]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/sparc/sparc.h
Teach sparc backend about %gsr register and add intrinsics to access it.
[thirdparty/gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com).
6 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
7 at Cygnus Support.
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 #include "config/vxworks-dummy.h"
26
27 /* Note that some other tm.h files include this one and then override
28 whatever definitions are necessary. */
29
30 /* Define the specific costs for a given cpu */
31
32 struct processor_costs {
33 /* Integer load */
34 const int int_load;
35
36 /* Integer signed load */
37 const int int_sload;
38
39 /* Integer zeroed load */
40 const int int_zload;
41
42 /* Float load */
43 const int float_load;
44
45 /* fmov, fneg, fabs */
46 const int float_move;
47
48 /* fadd, fsub */
49 const int float_plusminus;
50
51 /* fcmp */
52 const int float_cmp;
53
54 /* fmov, fmovr */
55 const int float_cmove;
56
57 /* fmul */
58 const int float_mul;
59
60 /* fdivs */
61 const int float_div_sf;
62
63 /* fdivd */
64 const int float_div_df;
65
66 /* fsqrts */
67 const int float_sqrt_sf;
68
69 /* fsqrtd */
70 const int float_sqrt_df;
71
72 /* umul/smul */
73 const int int_mul;
74
75 /* mulX */
76 const int int_mulX;
77
78 /* integer multiply cost for each bit set past the most
79 significant 3, so the formula for multiply cost becomes:
80
81 if (rs1 < 0)
82 highest_bit = highest_clear_bit(rs1);
83 else
84 highest_bit = highest_set_bit(rs1);
85 if (highest_bit < 3)
86 highest_bit = 3;
87 cost = int_mul{,X} + ((highest_bit - 3) / int_mul_bit_factor);
88
89 A value of zero indicates that the multiply costs is fixed,
90 and not variable. */
91 const int int_mul_bit_factor;
92
93 /* udiv/sdiv */
94 const int int_div;
95
96 /* divX */
97 const int int_divX;
98
99 /* movcc, movr */
100 const int int_cmove;
101
102 /* penalty for shifts, due to scheduling rules etc. */
103 const int shift_penalty;
104 };
105
106 extern const struct processor_costs *sparc_costs;
107
108 /* Target CPU builtins. FIXME: Defining sparc is for the benefit of
109 Solaris only; otherwise just define __sparc__. Sadly the headers
110 are such a mess there is no Solaris-specific header. */
111 #define TARGET_CPU_CPP_BUILTINS() \
112 do \
113 { \
114 builtin_define_std ("sparc"); \
115 if (TARGET_64BIT) \
116 { \
117 builtin_assert ("cpu=sparc64"); \
118 builtin_assert ("machine=sparc64"); \
119 } \
120 else \
121 { \
122 builtin_assert ("cpu=sparc"); \
123 builtin_assert ("machine=sparc"); \
124 } \
125 } \
126 while (0)
127
128 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
129 /* #define SPARC_BI_ARCH */
130
131 /* Macro used later in this file to determine default architecture. */
132 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
133
134 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
135 architectures to compile for. We allow targets to choose compile time or
136 runtime selection. */
137 #ifdef IN_LIBGCC2
138 #if defined(__sparcv9) || defined(__arch64__)
139 #define TARGET_ARCH32 0
140 #else
141 #define TARGET_ARCH32 1
142 #endif /* sparc64 */
143 #else
144 #ifdef SPARC_BI_ARCH
145 #define TARGET_ARCH32 (! TARGET_64BIT)
146 #else
147 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
148 #endif /* SPARC_BI_ARCH */
149 #endif /* IN_LIBGCC2 */
150 #define TARGET_ARCH64 (! TARGET_ARCH32)
151
152 /* Code model selection in 64-bit environment.
153
154 The machine mode used for addresses is 32-bit wide:
155
156 TARGET_CM_32: 32-bit address space.
157 It is the code model used when generating 32-bit code.
158
159 The machine mode used for addresses is 64-bit wide:
160
161 TARGET_CM_MEDLOW: 32-bit address space.
162 The executable must be in the low 32 bits of memory.
163 This avoids generating %uhi and %ulo terms. Programs
164 can be statically or dynamically linked.
165
166 TARGET_CM_MEDMID: 44-bit address space.
167 The executable must be in the low 44 bits of memory,
168 and the %[hml]44 terms are used. The text and data
169 segments have a maximum size of 2GB (31-bit span).
170 The maximum offset from any instruction to the label
171 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
172
173 TARGET_CM_MEDANY: 64-bit address space.
174 The text and data segments have a maximum size of 2GB
175 (31-bit span) and may be located anywhere in memory.
176 The maximum offset from any instruction to the label
177 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
178
179 TARGET_CM_EMBMEDANY: 64-bit address space.
180 The text and data segments have a maximum size of 2GB
181 (31-bit span) and may be located anywhere in memory.
182 The global register %g4 contains the start address of
183 the data segment. Programs are statically linked and
184 PIC is not supported.
185
186 Different code models are not supported in 32-bit environment. */
187
188 enum cmodel {
189 CM_32,
190 CM_MEDLOW,
191 CM_MEDMID,
192 CM_MEDANY,
193 CM_EMBMEDANY
194 };
195
196 /* One of CM_FOO. */
197 extern enum cmodel sparc_cmodel;
198
199 /* V9 code model selection. */
200 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
201 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
202 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
203 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
204
205 #define SPARC_DEFAULT_CMODEL CM_32
206
207 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
208 which requires the following macro to be true if enabled. Prior to V9,
209 there are no instructions to even talk about memory synchronization.
210 Note that the UltraSPARC III processors don't implement RMO, unlike the
211 UltraSPARC II processors. Niagara, Niagara-2, and Niagara-3 do not
212 implement RMO either.
213
214 Default to false; for example, Solaris never enables RMO, only ever uses
215 total memory ordering (TMO). */
216 #define SPARC_RELAXED_ORDERING false
217
218 /* Do not use the .note.GNU-stack convention by default. */
219 #define NEED_INDICATE_EXEC_STACK 0
220
221 /* This is call-clobbered in the normal ABI, but is reserved in the
222 home grown (aka upward compatible) embedded ABI. */
223 #define EMBMEDANY_BASE_REG "%g4"
224 \f
225 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
226 and specified by the user via --with-cpu=foo.
227 This specifies the cpu implementation, not the architecture size. */
228 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
229 capable cpu's. */
230 #define TARGET_CPU_sparc 0
231 #define TARGET_CPU_v7 0 /* alias */
232 #define TARGET_CPU_cypress 0 /* alias */
233 #define TARGET_CPU_v8 1 /* generic v8 implementation */
234 #define TARGET_CPU_supersparc 2
235 #define TARGET_CPU_hypersparc 3
236 #define TARGET_CPU_leon 4
237 #define TARGET_CPU_sparclite 5
238 #define TARGET_CPU_f930 5 /* alias */
239 #define TARGET_CPU_f934 5 /* alias */
240 #define TARGET_CPU_sparclite86x 6
241 #define TARGET_CPU_sparclet 7
242 #define TARGET_CPU_tsc701 7 /* alias */
243 #define TARGET_CPU_v9 8 /* generic v9 implementation */
244 #define TARGET_CPU_sparcv9 8 /* alias */
245 #define TARGET_CPU_sparc64 8 /* alias */
246 #define TARGET_CPU_ultrasparc 9
247 #define TARGET_CPU_ultrasparc3 10
248 #define TARGET_CPU_niagara 11
249 #define TARGET_CPU_niagara2 12
250 #define TARGET_CPU_niagara3 13
251 #define TARGET_CPU_niagara4 14
252
253 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
254 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
255 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
256 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
257 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
258 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
259 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
260
261 #define CPP_CPU32_DEFAULT_SPEC ""
262 #define ASM_CPU32_DEFAULT_SPEC ""
263
264 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
265 /* ??? What does Sun's CC pass? */
266 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
267 /* ??? It's not clear how other assemblers will handle this, so by default
268 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
269 is handled in sol2.h. */
270 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
271 #endif
272 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
273 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
274 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
275 #endif
276 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
277 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
278 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
279 #endif
280 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
281 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
282 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
283 #endif
284 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
285 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
286 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
287 #endif
288 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
289 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
290 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
291 #endif
292 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
293 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
294 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
295 #endif
296
297 #else
298
299 #define CPP_CPU64_DEFAULT_SPEC ""
300 #define ASM_CPU64_DEFAULT_SPEC ""
301
302 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
303 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
304 #define CPP_CPU32_DEFAULT_SPEC ""
305 #define ASM_CPU32_DEFAULT_SPEC ""
306 #endif
307
308 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
309 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
310 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
311 #endif
312
313 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
314 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
315 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
316 #endif
317
318 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
319 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
320 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
321 #endif
322
323 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
324 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
325 #define ASM_CPU32_DEFAULT_SPEC ""
326 #endif
327
328 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
329 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
330 #define ASM_CPU32_DEFAULT_SPEC ""
331 #endif
332
333 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon
334 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
335 #define ASM_CPU32_DEFAULT_SPEC ""
336 #endif
337
338 #endif
339
340 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
341 #error Unrecognized value in TARGET_CPU_DEFAULT.
342 #endif
343
344 #ifdef SPARC_BI_ARCH
345
346 #define CPP_CPU_DEFAULT_SPEC \
347 (DEFAULT_ARCH32_P ? "\
348 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
349 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
350 " : "\
351 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
352 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
353 ")
354 #define ASM_CPU_DEFAULT_SPEC \
355 (DEFAULT_ARCH32_P ? "\
356 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
357 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
358 " : "\
359 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
360 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
361 ")
362
363 #else /* !SPARC_BI_ARCH */
364
365 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
366 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
367
368 #endif /* !SPARC_BI_ARCH */
369
370 /* Define macros to distinguish architectures. */
371
372 /* Common CPP definitions used by CPP_SPEC amongst the various targets
373 for handling -mcpu=xxx switches. */
374 #define CPP_CPU_SPEC "\
375 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
376 %{mcpu=sparclite:-D__sparclite__} \
377 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
378 %{mcpu=sparclite86x:-D__sparclite86x__} \
379 %{mcpu=v8:-D__sparc_v8__} \
380 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
381 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
382 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
383 %{mcpu=v9:-D__sparc_v9__} \
384 %{mcpu=ultrasparc:-D__sparc_v9__} \
385 %{mcpu=ultrasparc3:-D__sparc_v9__} \
386 %{mcpu=niagara:-D__sparc_v9__} \
387 %{mcpu=niagara2:-D__sparc_v9__} \
388 %{mcpu=niagara3:-D__sparc_v9__} \
389 %{mcpu=niagara4:-D__sparc_v9__} \
390 %{!mcpu*:%(cpp_cpu_default)} \
391 "
392 #define CPP_ARCH32_SPEC ""
393 #define CPP_ARCH64_SPEC "-D__arch64__"
394
395 #define CPP_ARCH_DEFAULT_SPEC \
396 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
397
398 #define CPP_ARCH_SPEC "\
399 %{m32:%(cpp_arch32)} \
400 %{m64:%(cpp_arch64)} \
401 %{!m32:%{!m64:%(cpp_arch_default)}} \
402 "
403
404 /* Macros to distinguish the endianness, window model and FP support. */
405 #define CPP_OTHER_SPEC "\
406 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
407 %{mflat:-D_FLAT} \
408 %{msoft-float:-D_SOFT_FLOAT} \
409 "
410
411 /* Macros to distinguish the particular subtarget. */
412 #define CPP_SUBTARGET_SPEC ""
413
414 #define CPP_SPEC \
415 "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
416
417 /* This used to translate -dalign to -malign, but that is no good
418 because it can't turn off the usual meaning of making debugging dumps. */
419
420 #define CC1_SPEC ""
421
422 /* Override in target specific files. */
423 #define ASM_CPU_SPEC "\
424 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
425 %{mcpu=sparclite:-Asparclite} \
426 %{mcpu=sparclite86x:-Asparclite} \
427 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
428 %{mv8plus:-Av8plus} \
429 %{mcpu=v9:-Av9} \
430 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
431 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
432 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
433 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
434 %{mcpu=niagara3:%{!mv8plus:-Av9b}} \
435 %{mcpu=niagara4:%{!mv8plus:-Av9b}} \
436 %{!mcpu*:%(asm_cpu_default)} \
437 "
438
439 /* Word size selection, among other things.
440 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
441
442 #define ASM_ARCH32_SPEC "-32"
443 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
444 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
445 #else
446 #define ASM_ARCH64_SPEC "-64"
447 #endif
448 #define ASM_ARCH_DEFAULT_SPEC \
449 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
450
451 #define ASM_ARCH_SPEC "\
452 %{m32:%(asm_arch32)} \
453 %{m64:%(asm_arch64)} \
454 %{!m32:%{!m64:%(asm_arch_default)}} \
455 "
456
457 #ifdef HAVE_AS_RELAX_OPTION
458 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
459 #else
460 #define ASM_RELAX_SPEC ""
461 #endif
462
463 /* Special flags to the Sun-4 assembler when using pipe for input. */
464
465 #define ASM_SPEC "\
466 %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
467 %(asm_cpu) %(asm_relax)"
468
469 /* This macro defines names of additional specifications to put in the specs
470 that can be used in various specifications like CC1_SPEC. Its definition
471 is an initializer with a subgrouping for each command option.
472
473 Each subgrouping contains a string constant, that defines the
474 specification name, and a string constant that used by the GCC driver
475 program.
476
477 Do not define this macro if it does not need to do anything. */
478
479 #define EXTRA_SPECS \
480 { "cpp_cpu", CPP_CPU_SPEC }, \
481 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
482 { "cpp_arch32", CPP_ARCH32_SPEC }, \
483 { "cpp_arch64", CPP_ARCH64_SPEC }, \
484 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
485 { "cpp_arch", CPP_ARCH_SPEC }, \
486 { "cpp_other", CPP_OTHER_SPEC }, \
487 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
488 { "asm_cpu", ASM_CPU_SPEC }, \
489 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
490 { "asm_arch32", ASM_ARCH32_SPEC }, \
491 { "asm_arch64", ASM_ARCH64_SPEC }, \
492 { "asm_relax", ASM_RELAX_SPEC }, \
493 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
494 { "asm_arch", ASM_ARCH_SPEC }, \
495 SUBTARGET_EXTRA_SPECS
496
497 #define SUBTARGET_EXTRA_SPECS
498
499 /* Because libgcc can generate references back to libc (via .umul etc.) we have
500 to list libc again after the second libgcc. */
501 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
502
503 \f
504 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
505 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
506
507 /* ??? This should be 32 bits for v9 but what can we do? */
508 #define WCHAR_TYPE "short unsigned int"
509 #define WCHAR_TYPE_SIZE 16
510 \f
511 /* Mask of all CPU selection flags. */
512 #define MASK_ISA \
513 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
514
515 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
516 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
517 to get high 32 bits. False in V8+ or V9 because multiply stores
518 a 64-bit result in a register. */
519
520 #define TARGET_HARD_MUL32 \
521 ((TARGET_V8 || TARGET_SPARCLITE \
522 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
523 && ! TARGET_V8PLUS && TARGET_ARCH32)
524
525 #define TARGET_HARD_MUL \
526 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
527 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
528
529 /* MASK_APP_REGS must always be the default because that's what
530 FIXED_REGISTERS is set to and -ffixed- is processed before
531 TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
532 -mno-app-regs). */
533 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
534
535 /* Recast the cpu class to be the cpu attribute.
536 Every file includes us, but not every file includes insn-attr.h. */
537 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
538
539 /* Support for a compile-time default CPU, et cetera. The rules are:
540 --with-cpu is ignored if -mcpu is specified.
541 --with-tune is ignored if -mtune is specified.
542 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
543 are specified. */
544 #define OPTION_DEFAULT_SPECS \
545 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
546 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
547 {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
548 \f
549 /* target machine storage layout */
550
551 /* Define this if most significant bit is lowest numbered
552 in instructions that operate on numbered bit-fields. */
553 #define BITS_BIG_ENDIAN 1
554
555 /* Define this if most significant byte of a word is the lowest numbered. */
556 #define BYTES_BIG_ENDIAN 1
557
558 /* Define this if most significant word of a multiword number is the lowest
559 numbered. */
560 #define WORDS_BIG_ENDIAN 1
561
562 #define MAX_BITS_PER_WORD 64
563
564 /* Width of a word, in units (bytes). */
565 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
566 #ifdef IN_LIBGCC2
567 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
568 #else
569 #define MIN_UNITS_PER_WORD 4
570 #endif
571
572 /* Now define the sizes of the C data types. */
573
574 #define SHORT_TYPE_SIZE 16
575 #define INT_TYPE_SIZE 32
576 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
577 #define LONG_LONG_TYPE_SIZE 64
578 #define FLOAT_TYPE_SIZE 32
579 #define DOUBLE_TYPE_SIZE 64
580
581 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
582 SPARC ABI says that it is 128-bit wide. */
583 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
584
585 /* The widest floating-point format really supported by the hardware. */
586 #define WIDEST_HARDWARE_FP_SIZE 64
587
588 /* Width in bits of a pointer. This is the size of ptr_mode. */
589 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
590
591 /* This is the machine mode used for addresses. */
592 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
593
594 /* If we have to extend pointers (only when TARGET_ARCH64 and not
595 TARGET_PTR64), we want to do it unsigned. This macro does nothing
596 if ptr_mode and Pmode are the same. */
597 #define POINTERS_EXTEND_UNSIGNED 1
598
599 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
600 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
601
602 /* Boundary (in *bits*) on which stack pointer should be aligned. */
603 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
604 then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */
605 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
606 /* Temporary hack until the FIXME above is fixed. */
607 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
608
609 /* ALIGN FRAMES on double word boundaries */
610
611 #define SPARC_STACK_ALIGN(LOC) \
612 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
613
614 /* Allocation boundary (in *bits*) for the code of a function. */
615 #define FUNCTION_BOUNDARY 32
616
617 /* Alignment of field after `int : 0' in a structure. */
618 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
619
620 /* Every structure's size must be a multiple of this. */
621 #define STRUCTURE_SIZE_BOUNDARY 8
622
623 /* A bit-field declared as `int' forces `int' alignment for the struct. */
624 #define PCC_BITFIELD_TYPE_MATTERS 1
625
626 /* No data type wants to be aligned rounder than this. */
627 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
628
629 /* The best alignment to use in cases where we have a choice. */
630 #define FASTEST_ALIGNMENT 64
631
632 /* Define this macro as an expression for the alignment of a structure
633 (given by STRUCT as a tree node) if the alignment computed in the
634 usual way is COMPUTED and the alignment explicitly specified was
635 SPECIFIED.
636
637 The default is to use SPECIFIED if it is larger; otherwise, use
638 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
639 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
640 (TARGET_FASTER_STRUCTS ? \
641 ((TREE_CODE (STRUCT) == RECORD_TYPE \
642 || TREE_CODE (STRUCT) == UNION_TYPE \
643 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
644 && TYPE_FIELDS (STRUCT) != 0 \
645 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
646 : MAX ((COMPUTED), (SPECIFIED))) \
647 : MAX ((COMPUTED), (SPECIFIED)))
648
649 /* We need 2 words, so we can save the stack pointer and the return register
650 of the function containing a non-local goto target. */
651 #define STACK_SAVEAREA_MODE(LEVEL) \
652 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
653
654 /* Make strings word-aligned so strcpy from constants will be faster. */
655 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
656 ((TREE_CODE (EXP) == STRING_CST \
657 && (ALIGN) < FASTEST_ALIGNMENT) \
658 ? FASTEST_ALIGNMENT : (ALIGN))
659
660 /* Make arrays of chars word-aligned for the same reasons. */
661 #define DATA_ALIGNMENT(TYPE, ALIGN) \
662 (TREE_CODE (TYPE) == ARRAY_TYPE \
663 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
664 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
665
666 /* Make local arrays of chars word-aligned for the same reasons. */
667 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
668
669 /* Set this nonzero if move instructions will actually fail to work
670 when given unaligned data. */
671 #define STRICT_ALIGNMENT 1
672
673 /* Things that must be doubleword aligned cannot go in the text section,
674 because the linker fails to align the text section enough!
675 Put them in the data section. This macro is only used in this file. */
676 #define MAX_TEXT_ALIGN 32
677 \f
678 /* Standard register usage. */
679
680 /* Number of actual hardware registers.
681 The hardware registers are assigned numbers for the compiler
682 from 0 to just below FIRST_PSEUDO_REGISTER.
683 All registers that the compiler knows about must be given numbers,
684 even those that are not normally considered general registers.
685
686 SPARC has 32 integer registers and 32 floating point registers.
687 64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
688 accessible. We still account for them to simplify register computations
689 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
690 32+32+32+4 == 100.
691 Register 100 is used as the integer condition code register.
692 Register 101 is used as the soft frame pointer register. */
693
694 #define FIRST_PSEUDO_REGISTER 103
695
696 #define SPARC_FIRST_FP_REG 32
697 /* Additional V9 fp regs. */
698 #define SPARC_FIRST_V9_FP_REG 64
699 #define SPARC_LAST_V9_FP_REG 95
700 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
701 #define SPARC_FIRST_V9_FCC_REG 96
702 #define SPARC_LAST_V9_FCC_REG 99
703 /* V8 fcc reg. */
704 #define SPARC_FCC_REG 96
705 /* Integer CC reg. We don't distinguish %icc from %xcc. */
706 #define SPARC_ICC_REG 100
707 #define SPARC_GSR_REG 102
708
709 /* Nonzero if REGNO is an fp reg. */
710 #define SPARC_FP_REG_P(REGNO) \
711 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
712
713 /* Argument passing regs. */
714 #define SPARC_OUTGOING_INT_ARG_FIRST 8
715 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
716 #define SPARC_FP_ARG_FIRST 32
717
718 /* 1 for registers that have pervasive standard uses
719 and are not available for the register allocator.
720
721 On non-v9 systems:
722 g1 is free to use as temporary.
723 g2-g4 are reserved for applications. Gcc normally uses them as
724 temporaries, but this can be disabled via the -mno-app-regs option.
725 g5 through g7 are reserved for the operating system.
726
727 On v9 systems:
728 g1,g5 are free to use as temporaries, and are free to use between calls
729 if the call is to an external function via the PLT.
730 g4 is free to use as a temporary in the non-embedded case.
731 g4 is reserved in the embedded case.
732 g2-g3 are reserved for applications. Gcc normally uses them as
733 temporaries, but this can be disabled via the -mno-app-regs option.
734 g6-g7 are reserved for the operating system (or application in
735 embedded case).
736 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
737 currently be a fixed register until this pattern is rewritten.
738 Register 1 is also used when restoring call-preserved registers in large
739 stack frames.
740
741 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
742 TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
743 */
744
745 #define FIXED_REGISTERS \
746 {1, 0, 2, 2, 2, 2, 1, 1, \
747 0, 0, 0, 0, 0, 0, 1, 0, \
748 0, 0, 0, 0, 0, 0, 0, 0, \
749 0, 0, 0, 0, 0, 0, 0, 1, \
750 \
751 0, 0, 0, 0, 0, 0, 0, 0, \
752 0, 0, 0, 0, 0, 0, 0, 0, \
753 0, 0, 0, 0, 0, 0, 0, 0, \
754 0, 0, 0, 0, 0, 0, 0, 0, \
755 \
756 0, 0, 0, 0, 0, 0, 0, 0, \
757 0, 0, 0, 0, 0, 0, 0, 0, \
758 0, 0, 0, 0, 0, 0, 0, 0, \
759 0, 0, 0, 0, 0, 0, 0, 0, \
760 \
761 0, 0, 0, 0, 0, 1, 1}
762
763 /* 1 for registers not available across function calls.
764 These must include the FIXED_REGISTERS and also any
765 registers that can be used without being saved.
766 The latter must include the registers where values are returned
767 and the register where structure-value addresses are passed.
768 Aside from that, you can include as many other registers as you like. */
769
770 #define CALL_USED_REGISTERS \
771 {1, 1, 1, 1, 1, 1, 1, 1, \
772 1, 1, 1, 1, 1, 1, 1, 1, \
773 0, 0, 0, 0, 0, 0, 0, 0, \
774 0, 0, 0, 0, 0, 0, 0, 1, \
775 \
776 1, 1, 1, 1, 1, 1, 1, 1, \
777 1, 1, 1, 1, 1, 1, 1, 1, \
778 1, 1, 1, 1, 1, 1, 1, 1, \
779 1, 1, 1, 1, 1, 1, 1, 1, \
780 \
781 1, 1, 1, 1, 1, 1, 1, 1, \
782 1, 1, 1, 1, 1, 1, 1, 1, \
783 1, 1, 1, 1, 1, 1, 1, 1, \
784 1, 1, 1, 1, 1, 1, 1, 1, \
785 \
786 1, 1, 1, 1, 1, 1, 1}
787
788 /* Return number of consecutive hard regs needed starting at reg REGNO
789 to hold something of mode MODE.
790 This is ordinarily the length in words of a value of mode MODE
791 but can be less for certain modes in special long registers.
792
793 On SPARC, ordinary registers hold 32 bits worth;
794 this means both integer and floating point registers.
795 On v9, integer regs hold 64 bits worth; floating point regs hold
796 32 bits worth (this includes the new fp regs as even the odd ones are
797 included in the hard register count). */
798
799 #define HARD_REGNO_NREGS(REGNO, MODE) \
800 ((REGNO) == SPARC_GSR_REG ? 1 : \
801 (TARGET_ARCH64 \
802 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
803 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
804 : (GET_MODE_SIZE (MODE) + 3) / 4) \
805 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
806
807 /* Due to the ARCH64 discrepancy above we must override this next
808 macro too. */
809 #define REGMODE_NATURAL_SIZE(MODE) \
810 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
811
812 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
813 See sparc.c for how we initialize this. */
814 extern const int *hard_regno_mode_classes;
815 extern int sparc_mode_class[];
816
817 /* ??? Because of the funny way we pass parameters we should allow certain
818 ??? types of float/complex values to be in integer registers during
819 ??? RTL generation. This only matters on arch32. */
820 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
821 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
822
823 /* Value is 1 if it is OK to rename a hard register FROM to another hard
824 register TO. We cannot rename %g1 as it may be used before the save
825 register window instruction in the prologue. */
826 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
827
828 /* Value is 1 if it is a good idea to tie two pseudo registers
829 when one has mode MODE1 and one has mode MODE2.
830 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
831 for any hard reg, then this must be 0 for correct output.
832
833 For V9: SFmode can't be combined with other float modes, because they can't
834 be allocated to the %d registers. Also, DFmode won't fit in odd %f
835 registers, but SFmode will. */
836 #define MODES_TIEABLE_P(MODE1, MODE2) \
837 ((MODE1) == (MODE2) \
838 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
839 && (! TARGET_V9 \
840 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
841 || (MODE1 != SFmode && MODE2 != SFmode)))))
842
843 /* Specify the registers used for certain standard purposes.
844 The values of these macros are register numbers. */
845
846 /* Register to use for pushing function arguments. */
847 #define STACK_POINTER_REGNUM 14
848
849 /* The stack bias (amount by which the hardware register is offset by). */
850 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
851
852 /* Actual top-of-stack address is 92/176 greater than the contents of the
853 stack pointer register for !v9/v9. That is:
854 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
855 address, and 6*4 bytes for the 6 register parameters.
856 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
857 parameter regs. */
858 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
859
860 /* Base register for access to local variables of the function. */
861 #define HARD_FRAME_POINTER_REGNUM 30
862
863 /* The soft frame pointer does not have the stack bias applied. */
864 #define FRAME_POINTER_REGNUM 101
865
866 /* Given the stack bias, the stack pointer isn't actually aligned. */
867 #define INIT_EXPANDERS \
868 do { \
869 if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS) \
870 { \
871 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
872 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
873 } \
874 } while (0)
875
876 /* Base register for access to arguments of the function. */
877 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
878
879 /* Register in which static-chain is passed to a function. This must
880 not be a register used by the prologue. */
881 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
882
883 /* Register which holds the global offset table, if any. */
884
885 #define GLOBAL_OFFSET_TABLE_REGNUM 23
886
887 /* Register which holds offset table for position-independent
888 data references. */
889
890 #define PIC_OFFSET_TABLE_REGNUM \
891 (flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
892
893 /* Pick a default value we can notice from override_options:
894 !v9: Default is on.
895 v9: Default is off.
896 Originally it was -1, but later on the container of options changed to
897 unsigned byte, so we decided to pick 127 as default value, which does
898 reflect an undefined default value in case of 0/1. */
899
900 #define DEFAULT_PCC_STRUCT_RETURN 127
901
902 /* Functions which return large structures get the address
903 to place the wanted value at offset 64 from the frame.
904 Must reserve 64 bytes for the in and local registers.
905 v9: Functions which return large structures get the address to place the
906 wanted value from an invisible first argument. */
907 #define STRUCT_VALUE_OFFSET 64
908 \f
909 /* Define the classes of registers for register constraints in the
910 machine description. Also define ranges of constants.
911
912 One of the classes must always be named ALL_REGS and include all hard regs.
913 If there is more than one class, another class must be named NO_REGS
914 and contain no registers.
915
916 The name GENERAL_REGS must be the name of a class (or an alias for
917 another name such as ALL_REGS). This is the class of registers
918 that is allowed by "g" or "r" in a register constraint.
919 Also, registers outside this class are allocated only when
920 instructions express preferences for them.
921
922 The classes must be numbered in nondecreasing order; that is,
923 a larger-numbered class must never be contained completely
924 in a smaller-numbered class.
925
926 For any two classes, it is very desirable that there be another
927 class that represents their union. */
928
929 /* The SPARC has various kinds of registers: general, floating point,
930 and condition codes [well, it has others as well, but none that we
931 care directly about].
932
933 For v9 we must distinguish between the upper and lower floating point
934 registers because the upper ones can't hold SFmode values.
935 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
936 satisfying a group need for a class will also satisfy a single need for
937 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
938 regs.
939
940 It is important that one class contains all the general and all the standard
941 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
942 because reg_class_record() will bias the selection in favor of fp regs,
943 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
944 because FP_REGS > GENERAL_REGS.
945
946 It is also important that one class contain all the general and all
947 the fp regs. Otherwise when spilling a DFmode reg, it may be from
948 EXTRA_FP_REGS but find_reloads() may use class
949 GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
950 because the compiler thinks it doesn't have a spill reg when in
951 fact it does.
952
953 v9 also has 4 floating point condition code registers. Since we don't
954 have a class that is the union of FPCC_REGS with either of the others,
955 it is important that it appear first. Otherwise the compiler will die
956 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
957 constraints.
958
959 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
960 may try to use it to hold an SImode value. See register_operand.
961 ??? Should %fcc[0123] be handled similarly?
962 */
963
964 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
965 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
966 ALL_REGS, LIM_REG_CLASSES };
967
968 #define N_REG_CLASSES (int) LIM_REG_CLASSES
969
970 /* Give names of register classes as strings for dump file. */
971
972 #define REG_CLASS_NAMES \
973 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
974 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
975 "ALL_REGS" }
976
977 /* Define which registers fit in which classes.
978 This is an initializer for a vector of HARD_REG_SET
979 of length N_REG_CLASSES. */
980
981 #define REG_CLASS_CONTENTS \
982 {{0, 0, 0, 0}, /* NO_REGS */ \
983 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
984 {0xffff, 0, 0, 0}, /* I64_REGS */ \
985 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
986 {0, -1, 0, 0}, /* FP_REGS */ \
987 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
988 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
989 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
990 {-1, -1, -1, 0x7f}} /* ALL_REGS */
991
992 /* The same information, inverted:
993 Return the class number of the smallest class containing
994 reg number REGNO. This could be a conditional expression
995 or could index an array. */
996
997 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
998
999 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1000
1001 /* Defines invalid mode changes. Borrowed from pa64-regs.h.
1002
1003 SImode loads to floating-point registers are not zero-extended.
1004 The definition for LOAD_EXTEND_OP specifies that integer loads
1005 narrower than BITS_PER_WORD will be zero-extended. As a result,
1006 we inhibit changes from SImode unless they are to a mode that is
1007 identical in size. */
1008
1009 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1010 (TARGET_ARCH64 \
1011 && (FROM) == SImode \
1012 && GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1013 ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
1014
1015 /* This is the order in which to allocate registers normally.
1016
1017 We put %f0-%f7 last among the float registers, so as to make it more
1018 likely that a pseudo-register which dies in the float return register
1019 area will get allocated to the float return register, thus saving a move
1020 instruction at the end of the function.
1021
1022 Similarly for integer return value registers.
1023
1024 We know in this case that we will not end up with a leaf function.
1025
1026 The register allocator is given the global and out registers first
1027 because these registers are call clobbered and thus less useful to
1028 global register allocation.
1029
1030 Next we list the local and in registers. They are not call clobbered
1031 and thus very useful for global register allocation. We list the input
1032 registers before the locals so that it is more likely the incoming
1033 arguments received in those registers can just stay there and not be
1034 reloaded. */
1035
1036 #define REG_ALLOC_ORDER \
1037 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1038 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1039 15, /* %o7 */ \
1040 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1041 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
1042 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1043 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1044 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1045 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1046 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1047 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1048 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1049 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1050 96, 97, 98, 99, /* %fcc0-3 */ \
1051 100, 0, 14, 30, 101, 102 } /* %icc, %g0, %o6, %i6, %sfp, %gsr */
1052
1053 /* This is the order in which to allocate registers for
1054 leaf functions. If all registers can fit in the global and
1055 output registers, then we have the possibility of having a leaf
1056 function.
1057
1058 The macro actually mentioned the input registers first,
1059 because they get renumbered into the output registers once
1060 we know really do have a leaf function.
1061
1062 To be more precise, this register allocation order is used
1063 when %o7 is found to not be clobbered right before register
1064 allocation. Normally, the reason %o7 would be clobbered is
1065 due to a call which could not be transformed into a sibling
1066 call.
1067
1068 As a consequence, it is possible to use the leaf register
1069 allocation order and not end up with a leaf function. We will
1070 not get suboptimal register allocation in that case because by
1071 definition of being potentially leaf, there were no function
1072 calls. Therefore, allocation order within the local register
1073 window is not critical like it is when we do have function calls. */
1074
1075 #define REG_LEAF_ALLOC_ORDER \
1076 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1077 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
1078 15, /* %o7 */ \
1079 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1080 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1081 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1082 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1083 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1084 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1085 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1086 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1087 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1088 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1089 96, 97, 98, 99, /* %fcc0-3 */ \
1090 100, 0, 14, 30, 31, 101, 102 } /* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
1091
1092 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
1093
1094 extern char sparc_leaf_regs[];
1095 #define LEAF_REGISTERS sparc_leaf_regs
1096
1097 extern char leaf_reg_remap[];
1098 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1099
1100 /* The class value for index registers, and the one for base regs. */
1101 #define INDEX_REG_CLASS GENERAL_REGS
1102 #define BASE_REG_CLASS GENERAL_REGS
1103
1104 /* Local macro to handle the two v9 classes of FP regs. */
1105 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1106
1107 /* Predicates for 10-bit, 11-bit and 13-bit signed constants. */
1108 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1109 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1110 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1111
1112 /* 10- and 11-bit immediates are only used for a few specific insns.
1113 SMALL_INT is used throughout the port so we continue to use it. */
1114 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1115
1116 /* Predicate for constants that can be loaded with a sethi instruction.
1117 This is the general, 64-bit aware, bitwise version that ensures that
1118 only constants whose representation fits in the mask
1119
1120 0x00000000fffffc00
1121
1122 are accepted. It will reject, for example, negative SImode constants
1123 on 64-bit hosts, so correct handling is to mask the value beforehand
1124 according to the mode of the instruction. */
1125 #define SPARC_SETHI_P(X) \
1126 (((unsigned HOST_WIDE_INT) (X) \
1127 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1128
1129 /* Version of the above predicate for SImode constants and below. */
1130 #define SPARC_SETHI32_P(X) \
1131 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1132
1133 /* Return the register class of a scratch register needed to load IN into
1134 a register of class CLASS in MODE.
1135
1136 We need a temporary when loading/storing a HImode/QImode value
1137 between memory and the FPU registers. This can happen when combine puts
1138 a paradoxical subreg in a float/fix conversion insn.
1139
1140 We need a temporary when loading/storing a DFmode value between
1141 unaligned memory and the upper FPU registers. */
1142
1143 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1144 ((FP_REG_CLASS_P (CLASS) \
1145 && ((MODE) == HImode || (MODE) == QImode) \
1146 && (GET_CODE (IN) == MEM \
1147 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1148 && true_regnum (IN) == -1))) \
1149 ? GENERAL_REGS \
1150 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1151 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1152 && ! mem_min_alignment ((IN), 8)) \
1153 ? FP_REGS \
1154 : (((TARGET_CM_MEDANY \
1155 && symbolic_operand ((IN), (MODE))) \
1156 || (TARGET_CM_EMBMEDANY \
1157 && text_segment_operand ((IN), (MODE)))) \
1158 && !flag_pic) \
1159 ? GENERAL_REGS \
1160 : NO_REGS)
1161
1162 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1163 ((FP_REG_CLASS_P (CLASS) \
1164 && ((MODE) == HImode || (MODE) == QImode) \
1165 && (GET_CODE (IN) == MEM \
1166 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1167 && true_regnum (IN) == -1))) \
1168 ? GENERAL_REGS \
1169 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1170 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1171 && ! mem_min_alignment ((IN), 8)) \
1172 ? FP_REGS \
1173 : (((TARGET_CM_MEDANY \
1174 && symbolic_operand ((IN), (MODE))) \
1175 || (TARGET_CM_EMBMEDANY \
1176 && text_segment_operand ((IN), (MODE)))) \
1177 && !flag_pic) \
1178 ? GENERAL_REGS \
1179 : NO_REGS)
1180
1181 /* On SPARC it is not possible to directly move data between
1182 GENERAL_REGS and FP_REGS. */
1183 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1184 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1185
1186 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1187 because the movsi and movsf patterns don't handle r/f moves.
1188 For v8 we copy the default definition. */
1189 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1190 (TARGET_ARCH64 \
1191 ? (GET_MODE_BITSIZE (MODE) < 32 \
1192 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1193 : MODE) \
1194 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1195 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1196 : MODE))
1197
1198 /* Return the maximum number of consecutive registers
1199 needed to represent mode MODE in a register of class CLASS. */
1200 /* On SPARC, this is the size of MODE in words. */
1201 #define CLASS_MAX_NREGS(CLASS, MODE) \
1202 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1203 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1204 \f
1205 /* Stack layout; function entry, exit and calling. */
1206
1207 /* Define this if pushing a word on the stack
1208 makes the stack pointer a smaller address. */
1209 #define STACK_GROWS_DOWNWARD
1210
1211 /* Define this to nonzero if the nominal address of the stack frame
1212 is at the high-address end of the local variables;
1213 that is, each additional local variable allocated
1214 goes at a more negative offset in the frame. */
1215 #define FRAME_GROWS_DOWNWARD 1
1216
1217 /* Offset within stack frame to start allocating local variables at.
1218 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1219 first local allocated. Otherwise, it is the offset to the BEGINNING
1220 of the first local allocated. */
1221 #define STARTING_FRAME_OFFSET 0
1222
1223 /* Offset of first parameter from the argument pointer register value.
1224 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1225 even if this function isn't going to use it.
1226 v9: This is 128 for the ins and locals. */
1227 #define FIRST_PARM_OFFSET(FNDECL) \
1228 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1229
1230 /* Offset from the argument pointer register value to the CFA.
1231 This is different from FIRST_PARM_OFFSET because the register window
1232 comes between the CFA and the arguments. */
1233 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1234
1235 /* When a parameter is passed in a register, stack space is still
1236 allocated for it.
1237 !v9: All 6 possible integer registers have backing store allocated.
1238 v9: Only space for the arguments passed is allocated. */
1239 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1240 meaning to the backend. Further, we need to be able to detect if a
1241 varargs/unprototyped function is called, as they may want to spill more
1242 registers than we've provided space. Ugly, ugly. So for now we retain
1243 all 6 slots even for v9. */
1244 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1245
1246 /* Definitions for register elimination. */
1247
1248 #define ELIMINABLE_REGS \
1249 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1250 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1251
1252 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1253 do { \
1254 if ((TO) == STACK_POINTER_REGNUM) \
1255 (OFFSET) = sparc_compute_frame_size (get_frame_size (), \
1256 current_function_is_leaf); \
1257 else \
1258 (OFFSET) = 0; \
1259 (OFFSET) += SPARC_STACK_BIAS; \
1260 } while (0)
1261
1262 /* Keep the stack pointer constant throughout the function.
1263 This is both an optimization and a necessity: longjmp
1264 doesn't behave itself when the stack pointer moves within
1265 the function! */
1266 #define ACCUMULATE_OUTGOING_ARGS 1
1267
1268 /* Define this macro if the target machine has "register windows". This
1269 C expression returns the register number as seen by the called function
1270 corresponding to register number OUT as seen by the calling function.
1271 Return OUT if register number OUT is not an outbound register. */
1272
1273 #define INCOMING_REGNO(OUT) \
1274 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1275
1276 /* Define this macro if the target machine has "register windows". This
1277 C expression returns the register number as seen by the calling function
1278 corresponding to register number IN as seen by the called function.
1279 Return IN if register number IN is not an inbound register. */
1280
1281 #define OUTGOING_REGNO(IN) \
1282 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1283
1284 /* Define this macro if the target machine has register windows. This
1285 C expression returns true if the register is call-saved but is in the
1286 register window. */
1287
1288 #define LOCAL_REGNO(REGNO) \
1289 (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1290
1291 /* Define the size of space to allocate for the return value of an
1292 untyped_call. */
1293
1294 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1295
1296 /* 1 if N is a possible register number for function argument passing.
1297 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1298
1299 #define FUNCTION_ARG_REGNO_P(N) \
1300 (TARGET_ARCH64 \
1301 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1302 : ((N) >= 8 && (N) <= 13))
1303 \f
1304 /* Define a data type for recording info about an argument list
1305 during the scan of that argument list. This data type should
1306 hold all necessary information about the function itself
1307 and about the args processed so far, enough to enable macros
1308 such as FUNCTION_ARG to determine where the next arg should go.
1309
1310 On SPARC (!v9), this is a single integer, which is a number of words
1311 of arguments scanned so far (including the invisible argument,
1312 if any, which holds the structure-value-address).
1313 Thus 7 or more means all following args should go on the stack.
1314
1315 For v9, we also need to know whether a prototype is present. */
1316
1317 struct sparc_args {
1318 int words; /* number of words passed so far */
1319 int prototype_p; /* nonzero if a prototype is present */
1320 int libcall_p; /* nonzero if a library call */
1321 };
1322 #define CUMULATIVE_ARGS struct sparc_args
1323
1324 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1325 for a call to a function whose data type is FNTYPE.
1326 For a library call, FNTYPE is 0. */
1327
1328 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1329 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1330
1331 /* If defined, a C expression which determines whether, and in which direction,
1332 to pad out an argument with extra space. The value should be of type
1333 `enum direction': either `upward' to pad above the argument,
1334 `downward' to pad below, or `none' to inhibit padding. */
1335
1336 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1337 function_arg_padding ((MODE), (TYPE))
1338
1339 \f
1340 /* Generate the special assembly code needed to tell the assembler whatever
1341 it might need to know about the return value of a function.
1342
1343 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1344 information to the assembler relating to peephole optimization (done in
1345 the assembler). */
1346
1347 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1348 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1349
1350 /* Output the special assembly code needed to tell the assembler some
1351 register is used as global register variable.
1352
1353 SPARC 64bit psABI declares registers %g2 and %g3 as application
1354 registers and %g6 and %g7 as OS registers. Any object using them
1355 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1356 and how they are used (scratch or some global variable).
1357 Linker will then refuse to link together objects which use those
1358 registers incompatibly.
1359
1360 Unless the registers are used for scratch, two different global
1361 registers cannot be declared to the same name, so in the unlikely
1362 case of a global register variable occupying more than one register
1363 we prefix the second and following registers with .gnu.part1. etc. */
1364
1365 extern GTY(()) char sparc_hard_reg_printed[8];
1366
1367 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1368 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1369 do { \
1370 if (TARGET_ARCH64) \
1371 { \
1372 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1373 int reg; \
1374 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1375 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1376 { \
1377 if (reg == (REGNO)) \
1378 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1379 else \
1380 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1381 reg, reg - (REGNO), (NAME)); \
1382 sparc_hard_reg_printed[reg] = 1; \
1383 } \
1384 } \
1385 } while (0)
1386 #endif
1387
1388 \f
1389 /* Emit rtl for profiling. */
1390 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1391
1392 /* All the work done in PROFILE_HOOK, but still required. */
1393 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1394
1395 /* Set the name of the mcount function for the system. */
1396 #define MCOUNT_FUNCTION "*mcount"
1397 \f
1398 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1399 the stack pointer does not matter. The value is tested only in
1400 functions that have frame pointers. */
1401 #define EXIT_IGNORE_STACK 1
1402
1403 /* Length in units of the trampoline for entering a nested function. */
1404 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1405
1406 /* Alignment required for trampolines, in bits. */
1407 #define TRAMPOLINE_ALIGNMENT 128
1408 \f
1409 /* Generate RTL to flush the register windows so as to make arbitrary frames
1410 available. */
1411 #define SETUP_FRAME_ADDRESSES() \
1412 do { \
1413 if (!TARGET_FLAT) \
1414 emit_insn (gen_flush_register_windows ());\
1415 } while (0)
1416
1417 /* Given an rtx for the address of a frame,
1418 return an rtx for the address of the word in the frame
1419 that holds the dynamic chain--the previous frame's address. */
1420 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1421 plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1422
1423 /* Given an rtx for the frame pointer,
1424 return an rtx for the address of the frame. */
1425 #define FRAME_ADDR_RTX(frame) plus_constant (frame, SPARC_STACK_BIAS)
1426
1427 /* The return address isn't on the stack, it is in a register, so we can't
1428 access it from the current frame pointer. We can access it from the
1429 previous frame pointer though by reading a value from the register window
1430 save area. */
1431 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1432
1433 /* This is the offset of the return address to the true next instruction to be
1434 executed for the current function. */
1435 #define RETURN_ADDR_OFFSET \
1436 (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1437
1438 /* The current return address is in %i7. The return address of anything
1439 farther back is in the register window save area at [%fp+60]. */
1440 /* ??? This ignores the fact that the actual return address is +8 for normal
1441 returns, and +12 for structure returns. */
1442 #define RETURN_ADDR_REGNUM 31
1443 #define RETURN_ADDR_RTX(count, frame) \
1444 ((count == -1) \
1445 ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM) \
1446 : gen_rtx_MEM (Pmode, \
1447 memory_address (Pmode, plus_constant (frame, \
1448 15 * UNITS_PER_WORD \
1449 + SPARC_STACK_BIAS))))
1450
1451 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1452 +12, but always using +8 is close enough for frame unwind purposes.
1453 Actually, just using %o7 is close enough for unwinding, but %o7+8
1454 is something you can return to. */
1455 #define INCOMING_RETURN_ADDR_REGNUM 15
1456 #define INCOMING_RETURN_ADDR_RTX \
1457 plus_constant (gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1458 #define DWARF_FRAME_RETURN_COLUMN \
1459 DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1460
1461 /* The offset from the incoming value of %sp to the top of the stack frame
1462 for the current function. On sparc64, we have to account for the stack
1463 bias if present. */
1464 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1465
1466 /* Describe how we implement __builtin_eh_return. */
1467 #define EH_RETURN_REGNUM 1
1468 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1469 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1470
1471 /* Define registers used by the epilogue and return instruction. */
1472 #define EPILOGUE_USES(REGNO) \
1473 ((REGNO) == RETURN_ADDR_REGNUM \
1474 || (TARGET_FLAT \
1475 && epilogue_completed \
1476 && (REGNO) == INCOMING_RETURN_ADDR_REGNUM) \
1477 || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1478
1479 /* Select a format to encode pointers in exception handling data. CODE
1480 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1481 true if the symbol may be affected by dynamic relocations.
1482
1483 If assembler and linker properly support .uaword %r_disp32(foo),
1484 then use PC relative 32-bit relocations instead of absolute relocs
1485 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1486 for binaries, to save memory.
1487
1488 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1489 symbol %r_disp32() is against was not local, but .hidden. In that
1490 case, we have to use DW_EH_PE_absptr for pic personality. */
1491 #ifdef HAVE_AS_SPARC_UA_PCREL
1492 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1493 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1494 (flag_pic \
1495 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1496 : ((TARGET_ARCH64 && ! GLOBAL) \
1497 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1498 : DW_EH_PE_absptr))
1499 #else
1500 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1501 (flag_pic \
1502 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1503 : ((TARGET_ARCH64 && ! GLOBAL) \
1504 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1505 : DW_EH_PE_absptr))
1506 #endif
1507
1508 /* Emit a PC-relative relocation. */
1509 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1510 do { \
1511 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1512 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1513 assemble_name (FILE, LABEL); \
1514 fputc (')', FILE); \
1515 } while (0)
1516 #endif
1517 \f
1518 /* Addressing modes, and classification of registers for them. */
1519
1520 /* Macros to check register numbers against specific register classes. */
1521
1522 /* These assume that REGNO is a hard or pseudo reg number.
1523 They give nonzero only if REGNO is a hard reg of the suitable class
1524 or a pseudo reg currently allocated to a suitable hard reg.
1525 Since they use reg_renumber, they are safe only once reg_renumber
1526 has been allocated, which happens in local-alloc.c. */
1527
1528 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1529 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
1530 || (REGNO) == FRAME_POINTER_REGNUM \
1531 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1532
1533 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1534
1535 #define REGNO_OK_FOR_FP_P(REGNO) \
1536 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1537 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1538
1539 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1540 (TARGET_V9 \
1541 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1542 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1543 \f
1544 /* Maximum number of registers that can appear in a valid memory address. */
1545
1546 #define MAX_REGS_PER_ADDRESS 2
1547
1548 /* Recognize any constant value that is a valid address.
1549 When PIC, we do not accept an address that would require a scratch reg
1550 to load into a register. */
1551
1552 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1553
1554 /* Define this, so that when PIC, reload won't try to reload invalid
1555 addresses which require two reload registers. */
1556
1557 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1558 \f
1559 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
1560
1561 #ifdef HAVE_AS_OFFSETABLE_LO10
1562 #define USE_AS_OFFSETABLE_LO10 1
1563 #else
1564 #define USE_AS_OFFSETABLE_LO10 0
1565 #endif
1566 \f
1567 /* Try a machine-dependent way of reloading an illegitimate address
1568 operand. If we find one, push the reload and jump to WIN. This
1569 macro is used in only one place: `find_reloads_address' in reload.c. */
1570 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1571 do { \
1572 int win; \
1573 (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM), \
1574 (int)(TYPE), (IND_LEVELS), &win); \
1575 if (win) \
1576 goto WIN; \
1577 } while (0)
1578 \f
1579 /* Specify the machine mode that this machine uses
1580 for the index in the tablejump instruction. */
1581 /* If we ever implement any of the full models (such as CM_FULLANY),
1582 this has to be DImode in that case */
1583 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1584 #define CASE_VECTOR_MODE \
1585 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1586 #else
1587 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1588 we have to sign extend which slows things down. */
1589 #define CASE_VECTOR_MODE \
1590 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1591 #endif
1592
1593 /* Define this as 1 if `char' should by default be signed; else as 0. */
1594 #define DEFAULT_SIGNED_CHAR 1
1595
1596 /* Max number of bytes we can move from memory to memory
1597 in one reasonably fast instruction. */
1598 #define MOVE_MAX 8
1599
1600 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1601 move-instruction pairs, we will do a movmem or libcall instead. */
1602
1603 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1604
1605 /* Define if operations between registers always perform the operation
1606 on the full register even if a narrower mode is specified. */
1607 #define WORD_REGISTER_OPERATIONS
1608
1609 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1610 will either zero-extend or sign-extend. The value of this macro should
1611 be the code that says which one of the two operations is implicitly
1612 done, UNKNOWN if none. */
1613 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1614
1615 /* Nonzero if access to memory by bytes is slow and undesirable.
1616 For RISC chips, it means that access to memory by bytes is no
1617 better than access by words when possible, so grab a whole word
1618 and maybe make use of that. */
1619 #define SLOW_BYTE_ACCESS 1
1620
1621 /* Define this to be nonzero if shift instructions ignore all but the low-order
1622 few bits. */
1623 #define SHIFT_COUNT_TRUNCATED 1
1624
1625 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1626 is done just by pretending it is already truncated. */
1627 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1628
1629 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1630 return the mode to be used for the comparison. For floating-point,
1631 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
1632 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
1633 processing is needed. */
1634 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
1635
1636 /* Return nonzero if MODE implies a floating point inequality can be
1637 reversed. For SPARC this is always true because we have a full
1638 compliment of ordered and unordered comparisons, but until generic
1639 code knows how to reverse it correctly we keep the old definition. */
1640 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1641
1642 /* A function address in a call instruction for indexing purposes. */
1643 #define FUNCTION_MODE Pmode
1644
1645 /* Define this if addresses of constant functions
1646 shouldn't be put through pseudo regs where they can be cse'd.
1647 Desirable on machines where ordinary constants are expensive
1648 but a CALL with constant address is cheap. */
1649 #define NO_FUNCTION_CSE
1650
1651 /* The _Q_* comparison libcalls return booleans. */
1652 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1653
1654 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1655 that the inputs are fully consumed before the output memory is clobbered. */
1656
1657 #define TARGET_BUGGY_QP_LIB 0
1658
1659 /* Assume by default that we do not have the Solaris-specific conversion
1660 routines nor 64-bit integer multiply and divide routines. */
1661
1662 #define SUN_CONVERSION_LIBFUNCS 0
1663 #define DITF_CONVERSION_LIBFUNCS 0
1664 #define SUN_INTEGER_MULTIPLY_64 0
1665
1666 /* Provide the cost of a branch. For pre-v9 processors we use
1667 a value of 3 to take into account the potential annulling of
1668 the delay slot (which ends up being a bubble in the pipeline slot)
1669 plus a cycle to take into consideration the instruction cache
1670 effects.
1671
1672 On v9 and later, which have branch prediction facilities, we set
1673 it to the depth of the pipeline as that is the cost of a
1674 mispredicted branch.
1675
1676 On Niagara, normal branches insert 3 bubbles into the pipe
1677 and annulled branches insert 4 bubbles.
1678
1679 On Niagara-2 and Niagara-3, a not-taken branch costs 1 cycle whereas
1680 a taken branch costs 6 cycles. */
1681
1682 #define BRANCH_COST(speed_p, predictable_p) \
1683 ((sparc_cpu == PROCESSOR_V9 \
1684 || sparc_cpu == PROCESSOR_ULTRASPARC) \
1685 ? 7 \
1686 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1687 ? 9 \
1688 : (sparc_cpu == PROCESSOR_NIAGARA \
1689 ? 4 \
1690 : ((sparc_cpu == PROCESSOR_NIAGARA2 \
1691 || sparc_cpu == PROCESSOR_NIAGARA3) \
1692 ? 5 \
1693 : 3))))
1694 \f
1695 /* Control the assembler format that we output. */
1696
1697 /* A C string constant describing how to begin a comment in the target
1698 assembler language. The compiler assumes that the comment will end at
1699 the end of the line. */
1700
1701 #define ASM_COMMENT_START "!"
1702
1703 /* Output to assembler file text saying following lines
1704 may contain character constants, extra white space, comments, etc. */
1705
1706 #define ASM_APP_ON ""
1707
1708 /* Output to assembler file text saying following lines
1709 no longer contain unusual constructs. */
1710
1711 #define ASM_APP_OFF ""
1712
1713 /* How to refer to registers in assembler output.
1714 This sequence is indexed by compiler's hard-register-number (see above). */
1715
1716 #define REGISTER_NAMES \
1717 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1718 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1719 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1720 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1721 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1722 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1723 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1724 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
1725 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
1726 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
1727 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
1728 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
1729 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1730
1731 /* Define additional names for use in asm clobbers and asm declarations. */
1732
1733 #define ADDITIONAL_REGISTER_NAMES \
1734 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1735
1736 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
1737 can run past this up to a continuation point. Once we used 1500, but
1738 a single entry in C++ can run more than 500 bytes, due to the length of
1739 mangled symbol names. dbxout.c should really be fixed to do
1740 continuations when they are actually needed instead of trying to
1741 guess... */
1742 #define DBX_CONTIN_LENGTH 1000
1743
1744 /* This is how to output a command to make the user-level label named NAME
1745 defined for reference from other files. */
1746
1747 /* Globalizing directive for a label. */
1748 #define GLOBAL_ASM_OP "\t.global "
1749
1750 /* The prefix to add to user-visible assembler symbols. */
1751
1752 #define USER_LABEL_PREFIX "_"
1753
1754 /* This is how to store into the string LABEL
1755 the symbol_ref name of an internal numbered label where
1756 PREFIX is the class of label and NUM is the number within the class.
1757 This is suitable for output with `assemble_name'. */
1758
1759 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1760 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1761
1762 /* This is how we hook in and defer the case-vector until the end of
1763 the function. */
1764 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1765 sparc_defer_case_vector ((LAB),(VEC), 0)
1766
1767 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1768 sparc_defer_case_vector ((LAB),(VEC), 1)
1769
1770 /* This is how to output an element of a case-vector that is absolute. */
1771
1772 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1773 do { \
1774 char label[30]; \
1775 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1776 if (CASE_VECTOR_MODE == SImode) \
1777 fprintf (FILE, "\t.word\t"); \
1778 else \
1779 fprintf (FILE, "\t.xword\t"); \
1780 assemble_name (FILE, label); \
1781 fputc ('\n', FILE); \
1782 } while (0)
1783
1784 /* This is how to output an element of a case-vector that is relative.
1785 (SPARC uses such vectors only when generating PIC.) */
1786
1787 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1788 do { \
1789 char label[30]; \
1790 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
1791 if (CASE_VECTOR_MODE == SImode) \
1792 fprintf (FILE, "\t.word\t"); \
1793 else \
1794 fprintf (FILE, "\t.xword\t"); \
1795 assemble_name (FILE, label); \
1796 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
1797 fputc ('-', FILE); \
1798 assemble_name (FILE, label); \
1799 fputc ('\n', FILE); \
1800 } while (0)
1801
1802 /* This is what to output before and after case-vector (both
1803 relative and absolute). If .subsection -1 works, we put case-vectors
1804 at the beginning of the current section. */
1805
1806 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1807
1808 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
1809 fprintf(FILE, "\t.subsection\t-1\n")
1810
1811 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
1812 fprintf(FILE, "\t.previous\n")
1813
1814 #endif
1815
1816 /* This is how to output an assembler line
1817 that says to advance the location counter
1818 to a multiple of 2**LOG bytes. */
1819
1820 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1821 if ((LOG) != 0) \
1822 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1823
1824 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1825 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1826
1827 /* This says how to output an assembler line
1828 to define a global common symbol. */
1829
1830 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1831 ( fputs ("\t.common ", (FILE)), \
1832 assemble_name ((FILE), (NAME)), \
1833 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1834
1835 /* This says how to output an assembler line to define a local common
1836 symbol. */
1837
1838 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1839 ( fputs ("\t.reserve ", (FILE)), \
1840 assemble_name ((FILE), (NAME)), \
1841 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
1842 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1843
1844 /* A C statement (sans semicolon) to output to the stdio stream
1845 FILE the assembler definition of uninitialized global DECL named
1846 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1847 Try to use asm_output_aligned_bss to implement this macro. */
1848
1849 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1850 do { \
1851 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1852 } while (0)
1853
1854 #define IDENT_ASM_OP "\t.ident\t"
1855
1856 /* Output #ident as a .ident. */
1857
1858 #define ASM_OUTPUT_IDENT(FILE, NAME) \
1859 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
1860
1861 /* Prettify the assembly. */
1862
1863 extern int sparc_indent_opcode;
1864
1865 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
1866 do { \
1867 if (sparc_indent_opcode) \
1868 { \
1869 putc (' ', FILE); \
1870 sparc_indent_opcode = 0; \
1871 } \
1872 } while (0)
1873
1874 /* TLS support defaulting to original Sun flavor. GNU extensions
1875 must be activated in separate configuration files. */
1876 #ifdef HAVE_AS_TLS
1877 #define TARGET_TLS 1
1878 #else
1879 #define TARGET_TLS 0
1880 #endif
1881
1882 #define TARGET_SUN_TLS TARGET_TLS
1883 #define TARGET_GNU_TLS 0
1884
1885 /* The number of Pmode words for the setjmp buffer. */
1886 #define JMP_BUF_SIZE 12
1887
1888 /* We use gcc _mcount for profiling. */
1889 #define NO_PROFILE_COUNTERS 0