]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/sparc/sparc.h
Update copyright years in gcc/
[thirdparty/gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4 64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5 at Cygnus Support.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config/vxworks-dummy.h"
24
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
27
28 #define TARGET_CPU_CPP_BUILTINS() sparc_target_macros ()
29
30 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
31 /* #define SPARC_BI_ARCH */
32
33 /* Macro used later in this file to determine default architecture. */
34 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
35
36 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
37 architectures to compile for. We allow targets to choose compile time or
38 runtime selection. */
39 #ifdef IN_LIBGCC2
40 #if defined(__sparcv9) || defined(__arch64__)
41 #define TARGET_ARCH32 0
42 #else
43 #define TARGET_ARCH32 1
44 #endif /* sparc64 */
45 #else
46 #ifdef SPARC_BI_ARCH
47 #define TARGET_ARCH32 (! TARGET_64BIT)
48 #else
49 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
50 #endif /* SPARC_BI_ARCH */
51 #endif /* IN_LIBGCC2 */
52 #define TARGET_ARCH64 (! TARGET_ARCH32)
53
54 /* Code model selection in 64-bit environment.
55
56 The machine mode used for addresses is 32-bit wide:
57
58 TARGET_CM_32: 32-bit address space.
59 It is the code model used when generating 32-bit code.
60
61 The machine mode used for addresses is 64-bit wide:
62
63 TARGET_CM_MEDLOW: 32-bit address space.
64 The executable must be in the low 32 bits of memory.
65 This avoids generating %uhi and %ulo terms. Programs
66 can be statically or dynamically linked.
67
68 TARGET_CM_MEDMID: 44-bit address space.
69 The executable must be in the low 44 bits of memory,
70 and the %[hml]44 terms are used. The text and data
71 segments have a maximum size of 2GB (31-bit span).
72 The maximum offset from any instruction to the label
73 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
74
75 TARGET_CM_MEDANY: 64-bit address space.
76 The text and data segments have a maximum size of 2GB
77 (31-bit span) and may be located anywhere in memory.
78 The maximum offset from any instruction to the label
79 _GLOBAL_OFFSET_TABLE_ is 2GB (31-bit span).
80
81 TARGET_CM_EMBMEDANY: 64-bit address space.
82 The text and data segments have a maximum size of 2GB
83 (31-bit span) and may be located anywhere in memory.
84 The global register %g4 contains the start address of
85 the data segment. Programs are statically linked and
86 PIC is not supported.
87
88 Different code models are not supported in 32-bit environment. */
89
90 enum cmodel {
91 CM_32,
92 CM_MEDLOW,
93 CM_MEDMID,
94 CM_MEDANY,
95 CM_EMBMEDANY
96 };
97
98 /* One of CM_FOO. */
99 extern enum cmodel sparc_cmodel;
100
101 /* V9 code model selection. */
102 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
103 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
104 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
105 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
106
107 #define SPARC_DEFAULT_CMODEL CM_32
108
109 /* The SPARC-V9 architecture defines a relaxed memory ordering model (RMO)
110 which requires the following macro to be true if enabled. Prior to V9,
111 there are no instructions to even talk about memory synchronization.
112 Note that the UltraSPARC III processors don't implement RMO, unlike the
113 UltraSPARC II processors. Niagara, Niagara-2, and Niagara-3 do not
114 implement RMO either.
115
116 Default to false; for example, Solaris never enables RMO, only ever uses
117 total memory ordering (TMO). */
118 #define SPARC_RELAXED_ORDERING false
119
120 /* Do not use the .note.GNU-stack convention by default. */
121 #define NEED_INDICATE_EXEC_STACK 0
122
123 /* This is call-clobbered in the normal ABI, but is reserved in the
124 home grown (aka upward compatible) embedded ABI. */
125 #define EMBMEDANY_BASE_REG "%g4"
126 \f
127 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
128 and specified by the user via --with-cpu=foo.
129 This specifies the cpu implementation, not the architecture size. */
130 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
131 capable cpu's. */
132 #define TARGET_CPU_sparc 0
133 #define TARGET_CPU_v7 0 /* alias */
134 #define TARGET_CPU_cypress 0 /* alias */
135 #define TARGET_CPU_v8 1 /* generic v8 implementation */
136 #define TARGET_CPU_supersparc 2
137 #define TARGET_CPU_hypersparc 3
138 #define TARGET_CPU_leon 4
139 #define TARGET_CPU_leon3 5
140 #define TARGET_CPU_sparclite 6
141 #define TARGET_CPU_f930 6 /* alias */
142 #define TARGET_CPU_f934 6 /* alias */
143 #define TARGET_CPU_sparclite86x 7
144 #define TARGET_CPU_sparclet 8
145 #define TARGET_CPU_tsc701 8 /* alias */
146 #define TARGET_CPU_v9 9 /* generic v9 implementation */
147 #define TARGET_CPU_sparcv9 9 /* alias */
148 #define TARGET_CPU_sparc64 9 /* alias */
149 #define TARGET_CPU_ultrasparc 10
150 #define TARGET_CPU_ultrasparc3 11
151 #define TARGET_CPU_niagara 12
152 #define TARGET_CPU_niagara2 13
153 #define TARGET_CPU_niagara3 14
154 #define TARGET_CPU_niagara4 15
155
156 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
157 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
158 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3 \
159 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara \
160 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara2 \
161 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara3 \
162 || TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
163
164 #define CPP_CPU32_DEFAULT_SPEC ""
165 #define ASM_CPU32_DEFAULT_SPEC ""
166
167 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
168 /* ??? What does Sun's CC pass? */
169 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
170 /* ??? It's not clear how other assemblers will handle this, so by default
171 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
172 is handled in sol2.h. */
173 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
174 #endif
175 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
176 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
177 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
178 #endif
179 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
180 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
181 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
182 #endif
183 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara
184 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
185 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
186 #endif
187 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara2
188 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
189 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
190 #endif
191 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara3
192 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
193 #define ASM_CPU64_DEFAULT_SPEC "-Av9" AS_NIAGARA3_FLAG
194 #endif
195 #if TARGET_CPU_DEFAULT == TARGET_CPU_niagara4
196 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
197 #define ASM_CPU64_DEFAULT_SPEC AS_NIAGARA4_FLAG
198 #endif
199
200 #else
201
202 #define CPP_CPU64_DEFAULT_SPEC ""
203 #define ASM_CPU64_DEFAULT_SPEC ""
204
205 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
206 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
207 #define CPP_CPU32_DEFAULT_SPEC ""
208 #define ASM_CPU32_DEFAULT_SPEC ""
209 #endif
210
211 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
212 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
213 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
214 #endif
215
216 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
217 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
218 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
219 #endif
220
221 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
222 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
223 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
224 #endif
225
226 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
227 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
228 #define ASM_CPU32_DEFAULT_SPEC ""
229 #endif
230
231 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
232 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
233 #define ASM_CPU32_DEFAULT_SPEC ""
234 #endif
235
236 #if TARGET_CPU_DEFAULT == TARGET_CPU_leon \
237 || TARGET_CPU_DEFAULT == TARGET_CPU_leon3
238 #define CPP_CPU32_DEFAULT_SPEC "-D__leon__ -D__sparc_v8__"
239 #define ASM_CPU32_DEFAULT_SPEC AS_LEON_FLAG
240 #endif
241
242 #endif
243
244 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
245 #error Unrecognized value in TARGET_CPU_DEFAULT.
246 #endif
247
248 #ifdef SPARC_BI_ARCH
249
250 #define CPP_CPU_DEFAULT_SPEC \
251 (DEFAULT_ARCH32_P ? "\
252 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
253 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
254 " : "\
255 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
256 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
257 ")
258 #define ASM_CPU_DEFAULT_SPEC \
259 (DEFAULT_ARCH32_P ? "\
260 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
261 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
262 " : "\
263 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
264 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
265 ")
266
267 #else /* !SPARC_BI_ARCH */
268
269 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
270 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
271
272 #endif /* !SPARC_BI_ARCH */
273
274 /* Define macros to distinguish architectures. */
275
276 /* Common CPP definitions used by CPP_SPEC amongst the various targets
277 for handling -mcpu=xxx switches. */
278 #define CPP_CPU_SPEC "\
279 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
280 %{mcpu=sparclite:-D__sparclite__} \
281 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
282 %{mcpu=sparclite86x:-D__sparclite86x__} \
283 %{mcpu=v8:-D__sparc_v8__} \
284 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
285 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
286 %{mcpu=leon:-D__leon__ -D__sparc_v8__} \
287 %{mcpu=leon3:-D__leon__ -D__sparc_v8__} \
288 %{mcpu=v9:-D__sparc_v9__} \
289 %{mcpu=ultrasparc:-D__sparc_v9__} \
290 %{mcpu=ultrasparc3:-D__sparc_v9__} \
291 %{mcpu=niagara:-D__sparc_v9__} \
292 %{mcpu=niagara2:-D__sparc_v9__} \
293 %{mcpu=niagara3:-D__sparc_v9__} \
294 %{mcpu=niagara4:-D__sparc_v9__} \
295 %{!mcpu*:%(cpp_cpu_default)} \
296 "
297 #define CPP_ARCH32_SPEC ""
298 #define CPP_ARCH64_SPEC "-D__arch64__"
299
300 #define CPP_ARCH_DEFAULT_SPEC \
301 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
302
303 #define CPP_ARCH_SPEC "\
304 %{m32:%(cpp_arch32)} \
305 %{m64:%(cpp_arch64)} \
306 %{!m32:%{!m64:%(cpp_arch_default)}} \
307 "
308
309 /* Macros to distinguish the endianness, window model and FP support. */
310 #define CPP_OTHER_SPEC "\
311 %{mflat:-D_FLAT} \
312 %{msoft-float:-D_SOFT_FLOAT} \
313 "
314
315 /* Macros to distinguish the particular subtarget. */
316 #define CPP_SUBTARGET_SPEC ""
317
318 #define CPP_SPEC \
319 "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_other) %(cpp_subtarget)"
320
321 /* This used to translate -dalign to -malign, but that is no good
322 because it can't turn off the usual meaning of making debugging dumps. */
323
324 #define CC1_SPEC ""
325
326 /* Override in target specific files. */
327 #define ASM_CPU_SPEC "\
328 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
329 %{mcpu=sparclite:-Asparclite} \
330 %{mcpu=sparclite86x:-Asparclite} \
331 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
332 %{mcpu=v8:-Av8} \
333 %{mcpu=supersparc:-Av8} \
334 %{mcpu=hypersparc:-Av8} \
335 %{mcpu=leon:" AS_LEON_FLAG "} \
336 %{mcpu=leon3:" AS_LEON_FLAG "} \
337 %{mv8plus:-Av8plus} \
338 %{mcpu=v9:-Av9} \
339 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
340 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
341 %{mcpu=niagara:%{!mv8plus:-Av9b}} \
342 %{mcpu=niagara2:%{!mv8plus:-Av9b}} \
343 %{mcpu=niagara3:%{!mv8plus:-Av9" AS_NIAGARA3_FLAG "}} \
344 %{mcpu=niagara4:%{!mv8plus:" AS_NIAGARA4_FLAG "}} \
345 %{!mcpu*:%(asm_cpu_default)} \
346 "
347
348 /* Word size selection, among other things.
349 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
350
351 #define ASM_ARCH32_SPEC "-32"
352 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
353 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
354 #else
355 #define ASM_ARCH64_SPEC "-64"
356 #endif
357 #define ASM_ARCH_DEFAULT_SPEC \
358 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
359
360 #define ASM_ARCH_SPEC "\
361 %{m32:%(asm_arch32)} \
362 %{m64:%(asm_arch64)} \
363 %{!m32:%{!m64:%(asm_arch_default)}} \
364 "
365
366 #ifdef HAVE_AS_RELAX_OPTION
367 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
368 #else
369 #define ASM_RELAX_SPEC ""
370 #endif
371
372 /* Special flags to the Sun-4 assembler when using pipe for input. */
373
374 #define ASM_SPEC "\
375 %{!pg:%{!p:%{fpic|fPIC|fpie|fPIE:-k}}} %{keep-local-as-symbols:-L} \
376 %(asm_cpu) %(asm_relax)"
377
378 /* This macro defines names of additional specifications to put in the specs
379 that can be used in various specifications like CC1_SPEC. Its definition
380 is an initializer with a subgrouping for each command option.
381
382 Each subgrouping contains a string constant, that defines the
383 specification name, and a string constant that used by the GCC driver
384 program.
385
386 Do not define this macro if it does not need to do anything. */
387
388 #define EXTRA_SPECS \
389 { "cpp_cpu", CPP_CPU_SPEC }, \
390 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
391 { "cpp_arch32", CPP_ARCH32_SPEC }, \
392 { "cpp_arch64", CPP_ARCH64_SPEC }, \
393 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
394 { "cpp_arch", CPP_ARCH_SPEC }, \
395 { "cpp_other", CPP_OTHER_SPEC }, \
396 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
397 { "asm_cpu", ASM_CPU_SPEC }, \
398 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
399 { "asm_arch32", ASM_ARCH32_SPEC }, \
400 { "asm_arch64", ASM_ARCH64_SPEC }, \
401 { "asm_relax", ASM_RELAX_SPEC }, \
402 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
403 { "asm_arch", ASM_ARCH_SPEC }, \
404 SUBTARGET_EXTRA_SPECS
405
406 #define SUBTARGET_EXTRA_SPECS
407
408 /* Because libgcc can generate references back to libc (via .umul etc.) we have
409 to list libc again after the second libgcc. */
410 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
411
412 \f
413 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
414 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
415
416 /* ??? This should be 32 bits for v9 but what can we do? */
417 #define WCHAR_TYPE "short unsigned int"
418 #define WCHAR_TYPE_SIZE 16
419 \f
420 /* Mask of all CPU selection flags. */
421 #define MASK_ISA \
422 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
423
424 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
425 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
426 to get high 32 bits. False in V8+ or V9 because multiply stores
427 a 64-bit result in a register. */
428
429 #define TARGET_HARD_MUL32 \
430 ((TARGET_V8 || TARGET_SPARCLITE \
431 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
432 && ! TARGET_V8PLUS && TARGET_ARCH32)
433
434 #define TARGET_HARD_MUL \
435 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
436 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
437
438 /* MASK_APP_REGS must always be the default because that's what
439 FIXED_REGISTERS is set to and -ffixed- is processed before
440 TARGET_CONDITIONAL_REGISTER_USAGE is called (where we process
441 -mno-app-regs). */
442 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
443
444 /* Recast the cpu class to be the cpu attribute.
445 Every file includes us, but not every file includes insn-attr.h. */
446 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
447
448 /* Support for a compile-time default CPU, et cetera. The rules are:
449 --with-cpu is ignored if -mcpu is specified.
450 --with-tune is ignored if -mtune is specified.
451 --with-float is ignored if -mhard-float, -msoft-float, -mfpu, or -mno-fpu
452 are specified. */
453 #define OPTION_DEFAULT_SPECS \
454 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
455 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
456 {"float", "%{!msoft-float:%{!mhard-float:%{!mfpu:%{!mno-fpu:-m%(VALUE)-float}}}}" }
457 \f
458 /* target machine storage layout */
459
460 /* Define this if most significant bit is lowest numbered
461 in instructions that operate on numbered bit-fields. */
462 #define BITS_BIG_ENDIAN 1
463
464 /* Define this if most significant byte of a word is the lowest numbered. */
465 #define BYTES_BIG_ENDIAN 1
466
467 /* Define this if most significant word of a multiword number is the lowest
468 numbered. */
469 #define WORDS_BIG_ENDIAN 1
470
471 #define MAX_BITS_PER_WORD 64
472
473 /* Width of a word, in units (bytes). */
474 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
475 #ifdef IN_LIBGCC2
476 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
477 #else
478 #define MIN_UNITS_PER_WORD 4
479 #endif
480
481 /* Now define the sizes of the C data types. */
482 #define SHORT_TYPE_SIZE 16
483 #define INT_TYPE_SIZE 32
484 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
485 #define LONG_LONG_TYPE_SIZE 64
486 #define FLOAT_TYPE_SIZE 32
487 #define DOUBLE_TYPE_SIZE 64
488
489 /* LONG_DOUBLE_TYPE_SIZE is defined per OS even though the
490 SPARC ABI says that it is 128-bit wide. */
491 /* #define LONG_DOUBLE_TYPE_SIZE 128 */
492
493 /* The widest floating-point format really supported by the hardware. */
494 #define WIDEST_HARDWARE_FP_SIZE 64
495
496 /* Width in bits of a pointer. This is the size of ptr_mode. */
497 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
498
499 /* This is the machine mode used for addresses. */
500 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
501
502 /* If we have to extend pointers (only when TARGET_ARCH64 and not
503 TARGET_PTR64), we want to do it unsigned. This macro does nothing
504 if ptr_mode and Pmode are the same. */
505 #define POINTERS_EXTEND_UNSIGNED 1
506
507 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
508 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
509
510 /* Boundary (in *bits*) on which stack pointer should be aligned. */
511 /* FIXME, this is wrong when TARGET_ARCH64 and TARGET_STACK_BIAS, because
512 then %sp+2047 is 128-bit aligned so %sp is really only byte-aligned. */
513 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
514 /* Temporary hack until the FIXME above is fixed. */
515 #define SPARC_STACK_BOUNDARY_HACK (TARGET_ARCH64 && TARGET_STACK_BIAS)
516
517 /* ALIGN FRAMES on double word boundaries */
518 #define SPARC_STACK_ALIGN(LOC) \
519 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
520
521 /* Allocation boundary (in *bits*) for the code of a function. */
522 #define FUNCTION_BOUNDARY 32
523
524 /* Alignment of field after `int : 0' in a structure. */
525 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
526
527 /* Every structure's size must be a multiple of this. */
528 #define STRUCTURE_SIZE_BOUNDARY 8
529
530 /* A bit-field declared as `int' forces `int' alignment for the struct. */
531 #define PCC_BITFIELD_TYPE_MATTERS 1
532
533 /* No data type wants to be aligned rounder than this. */
534 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
535
536 /* The best alignment to use in cases where we have a choice. */
537 #define FASTEST_ALIGNMENT 64
538
539 /* Define this macro as an expression for the alignment of a structure
540 (given by STRUCT as a tree node) if the alignment computed in the
541 usual way is COMPUTED and the alignment explicitly specified was
542 SPECIFIED.
543
544 The default is to use SPECIFIED if it is larger; otherwise, use
545 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
546 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
547 (TARGET_FASTER_STRUCTS ? \
548 ((TREE_CODE (STRUCT) == RECORD_TYPE \
549 || TREE_CODE (STRUCT) == UNION_TYPE \
550 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
551 && TYPE_FIELDS (STRUCT) != 0 \
552 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
553 : MAX ((COMPUTED), (SPECIFIED))) \
554 : MAX ((COMPUTED), (SPECIFIED)))
555
556 /* An integer expression for the size in bits of the largest integer machine
557 mode that should actually be used. We allow pairs of registers. */
558 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_ARCH64 ? TImode : DImode)
559
560 /* We need 2 words, so we can save the stack pointer and the return register
561 of the function containing a non-local goto target. */
562 #define STACK_SAVEAREA_MODE(LEVEL) \
563 ((LEVEL) == SAVE_NONLOCAL ? (TARGET_ARCH64 ? TImode : DImode) : Pmode)
564
565 /* Make strings word-aligned so strcpy from constants will be faster. */
566 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
567 ((TREE_CODE (EXP) == STRING_CST \
568 && (ALIGN) < FASTEST_ALIGNMENT) \
569 ? FASTEST_ALIGNMENT : (ALIGN))
570
571 /* Make arrays of chars word-aligned for the same reasons. */
572 #define DATA_ALIGNMENT(TYPE, ALIGN) \
573 (TREE_CODE (TYPE) == ARRAY_TYPE \
574 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
575 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
576
577 /* Make local arrays of chars word-aligned for the same reasons. */
578 #define LOCAL_ALIGNMENT(TYPE, ALIGN) DATA_ALIGNMENT (TYPE, ALIGN)
579
580 /* Set this nonzero if move instructions will actually fail to work
581 when given unaligned data. */
582 #define STRICT_ALIGNMENT 1
583
584 /* Things that must be doubleword aligned cannot go in the text section,
585 because the linker fails to align the text section enough!
586 Put them in the data section. This macro is only used in this file. */
587 #define MAX_TEXT_ALIGN 32
588 \f
589 /* Standard register usage. */
590
591 /* Number of actual hardware registers.
592 The hardware registers are assigned numbers for the compiler
593 from 0 to just below FIRST_PSEUDO_REGISTER.
594 All registers that the compiler knows about must be given numbers,
595 even those that are not normally considered general registers.
596
597 SPARC has 32 integer registers and 32 floating point registers.
598 64-bit SPARC has 32 additional fp regs, but the odd numbered ones are not
599 accessible. We still account for them to simplify register computations
600 (e.g.: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
601 32+32+32+4 == 100.
602 Register 100 is used as the integer condition code register.
603 Register 101 is used as the soft frame pointer register. */
604
605 #define FIRST_PSEUDO_REGISTER 103
606
607 #define SPARC_FIRST_INT_REG 0
608 #define SPARC_LAST_INT_REG 31
609 #define SPARC_FIRST_FP_REG 32
610 /* Additional V9 fp regs. */
611 #define SPARC_FIRST_V9_FP_REG 64
612 #define SPARC_LAST_V9_FP_REG 95
613 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
614 #define SPARC_FIRST_V9_FCC_REG 96
615 #define SPARC_LAST_V9_FCC_REG 99
616 /* V8 fcc reg. */
617 #define SPARC_FCC_REG 96
618 /* Integer CC reg. We don't distinguish %icc from %xcc. */
619 #define SPARC_ICC_REG 100
620 #define SPARC_GSR_REG 102
621
622 /* Nonzero if REGNO is an fp reg. */
623 #define SPARC_FP_REG_P(REGNO) \
624 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
625
626 /* Nonzero if REGNO is an int reg. */
627 #define SPARC_INT_REG_P(REGNO) \
628 (((unsigned) (REGNO)) <= SPARC_LAST_INT_REG)
629
630 /* Argument passing regs. */
631 #define SPARC_OUTGOING_INT_ARG_FIRST 8
632 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
633 #define SPARC_FP_ARG_FIRST 32
634
635 /* 1 for registers that have pervasive standard uses
636 and are not available for the register allocator.
637
638 On non-v9 systems:
639 g1 is free to use as temporary.
640 g2-g4 are reserved for applications. Gcc normally uses them as
641 temporaries, but this can be disabled via the -mno-app-regs option.
642 g5 through g7 are reserved for the operating system.
643
644 On v9 systems:
645 g1,g5 are free to use as temporaries, and are free to use between calls
646 if the call is to an external function via the PLT.
647 g4 is free to use as a temporary in the non-embedded case.
648 g4 is reserved in the embedded case.
649 g2-g3 are reserved for applications. Gcc normally uses them as
650 temporaries, but this can be disabled via the -mno-app-regs option.
651 g6-g7 are reserved for the operating system (or application in
652 embedded case).
653 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
654 currently be a fixed register until this pattern is rewritten.
655 Register 1 is also used when restoring call-preserved registers in large
656 stack frames.
657
658 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
659 TARGET_CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
660 */
661
662 #define FIXED_REGISTERS \
663 {1, 0, 2, 2, 2, 2, 1, 1, \
664 0, 0, 0, 0, 0, 0, 1, 0, \
665 0, 0, 0, 0, 0, 0, 0, 0, \
666 0, 0, 0, 0, 0, 0, 0, 1, \
667 \
668 0, 0, 0, 0, 0, 0, 0, 0, \
669 0, 0, 0, 0, 0, 0, 0, 0, \
670 0, 0, 0, 0, 0, 0, 0, 0, \
671 0, 0, 0, 0, 0, 0, 0, 0, \
672 \
673 0, 0, 0, 0, 0, 0, 0, 0, \
674 0, 0, 0, 0, 0, 0, 0, 0, \
675 0, 0, 0, 0, 0, 0, 0, 0, \
676 0, 0, 0, 0, 0, 0, 0, 0, \
677 \
678 0, 0, 0, 0, 0, 1, 1}
679
680 /* 1 for registers not available across function calls.
681 These must include the FIXED_REGISTERS and also any
682 registers that can be used without being saved.
683 The latter must include the registers where values are returned
684 and the register where structure-value addresses are passed.
685 Aside from that, you can include as many other registers as you like. */
686
687 #define CALL_USED_REGISTERS \
688 {1, 1, 1, 1, 1, 1, 1, 1, \
689 1, 1, 1, 1, 1, 1, 1, 1, \
690 0, 0, 0, 0, 0, 0, 0, 0, \
691 0, 0, 0, 0, 0, 0, 0, 1, \
692 \
693 1, 1, 1, 1, 1, 1, 1, 1, \
694 1, 1, 1, 1, 1, 1, 1, 1, \
695 1, 1, 1, 1, 1, 1, 1, 1, \
696 1, 1, 1, 1, 1, 1, 1, 1, \
697 \
698 1, 1, 1, 1, 1, 1, 1, 1, \
699 1, 1, 1, 1, 1, 1, 1, 1, \
700 1, 1, 1, 1, 1, 1, 1, 1, \
701 1, 1, 1, 1, 1, 1, 1, 1, \
702 \
703 1, 1, 1, 1, 1, 1, 1}
704
705 /* Return number of consecutive hard regs needed starting at reg REGNO
706 to hold something of mode MODE.
707 This is ordinarily the length in words of a value of mode MODE
708 but can be less for certain modes in special long registers.
709
710 On SPARC, ordinary registers hold 32 bits worth;
711 this means both integer and floating point registers.
712 On v9, integer regs hold 64 bits worth; floating point regs hold
713 32 bits worth (this includes the new fp regs as even the odd ones are
714 included in the hard register count). */
715
716 #define HARD_REGNO_NREGS(REGNO, MODE) \
717 ((REGNO) == SPARC_GSR_REG ? 1 : \
718 (TARGET_ARCH64 \
719 ? (SPARC_INT_REG_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM \
720 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
721 : (GET_MODE_SIZE (MODE) + 3) / 4) \
722 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
723
724 /* Due to the ARCH64 discrepancy above we must override this next
725 macro too. */
726 #define REGMODE_NATURAL_SIZE(MODE) sparc_regmode_natural_size (MODE)
727
728 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
729 See sparc.c for how we initialize this. */
730 extern const int *hard_regno_mode_classes;
731 extern int sparc_mode_class[];
732
733 /* ??? Because of the funny way we pass parameters we should allow certain
734 ??? types of float/complex values to be in integer registers during
735 ??? RTL generation. This only matters on arch32. */
736 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
737 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
738
739 /* Value is 1 if it is OK to rename a hard register FROM to another hard
740 register TO. We cannot rename %g1 as it may be used before the save
741 register window instruction in the prologue. */
742 #define HARD_REGNO_RENAME_OK(FROM, TO) ((FROM) != 1)
743
744 #define MODES_TIEABLE_P(MODE1, MODE2) sparc_modes_tieable_p (MODE1, MODE2)
745
746 /* Specify the registers used for certain standard purposes.
747 The values of these macros are register numbers. */
748
749 /* Register to use for pushing function arguments. */
750 #define STACK_POINTER_REGNUM 14
751
752 /* The stack bias (amount by which the hardware register is offset by). */
753 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
754
755 /* Actual top-of-stack address is 92/176 greater than the contents of the
756 stack pointer register for !v9/v9. That is:
757 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
758 address, and 6*4 bytes for the 6 register parameters.
759 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
760 parameter regs. */
761 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
762
763 /* Base register for access to local variables of the function. */
764 #define HARD_FRAME_POINTER_REGNUM 30
765
766 /* The soft frame pointer does not have the stack bias applied. */
767 #define FRAME_POINTER_REGNUM 101
768
769 /* Given the stack bias, the stack pointer isn't actually aligned. */
770 #define INIT_EXPANDERS \
771 do { \
772 if (crtl->emit.regno_pointer_align && SPARC_STACK_BIAS) \
773 { \
774 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
775 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
776 } \
777 } while (0)
778
779 /* Base register for access to arguments of the function. */
780 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
781
782 /* Register in which static-chain is passed to a function. This must
783 not be a register used by the prologue. */
784 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
785
786 /* Register which holds the global offset table, if any. */
787
788 #define GLOBAL_OFFSET_TABLE_REGNUM 23
789
790 /* Register which holds offset table for position-independent
791 data references. */
792
793 #define PIC_OFFSET_TABLE_REGNUM \
794 (flag_pic ? GLOBAL_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
795
796 /* Pick a default value we can notice from override_options:
797 !v9: Default is on.
798 v9: Default is off.
799 Originally it was -1, but later on the container of options changed to
800 unsigned byte, so we decided to pick 127 as default value, which does
801 reflect an undefined default value in case of 0/1. */
802
803 #define DEFAULT_PCC_STRUCT_RETURN 127
804
805 /* Functions which return large structures get the address
806 to place the wanted value at offset 64 from the frame.
807 Must reserve 64 bytes for the in and local registers.
808 v9: Functions which return large structures get the address to place the
809 wanted value from an invisible first argument. */
810 #define STRUCT_VALUE_OFFSET 64
811 \f
812 /* Define the classes of registers for register constraints in the
813 machine description. Also define ranges of constants.
814
815 One of the classes must always be named ALL_REGS and include all hard regs.
816 If there is more than one class, another class must be named NO_REGS
817 and contain no registers.
818
819 The name GENERAL_REGS must be the name of a class (or an alias for
820 another name such as ALL_REGS). This is the class of registers
821 that is allowed by "g" or "r" in a register constraint.
822 Also, registers outside this class are allocated only when
823 instructions express preferences for them.
824
825 The classes must be numbered in nondecreasing order; that is,
826 a larger-numbered class must never be contained completely
827 in a smaller-numbered class.
828
829 For any two classes, it is very desirable that there be another
830 class that represents their union. */
831
832 /* The SPARC has various kinds of registers: general, floating point,
833 and condition codes [well, it has others as well, but none that we
834 care directly about].
835
836 For v9 we must distinguish between the upper and lower floating point
837 registers because the upper ones can't hold SFmode values.
838 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
839 satisfying a group need for a class will also satisfy a single need for
840 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
841 regs.
842
843 It is important that one class contains all the general and all the standard
844 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
845 because reg_class_record() will bias the selection in favor of fp regs,
846 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
847 because FP_REGS > GENERAL_REGS.
848
849 It is also important that one class contain all the general and all
850 the fp regs. Otherwise when spilling a DFmode reg, it may be from
851 EXTRA_FP_REGS but find_reloads() may use class
852 GENERAL_OR_FP_REGS. This will cause allocate_reload_reg() to die
853 because the compiler thinks it doesn't have a spill reg when in
854 fact it does.
855
856 v9 also has 4 floating point condition code registers. Since we don't
857 have a class that is the union of FPCC_REGS with either of the others,
858 it is important that it appear first. Otherwise the compiler will die
859 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
860 constraints.
861
862 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
863 may try to use it to hold an SImode value. See register_operand.
864 ??? Should %fcc[0123] be handled similarly?
865 */
866
867 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
868 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
869 ALL_REGS, LIM_REG_CLASSES };
870
871 #define N_REG_CLASSES (int) LIM_REG_CLASSES
872
873 /* Give names of register classes as strings for dump file. */
874
875 #define REG_CLASS_NAMES \
876 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
877 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
878 "ALL_REGS" }
879
880 /* Define which registers fit in which classes.
881 This is an initializer for a vector of HARD_REG_SET
882 of length N_REG_CLASSES. */
883
884 #define REG_CLASS_CONTENTS \
885 {{0, 0, 0, 0}, /* NO_REGS */ \
886 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
887 {0xffff, 0, 0, 0}, /* I64_REGS */ \
888 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
889 {0, -1, 0, 0}, /* FP_REGS */ \
890 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
891 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
892 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
893 {-1, -1, -1, 0x7f}} /* ALL_REGS */
894
895 /* The same information, inverted:
896 Return the class number of the smallest class containing
897 reg number REGNO. This could be a conditional expression
898 or could index an array. */
899
900 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
901
902 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
903
904 /* Defines invalid mode changes. Borrowed from the PA port.
905
906 SImode loads to floating-point registers are not zero-extended.
907 The definition for LOAD_EXTEND_OP specifies that integer loads
908 narrower than BITS_PER_WORD will be zero-extended. As a result,
909 we inhibit changes from SImode unless they are to a mode that is
910 identical in size.
911
912 Likewise for SFmode, since word-mode paradoxical subregs are
913 problematic on big-endian architectures. */
914
915 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
916 (TARGET_ARCH64 \
917 && GET_MODE_SIZE (FROM) == 4 \
918 && GET_MODE_SIZE (TO) != 4 \
919 ? reg_classes_intersect_p (CLASS, FP_REGS) : 0)
920
921 /* This is the order in which to allocate registers normally.
922
923 We put %f0-%f7 last among the float registers, so as to make it more
924 likely that a pseudo-register which dies in the float return register
925 area will get allocated to the float return register, thus saving a move
926 instruction at the end of the function.
927
928 Similarly for integer return value registers.
929
930 We know in this case that we will not end up with a leaf function.
931
932 The register allocator is given the global and out registers first
933 because these registers are call clobbered and thus less useful to
934 global register allocation.
935
936 Next we list the local and in registers. They are not call clobbered
937 and thus very useful for global register allocation. We list the input
938 registers before the locals so that it is more likely the incoming
939 arguments received in those registers can just stay there and not be
940 reloaded. */
941
942 #define REG_ALLOC_ORDER \
943 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
944 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
945 15, /* %o7 */ \
946 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
947 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
948 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
949 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
950 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
951 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
952 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
953 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
954 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
955 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
956 96, 97, 98, 99, /* %fcc0-3 */ \
957 100, 0, 14, 30, 101, 102 } /* %icc, %g0, %o6, %i6, %sfp, %gsr */
958
959 /* This is the order in which to allocate registers for
960 leaf functions. If all registers can fit in the global and
961 output registers, then we have the possibility of having a leaf
962 function.
963
964 The macro actually mentioned the input registers first,
965 because they get renumbered into the output registers once
966 we know really do have a leaf function.
967
968 To be more precise, this register allocation order is used
969 when %o7 is found to not be clobbered right before register
970 allocation. Normally, the reason %o7 would be clobbered is
971 due to a call which could not be transformed into a sibling
972 call.
973
974 As a consequence, it is possible to use the leaf register
975 allocation order and not end up with a leaf function. We will
976 not get suboptimal register allocation in that case because by
977 definition of being potentially leaf, there were no function
978 calls. Therefore, allocation order within the local register
979 window is not critical like it is when we do have function calls. */
980
981 #define REG_LEAF_ALLOC_ORDER \
982 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
983 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
984 15, /* %o7 */ \
985 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
986 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
987 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
988 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
989 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
990 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
991 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
992 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
993 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
994 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
995 96, 97, 98, 99, /* %fcc0-3 */ \
996 100, 0, 14, 30, 31, 101, 102 } /* %icc, %g0, %o6, %i6, %i7, %sfp, %gsr */
997
998 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
999
1000 extern char sparc_leaf_regs[];
1001 #define LEAF_REGISTERS sparc_leaf_regs
1002
1003 extern char leaf_reg_remap[];
1004 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1005
1006 /* The class value for index registers, and the one for base regs. */
1007 #define INDEX_REG_CLASS GENERAL_REGS
1008 #define BASE_REG_CLASS GENERAL_REGS
1009
1010 /* Local macro to handle the two v9 classes of FP regs. */
1011 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1012
1013 /* Predicates for 5-bit, 10-bit, 11-bit and 13-bit signed constants. */
1014 #define SPARC_SIMM5_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x10 < 0x20)
1015 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1016 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1017 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1018
1019 /* 10- and 11-bit immediates are only used for a few specific insns.
1020 SMALL_INT is used throughout the port so we continue to use it. */
1021 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1022
1023 /* Predicate for constants that can be loaded with a sethi instruction.
1024 This is the general, 64-bit aware, bitwise version that ensures that
1025 only constants whose representation fits in the mask
1026
1027 0x00000000fffffc00
1028
1029 are accepted. It will reject, for example, negative SImode constants
1030 on 64-bit hosts, so correct handling is to mask the value beforehand
1031 according to the mode of the instruction. */
1032 #define SPARC_SETHI_P(X) \
1033 (((unsigned HOST_WIDE_INT) (X) \
1034 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1035
1036 /* Version of the above predicate for SImode constants and below. */
1037 #define SPARC_SETHI32_P(X) \
1038 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1039
1040 /* On SPARC when not VIS3 it is not possible to directly move data
1041 between GENERAL_REGS and FP_REGS. */
1042 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1043 ((FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2)) \
1044 && (! TARGET_VIS3 \
1045 || GET_MODE_SIZE (MODE) > 8 \
1046 || GET_MODE_SIZE (MODE) < 4))
1047
1048 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1049 because the movsi and movsf patterns don't handle r/f moves.
1050 For v8 we copy the default definition. */
1051 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1052 (TARGET_ARCH64 \
1053 ? (GET_MODE_BITSIZE (MODE) < 32 \
1054 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1055 : MODE) \
1056 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1057 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1058 : MODE))
1059
1060 /* Return the maximum number of consecutive registers
1061 needed to represent mode MODE in a register of class CLASS. */
1062 /* On SPARC, this is the size of MODE in words. */
1063 #define CLASS_MAX_NREGS(CLASS, MODE) \
1064 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1065 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1066 \f
1067 /* Stack layout; function entry, exit and calling. */
1068
1069 /* Define this if pushing a word on the stack
1070 makes the stack pointer a smaller address. */
1071 #define STACK_GROWS_DOWNWARD
1072
1073 /* Define this to nonzero if the nominal address of the stack frame
1074 is at the high-address end of the local variables;
1075 that is, each additional local variable allocated
1076 goes at a more negative offset in the frame. */
1077 #define FRAME_GROWS_DOWNWARD 1
1078
1079 /* Offset within stack frame to start allocating local variables at.
1080 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1081 first local allocated. Otherwise, it is the offset to the BEGINNING
1082 of the first local allocated. */
1083 #define STARTING_FRAME_OFFSET 0
1084
1085 /* Offset of first parameter from the argument pointer register value.
1086 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1087 even if this function isn't going to use it.
1088 v9: This is 128 for the ins and locals. */
1089 #define FIRST_PARM_OFFSET(FNDECL) \
1090 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1091
1092 /* Offset from the argument pointer register value to the CFA.
1093 This is different from FIRST_PARM_OFFSET because the register window
1094 comes between the CFA and the arguments. */
1095 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1096
1097 /* When a parameter is passed in a register, stack space is still
1098 allocated for it.
1099 !v9: All 6 possible integer registers have backing store allocated.
1100 v9: Only space for the arguments passed is allocated. */
1101 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1102 meaning to the backend. Further, we need to be able to detect if a
1103 varargs/unprototyped function is called, as they may want to spill more
1104 registers than we've provided space. Ugly, ugly. So for now we retain
1105 all 6 slots even for v9. */
1106 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1107
1108 /* Definitions for register elimination. */
1109
1110 #define ELIMINABLE_REGS \
1111 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1112 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1113
1114 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1115 do \
1116 { \
1117 (OFFSET) = sparc_initial_elimination_offset ((TO)); \
1118 } \
1119 while (0)
1120
1121 /* Keep the stack pointer constant throughout the function.
1122 This is both an optimization and a necessity: longjmp
1123 doesn't behave itself when the stack pointer moves within
1124 the function! */
1125 #define ACCUMULATE_OUTGOING_ARGS 1
1126
1127 /* Define this macro if the target machine has "register windows". This
1128 C expression returns the register number as seen by the called function
1129 corresponding to register number OUT as seen by the calling function.
1130 Return OUT if register number OUT is not an outbound register. */
1131
1132 #define INCOMING_REGNO(OUT) \
1133 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1134
1135 /* Define this macro if the target machine has "register windows". This
1136 C expression returns the register number as seen by the calling function
1137 corresponding to register number IN as seen by the called function.
1138 Return IN if register number IN is not an inbound register. */
1139
1140 #define OUTGOING_REGNO(IN) \
1141 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1142
1143 /* Define this macro if the target machine has register windows. This
1144 C expression returns true if the register is call-saved but is in the
1145 register window. */
1146
1147 #define LOCAL_REGNO(REGNO) \
1148 (!TARGET_FLAT && (REGNO) >= 16 && (REGNO) <= 31)
1149
1150 /* Define the size of space to allocate for the return value of an
1151 untyped_call. */
1152
1153 #define APPLY_RESULT_SIZE (TARGET_ARCH64 ? 24 : 16)
1154
1155 /* 1 if N is a possible register number for function argument passing.
1156 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1157
1158 #define FUNCTION_ARG_REGNO_P(N) \
1159 (TARGET_ARCH64 \
1160 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1161 : ((N) >= 8 && (N) <= 13))
1162 \f
1163 /* Define a data type for recording info about an argument list
1164 during the scan of that argument list. This data type should
1165 hold all necessary information about the function itself
1166 and about the args processed so far, enough to enable macros
1167 such as FUNCTION_ARG to determine where the next arg should go.
1168
1169 On SPARC (!v9), this is a single integer, which is a number of words
1170 of arguments scanned so far (including the invisible argument,
1171 if any, which holds the structure-value-address).
1172 Thus 7 or more means all following args should go on the stack.
1173
1174 For v9, we also need to know whether a prototype is present. */
1175
1176 struct sparc_args {
1177 int words; /* number of words passed so far */
1178 int prototype_p; /* nonzero if a prototype is present */
1179 int libcall_p; /* nonzero if a library call */
1180 };
1181 #define CUMULATIVE_ARGS struct sparc_args
1182
1183 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1184 for a call to a function whose data type is FNTYPE.
1185 For a library call, FNTYPE is 0. */
1186
1187 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1188 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL));
1189
1190 /* If defined, a C expression which determines whether, and in which direction,
1191 to pad out an argument with extra space. The value should be of type
1192 `enum direction': either `upward' to pad above the argument,
1193 `downward' to pad below, or `none' to inhibit padding. */
1194
1195 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1196 function_arg_padding ((MODE), (TYPE))
1197
1198 \f
1199 /* Generate the special assembly code needed to tell the assembler whatever
1200 it might need to know about the return value of a function.
1201
1202 For SPARC assemblers, we need to output a .proc pseudo-op which conveys
1203 information to the assembler relating to peephole optimization (done in
1204 the assembler). */
1205
1206 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1207 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1208
1209 /* Output the special assembly code needed to tell the assembler some
1210 register is used as global register variable.
1211
1212 SPARC 64bit psABI declares registers %g2 and %g3 as application
1213 registers and %g6 and %g7 as OS registers. Any object using them
1214 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1215 and how they are used (scratch or some global variable).
1216 Linker will then refuse to link together objects which use those
1217 registers incompatibly.
1218
1219 Unless the registers are used for scratch, two different global
1220 registers cannot be declared to the same name, so in the unlikely
1221 case of a global register variable occupying more than one register
1222 we prefix the second and following registers with .gnu.part1. etc. */
1223
1224 extern GTY(()) char sparc_hard_reg_printed[8];
1225
1226 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1227 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1228 do { \
1229 if (TARGET_ARCH64) \
1230 { \
1231 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1232 int reg; \
1233 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1234 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1235 { \
1236 if (reg == (REGNO)) \
1237 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1238 else \
1239 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1240 reg, reg - (REGNO), (NAME)); \
1241 sparc_hard_reg_printed[reg] = 1; \
1242 } \
1243 } \
1244 } while (0)
1245 #endif
1246
1247 \f
1248 /* Emit rtl for profiling. */
1249 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1250
1251 /* All the work done in PROFILE_HOOK, but still required. */
1252 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1253
1254 /* Set the name of the mcount function for the system. */
1255 #define MCOUNT_FUNCTION "*mcount"
1256 \f
1257 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1258 the stack pointer does not matter. The value is tested only in
1259 functions that have frame pointers. */
1260 #define EXIT_IGNORE_STACK 1
1261
1262 /* Length in units of the trampoline for entering a nested function. */
1263 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1264
1265 /* Alignment required for trampolines, in bits. */
1266 #define TRAMPOLINE_ALIGNMENT 128
1267 \f
1268 /* Generate RTL to flush the register windows so as to make arbitrary frames
1269 available. */
1270 #define SETUP_FRAME_ADDRESSES() \
1271 do { \
1272 if (!TARGET_FLAT) \
1273 emit_insn (gen_flush_register_windows ());\
1274 } while (0)
1275
1276 /* Given an rtx for the address of a frame,
1277 return an rtx for the address of the word in the frame
1278 that holds the dynamic chain--the previous frame's address. */
1279 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1280 plus_constant (Pmode, frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1281
1282 /* Given an rtx for the frame pointer,
1283 return an rtx for the address of the frame. */
1284 #define FRAME_ADDR_RTX(frame) plus_constant (Pmode, frame, SPARC_STACK_BIAS)
1285
1286 /* The return address isn't on the stack, it is in a register, so we can't
1287 access it from the current frame pointer. We can access it from the
1288 previous frame pointer though by reading a value from the register window
1289 save area. */
1290 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1291
1292 /* This is the offset of the return address to the true next instruction to be
1293 executed for the current function. */
1294 #define RETURN_ADDR_OFFSET \
1295 (8 + 4 * (! TARGET_ARCH64 && cfun->returns_struct))
1296
1297 /* The current return address is in %i7. The return address of anything
1298 farther back is in the register window save area at [%fp+60]. */
1299 /* ??? This ignores the fact that the actual return address is +8 for normal
1300 returns, and +12 for structure returns. */
1301 #define RETURN_ADDR_REGNUM 31
1302 #define RETURN_ADDR_RTX(count, frame) \
1303 ((count == -1) \
1304 ? gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM) \
1305 : gen_rtx_MEM (Pmode, \
1306 memory_address (Pmode, plus_constant (Pmode, frame, \
1307 15 * UNITS_PER_WORD \
1308 + SPARC_STACK_BIAS))))
1309
1310 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1311 +12, but always using +8 is close enough for frame unwind purposes.
1312 Actually, just using %o7 is close enough for unwinding, but %o7+8
1313 is something you can return to. */
1314 #define INCOMING_RETURN_ADDR_REGNUM 15
1315 #define INCOMING_RETURN_ADDR_RTX \
1316 plus_constant (word_mode, \
1317 gen_rtx_REG (word_mode, INCOMING_RETURN_ADDR_REGNUM), 8)
1318 #define DWARF_FRAME_RETURN_COLUMN \
1319 DWARF_FRAME_REGNUM (INCOMING_RETURN_ADDR_REGNUM)
1320
1321 /* The offset from the incoming value of %sp to the top of the stack frame
1322 for the current function. On sparc64, we have to account for the stack
1323 bias if present. */
1324 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1325
1326 /* Describe how we implement __builtin_eh_return. */
1327 #define EH_RETURN_REGNUM 1
1328 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1329 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_REGNUM)
1330
1331 /* Define registers used by the epilogue and return instruction. */
1332 #define EPILOGUE_USES(REGNO) \
1333 ((REGNO) == RETURN_ADDR_REGNUM \
1334 || (TARGET_FLAT \
1335 && epilogue_completed \
1336 && (REGNO) == INCOMING_RETURN_ADDR_REGNUM) \
1337 || (crtl->calls_eh_return && (REGNO) == EH_RETURN_REGNUM))
1338
1339 /* Select a format to encode pointers in exception handling data. CODE
1340 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1341 true if the symbol may be affected by dynamic relocations.
1342
1343 If assembler and linker properly support .uaword %r_disp32(foo),
1344 then use PC relative 32-bit relocations instead of absolute relocs
1345 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1346 for binaries, to save memory.
1347
1348 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
1349 symbol %r_disp32() is against was not local, but .hidden. In that
1350 case, we have to use DW_EH_PE_absptr for pic personality. */
1351 #ifdef HAVE_AS_SPARC_UA_PCREL
1352 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
1353 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1354 (flag_pic \
1355 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1356 : ((TARGET_ARCH64 && ! GLOBAL) \
1357 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1358 : DW_EH_PE_absptr))
1359 #else
1360 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1361 (flag_pic \
1362 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
1363 : ((TARGET_ARCH64 && ! GLOBAL) \
1364 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1365 : DW_EH_PE_absptr))
1366 #endif
1367
1368 /* Emit a PC-relative relocation. */
1369 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1370 do { \
1371 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1372 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1373 assemble_name (FILE, LABEL); \
1374 fputc (')', FILE); \
1375 } while (0)
1376 #endif
1377 \f
1378 /* Addressing modes, and classification of registers for them. */
1379
1380 /* Macros to check register numbers against specific register classes. */
1381
1382 /* These assume that REGNO is a hard or pseudo reg number.
1383 They give nonzero only if REGNO is a hard reg of the suitable class
1384 or a pseudo reg currently allocated to a suitable hard reg.
1385 Since they use reg_renumber, they are safe only once reg_renumber
1386 has been allocated, which happens in reginfo.c during register
1387 allocation. */
1388
1389 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1390 (SPARC_INT_REG_P (REGNO) || SPARC_INT_REG_P (reg_renumber[REGNO]) \
1391 || (REGNO) == FRAME_POINTER_REGNUM \
1392 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
1393
1394 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
1395
1396 #define REGNO_OK_FOR_FP_P(REGNO) \
1397 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
1398 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
1399
1400 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1401 (TARGET_V9 \
1402 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
1403 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
1404 \f
1405 /* Maximum number of registers that can appear in a valid memory address. */
1406
1407 #define MAX_REGS_PER_ADDRESS 2
1408
1409 /* Recognize any constant value that is a valid address.
1410 When PIC, we do not accept an address that would require a scratch reg
1411 to load into a register. */
1412
1413 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1414
1415 /* Define this, so that when PIC, reload won't try to reload invalid
1416 addresses which require two reload registers. */
1417
1418 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1419 \f
1420 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
1421
1422 #ifdef HAVE_AS_OFFSETABLE_LO10
1423 #define USE_AS_OFFSETABLE_LO10 1
1424 #else
1425 #define USE_AS_OFFSETABLE_LO10 0
1426 #endif
1427 \f
1428 /* Try a machine-dependent way of reloading an illegitimate address
1429 operand. If we find one, push the reload and jump to WIN. This
1430 macro is used in only one place: `find_reloads_address' in reload.c. */
1431 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1432 do { \
1433 int win; \
1434 (X) = sparc_legitimize_reload_address ((X), (MODE), (OPNUM), \
1435 (int)(TYPE), (IND_LEVELS), &win); \
1436 if (win) \
1437 goto WIN; \
1438 } while (0)
1439 \f
1440 /* Specify the machine mode that this machine uses
1441 for the index in the tablejump instruction. */
1442 /* If we ever implement any of the full models (such as CM_FULLANY),
1443 this has to be DImode in that case */
1444 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1445 #define CASE_VECTOR_MODE \
1446 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
1447 #else
1448 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
1449 we have to sign extend which slows things down. */
1450 #define CASE_VECTOR_MODE \
1451 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
1452 #endif
1453
1454 /* Define this as 1 if `char' should by default be signed; else as 0. */
1455 #define DEFAULT_SIGNED_CHAR 1
1456
1457 /* Max number of bytes we can move from memory to memory
1458 in one reasonably fast instruction. */
1459 #define MOVE_MAX 8
1460
1461 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1462 move-instruction pairs, we will do a movmem or libcall instead. */
1463
1464 #define MOVE_RATIO(speed) ((speed) ? 8 : 3)
1465
1466 /* Define if operations between registers always perform the operation
1467 on the full register even if a narrower mode is specified. */
1468 #define WORD_REGISTER_OPERATIONS
1469
1470 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1471 will either zero-extend or sign-extend. The value of this macro should
1472 be the code that says which one of the two operations is implicitly
1473 done, UNKNOWN if none. */
1474 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1475
1476 /* Nonzero if access to memory by bytes is slow and undesirable.
1477 For RISC chips, it means that access to memory by bytes is no
1478 better than access by words when possible, so grab a whole word
1479 and maybe make use of that. */
1480 #define SLOW_BYTE_ACCESS 1
1481
1482 /* Define this to be nonzero if shift instructions ignore all but the low-order
1483 few bits. */
1484 #define SHIFT_COUNT_TRUNCATED 1
1485
1486 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1487 is done just by pretending it is already truncated. */
1488 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1489
1490 /* For SImode, we make sure the top 32-bits of the register are clear and
1491 then we subtract 32 from the lzd instruction result. */
1492 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1493 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1494
1495 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1496 return the mode to be used for the comparison. For floating-point,
1497 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
1498 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
1499 processing is needed. */
1500 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
1501
1502 /* Return nonzero if MODE implies a floating point inequality can be
1503 reversed. For SPARC this is always true because we have a full
1504 compliment of ordered and unordered comparisons, but until generic
1505 code knows how to reverse it correctly we keep the old definition. */
1506 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1507
1508 /* A function address in a call instruction for indexing purposes. */
1509 #define FUNCTION_MODE Pmode
1510
1511 /* Define this if addresses of constant functions
1512 shouldn't be put through pseudo regs where they can be cse'd.
1513 Desirable on machines where ordinary constants are expensive
1514 but a CALL with constant address is cheap. */
1515 #define NO_FUNCTION_CSE
1516
1517 /* The _Q_* comparison libcalls return booleans. */
1518 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
1519
1520 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
1521 that the inputs are fully consumed before the output memory is clobbered. */
1522
1523 #define TARGET_BUGGY_QP_LIB 0
1524
1525 /* Assume by default that we do not have the Solaris-specific conversion
1526 routines nor 64-bit integer multiply and divide routines. */
1527
1528 #define SUN_CONVERSION_LIBFUNCS 0
1529 #define DITF_CONVERSION_LIBFUNCS 0
1530 #define SUN_INTEGER_MULTIPLY_64 0
1531
1532 /* Provide the cost of a branch. For pre-v9 processors we use
1533 a value of 3 to take into account the potential annulling of
1534 the delay slot (which ends up being a bubble in the pipeline slot)
1535 plus a cycle to take into consideration the instruction cache
1536 effects.
1537
1538 On v9 and later, which have branch prediction facilities, we set
1539 it to the depth of the pipeline as that is the cost of a
1540 mispredicted branch.
1541
1542 On Niagara, normal branches insert 3 bubbles into the pipe
1543 and annulled branches insert 4 bubbles.
1544
1545 On Niagara-2 and Niagara-3, a not-taken branch costs 1 cycle whereas
1546 a taken branch costs 6 cycles. */
1547
1548 #define BRANCH_COST(speed_p, predictable_p) \
1549 ((sparc_cpu == PROCESSOR_V9 \
1550 || sparc_cpu == PROCESSOR_ULTRASPARC) \
1551 ? 7 \
1552 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
1553 ? 9 \
1554 : (sparc_cpu == PROCESSOR_NIAGARA \
1555 ? 4 \
1556 : ((sparc_cpu == PROCESSOR_NIAGARA2 \
1557 || sparc_cpu == PROCESSOR_NIAGARA3) \
1558 ? 5 \
1559 : 3))))
1560 \f
1561 /* Control the assembler format that we output. */
1562
1563 /* A C string constant describing how to begin a comment in the target
1564 assembler language. The compiler assumes that the comment will end at
1565 the end of the line. */
1566
1567 #define ASM_COMMENT_START "!"
1568
1569 /* Output to assembler file text saying following lines
1570 may contain character constants, extra white space, comments, etc. */
1571
1572 #define ASM_APP_ON ""
1573
1574 /* Output to assembler file text saying following lines
1575 no longer contain unusual constructs. */
1576
1577 #define ASM_APP_OFF ""
1578
1579 /* How to refer to registers in assembler output.
1580 This sequence is indexed by compiler's hard-register-number (see above). */
1581
1582 #define REGISTER_NAMES \
1583 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1584 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1585 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1586 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1587 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1588 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1589 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1590 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
1591 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
1592 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
1593 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
1594 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
1595 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp", "%gsr" }
1596
1597 /* Define additional names for use in asm clobbers and asm declarations. */
1598
1599 #define ADDITIONAL_REGISTER_NAMES \
1600 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
1601
1602 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
1603 can run past this up to a continuation point. Once we used 1500, but
1604 a single entry in C++ can run more than 500 bytes, due to the length of
1605 mangled symbol names. dbxout.c should really be fixed to do
1606 continuations when they are actually needed instead of trying to
1607 guess... */
1608 #define DBX_CONTIN_LENGTH 1000
1609
1610 /* This is how to output a command to make the user-level label named NAME
1611 defined for reference from other files. */
1612
1613 /* Globalizing directive for a label. */
1614 #define GLOBAL_ASM_OP "\t.global "
1615
1616 /* The prefix to add to user-visible assembler symbols. */
1617
1618 #define USER_LABEL_PREFIX "_"
1619
1620 /* This is how to store into the string LABEL
1621 the symbol_ref name of an internal numbered label where
1622 PREFIX is the class of label and NUM is the number within the class.
1623 This is suitable for output with `assemble_name'. */
1624
1625 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1626 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
1627
1628 /* This is how we hook in and defer the case-vector until the end of
1629 the function. */
1630 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
1631 sparc_defer_case_vector ((LAB),(VEC), 0)
1632
1633 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
1634 sparc_defer_case_vector ((LAB),(VEC), 1)
1635
1636 /* This is how to output an element of a case-vector that is absolute. */
1637
1638 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1639 do { \
1640 char label[30]; \
1641 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1642 if (CASE_VECTOR_MODE == SImode) \
1643 fprintf (FILE, "\t.word\t"); \
1644 else \
1645 fprintf (FILE, "\t.xword\t"); \
1646 assemble_name (FILE, label); \
1647 fputc ('\n', FILE); \
1648 } while (0)
1649
1650 /* This is how to output an element of a case-vector that is relative.
1651 (SPARC uses such vectors only when generating PIC.) */
1652
1653 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1654 do { \
1655 char label[30]; \
1656 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
1657 if (CASE_VECTOR_MODE == SImode) \
1658 fprintf (FILE, "\t.word\t"); \
1659 else \
1660 fprintf (FILE, "\t.xword\t"); \
1661 assemble_name (FILE, label); \
1662 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
1663 fputc ('-', FILE); \
1664 assemble_name (FILE, label); \
1665 fputc ('\n', FILE); \
1666 } while (0)
1667
1668 /* This is what to output before and after case-vector (both
1669 relative and absolute). If .subsection -1 works, we put case-vectors
1670 at the beginning of the current section. */
1671
1672 #ifdef HAVE_GAS_SUBSECTION_ORDERING
1673
1674 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
1675 fprintf(FILE, "\t.subsection\t-1\n")
1676
1677 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
1678 fprintf(FILE, "\t.previous\n")
1679
1680 #endif
1681
1682 /* This is how to output an assembler line
1683 that says to advance the location counter
1684 to a multiple of 2**LOG bytes. */
1685
1686 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1687 if ((LOG) != 0) \
1688 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1689
1690 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1691 fprintf (FILE, "\t.skip "HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
1692
1693 /* This says how to output an assembler line
1694 to define a global common symbol. */
1695
1696 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1697 ( fputs ("\t.common ", (FILE)), \
1698 assemble_name ((FILE), (NAME)), \
1699 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\"\n", (SIZE)))
1700
1701 /* This says how to output an assembler line to define a local common
1702 symbol. */
1703
1704 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1705 ( fputs ("\t.reserve ", (FILE)), \
1706 assemble_name ((FILE), (NAME)), \
1707 fprintf ((FILE), ","HOST_WIDE_INT_PRINT_UNSIGNED",\"bss\",%u\n", \
1708 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
1709
1710 /* A C statement (sans semicolon) to output to the stdio stream
1711 FILE the assembler definition of uninitialized global DECL named
1712 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1713 Try to use asm_output_aligned_bss to implement this macro. */
1714
1715 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1716 do { \
1717 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1718 } while (0)
1719
1720 /* Output #ident as a .ident. */
1721
1722 #undef TARGET_ASM_OUTPUT_IDENT
1723 #define TARGET_ASM_OUTPUT_IDENT default_asm_output_ident_directive
1724
1725 /* Prettify the assembly. */
1726
1727 extern int sparc_indent_opcode;
1728
1729 #define ASM_OUTPUT_OPCODE(FILE, PTR) \
1730 do { \
1731 if (sparc_indent_opcode) \
1732 { \
1733 putc (' ', FILE); \
1734 sparc_indent_opcode = 0; \
1735 } \
1736 } while (0)
1737
1738 /* TLS support defaulting to original Sun flavor. GNU extensions
1739 must be activated in separate configuration files. */
1740 #ifdef HAVE_AS_TLS
1741 #define TARGET_TLS 1
1742 #else
1743 #define TARGET_TLS 0
1744 #endif
1745
1746 #define TARGET_SUN_TLS TARGET_TLS
1747 #define TARGET_GNU_TLS 0
1748
1749 #ifdef HAVE_AS_FMAF_HPC_VIS3
1750 #define AS_NIAGARA3_FLAG "d"
1751 #else
1752 #define AS_NIAGARA3_FLAG "b"
1753 #endif
1754
1755 #ifdef HAVE_AS_SPARC4
1756 #define AS_NIAGARA4_FLAG "-xarch=sparc4"
1757 #else
1758 #define AS_NIAGARA4_FLAG "-Av9" AS_NIAGARA3_FLAG
1759 #endif
1760
1761 #ifdef HAVE_AS_LEON
1762 #define AS_LEON_FLAG "-Aleon"
1763 #else
1764 #define AS_LEON_FLAG "-Av8"
1765 #endif
1766
1767 /* We use gcc _mcount for profiling. */
1768 #define NO_PROFILE_COUNTERS 0
1769
1770 /* Debug support */
1771 #define MASK_DEBUG_OPTIONS 0x01 /* debug option handling */
1772 #define MASK_DEBUG_ALL MASK_DEBUG_OPTIONS
1773
1774 #define TARGET_DEBUG_OPTIONS (sparc_debug & MASK_DEBUG_OPTIONS)
1775
1776 /* By default, use the weakest memory model for the cpu. */
1777 #ifndef SUBTARGET_DEFAULT_MEMORY_MODEL
1778 #define SUBTARGET_DEFAULT_MEMORY_MODEL SMM_DEFAULT
1779 #endif
1780
1781 /* Define this to 1 if the FE_EXCEPT values defined in fenv.h start at 1. */
1782 #define SPARC_LOW_FE_EXCEPT_VALUES 0