGNN"ID"\n\
1918 or %0,8,%0\n\
1919 LFLGNN"ID":\n\
1920 mov %%g2,%1" \
1921 : "=r"(ms_flags), "=r"(ms_saveret));
1922
1923 /* On sparc MACHINE_STATE_RESTORE restores the psw register from memory.
1924 The psw register can be written in supervisor mode only,
1925 which is true even for simple condition codes.
1926 We use some combination of instructions to produce the
1927 proper condition codes, but some flag combinations can not
1928 be generated in this way. If this happens an unimplemented
1929 instruction will be executed to abort the program. */
1930
1931 #define MACHINE_STATE_RESTORE(ID) \
1932 { extern char flgtab[] __asm__("LFLGTAB"ID); \
1933 int scratch; \
1934 asm volatile ( \
1935 "jmpl %2+%1,%%g0\n\
1936 ! Do part of VC in the delay slot here, as it needs 3 insns.\n\
1937 addcc 2,%3,%%g0\n\
1938 LFLGTAB" ID ":\n\
1939 ! 0\n\
1940 ba LFLGRET"ID"\n\
1941 orcc 1,%%g0,%%g0\n\
1942 ! C\n\
1943 ba LFLGRET"ID"\n\
1944 addcc 2,%3,%%g0\n\
1945 ! V\n\
1946 unimp\n\
1947 nop\n\
1948 ! VC\n\
1949 ba LFLGRET"ID"\n\
1950 addxcc %4,%4,%0\n\
1951 ! Z\n\
1952 ba LFLGRET"ID"\n\
1953 subcc %%g0,%%g0,%%g0\n\
1954 ! ZC\n\
1955 ba LFLGRET"ID"\n\
1956 addcc 1,%3,%0\n\
1957 ! ZVC\n\
1958 ba LFLGRET"ID"\n\
1959 addcc %4,%4,%0\n\
1960 ! N\n\
1961 ba LFLGRET"ID"\n\
1962 orcc %%g0,-1,%%g0\n\
1963 ! NC\n\
1964 ba LFLGRET"ID"\n\
1965 addcc %%g0,%3,%%g0\n\
1966 ! NV\n\
1967 unimp\n\
1968 nop\n\
1969 ! NVC\n\
1970 unimp\n\
1971 nop\n\
1972 ! NZ\n\
1973 unimp\n\
1974 nop\n\
1975 ! NZC\n\
1976 unimp\n\
1977 nop\n\
1978 ! NZV\n\
1979 unimp\n\
1980 nop\n\
1981 ! NZVC\n\
1982 unimp\n\
1983 nop\n\
1984 LFLGRET"ID":\n\
1985 mov %5,%%g2" \
1986 : "=r"(scratch) \
1987 : "r"(ms_flags*8), "r"(flgtab), "r"(-1), \
1988 "r"(0x80000000), "r"(ms_saveret) \
1989 : "cc", "%g2"); }
1990 \f
1991 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1992 the stack pointer does not matter. The value is tested only in
1993 functions that have frame pointers.
1994 No definition is equivalent to always zero. */
1995
1996 #define EXIT_IGNORE_STACK \
1997 (get_frame_size () != 0 \
1998 || current_function_calls_alloca || current_function_outgoing_args_size)
1999
2000 /* This macro generates the assembly code for function exit,
2001 on machines that need it. If FUNCTION_EPILOGUE is not defined
2002 then individual return instructions are generated for each
2003 return statement. Args are same as for FUNCTION_PROLOGUE.
2004
2005 The function epilogue should not depend on the current stack pointer!
2006 It should use the frame pointer only. This is mandatory because
2007 of alloca; we also take advantage of it to omit stack adjustments
2008 before returning. */
2009
2010 #define FUNCTION_EPILOGUE(FILE, SIZE) \
2011 (TARGET_FLAT ? sparc_flat_output_function_epilogue (FILE, (int)SIZE) \
2012 : output_function_epilogue (FILE, (int)SIZE, \
2013 current_function_uses_only_leaf_regs))
2014
2015 #define DELAY_SLOTS_FOR_EPILOGUE \
2016 (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
2017 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
2018 (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
2019 : eligible_for_epilogue_delay (trial, slots_filled))
2020
2021 /* Define registers used by the epilogue and return instruction. */
2022 #define EPILOGUE_USES(REGNO) \
2023 (!TARGET_FLAT && REGNO == 31)
2024 \f
2025 /* Length in units of the trampoline for entering a nested function. */
2026
2027 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
2028
2029 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
2030
2031 /* Emit RTL insns to initialize the variable parts of a trampoline.
2032 FNADDR is an RTX for the address of the function's pure code.
2033 CXT is an RTX for the static chain value for the function. */
2034
2035 void sparc_initialize_trampoline ();
2036 void sparc64_initialize_trampoline ();
2037 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
2038 if (TARGET_ARCH64) \
2039 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
2040 else \
2041 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
2042 \f
2043 /* Generate necessary RTL for __builtin_saveregs(). */
2044
2045 extern struct rtx_def *sparc_builtin_saveregs ();
2046 #define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
2047
2048 /* Implement `va_start' for varargs and stdarg. */
2049 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2050 sparc_va_start (stdarg, valist, nextarg)
2051
2052 /* Implement `va_arg'. */
2053 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
2054 sparc_va_arg (valist, type)
2055
2056 /* Define this macro if the location where a function argument is passed
2057 depends on whether or not it is a named argument.
2058
2059 This macro controls how the NAMED argument to FUNCTION_ARG
2060 is set for varargs and stdarg functions. With this macro defined,
2061 the NAMED argument is always true for named arguments, and false for
2062 unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS
2063 is defined, then all arguments are treated as named. Otherwise, all named
2064 arguments except the last are treated as named.
2065 For the v9 we want NAMED to mean what it says it means. */
2066
2067 #define STRICT_ARGUMENT_NAMING TARGET_V9
2068
2069 /* Generate RTL to flush the register windows so as to make arbitrary frames
2070 available. */
2071 #define SETUP_FRAME_ADDRESSES() \
2072 emit_insn (gen_flush_register_windows ())
2073
2074 /* Given an rtx for the address of a frame,
2075 return an rtx for the address of the word in the frame
2076 that holds the dynamic chain--the previous frame's address.
2077 ??? -mflat support? */
2078 #define DYNAMIC_CHAIN_ADDRESS(frame) plus_constant (frame, 14 * UNITS_PER_WORD)
2079
2080 /* The return address isn't on the stack, it is in a register, so we can't
2081 access it from the current frame pointer. We can access it from the
2082 previous frame pointer though by reading a value from the register window
2083 save area. */
2084 #define RETURN_ADDR_IN_PREVIOUS_FRAME
2085
2086 /* This is the offset of the return address to the true next instruction to be
2087 executed for the current function. */
2088 #define RETURN_ADDR_OFFSET \
2089 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
2090
2091 /* The current return address is in %i7. The return address of anything
2092 farther back is in the register window save area at [%fp+60]. */
2093 /* ??? This ignores the fact that the actual return address is +8 for normal
2094 returns, and +12 for structure returns. */
2095 #define RETURN_ADDR_RTX(count, frame) \
2096 ((count == -1) \
2097 ? gen_rtx_REG (Pmode, 31) \
2098 : gen_rtx_MEM (Pmode, \
2099 memory_address (Pmode, plus_constant (frame, \
2100 15 * UNITS_PER_WORD))))
2101
2102 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
2103 +12, but always using +8 is close enough for frame unwind purposes.
2104 Actually, just using %o7 is close enough for unwinding, but %o7+8
2105 is something you can return to. */
2106 #define INCOMING_RETURN_ADDR_RTX \
2107 plus_constant (gen_rtx_REG (word_mode, 15), 8)
2108
2109 /* The offset from the incoming value of %sp to the top of the stack frame
2110 for the current function. On sparc64, we have to account for the stack
2111 bias if present. */
2112 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
2113
2114 #define DOESNT_NEED_UNWINDER (! TARGET_FLAT)
2115 \f
2116 /* Addressing modes, and classification of registers for them. */
2117
2118 /* #define HAVE_POST_INCREMENT 0 */
2119 /* #define HAVE_POST_DECREMENT 0 */
2120
2121 /* #define HAVE_PRE_DECREMENT 0 */
2122 /* #define HAVE_PRE_INCREMENT 0 */
2123
2124 /* Macros to check register numbers against specific register classes. */
2125
2126 /* These assume that REGNO is a hard or pseudo reg number.
2127 They give nonzero only if REGNO is a hard reg of the suitable class
2128 or a pseudo reg currently allocated to a suitable hard reg.
2129 Since they use reg_renumber, they are safe only once reg_renumber
2130 has been allocated, which happens in local-alloc.c. */
2131
2132 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2133 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
2134 #define REGNO_OK_FOR_BASE_P(REGNO) \
2135 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
2136 #define REGNO_OK_FOR_FP_P(REGNO) \
2137 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2138 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2139 #define REGNO_OK_FOR_CCFP_P(REGNO) \
2140 (TARGET_V9 \
2141 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2142 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2143
2144 /* Now macros that check whether X is a register and also,
2145 strictly, whether it is in a specified class.
2146
2147 These macros are specific to the SPARC, and may be used only
2148 in code for printing assembler insns and in conditions for
2149 define_optimization. */
2150
2151 /* 1 if X is an fp register. */
2152
2153 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2154
2155 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
2156 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2157 \f
2158 /* Maximum number of registers that can appear in a valid memory address. */
2159
2160 #define MAX_REGS_PER_ADDRESS 2
2161
2162 /* Recognize any constant value that is a valid address.
2163 When PIC, we do not accept an address that would require a scratch reg
2164 to load into a register. */
2165
2166 #define CONSTANT_ADDRESS_P(X) \
2167 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2168 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2169 || (GET_CODE (X) == CONST \
2170 && ! (flag_pic && pic_address_needs_scratch (X))))
2171
2172 /* Define this, so that when PIC, reload won't try to reload invalid
2173 addresses which require two reload registers. */
2174
2175 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2176
2177 /* Nonzero if the constant value X is a legitimate general operand.
2178 Anything can be made to work except floating point constants.
2179 If TARGET_VIS, 0.0 can be made to work as well. */
2180
2181 #define LEGITIMATE_CONSTANT_P(X) \
2182 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \
2183 (TARGET_VIS && (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode) && \
2184 fp_zero_operand (X)))
2185
2186 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2187 and check its validity for a certain class.
2188 We have two alternate definitions for each of them.
2189 The usual definition accepts all pseudo regs; the other rejects
2190 them unless they have been allocated suitable hard regs.
2191 The symbol REG_OK_STRICT causes the latter definition to be used.
2192
2193 Most source files want to accept pseudo regs in the hope that
2194 they will get allocated to the class that the insn wants them to be in.
2195 Source files for reload pass need to be strict.
2196 After reload, it makes no difference, since pseudo regs have
2197 been eliminated by then. */
2198
2199 /* Optional extra constraints for this machine.
2200
2201 'T' handles memory addresses where the alignment is known to
2202 be at least 8 bytes.
2203
2204 `U' handles all pseudo registers or a hard even numbered
2205 integer register, needed for ldd/std instructions. */
2206
2207 #ifndef REG_OK_STRICT
2208
2209 /* Nonzero if X is a hard reg that can be used as an index
2210 or if it is a pseudo reg. */
2211 #define REG_OK_FOR_INDEX_P(X) \
2212 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
2213 /* Nonzero if X is a hard reg that can be used as a base reg
2214 or if it is a pseudo reg. */
2215 #define REG_OK_FOR_BASE_P(X) \
2216 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
2217
2218 /* 'T', 'U' are for aligned memory loads which aren't needed for v9. */
2219
2220 #define EXTRA_CONSTRAINT(OP, C) \
2221 ((! TARGET_ARCH64 && (C) == 'T') \
2222 ? (mem_min_alignment (OP, 8)) \
2223 : ((! TARGET_ARCH64 && (C) == 'U') \
2224 ? (register_ok_for_ldd (OP)) \
2225 : 0))
2226
2227 #else
2228
2229 /* Nonzero if X is a hard reg that can be used as an index. */
2230 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2231 /* Nonzero if X is a hard reg that can be used as a base reg. */
2232 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2233
2234 #define EXTRA_CONSTRAINT(OP, C) \
2235 ((! TARGET_ARCH64 && (C) == 'T') \
2236 ? mem_min_alignment (OP, 8) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
2237 : ((! TARGET_ARCH64 && (C) == 'U') \
2238 ? (GET_CODE (OP) == REG \
2239 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
2240 || reg_renumber[REGNO (OP)] >= 0) \
2241 && register_ok_for_ldd (OP)) \
2242 : 0))
2243 #endif
2244 \f
2245 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2246
2247 #ifdef HAVE_AS_OFFSETABLE_LO10
2248 #define USE_AS_OFFSETABLE_LO10 1
2249 #else
2250 #define USE_AS_OFFSETABLE_LO10 0
2251 #endif
2252 \f
2253 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2254 that is a valid memory address for an instruction.
2255 The MODE argument is the machine mode for the MEM expression
2256 that wants to use this address.
2257
2258 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2259 ordinarily. This changes a bit when generating PIC.
2260
2261 If you change this, execute "rm explow.o recog.o reload.o". */
2262
2263 #define RTX_OK_FOR_BASE_P(X) \
2264 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2265 || (GET_CODE (X) == SUBREG \
2266 && GET_CODE (SUBREG_REG (X)) == REG \
2267 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2268
2269 #define RTX_OK_FOR_INDEX_P(X) \
2270 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2271 || (GET_CODE (X) == SUBREG \
2272 && GET_CODE (SUBREG_REG (X)) == REG \
2273 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2274
2275 #define RTX_OK_FOR_OFFSET_P(X) \
2276 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
2277
2278 #define RTX_OK_FOR_OLO10_P(X) \
2279 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2280
2281 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2282 { if (RTX_OK_FOR_BASE_P (X)) \
2283 goto ADDR; \
2284 else if (GET_CODE (X) == PLUS) \
2285 { \
2286 register rtx op0 = XEXP (X, 0); \
2287 register rtx op1 = XEXP (X, 1); \
2288 if (flag_pic && op0 == pic_offset_table_rtx) \
2289 { \
2290 if (RTX_OK_FOR_BASE_P (op1)) \
2291 goto ADDR; \
2292 else if (flag_pic == 1 \
2293 && GET_CODE (op1) != REG \
2294 && GET_CODE (op1) != LO_SUM \
2295 && GET_CODE (op1) != MEM \
2296 && (GET_CODE (op1) != CONST_INT \
2297 || SMALL_INT (op1))) \
2298 goto ADDR; \
2299 } \
2300 else if (RTX_OK_FOR_BASE_P (op0)) \
2301 { \
2302 if ((RTX_OK_FOR_INDEX_P (op1) \
2303 /* We prohibit REG + REG for TFmode when \
2304 there are no instructions which accept \
2305 REG+REG instructions. We do this \
2306 because REG+REG is not an offsetable \
2307 address. If we get the situation \
2308 in reload where source and destination \
2309 of a movtf pattern are both MEMs with \
2310 REG+REG address, then only one of them \
2311 gets converted to an offsetable \
2312 address. */ \
2313 && (MODE != TFmode \
2314 || (TARGET_FPU && TARGET_ARCH64 \
2315 && TARGET_V9 \
2316 && TARGET_HARD_QUAD))) \
2317 || RTX_OK_FOR_OFFSET_P (op1)) \
2318 goto ADDR; \
2319 } \
2320 else if (RTX_OK_FOR_BASE_P (op1)) \
2321 { \
2322 if ((RTX_OK_FOR_INDEX_P (op0) \
2323 /* See the previous comment. */ \
2324 && (MODE != TFmode \
2325 || (TARGET_FPU && TARGET_ARCH64 \
2326 && TARGET_V9 \
2327 && TARGET_HARD_QUAD))) \
2328 || RTX_OK_FOR_OFFSET_P (op0)) \
2329 goto ADDR; \
2330 } \
2331 else if (USE_AS_OFFSETABLE_LO10 \
2332 && GET_CODE (op0) == LO_SUM \
2333 && TARGET_ARCH64 \
2334 && ! TARGET_CM_MEDMID \
2335 && RTX_OK_FOR_OLO10_P (op1)) \
2336 { \
2337 register rtx op00 = XEXP (op0, 0); \
2338 register rtx op01 = XEXP (op0, 1); \
2339 if (RTX_OK_FOR_BASE_P (op00) \
2340 && CONSTANT_P (op01)) \
2341 goto ADDR; \
2342 } \
2343 else if (USE_AS_OFFSETABLE_LO10 \
2344 && GET_CODE (op1) == LO_SUM \
2345 && TARGET_ARCH64 \
2346 && ! TARGET_CM_MEDMID \
2347 && RTX_OK_FOR_OLO10_P (op0)) \
2348 { \
2349 register rtx op10 = XEXP (op1, 0); \
2350 register rtx op11 = XEXP (op1, 1); \
2351 if (RTX_OK_FOR_BASE_P (op10) \
2352 && CONSTANT_P (op11)) \
2353 goto ADDR; \
2354 } \
2355 } \
2356 else if (GET_CODE (X) == LO_SUM) \
2357 { \
2358 register rtx op0 = XEXP (X, 0); \
2359 register rtx op1 = XEXP (X, 1); \
2360 if (RTX_OK_FOR_BASE_P (op0) \
2361 && CONSTANT_P (op1) \
2362 /* We can't allow TFmode, because an offset \
2363 greater than or equal to the alignment (8) \
2364 may cause the LO_SUM to overflow if !v9. */\
2365 && (MODE != TFmode || TARGET_V9)) \
2366 goto ADDR; \
2367 } \
2368 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
2369 goto ADDR; \
2370 }
2371 \f
2372 /* Try machine-dependent ways of modifying an illegitimate address
2373 to be legitimate. If we find one, return the new, valid address.
2374 This macro is used in only one place: `memory_address' in explow.c.
2375
2376 OLDX is the address as it was before break_out_memory_refs was called.
2377 In some cases it is useful to look at this to decide what needs to be done.
2378
2379 MODE and WIN are passed so that this macro can use
2380 GO_IF_LEGITIMATE_ADDRESS.
2381
2382 It is always safe for this macro to do nothing. It exists to recognize
2383 opportunities to optimize the output. */
2384
2385 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2386 extern struct rtx_def *legitimize_pic_address ();
2387 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2388 { rtx sparc_x = (X); \
2389 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
2390 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2391 force_operand (XEXP (X, 0), NULL_RTX)); \
2392 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
2393 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2394 force_operand (XEXP (X, 1), NULL_RTX)); \
2395 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
2396 (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
2397 XEXP (X, 1)); \
2398 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
2399 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2400 force_operand (XEXP (X, 1), NULL_RTX)); \
2401 if (sparc_x != (X) && memory_address_p (MODE, X)) \
2402 goto WIN; \
2403 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
2404 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
2405 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2406 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
2407 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
2408 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2409 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
2410 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
2411 || GET_CODE (X) == LABEL_REF) \
2412 (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \
2413 if (memory_address_p (MODE, X)) \
2414 goto WIN; }
2415
2416 /* Try a machine-dependent way of reloading an illegitimate address
2417 operand. If we find one, push the reload and jump to WIN. This
2418 macro is used in only one place: `find_reloads_address' in reload.c.
2419
2420 For Sparc 32, we wish to handle addresses by splitting them into
2421 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2422 This cuts the number of extra insns by one.
2423
2424 Do nothing when generating PIC code and the address is a
2425 symbolic operand or requires a scratch register. */
2426
2427 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2428 do { \
2429 /* Decompose SImode constants into hi+lo_sum. We do have to \
2430 rerecognize what we produce, so be careful. */ \
2431 if (CONSTANT_P (X) \
2432 && (MODE != TFmode || TARGET_V9) \
2433 && GET_MODE (X) == SImode \
2434 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2435 && ! (flag_pic \
2436 && (symbolic_operand (X, Pmode) \
2437 || pic_address_needs_scratch (X)))) \
2438 { \
2439 X = gen_rtx_LO_SUM (GET_MODE (X), \
2440 gen_rtx_HIGH (GET_MODE (X), X), X); \
2441 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
2442 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2443 OPNUM, TYPE); \
2444 goto WIN; \
2445 } \
2446 /* ??? 64-bit reloads. */ \
2447 } while (0)
2448
2449 /* Go to LABEL if ADDR (a legitimate address expression)
2450 has an effect that depends on the machine mode it is used for.
2451 On the SPARC this is never true. */
2452
2453 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
2454
2455 /* If we are referencing a function make the SYMBOL_REF special.
2456 In the Embedded Medium/Anywhere code model, %g4 points to the data segment
2457 so we must not add it to function addresses. */
2458
2459 #define ENCODE_SECTION_INFO(DECL) \
2460 do { \
2461 if (TARGET_CM_EMBMEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
2462 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2463 } while (0)
2464 \f
2465 /* Specify the machine mode that this machine uses
2466 for the index in the tablejump instruction. */
2467 /* If we ever implement any of the full models (such as CM_FULLANY),
2468 this has to be DImode in that case */
2469 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2470 #define CASE_VECTOR_MODE \
2471 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2472 #else
2473 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2474 we have to sign extend which slows things down. */
2475 #define CASE_VECTOR_MODE \
2476 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2477 #endif
2478
2479 /* Define as C expression which evaluates to nonzero if the tablejump
2480 instruction expects the table to contain offsets from the address of the
2481 table.
2482 Do not define this if the table should contain absolute addresses. */
2483 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2484
2485 /* Specify the tree operation to be used to convert reals to integers. */
2486 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2487
2488 /* This is the kind of divide that is easiest to do in the general case. */
2489 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2490
2491 /* Define this as 1 if `char' should by default be signed; else as 0. */
2492 #define DEFAULT_SIGNED_CHAR 1
2493
2494 /* Max number of bytes we can move from memory to memory
2495 in one reasonably fast instruction. */
2496 #define MOVE_MAX 8
2497
2498 #if 0 /* Sun 4 has matherr, so this is no good. */
2499 /* This is the value of the error code EDOM for this machine,
2500 used by the sqrt instruction. */
2501 #define TARGET_EDOM 33
2502
2503 /* This is how to refer to the variable errno. */
2504 #define GEN_ERRNO_RTX \
2505 gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2506 #endif /* 0 */
2507
2508 /* Define if operations between registers always perform the operation
2509 on the full register even if a narrower mode is specified. */
2510 #define WORD_REGISTER_OPERATIONS
2511
2512 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2513 will either zero-extend or sign-extend. The value of this macro should
2514 be the code that says which one of the two operations is implicitly
2515 done, NIL if none. */
2516 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2517
2518 /* Nonzero if access to memory by bytes is slow and undesirable.
2519 For RISC chips, it means that access to memory by bytes is no
2520 better than access by words when possible, so grab a whole word
2521 and maybe make use of that. */
2522 #define SLOW_BYTE_ACCESS 1
2523
2524 /* We assume that the store-condition-codes instructions store 0 for false
2525 and some other value for true. This is the value stored for true. */
2526
2527 #define STORE_FLAG_VALUE 1
2528
2529 /* When a prototype says `char' or `short', really pass an `int'. */
2530 #define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2531
2532 /* Define this to be nonzero if shift instructions ignore all but the low-order
2533 few bits. */
2534 #define SHIFT_COUNT_TRUNCATED 1
2535
2536 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2537 is done just by pretending it is already truncated. */
2538 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2539
2540 /* Specify the machine mode that pointers have.
2541 After generation of rtl, the compiler makes no further distinction
2542 between pointers and any other objects of this machine mode. */
2543 #define Pmode (TARGET_PTR64 ? DImode : SImode)
2544
2545 /* Generate calls to memcpy, memcmp and memset. */
2546 #define TARGET_MEM_FUNCTIONS
2547
2548 /* Add any extra modes needed to represent the condition code.
2549
2550 On the Sparc, we have a "no-overflow" mode which is used when an add or
2551 subtract insn is used to set the condition code. Different branches are
2552 used in this case for some operations.
2553
2554 We also have two modes to indicate that the relevant condition code is
2555 in the floating-point condition code register. One for comparisons which
2556 will generate an exception if the result is unordered (CCFPEmode) and
2557 one for comparisons which will never trap (CCFPmode).
2558
2559 CCXmode and CCX_NOOVmode are only used by v9. */
2560
2561 #define EXTRA_CC_MODES \
2562 CC(CCXmode, "CCX") \
2563 CC(CC_NOOVmode, "CC_NOOV") \
2564 CC(CCX_NOOVmode, "CCX_NOOV") \
2565 CC(CCFPmode, "CCFP") \
2566 CC(CCFPEmode, "CCFPE")
2567
2568 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2569 return the mode to be used for the comparison. For floating-point,
2570 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
2571 PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2572 processing is needed. */
2573 #define SELECT_CC_MODE(OP,X,Y) \
2574 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2575 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
2576 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
2577 || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT) \
2578 ? (TARGET_ARCH64 && GET_MODE (X) == DImode ? CCX_NOOVmode : CC_NOOVmode) \
2579 : ((TARGET_ARCH64 || TARGET_V8PLUS) && GET_MODE (X) == DImode ? CCXmode : CCmode)))
2580
2581 /* Return non-zero if SELECT_CC_MODE will never return MODE for a
2582 floating point inequality comparison. */
2583
2584 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
2585
2586 /* A function address in a call instruction
2587 is a byte address (for indexing purposes)
2588 so give the MEM rtx a byte's mode. */
2589 #define FUNCTION_MODE SImode
2590
2591 /* Define this if addresses of constant functions
2592 shouldn't be put through pseudo regs where they can be cse'd.
2593 Desirable on machines where ordinary constants are expensive
2594 but a CALL with constant address is cheap. */
2595 #define NO_FUNCTION_CSE
2596
2597 /* alloca should avoid clobbering the old register save area. */
2598 #define SETJMP_VIA_SAVE_AREA
2599
2600 /* Define subroutines to call to handle multiply and divide.
2601 Use the subroutines that Sun's library provides.
2602 The `*' prevents an underscore from being prepended by the compiler. */
2603
2604 #define DIVSI3_LIBCALL "*.div"
2605 #define UDIVSI3_LIBCALL "*.udiv"
2606 #define MODSI3_LIBCALL "*.rem"
2607 #define UMODSI3_LIBCALL "*.urem"
2608 /* .umul is a little faster than .mul. */
2609 #define MULSI3_LIBCALL "*.umul"
2610
2611 /* Define library calls for quad FP operations. These are all part of the
2612 SPARC ABI.
2613 ??? ARCH64 still does not work as the _Qp_* routines take pointers. */
2614 #define ADDTF3_LIBCALL (TARGET_ARCH64 ? "_Qp_add" : "_Q_add")
2615 #define SUBTF3_LIBCALL (TARGET_ARCH64 ? "_Qp_sub" : "_Q_sub")
2616 #define NEGTF2_LIBCALL (TARGET_ARCH64 ? "_Qp_neg" : "_Q_neg")
2617 #define MULTF3_LIBCALL (TARGET_ARCH64 ? "_Qp_mul" : "_Q_mul")
2618 #define DIVTF3_LIBCALL (TARGET_ARCH64 ? "_Qp_div" : "_Q_div")
2619 #define FLOATSITF2_LIBCALL (TARGET_ARCH64 ? "_Qp_itoq" : "_Q_itoq")
2620 #define FIX_TRUNCTFSI2_LIBCALL (TARGET_ARCH64 ? "_Qp_qtoi" : "_Q_qtoi")
2621 #define FIXUNS_TRUNCTFSI2_LIBCALL (TARGET_ARCH64 ? "_Qp_qtoui" : "_Q_qtou")
2622 #define EXTENDSFTF2_LIBCALL (TARGET_ARCH64 ? "_Qp_stoq" : "_Q_stoq")
2623 #define TRUNCTFSF2_LIBCALL (TARGET_ARCH64 ? "_Qp_qtos" : "_Q_qtos")
2624 #define EXTENDDFTF2_LIBCALL (TARGET_ARCH64 ? "_Qp_dtoq" : "_Q_dtoq")
2625 #define TRUNCTFDF2_LIBCALL (TARGET_ARCH64 ? "_Qp_qtod" : "_Q_qtod")
2626 #define EQTF2_LIBCALL (TARGET_ARCH64 ? "_Qp_feq" : "_Q_feq")
2627 #define NETF2_LIBCALL (TARGET_ARCH64 ? "_Qp_fne" : "_Q_fne")
2628 #define GTTF2_LIBCALL (TARGET_ARCH64 ? "_Qp_fgt" : "_Q_fgt")
2629 #define GETF2_LIBCALL (TARGET_ARCH64 ? "_Qp_fge" : "_Q_fge")
2630 #define LTTF2_LIBCALL (TARGET_ARCH64 ? "_Qp_flt" : "_Q_flt")
2631 #define LETF2_LIBCALL (TARGET_ARCH64 ? "_Qp_fle" : "_Q_fle")
2632
2633 /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2634 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2635 and the compiler will notice and try to use the TFmode sqrt instruction
2636 for calls to the builtin function sqrt, but this fails. */
2637 #define INIT_TARGET_OPTABS \
2638 do { \
2639 add_optab->handlers[(int) TFmode].libfunc \
2640 = gen_rtx_SYMBOL_REF (Pmode, ADDTF3_LIBCALL); \
2641 sub_optab->handlers[(int) TFmode].libfunc \
2642 = gen_rtx_SYMBOL_REF (Pmode, SUBTF3_LIBCALL); \
2643 neg_optab->handlers[(int) TFmode].libfunc \
2644 = gen_rtx_SYMBOL_REF (Pmode, NEGTF2_LIBCALL); \
2645 smul_optab->handlers[(int) TFmode].libfunc \
2646 = gen_rtx_SYMBOL_REF (Pmode, MULTF3_LIBCALL); \
2647 flodiv_optab->handlers[(int) TFmode].libfunc \
2648 = gen_rtx_SYMBOL_REF (Pmode, DIVTF3_LIBCALL); \
2649 eqtf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, EQTF2_LIBCALL); \
2650 netf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, NETF2_LIBCALL); \
2651 gttf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, GTTF2_LIBCALL); \
2652 getf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, GETF2_LIBCALL); \
2653 lttf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, LTTF2_LIBCALL); \
2654 letf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, LETF2_LIBCALL); \
2655 trunctfsf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, TRUNCTFSF2_LIBCALL); \
2656 trunctfdf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, TRUNCTFDF2_LIBCALL); \
2657 extendsftf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, EXTENDSFTF2_LIBCALL); \
2658 extenddftf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, EXTENDDFTF2_LIBCALL); \
2659 floatsitf_libfunc = gen_rtx_SYMBOL_REF (Pmode, FLOATSITF2_LIBCALL); \
2660 fixtfsi_libfunc = gen_rtx_SYMBOL_REF (Pmode, FIX_TRUNCTFSI2_LIBCALL); \
2661 fixunstfsi_libfunc \
2662 = gen_rtx_SYMBOL_REF (Pmode, FIXUNS_TRUNCTFSI2_LIBCALL); \
2663 if (TARGET_FPU) \
2664 sqrt_optab->handlers[(int) TFmode].libfunc \
2665 = gen_rtx_SYMBOL_REF (Pmode, "_Q_sqrt"); \
2666 INIT_SUBTARGET_OPTABS; \
2667 } while (0)
2668
2669 /* This is meant to be redefined in the host dependent files */
2670 #define INIT_SUBTARGET_OPTABS
2671
2672 /* Nonzero if a floating point comparison library call for
2673 mode MODE that will return a boolean value. Zero if one
2674 of the libgcc2 functions is used. */
2675 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2676
2677 /* Compute the cost of computing a constant rtl expression RTX
2678 whose rtx-code is CODE. The body of this macro is a portion
2679 of a switch statement. If the code is computed here,
2680 return it with a return statement. Otherwise, break from the switch. */
2681
2682 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2683 case CONST_INT: \
2684 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
2685 return 0; \
2686 case HIGH: \
2687 return 2; \
2688 case CONST: \
2689 case LABEL_REF: \
2690 case SYMBOL_REF: \
2691 return 4; \
2692 case CONST_DOUBLE: \
2693 if (GET_MODE (RTX) == DImode) \
2694 if ((XINT (RTX, 3) == 0 \
2695 && (unsigned) XINT (RTX, 2) < 0x1000) \
2696 || (XINT (RTX, 3) == -1 \
2697 && XINT (RTX, 2) < 0 \
2698 && XINT (RTX, 2) >= -0x1000)) \
2699 return 0; \
2700 return 8;
2701
2702 #define ADDRESS_COST(RTX) 1
2703
2704 /* Compute extra cost of moving data between one register class
2705 and another. */
2706 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2707 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
2708 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2709 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2710 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2711 ? (sparc_cpu == PROCESSOR_ULTRASPARC ? 12 : 6) : 2)
2712
2713 /* Provide the costs of a rtl expression. This is in the body of a
2714 switch on CODE. The purpose for the cost of MULT is to encourage
2715 `synth_mult' to find a synthetic multiply when reasonable.
2716
2717 If we need more than 12 insns to do a multiply, then go out-of-line,
2718 since the call overhead will be < 10% of the cost of the multiply. */
2719
2720 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2721 case MULT: \
2722 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2723 return (GET_MODE (X) == DImode ? \
2724 COSTS_N_INSNS (34) : COSTS_N_INSNS (19)); \
2725 return TARGET_HARD_MUL ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
2726 case DIV: \
2727 case UDIV: \
2728 case MOD: \
2729 case UMOD: \
2730 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2731 return (GET_MODE (X) == DImode ? \
2732 COSTS_N_INSNS (68) : COSTS_N_INSNS (37)); \
2733 return COSTS_N_INSNS (25); \
2734 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
2735 so that cse will favor the latter. */ \
2736 case FLOAT: \
2737 case FIX: \
2738 return 19;
2739
2740 #define ISSUE_RATE sparc_issue_rate()
2741
2742 /* Adjust the cost of dependencies. */
2743 #define ADJUST_COST(INSN,LINK,DEP,COST) \
2744 sparc_adjust_cost(INSN, LINK, DEP, COST)
2745
2746 extern void ultrasparc_sched_reorder ();
2747 extern void ultrasparc_sched_init ();
2748 extern int ultrasparc_variable_issue ();
2749
2750 #define MD_SCHED_INIT(DUMP, SCHED_VERBOSE) \
2751 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2752 ultrasparc_sched_init (DUMP, SCHED_VERBOSE)
2753
2754 #define MD_SCHED_REORDER(DUMP, SCHED_VERBOSE, READY, N_READY, CLOCK, CIM) \
2755 do { \
2756 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2757 ultrasparc_sched_reorder (DUMP, SCHED_VERBOSE, READY, N_READY); \
2758 CIM = issue_rate; \
2759 } while (0)
2760
2761 #define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
2762 do { \
2763 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2764 (CAN_ISSUE_MORE) = ultrasparc_variable_issue (INSN); \
2765 else \
2766 (CAN_ISSUE_MORE)--; \
2767 } while (0)
2768
2769 /* Conditional branches with empty delay slots have a length of two. */
2770 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2771 do { \
2772 if (GET_CODE (INSN) == CALL_INSN \
2773 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
2774 LENGTH += 1; \
2775 } while (0)
2776 \f
2777 /* Control the assembler format that we output. */
2778
2779 /* Output at beginning of assembler file. */
2780
2781 #define ASM_FILE_START(file)
2782
2783 /* A C string constant describing how to begin a comment in the target
2784 assembler language. The compiler assumes that the comment will end at
2785 the end of the line. */
2786
2787 #define ASM_COMMENT_START "!"
2788
2789 /* Output to assembler file text saying following lines
2790 may contain character constants, extra white space, comments, etc. */
2791
2792 #define ASM_APP_ON ""
2793
2794 /* Output to assembler file text saying following lines
2795 no longer contain unusual constructs. */
2796
2797 #define ASM_APP_OFF ""
2798
2799 /* ??? Try to make the style consistent here (_OP?). */
2800
2801 #define ASM_LONGLONG ".xword"
2802 #define ASM_LONG ".word"
2803 #define ASM_SHORT ".half"
2804 #define ASM_BYTE_OP ".byte"
2805 #define ASM_FLOAT ".single"
2806 #define ASM_DOUBLE ".double"
2807 #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
2808
2809 /* Output before read-only data. */
2810
2811 #define TEXT_SECTION_ASM_OP ".text"
2812
2813 /* Output before writable data. */
2814
2815 #define DATA_SECTION_ASM_OP ".data"
2816
2817 /* How to refer to registers in assembler output.
2818 This sequence is indexed by compiler's hard-register-number (see above). */
2819
2820 #define REGISTER_NAMES \
2821 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2822 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2823 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2824 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2825 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2826 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2827 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2828 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2829 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2830 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2831 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2832 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2833 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc"}
2834
2835 /* Define additional names for use in asm clobbers and asm declarations. */
2836
2837 #define ADDITIONAL_REGISTER_NAMES \
2838 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2839
2840 /* How to renumber registers for dbx and gdb. In the flat model, the frame
2841 pointer is really %i7. */
2842
2843 #define DBX_REGISTER_NUMBER(REGNO) \
2844 (TARGET_FLAT && REGNO == FRAME_POINTER_REGNUM ? 31 : REGNO)
2845
2846 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2847 can run past this up to a continuation point. Once we used 1500, but
2848 a single entry in C++ can run more than 500 bytes, due to the length of
2849 mangled symbol names. dbxout.c should really be fixed to do
2850 continuations when they are actually needed instead of trying to
2851 guess... */
2852 #define DBX_CONTIN_LENGTH 1000
2853
2854 /* This is how to output a note to DBX telling it the line number
2855 to which the following sequence of instructions corresponds.
2856
2857 This is needed for SunOS 4.0, and should not hurt for 3.2
2858 versions either. */
2859 #define ASM_OUTPUT_SOURCE_LINE(file, line) \
2860 { static int sym_lineno = 1; \
2861 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
2862 line, sym_lineno, sym_lineno); \
2863 sym_lineno += 1; }
2864
2865 /* This is how to output the definition of a user-level label named NAME,
2866 such as the label on a static function or variable NAME. */
2867
2868 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2869 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2870
2871 /* This is how to output a command to make the user-level label named NAME
2872 defined for reference from other files. */
2873
2874 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2875 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2876
2877 /* The prefix to add to user-visible assembler symbols. */
2878
2879 #define USER_LABEL_PREFIX "_"
2880
2881 /* This is how to output a definition of an internal numbered label where
2882 PREFIX is the class of label and NUM is the number within the class. */
2883
2884 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2885 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2886
2887 /* This is how to store into the string LABEL
2888 the symbol_ref name of an internal numbered label where
2889 PREFIX is the class of label and NUM is the number within the class.
2890 This is suitable for output with `assemble_name'. */
2891
2892 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2893 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2894
2895 /* This is how to output an assembler line defining a `float' constant.
2896 We always have to use a .long pseudo-op to do this because the native
2897 SVR4 ELF assembler is buggy and it generates incorrect values when we
2898 try to use the .float pseudo-op instead. */
2899
2900 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2901 { \
2902 long t; \
2903 char str[30]; \
2904 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2905 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2906 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t, \
2907 ASM_COMMENT_START, str); \
2908 } \
2909
2910 /* This is how to output an assembler line defining a `double' constant.
2911 We always have to use a .long pseudo-op to do this because the native
2912 SVR4 ELF assembler is buggy and it generates incorrect values when we
2913 try to use the .float pseudo-op instead. */
2914
2915 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2916 { \
2917 long t[2]; \
2918 char str[30]; \
2919 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2920 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2921 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t[0], \
2922 ASM_COMMENT_START, str); \
2923 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[1]); \
2924 }
2925
2926 /* This is how to output an assembler line defining a `long double'
2927 constant. */
2928
2929 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2930 { \
2931 long t[4]; \
2932 char str[30]; \
2933 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
2934 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2935 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t[0], \
2936 ASM_COMMENT_START, str); \
2937 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[1]); \
2938 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[2]); \
2939 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[3]); \
2940 }
2941
2942 /* This is how to output an assembler line defining an `int' constant. */
2943
2944 #define ASM_OUTPUT_INT(FILE,VALUE) \
2945 ( fprintf (FILE, "\t%s\t", ASM_LONG), \
2946 output_addr_const (FILE, (VALUE)), \
2947 fprintf (FILE, "\n"))
2948
2949 /* This is how to output an assembler line defining a DImode constant. */
2950 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2951 output_double_int (FILE, VALUE)
2952
2953 /* Likewise for `char' and `short' constants. */
2954
2955 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2956 ( fprintf (FILE, "\t%s\t", ASM_SHORT), \
2957 output_addr_const (FILE, (VALUE)), \
2958 fprintf (FILE, "\n"))
2959
2960 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2961 ( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
2962 output_addr_const (FILE, (VALUE)), \
2963 fprintf (FILE, "\n"))
2964
2965 /* This is how to output an assembler line for a numeric constant byte. */
2966
2967 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2968 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
2969
2970 /* This is how we hook in and defer the case-vector until the end of
2971 the function. */
2972 extern void sparc_defer_case_vector ();
2973
2974 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2975 sparc_defer_case_vector ((LAB),(VEC), 0)
2976
2977 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2978 sparc_defer_case_vector ((LAB),(VEC), 1)
2979
2980 /* This is how to output an element of a case-vector that is absolute. */
2981
2982 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2983 do { \
2984 char label[30]; \
2985 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2986 if (CASE_VECTOR_MODE == SImode) \
2987 fprintf (FILE, "\t.word\t"); \
2988 else \
2989 fprintf (FILE, "\t.xword\t"); \
2990 assemble_name (FILE, label); \
2991 fputc ('\n', FILE); \
2992 } while (0)
2993
2994 /* This is how to output an element of a case-vector that is relative.
2995 (SPARC uses such vectors only when generating PIC.) */
2996
2997 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2998 do { \
2999 char label[30]; \
3000 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
3001 if (CASE_VECTOR_MODE == SImode) \
3002 fprintf (FILE, "\t.word\t"); \
3003 else \
3004 fprintf (FILE, "\t.xword\t"); \
3005 assemble_name (FILE, label); \
3006 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
3007 fputc ('-', FILE); \
3008 assemble_name (FILE, label); \
3009 fputc ('\n', FILE); \
3010 } while (0)
3011
3012 /* This is what to output before and after case-vector (both
3013 relative and absolute). If .subsection -1 works, we put case-vectors
3014 at the beginning of the current section. */
3015
3016 #ifdef HAVE_GAS_SUBSECTION_ORDERING
3017
3018 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
3019 fprintf(FILE, "\t.subsection\t-1\n")
3020
3021 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
3022 fprintf(FILE, "\t.previous\n")
3023
3024 #endif
3025
3026 /* This is how to output an assembler line
3027 that says to advance the location counter
3028 to a multiple of 2**LOG bytes. */
3029
3030 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
3031 if ((LOG) != 0) \
3032 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
3033
3034 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
3035 fprintf (FILE, "\t.skip %u\n", (SIZE))
3036
3037 /* This says how to output an assembler line
3038 to define a global common symbol. */
3039
3040 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
3041 ( fputs ("\t.common ", (FILE)), \
3042 assemble_name ((FILE), (NAME)), \
3043 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
3044
3045 /* This says how to output an assembler line to define a local common
3046 symbol. */
3047
3048 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
3049 ( fputs ("\t.reserve ", (FILE)), \
3050 assemble_name ((FILE), (NAME)), \
3051 fprintf ((FILE), ",%u,\"bss\",%u\n", \
3052 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
3053
3054 /* A C statement (sans semicolon) to output to the stdio stream
3055 FILE the assembler definition of uninitialized global DECL named
3056 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
3057 Try to use asm_output_aligned_bss to implement this macro. */
3058
3059 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
3060 do { \
3061 fputs (".globl ", (FILE)); \
3062 assemble_name ((FILE), (NAME)); \
3063 fputs ("\n", (FILE)); \
3064 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
3065 } while (0)
3066
3067 /* Store in OUTPUT a string (made with alloca) containing
3068 an assembler-name for a local static variable named NAME.
3069 LABELNO is an integer which is different for each call. */
3070
3071 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3072 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3073 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3074
3075 #define IDENT_ASM_OP ".ident"
3076
3077 /* Output #ident as a .ident. */
3078
3079 #define ASM_OUTPUT_IDENT(FILE, NAME) \
3080 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
3081
3082 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
3083 Used for C++ multiple inheritance. */
3084 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
3085 do { \
3086 int big_delta = (DELTA) >= 4096 || (DELTA) < -4096; \
3087 if (big_delta) \
3088 fprintf (FILE, "\tset %d,%%g1\n\tadd %%o0,%%g1,%%o0\n", (DELTA)); \
3089 /* Don't use the jmp solution unless we know the target is local to \
3090 the application or shared object. \
3091 XXX: Wimp out and don't actually check anything except if this is \
3092 an embedded target where we assume there are no shared libs. */ \
3093 if (!TARGET_CM_EMBMEDANY || flag_pic) \
3094 { \
3095 if (! big_delta) \
3096 fprintf (FILE, "\tadd %%o0,%d,%%o0\n", DELTA); \
3097 fprintf (FILE, "\tmov %%o7,%%g1\n"); \
3098 fprintf (FILE, "\tcall "); \
3099 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
3100 fprintf (FILE, ",0\n"); \
3101 } \
3102 else if (TARGET_CM_EMBMEDANY) \
3103 { \
3104 fprintf (FILE, "\tsetx "); \
3105 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
3106 fprintf (FILE, ",%%g5,%%g1\n\tjmp %%g1\n"); \
3107 } \
3108 else \
3109 { \
3110 fprintf (FILE, "\tsethi %%hi("); \
3111 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
3112 fprintf (FILE, "),%%g1\n\tjmp %%g1+%%lo("); \
3113 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
3114 fprintf (FILE, ")\n"); \
3115 } \
3116 if (!TARGET_CM_EMBMEDANY || flag_pic) \
3117 fprintf (FILE, "\tmov %%g1,%%o7\n"); \
3118 else if (big_delta) \
3119 fprintf (FILE, "\tnop\n"); \
3120 else \
3121 fprintf (FILE, "\tadd %%o0,%d,%%o0\n", DELTA); \
3122 } while (0)
3123
3124 /* Define the parentheses used to group arithmetic operations
3125 in assembler code. */
3126
3127 #define ASM_OPEN_PAREN "("
3128 #define ASM_CLOSE_PAREN ")"
3129
3130 /* Define results of standard character escape sequences. */
3131 #define TARGET_BELL 007
3132 #define TARGET_BS 010
3133 #define TARGET_TAB 011
3134 #define TARGET_NEWLINE 012
3135 #define TARGET_VT 013
3136 #define TARGET_FF 014
3137 #define TARGET_CR 015
3138
3139 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
3140 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
3141
3142 /* Print operand X (an rtx) in assembler syntax to file FILE.
3143 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3144 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3145
3146 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3147
3148 /* Print a memory address as an operand to reference that memory location. */
3149
3150 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
3151 { register rtx base, index = 0; \
3152 int offset = 0; \
3153 register rtx addr = ADDR; \
3154 if (GET_CODE (addr) == REG) \
3155 fputs (reg_names[REGNO (addr)], FILE); \
3156 else if (GET_CODE (addr) == PLUS) \
3157 { \
3158 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
3159 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
3160 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
3161 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
3162 else \
3163 base = XEXP (addr, 0), index = XEXP (addr, 1); \
3164 if (GET_CODE (base) == LO_SUM) \
3165 { \
3166 if (! USE_AS_OFFSETABLE_LO10 \
3167 || TARGET_ARCH32 \
3168 || TARGET_CM_MEDMID) \
3169 abort (); \
3170 output_operand (XEXP (base, 0), 0); \
3171 fputs ("+%lo(", FILE); \
3172 output_address (XEXP (base, 1)); \
3173 fprintf (FILE, ")+%d", offset); \
3174 } \
3175 else \
3176 { \
3177 fputs (reg_names[REGNO (base)], FILE); \
3178 if (index == 0) \
3179 fprintf (FILE, "%+d", offset); \
3180 else if (GET_CODE (index) == REG) \
3181 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
3182 else if (GET_CODE (index) == SYMBOL_REF \
3183 || GET_CODE (index) == CONST) \
3184 fputc ('+', FILE), output_addr_const (FILE, index); \
3185 else abort (); \
3186 } \
3187 } \
3188 else if (GET_CODE (addr) == MINUS \
3189 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
3190 { \
3191 output_addr_const (FILE, XEXP (addr, 0)); \
3192 fputs ("-(", FILE); \
3193 output_addr_const (FILE, XEXP (addr, 1)); \
3194 fputs ("-.)", FILE); \
3195 } \
3196 else if (GET_CODE (addr) == LO_SUM) \
3197 { \
3198 output_operand (XEXP (addr, 0), 0); \
3199 if (TARGET_CM_MEDMID) \
3200 fputs ("+%l44(", FILE); \
3201 else \
3202 fputs ("+%lo(", FILE); \
3203 output_address (XEXP (addr, 1)); \
3204 fputc (')', FILE); \
3205 } \
3206 else if (flag_pic && GET_CODE (addr) == CONST \
3207 && GET_CODE (XEXP (addr, 0)) == MINUS \
3208 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
3209 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
3210 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
3211 { \
3212 addr = XEXP (addr, 0); \
3213 output_addr_const (FILE, XEXP (addr, 0)); \
3214 /* Group the args of the second CONST in parenthesis. */ \
3215 fputs ("-(", FILE); \
3216 /* Skip past the second CONST--it does nothing for us. */\
3217 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
3218 /* Close the parenthesis. */ \
3219 fputc (')', FILE); \
3220 } \
3221 else \
3222 { \
3223 output_addr_const (FILE, addr); \
3224 } \
3225 }
3226
3227 /* Define the codes that are matched by predicates in sparc.c. */
3228
3229 #define PREDICATE_CODES \
3230 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3231 {"fp_zero_operand", {CONST_DOUBLE}}, \
3232 {"intreg_operand", {SUBREG, REG}}, \
3233 {"fcc_reg_operand", {REG}}, \
3234 {"icc_or_fcc_reg_operand", {REG}}, \
3235 {"restore_operand", {REG}}, \
3236 {"call_operand", {MEM}}, \
3237 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
3238 ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
3239 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE}}, \
3240 {"symbolic_memory_operand", {SUBREG, MEM}}, \
3241 {"label_ref_operand", {LABEL_REF}}, \
3242 {"sp64_medium_pic_operand", {CONST}}, \
3243 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
3244 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
3245 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
3246 {"splittable_symbolic_memory_operand", {MEM}}, \
3247 {"splittable_immediate_memory_operand", {MEM}}, \
3248 {"eq_or_neq", {EQ, NE}}, \
3249 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
3250 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
3251 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
3252 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
3253 {"cc_arithop", {AND, IOR, XOR}}, \
3254 {"cc_arithopn", {AND, IOR}}, \
3255 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
3256 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
3257 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
3258 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
3259 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3260 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3261 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3262 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3263 {"small_int", {CONST_INT}}, \
3264 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
3265 {"uns_small_int", {CONST_INT}}, \
3266 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
3267 {"clobbered_register", {REG}}, \
3268 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
3269 {"zero_operand", {CONST_INT}}, \
3270 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
3271 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
3272
3273 /* The number of Pmode words for the setjmp buffer. */
3274 #define JMP_BUF_SIZE 12
3275
3276 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)
3277
3278 /* Declare functions defined in sparc.c and used in templates. */
3279
3280 extern void sparc_emit_set_const32 ();
3281 extern void sparc_emit_set_const64 ();
3282 extern void sparc_emit_set_symbolic_const64 ();
3283 extern int sparc_splitdi_legitimate ();
3284 extern int sparc_absnegfloat_split_legitimate ();
3285
3286 extern char *output_cbranch ();
3287 extern const char *output_return ();
3288 extern char *output_v9branch ();
3289
3290 extern void emit_v9_brxx_insn ();
3291 extern void finalize_pic ();
3292 extern void order_regs_for_local_alloc ();
3293 extern void output_double_int ();
3294 extern void output_function_epilogue ();
3295 extern void output_function_prologue ();
3296 extern void print_operand ();
3297 extern void sparc_flat_output_function_epilogue ();
3298 extern void sparc_flat_output_function_prologue ();
3299
3300 extern int addrs_ok_for_ldd_peep ();
3301 extern int arith10_double_operand ();
3302 extern int arith10_operand ();
3303 extern int arith11_double_operand ();
3304 extern int arith11_operand ();
3305 extern int arith_double_operand ();
3306 extern int arith_double_4096_operand ();
3307 extern int arith_double_add_operand ();
3308 extern int arith_operand ();
3309 extern int arith_4096_operand ();
3310 extern int arith_add_operand ();
3311 extern int call_operand_address ();
3312 extern int input_operand ();
3313 extern int zero_operand ();
3314 extern int const64_operand ();
3315 extern int const64_high_operand ();
3316 extern int cc_arithop ();
3317 extern int cc_arithopn ();
3318 extern int check_pic ();
3319 extern int compute_frame_size ();
3320 extern int data_segment_operand ();
3321 extern int eligible_for_epilogue_delay ();
3322 extern int eligible_for_return_delay ();
3323 extern int emit_move_sequence ();
3324 extern int extend_op ();
3325 extern int fcc_reg_operand ();
3326 extern int fp_zero_operand ();
3327 extern int icc_or_fcc_reg_operand ();
3328 extern int label_ref_operand ();
3329 extern int mem_min_alignment ();
3330 extern int noov_compare_op ();
3331 extern int pic_address_needs_scratch ();
3332 extern int reg_or_0_operand ();
3333 extern int reg_or_nonsymb_mem_operand ();
3334 extern int reg_unused_after ();
3335 extern int register_ok_for_ldd ();
3336 extern int registers_ok_for_ldd_peep ();
3337 extern int restore_operand ();
3338 extern int short_branch ();
3339 extern int small_int ();
3340 extern int small_int_or_double ();
3341 extern int sp64_medium_pic_operand ();
3342 extern int sparc_flat_eligible_for_epilogue_delay ();
3343 extern int sparc_flat_epilogue_delay_slots ();
3344 extern int sparc_issue_rate ();
3345 extern int splittable_immediate_memory_operand ();
3346 extern int splittable_symbolic_memory_operand ();
3347 extern int sparc_adjust_cost ();
3348 extern int symbolic_memory_operand ();
3349 extern int symbolic_operand ();
3350 extern int text_segment_operand ();
3351 extern int uns_small_int ();
3352 extern int v9_regcmp_op ();
3353 extern int v9_regcmp_p ();
3354
3355 extern unsigned long sparc_flat_compute_frame_size ();
3356 extern unsigned long sparc_type_code ();
3357
3358 extern void sparc_function_profiler ();
3359 extern void sparc_function_block_profiler ();
3360 extern void sparc_block_profiler ();
3361 extern void sparc_function_block_profiler_exit ();
3362
3363 extern char *sparc_v8plus_shift ();
3364
3365 #ifdef __STDC__
3366 /* Function used for V8+ code generation. Returns 1 if the high
3367 32 bits of REG are 0 before INSN. */
3368 extern int sparc_check_64 (struct rtx_def *, struct rtx_def *);
3369 extern int sparc_return_peephole_ok (struct rtx_def *, struct rtx_def *);
3370 extern int compute_frame_size (int, int);
3371 #endif
3372
3373 /* Defined in flags.h, but insn-emit.c does not include flags.h. */
3374
3375 extern int flag_pic;