]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/sparc/sparc.h
Add D front-end, libphobos library, and D2 testsuite.
[thirdparty/gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5 at Cygnus Support.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config/vxworks-dummy.h"
24
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
27
28 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
29
30 /* Target CPU versions for D. */
31 #define TARGET_D_CPU_VERSIONS sparc_d_target_versions
32
33 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
34 /* #define SPARC_BI_ARCH */
35
36 /* Macro used later in this file to determine default architecture. */
37 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
38
39 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
40 architectures to compile for. We allow targets to choose compile time or
41 runtime selection. */
42 #ifdef IN_LIBGCC2
43 #if defined(__sparcv9) || defined(__arch64__)
44 #define TARGET_ARCH32 0
45 #else
46 #define TARGET_ARCH32 1
47 #endif /* sparc64 */
48 #else
49 #ifdef SPARC_BI_ARCH
50 #define TARGET_ARCH32 (!TARGET_64BIT)
51 #else
52 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
53 #endif /* SPARC_BI_ARCH */
54 #endif /* IN_LIBGCC2 */
55 #define TARGET_ARCH64 (!TARGET_ARCH32)
56
57 /* Code model selection in 64-bit environment.
58
59 The machine mode used for addresses is 32-bit wide:
60
61 TARGET_CM_32: 32-bit address space.
62 It is the code model used when generating 32-bit code.
63
64 The machine mode used for addresses is 64-bit wide:
65
66 TARGET_CM_MEDLOW: 32-bit address space.
67 The executable must be in the low 32 bits of memory.
68 This avoids generating %uhi and %ulo terms. Programs
69 can be statically or dynamically linked.
70
71 TARGET_CM_MEDMID: 44-bit address space.
72 The executable must be in the low 44 bits of memory,
73 and the %[hml]44 terms are used. The text and data
74 segments have a maximum size of 2GB (31-bit span).
75 The maximum offset from any instruction to the label
76 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
77
78 TARGET_CM_MEDANY: 64-bit address space.
79 The text and data segments have a maximum size of 2GB
80 (31-bit span) and may be located anywhere in memory.
81 The maximum offset from any instruction to the label
82 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
83
84 TARGET_CM_EMBMEDANY: 64-bit address space.
85 The text and data segments have a maximum size of 2GB
86 (31-bit span) and may be located anywhere in memory.
87 The global register %g4 contains the start address of
88 the data segment. Programs are statically linked and
89 PIC is not supported.
90
91 Different code models are not supported in 32-bit environment. */
92
93 enum cmodel {
94 CM_32,
95 CM_MEDLOW,
96 CM_MEDMID,
97 CM_MEDANY,
98 CM_EMBMEDANY
99 };
100
101 /* One of CM_FOO. */
102 extern enum cmodel sparc_cmodel;
103
104 /* V9 code model selection. */
105 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
106 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
107 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
108 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
109
110 #define SPARC_DEFAULT_CMODEL CM_32
111
112 /* Do not use the .note.GNU-stack convention by default. */
113 #define NEED_INDICATE_EXEC_STACK 0
114
115 /* This is call-clobbered in the normal ABI, but is reserved in the
116 home grown (aka upward compatible) embedded ABI. */
117 #define EMBMEDANY_BASE_REG "%g4"
118 \f
119 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
120 and specified by the user via --with-cpu=foo.
121 This specifies the cpu implementation, not the architecture size. */
122 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
123 capable cpu's. */
124 #define TARGET_CPU_sparc 0
125 #define TARGET_CPU_v7 0 /* alias */
126 #define TARGET_CPU_cypress 0 /* alias */
127 #define TARGET_CPU_v8 1 /* generic v8 implementation */
128 #define TARGET_CPU_supersparc 2
129 #define TARGET_CPU_hypersparc 3
130 #define TARGET_CPU_leon 4
131 #define TARGET_CPU_leon3 5
132 #define TARGET_CPU_leon3v7 6
133 #define TARGET_CPU_sparclite 7
134 #define TARGET_CPU_f930 7 /* alias */
135 #define TARGET_CPU_f934 7 /* alias */
136 #define TARGET_CPU_sparclite86x 8
137 #define TARGET_CPU_sparclet 9
138 #define TARGET_CPU_tsc701 9 /* alias */
139 #define TARGET_CPU_v9 10 /* generic v9 implementation */
140 #define TARGET_CPU_sparcv9 10 /* alias */
141 #define TARGET_CPU_sparc64 10 /* alias */
142 #define TARGET_CPU_ultrasparc 11
143 #define TARGET_CPU_ultrasparc3 12
144 #define TARGET_CPU_niagara 13
145 #define TARGET_CPU_niagara2 14
146 #define TARGET_CPU_niagara3 15
147 #define TARGET_CPU_niagara4 16
148 #define TARGET_CPU_niagara7 19
149 #define TARGET_CPU_m8 20
150
151 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
152 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
153 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
154 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
155 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
156 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
157 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4 \
158 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara7 \
159 || TARGET_CPU_DEFAULT == TARGET_CPU_m8
160
161 #define CPP_CPU32_DEFAULT_SPEC ""
162 #define ASM_CPU32_DEFAULT_SPEC ""
163
164 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
165 /* ??? What does Sun's CC pass? */
166 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
167 /* ??? It's not clear how other assemblers will handle this, so by default
168 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
169 is handled in sol2.h. */
170 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
171 #endif
172 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
173 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
174 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
175 #endif
176 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
177 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
178 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
179 #endif
180 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
181 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
182 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
183 #endif
184 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
185 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
186 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
187 #endif
188 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
189 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
190 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
191 #endif
192 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
193 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
194 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
195 #endif
196 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara7
197 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
198 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA7_FLAG
199 #endif
200 #if TARGET_CPU_DEFAULT == TARGET_CPU_m8
201 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
202 #define ASM_CPU64_DEFAULT_SPEC AS_M8_FLAG
203 #endif
204
205 #else
206
207 #define CPP_CPU64_DEFAULT_SPEC ""
208 #define ASM_CPU64_DEFAULT_SPEC ""
209
210 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
211 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
212 #define CPP_CPU32_DEFAULT_SPEC ""
213 #define ASM_CPU32_DEFAULT_SPEC ""
214 #endif
215
216 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
217 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
218 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
219 #endif
220
221 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
222 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
223 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
224 #endif
225
226 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
227 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
228 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
229 #endif
230
231 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
232 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
233 #define ASM_CPU32_DEFAULT_SPEC ""
234 #endif
235
236 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
237 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
238 #define ASM_CPU32_DEFAULT_SPEC ""
239 #endif
240
241 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
242 || TARGET_CPU_DEFAULT == TARGET_CPU_leon3
243 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
244 #define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
245 #endif
246
247 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon3v7
248 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__"
249 #define ASM_CPU32_DEFAULT_SPEC AS_LEONV7_FLAG
250 #endif
251
252 #endif
253
254 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
255 #error Unrecognized value in TARGET_CPU_DEFAULT.
256 #endif
257
258 #ifdef SPARC_BI_ARCH
259
260 #define CPP_CPU_DEFAULT_SPEC \
261 (DEFAULT_ARCH32_P ? "\
262 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
263 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
264 " : "\
265 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
266 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
267 ")
268 #define ASM_CPU_DEFAULT_SPEC \
269 (DEFAULT_ARCH32_P ? "\
270 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
271 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
272 " : "\
273 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
274 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
275 ")
276
277 #else /* !SPARC_BI_ARCH */
278
279 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
280 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
281
282 #endif /* !SPARC_BI_ARCH */
283
284 /* Define macros to distinguish architectures. */
285
286 /* Common CPP definitions used by CPP_SPEC amongst the various targets
287 for handling -mcpu=xxx switches. */
288 #define CPP_CPU_SPEC "\
289 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
290 %{mcpu=sparclite:-D__sparclite__} \
291 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
292 %{mcpu=sparclite86x:-D__sparclite86x__} \
293 %{mcpu=v8:-D__sparc_v8__} \
294 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
295 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
296 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
297 %{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
298 %{mcpu=leon3v7:-D__leon__} \
299 %{mcpu=v9:-D__sparc_v9__} \
300 %{mcpu=ultrasparc:-D__sparc_v9__} \
301 %{mcpu=ultrasparc3:-D__sparc_v9__} \
302 %{mcpu=niagara:-D__sparc_v9__} \
303 %{mcpu=niagara2:-D__sparc_v9__} \
304 %{mcpu=niagara3:-D__sparc_v9__} \
305 %{mcpu=niagara4:-D__sparc_v9__} \
306 %{mcpu=niagara7:-D__sparc_v9__} \
307 %{mcpu=m8:-D__sparc_v9__} \
308 %{!mcpu*:%(cpp_cpu_default)} \
309 "
310 #define CPP_ARCH32_SPEC ""
311 #define CPP_ARCH64_SPEC "-D__arch64__"
312
313 #define CPP_ARCH_DEFAULT_SPEC \
314 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
315
316 #define CPP_ARCH_SPEC "\
317 %{m32:%(cpp_arch32)} \
318 %{m64:%(cpp_arch64)} \
319 %{!m32:%{!m64:%(cpp_arch_default)}} \
320 "
321
322 /* Macros to distinguish the endianness, window model and FP support. */
323 #define CPP_OTHER_SPEC "\
324 %{mflat:-D_FLAT} \
325 %{msoft-float:-D_SOFT_FLOAT} \
326 "
327
328 /* Macros to distinguish the particular subtarget. */
329 #define CPP_SUBTARGET_SPEC ""
330
331 #define CPP_SPEC \
332 "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
333
334 /* This used to translate -dalign to -malign, but that is no good
335 because it can't turn off the usual meaning of making debugging dumps. */
336
337 #define CC1_SPEC ""
338
339 /* Override in target specific files. */
340 #define ASM_CPU_SPEC "\
341 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
342 %{mcpu=sparclite:-Asparclite} \
343 %{mcpu=sparclite86x:-Asparclite} \
344 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
345 %{mcpu=v8:-Av8} \
346 %{mcpu=supersparc:-Av8} \
347 %{mcpu=hypersparc:-Av8} \
348 %{mcpu=leon:" AS_LEON_FLAG "} \
349 %{mcpu=leon3:" AS_LEON_FLAG "} \
350 %{mcpu=leon3v7:" AS_LEONV7_FLAG "} \
351 %{mv8plus:-Av8plus} \
352 %{mcpu=v9:-Av9} \
353 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
354 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
355 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
356 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
357 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
358 %{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
359 %{mcpu=niagara7:%{!mv8plus:" AS_NIAGARA7_FLAG "}} \
360 %{mcpu=m8:%{!mv8plus:" AS_M8_FLAG "}} \
361 %{!mcpu*:%(asm_cpu_default)} \
362 "
363
364 /* Word size selection, among other things.
365 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
366
367 #define ASM_ARCH32_SPEC "-32"
368 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
369 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
370 #else
371 #define ASM_ARCH64_SPEC "-64"
372 #endif
373 #define ASM_ARCH_DEFAULT_SPEC \
374 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
375
376 #define ASM_ARCH_SPEC "\
377 %{m32:%(asm_arch32)} \
378 %{m64:%(asm_arch64)} \
379 %{!m32:%{!m64:%(asm_arch_default)}} \
380 "
381
382 #ifdef HAVE_AS_RELAX_OPTION
383 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
384 #else
385 #define ASM_RELAX_SPEC ""
386 #endif
387
388 /* Special flags to the Sun-4 assembler when using pipe for input. */
389
390 #define ASM_SPEC "\
391 %{!pg:%{!p:%{" FPIE_OR_FPIC_SPEC ":-k}}} %{keep-local-as-symbols:-L} \
392 %(asm_cpu) %(asm_relax)"
393
394 /* This macro defines names of additional specifications to put in the specs
395 that can be used in various specifications like CC1_SPEC. Its definition
396 is an initializer with a subgrouping for each command option.
397
398 Each subgrouping contains a string constant, that defines the
399 specification name, and a string constant that used by the GCC driver
400 program.
401
402 Do not define this macro if it does not need to do anything. */
403
404 #define EXTRA_SPECS \
405 { "cpp_cpu", CPP_CPU_SPEC }, \
406 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
407 { "cpp_arch32", CPP_ARCH32_SPEC }, \
408 { "cpp_arch64", CPP_ARCH64_SPEC }, \
409 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
410 { "cpp_arch", CPP_ARCH_SPEC }, \
411 { "cpp_other", CPP_OTHER_SPEC }, \
412 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
413 { "asm_cpu", ASM_CPU_SPEC }, \
414 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
415 { "asm_arch32", ASM_ARCH32_SPEC }, \
416 { "asm_arch64", ASM_ARCH64_SPEC }, \
417 { "asm_relax", ASM_RELAX_SPEC }, \
418 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
419 { "asm_arch", ASM_ARCH_SPEC }, \
420 SUBTARGET_EXTRA_SPECS
421
422 #define SUBTARGET_EXTRA_SPECS
423
424 /* Because libgcc can generate references back to libc (via .umul etc.) we have
425 to list libc again after the second libgcc. */
426 #define LINK_GCC_C_SEQUENCE_SPEC "%G %{!nolibc:%L} %G %{!nolibc:%L}"
427
428 \f
429 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
430 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
431
432 /* ??? This should be 32 bits for v9 but what can we do? */
433 #define WCHAR_TYPE "short unsigned int"
434 #define WCHAR_TYPE_SIZE 16
435 \f
436 /* Mask of all CPU selection flags. */
437 #define MASK_ISA \
438 (MASK_SPARCLITE + MASK_SPARCLET + MASK_LEON + MASK_LEON3 \
439 + MASK_V8 + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
440
441 /* Mask of all CPU feature flags. */
442 #define MASK_FEATURES \
443 (MASK_FPU + MASK_HARD_QUAD + MASK_VIS + MASK_VIS2 + MASK_VIS3 \
444 + MASK_VIS4 + MASK_CBCOND + MASK_FMAF + MASK_FSMULD \
445 + MASK_POPC + MASK_SUBXC)
446
447 /* TARGET_HARD_MUL: Use 32-bit hardware multiply instructions but not %y. */
448 #define TARGET_HARD_MUL \
449 (TARGET_SPARCLITE || TARGET_SPARCLET \
450 || TARGET_V8 || TARGET_DEPRECATED_V8_INSNS)
451
452 /* TARGET_HARD_MUL32: Use 32-bit hardware multiply instructions with %y
453 to get high 32 bits. False in 64-bit or V8+ because multiply stores
454 a 64-bit result in a register. */
455 #define TARGET_HARD_MUL32 \
456 (TARGET_HARD_MUL && TARGET_ARCH32 && !TARGET_V8PLUS)
457
458 /* MASK_APP_REGS must always be the default because that's what
459 FIXED_REGISTERS is set to and -ffixed- is processed before
460 TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
461 -mno-app-regs). */
462 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
463
464 /* Recast the cpu class to be the cpu attribute.
465 Every file includes us, but not every file includes insn-attr.h. */
466 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
467
468 /* Support for a compile-time default CPU, et cetera. The rules are:
469 --with-cpu is ignored if -mcpu is specified.
470 --with-tune is ignored if -mtune is specified.
471 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
472 are specified. */
473 #define OPTION_DEFAULT_SPECS \
474 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
475 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
476 {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
477 \f
478 /* target machine storage layout */
479
480 /* Define this if most significant bit is lowest numbered
481 in instructions that operate on numbered bit-fields. */
482 #define BITS_BIG_ENDIAN 1
483
484 /* Define this if most significant byte of a word is the lowest numbered. */
485 #define BYTES_BIG_ENDIAN 1
486
487 /* Define this if most significant word of a multiword number is the lowest
488 numbered. */
489 #define WORDS_BIG_ENDIAN 1
490
491 #define MAX_BITS_PER_WORD 64
492
493 /* Width of a word, in units (bytes). */
494 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
495 #ifdef IN_LIBGCC2
496 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
497 #else
498 #define MIN_UNITS_PER_WORD 4
499 #endif
500
501 /* Now define the sizes of the C data types. */
502 #define SHORT_TYPE_SIZE 16
503 #define INT_TYPE_SIZE 32
504 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
505 #define LONG_LONG_TYPE_SIZE 64
506 #define FLOAT_TYPE_SIZE 32
507 #define DOUBLE_TYPE_SIZE 64
508
509 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
510 SPARC ABI says that it is 128-bit wide. */
511 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
512
513 /* The widest floating-point format really supported by the hardware. */
514 #define WIDEST_HARDWARE_FP_SIZE 64
515
516 /* Width in bits of a pointer. This is the size of ptr_mode. */
517 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
518
519 /* This is the machine mode used for addresses. */
520 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
521
522 /* If we have to extend pointers (only when TARGET_ARCH64 and not
523 TARGET_PTR64), we want to do it unsigned. This macro does nothing
524 if ptr_mode and Pmode are the same. */
525 #define POINTERS_EXTEND_UNSIGNED 1
526
527 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
528 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
529
530 /* Boundary (in *bits*) on which stack pointer should be aligned. */
531 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
532 then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */
533 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
534
535 /* Temporary hack until the FIXME above is fixed. */
536 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
537
538 /* ALIGN FRAMES on double word boundaries */
539 #define SPARC_STACK_ALIGN(LOC) ROUND_UP ((LOC), UNITS_PER_WORD * 2)
540
541 /* Allocation boundary (in *bits*) for the code of a function. */
542 #define FUNCTION_BOUNDARY 32
543
544 /* Alignment of field after `int : 0' in a structure. */
545 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
546
547 /* Every structure's size must be a multiple of this. */
548 #define STRUCTURE_SIZE_BOUNDARY 8
549
550 /* A bit-field declared as `int' forces `int' alignment for the struct. */
551 #define PCC_BITFIELD_TYPE_MATTERS 1
552
553 /* No data type wants to be aligned rounder than this. */
554 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
555
556 /* The best alignment to use in cases where we have a choice. */
557 #define FASTEST_ALIGNMENT 64
558
559 /* Define this macro as an expression for the alignment of a structure
560 (given by STRUCT as a tree node) if the alignment computed in the
561 usual way is COMPUTED and the alignment explicitly specified was
562 SPECIFIED.
563
564 The default is to use SPECIFIED if it is larger; otherwise, use
565 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
566 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
567 (TARGET_FASTER_STRUCTS ? \
568 ((TREE_CODE (STRUCT) == RECORD_TYPE \
569 || TREE_CODE (STRUCT) == UNION_TYPE \
570 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
571 && TYPE_FIELDS (STRUCT) != 0 \
572 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
573 : MAX ((COMPUTED), (SPECIFIED))) \
574 : MAX ((COMPUTED), (SPECIFIED)))
575
576 /* An integer expression for the size in bits of the largest integer machine
577 mode that should actually be used. We allow pairs of registers. */
578 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
579
580 /* We need 2 words, so we can save the stack pointer and the return register
581 of the function containing a non-local goto target. */
582 #define STACK_SAVEAREA_MODE(LEVEL) \
583 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
584
585 /* Make arrays of chars word-aligned for the same reasons. */
586 #define DATA_ALIGNMENT(TYPE, ALIGN) \
587 (TREE_CODE (TYPE) == ARRAY_TYPE \
588 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
589 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
590
591 /* Make local arrays of chars word-aligned for the same reasons. */
592 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
593
594 /* Set this nonzero if move instructions will actually fail to work
595 when given unaligned data. */
596 #define STRICT_ALIGNMENT 1
597
598 /* Things that must be doubleword aligned cannot go in the text section,
599 because the linker fails to align the text section enough!
600 Put them in the data section. This macro is only used in this file. */
601 #define MAX_TEXT_ALIGN 32
602 \f
603 /* Standard register usage. */
604
605 /* Number of actual hardware registers.
606 The hardware registers are assigned numbers for the compiler
607 from 0 to just below FIRST_PSEUDO_REGISTER.
608 All registers that the compiler knows about must be given numbers,
609 even those that are not normally considered general registers.
610
611 SPARC has 32 integer registers and 32 floating point registers.
612 64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
613 accessible. We still account for them to simplify register computations
614 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
615 32+32+32+4 == 100.
616 Register 100 is used as the integer condition code register.
617 Register 101 is used as the soft frame pointer register.
618 Register 102 is used as the general status register by VIS instructions. */
619
620 #define FIRST_PSEUDO_REGISTER 103
621
622 #define SPARC_FIRST_INT_REG 0
623 #define SPARC_LAST_INT_REG 31
624 #define SPARC_FIRST_FP_REG 32
625 /* Additional V9 fp regs. */
626 #define SPARC_FIRST_V9_FP_REG 64
627 #define SPARC_LAST_V9_FP_REG 95
628 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
629 #define SPARC_FIRST_V9_FCC_REG 96
630 #define SPARC_LAST_V9_FCC_REG 99
631 /* V8 fcc reg. */
632 #define SPARC_FCC_REG 96
633 /* Integer CC reg. We don't distinguish %icc from %xcc. */
634 #define SPARC_ICC_REG 100
635 #define SPARC_GSR_REG 102
636
637 /* Nonzero if REGNO is an fp reg. */
638 #define SPARC_FP_REG_P(REGNO) \
639 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
640
641 /* Nonzero if REGNO is an int reg. */
642 #define SPARC_INT_REG_P(REGNO) \
643 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
644
645 /* Argument passing regs. */
646 #define SPARC_OUTGOING_INT_ARG_FIRST 8
647 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
648 #define SPARC_FP_ARG_FIRST 32
649
650 /* 1 for registers that have pervasive standard uses
651 and are not available for the register allocator.
652
653 On non-v9 systems:
654 g1 is free to use as temporary.
655 g2-g4 are reserved for applications. Gcc normally uses them as
656 temporaries, but this can be disabled via the -mno-app-regs option.
657 g5 through g7 are reserved for the operating system.
658
659 On v9 systems:
660 g1,g5 are free to use as temporaries, and are free to use between calls
661 if the call is to an external function via the PLT.
662 g4 is free to use as a temporary in the non-embedded case.
663 g4 is reserved in the embedded case.
664 g2-g3 are reserved for applications. Gcc normally uses them as
665 temporaries, but this can be disabled via the -mno-app-regs option.
666 g6-g7 are reserved for the operating system (or application in
667 embedded case).
668 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
669 currently be a fixed register until this pattern is rewritten.
670 Register 1 is also used when restoring call-preserved registers in large
671 stack frames.
672
673 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
674 TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
675 */
676
677 #define FIXED_REGISTERS \
678 {1, 0, 2, 2, 2, 2, 1, 1, \
679 0, 0, 0, 0, 0, 0, 1, 0, \
680 0, 0, 0, 0, 0, 0, 0, 0, \
681 0, 0, 0, 0, 0, 0, 0, 1, \
682 \
683 0, 0, 0, 0, 0, 0, 0, 0, \
684 0, 0, 0, 0, 0, 0, 0, 0, \
685 0, 0, 0, 0, 0, 0, 0, 0, \
686 0, 0, 0, 0, 0, 0, 0, 0, \
687 \
688 0, 0, 0, 0, 0, 0, 0, 0, \
689 0, 0, 0, 0, 0, 0, 0, 0, \
690 0, 0, 0, 0, 0, 0, 0, 0, \
691 0, 0, 0, 0, 0, 0, 0, 0, \
692 \
693 0, 0, 0, 0, 1, 1, 1}
694
695 /* 1 for registers not available across function calls.
696 These must include the FIXED_REGISTERS and also any
697 registers that can be used without being saved.
698 The latter must include the registers where values are returned
699 and the register where structure-value addresses are passed.
700 Aside from that, you can include as many other registers as you like. */
701
702 #define CALL_USED_REGISTERS \
703 {1, 1, 1, 1, 1, 1, 1, 1, \
704 1, 1, 1, 1, 1, 1, 1, 1, \
705 0, 0, 0, 0, 0, 0, 0, 0, \
706 0, 0, 0, 0, 0, 0, 0, 1, \
707 \
708 1, 1, 1, 1, 1, 1, 1, 1, \
709 1, 1, 1, 1, 1, 1, 1, 1, \
710 1, 1, 1, 1, 1, 1, 1, 1, \
711 1, 1, 1, 1, 1, 1, 1, 1, \
712 \
713 1, 1, 1, 1, 1, 1, 1, 1, \
714 1, 1, 1, 1, 1, 1, 1, 1, \
715 1, 1, 1, 1, 1, 1, 1, 1, \
716 1, 1, 1, 1, 1, 1, 1, 1, \
717 \
718 1, 1, 1, 1, 1, 1, 1}
719
720 /* 1 for registers not available across function calls.
721 Unlike the above, this need not include the FIXED_REGISTERS, but any
722 registers that can be used without being saved.
723 The latter must include the registers where values are returned
724 and the register where structure-value addresses are passed.
725 Aside from that, you can include as many other registers as you like. */
726
727 #define CALL_REALLY_USED_REGISTERS \
728 {1, 1, 1, 1, 1, 1, 1, 1, \
729 1, 1, 1, 1, 1, 1, 1, 1, \
730 0, 0, 0, 0, 0, 0, 0, 0, \
731 0, 0, 0, 0, 0, 0, 0, 0, \
732 \
733 1, 1, 1, 1, 1, 1, 1, 1, \
734 1, 1, 1, 1, 1, 1, 1, 1, \
735 1, 1, 1, 1, 1, 1, 1, 1, \
736 1, 1, 1, 1, 1, 1, 1, 1, \
737 \
738 1, 1, 1, 1, 1, 1, 1, 1, \
739 1, 1, 1, 1, 1, 1, 1, 1, \
740 1, 1, 1, 1, 1, 1, 1, 1, \
741 1, 1, 1, 1, 1, 1, 1, 1, \
742 \
743 1, 1, 1, 1, 1, 1, 1}
744
745 /* Due to the ARCH64 discrepancy above we must override this next
746 macro too. */
747 #define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
748
749 /* Value is 1 if it is OK to rename a hard register FROM to another hard
750 register TO. We cannot rename %g1 as it may be used before the save
751 register window instruction in the prologue. */
752 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
753
754 /* Specify the registers used for certain standard purposes.
755 The values of these macros are register numbers. */
756
757 /* Register to use for pushing function arguments. */
758 #define STACK_POINTER_REGNUM 14
759
760 /* The stack bias (amount by which the hardware register is offset by). */
761 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
762
763 /* Actual top-of-stack address is 92/176 greater than the contents of the
764 stack pointer register for !v9/v9. That is:
765 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
766 address, and 6*4 bytes for the 6 register parameters.
767 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
768 parameter regs. */
769 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
770
771 /* Base register for access to local variables of the function. */
772 #define HARD_FRAME_POINTER_REGNUM 30
773
774 /* The soft frame pointer does not have the stack bias applied. */
775 #define FRAME_POINTER_REGNUM 101
776
777 #define INIT_EXPANDERS \
778 do { \
779 if (crtl->emit.regno_pointer_align) \
780 { \
781 /* The biased stack pointer is only aligned on BITS_PER_UNIT. */\
782 if (SPARC_STACK_BIAS) \
783 { \
784 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) \
785 = BITS_PER_UNIT; \
786 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) \
787 = BITS_PER_UNIT; \
788 } \
789 \
790 /* In 32-bit mode, not everything is double-word aligned. */ \
791 if (TARGET_ARCH32) \
792 { \
793 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) \
794 = BITS_PER_WORD; \
795 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) \
796 = BITS_PER_WORD; \
797 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) \
798 = BITS_PER_WORD; \
799 } \
800 } \
801 } while (0)
802
803 /* Base register for access to arguments of the function. */
804 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
805
806 /* Register in which static-chain is passed to a function. This must
807 not be a register used by the prologue. */
808 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
809
810 /* Register which holds the global offset table, if any. */
811
812 #define GLOBAL_OFFSET_TABLE_REGNUM 23
813
814 /* Register which holds offset table for position-independent data references.
815 The original SPARC ABI imposes no requirement on the choice of the register
816 so we use a pseudo-register to make sure it is properly saved and restored
817 around calls to setjmp. Now the ABI of VxWorks RTP makes it live on entry
818 to PLT entries so we use the canonical GOT register in this case. */
819
820 #define PIC_OFFSET_TABLE_REGNUM \
821 (TARGET_VXWORKS_RTP && flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
822
823 /* Pick a default value we can notice from override_options:
824 !v9: Default is on.
825 v9: Default is off.
826 Originally it was -1, but later on the container of options changed to
827 unsigned byte, so we decided to pick 127 as default value, which does
828 reflect an undefined default value in case of 0/1. */
829
830 #define DEFAULT_PCC_STRUCT_RETURN 127
831
832 /* Functions which return large structures get the address
833 to place the wanted value at offset 64 from the frame.
834 Must reserve 64 bytes for the in and local registers.
835 v9: Functions which return large structures get the address to place the
836 wanted value from an invisible first argument. */
837 #define STRUCT_VALUE_OFFSET 64
838 \f
839 /* Define the classes of registers for register constraints in the
840 machine description. Also define ranges of constants.
841
842 One of the classes must always be named ALL_REGS and include all hard regs.
843 If there is more than one class, another class must be named NO_REGS
844 and contain no registers.
845
846 The name GENERAL_REGS must be the name of a class (or an alias for
847 another name such as ALL_REGS). This is the class of registers
848 that is allowed by "g" or "r" in a register constraint.
849 Also, registers outside this class are allocated only when
850 instructions express preferences for them.
851
852 The classes must be numbered in nondecreasing order; that is,
853 a larger-numbered class must never be contained completely
854 in a smaller-numbered class.
855
856 For any two classes, it is very desirable that there be another
857 class that represents their union. */
858
859 /* The SPARC has various kinds of registers: general, floating point,
860 and condition codes [well, it has others as well, but none that we
861 care directly about].
862
863 For v9 we must distinguish between the upper and lower floating point
864 registers because the upper ones can't hold SFmode values.
865 TARGET_HARD_REGNO_MODE_OK won't help here because reload assumes that
866 register(s) satisfying a group need for a class will also satisfy a
867 single need for that class. EXTRA_FP_REGS is a bit of a misnomer as
868 it covers all 64 fp regs.
869
870 It is important that one class contains all the general and all the standard
871 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
872 because reg_class_record() will bias the selection in favor of fp regs,
873 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
874 because FP_REGS > GENERAL_REGS.
875
876 It is also important that one class contain all the general and all
877 the fp regs. Otherwise when spilling a DFmode reg, it may be from
878 EXTRA_FP_REGS but find_reloads() may use class
879 GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
880 because the compiler thinks it doesn't have a spill reg when in
881 fact it does.
882
883 v9 also has 4 floating point condition code registers. Since we don't
884 have a class that is the union of FPCC_REGS with either of the others,
885 it is important that it appear first. Otherwise the compiler will die
886 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
887 constraints. */
888
889 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
890 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
891 ALL_REGS, LIM_REG_CLASSES };
892
893 #define N_REG_CLASSES (int) LIM_REG_CLASSES
894
895 /* Give names of register classes as strings for dump file. */
896
897 #define REG_CLASS_NAMES \
898 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
899 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
900 "ALL_REGS" }
901
902 /* Define which registers fit in which classes.
903 This is an initializer for a vector of HARD_REG_SET
904 of length N_REG_CLASSES. */
905
906 #define REG_CLASS_CONTENTS \
907 {{0, 0, 0, 0}, /* NO_REGS */ \
908 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
909 {0xffff, 0, 0, 0}, /* I64_REGS */ \
910 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
911 {0, -1, 0, 0}, /* FP_REGS */ \
912 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
913 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
914 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
915 {-1, -1, -1, 0x7f}} /* ALL_REGS */
916
917 /* The same information, inverted:
918 Return the class number of the smallest class containing
919 reg number REGNO. This could be a conditional expression
920 or could index an array. */
921
922 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
923
924 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
925
926 /* This is the order in which to allocate registers normally.
927
928 We put %f0-%f7 last among the float registers, so as to make it more
929 likely that a pseudo-register which dies in the float return register
930 area will get allocated to the float return register, thus saving a move
931 instruction at the end of the function.
932
933 Similarly for integer return value registers.
934
935 We know in this case that we will not end up with a leaf function.
936
937 The register allocator is given the global and out registers first
938 because these registers are call clobbered and thus less useful to
939 global register allocation.
940
941 Next we list the local and in registers. They are not call clobbered
942 and thus very useful for global register allocation. We list the input
943 registers before the locals so that it is more likely the incoming
944 arguments received in those registers can just stay there and not be
945 reloaded. */
946
947 #define REG_ALLOC_ORDER \
948 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
949 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
950 15, /* %o7 */ \
951 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
952 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
953 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
954 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
955 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
956 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
957 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
958 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
959 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
960 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
961 96, 97, 98, 99, /* %fcc0-3 */ \
962 100, 0, 14, 30, 101, 102 } /* %icc, %g0, %o6, %i6, %sfp, %gsr */
963
964 /* This is the order in which to allocate registers for
965 leaf functions. If all registers can fit in the global and
966 output registers, then we have the possibility of having a leaf
967 function.
968
969 The macro actually mentioned the input registers first,
970 because they get renumbered into the output registers once
971 we know really do have a leaf function.
972
973 To be more precise, this register allocation order is used
974 when %o7 is found to not be clobbered right before register
975 allocation. Normally, the reason %o7 would be clobbered is
976 due to a call which could not be transformed into a sibling
977 call.
978
979 As a consequence, it is possible to use the leaf register
980 allocation order and not end up with a leaf function. We will
981 not get suboptimal register allocation in that case because by
982 definition of being potentially leaf, there were no function
983 calls. Therefore, allocation order within the local register
984 window is not critical like it is when we do have function calls. */
985
986 #define REG_LEAF_ALLOC_ORDER \
987 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
988 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
989 15, /* %o7 */ \
990 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
991 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
992 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
993 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
994 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
995 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
996 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
997 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
998 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
999 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1000 96, 97, 98, 99, /* %fcc0-3 */ \
1001 100, 0, 14, 30, 31, 101, 102 } /* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
1002
1003 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
1004
1005 extern char sparc_leaf_regs[];
1006 #define LEAF_REGISTERS sparc_leaf_regs
1007
1008 extern char leaf_reg_remap[];
1009 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1010
1011 /* The class value for index registers, and the one for base regs. */
1012 #define INDEX_REG_CLASS GENERAL_REGS
1013 #define BASE_REG_CLASS GENERAL_REGS
1014
1015 /* Local macro to handle the two v9 classes of FP regs. */
1016 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1017
1018 /* Predicate for 2-bit and 5-bit unsigned constants. */
1019 #define SPARC_IMM2_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x3) == 0)
1020 #define SPARC_IMM5_P(X) (((unsigned HOST_WIDE_INT) (X) & ~0x1F) == 0)
1021
1022 /* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants. */
1023 #define SPARC_SIMM5_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
1024 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1025 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1026 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1027
1028 /* 10- and 11-bit immediates are only used for a few specific insns.
1029 SMALL_INT is used throughout the port so we continue to use it. */
1030 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1031
1032 /* Predicate for constants that can be loaded with a sethi instruction.
1033 This is the general, 64-bit aware, bitwise version that ensures that
1034 only constants whose representation fits in the mask
1035
1036 0x00000000fffffc00
1037
1038 are accepted. It will reject, for example, negative SImode constants
1039 on 64-bit hosts, so correct handling is to mask the value beforehand
1040 according to the mode of the instruction. */
1041 #define SPARC_SETHI_P(X) \
1042 (((unsigned HOST_WIDE_INT) (X) \
1043 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1044
1045 /* Version of the above predicate for SImode constants and below. */
1046 #define SPARC_SETHI32_P(X) \
1047 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1048
1049 /* Return the maximum number of consecutive registers
1050 needed to represent mode MODE in a register of class CLASS. */
1051 /* On SPARC, this is the size of MODE in words. */
1052 #define CLASS_MAX_NREGS(CLASS, MODE) \
1053 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1054 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1055 \f
1056 /* Stack layout; function entry, exit and calling. */
1057
1058 /* Define this if pushing a word on the stack
1059 makes the stack pointer a smaller address. */
1060 #define STACK_GROWS_DOWNWARD 1
1061
1062 /* Define this to nonzero if the nominal address of the stack frame
1063 is at the high-address end of the local variables;
1064 that is, each additional local variable allocated
1065 goes at a more negative offset in the frame. */
1066 #define FRAME_GROWS_DOWNWARD 1
1067
1068 /* Offset of first parameter from the argument pointer register value.
1069 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1070 even if this function isn't going to use it.
1071 v9: This is 128 for the ins and locals. */
1072 #define FIRST_PARM_OFFSET(FNDECL) \
1073 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1074
1075 /* Offset from the argument pointer register value to the CFA.
1076 This is different from FIRST_PARM_OFFSET because the register window
1077 comes between the CFA and the arguments. */
1078 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1079
1080 /* When a parameter is passed in a register, stack space is still
1081 allocated for it.
1082 !v9: All 6 possible integer registers have backing store allocated.
1083 v9: Only space for the arguments passed is allocated. */
1084 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1085 meaning to the backend. Further, we need to be able to detect if a
1086 varargs/unprototyped function is called, as they may want to spill more
1087 registers than we've provided space. Ugly, ugly. So for now we retain
1088 all 6 slots even for v9. */
1089 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1090
1091 /* Definitions for register elimination. */
1092
1093 #define ELIMINABLE_REGS \
1094 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1095 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1096
1097 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1098 do \
1099 { \
1100 (OFFSET) = sparc_initial_elimination_offset ((TO)); \
1101 } \
1102 while (0)
1103
1104 /* Keep the stack pointer constant throughout the function.
1105 This is both an optimization and a necessity: longjmp
1106 doesn't behave itself when the stack pointer moves within
1107 the function! */
1108 #define ACCUMULATE_OUTGOING_ARGS 1
1109
1110 /* Define this macro if the target machine has "register windows". This
1111 C expression returns the register number as seen by the called function
1112 corresponding to register number OUT as seen by the calling function.
1113 Return OUT if register number OUT is not an outbound register. */
1114
1115 #define INCOMING_REGNO(OUT) \
1116 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1117
1118 /* Define this macro if the target machine has "register windows". This
1119 C expression returns the register number as seen by the calling function
1120 corresponding to register number IN as seen by the called function.
1121 Return IN if register number IN is not an inbound register. */
1122
1123 #define OUTGOING_REGNO(IN) \
1124 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1125
1126 /* Define this macro if the target machine has register windows. This
1127 C expression returns true if the register is call-saved but is in the
1128 register window. */
1129
1130 #define LOCAL_REGNO(REGNO) \
1131 (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1132
1133 /* Define the size of space to allocate for the return value of an
1134 untyped_call. */
1135
1136 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1137
1138 /* 1 if N is a possible register number for function argument passing.
1139 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1140
1141 #define FUNCTION_ARG_REGNO_P(N) \
1142 (((N) >= 8 && (N) <= 13) \
1143 || (TARGET_ARCH64 && TARGET_FPU && (N) >= 32 && (N) <= 63))
1144 \f
1145 /* Define a data type for recording info about an argument list
1146 during the scan of that argument list. This data type should
1147 hold all necessary information about the function itself
1148 and about the args processed so far, enough to enable macros
1149 such as FUNCTION_ARG to determine where the next arg should go.
1150
1151 On SPARC (!v9), this is a single integer, which is a number of words
1152 of arguments scanned so far (including the invisible argument,
1153 if any, which holds the structure-value-address).
1154 Thus 7 or more means all following args should go on the stack.
1155
1156 For v9, we also need to know whether a prototype is present. */
1157
1158 struct sparc_args {
1159 int words; /* number of words passed so far */
1160 int prototype_p; /* nonzero if a prototype is present */
1161 int libcall_p; /* nonzero if a library call */
1162 };
1163 #define CUMULATIVE_ARGS struct sparc_args
1164
1165 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1166 for a call to a function whose data type is FNTYPE.
1167 For a library call, FNTYPE is 0. */
1168
1169 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1170 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1171
1172 \f
1173 /* Generate the special assembly code needed to tell the assembler whatever
1174 it might need to know about the return value of a function.
1175
1176 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1177 information to the assembler relating to peephole optimization (done in
1178 the assembler). */
1179
1180 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1181 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1182
1183 /* Output the special assembly code needed to tell the assembler some
1184 register is used as global register variable.
1185
1186 SPARC 64bit psABI declares registers %g2 and %g3 as application
1187 registers and %g6 and %g7 as OS registers. Any object using them
1188 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1189 and how they are used (scratch or some global variable).
1190 Linker will then refuse to link together objects which use those
1191 registers incompatibly.
1192
1193 Unless the registers are used for scratch, two different global
1194 registers cannot be declared to the same name, so in the unlikely
1195 case of a global register variable occupying more than one register
1196 we prefix the second and following registers with .gnu.part1. etc. */
1197
1198 extern GTY(()) char sparc_hard_reg_printed[8];
1199
1200 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1201 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1202 do { \
1203 if (TARGET_ARCH64) \
1204 { \
1205 int end = end_hard_regno (DECL_MODE (decl), REGNO); \
1206 int reg; \
1207 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1208 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1209 { \
1210 if (reg == (REGNO)) \
1211 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1212 else \
1213 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1214 reg, reg - (REGNO), (NAME)); \
1215 sparc_hard_reg_printed[reg] = 1; \
1216 } \
1217 } \
1218 } while (0)
1219 #endif
1220
1221 \f
1222 /* Emit rtl for profiling. */
1223 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1224
1225 /* All the work done in PROFILE_HOOK, but still required. */
1226 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1227
1228 /* Set the name of the mcount function for the system. */
1229 #define MCOUNT_FUNCTION "*mcount"
1230 \f
1231 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1232 the stack pointer does not matter. The value is tested only in
1233 functions that have frame pointers. */
1234 #define EXIT_IGNORE_STACK 1
1235
1236 /* Length in units of the trampoline for entering a nested function. */
1237 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1238
1239 /* Alignment required for trampolines, in bits. */
1240 #define TRAMPOLINE_ALIGNMENT 128
1241 \f
1242 /* Generate RTL to flush the register windows so as to make arbitrary frames
1243 available. */
1244 #define SETUP_FRAME_ADDRESSES() \
1245 do { \
1246 if (!TARGET_FLAT) \
1247 emit_insn (gen_flush_register_windows ());\
1248 } while (0)
1249
1250 /* Given an rtx for the address of a frame,
1251 return an rtx for the address of the word in the frame
1252 that holds the dynamic chain--the previous frame's address. */
1253 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1254 plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1255
1256 /* Given an rtx for the frame pointer,
1257 return an rtx for the address of the frame. */
1258 #define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1259
1260 /* The return address isn't on the stack, it is in a register, so we can't
1261 access it from the current frame pointer. We can access it from the
1262 previous frame pointer though by reading a value from the register window
1263 save area. */
1264 #define RETURN_ADDR_IN_PREVIOUS_FRAME 1
1265
1266 /* This is the offset of the return address to the true next instruction to be
1267 executed for the current function. */
1268 #define RETURN_ADDR_OFFSET \
1269 (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1270
1271 /* The current return address is in %i7. The return address of anything
1272 farther back is in the register window save area at [%fp+60]. */
1273 /* ??? This ignores the fact that the actual return address is +8 for normal
1274 returns, and +12 for structure returns. */
1275 #define RETURN_ADDR_REGNUM 31
1276 #define RETURN_ADDR_RTX(count, frame) \
1277 ((count == -1) \
1278 ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM) \
1279 : gen_rtx_MEM (Pmode, \
1280 memory_address (Pmode, plus_constant (Pmode, frame, \
1281 15 * UNITS_PER_WORD \
1282 + SPARC_STACK_BIAS))))
1283
1284 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1285 +12, but always using +8 is close enough for frame unwind purposes.
1286 Actually, just using %o7 is close enough for unwinding, but %o7+8
1287 is something you can return to. */
1288 #define INCOMING_RETURN_ADDR_REGNUM 15
1289 #define INCOMING_RETURN_ADDR_RTX \
1290 plus_constant (word_mode, \
1291 gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1292 #define DWARF_FRAME_RETURN_COLUMN \
1293 DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1294
1295 /* The offset from the incoming value of %sp to the top of the stack frame
1296 for the current function. On sparc64, we have to account for the stack
1297 bias if present. */
1298 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1299
1300 /* Describe how we implement __builtin_eh_return. */
1301 #define EH_RETURN_REGNUM 1
1302 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1303 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1304
1305 /* Define registers used by the epilogue and return instruction. */
1306 #define EPILOGUE_USES(REGNO) \
1307 ((REGNO) == RETURN_ADDR_REGNUM \
1308 || (TARGET_FLAT \
1309 && epilogue_completed \
1310 && (REGNO) == INCOMING_RETURN_ADDR_REGNUM) \
1311 || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1312
1313 /* Select a format to encode pointers in exception handling data. CODE
1314 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1315 true if the symbol may be affected by dynamic relocations.
1316
1317 If assembler and linker properly support .uaword %r_disp32(foo),
1318 then use PC relative 32-bit relocations instead of absolute relocs
1319 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1320 for binaries, to save memory.
1321
1322 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1323 symbol %r_disp32() is against was not local, but .hidden. In that
1324 case, we have to use DW_EH_PE_absptr for pic personality. */
1325 #ifdef HAVE_AS_SPARC_UA_PCREL
1326 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1327 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1328 (flag_pic \
1329 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1330 : ((TARGET_ARCH64 && ! GLOBAL) \
1331 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1332 : DW_EH_PE_absptr))
1333 #else
1334 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1335 (flag_pic \
1336 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1337 : ((TARGET_ARCH64 && ! GLOBAL) \
1338 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1339 : DW_EH_PE_absptr))
1340 #endif
1341
1342 /* Emit a PC-relative relocation. */
1343 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1344 do { \
1345 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1346 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1347 assemble_name (FILE, LABEL); \
1348 fputc (')', FILE); \
1349 } while (0)
1350 #endif
1351 \f
1352 /* Addressing modes, and classification of registers for them. */
1353
1354 /* Macros to check register numbers against specific register classes. */
1355
1356 /* These assume that REGNO is a hard or pseudo reg number.
1357 They give nonzero only if REGNO is a hard reg of the suitable class
1358 or a pseudo reg currently allocated to a suitable hard reg.
1359 Since they use reg_renumber, they are safe only once reg_renumber
1360 has been allocated, which happens in reginfo.c during register
1361 allocation. */
1362
1363 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1364 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1365 || (REGNO) == FRAME_POINTER_REGNUM \
1366 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1367
1368 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1369
1370 #define REGNO_OK_FOR_FP_P(REGNO) \
1371 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1372 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1373
1374 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1375 (TARGET_V9 \
1376 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1377 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1378 \f
1379 /* Maximum number of registers that can appear in a valid memory address. */
1380
1381 #define MAX_REGS_PER_ADDRESS 2
1382
1383 /* Recognize any constant value that is a valid address.
1384 When PIC, we do not accept an address that would require a scratch reg
1385 to load into a register. */
1386
1387 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1388
1389 /* Define this, so that when PIC, reload won't try to reload invalid
1390 addresses which require two reload registers. */
1391
1392 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1393 \f
1394 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
1395
1396 #ifdef HAVE_AS_OFFSETABLE_LO10
1397 #define USE_AS_OFFSETABLE_LO10 1
1398 #else
1399 #define USE_AS_OFFSETABLE_LO10 0
1400 #endif
1401 \f
1402 /* Try a machine-dependent way of reloading an illegitimate address
1403 operand. If we find one, push the reload and jump to WIN. This
1404 macro is used in only one place: `find_reloads_address' in reload.c. */
1405 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1406 do { \
1407 int win; \
1408 (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM), \
1409 (int)(TYPE), (IND_LEVELS), &win); \
1410 if (win) \
1411 goto WIN; \
1412 } while (0)
1413 \f
1414 /* Specify the machine mode that this machine uses
1415 for the index in the tablejump instruction. */
1416 /* If we ever implement any of the full models (such as CM_FULLANY),
1417 this has to be DImode in that case */
1418 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1419 #define CASE_VECTOR_MODE \
1420 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1421 #else
1422 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1423 we have to sign extend which slows things down. */
1424 #define CASE_VECTOR_MODE \
1425 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1426 #endif
1427
1428 /* Define this as 1 if `char' should by default be signed; else as 0. */
1429 #define DEFAULT_SIGNED_CHAR 1
1430
1431 /* Max number of bytes we can move from memory to memory
1432 in one reasonably fast instruction. */
1433 #define MOVE_MAX 8
1434
1435 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1436 move-instruction pairs, we will do a movmem or libcall instead. */
1437
1438 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1439
1440 /* Define if operations between registers always perform the operation
1441 on the full register even if a narrower mode is specified. */
1442 #define WORD_REGISTER_OPERATIONS 1
1443
1444 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1445 will either zero-extend or sign-extend. The value of this macro should
1446 be the code that says which one of the two operations is implicitly
1447 done, UNKNOWN if none. */
1448 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1449
1450 /* Nonzero if access to memory by bytes is slow and undesirable.
1451 For RISC chips, it means that access to memory by bytes is no
1452 better than access by words when possible, so grab a whole word
1453 and maybe make use of that. */
1454 #define SLOW_BYTE_ACCESS 1
1455
1456 /* Define this to be nonzero if shift instructions ignore all but the low-order
1457 few bits. */
1458 #define SHIFT_COUNT_TRUNCATED 1
1459
1460 /* For SImode, we make sure the top 32-bits of the register are clear and
1461 then we subtract 32 from the lzd instruction result. */
1462 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1463 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1464
1465 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1466 return the mode to be used for the comparison. For floating-point,
1467 CCFP[E]mode is used. CCNZmode should be used when the first operand
1468 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
1469 processing is needed. */
1470 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
1471
1472 /* Return nonzero if MODE implies a floating point inequality can be
1473 reversed. For SPARC this is always true because we have a full
1474 compliment of ordered and unordered comparisons, but until generic
1475 code knows how to reverse it correctly we keep the old definition. */
1476 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1477
1478 /* A function address in a call instruction for indexing purposes. */
1479 #define FUNCTION_MODE Pmode
1480
1481 /* Define this if addresses of constant functions
1482 shouldn't be put through pseudo regs where they can be cse'd.
1483 Desirable on machines where ordinary constants are expensive
1484 but a CALL with constant address is cheap. */
1485 #define NO_FUNCTION_CSE 1
1486
1487 /* The _Q_* comparison libcalls return booleans. */
1488 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1489
1490 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1491 that the inputs are fully consumed before the output memory is clobbered. */
1492
1493 #define TARGET_BUGGY_QP_LIB 0
1494
1495 /* Assume by default that we do not have the Solaris-specific conversion
1496 routines nor 64-bit integer multiply and divide routines. */
1497
1498 #define SUN_CONVERSION_LIBFUNCS 0
1499 #define DITF_CONVERSION_LIBFUNCS 0
1500 #define SUN_INTEGER_MULTIPLY_64 0
1501
1502 /* A C expression for the cost of a branch instruction. A value of 1
1503 is the default; other values are interpreted relative to that. */
1504 #define BRANCH_COST(SPEED_P, PREDICTABLE_P) \
1505 (sparc_branch_cost (SPEED_P, PREDICTABLE_P))
1506 \f
1507 /* Control the assembler format that we output. */
1508
1509 /* A C string constant describing how to begin a comment in the target
1510 assembler language. The compiler assumes that the comment will end at
1511 the end of the line. */
1512
1513 #define ASM_COMMENT_START "!"
1514
1515 /* Output to assembler file text saying following lines
1516 may contain character constants, extra white space, comments, etc. */
1517
1518 #define ASM_APP_ON ""
1519
1520 /* Output to assembler file text saying following lines
1521 no longer contain unusual constructs. */
1522
1523 #define ASM_APP_OFF ""
1524
1525 /* How to refer to registers in assembler output.
1526 This sequence is indexed by compiler's hard-register-number (see above). */
1527
1528 #define REGISTER_NAMES \
1529 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1530 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1531 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1532 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1533 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1534 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1535 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1536 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
1537 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
1538 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
1539 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
1540 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
1541 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1542
1543 /* Define additional names for use in asm clobbers and asm declarations. */
1544
1545 #define ADDITIONAL_REGISTER_NAMES \
1546 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1547
1548 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
1549 can run past this up to a continuation point. Once we used 1500, but
1550 a single entry in C++ can run more than 500 bytes, due to the length of
1551 mangled symbol names. dbxout.c should really be fixed to do
1552 continuations when they are actually needed instead of trying to
1553 guess... */
1554 #define DBX_CONTIN_LENGTH 1000
1555
1556 /* This is how to output a command to make the user-level label named NAME
1557 defined for reference from other files. */
1558
1559 /* Globalizing directive for a label. */
1560 #define GLOBAL_ASM_OP "\t.global "
1561
1562 /* The prefix to add to user-visible assembler symbols. */
1563
1564 #define USER_LABEL_PREFIX "_"
1565
1566 /* This is how to store into the string LABEL
1567 the symbol_ref name of an internal numbered label where
1568 PREFIX is the class of label and NUM is the number within the class.
1569 This is suitable for output with `assemble_name'. */
1570
1571 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1572 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1573
1574 /* This is how we hook in and defer the case-vector until the end of
1575 the function. */
1576 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1577 sparc_defer_case_vector ((LAB),(VEC), 0)
1578
1579 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1580 sparc_defer_case_vector ((LAB),(VEC), 1)
1581
1582 /* This is how to output an element of a case-vector that is absolute. */
1583
1584 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1585 do { \
1586 char label[30]; \
1587 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1588 if (CASE_VECTOR_MODE == SImode) \
1589 fprintf (FILE, "\t.word\t"); \
1590 else \
1591 fprintf (FILE, "\t.xword\t"); \
1592 assemble_name (FILE, label); \
1593 fputc ('\n', FILE); \
1594 } while (0)
1595
1596 /* This is how to output an element of a case-vector that is relative.
1597 (SPARC uses such vectors only when generating PIC.) */
1598
1599 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1600 do { \
1601 char label[30]; \
1602 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
1603 if (CASE_VECTOR_MODE == SImode) \
1604 fprintf (FILE, "\t.word\t"); \
1605 else \
1606 fprintf (FILE, "\t.xword\t"); \
1607 assemble_name (FILE, label); \
1608 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
1609 fputc ('-', FILE); \
1610 assemble_name (FILE, label); \
1611 fputc ('\n', FILE); \
1612 } while (0)
1613
1614 /* This is what to output before and after case-vector (both
1615 relative and absolute). If .subsection -1 works, we put case-vectors
1616 at the beginning of the current section. */
1617
1618 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1619
1620 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
1621 fprintf(FILE, "\t.subsection\t-1\n")
1622
1623 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
1624 fprintf(FILE, "\t.previous\n")
1625
1626 #endif
1627
1628 /* This is how to output an assembler line
1629 that says to advance the location counter
1630 to a multiple of 2**LOG bytes. */
1631
1632 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1633 if ((LOG) != 0) \
1634 fprintf (FILE, "\t.align %d\n", (1 << (LOG)))
1635
1636 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1637 fprintf (FILE, "\t.skip " HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1638
1639 /* This says how to output an assembler line
1640 to define a global common symbol. */
1641
1642 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1643 ( fputs ("\t.common ", (FILE)), \
1644 assemble_name ((FILE), (NAME)), \
1645 fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1646
1647 /* This says how to output an assembler line to define a local common
1648 symbol. */
1649
1650 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1651 ( fputs ("\t.reserve ", (FILE)), \
1652 assemble_name ((FILE), (NAME)), \
1653 fprintf ((FILE), "," HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
1654 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1655
1656 /* A C statement (sans semicolon) to output to the stdio stream
1657 FILE the assembler definition of uninitialized global DECL named
1658 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1659 Try to use asm_output_aligned_bss to implement this macro. */
1660
1661 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1662 do { \
1663 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1664 } while (0)
1665
1666 /* Output #ident as a .ident. */
1667
1668 #undef TARGET_ASM_OUTPUT_IDENT
1669 #define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1670
1671 /* Prettify the assembly. */
1672
1673 extern int sparc_indent_opcode;
1674
1675 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
1676 do { \
1677 if (sparc_indent_opcode) \
1678 { \
1679 putc (' ', FILE); \
1680 sparc_indent_opcode = 0; \
1681 } \
1682 } while (0)
1683
1684 /* TLS support defaulting to original Sun flavor. GNU extensions
1685 must be activated in separate configuration files. */
1686 #ifdef HAVE_AS_TLS
1687 #define TARGET_TLS 1
1688 #else
1689 #define TARGET_TLS 0
1690 #endif
1691
1692 #define TARGET_SUN_TLS TARGET_TLS
1693 #define TARGET_GNU_TLS 0
1694
1695 #ifdef HAVE_AS_FMAF_HPC_VIS3
1696 #define AS_NIAGARA3_FLAG "d"
1697 #else
1698 #define AS_NIAGARA3_FLAG "b"
1699 #endif
1700
1701 #ifdef HAVE_AS_SPARC4
1702 #define AS_NIAGARA4_FLAG "-xarch=sparc4"
1703 #else
1704 #define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1705 #endif
1706
1707 #ifdef HAVE_AS_SPARC5_VIS4
1708 #define AS_NIAGARA7_FLAG "-xarch=sparc5"
1709 #else
1710 #define AS_NIAGARA7_FLAG AS_NIAGARA4_FLAG
1711 #endif
1712
1713 #ifdef HAVE_AS_SPARC6
1714 #define AS_M8_FLAG "-xarch=sparc6"
1715 #else
1716 #define AS_M8_FLAG AS_NIAGARA7_FLAG
1717 #endif
1718
1719 #ifdef HAVE_AS_LEON
1720 #define AS_LEON_FLAG "-Aleon"
1721 #define AS_LEONV7_FLAG "-Aleon"
1722 #else
1723 #define AS_LEON_FLAG "-Av8"
1724 #define AS_LEONV7_FLAG "-Av7"
1725 #endif
1726
1727 /* We use gcc _mcount for profiling. */
1728 #define NO_PROFILE_COUNTERS 0
1729
1730 /* Debug support */
1731 #define MASK_DEBUG_OPTIONS 0x01 /* debug option handling */
1732 #define MASK_DEBUG_ALL MASK_DEBUG_OPTIONS
1733
1734 #define TARGET_DEBUG_OPTIONS (sparc_debug & MASK_DEBUG_OPTIONS)
1735
1736 /* By default, use the weakest memory model for the cpu. */
1737 #ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1738 #define SUBTARGET_DEFAULT_MEMORY_MODEL SMM_DEFAULT
1739 #endif
1740
1741 /* Define this to 1 if the FE_EXCEPT values defined in fenv.h start at 1. */
1742 #define SPARC_LOW_FE_EXCEPT_VALUES 0
1743
1744 #define TARGET_SUPPORTS_WIDE_INT 1