]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/spu/spu.c
* config/arm/arm.c (neon_element_bits): Replace call to
[thirdparty/gcc.git] / gcc / config / spu / spu.c
1 /* Copyright (C) 2006-2015 Free Software Foundation, Inc.
2
3 This file is free software; you can redistribute it and/or modify it under
4 the terms of the GNU General Public License as published by the Free
5 Software Foundation; either version 3 of the License, or (at your option)
6 any later version.
7
8 This file is distributed in the hope that it will be useful, but WITHOUT
9 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
11 for more details.
12
13 You should have received a copy of the GNU General Public License
14 along with GCC; see the file COPYING3. If not see
15 <http://www.gnu.org/licenses/>. */
16
17 #include "config.h"
18 #include "system.h"
19 #include "coretypes.h"
20 #include "backend.h"
21 #include "cfghooks.h"
22 #include "tree.h"
23 #include "gimple.h"
24 #include "rtl.h"
25 #include "df.h"
26 #include "regs.h"
27 #include "insn-config.h"
28 #include "conditions.h"
29 #include "insn-attr.h"
30 #include "flags.h"
31 #include "recog.h"
32 #include "alias.h"
33 #include "fold-const.h"
34 #include "stringpool.h"
35 #include "stor-layout.h"
36 #include "calls.h"
37 #include "varasm.h"
38 #include "expmed.h"
39 #include "dojump.h"
40 #include "explow.h"
41 #include "emit-rtl.h"
42 #include "stmt.h"
43 #include "expr.h"
44 #include "insn-codes.h"
45 #include "optabs.h"
46 #include "except.h"
47 #include "output.h"
48 #include "cfgrtl.h"
49 #include "cfganal.h"
50 #include "lcm.h"
51 #include "cfgbuild.h"
52 #include "cfgcleanup.h"
53 #include "diagnostic-core.h"
54 #include "tm_p.h"
55 #include "target.h"
56 #include "langhooks.h"
57 #include "reload.h"
58 #include "sched-int.h"
59 #include "params.h"
60 #include "internal-fn.h"
61 #include "gimple-fold.h"
62 #include "tree-eh.h"
63 #include "gimplify.h"
64 #include "tm-constrs.h"
65 #include "ddg.h"
66 #include "timevar.h"
67 #include "dumpfile.h"
68 #include "cfgloop.h"
69 #include "builtins.h"
70 #include "rtl-iter.h"
71
72 /* This file should be included last. */
73 #include "target-def.h"
74
75 /* Builtin types, data and prototypes. */
76
77 enum spu_builtin_type_index
78 {
79 SPU_BTI_END_OF_PARAMS,
80
81 /* We create new type nodes for these. */
82 SPU_BTI_V16QI,
83 SPU_BTI_V8HI,
84 SPU_BTI_V4SI,
85 SPU_BTI_V2DI,
86 SPU_BTI_V4SF,
87 SPU_BTI_V2DF,
88 SPU_BTI_UV16QI,
89 SPU_BTI_UV8HI,
90 SPU_BTI_UV4SI,
91 SPU_BTI_UV2DI,
92
93 /* A 16-byte type. (Implemented with V16QI_type_node) */
94 SPU_BTI_QUADWORD,
95
96 /* These all correspond to intSI_type_node */
97 SPU_BTI_7,
98 SPU_BTI_S7,
99 SPU_BTI_U7,
100 SPU_BTI_S10,
101 SPU_BTI_S10_4,
102 SPU_BTI_U14,
103 SPU_BTI_16,
104 SPU_BTI_S16,
105 SPU_BTI_S16_2,
106 SPU_BTI_U16,
107 SPU_BTI_U16_2,
108 SPU_BTI_U18,
109
110 /* These correspond to the standard types */
111 SPU_BTI_INTQI,
112 SPU_BTI_INTHI,
113 SPU_BTI_INTSI,
114 SPU_BTI_INTDI,
115
116 SPU_BTI_UINTQI,
117 SPU_BTI_UINTHI,
118 SPU_BTI_UINTSI,
119 SPU_BTI_UINTDI,
120
121 SPU_BTI_FLOAT,
122 SPU_BTI_DOUBLE,
123
124 SPU_BTI_VOID,
125 SPU_BTI_PTR,
126
127 SPU_BTI_MAX
128 };
129
130 #define V16QI_type_node (spu_builtin_types[SPU_BTI_V16QI])
131 #define V8HI_type_node (spu_builtin_types[SPU_BTI_V8HI])
132 #define V4SI_type_node (spu_builtin_types[SPU_BTI_V4SI])
133 #define V2DI_type_node (spu_builtin_types[SPU_BTI_V2DI])
134 #define V4SF_type_node (spu_builtin_types[SPU_BTI_V4SF])
135 #define V2DF_type_node (spu_builtin_types[SPU_BTI_V2DF])
136 #define unsigned_V16QI_type_node (spu_builtin_types[SPU_BTI_UV16QI])
137 #define unsigned_V8HI_type_node (spu_builtin_types[SPU_BTI_UV8HI])
138 #define unsigned_V4SI_type_node (spu_builtin_types[SPU_BTI_UV4SI])
139 #define unsigned_V2DI_type_node (spu_builtin_types[SPU_BTI_UV2DI])
140
141 static GTY(()) tree spu_builtin_types[SPU_BTI_MAX];
142
143 struct spu_builtin_range
144 {
145 int low, high;
146 };
147
148 static struct spu_builtin_range spu_builtin_range[] = {
149 {-0x40ll, 0x7fll}, /* SPU_BTI_7 */
150 {-0x40ll, 0x3fll}, /* SPU_BTI_S7 */
151 {0ll, 0x7fll}, /* SPU_BTI_U7 */
152 {-0x200ll, 0x1ffll}, /* SPU_BTI_S10 */
153 {-0x2000ll, 0x1fffll}, /* SPU_BTI_S10_4 */
154 {0ll, 0x3fffll}, /* SPU_BTI_U14 */
155 {-0x8000ll, 0xffffll}, /* SPU_BTI_16 */
156 {-0x8000ll, 0x7fffll}, /* SPU_BTI_S16 */
157 {-0x20000ll, 0x1ffffll}, /* SPU_BTI_S16_2 */
158 {0ll, 0xffffll}, /* SPU_BTI_U16 */
159 {0ll, 0x3ffffll}, /* SPU_BTI_U16_2 */
160 {0ll, 0x3ffffll}, /* SPU_BTI_U18 */
161 };
162
163 \f
164 /* Target specific attribute specifications. */
165 char regs_ever_allocated[FIRST_PSEUDO_REGISTER];
166
167 /* Prototypes and external defs. */
168 static int get_pipe (rtx_insn *insn);
169 static int spu_naked_function_p (tree func);
170 static int mem_is_padded_component_ref (rtx x);
171 static void fix_range (const char *);
172 static rtx spu_expand_load (rtx, rtx, rtx, int);
173
174 /* Which instruction set architecture to use. */
175 int spu_arch;
176 /* Which cpu are we tuning for. */
177 int spu_tune;
178
179 /* The hardware requires 8 insns between a hint and the branch it
180 effects. This variable describes how many rtl instructions the
181 compiler needs to see before inserting a hint, and then the compiler
182 will insert enough nops to make it at least 8 insns. The default is
183 for the compiler to allow up to 2 nops be emitted. The nops are
184 inserted in pairs, so we round down. */
185 int spu_hint_dist = (8*4) - (2*4);
186
187 enum spu_immediate {
188 SPU_NONE,
189 SPU_IL,
190 SPU_ILA,
191 SPU_ILH,
192 SPU_ILHU,
193 SPU_ORI,
194 SPU_ORHI,
195 SPU_ORBI,
196 SPU_IOHL
197 };
198 enum immediate_class
199 {
200 IC_POOL, /* constant pool */
201 IC_IL1, /* one il* instruction */
202 IC_IL2, /* both ilhu and iohl instructions */
203 IC_IL1s, /* one il* instruction */
204 IC_IL2s, /* both ilhu and iohl instructions */
205 IC_FSMBI, /* the fsmbi instruction */
206 IC_CPAT, /* one of the c*d instructions */
207 IC_FSMBI2 /* fsmbi plus 1 other instruction */
208 };
209
210 static enum spu_immediate which_immediate_load (HOST_WIDE_INT val);
211 static enum spu_immediate which_logical_immediate (HOST_WIDE_INT val);
212 static int cpat_info(unsigned char *arr, int size, int *prun, int *pstart);
213 static enum immediate_class classify_immediate (rtx op,
214 machine_mode mode);
215
216 /* Pointer mode for __ea references. */
217 #define EAmode (spu_ea_model != 32 ? DImode : SImode)
218
219 \f
220 /* Define the structure for the machine field in struct function. */
221 struct GTY(()) machine_function
222 {
223 /* Register to use for PIC accesses. */
224 rtx pic_reg;
225 };
226
227 /* How to allocate a 'struct machine_function'. */
228 static struct machine_function *
229 spu_init_machine_status (void)
230 {
231 return ggc_cleared_alloc<machine_function> ();
232 }
233
234 /* Implement TARGET_OPTION_OVERRIDE. */
235 static void
236 spu_option_override (void)
237 {
238 /* Set up function hooks. */
239 init_machine_status = spu_init_machine_status;
240
241 /* Small loops will be unpeeled at -O3. For SPU it is more important
242 to keep code small by default. */
243 if (!flag_unroll_loops && !flag_peel_loops)
244 maybe_set_param_value (PARAM_MAX_COMPLETELY_PEEL_TIMES, 4,
245 global_options.x_param_values,
246 global_options_set.x_param_values);
247
248 flag_omit_frame_pointer = 1;
249
250 /* Functions must be 8 byte aligned so we correctly handle dual issue */
251 if (align_functions < 8)
252 align_functions = 8;
253
254 spu_hint_dist = 8*4 - spu_max_nops*4;
255 if (spu_hint_dist < 0)
256 spu_hint_dist = 0;
257
258 if (spu_fixed_range_string)
259 fix_range (spu_fixed_range_string);
260
261 /* Determine processor architectural level. */
262 if (spu_arch_string)
263 {
264 if (strcmp (&spu_arch_string[0], "cell") == 0)
265 spu_arch = PROCESSOR_CELL;
266 else if (strcmp (&spu_arch_string[0], "celledp") == 0)
267 spu_arch = PROCESSOR_CELLEDP;
268 else
269 error ("bad value (%s) for -march= switch", spu_arch_string);
270 }
271
272 /* Determine processor to tune for. */
273 if (spu_tune_string)
274 {
275 if (strcmp (&spu_tune_string[0], "cell") == 0)
276 spu_tune = PROCESSOR_CELL;
277 else if (strcmp (&spu_tune_string[0], "celledp") == 0)
278 spu_tune = PROCESSOR_CELLEDP;
279 else
280 error ("bad value (%s) for -mtune= switch", spu_tune_string);
281 }
282
283 /* Change defaults according to the processor architecture. */
284 if (spu_arch == PROCESSOR_CELLEDP)
285 {
286 /* If no command line option has been otherwise specified, change
287 the default to -mno-safe-hints on celledp -- only the original
288 Cell/B.E. processors require this workaround. */
289 if (!(target_flags_explicit & MASK_SAFE_HINTS))
290 target_flags &= ~MASK_SAFE_HINTS;
291 }
292
293 REAL_MODE_FORMAT (SFmode) = &spu_single_format;
294 }
295 \f
296 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
297 struct attribute_spec.handler. */
298
299 /* True if MODE is valid for the target. By "valid", we mean able to
300 be manipulated in non-trivial ways. In particular, this means all
301 the arithmetic is supported. */
302 static bool
303 spu_scalar_mode_supported_p (machine_mode mode)
304 {
305 switch (mode)
306 {
307 case QImode:
308 case HImode:
309 case SImode:
310 case SFmode:
311 case DImode:
312 case TImode:
313 case DFmode:
314 return true;
315
316 default:
317 return false;
318 }
319 }
320
321 /* Similarly for vector modes. "Supported" here is less strict. At
322 least some operations are supported; need to check optabs or builtins
323 for further details. */
324 static bool
325 spu_vector_mode_supported_p (machine_mode mode)
326 {
327 switch (mode)
328 {
329 case V16QImode:
330 case V8HImode:
331 case V4SImode:
332 case V2DImode:
333 case V4SFmode:
334 case V2DFmode:
335 return true;
336
337 default:
338 return false;
339 }
340 }
341
342 /* GCC assumes that in a paradoxical SUBREG the inner mode occupies the
343 least significant bytes of the outer mode. This function returns
344 TRUE for the SUBREG's where this is correct. */
345 int
346 valid_subreg (rtx op)
347 {
348 machine_mode om = GET_MODE (op);
349 machine_mode im = GET_MODE (SUBREG_REG (op));
350 return om != VOIDmode && im != VOIDmode
351 && (GET_MODE_SIZE (im) == GET_MODE_SIZE (om)
352 || (GET_MODE_SIZE (im) <= 4 && GET_MODE_SIZE (om) <= 4)
353 || (GET_MODE_SIZE (im) >= 16 && GET_MODE_SIZE (om) >= 16));
354 }
355
356 /* When insv and ext[sz]v ar passed a TI SUBREG, we want to strip it off
357 and adjust the start offset. */
358 static rtx
359 adjust_operand (rtx op, HOST_WIDE_INT * start)
360 {
361 machine_mode mode;
362 int op_size;
363 /* Strip any paradoxical SUBREG. */
364 if (GET_CODE (op) == SUBREG
365 && (GET_MODE_BITSIZE (GET_MODE (op))
366 > GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op)))))
367 {
368 if (start)
369 *start -=
370 GET_MODE_BITSIZE (GET_MODE (op)) -
371 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op)));
372 op = SUBREG_REG (op);
373 }
374 /* If it is smaller than SI, assure a SUBREG */
375 op_size = GET_MODE_BITSIZE (GET_MODE (op));
376 if (op_size < 32)
377 {
378 if (start)
379 *start += 32 - op_size;
380 op_size = 32;
381 }
382 /* If it is not a MODE_INT (and/or it is smaller than SI) add a SUBREG. */
383 mode = mode_for_size (op_size, MODE_INT, 0);
384 if (mode != GET_MODE (op))
385 op = gen_rtx_SUBREG (mode, op, 0);
386 return op;
387 }
388
389 void
390 spu_expand_extv (rtx ops[], int unsignedp)
391 {
392 rtx dst = ops[0], src = ops[1];
393 HOST_WIDE_INT width = INTVAL (ops[2]);
394 HOST_WIDE_INT start = INTVAL (ops[3]);
395 HOST_WIDE_INT align_mask;
396 rtx s0, s1, mask, r0;
397
398 gcc_assert (REG_P (dst) && GET_MODE (dst) == TImode);
399
400 if (MEM_P (src))
401 {
402 /* First, determine if we need 1 TImode load or 2. We need only 1
403 if the bits being extracted do not cross the alignment boundary
404 as determined by the MEM and its address. */
405
406 align_mask = -MEM_ALIGN (src);
407 if ((start & align_mask) == ((start + width - 1) & align_mask))
408 {
409 /* Alignment is sufficient for 1 load. */
410 s0 = gen_reg_rtx (TImode);
411 r0 = spu_expand_load (s0, 0, src, start / 8);
412 start &= 7;
413 if (r0)
414 emit_insn (gen_rotqby_ti (s0, s0, r0));
415 }
416 else
417 {
418 /* Need 2 loads. */
419 s0 = gen_reg_rtx (TImode);
420 s1 = gen_reg_rtx (TImode);
421 r0 = spu_expand_load (s0, s1, src, start / 8);
422 start &= 7;
423
424 gcc_assert (start + width <= 128);
425 if (r0)
426 {
427 rtx r1 = gen_reg_rtx (SImode);
428 mask = gen_reg_rtx (TImode);
429 emit_move_insn (mask, GEN_INT (-1));
430 emit_insn (gen_rotqby_ti (s0, s0, r0));
431 emit_insn (gen_rotqby_ti (s1, s1, r0));
432 if (GET_CODE (r0) == CONST_INT)
433 r1 = GEN_INT (INTVAL (r0) & 15);
434 else
435 emit_insn (gen_andsi3 (r1, r0, GEN_INT (15)));
436 emit_insn (gen_shlqby_ti (mask, mask, r1));
437 emit_insn (gen_selb (s0, s1, s0, mask));
438 }
439 }
440
441 }
442 else if (GET_CODE (src) == SUBREG)
443 {
444 rtx r = SUBREG_REG (src);
445 gcc_assert (REG_P (r) && SCALAR_INT_MODE_P (GET_MODE (r)));
446 s0 = gen_reg_rtx (TImode);
447 if (GET_MODE_SIZE (GET_MODE (r)) < GET_MODE_SIZE (TImode))
448 emit_insn (gen_rtx_SET (s0, gen_rtx_ZERO_EXTEND (TImode, r)));
449 else
450 emit_move_insn (s0, src);
451 }
452 else
453 {
454 gcc_assert (REG_P (src) && GET_MODE (src) == TImode);
455 s0 = gen_reg_rtx (TImode);
456 emit_move_insn (s0, src);
457 }
458
459 /* Now s0 is TImode and contains the bits to extract at start. */
460
461 if (start)
462 emit_insn (gen_rotlti3 (s0, s0, GEN_INT (start)));
463
464 if (128 - width)
465 s0 = expand_shift (RSHIFT_EXPR, TImode, s0, 128 - width, s0, unsignedp);
466
467 emit_move_insn (dst, s0);
468 }
469
470 void
471 spu_expand_insv (rtx ops[])
472 {
473 HOST_WIDE_INT width = INTVAL (ops[1]);
474 HOST_WIDE_INT start = INTVAL (ops[2]);
475 HOST_WIDE_INT maskbits;
476 machine_mode dst_mode;
477 rtx dst = ops[0], src = ops[3];
478 int dst_size;
479 rtx mask;
480 rtx shift_reg;
481 int shift;
482
483
484 if (GET_CODE (ops[0]) == MEM)
485 dst = gen_reg_rtx (TImode);
486 else
487 dst = adjust_operand (dst, &start);
488 dst_mode = GET_MODE (dst);
489 dst_size = GET_MODE_BITSIZE (GET_MODE (dst));
490
491 if (CONSTANT_P (src))
492 {
493 machine_mode m =
494 (width <= 32 ? SImode : width <= 64 ? DImode : TImode);
495 src = force_reg (m, convert_to_mode (m, src, 0));
496 }
497 src = adjust_operand (src, 0);
498
499 mask = gen_reg_rtx (dst_mode);
500 shift_reg = gen_reg_rtx (dst_mode);
501 shift = dst_size - start - width;
502
503 /* It's not safe to use subreg here because the compiler assumes
504 that the SUBREG_REG is right justified in the SUBREG. */
505 convert_move (shift_reg, src, 1);
506
507 if (shift > 0)
508 {
509 switch (dst_mode)
510 {
511 case SImode:
512 emit_insn (gen_ashlsi3 (shift_reg, shift_reg, GEN_INT (shift)));
513 break;
514 case DImode:
515 emit_insn (gen_ashldi3 (shift_reg, shift_reg, GEN_INT (shift)));
516 break;
517 case TImode:
518 emit_insn (gen_ashlti3 (shift_reg, shift_reg, GEN_INT (shift)));
519 break;
520 default:
521 abort ();
522 }
523 }
524 else if (shift < 0)
525 abort ();
526
527 switch (dst_size)
528 {
529 case 32:
530 maskbits = (-1ll << (32 - width - start));
531 if (start)
532 maskbits += (1ll << (32 - start));
533 emit_move_insn (mask, GEN_INT (maskbits));
534 break;
535 case 64:
536 maskbits = (-1ll << (64 - width - start));
537 if (start)
538 maskbits += (1ll << (64 - start));
539 emit_move_insn (mask, GEN_INT (maskbits));
540 break;
541 case 128:
542 {
543 unsigned char arr[16];
544 int i = start / 8;
545 memset (arr, 0, sizeof (arr));
546 arr[i] = 0xff >> (start & 7);
547 for (i++; i <= (start + width - 1) / 8; i++)
548 arr[i] = 0xff;
549 arr[i - 1] &= 0xff << (7 - ((start + width - 1) & 7));
550 emit_move_insn (mask, array_to_constant (TImode, arr));
551 }
552 break;
553 default:
554 abort ();
555 }
556 if (GET_CODE (ops[0]) == MEM)
557 {
558 rtx low = gen_reg_rtx (SImode);
559 rtx rotl = gen_reg_rtx (SImode);
560 rtx mask0 = gen_reg_rtx (TImode);
561 rtx addr;
562 rtx addr0;
563 rtx addr1;
564 rtx mem;
565
566 addr = force_reg (Pmode, XEXP (ops[0], 0));
567 addr0 = gen_rtx_AND (Pmode, addr, GEN_INT (-16));
568 emit_insn (gen_andsi3 (low, addr, GEN_INT (15)));
569 emit_insn (gen_negsi2 (rotl, low));
570 emit_insn (gen_rotqby_ti (shift_reg, shift_reg, rotl));
571 emit_insn (gen_rotqmby_ti (mask0, mask, rotl));
572 mem = change_address (ops[0], TImode, addr0);
573 set_mem_alias_set (mem, 0);
574 emit_move_insn (dst, mem);
575 emit_insn (gen_selb (dst, dst, shift_reg, mask0));
576 if (start + width > MEM_ALIGN (ops[0]))
577 {
578 rtx shl = gen_reg_rtx (SImode);
579 rtx mask1 = gen_reg_rtx (TImode);
580 rtx dst1 = gen_reg_rtx (TImode);
581 rtx mem1;
582 addr1 = plus_constant (Pmode, addr, 16);
583 addr1 = gen_rtx_AND (Pmode, addr1, GEN_INT (-16));
584 emit_insn (gen_subsi3 (shl, GEN_INT (16), low));
585 emit_insn (gen_shlqby_ti (mask1, mask, shl));
586 mem1 = change_address (ops[0], TImode, addr1);
587 set_mem_alias_set (mem1, 0);
588 emit_move_insn (dst1, mem1);
589 emit_insn (gen_selb (dst1, dst1, shift_reg, mask1));
590 emit_move_insn (mem1, dst1);
591 }
592 emit_move_insn (mem, dst);
593 }
594 else
595 emit_insn (gen_selb (dst, copy_rtx (dst), shift_reg, mask));
596 }
597
598
599 int
600 spu_expand_block_move (rtx ops[])
601 {
602 HOST_WIDE_INT bytes, align, offset;
603 rtx src, dst, sreg, dreg, target;
604 int i;
605 if (GET_CODE (ops[2]) != CONST_INT
606 || GET_CODE (ops[3]) != CONST_INT
607 || INTVAL (ops[2]) > (HOST_WIDE_INT) (MOVE_RATIO (optimize_insn_for_speed_p ()) * 8))
608 return 0;
609
610 bytes = INTVAL (ops[2]);
611 align = INTVAL (ops[3]);
612
613 if (bytes <= 0)
614 return 1;
615
616 dst = ops[0];
617 src = ops[1];
618
619 if (align == 16)
620 {
621 for (offset = 0; offset + 16 <= bytes; offset += 16)
622 {
623 dst = adjust_address (ops[0], V16QImode, offset);
624 src = adjust_address (ops[1], V16QImode, offset);
625 emit_move_insn (dst, src);
626 }
627 if (offset < bytes)
628 {
629 rtx mask;
630 unsigned char arr[16] = { 0 };
631 for (i = 0; i < bytes - offset; i++)
632 arr[i] = 0xff;
633 dst = adjust_address (ops[0], V16QImode, offset);
634 src = adjust_address (ops[1], V16QImode, offset);
635 mask = gen_reg_rtx (V16QImode);
636 sreg = gen_reg_rtx (V16QImode);
637 dreg = gen_reg_rtx (V16QImode);
638 target = gen_reg_rtx (V16QImode);
639 emit_move_insn (mask, array_to_constant (V16QImode, arr));
640 emit_move_insn (dreg, dst);
641 emit_move_insn (sreg, src);
642 emit_insn (gen_selb (target, dreg, sreg, mask));
643 emit_move_insn (dst, target);
644 }
645 return 1;
646 }
647 return 0;
648 }
649
650 enum spu_comp_code
651 { SPU_EQ, SPU_GT, SPU_GTU };
652
653 int spu_comp_icode[12][3] = {
654 {CODE_FOR_ceq_qi, CODE_FOR_cgt_qi, CODE_FOR_clgt_qi},
655 {CODE_FOR_ceq_hi, CODE_FOR_cgt_hi, CODE_FOR_clgt_hi},
656 {CODE_FOR_ceq_si, CODE_FOR_cgt_si, CODE_FOR_clgt_si},
657 {CODE_FOR_ceq_di, CODE_FOR_cgt_di, CODE_FOR_clgt_di},
658 {CODE_FOR_ceq_ti, CODE_FOR_cgt_ti, CODE_FOR_clgt_ti},
659 {CODE_FOR_ceq_sf, CODE_FOR_cgt_sf, 0},
660 {CODE_FOR_ceq_df, CODE_FOR_cgt_df, 0},
661 {CODE_FOR_ceq_v16qi, CODE_FOR_cgt_v16qi, CODE_FOR_clgt_v16qi},
662 {CODE_FOR_ceq_v8hi, CODE_FOR_cgt_v8hi, CODE_FOR_clgt_v8hi},
663 {CODE_FOR_ceq_v4si, CODE_FOR_cgt_v4si, CODE_FOR_clgt_v4si},
664 {CODE_FOR_ceq_v4sf, CODE_FOR_cgt_v4sf, 0},
665 {CODE_FOR_ceq_v2df, CODE_FOR_cgt_v2df, 0},
666 };
667
668 /* Generate a compare for CODE. Return a brand-new rtx that represents
669 the result of the compare. GCC can figure this out too if we don't
670 provide all variations of compares, but GCC always wants to use
671 WORD_MODE, we can generate better code in most cases if we do it
672 ourselves. */
673 void
674 spu_emit_branch_or_set (int is_set, rtx cmp, rtx operands[])
675 {
676 int reverse_compare = 0;
677 int reverse_test = 0;
678 rtx compare_result, eq_result;
679 rtx comp_rtx, eq_rtx;
680 machine_mode comp_mode;
681 machine_mode op_mode;
682 enum spu_comp_code scode, eq_code;
683 enum insn_code ior_code;
684 enum rtx_code code = GET_CODE (cmp);
685 rtx op0 = XEXP (cmp, 0);
686 rtx op1 = XEXP (cmp, 1);
687 int index;
688 int eq_test = 0;
689
690 /* When op1 is a CONST_INT change (X >= C) to (X > C-1),
691 and so on, to keep the constant in operand 1. */
692 if (GET_CODE (op1) == CONST_INT)
693 {
694 HOST_WIDE_INT val = INTVAL (op1) - 1;
695 if (trunc_int_for_mode (val, GET_MODE (op0)) == val)
696 switch (code)
697 {
698 case GE:
699 op1 = GEN_INT (val);
700 code = GT;
701 break;
702 case LT:
703 op1 = GEN_INT (val);
704 code = LE;
705 break;
706 case GEU:
707 op1 = GEN_INT (val);
708 code = GTU;
709 break;
710 case LTU:
711 op1 = GEN_INT (val);
712 code = LEU;
713 break;
714 default:
715 break;
716 }
717 }
718
719 /* However, if we generate an integer result, performing a reverse test
720 would require an extra negation, so avoid that where possible. */
721 if (GET_CODE (op1) == CONST_INT && is_set == 1)
722 {
723 HOST_WIDE_INT val = INTVAL (op1) + 1;
724 if (trunc_int_for_mode (val, GET_MODE (op0)) == val)
725 switch (code)
726 {
727 case LE:
728 op1 = GEN_INT (val);
729 code = LT;
730 break;
731 case LEU:
732 op1 = GEN_INT (val);
733 code = LTU;
734 break;
735 default:
736 break;
737 }
738 }
739
740 comp_mode = SImode;
741 op_mode = GET_MODE (op0);
742
743 switch (code)
744 {
745 case GE:
746 scode = SPU_GT;
747 if (HONOR_NANS (op_mode))
748 {
749 reverse_compare = 0;
750 reverse_test = 0;
751 eq_test = 1;
752 eq_code = SPU_EQ;
753 }
754 else
755 {
756 reverse_compare = 1;
757 reverse_test = 1;
758 }
759 break;
760 case LE:
761 scode = SPU_GT;
762 if (HONOR_NANS (op_mode))
763 {
764 reverse_compare = 1;
765 reverse_test = 0;
766 eq_test = 1;
767 eq_code = SPU_EQ;
768 }
769 else
770 {
771 reverse_compare = 0;
772 reverse_test = 1;
773 }
774 break;
775 case LT:
776 reverse_compare = 1;
777 reverse_test = 0;
778 scode = SPU_GT;
779 break;
780 case GEU:
781 reverse_compare = 1;
782 reverse_test = 1;
783 scode = SPU_GTU;
784 break;
785 case LEU:
786 reverse_compare = 0;
787 reverse_test = 1;
788 scode = SPU_GTU;
789 break;
790 case LTU:
791 reverse_compare = 1;
792 reverse_test = 0;
793 scode = SPU_GTU;
794 break;
795 case NE:
796 reverse_compare = 0;
797 reverse_test = 1;
798 scode = SPU_EQ;
799 break;
800
801 case EQ:
802 scode = SPU_EQ;
803 break;
804 case GT:
805 scode = SPU_GT;
806 break;
807 case GTU:
808 scode = SPU_GTU;
809 break;
810 default:
811 scode = SPU_EQ;
812 break;
813 }
814
815 switch (op_mode)
816 {
817 case QImode:
818 index = 0;
819 comp_mode = QImode;
820 break;
821 case HImode:
822 index = 1;
823 comp_mode = HImode;
824 break;
825 case SImode:
826 index = 2;
827 break;
828 case DImode:
829 index = 3;
830 break;
831 case TImode:
832 index = 4;
833 break;
834 case SFmode:
835 index = 5;
836 break;
837 case DFmode:
838 index = 6;
839 break;
840 case V16QImode:
841 index = 7;
842 comp_mode = op_mode;
843 break;
844 case V8HImode:
845 index = 8;
846 comp_mode = op_mode;
847 break;
848 case V4SImode:
849 index = 9;
850 comp_mode = op_mode;
851 break;
852 case V4SFmode:
853 index = 10;
854 comp_mode = V4SImode;
855 break;
856 case V2DFmode:
857 index = 11;
858 comp_mode = V2DImode;
859 break;
860 case V2DImode:
861 default:
862 abort ();
863 }
864
865 if (GET_MODE (op1) == DFmode
866 && (scode != SPU_GT && scode != SPU_EQ))
867 abort ();
868
869 if (is_set == 0 && op1 == const0_rtx
870 && (GET_MODE (op0) == SImode
871 || GET_MODE (op0) == HImode
872 || GET_MODE (op0) == QImode) && scode == SPU_EQ)
873 {
874 /* Don't need to set a register with the result when we are
875 comparing against zero and branching. */
876 reverse_test = !reverse_test;
877 compare_result = op0;
878 }
879 else
880 {
881 compare_result = gen_reg_rtx (comp_mode);
882
883 if (reverse_compare)
884 {
885 rtx t = op1;
886 op1 = op0;
887 op0 = t;
888 }
889
890 if (spu_comp_icode[index][scode] == 0)
891 abort ();
892
893 if (!(*insn_data[spu_comp_icode[index][scode]].operand[1].predicate)
894 (op0, op_mode))
895 op0 = force_reg (op_mode, op0);
896 if (!(*insn_data[spu_comp_icode[index][scode]].operand[2].predicate)
897 (op1, op_mode))
898 op1 = force_reg (op_mode, op1);
899 comp_rtx = GEN_FCN (spu_comp_icode[index][scode]) (compare_result,
900 op0, op1);
901 if (comp_rtx == 0)
902 abort ();
903 emit_insn (comp_rtx);
904
905 if (eq_test)
906 {
907 eq_result = gen_reg_rtx (comp_mode);
908 eq_rtx = GEN_FCN (spu_comp_icode[index][eq_code]) (eq_result,
909 op0, op1);
910 if (eq_rtx == 0)
911 abort ();
912 emit_insn (eq_rtx);
913 ior_code = optab_handler (ior_optab, comp_mode);
914 gcc_assert (ior_code != CODE_FOR_nothing);
915 emit_insn (GEN_FCN (ior_code)
916 (compare_result, compare_result, eq_result));
917 }
918 }
919
920 if (is_set == 0)
921 {
922 rtx bcomp;
923 rtx loc_ref;
924
925 /* We don't have branch on QI compare insns, so we convert the
926 QI compare result to a HI result. */
927 if (comp_mode == QImode)
928 {
929 rtx old_res = compare_result;
930 compare_result = gen_reg_rtx (HImode);
931 comp_mode = HImode;
932 emit_insn (gen_extendqihi2 (compare_result, old_res));
933 }
934
935 if (reverse_test)
936 bcomp = gen_rtx_EQ (comp_mode, compare_result, const0_rtx);
937 else
938 bcomp = gen_rtx_NE (comp_mode, compare_result, const0_rtx);
939
940 loc_ref = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
941 emit_jump_insn (gen_rtx_SET (pc_rtx,
942 gen_rtx_IF_THEN_ELSE (VOIDmode, bcomp,
943 loc_ref, pc_rtx)));
944 }
945 else if (is_set == 2)
946 {
947 rtx target = operands[0];
948 int compare_size = GET_MODE_BITSIZE (comp_mode);
949 int target_size = GET_MODE_BITSIZE (GET_MODE (target));
950 machine_mode mode = mode_for_size (target_size, MODE_INT, 0);
951 rtx select_mask;
952 rtx op_t = operands[2];
953 rtx op_f = operands[3];
954
955 /* The result of the comparison can be SI, HI or QI mode. Create a
956 mask based on that result. */
957 if (target_size > compare_size)
958 {
959 select_mask = gen_reg_rtx (mode);
960 emit_insn (gen_extend_compare (select_mask, compare_result));
961 }
962 else if (target_size < compare_size)
963 select_mask =
964 gen_rtx_SUBREG (mode, compare_result,
965 (compare_size - target_size) / BITS_PER_UNIT);
966 else if (comp_mode != mode)
967 select_mask = gen_rtx_SUBREG (mode, compare_result, 0);
968 else
969 select_mask = compare_result;
970
971 if (GET_MODE (target) != GET_MODE (op_t)
972 || GET_MODE (target) != GET_MODE (op_f))
973 abort ();
974
975 if (reverse_test)
976 emit_insn (gen_selb (target, op_t, op_f, select_mask));
977 else
978 emit_insn (gen_selb (target, op_f, op_t, select_mask));
979 }
980 else
981 {
982 rtx target = operands[0];
983 if (reverse_test)
984 emit_insn (gen_rtx_SET (compare_result,
985 gen_rtx_NOT (comp_mode, compare_result)));
986 if (GET_MODE (target) == SImode && GET_MODE (compare_result) == HImode)
987 emit_insn (gen_extendhisi2 (target, compare_result));
988 else if (GET_MODE (target) == SImode
989 && GET_MODE (compare_result) == QImode)
990 emit_insn (gen_extend_compare (target, compare_result));
991 else
992 emit_move_insn (target, compare_result);
993 }
994 }
995
996 HOST_WIDE_INT
997 const_double_to_hwint (rtx x)
998 {
999 HOST_WIDE_INT val;
1000 REAL_VALUE_TYPE rv;
1001 if (GET_MODE (x) == SFmode)
1002 {
1003 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
1004 REAL_VALUE_TO_TARGET_SINGLE (rv, val);
1005 }
1006 else if (GET_MODE (x) == DFmode)
1007 {
1008 long l[2];
1009 REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
1010 REAL_VALUE_TO_TARGET_DOUBLE (rv, l);
1011 val = l[0];
1012 val = (val << 32) | (l[1] & 0xffffffff);
1013 }
1014 else
1015 abort ();
1016 return val;
1017 }
1018
1019 rtx
1020 hwint_to_const_double (machine_mode mode, HOST_WIDE_INT v)
1021 {
1022 long tv[2];
1023 REAL_VALUE_TYPE rv;
1024 gcc_assert (mode == SFmode || mode == DFmode);
1025
1026 if (mode == SFmode)
1027 tv[0] = (v << 32) >> 32;
1028 else if (mode == DFmode)
1029 {
1030 tv[1] = (v << 32) >> 32;
1031 tv[0] = v >> 32;
1032 }
1033 real_from_target (&rv, tv, mode);
1034 return CONST_DOUBLE_FROM_REAL_VALUE (rv, mode);
1035 }
1036
1037 void
1038 print_operand_address (FILE * file, register rtx addr)
1039 {
1040 rtx reg;
1041 rtx offset;
1042
1043 if (GET_CODE (addr) == AND
1044 && GET_CODE (XEXP (addr, 1)) == CONST_INT
1045 && INTVAL (XEXP (addr, 1)) == -16)
1046 addr = XEXP (addr, 0);
1047
1048 switch (GET_CODE (addr))
1049 {
1050 case REG:
1051 fprintf (file, "0(%s)", reg_names[REGNO (addr)]);
1052 break;
1053
1054 case PLUS:
1055 reg = XEXP (addr, 0);
1056 offset = XEXP (addr, 1);
1057 if (GET_CODE (offset) == REG)
1058 {
1059 fprintf (file, "%s,%s", reg_names[REGNO (reg)],
1060 reg_names[REGNO (offset)]);
1061 }
1062 else if (GET_CODE (offset) == CONST_INT)
1063 {
1064 fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%s)",
1065 INTVAL (offset), reg_names[REGNO (reg)]);
1066 }
1067 else
1068 abort ();
1069 break;
1070
1071 case CONST:
1072 case LABEL_REF:
1073 case SYMBOL_REF:
1074 case CONST_INT:
1075 output_addr_const (file, addr);
1076 break;
1077
1078 default:
1079 debug_rtx (addr);
1080 abort ();
1081 }
1082 }
1083
1084 void
1085 print_operand (FILE * file, rtx x, int code)
1086 {
1087 machine_mode mode = GET_MODE (x);
1088 HOST_WIDE_INT val;
1089 unsigned char arr[16];
1090 int xcode = GET_CODE (x);
1091 int i, info;
1092 if (GET_MODE (x) == VOIDmode)
1093 switch (code)
1094 {
1095 case 'L': /* 128 bits, signed */
1096 case 'm': /* 128 bits, signed */
1097 case 'T': /* 128 bits, signed */
1098 case 't': /* 128 bits, signed */
1099 mode = TImode;
1100 break;
1101 case 'K': /* 64 bits, signed */
1102 case 'k': /* 64 bits, signed */
1103 case 'D': /* 64 bits, signed */
1104 case 'd': /* 64 bits, signed */
1105 mode = DImode;
1106 break;
1107 case 'J': /* 32 bits, signed */
1108 case 'j': /* 32 bits, signed */
1109 case 's': /* 32 bits, signed */
1110 case 'S': /* 32 bits, signed */
1111 mode = SImode;
1112 break;
1113 }
1114 switch (code)
1115 {
1116
1117 case 'j': /* 32 bits, signed */
1118 case 'k': /* 64 bits, signed */
1119 case 'm': /* 128 bits, signed */
1120 if (xcode == CONST_INT
1121 || xcode == CONST_DOUBLE || xcode == CONST_VECTOR)
1122 {
1123 gcc_assert (logical_immediate_p (x, mode));
1124 constant_to_array (mode, x, arr);
1125 val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
1126 val = trunc_int_for_mode (val, SImode);
1127 switch (which_logical_immediate (val))
1128 {
1129 case SPU_ORI:
1130 break;
1131 case SPU_ORHI:
1132 fprintf (file, "h");
1133 break;
1134 case SPU_ORBI:
1135 fprintf (file, "b");
1136 break;
1137 default:
1138 gcc_unreachable();
1139 }
1140 }
1141 else
1142 gcc_unreachable();
1143 return;
1144
1145 case 'J': /* 32 bits, signed */
1146 case 'K': /* 64 bits, signed */
1147 case 'L': /* 128 bits, signed */
1148 if (xcode == CONST_INT
1149 || xcode == CONST_DOUBLE || xcode == CONST_VECTOR)
1150 {
1151 gcc_assert (logical_immediate_p (x, mode)
1152 || iohl_immediate_p (x, mode));
1153 constant_to_array (mode, x, arr);
1154 val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
1155 val = trunc_int_for_mode (val, SImode);
1156 switch (which_logical_immediate (val))
1157 {
1158 case SPU_ORI:
1159 case SPU_IOHL:
1160 break;
1161 case SPU_ORHI:
1162 val = trunc_int_for_mode (val, HImode);
1163 break;
1164 case SPU_ORBI:
1165 val = trunc_int_for_mode (val, QImode);
1166 break;
1167 default:
1168 gcc_unreachable();
1169 }
1170 fprintf (file, HOST_WIDE_INT_PRINT_DEC, val);
1171 }
1172 else
1173 gcc_unreachable();
1174 return;
1175
1176 case 't': /* 128 bits, signed */
1177 case 'd': /* 64 bits, signed */
1178 case 's': /* 32 bits, signed */
1179 if (CONSTANT_P (x))
1180 {
1181 enum immediate_class c = classify_immediate (x, mode);
1182 switch (c)
1183 {
1184 case IC_IL1:
1185 constant_to_array (mode, x, arr);
1186 val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
1187 val = trunc_int_for_mode (val, SImode);
1188 switch (which_immediate_load (val))
1189 {
1190 case SPU_IL:
1191 break;
1192 case SPU_ILA:
1193 fprintf (file, "a");
1194 break;
1195 case SPU_ILH:
1196 fprintf (file, "h");
1197 break;
1198 case SPU_ILHU:
1199 fprintf (file, "hu");
1200 break;
1201 default:
1202 gcc_unreachable ();
1203 }
1204 break;
1205 case IC_CPAT:
1206 constant_to_array (mode, x, arr);
1207 cpat_info (arr, GET_MODE_SIZE (mode), &info, 0);
1208 if (info == 1)
1209 fprintf (file, "b");
1210 else if (info == 2)
1211 fprintf (file, "h");
1212 else if (info == 4)
1213 fprintf (file, "w");
1214 else if (info == 8)
1215 fprintf (file, "d");
1216 break;
1217 case IC_IL1s:
1218 if (xcode == CONST_VECTOR)
1219 {
1220 x = CONST_VECTOR_ELT (x, 0);
1221 xcode = GET_CODE (x);
1222 }
1223 if (xcode == SYMBOL_REF || xcode == LABEL_REF || xcode == CONST)
1224 fprintf (file, "a");
1225 else if (xcode == HIGH)
1226 fprintf (file, "hu");
1227 break;
1228 case IC_FSMBI:
1229 case IC_FSMBI2:
1230 case IC_IL2:
1231 case IC_IL2s:
1232 case IC_POOL:
1233 abort ();
1234 }
1235 }
1236 else
1237 gcc_unreachable ();
1238 return;
1239
1240 case 'T': /* 128 bits, signed */
1241 case 'D': /* 64 bits, signed */
1242 case 'S': /* 32 bits, signed */
1243 if (CONSTANT_P (x))
1244 {
1245 enum immediate_class c = classify_immediate (x, mode);
1246 switch (c)
1247 {
1248 case IC_IL1:
1249 constant_to_array (mode, x, arr);
1250 val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
1251 val = trunc_int_for_mode (val, SImode);
1252 switch (which_immediate_load (val))
1253 {
1254 case SPU_IL:
1255 case SPU_ILA:
1256 break;
1257 case SPU_ILH:
1258 case SPU_ILHU:
1259 val = trunc_int_for_mode (((arr[0] << 8) | arr[1]), HImode);
1260 break;
1261 default:
1262 gcc_unreachable ();
1263 }
1264 fprintf (file, HOST_WIDE_INT_PRINT_DEC, val);
1265 break;
1266 case IC_FSMBI:
1267 constant_to_array (mode, x, arr);
1268 val = 0;
1269 for (i = 0; i < 16; i++)
1270 {
1271 val <<= 1;
1272 val |= arr[i] & 1;
1273 }
1274 print_operand (file, GEN_INT (val), 0);
1275 break;
1276 case IC_CPAT:
1277 constant_to_array (mode, x, arr);
1278 cpat_info (arr, GET_MODE_SIZE (mode), 0, &info);
1279 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (HOST_WIDE_INT)info);
1280 break;
1281 case IC_IL1s:
1282 if (xcode == HIGH)
1283 x = XEXP (x, 0);
1284 if (GET_CODE (x) == CONST_VECTOR)
1285 x = CONST_VECTOR_ELT (x, 0);
1286 output_addr_const (file, x);
1287 if (xcode == HIGH)
1288 fprintf (file, "@h");
1289 break;
1290 case IC_IL2:
1291 case IC_IL2s:
1292 case IC_FSMBI2:
1293 case IC_POOL:
1294 abort ();
1295 }
1296 }
1297 else
1298 gcc_unreachable ();
1299 return;
1300
1301 case 'C':
1302 if (xcode == CONST_INT)
1303 {
1304 /* Only 4 least significant bits are relevant for generate
1305 control word instructions. */
1306 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 15);
1307 return;
1308 }
1309 break;
1310
1311 case 'M': /* print code for c*d */
1312 if (GET_CODE (x) == CONST_INT)
1313 switch (INTVAL (x))
1314 {
1315 case 1:
1316 fprintf (file, "b");
1317 break;
1318 case 2:
1319 fprintf (file, "h");
1320 break;
1321 case 4:
1322 fprintf (file, "w");
1323 break;
1324 case 8:
1325 fprintf (file, "d");
1326 break;
1327 default:
1328 gcc_unreachable();
1329 }
1330 else
1331 gcc_unreachable();
1332 return;
1333
1334 case 'N': /* Negate the operand */
1335 if (xcode == CONST_INT)
1336 fprintf (file, HOST_WIDE_INT_PRINT_DEC, -INTVAL (x));
1337 else if (xcode == CONST_VECTOR)
1338 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
1339 -INTVAL (CONST_VECTOR_ELT (x, 0)));
1340 return;
1341
1342 case 'I': /* enable/disable interrupts */
1343 if (xcode == CONST_INT)
1344 fprintf (file, "%s", INTVAL (x) == 0 ? "d" : "e");
1345 return;
1346
1347 case 'b': /* branch modifiers */
1348 if (xcode == REG)
1349 fprintf (file, "%s", GET_MODE (x) == HImode ? "h" : "");
1350 else if (COMPARISON_P (x))
1351 fprintf (file, "%s", xcode == NE ? "n" : "");
1352 return;
1353
1354 case 'i': /* indirect call */
1355 if (xcode == MEM)
1356 {
1357 if (GET_CODE (XEXP (x, 0)) == REG)
1358 /* Used in indirect function calls. */
1359 fprintf (file, "%s", reg_names[REGNO (XEXP (x, 0))]);
1360 else
1361 output_address (XEXP (x, 0));
1362 }
1363 return;
1364
1365 case 'p': /* load/store */
1366 if (xcode == MEM)
1367 {
1368 x = XEXP (x, 0);
1369 xcode = GET_CODE (x);
1370 }
1371 if (xcode == AND)
1372 {
1373 x = XEXP (x, 0);
1374 xcode = GET_CODE (x);
1375 }
1376 if (xcode == REG)
1377 fprintf (file, "d");
1378 else if (xcode == CONST_INT)
1379 fprintf (file, "a");
1380 else if (xcode == CONST || xcode == SYMBOL_REF || xcode == LABEL_REF)
1381 fprintf (file, "r");
1382 else if (xcode == PLUS || xcode == LO_SUM)
1383 {
1384 if (GET_CODE (XEXP (x, 1)) == REG)
1385 fprintf (file, "x");
1386 else
1387 fprintf (file, "d");
1388 }
1389 return;
1390
1391 case 'e':
1392 val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
1393 val &= 0x7;
1394 output_addr_const (file, GEN_INT (val));
1395 return;
1396
1397 case 'f':
1398 val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
1399 val &= 0x1f;
1400 output_addr_const (file, GEN_INT (val));
1401 return;
1402
1403 case 'g':
1404 val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
1405 val &= 0x3f;
1406 output_addr_const (file, GEN_INT (val));
1407 return;
1408
1409 case 'h':
1410 val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
1411 val = (val >> 3) & 0x1f;
1412 output_addr_const (file, GEN_INT (val));
1413 return;
1414
1415 case 'E':
1416 val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
1417 val = -val;
1418 val &= 0x7;
1419 output_addr_const (file, GEN_INT (val));
1420 return;
1421
1422 case 'F':
1423 val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
1424 val = -val;
1425 val &= 0x1f;
1426 output_addr_const (file, GEN_INT (val));
1427 return;
1428
1429 case 'G':
1430 val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
1431 val = -val;
1432 val &= 0x3f;
1433 output_addr_const (file, GEN_INT (val));
1434 return;
1435
1436 case 'H':
1437 val = xcode == CONST_INT ? INTVAL (x) : INTVAL (CONST_VECTOR_ELT (x, 0));
1438 val = -(val & -8ll);
1439 val = (val >> 3) & 0x1f;
1440 output_addr_const (file, GEN_INT (val));
1441 return;
1442
1443 case 'v':
1444 case 'w':
1445 constant_to_array (mode, x, arr);
1446 val = (((arr[0] << 1) + (arr[1] >> 7)) & 0xff) - 127;
1447 output_addr_const (file, GEN_INT (code == 'w' ? -val : val));
1448 return;
1449
1450 case 0:
1451 if (xcode == REG)
1452 fprintf (file, "%s", reg_names[REGNO (x)]);
1453 else if (xcode == MEM)
1454 output_address (XEXP (x, 0));
1455 else if (xcode == CONST_VECTOR)
1456 print_operand (file, CONST_VECTOR_ELT (x, 0), 0);
1457 else
1458 output_addr_const (file, x);
1459 return;
1460
1461 /* unused letters
1462 o qr u yz
1463 AB OPQR UVWXYZ */
1464 default:
1465 output_operand_lossage ("invalid %%xn code");
1466 }
1467 gcc_unreachable ();
1468 }
1469
1470 /* For PIC mode we've reserved PIC_OFFSET_TABLE_REGNUM, which is a
1471 caller saved register. For leaf functions it is more efficient to
1472 use a volatile register because we won't need to save and restore the
1473 pic register. This routine is only valid after register allocation
1474 is completed, so we can pick an unused register. */
1475 static rtx
1476 get_pic_reg (void)
1477 {
1478 if (!reload_completed && !reload_in_progress)
1479 abort ();
1480
1481 /* If we've already made the decision, we need to keep with it. Once we've
1482 decided to use LAST_ARG_REGNUM, future calls to df_regs_ever_live_p may
1483 return true since the register is now live; this should not cause us to
1484 "switch back" to using pic_offset_table_rtx. */
1485 if (!cfun->machine->pic_reg)
1486 {
1487 if (crtl->is_leaf && !df_regs_ever_live_p (LAST_ARG_REGNUM))
1488 cfun->machine->pic_reg = gen_rtx_REG (SImode, LAST_ARG_REGNUM);
1489 else
1490 cfun->machine->pic_reg = pic_offset_table_rtx;
1491 }
1492
1493 return cfun->machine->pic_reg;
1494 }
1495
1496 /* Split constant addresses to handle cases that are too large.
1497 Add in the pic register when in PIC mode.
1498 Split immediates that require more than 1 instruction. */
1499 int
1500 spu_split_immediate (rtx * ops)
1501 {
1502 machine_mode mode = GET_MODE (ops[0]);
1503 enum immediate_class c = classify_immediate (ops[1], mode);
1504
1505 switch (c)
1506 {
1507 case IC_IL2:
1508 {
1509 unsigned char arrhi[16];
1510 unsigned char arrlo[16];
1511 rtx to, temp, hi, lo;
1512 int i;
1513 machine_mode imode = mode;
1514 /* We need to do reals as ints because the constant used in the
1515 IOR might not be a legitimate real constant. */
1516 imode = int_mode_for_mode (mode);
1517 constant_to_array (mode, ops[1], arrhi);
1518 if (imode != mode)
1519 to = simplify_gen_subreg (imode, ops[0], mode, 0);
1520 else
1521 to = ops[0];
1522 temp = !can_create_pseudo_p () ? to : gen_reg_rtx (imode);
1523 for (i = 0; i < 16; i += 4)
1524 {
1525 arrlo[i + 2] = arrhi[i + 2];
1526 arrlo[i + 3] = arrhi[i + 3];
1527 arrlo[i + 0] = arrlo[i + 1] = 0;
1528 arrhi[i + 2] = arrhi[i + 3] = 0;
1529 }
1530 hi = array_to_constant (imode, arrhi);
1531 lo = array_to_constant (imode, arrlo);
1532 emit_move_insn (temp, hi);
1533 emit_insn (gen_rtx_SET (to, gen_rtx_IOR (imode, temp, lo)));
1534 return 1;
1535 }
1536 case IC_FSMBI2:
1537 {
1538 unsigned char arr_fsmbi[16];
1539 unsigned char arr_andbi[16];
1540 rtx to, reg_fsmbi, reg_and;
1541 int i;
1542 machine_mode imode = mode;
1543 /* We need to do reals as ints because the constant used in the
1544 * AND might not be a legitimate real constant. */
1545 imode = int_mode_for_mode (mode);
1546 constant_to_array (mode, ops[1], arr_fsmbi);
1547 if (imode != mode)
1548 to = simplify_gen_subreg(imode, ops[0], GET_MODE (ops[0]), 0);
1549 else
1550 to = ops[0];
1551 for (i = 0; i < 16; i++)
1552 if (arr_fsmbi[i] != 0)
1553 {
1554 arr_andbi[0] = arr_fsmbi[i];
1555 arr_fsmbi[i] = 0xff;
1556 }
1557 for (i = 1; i < 16; i++)
1558 arr_andbi[i] = arr_andbi[0];
1559 reg_fsmbi = array_to_constant (imode, arr_fsmbi);
1560 reg_and = array_to_constant (imode, arr_andbi);
1561 emit_move_insn (to, reg_fsmbi);
1562 emit_insn (gen_rtx_SET (to, gen_rtx_AND (imode, to, reg_and)));
1563 return 1;
1564 }
1565 case IC_POOL:
1566 if (reload_in_progress || reload_completed)
1567 {
1568 rtx mem = force_const_mem (mode, ops[1]);
1569 if (TARGET_LARGE_MEM)
1570 {
1571 rtx addr = gen_rtx_REG (Pmode, REGNO (ops[0]));
1572 emit_move_insn (addr, XEXP (mem, 0));
1573 mem = replace_equiv_address (mem, addr);
1574 }
1575 emit_move_insn (ops[0], mem);
1576 return 1;
1577 }
1578 break;
1579 case IC_IL1s:
1580 case IC_IL2s:
1581 if (reload_completed && GET_CODE (ops[1]) != HIGH)
1582 {
1583 if (c == IC_IL2s)
1584 {
1585 emit_move_insn (ops[0], gen_rtx_HIGH (mode, ops[1]));
1586 emit_move_insn (ops[0], gen_rtx_LO_SUM (mode, ops[0], ops[1]));
1587 }
1588 else if (flag_pic)
1589 emit_insn (gen_pic (ops[0], ops[1]));
1590 if (flag_pic)
1591 {
1592 rtx pic_reg = get_pic_reg ();
1593 emit_insn (gen_addsi3 (ops[0], ops[0], pic_reg));
1594 }
1595 return flag_pic || c == IC_IL2s;
1596 }
1597 break;
1598 case IC_IL1:
1599 case IC_FSMBI:
1600 case IC_CPAT:
1601 break;
1602 }
1603 return 0;
1604 }
1605
1606 /* SAVING is TRUE when we are generating the actual load and store
1607 instructions for REGNO. When determining the size of the stack
1608 needed for saving register we must allocate enough space for the
1609 worst case, because we don't always have the information early enough
1610 to not allocate it. But we can at least eliminate the actual loads
1611 and stores during the prologue/epilogue. */
1612 static int
1613 need_to_save_reg (int regno, int saving)
1614 {
1615 if (df_regs_ever_live_p (regno) && !call_used_regs[regno])
1616 return 1;
1617 if (flag_pic
1618 && regno == PIC_OFFSET_TABLE_REGNUM
1619 && (!saving || cfun->machine->pic_reg == pic_offset_table_rtx))
1620 return 1;
1621 return 0;
1622 }
1623
1624 /* This function is only correct starting with local register
1625 allocation */
1626 int
1627 spu_saved_regs_size (void)
1628 {
1629 int reg_save_size = 0;
1630 int regno;
1631
1632 for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; --regno)
1633 if (need_to_save_reg (regno, 0))
1634 reg_save_size += 0x10;
1635 return reg_save_size;
1636 }
1637
1638 static rtx_insn *
1639 frame_emit_store (int regno, rtx addr, HOST_WIDE_INT offset)
1640 {
1641 rtx reg = gen_rtx_REG (V4SImode, regno);
1642 rtx mem =
1643 gen_frame_mem (V4SImode, gen_rtx_PLUS (Pmode, addr, GEN_INT (offset)));
1644 return emit_insn (gen_movv4si (mem, reg));
1645 }
1646
1647 static rtx_insn *
1648 frame_emit_load (int regno, rtx addr, HOST_WIDE_INT offset)
1649 {
1650 rtx reg = gen_rtx_REG (V4SImode, regno);
1651 rtx mem =
1652 gen_frame_mem (V4SImode, gen_rtx_PLUS (Pmode, addr, GEN_INT (offset)));
1653 return emit_insn (gen_movv4si (reg, mem));
1654 }
1655
1656 /* This happens after reload, so we need to expand it. */
1657 static rtx_insn *
1658 frame_emit_add_imm (rtx dst, rtx src, HOST_WIDE_INT imm, rtx scratch)
1659 {
1660 rtx_insn *insn;
1661 if (satisfies_constraint_K (GEN_INT (imm)))
1662 {
1663 insn = emit_insn (gen_addsi3 (dst, src, GEN_INT (imm)));
1664 }
1665 else
1666 {
1667 emit_insn (gen_movsi (scratch, gen_int_mode (imm, SImode)));
1668 insn = emit_insn (gen_addsi3 (dst, src, scratch));
1669 if (REGNO (src) == REGNO (scratch))
1670 abort ();
1671 }
1672 return insn;
1673 }
1674
1675 /* Return nonzero if this function is known to have a null epilogue. */
1676
1677 int
1678 direct_return (void)
1679 {
1680 if (reload_completed)
1681 {
1682 if (cfun->static_chain_decl == 0
1683 && (spu_saved_regs_size ()
1684 + get_frame_size ()
1685 + crtl->outgoing_args_size
1686 + crtl->args.pretend_args_size == 0)
1687 && crtl->is_leaf)
1688 return 1;
1689 }
1690 return 0;
1691 }
1692
1693 /*
1694 The stack frame looks like this:
1695 +-------------+
1696 | incoming |
1697 | args |
1698 AP -> +-------------+
1699 | $lr save |
1700 +-------------+
1701 prev SP | back chain |
1702 +-------------+
1703 | var args |
1704 | reg save | crtl->args.pretend_args_size bytes
1705 +-------------+
1706 | ... |
1707 | saved regs | spu_saved_regs_size() bytes
1708 FP -> +-------------+
1709 | ... |
1710 | vars | get_frame_size() bytes
1711 HFP -> +-------------+
1712 | ... |
1713 | outgoing |
1714 | args | crtl->outgoing_args_size bytes
1715 +-------------+
1716 | $lr of next |
1717 | frame |
1718 +-------------+
1719 | back chain |
1720 SP -> +-------------+
1721
1722 */
1723 void
1724 spu_expand_prologue (void)
1725 {
1726 HOST_WIDE_INT size = get_frame_size (), offset, regno;
1727 HOST_WIDE_INT total_size;
1728 HOST_WIDE_INT saved_regs_size;
1729 rtx sp_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
1730 rtx scratch_reg_0, scratch_reg_1;
1731 rtx_insn *insn;
1732 rtx real;
1733
1734 if (flag_pic && optimize == 0 && !cfun->machine->pic_reg)
1735 cfun->machine->pic_reg = pic_offset_table_rtx;
1736
1737 if (spu_naked_function_p (current_function_decl))
1738 return;
1739
1740 scratch_reg_0 = gen_rtx_REG (SImode, LAST_ARG_REGNUM + 1);
1741 scratch_reg_1 = gen_rtx_REG (SImode, LAST_ARG_REGNUM + 2);
1742
1743 saved_regs_size = spu_saved_regs_size ();
1744 total_size = size + saved_regs_size
1745 + crtl->outgoing_args_size
1746 + crtl->args.pretend_args_size;
1747
1748 if (!crtl->is_leaf
1749 || cfun->calls_alloca || total_size > 0)
1750 total_size += STACK_POINTER_OFFSET;
1751
1752 /* Save this first because code after this might use the link
1753 register as a scratch register. */
1754 if (!crtl->is_leaf)
1755 {
1756 insn = frame_emit_store (LINK_REGISTER_REGNUM, sp_reg, 16);
1757 RTX_FRAME_RELATED_P (insn) = 1;
1758 }
1759
1760 if (total_size > 0)
1761 {
1762 offset = -crtl->args.pretend_args_size;
1763 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
1764 if (need_to_save_reg (regno, 1))
1765 {
1766 offset -= 16;
1767 insn = frame_emit_store (regno, sp_reg, offset);
1768 RTX_FRAME_RELATED_P (insn) = 1;
1769 }
1770 }
1771
1772 if (flag_pic && cfun->machine->pic_reg)
1773 {
1774 rtx pic_reg = cfun->machine->pic_reg;
1775 insn = emit_insn (gen_load_pic_offset (pic_reg, scratch_reg_0));
1776 insn = emit_insn (gen_subsi3 (pic_reg, pic_reg, scratch_reg_0));
1777 }
1778
1779 if (total_size > 0)
1780 {
1781 if (flag_stack_check)
1782 {
1783 /* We compare against total_size-1 because
1784 ($sp >= total_size) <=> ($sp > total_size-1) */
1785 rtx scratch_v4si = gen_rtx_REG (V4SImode, REGNO (scratch_reg_0));
1786 rtx sp_v4si = gen_rtx_REG (V4SImode, STACK_POINTER_REGNUM);
1787 rtx size_v4si = spu_const (V4SImode, total_size - 1);
1788 if (!satisfies_constraint_K (GEN_INT (total_size - 1)))
1789 {
1790 emit_move_insn (scratch_v4si, size_v4si);
1791 size_v4si = scratch_v4si;
1792 }
1793 emit_insn (gen_cgt_v4si (scratch_v4si, sp_v4si, size_v4si));
1794 emit_insn (gen_vec_extractv4si
1795 (scratch_reg_0, scratch_v4si, GEN_INT (1)));
1796 emit_insn (gen_spu_heq (scratch_reg_0, GEN_INT (0)));
1797 }
1798
1799 /* Adjust the stack pointer, and make sure scratch_reg_0 contains
1800 the value of the previous $sp because we save it as the back
1801 chain. */
1802 if (total_size <= 2000)
1803 {
1804 /* In this case we save the back chain first. */
1805 insn = frame_emit_store (STACK_POINTER_REGNUM, sp_reg, -total_size);
1806 insn =
1807 frame_emit_add_imm (sp_reg, sp_reg, -total_size, scratch_reg_0);
1808 }
1809 else
1810 {
1811 insn = emit_move_insn (scratch_reg_0, sp_reg);
1812 insn =
1813 frame_emit_add_imm (sp_reg, sp_reg, -total_size, scratch_reg_1);
1814 }
1815 RTX_FRAME_RELATED_P (insn) = 1;
1816 real = gen_addsi3 (sp_reg, sp_reg, GEN_INT (-total_size));
1817 add_reg_note (insn, REG_FRAME_RELATED_EXPR, real);
1818
1819 if (total_size > 2000)
1820 {
1821 /* Save the back chain ptr */
1822 insn = frame_emit_store (REGNO (scratch_reg_0), sp_reg, 0);
1823 }
1824
1825 if (frame_pointer_needed)
1826 {
1827 rtx fp_reg = gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
1828 HOST_WIDE_INT fp_offset = STACK_POINTER_OFFSET
1829 + crtl->outgoing_args_size;
1830 /* Set the new frame_pointer */
1831 insn = frame_emit_add_imm (fp_reg, sp_reg, fp_offset, scratch_reg_0);
1832 RTX_FRAME_RELATED_P (insn) = 1;
1833 real = gen_addsi3 (fp_reg, sp_reg, GEN_INT (fp_offset));
1834 add_reg_note (insn, REG_FRAME_RELATED_EXPR, real);
1835 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
1836 }
1837 }
1838
1839 if (flag_stack_usage_info)
1840 current_function_static_stack_size = total_size;
1841 }
1842
1843 void
1844 spu_expand_epilogue (bool sibcall_p)
1845 {
1846 int size = get_frame_size (), offset, regno;
1847 HOST_WIDE_INT saved_regs_size, total_size;
1848 rtx sp_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
1849 rtx scratch_reg_0;
1850
1851 if (spu_naked_function_p (current_function_decl))
1852 return;
1853
1854 scratch_reg_0 = gen_rtx_REG (SImode, LAST_ARG_REGNUM + 1);
1855
1856 saved_regs_size = spu_saved_regs_size ();
1857 total_size = size + saved_regs_size
1858 + crtl->outgoing_args_size
1859 + crtl->args.pretend_args_size;
1860
1861 if (!crtl->is_leaf
1862 || cfun->calls_alloca || total_size > 0)
1863 total_size += STACK_POINTER_OFFSET;
1864
1865 if (total_size > 0)
1866 {
1867 if (cfun->calls_alloca)
1868 frame_emit_load (STACK_POINTER_REGNUM, sp_reg, 0);
1869 else
1870 frame_emit_add_imm (sp_reg, sp_reg, total_size, scratch_reg_0);
1871
1872
1873 if (saved_regs_size > 0)
1874 {
1875 offset = -crtl->args.pretend_args_size;
1876 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
1877 if (need_to_save_reg (regno, 1))
1878 {
1879 offset -= 0x10;
1880 frame_emit_load (regno, sp_reg, offset);
1881 }
1882 }
1883 }
1884
1885 if (!crtl->is_leaf)
1886 frame_emit_load (LINK_REGISTER_REGNUM, sp_reg, 16);
1887
1888 if (!sibcall_p)
1889 {
1890 emit_use (gen_rtx_REG (SImode, LINK_REGISTER_REGNUM));
1891 emit_jump_insn (gen__return ());
1892 }
1893 }
1894
1895 rtx
1896 spu_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
1897 {
1898 if (count != 0)
1899 return 0;
1900 /* This is inefficient because it ends up copying to a save-register
1901 which then gets saved even though $lr has already been saved. But
1902 it does generate better code for leaf functions and we don't need
1903 to use RETURN_ADDRESS_POINTER_REGNUM to get it working. It's only
1904 used for __builtin_return_address anyway, so maybe we don't care if
1905 it's inefficient. */
1906 return get_hard_reg_initial_val (Pmode, LINK_REGISTER_REGNUM);
1907 }
1908 \f
1909
1910 /* Given VAL, generate a constant appropriate for MODE.
1911 If MODE is a vector mode, every element will be VAL.
1912 For TImode, VAL will be zero extended to 128 bits. */
1913 rtx
1914 spu_const (machine_mode mode, HOST_WIDE_INT val)
1915 {
1916 rtx inner;
1917 rtvec v;
1918 int units, i;
1919
1920 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
1921 || GET_MODE_CLASS (mode) == MODE_FLOAT
1922 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
1923 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
1924
1925 if (GET_MODE_CLASS (mode) == MODE_INT)
1926 return immed_double_const (val, 0, mode);
1927
1928 /* val is the bit representation of the float */
1929 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
1930 return hwint_to_const_double (mode, val);
1931
1932 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
1933 inner = immed_double_const (val, 0, GET_MODE_INNER (mode));
1934 else
1935 inner = hwint_to_const_double (GET_MODE_INNER (mode), val);
1936
1937 units = GET_MODE_NUNITS (mode);
1938
1939 v = rtvec_alloc (units);
1940
1941 for (i = 0; i < units; ++i)
1942 RTVEC_ELT (v, i) = inner;
1943
1944 return gen_rtx_CONST_VECTOR (mode, v);
1945 }
1946
1947 /* Create a MODE vector constant from 4 ints. */
1948 rtx
1949 spu_const_from_ints(machine_mode mode, int a, int b, int c, int d)
1950 {
1951 unsigned char arr[16];
1952 arr[0] = (a >> 24) & 0xff;
1953 arr[1] = (a >> 16) & 0xff;
1954 arr[2] = (a >> 8) & 0xff;
1955 arr[3] = (a >> 0) & 0xff;
1956 arr[4] = (b >> 24) & 0xff;
1957 arr[5] = (b >> 16) & 0xff;
1958 arr[6] = (b >> 8) & 0xff;
1959 arr[7] = (b >> 0) & 0xff;
1960 arr[8] = (c >> 24) & 0xff;
1961 arr[9] = (c >> 16) & 0xff;
1962 arr[10] = (c >> 8) & 0xff;
1963 arr[11] = (c >> 0) & 0xff;
1964 arr[12] = (d >> 24) & 0xff;
1965 arr[13] = (d >> 16) & 0xff;
1966 arr[14] = (d >> 8) & 0xff;
1967 arr[15] = (d >> 0) & 0xff;
1968 return array_to_constant(mode, arr);
1969 }
1970 \f
1971 /* branch hint stuff */
1972
1973 /* An array of these is used to propagate hints to predecessor blocks. */
1974 struct spu_bb_info
1975 {
1976 rtx_insn *prop_jump; /* propagated from another block */
1977 int bb_index; /* the original block. */
1978 };
1979 static struct spu_bb_info *spu_bb_info;
1980
1981 #define STOP_HINT_P(INSN) \
1982 (CALL_P(INSN) \
1983 || INSN_CODE(INSN) == CODE_FOR_divmodsi4 \
1984 || INSN_CODE(INSN) == CODE_FOR_udivmodsi4)
1985
1986 /* 1 when RTX is a hinted branch or its target. We keep track of
1987 what has been hinted so the safe-hint code can test it easily. */
1988 #define HINTED_P(RTX) \
1989 (RTL_FLAG_CHECK3("HINTED_P", (RTX), CODE_LABEL, JUMP_INSN, CALL_INSN)->unchanging)
1990
1991 /* 1 when RTX is an insn that must be scheduled on an even boundary. */
1992 #define SCHED_ON_EVEN_P(RTX) \
1993 (RTL_FLAG_CHECK2("SCHED_ON_EVEN_P", (RTX), JUMP_INSN, CALL_INSN)->in_struct)
1994
1995 /* Emit a nop for INSN such that the two will dual issue. This assumes
1996 INSN is 8-byte aligned. When INSN is inline asm we emit an lnop.
1997 We check for TImode to handle a MULTI1 insn which has dual issued its
1998 first instruction. get_pipe returns -1 for MULTI0 or inline asm. */
1999 static void
2000 emit_nop_for_insn (rtx_insn *insn)
2001 {
2002 int p;
2003 rtx_insn *new_insn;
2004
2005 /* We need to handle JUMP_TABLE_DATA separately. */
2006 if (JUMP_TABLE_DATA_P (insn))
2007 {
2008 new_insn = emit_insn_after (gen_lnop(), insn);
2009 recog_memoized (new_insn);
2010 INSN_LOCATION (new_insn) = UNKNOWN_LOCATION;
2011 return;
2012 }
2013
2014 p = get_pipe (insn);
2015 if ((CALL_P (insn) || JUMP_P (insn)) && SCHED_ON_EVEN_P (insn))
2016 new_insn = emit_insn_after (gen_lnop (), insn);
2017 else if (p == 1 && GET_MODE (insn) == TImode)
2018 {
2019 new_insn = emit_insn_before (gen_nopn (GEN_INT (127)), insn);
2020 PUT_MODE (new_insn, TImode);
2021 PUT_MODE (insn, VOIDmode);
2022 }
2023 else
2024 new_insn = emit_insn_after (gen_lnop (), insn);
2025 recog_memoized (new_insn);
2026 INSN_LOCATION (new_insn) = INSN_LOCATION (insn);
2027 }
2028
2029 /* Insert nops in basic blocks to meet dual issue alignment
2030 requirements. Also make sure hbrp and hint instructions are at least
2031 one cycle apart, possibly inserting a nop. */
2032 static void
2033 pad_bb(void)
2034 {
2035 rtx_insn *insn, *next_insn, *prev_insn, *hbr_insn = 0;
2036 int length;
2037 int addr;
2038
2039 /* This sets up INSN_ADDRESSES. */
2040 shorten_branches (get_insns ());
2041
2042 /* Keep track of length added by nops. */
2043 length = 0;
2044
2045 prev_insn = 0;
2046 insn = get_insns ();
2047 if (!active_insn_p (insn))
2048 insn = next_active_insn (insn);
2049 for (; insn; insn = next_insn)
2050 {
2051 next_insn = next_active_insn (insn);
2052 if (INSN_CODE (insn) == CODE_FOR_iprefetch
2053 || INSN_CODE (insn) == CODE_FOR_hbr)
2054 {
2055 if (hbr_insn)
2056 {
2057 int a0 = INSN_ADDRESSES (INSN_UID (hbr_insn));
2058 int a1 = INSN_ADDRESSES (INSN_UID (insn));
2059 if ((a1 - a0 == 8 && GET_MODE (insn) != TImode)
2060 || (a1 - a0 == 4))
2061 {
2062 prev_insn = emit_insn_before (gen_lnop (), insn);
2063 PUT_MODE (prev_insn, GET_MODE (insn));
2064 PUT_MODE (insn, TImode);
2065 INSN_LOCATION (prev_insn) = INSN_LOCATION (insn);
2066 length += 4;
2067 }
2068 }
2069 hbr_insn = insn;
2070 }
2071 if (INSN_CODE (insn) == CODE_FOR_blockage && next_insn)
2072 {
2073 if (GET_MODE (insn) == TImode)
2074 PUT_MODE (next_insn, TImode);
2075 insn = next_insn;
2076 next_insn = next_active_insn (insn);
2077 }
2078 addr = INSN_ADDRESSES (INSN_UID (insn));
2079 if ((CALL_P (insn) || JUMP_P (insn)) && SCHED_ON_EVEN_P (insn))
2080 {
2081 if (((addr + length) & 7) != 0)
2082 {
2083 emit_nop_for_insn (prev_insn);
2084 length += 4;
2085 }
2086 }
2087 else if (GET_MODE (insn) == TImode
2088 && ((next_insn && GET_MODE (next_insn) != TImode)
2089 || get_attr_type (insn) == TYPE_MULTI0)
2090 && ((addr + length) & 7) != 0)
2091 {
2092 /* prev_insn will always be set because the first insn is
2093 always 8-byte aligned. */
2094 emit_nop_for_insn (prev_insn);
2095 length += 4;
2096 }
2097 prev_insn = insn;
2098 }
2099 }
2100
2101 \f
2102 /* Routines for branch hints. */
2103
2104 static void
2105 spu_emit_branch_hint (rtx_insn *before, rtx_insn *branch, rtx target,
2106 int distance, sbitmap blocks)
2107 {
2108 rtx branch_label = 0;
2109 rtx_insn *hint;
2110 rtx_insn *insn;
2111 rtx_jump_table_data *table;
2112
2113 if (before == 0 || branch == 0 || target == 0)
2114 return;
2115
2116 /* While scheduling we require hints to be no further than 600, so
2117 we need to enforce that here too */
2118 if (distance > 600)
2119 return;
2120
2121 /* If we have a Basic block note, emit it after the basic block note. */
2122 if (NOTE_INSN_BASIC_BLOCK_P (before))
2123 before = NEXT_INSN (before);
2124
2125 branch_label = gen_label_rtx ();
2126 LABEL_NUSES (branch_label)++;
2127 LABEL_PRESERVE_P (branch_label) = 1;
2128 insn = emit_label_before (branch_label, branch);
2129 branch_label = gen_rtx_LABEL_REF (VOIDmode, branch_label);
2130 bitmap_set_bit (blocks, BLOCK_FOR_INSN (branch)->index);
2131
2132 hint = emit_insn_before (gen_hbr (branch_label, target), before);
2133 recog_memoized (hint);
2134 INSN_LOCATION (hint) = INSN_LOCATION (branch);
2135 HINTED_P (branch) = 1;
2136
2137 if (GET_CODE (target) == LABEL_REF)
2138 HINTED_P (XEXP (target, 0)) = 1;
2139 else if (tablejump_p (branch, 0, &table))
2140 {
2141 rtvec vec;
2142 int j;
2143 if (GET_CODE (PATTERN (table)) == ADDR_VEC)
2144 vec = XVEC (PATTERN (table), 0);
2145 else
2146 vec = XVEC (PATTERN (table), 1);
2147 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
2148 HINTED_P (XEXP (RTVEC_ELT (vec, j), 0)) = 1;
2149 }
2150
2151 if (distance >= 588)
2152 {
2153 /* Make sure the hint isn't scheduled any earlier than this point,
2154 which could make it too far for the branch offest to fit */
2155 insn = emit_insn_before (gen_blockage (), hint);
2156 recog_memoized (insn);
2157 INSN_LOCATION (insn) = INSN_LOCATION (hint);
2158 }
2159 else if (distance <= 8 * 4)
2160 {
2161 /* To guarantee at least 8 insns between the hint and branch we
2162 insert nops. */
2163 int d;
2164 for (d = distance; d < 8 * 4; d += 4)
2165 {
2166 insn =
2167 emit_insn_after (gen_nopn_nv (gen_rtx_REG (SImode, 127)), hint);
2168 recog_memoized (insn);
2169 INSN_LOCATION (insn) = INSN_LOCATION (hint);
2170 }
2171
2172 /* Make sure any nops inserted aren't scheduled before the hint. */
2173 insn = emit_insn_after (gen_blockage (), hint);
2174 recog_memoized (insn);
2175 INSN_LOCATION (insn) = INSN_LOCATION (hint);
2176
2177 /* Make sure any nops inserted aren't scheduled after the call. */
2178 if (CALL_P (branch) && distance < 8 * 4)
2179 {
2180 insn = emit_insn_before (gen_blockage (), branch);
2181 recog_memoized (insn);
2182 INSN_LOCATION (insn) = INSN_LOCATION (branch);
2183 }
2184 }
2185 }
2186
2187 /* Returns 0 if we don't want a hint for this branch. Otherwise return
2188 the rtx for the branch target. */
2189 static rtx
2190 get_branch_target (rtx_insn *branch)
2191 {
2192 if (JUMP_P (branch))
2193 {
2194 rtx set, src;
2195
2196 /* Return statements */
2197 if (GET_CODE (PATTERN (branch)) == RETURN)
2198 return gen_rtx_REG (SImode, LINK_REGISTER_REGNUM);
2199
2200 /* ASM GOTOs. */
2201 if (extract_asm_operands (PATTERN (branch)) != NULL)
2202 return NULL;
2203
2204 set = single_set (branch);
2205 src = SET_SRC (set);
2206 if (GET_CODE (SET_DEST (set)) != PC)
2207 abort ();
2208
2209 if (GET_CODE (src) == IF_THEN_ELSE)
2210 {
2211 rtx lab = 0;
2212 rtx note = find_reg_note (branch, REG_BR_PROB, 0);
2213 if (note)
2214 {
2215 /* If the more probable case is not a fall through, then
2216 try a branch hint. */
2217 int prob = XINT (note, 0);
2218 if (prob > (REG_BR_PROB_BASE * 6 / 10)
2219 && GET_CODE (XEXP (src, 1)) != PC)
2220 lab = XEXP (src, 1);
2221 else if (prob < (REG_BR_PROB_BASE * 4 / 10)
2222 && GET_CODE (XEXP (src, 2)) != PC)
2223 lab = XEXP (src, 2);
2224 }
2225 if (lab)
2226 {
2227 if (GET_CODE (lab) == RETURN)
2228 return gen_rtx_REG (SImode, LINK_REGISTER_REGNUM);
2229 return lab;
2230 }
2231 return 0;
2232 }
2233
2234 return src;
2235 }
2236 else if (CALL_P (branch))
2237 {
2238 rtx call;
2239 /* All of our call patterns are in a PARALLEL and the CALL is
2240 the first pattern in the PARALLEL. */
2241 if (GET_CODE (PATTERN (branch)) != PARALLEL)
2242 abort ();
2243 call = XVECEXP (PATTERN (branch), 0, 0);
2244 if (GET_CODE (call) == SET)
2245 call = SET_SRC (call);
2246 if (GET_CODE (call) != CALL)
2247 abort ();
2248 return XEXP (XEXP (call, 0), 0);
2249 }
2250 return 0;
2251 }
2252
2253 /* The special $hbr register is used to prevent the insn scheduler from
2254 moving hbr insns across instructions which invalidate them. It
2255 should only be used in a clobber, and this function searches for
2256 insns which clobber it. */
2257 static bool
2258 insn_clobbers_hbr (rtx_insn *insn)
2259 {
2260 if (INSN_P (insn)
2261 && GET_CODE (PATTERN (insn)) == PARALLEL)
2262 {
2263 rtx parallel = PATTERN (insn);
2264 rtx clobber;
2265 int j;
2266 for (j = XVECLEN (parallel, 0) - 1; j >= 0; j--)
2267 {
2268 clobber = XVECEXP (parallel, 0, j);
2269 if (GET_CODE (clobber) == CLOBBER
2270 && GET_CODE (XEXP (clobber, 0)) == REG
2271 && REGNO (XEXP (clobber, 0)) == HBR_REGNUM)
2272 return 1;
2273 }
2274 }
2275 return 0;
2276 }
2277
2278 /* Search up to 32 insns starting at FIRST:
2279 - at any kind of hinted branch, just return
2280 - at any unconditional branch in the first 15 insns, just return
2281 - at a call or indirect branch, after the first 15 insns, force it to
2282 an even address and return
2283 - at any unconditional branch, after the first 15 insns, force it to
2284 an even address.
2285 At then end of the search, insert an hbrp within 4 insns of FIRST,
2286 and an hbrp within 16 instructions of FIRST.
2287 */
2288 static void
2289 insert_hbrp_for_ilb_runout (rtx_insn *first)
2290 {
2291 rtx_insn *insn, *before_4 = 0, *before_16 = 0;
2292 int addr = 0, length, first_addr = -1;
2293 int hbrp_addr0 = 128 * 4, hbrp_addr1 = 128 * 4;
2294 int insert_lnop_after = 0;
2295 for (insn = first; insn; insn = NEXT_INSN (insn))
2296 if (INSN_P (insn))
2297 {
2298 if (first_addr == -1)
2299 first_addr = INSN_ADDRESSES (INSN_UID (insn));
2300 addr = INSN_ADDRESSES (INSN_UID (insn)) - first_addr;
2301 length = get_attr_length (insn);
2302
2303 if (before_4 == 0 && addr + length >= 4 * 4)
2304 before_4 = insn;
2305 /* We test for 14 instructions because the first hbrp will add
2306 up to 2 instructions. */
2307 if (before_16 == 0 && addr + length >= 14 * 4)
2308 before_16 = insn;
2309
2310 if (INSN_CODE (insn) == CODE_FOR_hbr)
2311 {
2312 /* Make sure an hbrp is at least 2 cycles away from a hint.
2313 Insert an lnop after the hbrp when necessary. */
2314 if (before_4 == 0 && addr > 0)
2315 {
2316 before_4 = insn;
2317 insert_lnop_after |= 1;
2318 }
2319 else if (before_4 && addr <= 4 * 4)
2320 insert_lnop_after |= 1;
2321 if (before_16 == 0 && addr > 10 * 4)
2322 {
2323 before_16 = insn;
2324 insert_lnop_after |= 2;
2325 }
2326 else if (before_16 && addr <= 14 * 4)
2327 insert_lnop_after |= 2;
2328 }
2329
2330 if (INSN_CODE (insn) == CODE_FOR_iprefetch)
2331 {
2332 if (addr < hbrp_addr0)
2333 hbrp_addr0 = addr;
2334 else if (addr < hbrp_addr1)
2335 hbrp_addr1 = addr;
2336 }
2337
2338 if (CALL_P (insn) || JUMP_P (insn))
2339 {
2340 if (HINTED_P (insn))
2341 return;
2342
2343 /* Any branch after the first 15 insns should be on an even
2344 address to avoid a special case branch. There might be
2345 some nops and/or hbrps inserted, so we test after 10
2346 insns. */
2347 if (addr > 10 * 4)
2348 SCHED_ON_EVEN_P (insn) = 1;
2349 }
2350
2351 if (CALL_P (insn) || tablejump_p (insn, 0, 0))
2352 return;
2353
2354
2355 if (addr + length >= 32 * 4)
2356 {
2357 gcc_assert (before_4 && before_16);
2358 if (hbrp_addr0 > 4 * 4)
2359 {
2360 insn =
2361 emit_insn_before (gen_iprefetch (GEN_INT (1)), before_4);
2362 recog_memoized (insn);
2363 INSN_LOCATION (insn) = INSN_LOCATION (before_4);
2364 INSN_ADDRESSES_NEW (insn,
2365 INSN_ADDRESSES (INSN_UID (before_4)));
2366 PUT_MODE (insn, GET_MODE (before_4));
2367 PUT_MODE (before_4, TImode);
2368 if (insert_lnop_after & 1)
2369 {
2370 insn = emit_insn_before (gen_lnop (), before_4);
2371 recog_memoized (insn);
2372 INSN_LOCATION (insn) = INSN_LOCATION (before_4);
2373 INSN_ADDRESSES_NEW (insn,
2374 INSN_ADDRESSES (INSN_UID (before_4)));
2375 PUT_MODE (insn, TImode);
2376 }
2377 }
2378 if ((hbrp_addr0 <= 4 * 4 || hbrp_addr0 > 16 * 4)
2379 && hbrp_addr1 > 16 * 4)
2380 {
2381 insn =
2382 emit_insn_before (gen_iprefetch (GEN_INT (2)), before_16);
2383 recog_memoized (insn);
2384 INSN_LOCATION (insn) = INSN_LOCATION (before_16);
2385 INSN_ADDRESSES_NEW (insn,
2386 INSN_ADDRESSES (INSN_UID (before_16)));
2387 PUT_MODE (insn, GET_MODE (before_16));
2388 PUT_MODE (before_16, TImode);
2389 if (insert_lnop_after & 2)
2390 {
2391 insn = emit_insn_before (gen_lnop (), before_16);
2392 recog_memoized (insn);
2393 INSN_LOCATION (insn) = INSN_LOCATION (before_16);
2394 INSN_ADDRESSES_NEW (insn,
2395 INSN_ADDRESSES (INSN_UID
2396 (before_16)));
2397 PUT_MODE (insn, TImode);
2398 }
2399 }
2400 return;
2401 }
2402 }
2403 else if (BARRIER_P (insn))
2404 return;
2405
2406 }
2407
2408 /* The SPU might hang when it executes 48 inline instructions after a
2409 hinted branch jumps to its hinted target. The beginning of a
2410 function and the return from a call might have been hinted, and
2411 must be handled as well. To prevent a hang we insert 2 hbrps. The
2412 first should be within 6 insns of the branch target. The second
2413 should be within 22 insns of the branch target. When determining
2414 if hbrps are necessary, we look for only 32 inline instructions,
2415 because up to 12 nops and 4 hbrps could be inserted. Similarily,
2416 when inserting new hbrps, we insert them within 4 and 16 insns of
2417 the target. */
2418 static void
2419 insert_hbrp (void)
2420 {
2421 rtx_insn *insn;
2422 if (TARGET_SAFE_HINTS)
2423 {
2424 shorten_branches (get_insns ());
2425 /* Insert hbrp at beginning of function */
2426 insn = next_active_insn (get_insns ());
2427 if (insn)
2428 insert_hbrp_for_ilb_runout (insn);
2429 /* Insert hbrp after hinted targets. */
2430 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2431 if ((LABEL_P (insn) && HINTED_P (insn)) || CALL_P (insn))
2432 insert_hbrp_for_ilb_runout (next_active_insn (insn));
2433 }
2434 }
2435
2436 static int in_spu_reorg;
2437
2438 static void
2439 spu_var_tracking (void)
2440 {
2441 if (flag_var_tracking)
2442 {
2443 df_analyze ();
2444 timevar_push (TV_VAR_TRACKING);
2445 variable_tracking_main ();
2446 timevar_pop (TV_VAR_TRACKING);
2447 df_finish_pass (false);
2448 }
2449 }
2450
2451 /* Insert branch hints. There are no branch optimizations after this
2452 pass, so it's safe to set our branch hints now. */
2453 static void
2454 spu_machine_dependent_reorg (void)
2455 {
2456 sbitmap blocks;
2457 basic_block bb;
2458 rtx_insn *branch, *insn;
2459 rtx branch_target = 0;
2460 int branch_addr = 0, insn_addr, required_dist = 0;
2461 int i;
2462 unsigned int j;
2463
2464 if (!TARGET_BRANCH_HINTS || optimize == 0)
2465 {
2466 /* We still do it for unoptimized code because an external
2467 function might have hinted a call or return. */
2468 compute_bb_for_insn ();
2469 insert_hbrp ();
2470 pad_bb ();
2471 spu_var_tracking ();
2472 free_bb_for_insn ();
2473 return;
2474 }
2475
2476 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2477 bitmap_clear (blocks);
2478
2479 in_spu_reorg = 1;
2480 compute_bb_for_insn ();
2481
2482 /* (Re-)discover loops so that bb->loop_father can be used
2483 in the analysis below. */
2484 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
2485
2486 compact_blocks ();
2487
2488 spu_bb_info =
2489 (struct spu_bb_info *) xcalloc (n_basic_blocks_for_fn (cfun),
2490 sizeof (struct spu_bb_info));
2491
2492 /* We need exact insn addresses and lengths. */
2493 shorten_branches (get_insns ());
2494
2495 for (i = n_basic_blocks_for_fn (cfun) - 1; i >= 0; i--)
2496 {
2497 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2498 branch = 0;
2499 if (spu_bb_info[i].prop_jump)
2500 {
2501 branch = spu_bb_info[i].prop_jump;
2502 branch_target = get_branch_target (branch);
2503 branch_addr = INSN_ADDRESSES (INSN_UID (branch));
2504 required_dist = spu_hint_dist;
2505 }
2506 /* Search from end of a block to beginning. In this loop, find
2507 jumps which need a branch and emit them only when:
2508 - it's an indirect branch and we're at the insn which sets
2509 the register
2510 - we're at an insn that will invalidate the hint. e.g., a
2511 call, another hint insn, inline asm that clobbers $hbr, and
2512 some inlined operations (divmodsi4). Don't consider jumps
2513 because they are only at the end of a block and are
2514 considered when we are deciding whether to propagate
2515 - we're getting too far away from the branch. The hbr insns
2516 only have a signed 10 bit offset
2517 We go back as far as possible so the branch will be considered
2518 for propagation when we get to the beginning of the block. */
2519 for (insn = BB_END (bb); insn; insn = PREV_INSN (insn))
2520 {
2521 if (INSN_P (insn))
2522 {
2523 insn_addr = INSN_ADDRESSES (INSN_UID (insn));
2524 if (branch
2525 && ((GET_CODE (branch_target) == REG
2526 && set_of (branch_target, insn) != NULL_RTX)
2527 || insn_clobbers_hbr (insn)
2528 || branch_addr - insn_addr > 600))
2529 {
2530 rtx_insn *next = NEXT_INSN (insn);
2531 int next_addr = INSN_ADDRESSES (INSN_UID (next));
2532 if (insn != BB_END (bb)
2533 && branch_addr - next_addr >= required_dist)
2534 {
2535 if (dump_file)
2536 fprintf (dump_file,
2537 "hint for %i in block %i before %i\n",
2538 INSN_UID (branch), bb->index,
2539 INSN_UID (next));
2540 spu_emit_branch_hint (next, branch, branch_target,
2541 branch_addr - next_addr, blocks);
2542 }
2543 branch = 0;
2544 }
2545
2546 /* JUMP_P will only be true at the end of a block. When
2547 branch is already set it means we've previously decided
2548 to propagate a hint for that branch into this block. */
2549 if (CALL_P (insn) || (JUMP_P (insn) && !branch))
2550 {
2551 branch = 0;
2552 if ((branch_target = get_branch_target (insn)))
2553 {
2554 branch = insn;
2555 branch_addr = insn_addr;
2556 required_dist = spu_hint_dist;
2557 }
2558 }
2559 }
2560 if (insn == BB_HEAD (bb))
2561 break;
2562 }
2563
2564 if (branch)
2565 {
2566 /* If we haven't emitted a hint for this branch yet, it might
2567 be profitable to emit it in one of the predecessor blocks,
2568 especially for loops. */
2569 rtx_insn *bbend;
2570 basic_block prev = 0, prop = 0, prev2 = 0;
2571 int loop_exit = 0, simple_loop = 0;
2572 int next_addr = INSN_ADDRESSES (INSN_UID (NEXT_INSN (insn)));
2573
2574 for (j = 0; j < EDGE_COUNT (bb->preds); j++)
2575 if (EDGE_PRED (bb, j)->flags & EDGE_FALLTHRU)
2576 prev = EDGE_PRED (bb, j)->src;
2577 else
2578 prev2 = EDGE_PRED (bb, j)->src;
2579
2580 for (j = 0; j < EDGE_COUNT (bb->succs); j++)
2581 if (EDGE_SUCC (bb, j)->flags & EDGE_LOOP_EXIT)
2582 loop_exit = 1;
2583 else if (EDGE_SUCC (bb, j)->dest == bb)
2584 simple_loop = 1;
2585
2586 /* If this branch is a loop exit then propagate to previous
2587 fallthru block. This catches the cases when it is a simple
2588 loop or when there is an initial branch into the loop. */
2589 if (prev && (loop_exit || simple_loop)
2590 && bb_loop_depth (prev) <= bb_loop_depth (bb))
2591 prop = prev;
2592
2593 /* If there is only one adjacent predecessor. Don't propagate
2594 outside this loop. */
2595 else if (prev && single_pred_p (bb)
2596 && prev->loop_father == bb->loop_father)
2597 prop = prev;
2598
2599 /* If this is the JOIN block of a simple IF-THEN then
2600 propagate the hint to the HEADER block. */
2601 else if (prev && prev2
2602 && EDGE_COUNT (bb->preds) == 2
2603 && EDGE_COUNT (prev->preds) == 1
2604 && EDGE_PRED (prev, 0)->src == prev2
2605 && prev2->loop_father == bb->loop_father
2606 && GET_CODE (branch_target) != REG)
2607 prop = prev;
2608
2609 /* Don't propagate when:
2610 - this is a simple loop and the hint would be too far
2611 - this is not a simple loop and there are 16 insns in
2612 this block already
2613 - the predecessor block ends in a branch that will be
2614 hinted
2615 - the predecessor block ends in an insn that invalidates
2616 the hint */
2617 if (prop
2618 && prop->index >= 0
2619 && (bbend = BB_END (prop))
2620 && branch_addr - INSN_ADDRESSES (INSN_UID (bbend)) <
2621 (simple_loop ? 600 : 16 * 4) && get_branch_target (bbend) == 0
2622 && (JUMP_P (bbend) || !insn_clobbers_hbr (bbend)))
2623 {
2624 if (dump_file)
2625 fprintf (dump_file, "propagate from %i to %i (loop depth %i) "
2626 "for %i (loop_exit %i simple_loop %i dist %i)\n",
2627 bb->index, prop->index, bb_loop_depth (bb),
2628 INSN_UID (branch), loop_exit, simple_loop,
2629 branch_addr - INSN_ADDRESSES (INSN_UID (bbend)));
2630
2631 spu_bb_info[prop->index].prop_jump = branch;
2632 spu_bb_info[prop->index].bb_index = i;
2633 }
2634 else if (branch_addr - next_addr >= required_dist)
2635 {
2636 if (dump_file)
2637 fprintf (dump_file, "hint for %i in block %i before %i\n",
2638 INSN_UID (branch), bb->index,
2639 INSN_UID (NEXT_INSN (insn)));
2640 spu_emit_branch_hint (NEXT_INSN (insn), branch, branch_target,
2641 branch_addr - next_addr, blocks);
2642 }
2643 branch = 0;
2644 }
2645 }
2646 free (spu_bb_info);
2647
2648 if (!bitmap_empty_p (blocks))
2649 find_many_sub_basic_blocks (blocks);
2650
2651 /* We have to schedule to make sure alignment is ok. */
2652 FOR_EACH_BB_FN (bb, cfun) bb->flags &= ~BB_DISABLE_SCHEDULE;
2653
2654 /* The hints need to be scheduled, so call it again. */
2655 schedule_insns ();
2656 df_finish_pass (true);
2657
2658 insert_hbrp ();
2659
2660 pad_bb ();
2661
2662 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2663 if (NONJUMP_INSN_P (insn) && INSN_CODE (insn) == CODE_FOR_hbr)
2664 {
2665 /* Adjust the LABEL_REF in a hint when we have inserted a nop
2666 between its branch label and the branch . We don't move the
2667 label because GCC expects it at the beginning of the block. */
2668 rtx unspec = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
2669 rtx label_ref = XVECEXP (unspec, 0, 0);
2670 rtx_insn *label = as_a <rtx_insn *> (XEXP (label_ref, 0));
2671 rtx_insn *branch;
2672 int offset = 0;
2673 for (branch = NEXT_INSN (label);
2674 !JUMP_P (branch) && !CALL_P (branch);
2675 branch = NEXT_INSN (branch))
2676 if (NONJUMP_INSN_P (branch))
2677 offset += get_attr_length (branch);
2678 if (offset > 0)
2679 XVECEXP (unspec, 0, 0) = plus_constant (Pmode, label_ref, offset);
2680 }
2681
2682 spu_var_tracking ();
2683
2684 loop_optimizer_finalize ();
2685
2686 free_bb_for_insn ();
2687
2688 in_spu_reorg = 0;
2689 }
2690 \f
2691
2692 /* Insn scheduling routines, primarily for dual issue. */
2693 static int
2694 spu_sched_issue_rate (void)
2695 {
2696 return 2;
2697 }
2698
2699 static int
2700 uses_ls_unit(rtx_insn *insn)
2701 {
2702 rtx set = single_set (insn);
2703 if (set != 0
2704 && (GET_CODE (SET_DEST (set)) == MEM
2705 || GET_CODE (SET_SRC (set)) == MEM))
2706 return 1;
2707 return 0;
2708 }
2709
2710 static int
2711 get_pipe (rtx_insn *insn)
2712 {
2713 enum attr_type t;
2714 /* Handle inline asm */
2715 if (INSN_CODE (insn) == -1)
2716 return -1;
2717 t = get_attr_type (insn);
2718 switch (t)
2719 {
2720 case TYPE_CONVERT:
2721 return -2;
2722 case TYPE_MULTI0:
2723 return -1;
2724
2725 case TYPE_FX2:
2726 case TYPE_FX3:
2727 case TYPE_SPR:
2728 case TYPE_NOP:
2729 case TYPE_FXB:
2730 case TYPE_FPD:
2731 case TYPE_FP6:
2732 case TYPE_FP7:
2733 return 0;
2734
2735 case TYPE_LNOP:
2736 case TYPE_SHUF:
2737 case TYPE_LOAD:
2738 case TYPE_STORE:
2739 case TYPE_BR:
2740 case TYPE_MULTI1:
2741 case TYPE_HBR:
2742 case TYPE_IPREFETCH:
2743 return 1;
2744 default:
2745 abort ();
2746 }
2747 }
2748
2749
2750 /* haifa-sched.c has a static variable that keeps track of the current
2751 cycle. It is passed to spu_sched_reorder, and we record it here for
2752 use by spu_sched_variable_issue. It won't be accurate if the
2753 scheduler updates it's clock_var between the two calls. */
2754 static int clock_var;
2755
2756 /* This is used to keep track of insn alignment. Set to 0 at the
2757 beginning of each block and increased by the "length" attr of each
2758 insn scheduled. */
2759 static int spu_sched_length;
2760
2761 /* Record when we've issued pipe0 and pipe1 insns so we can reorder the
2762 ready list appropriately in spu_sched_reorder(). */
2763 static int pipe0_clock;
2764 static int pipe1_clock;
2765
2766 static int prev_clock_var;
2767
2768 static int prev_priority;
2769
2770 /* The SPU needs to load the next ilb sometime during the execution of
2771 the previous ilb. There is a potential conflict if every cycle has a
2772 load or store. To avoid the conflict we make sure the load/store
2773 unit is free for at least one cycle during the execution of insns in
2774 the previous ilb. */
2775 static int spu_ls_first;
2776 static int prev_ls_clock;
2777
2778 static void
2779 spu_sched_init_global (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
2780 int max_ready ATTRIBUTE_UNUSED)
2781 {
2782 spu_sched_length = 0;
2783 }
2784
2785 static void
2786 spu_sched_init (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
2787 int max_ready ATTRIBUTE_UNUSED)
2788 {
2789 if (align_labels > 4 || align_loops > 4 || align_jumps > 4)
2790 {
2791 /* When any block might be at least 8-byte aligned, assume they
2792 will all be at least 8-byte aligned to make sure dual issue
2793 works out correctly. */
2794 spu_sched_length = 0;
2795 }
2796 spu_ls_first = INT_MAX;
2797 clock_var = -1;
2798 prev_ls_clock = -1;
2799 pipe0_clock = -1;
2800 pipe1_clock = -1;
2801 prev_clock_var = -1;
2802 prev_priority = -1;
2803 }
2804
2805 static int
2806 spu_sched_variable_issue (FILE *file ATTRIBUTE_UNUSED,
2807 int verbose ATTRIBUTE_UNUSED,
2808 rtx_insn *insn, int more)
2809 {
2810 int len;
2811 int p;
2812 if (GET_CODE (PATTERN (insn)) == USE
2813 || GET_CODE (PATTERN (insn)) == CLOBBER
2814 || (len = get_attr_length (insn)) == 0)
2815 return more;
2816
2817 spu_sched_length += len;
2818
2819 /* Reset on inline asm */
2820 if (INSN_CODE (insn) == -1)
2821 {
2822 spu_ls_first = INT_MAX;
2823 pipe0_clock = -1;
2824 pipe1_clock = -1;
2825 return 0;
2826 }
2827 p = get_pipe (insn);
2828 if (p == 0)
2829 pipe0_clock = clock_var;
2830 else
2831 pipe1_clock = clock_var;
2832
2833 if (in_spu_reorg)
2834 {
2835 if (clock_var - prev_ls_clock > 1
2836 || INSN_CODE (insn) == CODE_FOR_iprefetch)
2837 spu_ls_first = INT_MAX;
2838 if (uses_ls_unit (insn))
2839 {
2840 if (spu_ls_first == INT_MAX)
2841 spu_ls_first = spu_sched_length;
2842 prev_ls_clock = clock_var;
2843 }
2844
2845 /* The scheduler hasn't inserted the nop, but we will later on.
2846 Include those nops in spu_sched_length. */
2847 if (prev_clock_var == clock_var && (spu_sched_length & 7))
2848 spu_sched_length += 4;
2849 prev_clock_var = clock_var;
2850
2851 /* more is -1 when called from spu_sched_reorder for new insns
2852 that don't have INSN_PRIORITY */
2853 if (more >= 0)
2854 prev_priority = INSN_PRIORITY (insn);
2855 }
2856
2857 /* Always try issuing more insns. spu_sched_reorder will decide
2858 when the cycle should be advanced. */
2859 return 1;
2860 }
2861
2862 /* This function is called for both TARGET_SCHED_REORDER and
2863 TARGET_SCHED_REORDER2. */
2864 static int
2865 spu_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
2866 rtx_insn **ready, int *nreadyp, int clock)
2867 {
2868 int i, nready = *nreadyp;
2869 int pipe_0, pipe_1, pipe_hbrp, pipe_ls, schedule_i;
2870 rtx_insn *insn;
2871
2872 clock_var = clock;
2873
2874 if (nready <= 0 || pipe1_clock >= clock)
2875 return 0;
2876
2877 /* Find any rtl insns that don't generate assembly insns and schedule
2878 them first. */
2879 for (i = nready - 1; i >= 0; i--)
2880 {
2881 insn = ready[i];
2882 if (INSN_CODE (insn) == -1
2883 || INSN_CODE (insn) == CODE_FOR_blockage
2884 || (INSN_P (insn) && get_attr_length (insn) == 0))
2885 {
2886 ready[i] = ready[nready - 1];
2887 ready[nready - 1] = insn;
2888 return 1;
2889 }
2890 }
2891
2892 pipe_0 = pipe_1 = pipe_hbrp = pipe_ls = schedule_i = -1;
2893 for (i = 0; i < nready; i++)
2894 if (INSN_CODE (ready[i]) != -1)
2895 {
2896 insn = ready[i];
2897 switch (get_attr_type (insn))
2898 {
2899 default:
2900 case TYPE_MULTI0:
2901 case TYPE_CONVERT:
2902 case TYPE_FX2:
2903 case TYPE_FX3:
2904 case TYPE_SPR:
2905 case TYPE_NOP:
2906 case TYPE_FXB:
2907 case TYPE_FPD:
2908 case TYPE_FP6:
2909 case TYPE_FP7:
2910 pipe_0 = i;
2911 break;
2912 case TYPE_LOAD:
2913 case TYPE_STORE:
2914 pipe_ls = i;
2915 case TYPE_LNOP:
2916 case TYPE_SHUF:
2917 case TYPE_BR:
2918 case TYPE_MULTI1:
2919 case TYPE_HBR:
2920 pipe_1 = i;
2921 break;
2922 case TYPE_IPREFETCH:
2923 pipe_hbrp = i;
2924 break;
2925 }
2926 }
2927
2928 /* In the first scheduling phase, schedule loads and stores together
2929 to increase the chance they will get merged during postreload CSE. */
2930 if (!reload_completed && pipe_ls >= 0)
2931 {
2932 insn = ready[pipe_ls];
2933 ready[pipe_ls] = ready[nready - 1];
2934 ready[nready - 1] = insn;
2935 return 1;
2936 }
2937
2938 /* If there is an hbrp ready, prefer it over other pipe 1 insns. */
2939 if (pipe_hbrp >= 0)
2940 pipe_1 = pipe_hbrp;
2941
2942 /* When we have loads/stores in every cycle of the last 15 insns and
2943 we are about to schedule another load/store, emit an hbrp insn
2944 instead. */
2945 if (in_spu_reorg
2946 && spu_sched_length - spu_ls_first >= 4 * 15
2947 && !(pipe0_clock < clock && pipe_0 >= 0) && pipe_1 == pipe_ls)
2948 {
2949 insn = sched_emit_insn (gen_iprefetch (GEN_INT (3)));
2950 recog_memoized (insn);
2951 if (pipe0_clock < clock)
2952 PUT_MODE (insn, TImode);
2953 spu_sched_variable_issue (file, verbose, insn, -1);
2954 return 0;
2955 }
2956
2957 /* In general, we want to emit nops to increase dual issue, but dual
2958 issue isn't faster when one of the insns could be scheduled later
2959 without effecting the critical path. We look at INSN_PRIORITY to
2960 make a good guess, but it isn't perfect so -mdual-nops=n can be
2961 used to effect it. */
2962 if (in_spu_reorg && spu_dual_nops < 10)
2963 {
2964 /* When we are at an even address and we are not issuing nops to
2965 improve scheduling then we need to advance the cycle. */
2966 if ((spu_sched_length & 7) == 0 && prev_clock_var == clock
2967 && (spu_dual_nops == 0
2968 || (pipe_1 != -1
2969 && prev_priority >
2970 INSN_PRIORITY (ready[pipe_1]) + spu_dual_nops)))
2971 return 0;
2972
2973 /* When at an odd address, schedule the highest priority insn
2974 without considering pipeline. */
2975 if ((spu_sched_length & 7) == 4 && prev_clock_var != clock
2976 && (spu_dual_nops == 0
2977 || (prev_priority >
2978 INSN_PRIORITY (ready[nready - 1]) + spu_dual_nops)))
2979 return 1;
2980 }
2981
2982
2983 /* We haven't issued a pipe0 insn yet this cycle, if there is a
2984 pipe0 insn in the ready list, schedule it. */
2985 if (pipe0_clock < clock && pipe_0 >= 0)
2986 schedule_i = pipe_0;
2987
2988 /* Either we've scheduled a pipe0 insn already or there is no pipe0
2989 insn to schedule. Put a pipe1 insn at the front of the ready list. */
2990 else
2991 schedule_i = pipe_1;
2992
2993 if (schedule_i > -1)
2994 {
2995 insn = ready[schedule_i];
2996 ready[schedule_i] = ready[nready - 1];
2997 ready[nready - 1] = insn;
2998 return 1;
2999 }
3000 return 0;
3001 }
3002
3003 /* INSN is dependent on DEP_INSN. */
3004 static int
3005 spu_sched_adjust_cost (rtx_insn *insn, rtx link, rtx_insn *dep_insn, int cost)
3006 {
3007 rtx set;
3008
3009 /* The blockage pattern is used to prevent instructions from being
3010 moved across it and has no cost. */
3011 if (INSN_CODE (insn) == CODE_FOR_blockage
3012 || INSN_CODE (dep_insn) == CODE_FOR_blockage)
3013 return 0;
3014
3015 if ((INSN_P (insn) && get_attr_length (insn) == 0)
3016 || (INSN_P (dep_insn) && get_attr_length (dep_insn) == 0))
3017 return 0;
3018
3019 /* Make sure hbrps are spread out. */
3020 if (INSN_CODE (insn) == CODE_FOR_iprefetch
3021 && INSN_CODE (dep_insn) == CODE_FOR_iprefetch)
3022 return 8;
3023
3024 /* Make sure hints and hbrps are 2 cycles apart. */
3025 if ((INSN_CODE (insn) == CODE_FOR_iprefetch
3026 || INSN_CODE (insn) == CODE_FOR_hbr)
3027 && (INSN_CODE (dep_insn) == CODE_FOR_iprefetch
3028 || INSN_CODE (dep_insn) == CODE_FOR_hbr))
3029 return 2;
3030
3031 /* An hbrp has no real dependency on other insns. */
3032 if (INSN_CODE (insn) == CODE_FOR_iprefetch
3033 || INSN_CODE (dep_insn) == CODE_FOR_iprefetch)
3034 return 0;
3035
3036 /* Assuming that it is unlikely an argument register will be used in
3037 the first cycle of the called function, we reduce the cost for
3038 slightly better scheduling of dep_insn. When not hinted, the
3039 mispredicted branch would hide the cost as well. */
3040 if (CALL_P (insn))
3041 {
3042 rtx target = get_branch_target (insn);
3043 if (GET_CODE (target) != REG || !set_of (target, insn))
3044 return cost - 2;
3045 return cost;
3046 }
3047
3048 /* And when returning from a function, let's assume the return values
3049 are completed sooner too. */
3050 if (CALL_P (dep_insn))
3051 return cost - 2;
3052
3053 /* Make sure an instruction that loads from the back chain is schedule
3054 away from the return instruction so a hint is more likely to get
3055 issued. */
3056 if (INSN_CODE (insn) == CODE_FOR__return
3057 && (set = single_set (dep_insn))
3058 && GET_CODE (SET_DEST (set)) == REG
3059 && REGNO (SET_DEST (set)) == LINK_REGISTER_REGNUM)
3060 return 20;
3061
3062 /* The dfa scheduler sets cost to 0 for all anti-dependencies and the
3063 scheduler makes every insn in a block anti-dependent on the final
3064 jump_insn. We adjust here so higher cost insns will get scheduled
3065 earlier. */
3066 if (JUMP_P (insn) && REG_NOTE_KIND (link) == REG_DEP_ANTI)
3067 return insn_cost (dep_insn) - 3;
3068
3069 return cost;
3070 }
3071 \f
3072 /* Create a CONST_DOUBLE from a string. */
3073 rtx
3074 spu_float_const (const char *string, machine_mode mode)
3075 {
3076 REAL_VALUE_TYPE value;
3077 value = REAL_VALUE_ATOF (string, mode);
3078 return CONST_DOUBLE_FROM_REAL_VALUE (value, mode);
3079 }
3080
3081 int
3082 spu_constant_address_p (rtx x)
3083 {
3084 return (GET_CODE (x) == LABEL_REF || GET_CODE (x) == SYMBOL_REF
3085 || GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST
3086 || GET_CODE (x) == HIGH);
3087 }
3088
3089 static enum spu_immediate
3090 which_immediate_load (HOST_WIDE_INT val)
3091 {
3092 gcc_assert (val == trunc_int_for_mode (val, SImode));
3093
3094 if (val >= -0x8000 && val <= 0x7fff)
3095 return SPU_IL;
3096 if (val >= 0 && val <= 0x3ffff)
3097 return SPU_ILA;
3098 if ((val & 0xffff) == ((val >> 16) & 0xffff))
3099 return SPU_ILH;
3100 if ((val & 0xffff) == 0)
3101 return SPU_ILHU;
3102
3103 return SPU_NONE;
3104 }
3105
3106 /* Return true when OP can be loaded by one of the il instructions, or
3107 when flow2 is not completed and OP can be loaded using ilhu and iohl. */
3108 int
3109 immediate_load_p (rtx op, machine_mode mode)
3110 {
3111 if (CONSTANT_P (op))
3112 {
3113 enum immediate_class c = classify_immediate (op, mode);
3114 return c == IC_IL1 || c == IC_IL1s
3115 || (!epilogue_completed && (c == IC_IL2 || c == IC_IL2s));
3116 }
3117 return 0;
3118 }
3119
3120 /* Return true if the first SIZE bytes of arr is a constant that can be
3121 generated with cbd, chd, cwd or cdd. When non-NULL, PRUN and PSTART
3122 represent the size and offset of the instruction to use. */
3123 static int
3124 cpat_info(unsigned char *arr, int size, int *prun, int *pstart)
3125 {
3126 int cpat, run, i, start;
3127 cpat = 1;
3128 run = 0;
3129 start = -1;
3130 for (i = 0; i < size && cpat; i++)
3131 if (arr[i] != i+16)
3132 {
3133 if (!run)
3134 {
3135 start = i;
3136 if (arr[i] == 3)
3137 run = 1;
3138 else if (arr[i] == 2 && arr[i+1] == 3)
3139 run = 2;
3140 else if (arr[i] == 0)
3141 {
3142 while (arr[i+run] == run && i+run < 16)
3143 run++;
3144 if (run != 4 && run != 8)
3145 cpat = 0;
3146 }
3147 else
3148 cpat = 0;
3149 if ((i & (run-1)) != 0)
3150 cpat = 0;
3151 i += run;
3152 }
3153 else
3154 cpat = 0;
3155 }
3156 if (cpat && (run || size < 16))
3157 {
3158 if (run == 0)
3159 run = 1;
3160 if (prun)
3161 *prun = run;
3162 if (pstart)
3163 *pstart = start == -1 ? 16-run : start;
3164 return 1;
3165 }
3166 return 0;
3167 }
3168
3169 /* OP is a CONSTANT_P. Determine what instructions can be used to load
3170 it into a register. MODE is only valid when OP is a CONST_INT. */
3171 static enum immediate_class
3172 classify_immediate (rtx op, machine_mode mode)
3173 {
3174 HOST_WIDE_INT val;
3175 unsigned char arr[16];
3176 int i, j, repeated, fsmbi, repeat;
3177
3178 gcc_assert (CONSTANT_P (op));
3179
3180 if (GET_MODE (op) != VOIDmode)
3181 mode = GET_MODE (op);
3182
3183 /* A V4SI const_vector with all identical symbols is ok. */
3184 if (!flag_pic
3185 && mode == V4SImode
3186 && GET_CODE (op) == CONST_VECTOR
3187 && GET_CODE (CONST_VECTOR_ELT (op, 0)) != CONST_INT
3188 && GET_CODE (CONST_VECTOR_ELT (op, 0)) != CONST_DOUBLE
3189 && CONST_VECTOR_ELT (op, 0) == CONST_VECTOR_ELT (op, 1)
3190 && CONST_VECTOR_ELT (op, 1) == CONST_VECTOR_ELT (op, 2)
3191 && CONST_VECTOR_ELT (op, 2) == CONST_VECTOR_ELT (op, 3))
3192 op = CONST_VECTOR_ELT (op, 0);
3193
3194 switch (GET_CODE (op))
3195 {
3196 case SYMBOL_REF:
3197 case LABEL_REF:
3198 return TARGET_LARGE_MEM ? IC_IL2s : IC_IL1s;
3199
3200 case CONST:
3201 /* We can never know if the resulting address fits in 18 bits and can be
3202 loaded with ila. For now, assume the address will not overflow if
3203 the displacement is "small" (fits 'K' constraint). */
3204 if (!TARGET_LARGE_MEM && GET_CODE (XEXP (op, 0)) == PLUS)
3205 {
3206 rtx sym = XEXP (XEXP (op, 0), 0);
3207 rtx cst = XEXP (XEXP (op, 0), 1);
3208
3209 if (GET_CODE (sym) == SYMBOL_REF
3210 && GET_CODE (cst) == CONST_INT
3211 && satisfies_constraint_K (cst))
3212 return IC_IL1s;
3213 }
3214 return IC_IL2s;
3215
3216 case HIGH:
3217 return IC_IL1s;
3218
3219 case CONST_VECTOR:
3220 for (i = 0; i < GET_MODE_NUNITS (mode); i++)
3221 if (GET_CODE (CONST_VECTOR_ELT (op, i)) != CONST_INT
3222 && GET_CODE (CONST_VECTOR_ELT (op, i)) != CONST_DOUBLE)
3223 return IC_POOL;
3224 /* Fall through. */
3225
3226 case CONST_INT:
3227 case CONST_DOUBLE:
3228 constant_to_array (mode, op, arr);
3229
3230 /* Check that each 4-byte slot is identical. */
3231 repeated = 1;
3232 for (i = 4; i < 16; i += 4)
3233 for (j = 0; j < 4; j++)
3234 if (arr[j] != arr[i + j])
3235 repeated = 0;
3236
3237 if (repeated)
3238 {
3239 val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
3240 val = trunc_int_for_mode (val, SImode);
3241
3242 if (which_immediate_load (val) != SPU_NONE)
3243 return IC_IL1;
3244 }
3245
3246 /* Any mode of 2 bytes or smaller can be loaded with an il
3247 instruction. */
3248 gcc_assert (GET_MODE_SIZE (mode) > 2);
3249
3250 fsmbi = 1;
3251 repeat = 0;
3252 for (i = 0; i < 16 && fsmbi; i++)
3253 if (arr[i] != 0 && repeat == 0)
3254 repeat = arr[i];
3255 else if (arr[i] != 0 && arr[i] != repeat)
3256 fsmbi = 0;
3257 if (fsmbi)
3258 return repeat == 0xff ? IC_FSMBI : IC_FSMBI2;
3259
3260 if (cpat_info (arr, GET_MODE_SIZE (mode), 0, 0))
3261 return IC_CPAT;
3262
3263 if (repeated)
3264 return IC_IL2;
3265
3266 return IC_POOL;
3267 default:
3268 break;
3269 }
3270 gcc_unreachable ();
3271 }
3272
3273 static enum spu_immediate
3274 which_logical_immediate (HOST_WIDE_INT val)
3275 {
3276 gcc_assert (val == trunc_int_for_mode (val, SImode));
3277
3278 if (val >= -0x200 && val <= 0x1ff)
3279 return SPU_ORI;
3280 if (val >= 0 && val <= 0xffff)
3281 return SPU_IOHL;
3282 if ((val & 0xffff) == ((val >> 16) & 0xffff))
3283 {
3284 val = trunc_int_for_mode (val, HImode);
3285 if (val >= -0x200 && val <= 0x1ff)
3286 return SPU_ORHI;
3287 if ((val & 0xff) == ((val >> 8) & 0xff))
3288 {
3289 val = trunc_int_for_mode (val, QImode);
3290 if (val >= -0x200 && val <= 0x1ff)
3291 return SPU_ORBI;
3292 }
3293 }
3294 return SPU_NONE;
3295 }
3296
3297 /* Return TRUE when X, a CONST_VECTOR, only contains CONST_INTs or
3298 CONST_DOUBLEs. */
3299 static int
3300 const_vector_immediate_p (rtx x)
3301 {
3302 int i;
3303 gcc_assert (GET_CODE (x) == CONST_VECTOR);
3304 for (i = 0; i < GET_MODE_NUNITS (GET_MODE (x)); i++)
3305 if (GET_CODE (CONST_VECTOR_ELT (x, i)) != CONST_INT
3306 && GET_CODE (CONST_VECTOR_ELT (x, i)) != CONST_DOUBLE)
3307 return 0;
3308 return 1;
3309 }
3310
3311 int
3312 logical_immediate_p (rtx op, machine_mode mode)
3313 {
3314 HOST_WIDE_INT val;
3315 unsigned char arr[16];
3316 int i, j;
3317
3318 gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
3319 || GET_CODE (op) == CONST_VECTOR);
3320
3321 if (GET_CODE (op) == CONST_VECTOR
3322 && !const_vector_immediate_p (op))
3323 return 0;
3324
3325 if (GET_MODE (op) != VOIDmode)
3326 mode = GET_MODE (op);
3327
3328 constant_to_array (mode, op, arr);
3329
3330 /* Check that bytes are repeated. */
3331 for (i = 4; i < 16; i += 4)
3332 for (j = 0; j < 4; j++)
3333 if (arr[j] != arr[i + j])
3334 return 0;
3335
3336 val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
3337 val = trunc_int_for_mode (val, SImode);
3338
3339 i = which_logical_immediate (val);
3340 return i != SPU_NONE && i != SPU_IOHL;
3341 }
3342
3343 int
3344 iohl_immediate_p (rtx op, machine_mode mode)
3345 {
3346 HOST_WIDE_INT val;
3347 unsigned char arr[16];
3348 int i, j;
3349
3350 gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
3351 || GET_CODE (op) == CONST_VECTOR);
3352
3353 if (GET_CODE (op) == CONST_VECTOR
3354 && !const_vector_immediate_p (op))
3355 return 0;
3356
3357 if (GET_MODE (op) != VOIDmode)
3358 mode = GET_MODE (op);
3359
3360 constant_to_array (mode, op, arr);
3361
3362 /* Check that bytes are repeated. */
3363 for (i = 4; i < 16; i += 4)
3364 for (j = 0; j < 4; j++)
3365 if (arr[j] != arr[i + j])
3366 return 0;
3367
3368 val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
3369 val = trunc_int_for_mode (val, SImode);
3370
3371 return val >= 0 && val <= 0xffff;
3372 }
3373
3374 int
3375 arith_immediate_p (rtx op, machine_mode mode,
3376 HOST_WIDE_INT low, HOST_WIDE_INT high)
3377 {
3378 HOST_WIDE_INT val;
3379 unsigned char arr[16];
3380 int bytes, i, j;
3381
3382 gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
3383 || GET_CODE (op) == CONST_VECTOR);
3384
3385 if (GET_CODE (op) == CONST_VECTOR
3386 && !const_vector_immediate_p (op))
3387 return 0;
3388
3389 if (GET_MODE (op) != VOIDmode)
3390 mode = GET_MODE (op);
3391
3392 constant_to_array (mode, op, arr);
3393
3394 bytes = GET_MODE_UNIT_SIZE (mode);
3395 mode = mode_for_size (GET_MODE_UNIT_BITSIZE (mode), MODE_INT, 0);
3396
3397 /* Check that bytes are repeated. */
3398 for (i = bytes; i < 16; i += bytes)
3399 for (j = 0; j < bytes; j++)
3400 if (arr[j] != arr[i + j])
3401 return 0;
3402
3403 val = arr[0];
3404 for (j = 1; j < bytes; j++)
3405 val = (val << 8) | arr[j];
3406
3407 val = trunc_int_for_mode (val, mode);
3408
3409 return val >= low && val <= high;
3410 }
3411
3412 /* TRUE when op is an immediate and an exact power of 2, and given that
3413 OP is 2^scale, scale >= LOW && scale <= HIGH. When OP is a vector,
3414 all entries must be the same. */
3415 bool
3416 exp2_immediate_p (rtx op, machine_mode mode, int low, int high)
3417 {
3418 machine_mode int_mode;
3419 HOST_WIDE_INT val;
3420 unsigned char arr[16];
3421 int bytes, i, j;
3422
3423 gcc_assert (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
3424 || GET_CODE (op) == CONST_VECTOR);
3425
3426 if (GET_CODE (op) == CONST_VECTOR
3427 && !const_vector_immediate_p (op))
3428 return 0;
3429
3430 if (GET_MODE (op) != VOIDmode)
3431 mode = GET_MODE (op);
3432
3433 constant_to_array (mode, op, arr);
3434
3435 mode = GET_MODE_INNER (mode);
3436
3437 bytes = GET_MODE_SIZE (mode);
3438 int_mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
3439
3440 /* Check that bytes are repeated. */
3441 for (i = bytes; i < 16; i += bytes)
3442 for (j = 0; j < bytes; j++)
3443 if (arr[j] != arr[i + j])
3444 return 0;
3445
3446 val = arr[0];
3447 for (j = 1; j < bytes; j++)
3448 val = (val << 8) | arr[j];
3449
3450 val = trunc_int_for_mode (val, int_mode);
3451
3452 /* Currently, we only handle SFmode */
3453 gcc_assert (mode == SFmode);
3454 if (mode == SFmode)
3455 {
3456 int exp = (val >> 23) - 127;
3457 return val > 0 && (val & 0x007fffff) == 0
3458 && exp >= low && exp <= high;
3459 }
3460 return FALSE;
3461 }
3462
3463 /* Return true if X is a SYMBOL_REF to an __ea qualified variable. */
3464
3465 static bool
3466 ea_symbol_ref_p (const_rtx x)
3467 {
3468 tree decl;
3469
3470 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS)
3471 {
3472 rtx plus = XEXP (x, 0);
3473 rtx op0 = XEXP (plus, 0);
3474 rtx op1 = XEXP (plus, 1);
3475 if (GET_CODE (op1) == CONST_INT)
3476 x = op0;
3477 }
3478
3479 return (GET_CODE (x) == SYMBOL_REF
3480 && (decl = SYMBOL_REF_DECL (x)) != 0
3481 && TREE_CODE (decl) == VAR_DECL
3482 && TYPE_ADDR_SPACE (TREE_TYPE (decl)));
3483 }
3484
3485 /* We accept:
3486 - any 32-bit constant (SImode, SFmode)
3487 - any constant that can be generated with fsmbi (any mode)
3488 - a 64-bit constant where the high and low bits are identical
3489 (DImode, DFmode)
3490 - a 128-bit constant where the four 32-bit words match. */
3491 bool
3492 spu_legitimate_constant_p (machine_mode mode, rtx x)
3493 {
3494 subrtx_iterator::array_type array;
3495 if (GET_CODE (x) == HIGH)
3496 x = XEXP (x, 0);
3497
3498 /* Reject any __ea qualified reference. These can't appear in
3499 instructions but must be forced to the constant pool. */
3500 FOR_EACH_SUBRTX (iter, array, x, ALL)
3501 if (ea_symbol_ref_p (*iter))
3502 return 0;
3503
3504 /* V4SI with all identical symbols is valid. */
3505 if (!flag_pic
3506 && mode == V4SImode
3507 && (GET_CODE (CONST_VECTOR_ELT (x, 0)) == SYMBOL_REF
3508 || GET_CODE (CONST_VECTOR_ELT (x, 0)) == LABEL_REF
3509 || GET_CODE (CONST_VECTOR_ELT (x, 0)) == CONST))
3510 return CONST_VECTOR_ELT (x, 0) == CONST_VECTOR_ELT (x, 1)
3511 && CONST_VECTOR_ELT (x, 1) == CONST_VECTOR_ELT (x, 2)
3512 && CONST_VECTOR_ELT (x, 2) == CONST_VECTOR_ELT (x, 3);
3513
3514 if (GET_CODE (x) == CONST_VECTOR
3515 && !const_vector_immediate_p (x))
3516 return 0;
3517 return 1;
3518 }
3519
3520 /* Valid address are:
3521 - symbol_ref, label_ref, const
3522 - reg
3523 - reg + const_int, where const_int is 16 byte aligned
3524 - reg + reg, alignment doesn't matter
3525 The alignment matters in the reg+const case because lqd and stqd
3526 ignore the 4 least significant bits of the const. We only care about
3527 16 byte modes because the expand phase will change all smaller MEM
3528 references to TImode. */
3529 static bool
3530 spu_legitimate_address_p (machine_mode mode,
3531 rtx x, bool reg_ok_strict)
3532 {
3533 int aligned = GET_MODE_SIZE (mode) >= 16;
3534 if (aligned
3535 && GET_CODE (x) == AND
3536 && GET_CODE (XEXP (x, 1)) == CONST_INT
3537 && INTVAL (XEXP (x, 1)) == (HOST_WIDE_INT) - 16)
3538 x = XEXP (x, 0);
3539 switch (GET_CODE (x))
3540 {
3541 case LABEL_REF:
3542 return !TARGET_LARGE_MEM;
3543
3544 case SYMBOL_REF:
3545 case CONST:
3546 /* Keep __ea references until reload so that spu_expand_mov can see them
3547 in MEMs. */
3548 if (ea_symbol_ref_p (x))
3549 return !reload_in_progress && !reload_completed;
3550 return !TARGET_LARGE_MEM;
3551
3552 case CONST_INT:
3553 return INTVAL (x) >= 0 && INTVAL (x) <= 0x3ffff;
3554
3555 case SUBREG:
3556 x = XEXP (x, 0);
3557 if (REG_P (x))
3558 return 0;
3559
3560 case REG:
3561 return INT_REG_OK_FOR_BASE_P (x, reg_ok_strict);
3562
3563 case PLUS:
3564 case LO_SUM:
3565 {
3566 rtx op0 = XEXP (x, 0);
3567 rtx op1 = XEXP (x, 1);
3568 if (GET_CODE (op0) == SUBREG)
3569 op0 = XEXP (op0, 0);
3570 if (GET_CODE (op1) == SUBREG)
3571 op1 = XEXP (op1, 0);
3572 if (GET_CODE (op0) == REG
3573 && INT_REG_OK_FOR_BASE_P (op0, reg_ok_strict)
3574 && GET_CODE (op1) == CONST_INT
3575 && ((INTVAL (op1) >= -0x2000 && INTVAL (op1) <= 0x1fff)
3576 /* If virtual registers are involved, the displacement will
3577 change later on anyway, so checking would be premature.
3578 Reload will make sure the final displacement after
3579 register elimination is OK. */
3580 || op0 == arg_pointer_rtx
3581 || op0 == frame_pointer_rtx
3582 || op0 == virtual_stack_vars_rtx)
3583 && (!aligned || (INTVAL (op1) & 15) == 0))
3584 return TRUE;
3585 if (GET_CODE (op0) == REG
3586 && INT_REG_OK_FOR_BASE_P (op0, reg_ok_strict)
3587 && GET_CODE (op1) == REG
3588 && INT_REG_OK_FOR_INDEX_P (op1, reg_ok_strict))
3589 return TRUE;
3590 }
3591 break;
3592
3593 default:
3594 break;
3595 }
3596 return FALSE;
3597 }
3598
3599 /* Like spu_legitimate_address_p, except with named addresses. */
3600 static bool
3601 spu_addr_space_legitimate_address_p (machine_mode mode, rtx x,
3602 bool reg_ok_strict, addr_space_t as)
3603 {
3604 if (as == ADDR_SPACE_EA)
3605 return (REG_P (x) && (GET_MODE (x) == EAmode));
3606
3607 else if (as != ADDR_SPACE_GENERIC)
3608 gcc_unreachable ();
3609
3610 return spu_legitimate_address_p (mode, x, reg_ok_strict);
3611 }
3612
3613 /* When the address is reg + const_int, force the const_int into a
3614 register. */
3615 static rtx
3616 spu_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
3617 machine_mode mode ATTRIBUTE_UNUSED)
3618 {
3619 rtx op0, op1;
3620 /* Make sure both operands are registers. */
3621 if (GET_CODE (x) == PLUS)
3622 {
3623 op0 = XEXP (x, 0);
3624 op1 = XEXP (x, 1);
3625 if (ALIGNED_SYMBOL_REF_P (op0))
3626 {
3627 op0 = force_reg (Pmode, op0);
3628 mark_reg_pointer (op0, 128);
3629 }
3630 else if (GET_CODE (op0) != REG)
3631 op0 = force_reg (Pmode, op0);
3632 if (ALIGNED_SYMBOL_REF_P (op1))
3633 {
3634 op1 = force_reg (Pmode, op1);
3635 mark_reg_pointer (op1, 128);
3636 }
3637 else if (GET_CODE (op1) != REG)
3638 op1 = force_reg (Pmode, op1);
3639 x = gen_rtx_PLUS (Pmode, op0, op1);
3640 }
3641 return x;
3642 }
3643
3644 /* Like spu_legitimate_address, except with named address support. */
3645 static rtx
3646 spu_addr_space_legitimize_address (rtx x, rtx oldx, machine_mode mode,
3647 addr_space_t as)
3648 {
3649 if (as != ADDR_SPACE_GENERIC)
3650 return x;
3651
3652 return spu_legitimize_address (x, oldx, mode);
3653 }
3654
3655 /* Reload reg + const_int for out-of-range displacements. */
3656 rtx
3657 spu_legitimize_reload_address (rtx ad, machine_mode mode ATTRIBUTE_UNUSED,
3658 int opnum, int type)
3659 {
3660 bool removed_and = false;
3661
3662 if (GET_CODE (ad) == AND
3663 && CONST_INT_P (XEXP (ad, 1))
3664 && INTVAL (XEXP (ad, 1)) == (HOST_WIDE_INT) - 16)
3665 {
3666 ad = XEXP (ad, 0);
3667 removed_and = true;
3668 }
3669
3670 if (GET_CODE (ad) == PLUS
3671 && REG_P (XEXP (ad, 0))
3672 && CONST_INT_P (XEXP (ad, 1))
3673 && !(INTVAL (XEXP (ad, 1)) >= -0x2000
3674 && INTVAL (XEXP (ad, 1)) <= 0x1fff))
3675 {
3676 /* Unshare the sum. */
3677 ad = copy_rtx (ad);
3678
3679 /* Reload the displacement. */
3680 push_reload (XEXP (ad, 1), NULL_RTX, &XEXP (ad, 1), NULL,
3681 BASE_REG_CLASS, GET_MODE (ad), VOIDmode, 0, 0,
3682 opnum, (enum reload_type) type);
3683
3684 /* Add back AND for alignment if we stripped it. */
3685 if (removed_and)
3686 ad = gen_rtx_AND (GET_MODE (ad), ad, GEN_INT (-16));
3687
3688 return ad;
3689 }
3690
3691 return NULL_RTX;
3692 }
3693
3694 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
3695 struct attribute_spec.handler. */
3696 static tree
3697 spu_handle_fndecl_attribute (tree * node,
3698 tree name,
3699 tree args ATTRIBUTE_UNUSED,
3700 int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
3701 {
3702 if (TREE_CODE (*node) != FUNCTION_DECL)
3703 {
3704 warning (0, "%qE attribute only applies to functions",
3705 name);
3706 *no_add_attrs = true;
3707 }
3708
3709 return NULL_TREE;
3710 }
3711
3712 /* Handle the "vector" attribute. */
3713 static tree
3714 spu_handle_vector_attribute (tree * node, tree name,
3715 tree args ATTRIBUTE_UNUSED,
3716 int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
3717 {
3718 tree type = *node, result = NULL_TREE;
3719 machine_mode mode;
3720 int unsigned_p;
3721
3722 while (POINTER_TYPE_P (type)
3723 || TREE_CODE (type) == FUNCTION_TYPE
3724 || TREE_CODE (type) == METHOD_TYPE || TREE_CODE (type) == ARRAY_TYPE)
3725 type = TREE_TYPE (type);
3726
3727 mode = TYPE_MODE (type);
3728
3729 unsigned_p = TYPE_UNSIGNED (type);
3730 switch (mode)
3731 {
3732 case DImode:
3733 result = (unsigned_p ? unsigned_V2DI_type_node : V2DI_type_node);
3734 break;
3735 case SImode:
3736 result = (unsigned_p ? unsigned_V4SI_type_node : V4SI_type_node);
3737 break;
3738 case HImode:
3739 result = (unsigned_p ? unsigned_V8HI_type_node : V8HI_type_node);
3740 break;
3741 case QImode:
3742 result = (unsigned_p ? unsigned_V16QI_type_node : V16QI_type_node);
3743 break;
3744 case SFmode:
3745 result = V4SF_type_node;
3746 break;
3747 case DFmode:
3748 result = V2DF_type_node;
3749 break;
3750 default:
3751 break;
3752 }
3753
3754 /* Propagate qualifiers attached to the element type
3755 onto the vector type. */
3756 if (result && result != type && TYPE_QUALS (type))
3757 result = build_qualified_type (result, TYPE_QUALS (type));
3758
3759 *no_add_attrs = true; /* No need to hang on to the attribute. */
3760
3761 if (!result)
3762 warning (0, "%qE attribute ignored", name);
3763 else
3764 *node = lang_hooks.types.reconstruct_complex_type (*node, result);
3765
3766 return NULL_TREE;
3767 }
3768
3769 /* Return nonzero if FUNC is a naked function. */
3770 static int
3771 spu_naked_function_p (tree func)
3772 {
3773 tree a;
3774
3775 if (TREE_CODE (func) != FUNCTION_DECL)
3776 abort ();
3777
3778 a = lookup_attribute ("naked", DECL_ATTRIBUTES (func));
3779 return a != NULL_TREE;
3780 }
3781
3782 int
3783 spu_initial_elimination_offset (int from, int to)
3784 {
3785 int saved_regs_size = spu_saved_regs_size ();
3786 int sp_offset = 0;
3787 if (!crtl->is_leaf || crtl->outgoing_args_size
3788 || get_frame_size () || saved_regs_size)
3789 sp_offset = STACK_POINTER_OFFSET;
3790 if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
3791 return get_frame_size () + crtl->outgoing_args_size + sp_offset;
3792 else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
3793 return get_frame_size ();
3794 else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
3795 return sp_offset + crtl->outgoing_args_size
3796 + get_frame_size () + saved_regs_size + STACK_POINTER_OFFSET;
3797 else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
3798 return get_frame_size () + saved_regs_size + sp_offset;
3799 else
3800 gcc_unreachable ();
3801 }
3802
3803 rtx
3804 spu_function_value (const_tree type, const_tree func ATTRIBUTE_UNUSED)
3805 {
3806 machine_mode mode = TYPE_MODE (type);
3807 int byte_size = ((mode == BLKmode)
3808 ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
3809
3810 /* Make sure small structs are left justified in a register. */
3811 if ((mode == BLKmode || (type && AGGREGATE_TYPE_P (type)))
3812 && byte_size <= UNITS_PER_WORD * MAX_REGISTER_RETURN && byte_size > 0)
3813 {
3814 machine_mode smode;
3815 rtvec v;
3816 int i;
3817 int nregs = (byte_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3818 int n = byte_size / UNITS_PER_WORD;
3819 v = rtvec_alloc (nregs);
3820 for (i = 0; i < n; i++)
3821 {
3822 RTVEC_ELT (v, i) = gen_rtx_EXPR_LIST (VOIDmode,
3823 gen_rtx_REG (TImode,
3824 FIRST_RETURN_REGNUM
3825 + i),
3826 GEN_INT (UNITS_PER_WORD * i));
3827 byte_size -= UNITS_PER_WORD;
3828 }
3829
3830 if (n < nregs)
3831 {
3832 if (byte_size < 4)
3833 byte_size = 4;
3834 smode =
3835 smallest_mode_for_size (byte_size * BITS_PER_UNIT, MODE_INT);
3836 RTVEC_ELT (v, n) =
3837 gen_rtx_EXPR_LIST (VOIDmode,
3838 gen_rtx_REG (smode, FIRST_RETURN_REGNUM + n),
3839 GEN_INT (UNITS_PER_WORD * n));
3840 }
3841 return gen_rtx_PARALLEL (mode, v);
3842 }
3843 return gen_rtx_REG (mode, FIRST_RETURN_REGNUM);
3844 }
3845
3846 static rtx
3847 spu_function_arg (cumulative_args_t cum_v,
3848 machine_mode mode,
3849 const_tree type, bool named ATTRIBUTE_UNUSED)
3850 {
3851 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
3852 int byte_size;
3853
3854 if (*cum >= MAX_REGISTER_ARGS)
3855 return 0;
3856
3857 byte_size = ((mode == BLKmode)
3858 ? int_size_in_bytes (type) : GET_MODE_SIZE (mode));
3859
3860 /* The ABI does not allow parameters to be passed partially in
3861 reg and partially in stack. */
3862 if ((*cum + (byte_size + 15) / 16) > MAX_REGISTER_ARGS)
3863 return 0;
3864
3865 /* Make sure small structs are left justified in a register. */
3866 if ((mode == BLKmode || (type && AGGREGATE_TYPE_P (type)))
3867 && byte_size < UNITS_PER_WORD && byte_size > 0)
3868 {
3869 machine_mode smode;
3870 rtx gr_reg;
3871 if (byte_size < 4)
3872 byte_size = 4;
3873 smode = smallest_mode_for_size (byte_size * BITS_PER_UNIT, MODE_INT);
3874 gr_reg = gen_rtx_EXPR_LIST (VOIDmode,
3875 gen_rtx_REG (smode, FIRST_ARG_REGNUM + *cum),
3876 const0_rtx);
3877 return gen_rtx_PARALLEL (mode, gen_rtvec (1, gr_reg));
3878 }
3879 else
3880 return gen_rtx_REG (mode, FIRST_ARG_REGNUM + *cum);
3881 }
3882
3883 static void
3884 spu_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
3885 const_tree type, bool named ATTRIBUTE_UNUSED)
3886 {
3887 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
3888
3889 *cum += (type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
3890 ? 1
3891 : mode == BLKmode
3892 ? ((int_size_in_bytes (type) + 15) / 16)
3893 : mode == VOIDmode
3894 ? 1
3895 : HARD_REGNO_NREGS (cum, mode));
3896 }
3897
3898 /* Variable sized types are passed by reference. */
3899 static bool
3900 spu_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
3901 machine_mode mode ATTRIBUTE_UNUSED,
3902 const_tree type, bool named ATTRIBUTE_UNUSED)
3903 {
3904 return type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST;
3905 }
3906 \f
3907
3908 /* Var args. */
3909
3910 /* Create and return the va_list datatype.
3911
3912 On SPU, va_list is an array type equivalent to
3913
3914 typedef struct __va_list_tag
3915 {
3916 void *__args __attribute__((__aligned(16)));
3917 void *__skip __attribute__((__aligned(16)));
3918
3919 } va_list[1];
3920
3921 where __args points to the arg that will be returned by the next
3922 va_arg(), and __skip points to the previous stack frame such that
3923 when __args == __skip we should advance __args by 32 bytes. */
3924 static tree
3925 spu_build_builtin_va_list (void)
3926 {
3927 tree f_args, f_skip, record, type_decl;
3928 bool owp;
3929
3930 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
3931
3932 type_decl =
3933 build_decl (BUILTINS_LOCATION,
3934 TYPE_DECL, get_identifier ("__va_list_tag"), record);
3935
3936 f_args = build_decl (BUILTINS_LOCATION,
3937 FIELD_DECL, get_identifier ("__args"), ptr_type_node);
3938 f_skip = build_decl (BUILTINS_LOCATION,
3939 FIELD_DECL, get_identifier ("__skip"), ptr_type_node);
3940
3941 DECL_FIELD_CONTEXT (f_args) = record;
3942 DECL_ALIGN (f_args) = 128;
3943 DECL_USER_ALIGN (f_args) = 1;
3944
3945 DECL_FIELD_CONTEXT (f_skip) = record;
3946 DECL_ALIGN (f_skip) = 128;
3947 DECL_USER_ALIGN (f_skip) = 1;
3948
3949 TYPE_STUB_DECL (record) = type_decl;
3950 TYPE_NAME (record) = type_decl;
3951 TYPE_FIELDS (record) = f_args;
3952 DECL_CHAIN (f_args) = f_skip;
3953
3954 /* We know this is being padded and we want it too. It is an internal
3955 type so hide the warnings from the user. */
3956 owp = warn_padded;
3957 warn_padded = false;
3958
3959 layout_type (record);
3960
3961 warn_padded = owp;
3962
3963 /* The correct type is an array type of one element. */
3964 return build_array_type (record, build_index_type (size_zero_node));
3965 }
3966
3967 /* Implement va_start by filling the va_list structure VALIST.
3968 NEXTARG points to the first anonymous stack argument.
3969
3970 The following global variables are used to initialize
3971 the va_list structure:
3972
3973 crtl->args.info;
3974 the CUMULATIVE_ARGS for this function
3975
3976 crtl->args.arg_offset_rtx:
3977 holds the offset of the first anonymous stack argument
3978 (relative to the virtual arg pointer). */
3979
3980 static void
3981 spu_va_start (tree valist, rtx nextarg)
3982 {
3983 tree f_args, f_skip;
3984 tree args, skip, t;
3985
3986 f_args = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
3987 f_skip = DECL_CHAIN (f_args);
3988
3989 valist = build_simple_mem_ref (valist);
3990 args =
3991 build3 (COMPONENT_REF, TREE_TYPE (f_args), valist, f_args, NULL_TREE);
3992 skip =
3993 build3 (COMPONENT_REF, TREE_TYPE (f_skip), valist, f_skip, NULL_TREE);
3994
3995 /* Find the __args area. */
3996 t = make_tree (TREE_TYPE (args), nextarg);
3997 if (crtl->args.pretend_args_size > 0)
3998 t = fold_build_pointer_plus_hwi (t, -STACK_POINTER_OFFSET);
3999 t = build2 (MODIFY_EXPR, TREE_TYPE (args), args, t);
4000 TREE_SIDE_EFFECTS (t) = 1;
4001 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
4002
4003 /* Find the __skip area. */
4004 t = make_tree (TREE_TYPE (skip), virtual_incoming_args_rtx);
4005 t = fold_build_pointer_plus_hwi (t, (crtl->args.pretend_args_size
4006 - STACK_POINTER_OFFSET));
4007 t = build2 (MODIFY_EXPR, TREE_TYPE (skip), skip, t);
4008 TREE_SIDE_EFFECTS (t) = 1;
4009 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
4010 }
4011
4012 /* Gimplify va_arg by updating the va_list structure
4013 VALIST as required to retrieve an argument of type
4014 TYPE, and returning that argument.
4015
4016 ret = va_arg(VALIST, TYPE);
4017
4018 generates code equivalent to:
4019
4020 paddedsize = (sizeof(TYPE) + 15) & -16;
4021 if (VALIST.__args + paddedsize > VALIST.__skip
4022 && VALIST.__args <= VALIST.__skip)
4023 addr = VALIST.__skip + 32;
4024 else
4025 addr = VALIST.__args;
4026 VALIST.__args = addr + paddedsize;
4027 ret = *(TYPE *)addr;
4028 */
4029 static tree
4030 spu_gimplify_va_arg_expr (tree valist, tree type, gimple_seq * pre_p,
4031 gimple_seq * post_p ATTRIBUTE_UNUSED)
4032 {
4033 tree f_args, f_skip;
4034 tree args, skip;
4035 HOST_WIDE_INT size, rsize;
4036 tree addr, tmp;
4037 bool pass_by_reference_p;
4038
4039 f_args = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
4040 f_skip = DECL_CHAIN (f_args);
4041
4042 args =
4043 build3 (COMPONENT_REF, TREE_TYPE (f_args), valist, f_args, NULL_TREE);
4044 skip =
4045 build3 (COMPONENT_REF, TREE_TYPE (f_skip), valist, f_skip, NULL_TREE);
4046
4047 addr = create_tmp_var (ptr_type_node, "va_arg");
4048
4049 /* if an object is dynamically sized, a pointer to it is passed
4050 instead of the object itself. */
4051 pass_by_reference_p = pass_by_reference (NULL, TYPE_MODE (type), type,
4052 false);
4053 if (pass_by_reference_p)
4054 type = build_pointer_type (type);
4055 size = int_size_in_bytes (type);
4056 rsize = ((size + UNITS_PER_WORD - 1) / UNITS_PER_WORD) * UNITS_PER_WORD;
4057
4058 /* build conditional expression to calculate addr. The expression
4059 will be gimplified later. */
4060 tmp = fold_build_pointer_plus_hwi (unshare_expr (args), rsize);
4061 tmp = build2 (TRUTH_AND_EXPR, boolean_type_node,
4062 build2 (GT_EXPR, boolean_type_node, tmp, unshare_expr (skip)),
4063 build2 (LE_EXPR, boolean_type_node, unshare_expr (args),
4064 unshare_expr (skip)));
4065
4066 tmp = build3 (COND_EXPR, ptr_type_node, tmp,
4067 fold_build_pointer_plus_hwi (unshare_expr (skip), 32),
4068 unshare_expr (args));
4069
4070 gimplify_assign (addr, tmp, pre_p);
4071
4072 /* update VALIST.__args */
4073 tmp = fold_build_pointer_plus_hwi (addr, rsize);
4074 gimplify_assign (unshare_expr (args), tmp, pre_p);
4075
4076 addr = fold_convert (build_pointer_type_for_mode (type, ptr_mode, true),
4077 addr);
4078
4079 if (pass_by_reference_p)
4080 addr = build_va_arg_indirect_ref (addr);
4081
4082 return build_va_arg_indirect_ref (addr);
4083 }
4084
4085 /* Save parameter registers starting with the register that corresponds
4086 to the first unnamed parameters. If the first unnamed parameter is
4087 in the stack then save no registers. Set pretend_args_size to the
4088 amount of space needed to save the registers. */
4089 static void
4090 spu_setup_incoming_varargs (cumulative_args_t cum, machine_mode mode,
4091 tree type, int *pretend_size, int no_rtl)
4092 {
4093 if (!no_rtl)
4094 {
4095 rtx tmp;
4096 int regno;
4097 int offset;
4098 int ncum = *get_cumulative_args (cum);
4099
4100 /* cum currently points to the last named argument, we want to
4101 start at the next argument. */
4102 spu_function_arg_advance (pack_cumulative_args (&ncum), mode, type, true);
4103
4104 offset = -STACK_POINTER_OFFSET;
4105 for (regno = ncum; regno < MAX_REGISTER_ARGS; regno++)
4106 {
4107 tmp = gen_frame_mem (V4SImode,
4108 plus_constant (Pmode, virtual_incoming_args_rtx,
4109 offset));
4110 emit_move_insn (tmp,
4111 gen_rtx_REG (V4SImode, FIRST_ARG_REGNUM + regno));
4112 offset += 16;
4113 }
4114 *pretend_size = offset + STACK_POINTER_OFFSET;
4115 }
4116 }
4117 \f
4118 static void
4119 spu_conditional_register_usage (void)
4120 {
4121 if (flag_pic)
4122 {
4123 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
4124 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
4125 }
4126 }
4127
4128 /* This is called any time we inspect the alignment of a register for
4129 addresses. */
4130 static int
4131 reg_aligned_for_addr (rtx x)
4132 {
4133 int regno =
4134 REGNO (x) < FIRST_PSEUDO_REGISTER ? ORIGINAL_REGNO (x) : REGNO (x);
4135 return REGNO_POINTER_ALIGN (regno) >= 128;
4136 }
4137
4138 /* Encode symbol attributes (local vs. global, tls model) of a SYMBOL_REF
4139 into its SYMBOL_REF_FLAGS. */
4140 static void
4141 spu_encode_section_info (tree decl, rtx rtl, int first)
4142 {
4143 default_encode_section_info (decl, rtl, first);
4144
4145 /* If a variable has a forced alignment to < 16 bytes, mark it with
4146 SYMBOL_FLAG_ALIGN1. */
4147 if (TREE_CODE (decl) == VAR_DECL
4148 && DECL_USER_ALIGN (decl) && DECL_ALIGN (decl) < 128)
4149 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_ALIGN1;
4150 }
4151
4152 /* Return TRUE if we are certain the mem refers to a complete object
4153 which is both 16-byte aligned and padded to a 16-byte boundary. This
4154 would make it safe to store with a single instruction.
4155 We guarantee the alignment and padding for static objects by aligning
4156 all of them to 16-bytes. (DATA_ALIGNMENT and CONSTANT_ALIGNMENT.)
4157 FIXME: We currently cannot guarantee this for objects on the stack
4158 because assign_parm_setup_stack calls assign_stack_local with the
4159 alignment of the parameter mode and in that case the alignment never
4160 gets adjusted by LOCAL_ALIGNMENT. */
4161 static int
4162 store_with_one_insn_p (rtx mem)
4163 {
4164 machine_mode mode = GET_MODE (mem);
4165 rtx addr = XEXP (mem, 0);
4166 if (mode == BLKmode)
4167 return 0;
4168 if (GET_MODE_SIZE (mode) >= 16)
4169 return 1;
4170 /* Only static objects. */
4171 if (GET_CODE (addr) == SYMBOL_REF)
4172 {
4173 /* We use the associated declaration to make sure the access is
4174 referring to the whole object.
4175 We check both MEM_EXPR and SYMBOL_REF_DECL. I'm not sure
4176 if it is necessary. Will there be cases where one exists, and
4177 the other does not? Will there be cases where both exist, but
4178 have different types? */
4179 tree decl = MEM_EXPR (mem);
4180 if (decl
4181 && TREE_CODE (decl) == VAR_DECL
4182 && GET_MODE (mem) == TYPE_MODE (TREE_TYPE (decl)))
4183 return 1;
4184 decl = SYMBOL_REF_DECL (addr);
4185 if (decl
4186 && TREE_CODE (decl) == VAR_DECL
4187 && GET_MODE (mem) == TYPE_MODE (TREE_TYPE (decl)))
4188 return 1;
4189 }
4190 return 0;
4191 }
4192
4193 /* Return 1 when the address is not valid for a simple load and store as
4194 required by the '_mov*' patterns. We could make this less strict
4195 for loads, but we prefer mem's to look the same so they are more
4196 likely to be merged. */
4197 static int
4198 address_needs_split (rtx mem)
4199 {
4200 if (GET_MODE_SIZE (GET_MODE (mem)) < 16
4201 && (GET_MODE_SIZE (GET_MODE (mem)) < 4
4202 || !(store_with_one_insn_p (mem)
4203 || mem_is_padded_component_ref (mem))))
4204 return 1;
4205
4206 return 0;
4207 }
4208
4209 static GTY(()) rtx cache_fetch; /* __cache_fetch function */
4210 static GTY(()) rtx cache_fetch_dirty; /* __cache_fetch_dirty function */
4211 static alias_set_type ea_alias_set = -1; /* alias set for __ea memory */
4212
4213 /* MEM is known to be an __ea qualified memory access. Emit a call to
4214 fetch the ppu memory to local store, and return its address in local
4215 store. */
4216
4217 static void
4218 ea_load_store (rtx mem, bool is_store, rtx ea_addr, rtx data_addr)
4219 {
4220 if (is_store)
4221 {
4222 rtx ndirty = GEN_INT (GET_MODE_SIZE (GET_MODE (mem)));
4223 if (!cache_fetch_dirty)
4224 cache_fetch_dirty = init_one_libfunc ("__cache_fetch_dirty");
4225 emit_library_call_value (cache_fetch_dirty, data_addr, LCT_NORMAL, Pmode,
4226 2, ea_addr, EAmode, ndirty, SImode);
4227 }
4228 else
4229 {
4230 if (!cache_fetch)
4231 cache_fetch = init_one_libfunc ("__cache_fetch");
4232 emit_library_call_value (cache_fetch, data_addr, LCT_NORMAL, Pmode,
4233 1, ea_addr, EAmode);
4234 }
4235 }
4236
4237 /* Like ea_load_store, but do the cache tag comparison and, for stores,
4238 dirty bit marking, inline.
4239
4240 The cache control data structure is an array of
4241
4242 struct __cache_tag_array
4243 {
4244 unsigned int tag_lo[4];
4245 unsigned int tag_hi[4];
4246 void *data_pointer[4];
4247 int reserved[4];
4248 vector unsigned short dirty_bits[4];
4249 } */
4250
4251 static void
4252 ea_load_store_inline (rtx mem, bool is_store, rtx ea_addr, rtx data_addr)
4253 {
4254 rtx ea_addr_si;
4255 HOST_WIDE_INT v;
4256 rtx tag_size_sym = gen_rtx_SYMBOL_REF (Pmode, "__cache_tag_array_size");
4257 rtx tag_arr_sym = gen_rtx_SYMBOL_REF (Pmode, "__cache_tag_array");
4258 rtx index_mask = gen_reg_rtx (SImode);
4259 rtx tag_arr = gen_reg_rtx (Pmode);
4260 rtx splat_mask = gen_reg_rtx (TImode);
4261 rtx splat = gen_reg_rtx (V4SImode);
4262 rtx splat_hi = NULL_RTX;
4263 rtx tag_index = gen_reg_rtx (Pmode);
4264 rtx block_off = gen_reg_rtx (SImode);
4265 rtx tag_addr = gen_reg_rtx (Pmode);
4266 rtx tag = gen_reg_rtx (V4SImode);
4267 rtx cache_tag = gen_reg_rtx (V4SImode);
4268 rtx cache_tag_hi = NULL_RTX;
4269 rtx cache_ptrs = gen_reg_rtx (TImode);
4270 rtx cache_ptrs_si = gen_reg_rtx (SImode);
4271 rtx tag_equal = gen_reg_rtx (V4SImode);
4272 rtx tag_equal_hi = NULL_RTX;
4273 rtx tag_eq_pack = gen_reg_rtx (V4SImode);
4274 rtx tag_eq_pack_si = gen_reg_rtx (SImode);
4275 rtx eq_index = gen_reg_rtx (SImode);
4276 rtx bcomp, hit_label, hit_ref, cont_label;
4277 rtx_insn *insn;
4278
4279 if (spu_ea_model != 32)
4280 {
4281 splat_hi = gen_reg_rtx (V4SImode);
4282 cache_tag_hi = gen_reg_rtx (V4SImode);
4283 tag_equal_hi = gen_reg_rtx (V4SImode);
4284 }
4285
4286 emit_move_insn (index_mask, plus_constant (Pmode, tag_size_sym, -128));
4287 emit_move_insn (tag_arr, tag_arr_sym);
4288 v = 0x0001020300010203LL;
4289 emit_move_insn (splat_mask, immed_double_const (v, v, TImode));
4290 ea_addr_si = ea_addr;
4291 if (spu_ea_model != 32)
4292 ea_addr_si = convert_to_mode (SImode, ea_addr, 1);
4293
4294 /* tag_index = ea_addr & (tag_array_size - 128) */
4295 emit_insn (gen_andsi3 (tag_index, ea_addr_si, index_mask));
4296
4297 /* splat ea_addr to all 4 slots. */
4298 emit_insn (gen_shufb (splat, ea_addr_si, ea_addr_si, splat_mask));
4299 /* Similarly for high 32 bits of ea_addr. */
4300 if (spu_ea_model != 32)
4301 emit_insn (gen_shufb (splat_hi, ea_addr, ea_addr, splat_mask));
4302
4303 /* block_off = ea_addr & 127 */
4304 emit_insn (gen_andsi3 (block_off, ea_addr_si, spu_const (SImode, 127)));
4305
4306 /* tag_addr = tag_arr + tag_index */
4307 emit_insn (gen_addsi3 (tag_addr, tag_arr, tag_index));
4308
4309 /* Read cache tags. */
4310 emit_move_insn (cache_tag, gen_rtx_MEM (V4SImode, tag_addr));
4311 if (spu_ea_model != 32)
4312 emit_move_insn (cache_tag_hi, gen_rtx_MEM (V4SImode,
4313 plus_constant (Pmode,
4314 tag_addr, 16)));
4315
4316 /* tag = ea_addr & -128 */
4317 emit_insn (gen_andv4si3 (tag, splat, spu_const (V4SImode, -128)));
4318
4319 /* Read all four cache data pointers. */
4320 emit_move_insn (cache_ptrs, gen_rtx_MEM (TImode,
4321 plus_constant (Pmode,
4322 tag_addr, 32)));
4323
4324 /* Compare tags. */
4325 emit_insn (gen_ceq_v4si (tag_equal, tag, cache_tag));
4326 if (spu_ea_model != 32)
4327 {
4328 emit_insn (gen_ceq_v4si (tag_equal_hi, splat_hi, cache_tag_hi));
4329 emit_insn (gen_andv4si3 (tag_equal, tag_equal, tag_equal_hi));
4330 }
4331
4332 /* At most one of the tags compare equal, so tag_equal has one
4333 32-bit slot set to all 1's, with the other slots all zero.
4334 gbb picks off low bit from each byte in the 128-bit registers,
4335 so tag_eq_pack is one of 0xf000, 0x0f00, 0x00f0, 0x000f, assuming
4336 we have a hit. */
4337 emit_insn (gen_spu_gbb (tag_eq_pack, spu_gen_subreg (V16QImode, tag_equal)));
4338 emit_insn (gen_spu_convert (tag_eq_pack_si, tag_eq_pack));
4339
4340 /* So counting leading zeros will set eq_index to 16, 20, 24 or 28. */
4341 emit_insn (gen_clzsi2 (eq_index, tag_eq_pack_si));
4342
4343 /* Allowing us to rotate the corresponding cache data pointer to slot0.
4344 (rotating eq_index mod 16 bytes). */
4345 emit_insn (gen_rotqby_ti (cache_ptrs, cache_ptrs, eq_index));
4346 emit_insn (gen_spu_convert (cache_ptrs_si, cache_ptrs));
4347
4348 /* Add block offset to form final data address. */
4349 emit_insn (gen_addsi3 (data_addr, cache_ptrs_si, block_off));
4350
4351 /* Check that we did hit. */
4352 hit_label = gen_label_rtx ();
4353 hit_ref = gen_rtx_LABEL_REF (VOIDmode, hit_label);
4354 bcomp = gen_rtx_NE (SImode, tag_eq_pack_si, const0_rtx);
4355 insn = emit_jump_insn (gen_rtx_SET (pc_rtx,
4356 gen_rtx_IF_THEN_ELSE (VOIDmode, bcomp,
4357 hit_ref, pc_rtx)));
4358 /* Say that this branch is very likely to happen. */
4359 v = REG_BR_PROB_BASE - REG_BR_PROB_BASE / 100 - 1;
4360 add_int_reg_note (insn, REG_BR_PROB, v);
4361
4362 ea_load_store (mem, is_store, ea_addr, data_addr);
4363 cont_label = gen_label_rtx ();
4364 emit_jump_insn (gen_jump (cont_label));
4365 emit_barrier ();
4366
4367 emit_label (hit_label);
4368
4369 if (is_store)
4370 {
4371 HOST_WIDE_INT v_hi;
4372 rtx dirty_bits = gen_reg_rtx (TImode);
4373 rtx dirty_off = gen_reg_rtx (SImode);
4374 rtx dirty_128 = gen_reg_rtx (TImode);
4375 rtx neg_block_off = gen_reg_rtx (SImode);
4376
4377 /* Set up mask with one dirty bit per byte of the mem we are
4378 writing, starting from top bit. */
4379 v_hi = v = -1;
4380 v <<= (128 - GET_MODE_SIZE (GET_MODE (mem))) & 63;
4381 if ((128 - GET_MODE_SIZE (GET_MODE (mem))) >= 64)
4382 {
4383 v_hi = v;
4384 v = 0;
4385 }
4386 emit_move_insn (dirty_bits, immed_double_const (v, v_hi, TImode));
4387
4388 /* Form index into cache dirty_bits. eq_index is one of
4389 0x10, 0x14, 0x18 or 0x1c. Multiplying by 4 gives us
4390 0x40, 0x50, 0x60 or 0x70 which just happens to be the
4391 offset to each of the four dirty_bits elements. */
4392 emit_insn (gen_ashlsi3 (dirty_off, eq_index, spu_const (SImode, 2)));
4393
4394 emit_insn (gen_spu_lqx (dirty_128, tag_addr, dirty_off));
4395
4396 /* Rotate bit mask to proper bit. */
4397 emit_insn (gen_negsi2 (neg_block_off, block_off));
4398 emit_insn (gen_rotqbybi_ti (dirty_bits, dirty_bits, neg_block_off));
4399 emit_insn (gen_rotqbi_ti (dirty_bits, dirty_bits, neg_block_off));
4400
4401 /* Or in the new dirty bits. */
4402 emit_insn (gen_iorti3 (dirty_128, dirty_bits, dirty_128));
4403
4404 /* Store. */
4405 emit_insn (gen_spu_stqx (dirty_128, tag_addr, dirty_off));
4406 }
4407
4408 emit_label (cont_label);
4409 }
4410
4411 static rtx
4412 expand_ea_mem (rtx mem, bool is_store)
4413 {
4414 rtx ea_addr;
4415 rtx data_addr = gen_reg_rtx (Pmode);
4416 rtx new_mem;
4417
4418 ea_addr = force_reg (EAmode, XEXP (mem, 0));
4419 if (optimize_size || optimize == 0)
4420 ea_load_store (mem, is_store, ea_addr, data_addr);
4421 else
4422 ea_load_store_inline (mem, is_store, ea_addr, data_addr);
4423
4424 if (ea_alias_set == -1)
4425 ea_alias_set = new_alias_set ();
4426
4427 /* We generate a new MEM RTX to refer to the copy of the data
4428 in the cache. We do not copy memory attributes (except the
4429 alignment) from the original MEM, as they may no longer apply
4430 to the cache copy. */
4431 new_mem = gen_rtx_MEM (GET_MODE (mem), data_addr);
4432 set_mem_alias_set (new_mem, ea_alias_set);
4433 set_mem_align (new_mem, MIN (MEM_ALIGN (mem), 128 * 8));
4434
4435 return new_mem;
4436 }
4437
4438 int
4439 spu_expand_mov (rtx * ops, machine_mode mode)
4440 {
4441 if (GET_CODE (ops[0]) == SUBREG && !valid_subreg (ops[0]))
4442 {
4443 /* Perform the move in the destination SUBREG's inner mode. */
4444 ops[0] = SUBREG_REG (ops[0]);
4445 mode = GET_MODE (ops[0]);
4446 ops[1] = gen_lowpart_common (mode, ops[1]);
4447 gcc_assert (ops[1]);
4448 }
4449
4450 if (GET_CODE (ops[1]) == SUBREG && !valid_subreg (ops[1]))
4451 {
4452 rtx from = SUBREG_REG (ops[1]);
4453 machine_mode imode = int_mode_for_mode (GET_MODE (from));
4454
4455 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
4456 && GET_MODE_CLASS (imode) == MODE_INT
4457 && subreg_lowpart_p (ops[1]));
4458
4459 if (GET_MODE_SIZE (imode) < 4)
4460 imode = SImode;
4461 if (imode != GET_MODE (from))
4462 from = gen_rtx_SUBREG (imode, from, 0);
4463
4464 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (imode))
4465 {
4466 enum insn_code icode = convert_optab_handler (trunc_optab,
4467 mode, imode);
4468 emit_insn (GEN_FCN (icode) (ops[0], from));
4469 }
4470 else
4471 emit_insn (gen_extend_insn (ops[0], from, mode, imode, 1));
4472 return 1;
4473 }
4474
4475 /* At least one of the operands needs to be a register. */
4476 if ((reload_in_progress | reload_completed) == 0
4477 && !register_operand (ops[0], mode) && !register_operand (ops[1], mode))
4478 {
4479 rtx temp = force_reg (mode, ops[1]);
4480 emit_move_insn (ops[0], temp);
4481 return 1;
4482 }
4483 if (reload_in_progress || reload_completed)
4484 {
4485 if (CONSTANT_P (ops[1]))
4486 return spu_split_immediate (ops);
4487 return 0;
4488 }
4489
4490 /* Catch the SImode immediates greater than 0x7fffffff, and sign
4491 extend them. */
4492 if (GET_CODE (ops[1]) == CONST_INT)
4493 {
4494 HOST_WIDE_INT val = trunc_int_for_mode (INTVAL (ops[1]), mode);
4495 if (val != INTVAL (ops[1]))
4496 {
4497 emit_move_insn (ops[0], GEN_INT (val));
4498 return 1;
4499 }
4500 }
4501 if (MEM_P (ops[0]))
4502 {
4503 if (MEM_ADDR_SPACE (ops[0]))
4504 ops[0] = expand_ea_mem (ops[0], true);
4505 return spu_split_store (ops);
4506 }
4507 if (MEM_P (ops[1]))
4508 {
4509 if (MEM_ADDR_SPACE (ops[1]))
4510 ops[1] = expand_ea_mem (ops[1], false);
4511 return spu_split_load (ops);
4512 }
4513
4514 return 0;
4515 }
4516
4517 static void
4518 spu_convert_move (rtx dst, rtx src)
4519 {
4520 machine_mode mode = GET_MODE (dst);
4521 machine_mode int_mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
4522 rtx reg;
4523 gcc_assert (GET_MODE (src) == TImode);
4524 reg = int_mode != mode ? gen_reg_rtx (int_mode) : dst;
4525 emit_insn (gen_rtx_SET (reg,
4526 gen_rtx_TRUNCATE (int_mode,
4527 gen_rtx_LSHIFTRT (TImode, src,
4528 GEN_INT (int_mode == DImode ? 64 : 96)))));
4529 if (int_mode != mode)
4530 {
4531 reg = simplify_gen_subreg (mode, reg, int_mode, 0);
4532 emit_move_insn (dst, reg);
4533 }
4534 }
4535
4536 /* Load TImode values into DST0 and DST1 (when it is non-NULL) using
4537 the address from SRC and SRC+16. Return a REG or CONST_INT that
4538 specifies how many bytes to rotate the loaded registers, plus any
4539 extra from EXTRA_ROTQBY. The address and rotate amounts are
4540 normalized to improve merging of loads and rotate computations. */
4541 static rtx
4542 spu_expand_load (rtx dst0, rtx dst1, rtx src, int extra_rotby)
4543 {
4544 rtx addr = XEXP (src, 0);
4545 rtx p0, p1, rot, addr0, addr1;
4546 int rot_amt;
4547
4548 rot = 0;
4549 rot_amt = 0;
4550
4551 if (MEM_ALIGN (src) >= 128)
4552 /* Address is already aligned; simply perform a TImode load. */ ;
4553 else if (GET_CODE (addr) == PLUS)
4554 {
4555 /* 8 cases:
4556 aligned reg + aligned reg => lqx
4557 aligned reg + unaligned reg => lqx, rotqby
4558 aligned reg + aligned const => lqd
4559 aligned reg + unaligned const => lqd, rotqbyi
4560 unaligned reg + aligned reg => lqx, rotqby
4561 unaligned reg + unaligned reg => lqx, a, rotqby (1 scratch)
4562 unaligned reg + aligned const => lqd, rotqby
4563 unaligned reg + unaligned const -> not allowed by legitimate address
4564 */
4565 p0 = XEXP (addr, 0);
4566 p1 = XEXP (addr, 1);
4567 if (!reg_aligned_for_addr (p0))
4568 {
4569 if (REG_P (p1) && !reg_aligned_for_addr (p1))
4570 {
4571 rot = gen_reg_rtx (SImode);
4572 emit_insn (gen_addsi3 (rot, p0, p1));
4573 }
4574 else if (GET_CODE (p1) == CONST_INT && (INTVAL (p1) & 15))
4575 {
4576 if (INTVAL (p1) > 0
4577 && REG_POINTER (p0)
4578 && INTVAL (p1) * BITS_PER_UNIT
4579 < REGNO_POINTER_ALIGN (REGNO (p0)))
4580 {
4581 rot = gen_reg_rtx (SImode);
4582 emit_insn (gen_addsi3 (rot, p0, p1));
4583 addr = p0;
4584 }
4585 else
4586 {
4587 rtx x = gen_reg_rtx (SImode);
4588 emit_move_insn (x, p1);
4589 if (!spu_arith_operand (p1, SImode))
4590 p1 = x;
4591 rot = gen_reg_rtx (SImode);
4592 emit_insn (gen_addsi3 (rot, p0, p1));
4593 addr = gen_rtx_PLUS (Pmode, p0, x);
4594 }
4595 }
4596 else
4597 rot = p0;
4598 }
4599 else
4600 {
4601 if (GET_CODE (p1) == CONST_INT && (INTVAL (p1) & 15))
4602 {
4603 rot_amt = INTVAL (p1) & 15;
4604 if (INTVAL (p1) & -16)
4605 {
4606 p1 = GEN_INT (INTVAL (p1) & -16);
4607 addr = gen_rtx_PLUS (SImode, p0, p1);
4608 }
4609 else
4610 addr = p0;
4611 }
4612 else if (REG_P (p1) && !reg_aligned_for_addr (p1))
4613 rot = p1;
4614 }
4615 }
4616 else if (REG_P (addr))
4617 {
4618 if (!reg_aligned_for_addr (addr))
4619 rot = addr;
4620 }
4621 else if (GET_CODE (addr) == CONST)
4622 {
4623 if (GET_CODE (XEXP (addr, 0)) == PLUS
4624 && ALIGNED_SYMBOL_REF_P (XEXP (XEXP (addr, 0), 0))
4625 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
4626 {
4627 rot_amt = INTVAL (XEXP (XEXP (addr, 0), 1));
4628 if (rot_amt & -16)
4629 addr = gen_rtx_CONST (Pmode,
4630 gen_rtx_PLUS (Pmode,
4631 XEXP (XEXP (addr, 0), 0),
4632 GEN_INT (rot_amt & -16)));
4633 else
4634 addr = XEXP (XEXP (addr, 0), 0);
4635 }
4636 else
4637 {
4638 rot = gen_reg_rtx (Pmode);
4639 emit_move_insn (rot, addr);
4640 }
4641 }
4642 else if (GET_CODE (addr) == CONST_INT)
4643 {
4644 rot_amt = INTVAL (addr);
4645 addr = GEN_INT (rot_amt & -16);
4646 }
4647 else if (!ALIGNED_SYMBOL_REF_P (addr))
4648 {
4649 rot = gen_reg_rtx (Pmode);
4650 emit_move_insn (rot, addr);
4651 }
4652
4653 rot_amt += extra_rotby;
4654
4655 rot_amt &= 15;
4656
4657 if (rot && rot_amt)
4658 {
4659 rtx x = gen_reg_rtx (SImode);
4660 emit_insn (gen_addsi3 (x, rot, GEN_INT (rot_amt)));
4661 rot = x;
4662 rot_amt = 0;
4663 }
4664 if (!rot && rot_amt)
4665 rot = GEN_INT (rot_amt);
4666
4667 addr0 = copy_rtx (addr);
4668 addr0 = gen_rtx_AND (SImode, copy_rtx (addr), GEN_INT (-16));
4669 emit_insn (gen__movti (dst0, change_address (src, TImode, addr0)));
4670
4671 if (dst1)
4672 {
4673 addr1 = plus_constant (SImode, copy_rtx (addr), 16);
4674 addr1 = gen_rtx_AND (SImode, addr1, GEN_INT (-16));
4675 emit_insn (gen__movti (dst1, change_address (src, TImode, addr1)));
4676 }
4677
4678 return rot;
4679 }
4680
4681 int
4682 spu_split_load (rtx * ops)
4683 {
4684 machine_mode mode = GET_MODE (ops[0]);
4685 rtx addr, load, rot;
4686 int rot_amt;
4687
4688 if (GET_MODE_SIZE (mode) >= 16)
4689 return 0;
4690
4691 addr = XEXP (ops[1], 0);
4692 gcc_assert (GET_CODE (addr) != AND);
4693
4694 if (!address_needs_split (ops[1]))
4695 {
4696 ops[1] = change_address (ops[1], TImode, addr);
4697 load = gen_reg_rtx (TImode);
4698 emit_insn (gen__movti (load, ops[1]));
4699 spu_convert_move (ops[0], load);
4700 return 1;
4701 }
4702
4703 rot_amt = GET_MODE_SIZE (mode) < 4 ? GET_MODE_SIZE (mode) - 4 : 0;
4704
4705 load = gen_reg_rtx (TImode);
4706 rot = spu_expand_load (load, 0, ops[1], rot_amt);
4707
4708 if (rot)
4709 emit_insn (gen_rotqby_ti (load, load, rot));
4710
4711 spu_convert_move (ops[0], load);
4712 return 1;
4713 }
4714
4715 int
4716 spu_split_store (rtx * ops)
4717 {
4718 machine_mode mode = GET_MODE (ops[0]);
4719 rtx reg;
4720 rtx addr, p0, p1, p1_lo, smem;
4721 int aform;
4722 int scalar;
4723
4724 if (GET_MODE_SIZE (mode) >= 16)
4725 return 0;
4726
4727 addr = XEXP (ops[0], 0);
4728 gcc_assert (GET_CODE (addr) != AND);
4729
4730 if (!address_needs_split (ops[0]))
4731 {
4732 reg = gen_reg_rtx (TImode);
4733 emit_insn (gen_spu_convert (reg, ops[1]));
4734 ops[0] = change_address (ops[0], TImode, addr);
4735 emit_move_insn (ops[0], reg);
4736 return 1;
4737 }
4738
4739 if (GET_CODE (addr) == PLUS)
4740 {
4741 /* 8 cases:
4742 aligned reg + aligned reg => lqx, c?x, shuf, stqx
4743 aligned reg + unaligned reg => lqx, c?x, shuf, stqx
4744 aligned reg + aligned const => lqd, c?d, shuf, stqx
4745 aligned reg + unaligned const => lqd, c?d, shuf, stqx
4746 unaligned reg + aligned reg => lqx, c?x, shuf, stqx
4747 unaligned reg + unaligned reg => lqx, c?x, shuf, stqx
4748 unaligned reg + aligned const => lqd, c?d, shuf, stqx
4749 unaligned reg + unaligned const -> lqx, c?d, shuf, stqx
4750 */
4751 aform = 0;
4752 p0 = XEXP (addr, 0);
4753 p1 = p1_lo = XEXP (addr, 1);
4754 if (REG_P (p0) && GET_CODE (p1) == CONST_INT)
4755 {
4756 p1_lo = GEN_INT (INTVAL (p1) & 15);
4757 if (reg_aligned_for_addr (p0))
4758 {
4759 p1 = GEN_INT (INTVAL (p1) & -16);
4760 if (p1 == const0_rtx)
4761 addr = p0;
4762 else
4763 addr = gen_rtx_PLUS (SImode, p0, p1);
4764 }
4765 else
4766 {
4767 rtx x = gen_reg_rtx (SImode);
4768 emit_move_insn (x, p1);
4769 addr = gen_rtx_PLUS (SImode, p0, x);
4770 }
4771 }
4772 }
4773 else if (REG_P (addr))
4774 {
4775 aform = 0;
4776 p0 = addr;
4777 p1 = p1_lo = const0_rtx;
4778 }
4779 else
4780 {
4781 aform = 1;
4782 p0 = gen_rtx_REG (SImode, STACK_POINTER_REGNUM);
4783 p1 = 0; /* aform doesn't use p1 */
4784 p1_lo = addr;
4785 if (ALIGNED_SYMBOL_REF_P (addr))
4786 p1_lo = const0_rtx;
4787 else if (GET_CODE (addr) == CONST
4788 && GET_CODE (XEXP (addr, 0)) == PLUS
4789 && ALIGNED_SYMBOL_REF_P (XEXP (XEXP (addr, 0), 0))
4790 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
4791 {
4792 HOST_WIDE_INT v = INTVAL (XEXP (XEXP (addr, 0), 1));
4793 if ((v & -16) != 0)
4794 addr = gen_rtx_CONST (Pmode,
4795 gen_rtx_PLUS (Pmode,
4796 XEXP (XEXP (addr, 0), 0),
4797 GEN_INT (v & -16)));
4798 else
4799 addr = XEXP (XEXP (addr, 0), 0);
4800 p1_lo = GEN_INT (v & 15);
4801 }
4802 else if (GET_CODE (addr) == CONST_INT)
4803 {
4804 p1_lo = GEN_INT (INTVAL (addr) & 15);
4805 addr = GEN_INT (INTVAL (addr) & -16);
4806 }
4807 else
4808 {
4809 p1_lo = gen_reg_rtx (SImode);
4810 emit_move_insn (p1_lo, addr);
4811 }
4812 }
4813
4814 gcc_assert (aform == 0 || aform == 1);
4815 reg = gen_reg_rtx (TImode);
4816
4817 scalar = store_with_one_insn_p (ops[0]);
4818 if (!scalar)
4819 {
4820 /* We could copy the flags from the ops[0] MEM to mem here,
4821 We don't because we want this load to be optimized away if
4822 possible, and copying the flags will prevent that in certain
4823 cases, e.g. consider the volatile flag. */
4824
4825 rtx pat = gen_reg_rtx (TImode);
4826 rtx lmem = change_address (ops[0], TImode, copy_rtx (addr));
4827 set_mem_alias_set (lmem, 0);
4828 emit_insn (gen_movti (reg, lmem));
4829
4830 if (!p0 || reg_aligned_for_addr (p0))
4831 p0 = stack_pointer_rtx;
4832 if (!p1_lo)
4833 p1_lo = const0_rtx;
4834
4835 emit_insn (gen_cpat (pat, p0, p1_lo, GEN_INT (GET_MODE_SIZE (mode))));
4836 emit_insn (gen_shufb (reg, ops[1], reg, pat));
4837 }
4838 else
4839 {
4840 if (GET_CODE (ops[1]) == REG)
4841 emit_insn (gen_spu_convert (reg, ops[1]));
4842 else if (GET_CODE (ops[1]) == SUBREG)
4843 emit_insn (gen_spu_convert (reg, SUBREG_REG (ops[1])));
4844 else
4845 abort ();
4846 }
4847
4848 if (GET_MODE_SIZE (mode) < 4 && scalar)
4849 emit_insn (gen_ashlti3
4850 (reg, reg, GEN_INT (32 - GET_MODE_BITSIZE (mode))));
4851
4852 smem = change_address (ops[0], TImode, copy_rtx (addr));
4853 /* We can't use the previous alias set because the memory has changed
4854 size and can potentially overlap objects of other types. */
4855 set_mem_alias_set (smem, 0);
4856
4857 emit_insn (gen_movti (smem, reg));
4858 return 1;
4859 }
4860
4861 /* Return TRUE if X is MEM which is a struct member reference
4862 and the member can safely be loaded and stored with a single
4863 instruction because it is padded. */
4864 static int
4865 mem_is_padded_component_ref (rtx x)
4866 {
4867 tree t = MEM_EXPR (x);
4868 tree r;
4869 if (!t || TREE_CODE (t) != COMPONENT_REF)
4870 return 0;
4871 t = TREE_OPERAND (t, 1);
4872 if (!t || TREE_CODE (t) != FIELD_DECL
4873 || DECL_ALIGN (t) < 128 || AGGREGATE_TYPE_P (TREE_TYPE (t)))
4874 return 0;
4875 /* Only do this for RECORD_TYPEs, not UNION_TYPEs. */
4876 r = DECL_FIELD_CONTEXT (t);
4877 if (!r || TREE_CODE (r) != RECORD_TYPE)
4878 return 0;
4879 /* Make sure they are the same mode */
4880 if (GET_MODE (x) != TYPE_MODE (TREE_TYPE (t)))
4881 return 0;
4882 /* If there are no following fields then the field alignment assures
4883 the structure is padded to the alignment which means this field is
4884 padded too. */
4885 if (TREE_CHAIN (t) == 0)
4886 return 1;
4887 /* If the following field is also aligned then this field will be
4888 padded. */
4889 t = TREE_CHAIN (t);
4890 if (TREE_CODE (t) == FIELD_DECL && DECL_ALIGN (t) >= 128)
4891 return 1;
4892 return 0;
4893 }
4894
4895 /* Parse the -mfixed-range= option string. */
4896 static void
4897 fix_range (const char *const_str)
4898 {
4899 int i, first, last;
4900 char *str, *dash, *comma;
4901
4902 /* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
4903 REG2 are either register names or register numbers. The effect
4904 of this option is to mark the registers in the range from REG1 to
4905 REG2 as ``fixed'' so they won't be used by the compiler. */
4906
4907 i = strlen (const_str);
4908 str = (char *) alloca (i + 1);
4909 memcpy (str, const_str, i + 1);
4910
4911 while (1)
4912 {
4913 dash = strchr (str, '-');
4914 if (!dash)
4915 {
4916 warning (0, "value of -mfixed-range must have form REG1-REG2");
4917 return;
4918 }
4919 *dash = '\0';
4920 comma = strchr (dash + 1, ',');
4921 if (comma)
4922 *comma = '\0';
4923
4924 first = decode_reg_name (str);
4925 if (first < 0)
4926 {
4927 warning (0, "unknown register name: %s", str);
4928 return;
4929 }
4930
4931 last = decode_reg_name (dash + 1);
4932 if (last < 0)
4933 {
4934 warning (0, "unknown register name: %s", dash + 1);
4935 return;
4936 }
4937
4938 *dash = '-';
4939
4940 if (first > last)
4941 {
4942 warning (0, "%s-%s is an empty range", str, dash + 1);
4943 return;
4944 }
4945
4946 for (i = first; i <= last; ++i)
4947 fixed_regs[i] = call_used_regs[i] = 1;
4948
4949 if (!comma)
4950 break;
4951
4952 *comma = ',';
4953 str = comma + 1;
4954 }
4955 }
4956
4957 /* Return TRUE if x is a CONST_INT, CONST_DOUBLE or CONST_VECTOR that
4958 can be generated using the fsmbi instruction. */
4959 int
4960 fsmbi_const_p (rtx x)
4961 {
4962 if (CONSTANT_P (x))
4963 {
4964 /* We can always choose TImode for CONST_INT because the high bits
4965 of an SImode will always be all 1s, i.e., valid for fsmbi. */
4966 enum immediate_class c = classify_immediate (x, TImode);
4967 return c == IC_FSMBI || (!epilogue_completed && c == IC_FSMBI2);
4968 }
4969 return 0;
4970 }
4971
4972 /* Return TRUE if x is a CONST_INT, CONST_DOUBLE or CONST_VECTOR that
4973 can be generated using the cbd, chd, cwd or cdd instruction. */
4974 int
4975 cpat_const_p (rtx x, machine_mode mode)
4976 {
4977 if (CONSTANT_P (x))
4978 {
4979 enum immediate_class c = classify_immediate (x, mode);
4980 return c == IC_CPAT;
4981 }
4982 return 0;
4983 }
4984
4985 rtx
4986 gen_cpat_const (rtx * ops)
4987 {
4988 unsigned char dst[16];
4989 int i, offset, shift, isize;
4990 if (GET_CODE (ops[3]) != CONST_INT
4991 || GET_CODE (ops[2]) != CONST_INT
4992 || (GET_CODE (ops[1]) != CONST_INT
4993 && GET_CODE (ops[1]) != REG))
4994 return 0;
4995 if (GET_CODE (ops[1]) == REG
4996 && (!REG_POINTER (ops[1])
4997 || REGNO_POINTER_ALIGN (ORIGINAL_REGNO (ops[1])) < 128))
4998 return 0;
4999
5000 for (i = 0; i < 16; i++)
5001 dst[i] = i + 16;
5002 isize = INTVAL (ops[3]);
5003 if (isize == 1)
5004 shift = 3;
5005 else if (isize == 2)
5006 shift = 2;
5007 else
5008 shift = 0;
5009 offset = (INTVAL (ops[2]) +
5010 (GET_CODE (ops[1]) ==
5011 CONST_INT ? INTVAL (ops[1]) : 0)) & 15;
5012 for (i = 0; i < isize; i++)
5013 dst[offset + i] = i + shift;
5014 return array_to_constant (TImode, dst);
5015 }
5016
5017 /* Convert a CONST_INT, CONST_DOUBLE, or CONST_VECTOR into a 16 byte
5018 array. Use MODE for CONST_INT's. When the constant's mode is smaller
5019 than 16 bytes, the value is repeated across the rest of the array. */
5020 void
5021 constant_to_array (machine_mode mode, rtx x, unsigned char arr[16])
5022 {
5023 HOST_WIDE_INT val;
5024 int i, j, first;
5025
5026 memset (arr, 0, 16);
5027 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : mode;
5028 if (GET_CODE (x) == CONST_INT
5029 || (GET_CODE (x) == CONST_DOUBLE
5030 && (mode == SFmode || mode == DFmode)))
5031 {
5032 gcc_assert (mode != VOIDmode && mode != BLKmode);
5033
5034 if (GET_CODE (x) == CONST_DOUBLE)
5035 val = const_double_to_hwint (x);
5036 else
5037 val = INTVAL (x);
5038 first = GET_MODE_SIZE (mode) - 1;
5039 for (i = first; i >= 0; i--)
5040 {
5041 arr[i] = val & 0xff;
5042 val >>= 8;
5043 }
5044 /* Splat the constant across the whole array. */
5045 for (j = 0, i = first + 1; i < 16; i++)
5046 {
5047 arr[i] = arr[j];
5048 j = (j == first) ? 0 : j + 1;
5049 }
5050 }
5051 else if (GET_CODE (x) == CONST_DOUBLE)
5052 {
5053 val = CONST_DOUBLE_LOW (x);
5054 for (i = 15; i >= 8; i--)
5055 {
5056 arr[i] = val & 0xff;
5057 val >>= 8;
5058 }
5059 val = CONST_DOUBLE_HIGH (x);
5060 for (i = 7; i >= 0; i--)
5061 {
5062 arr[i] = val & 0xff;
5063 val >>= 8;
5064 }
5065 }
5066 else if (GET_CODE (x) == CONST_VECTOR)
5067 {
5068 int units;
5069 rtx elt;
5070 mode = GET_MODE_INNER (mode);
5071 units = CONST_VECTOR_NUNITS (x);
5072 for (i = 0; i < units; i++)
5073 {
5074 elt = CONST_VECTOR_ELT (x, i);
5075 if (GET_CODE (elt) == CONST_INT || GET_CODE (elt) == CONST_DOUBLE)
5076 {
5077 if (GET_CODE (elt) == CONST_DOUBLE)
5078 val = const_double_to_hwint (elt);
5079 else
5080 val = INTVAL (elt);
5081 first = GET_MODE_SIZE (mode) - 1;
5082 if (first + i * GET_MODE_SIZE (mode) > 16)
5083 abort ();
5084 for (j = first; j >= 0; j--)
5085 {
5086 arr[j + i * GET_MODE_SIZE (mode)] = val & 0xff;
5087 val >>= 8;
5088 }
5089 }
5090 }
5091 }
5092 else
5093 gcc_unreachable();
5094 }
5095
5096 /* Convert a 16 byte array to a constant of mode MODE. When MODE is
5097 smaller than 16 bytes, use the bytes that would represent that value
5098 in a register, e.g., for QImode return the value of arr[3]. */
5099 rtx
5100 array_to_constant (machine_mode mode, const unsigned char arr[16])
5101 {
5102 machine_mode inner_mode;
5103 rtvec v;
5104 int units, size, i, j, k;
5105 HOST_WIDE_INT val;
5106
5107 if (GET_MODE_CLASS (mode) == MODE_INT
5108 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5109 {
5110 j = GET_MODE_SIZE (mode);
5111 i = j < 4 ? 4 - j : 0;
5112 for (val = 0; i < j; i++)
5113 val = (val << 8) | arr[i];
5114 val = trunc_int_for_mode (val, mode);
5115 return GEN_INT (val);
5116 }
5117
5118 if (mode == TImode)
5119 {
5120 HOST_WIDE_INT high;
5121 for (i = high = 0; i < 8; i++)
5122 high = (high << 8) | arr[i];
5123 for (i = 8, val = 0; i < 16; i++)
5124 val = (val << 8) | arr[i];
5125 return immed_double_const (val, high, TImode);
5126 }
5127 if (mode == SFmode)
5128 {
5129 val = (arr[0] << 24) | (arr[1] << 16) | (arr[2] << 8) | arr[3];
5130 val = trunc_int_for_mode (val, SImode);
5131 return hwint_to_const_double (SFmode, val);
5132 }
5133 if (mode == DFmode)
5134 {
5135 for (i = 0, val = 0; i < 8; i++)
5136 val = (val << 8) | arr[i];
5137 return hwint_to_const_double (DFmode, val);
5138 }
5139
5140 if (!VECTOR_MODE_P (mode))
5141 abort ();
5142
5143 units = GET_MODE_NUNITS (mode);
5144 size = GET_MODE_UNIT_SIZE (mode);
5145 inner_mode = GET_MODE_INNER (mode);
5146 v = rtvec_alloc (units);
5147
5148 for (k = i = 0; i < units; ++i)
5149 {
5150 val = 0;
5151 for (j = 0; j < size; j++, k++)
5152 val = (val << 8) | arr[k];
5153
5154 if (GET_MODE_CLASS (inner_mode) == MODE_FLOAT)
5155 RTVEC_ELT (v, i) = hwint_to_const_double (inner_mode, val);
5156 else
5157 RTVEC_ELT (v, i) = GEN_INT (trunc_int_for_mode (val, inner_mode));
5158 }
5159 if (k > 16)
5160 abort ();
5161
5162 return gen_rtx_CONST_VECTOR (mode, v);
5163 }
5164
5165 static void
5166 reloc_diagnostic (rtx x)
5167 {
5168 tree decl = 0;
5169 if (!flag_pic || !(TARGET_WARN_RELOC || TARGET_ERROR_RELOC))
5170 return;
5171
5172 if (GET_CODE (x) == SYMBOL_REF)
5173 decl = SYMBOL_REF_DECL (x);
5174 else if (GET_CODE (x) == CONST
5175 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF)
5176 decl = SYMBOL_REF_DECL (XEXP (XEXP (x, 0), 0));
5177
5178 /* SYMBOL_REF_DECL is not necessarily a DECL. */
5179 if (decl && !DECL_P (decl))
5180 decl = 0;
5181
5182 /* The decl could be a string constant. */
5183 if (decl && DECL_P (decl))
5184 {
5185 location_t loc;
5186 /* We use last_assemble_variable_decl to get line information. It's
5187 not always going to be right and might not even be close, but will
5188 be right for the more common cases. */
5189 if (!last_assemble_variable_decl || in_section == ctors_section)
5190 loc = DECL_SOURCE_LOCATION (decl);
5191 else
5192 loc = DECL_SOURCE_LOCATION (last_assemble_variable_decl);
5193
5194 if (TARGET_WARN_RELOC)
5195 warning_at (loc, 0,
5196 "creating run-time relocation for %qD", decl);
5197 else
5198 error_at (loc,
5199 "creating run-time relocation for %qD", decl);
5200 }
5201 else
5202 {
5203 if (TARGET_WARN_RELOC)
5204 warning_at (input_location, 0, "creating run-time relocation");
5205 else
5206 error_at (input_location, "creating run-time relocation");
5207 }
5208 }
5209
5210 /* Hook into assemble_integer so we can generate an error for run-time
5211 relocations. The SPU ABI disallows them. */
5212 static bool
5213 spu_assemble_integer (rtx x, unsigned int size, int aligned_p)
5214 {
5215 /* By default run-time relocations aren't supported, but we allow them
5216 in case users support it in their own run-time loader. And we provide
5217 a warning for those users that don't. */
5218 if ((GET_CODE (x) == SYMBOL_REF)
5219 || GET_CODE (x) == LABEL_REF || GET_CODE (x) == CONST)
5220 reloc_diagnostic (x);
5221
5222 return default_assemble_integer (x, size, aligned_p);
5223 }
5224
5225 static void
5226 spu_asm_globalize_label (FILE * file, const char *name)
5227 {
5228 fputs ("\t.global\t", file);
5229 assemble_name (file, name);
5230 fputs ("\n", file);
5231 }
5232
5233 static bool
5234 spu_rtx_costs (rtx x, machine_mode mode, int outer_code ATTRIBUTE_UNUSED,
5235 int opno ATTRIBUTE_UNUSED, int *total,
5236 bool speed ATTRIBUTE_UNUSED)
5237 {
5238 int code = GET_CODE (x);
5239 int cost = COSTS_N_INSNS (2);
5240
5241 /* Folding to a CONST_VECTOR will use extra space but there might
5242 be only a small savings in cycles. We'd like to use a CONST_VECTOR
5243 only if it allows us to fold away multiple insns. Changing the cost
5244 of a CONST_VECTOR here (or in CONST_COSTS) doesn't help though
5245 because this cost will only be compared against a single insn.
5246 if (code == CONST_VECTOR)
5247 return spu_legitimate_constant_p (mode, x) ? cost : COSTS_N_INSNS (6);
5248 */
5249
5250 /* Use defaults for float operations. Not accurate but good enough. */
5251 if (mode == DFmode)
5252 {
5253 *total = COSTS_N_INSNS (13);
5254 return true;
5255 }
5256 if (mode == SFmode)
5257 {
5258 *total = COSTS_N_INSNS (6);
5259 return true;
5260 }
5261 switch (code)
5262 {
5263 case CONST_INT:
5264 if (satisfies_constraint_K (x))
5265 *total = 0;
5266 else if (INTVAL (x) >= -0x80000000ll && INTVAL (x) <= 0xffffffffll)
5267 *total = COSTS_N_INSNS (1);
5268 else
5269 *total = COSTS_N_INSNS (3);
5270 return true;
5271
5272 case CONST:
5273 *total = COSTS_N_INSNS (3);
5274 return true;
5275
5276 case LABEL_REF:
5277 case SYMBOL_REF:
5278 *total = COSTS_N_INSNS (0);
5279 return true;
5280
5281 case CONST_DOUBLE:
5282 *total = COSTS_N_INSNS (5);
5283 return true;
5284
5285 case FLOAT_EXTEND:
5286 case FLOAT_TRUNCATE:
5287 case FLOAT:
5288 case UNSIGNED_FLOAT:
5289 case FIX:
5290 case UNSIGNED_FIX:
5291 *total = COSTS_N_INSNS (7);
5292 return true;
5293
5294 case PLUS:
5295 if (mode == TImode)
5296 {
5297 *total = COSTS_N_INSNS (9);
5298 return true;
5299 }
5300 break;
5301
5302 case MULT:
5303 cost =
5304 GET_CODE (XEXP (x, 0)) ==
5305 REG ? COSTS_N_INSNS (12) : COSTS_N_INSNS (7);
5306 if (mode == SImode && GET_CODE (XEXP (x, 0)) == REG)
5307 {
5308 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5309 {
5310 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
5311 cost = COSTS_N_INSNS (14);
5312 if ((val & 0xffff) == 0)
5313 cost = COSTS_N_INSNS (9);
5314 else if (val > 0 && val < 0x10000)
5315 cost = COSTS_N_INSNS (11);
5316 }
5317 }
5318 *total = cost;
5319 return true;
5320 case DIV:
5321 case UDIV:
5322 case MOD:
5323 case UMOD:
5324 *total = COSTS_N_INSNS (20);
5325 return true;
5326 case ROTATE:
5327 case ROTATERT:
5328 case ASHIFT:
5329 case ASHIFTRT:
5330 case LSHIFTRT:
5331 *total = COSTS_N_INSNS (4);
5332 return true;
5333 case UNSPEC:
5334 if (XINT (x, 1) == UNSPEC_CONVERT)
5335 *total = COSTS_N_INSNS (0);
5336 else
5337 *total = COSTS_N_INSNS (4);
5338 return true;
5339 }
5340 /* Scale cost by mode size. Except when initializing (cfun->decl == 0). */
5341 if (GET_MODE_CLASS (mode) == MODE_INT
5342 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (SImode) && cfun && cfun->decl)
5343 cost = cost * (GET_MODE_SIZE (mode) / GET_MODE_SIZE (SImode))
5344 * (GET_MODE_SIZE (mode) / GET_MODE_SIZE (SImode));
5345 *total = cost;
5346 return true;
5347 }
5348
5349 static machine_mode
5350 spu_unwind_word_mode (void)
5351 {
5352 return SImode;
5353 }
5354
5355 /* Decide whether we can make a sibling call to a function. DECL is the
5356 declaration of the function being targeted by the call and EXP is the
5357 CALL_EXPR representing the call. */
5358 static bool
5359 spu_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
5360 {
5361 return decl && !TARGET_LARGE_MEM;
5362 }
5363
5364 /* We need to correctly update the back chain pointer and the Available
5365 Stack Size (which is in the second slot of the sp register.) */
5366 void
5367 spu_allocate_stack (rtx op0, rtx op1)
5368 {
5369 HOST_WIDE_INT v;
5370 rtx chain = gen_reg_rtx (V4SImode);
5371 rtx stack_bot = gen_frame_mem (V4SImode, stack_pointer_rtx);
5372 rtx sp = gen_reg_rtx (V4SImode);
5373 rtx splatted = gen_reg_rtx (V4SImode);
5374 rtx pat = gen_reg_rtx (TImode);
5375
5376 /* copy the back chain so we can save it back again. */
5377 emit_move_insn (chain, stack_bot);
5378
5379 op1 = force_reg (SImode, op1);
5380
5381 v = 0x1020300010203ll;
5382 emit_move_insn (pat, immed_double_const (v, v, TImode));
5383 emit_insn (gen_shufb (splatted, op1, op1, pat));
5384
5385 emit_insn (gen_spu_convert (sp, stack_pointer_rtx));
5386 emit_insn (gen_subv4si3 (sp, sp, splatted));
5387
5388 if (flag_stack_check)
5389 {
5390 rtx avail = gen_reg_rtx(SImode);
5391 rtx result = gen_reg_rtx(SImode);
5392 emit_insn (gen_vec_extractv4si (avail, sp, GEN_INT (1)));
5393 emit_insn (gen_cgt_si(result, avail, GEN_INT (-1)));
5394 emit_insn (gen_spu_heq (result, GEN_INT(0) ));
5395 }
5396
5397 emit_insn (gen_spu_convert (stack_pointer_rtx, sp));
5398
5399 emit_move_insn (stack_bot, chain);
5400
5401 emit_move_insn (op0, virtual_stack_dynamic_rtx);
5402 }
5403
5404 void
5405 spu_restore_stack_nonlocal (rtx op0 ATTRIBUTE_UNUSED, rtx op1)
5406 {
5407 static unsigned char arr[16] =
5408 { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 };
5409 rtx temp = gen_reg_rtx (SImode);
5410 rtx temp2 = gen_reg_rtx (SImode);
5411 rtx temp3 = gen_reg_rtx (V4SImode);
5412 rtx temp4 = gen_reg_rtx (V4SImode);
5413 rtx pat = gen_reg_rtx (TImode);
5414 rtx sp = gen_rtx_REG (V4SImode, STACK_POINTER_REGNUM);
5415
5416 /* Restore the backchain from the first word, sp from the second. */
5417 emit_move_insn (temp2, adjust_address_nv (op1, SImode, 0));
5418 emit_move_insn (temp, adjust_address_nv (op1, SImode, 4));
5419
5420 emit_move_insn (pat, array_to_constant (TImode, arr));
5421
5422 /* Compute Available Stack Size for sp */
5423 emit_insn (gen_subsi3 (temp, temp, stack_pointer_rtx));
5424 emit_insn (gen_shufb (temp3, temp, temp, pat));
5425
5426 /* Compute Available Stack Size for back chain */
5427 emit_insn (gen_subsi3 (temp2, temp2, stack_pointer_rtx));
5428 emit_insn (gen_shufb (temp4, temp2, temp2, pat));
5429 emit_insn (gen_addv4si3 (temp4, sp, temp4));
5430
5431 emit_insn (gen_addv4si3 (sp, sp, temp3));
5432 emit_move_insn (gen_frame_mem (V4SImode, stack_pointer_rtx), temp4);
5433 }
5434
5435 static void
5436 spu_init_libfuncs (void)
5437 {
5438 set_optab_libfunc (smul_optab, DImode, "__muldi3");
5439 set_optab_libfunc (sdiv_optab, DImode, "__divdi3");
5440 set_optab_libfunc (smod_optab, DImode, "__moddi3");
5441 set_optab_libfunc (udiv_optab, DImode, "__udivdi3");
5442 set_optab_libfunc (umod_optab, DImode, "__umoddi3");
5443 set_optab_libfunc (udivmod_optab, DImode, "__udivmoddi4");
5444 set_optab_libfunc (ffs_optab, DImode, "__ffsdi2");
5445 set_optab_libfunc (clz_optab, DImode, "__clzdi2");
5446 set_optab_libfunc (ctz_optab, DImode, "__ctzdi2");
5447 set_optab_libfunc (clrsb_optab, DImode, "__clrsbdi2");
5448 set_optab_libfunc (popcount_optab, DImode, "__popcountdi2");
5449 set_optab_libfunc (parity_optab, DImode, "__paritydi2");
5450
5451 set_conv_libfunc (ufloat_optab, DFmode, SImode, "__float_unssidf");
5452 set_conv_libfunc (ufloat_optab, DFmode, DImode, "__float_unsdidf");
5453
5454 set_optab_libfunc (addv_optab, SImode, "__addvsi3");
5455 set_optab_libfunc (subv_optab, SImode, "__subvsi3");
5456 set_optab_libfunc (smulv_optab, SImode, "__mulvsi3");
5457 set_optab_libfunc (sdivv_optab, SImode, "__divvsi3");
5458 set_optab_libfunc (negv_optab, SImode, "__negvsi2");
5459 set_optab_libfunc (absv_optab, SImode, "__absvsi2");
5460 set_optab_libfunc (addv_optab, DImode, "__addvdi3");
5461 set_optab_libfunc (subv_optab, DImode, "__subvdi3");
5462 set_optab_libfunc (smulv_optab, DImode, "__mulvdi3");
5463 set_optab_libfunc (sdivv_optab, DImode, "__divvdi3");
5464 set_optab_libfunc (negv_optab, DImode, "__negvdi2");
5465 set_optab_libfunc (absv_optab, DImode, "__absvdi2");
5466
5467 set_optab_libfunc (smul_optab, TImode, "__multi3");
5468 set_optab_libfunc (sdiv_optab, TImode, "__divti3");
5469 set_optab_libfunc (smod_optab, TImode, "__modti3");
5470 set_optab_libfunc (udiv_optab, TImode, "__udivti3");
5471 set_optab_libfunc (umod_optab, TImode, "__umodti3");
5472 set_optab_libfunc (udivmod_optab, TImode, "__udivmodti4");
5473 }
5474
5475 /* Make a subreg, stripping any existing subreg. We could possibly just
5476 call simplify_subreg, but in this case we know what we want. */
5477 rtx
5478 spu_gen_subreg (machine_mode mode, rtx x)
5479 {
5480 if (GET_CODE (x) == SUBREG)
5481 x = SUBREG_REG (x);
5482 if (GET_MODE (x) == mode)
5483 return x;
5484 return gen_rtx_SUBREG (mode, x, 0);
5485 }
5486
5487 static bool
5488 spu_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5489 {
5490 return (TYPE_MODE (type) == BLKmode
5491 && ((type) == 0
5492 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
5493 || int_size_in_bytes (type) >
5494 (MAX_REGISTER_RETURN * UNITS_PER_WORD)));
5495 }
5496 \f
5497 /* Create the built-in types and functions */
5498
5499 enum spu_function_code
5500 {
5501 #define DEF_BUILTIN(fcode, icode, name, type, params) fcode,
5502 #include "spu-builtins.def"
5503 #undef DEF_BUILTIN
5504 NUM_SPU_BUILTINS
5505 };
5506
5507 extern GTY(()) struct spu_builtin_description spu_builtins[NUM_SPU_BUILTINS];
5508
5509 struct spu_builtin_description spu_builtins[] = {
5510 #define DEF_BUILTIN(fcode, icode, name, type, params) \
5511 {fcode, icode, name, type, params},
5512 #include "spu-builtins.def"
5513 #undef DEF_BUILTIN
5514 };
5515
5516 static GTY(()) tree spu_builtin_decls[NUM_SPU_BUILTINS];
5517
5518 /* Returns the spu builtin decl for CODE. */
5519
5520 static tree
5521 spu_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
5522 {
5523 if (code >= NUM_SPU_BUILTINS)
5524 return error_mark_node;
5525
5526 return spu_builtin_decls[code];
5527 }
5528
5529
5530 static void
5531 spu_init_builtins (void)
5532 {
5533 struct spu_builtin_description *d;
5534 unsigned int i;
5535
5536 V16QI_type_node = build_vector_type (intQI_type_node, 16);
5537 V8HI_type_node = build_vector_type (intHI_type_node, 8);
5538 V4SI_type_node = build_vector_type (intSI_type_node, 4);
5539 V2DI_type_node = build_vector_type (intDI_type_node, 2);
5540 V4SF_type_node = build_vector_type (float_type_node, 4);
5541 V2DF_type_node = build_vector_type (double_type_node, 2);
5542
5543 unsigned_V16QI_type_node = build_vector_type (unsigned_intQI_type_node, 16);
5544 unsigned_V8HI_type_node = build_vector_type (unsigned_intHI_type_node, 8);
5545 unsigned_V4SI_type_node = build_vector_type (unsigned_intSI_type_node, 4);
5546 unsigned_V2DI_type_node = build_vector_type (unsigned_intDI_type_node, 2);
5547
5548 spu_builtin_types[SPU_BTI_QUADWORD] = V16QI_type_node;
5549
5550 spu_builtin_types[SPU_BTI_7] = global_trees[TI_INTSI_TYPE];
5551 spu_builtin_types[SPU_BTI_S7] = global_trees[TI_INTSI_TYPE];
5552 spu_builtin_types[SPU_BTI_U7] = global_trees[TI_INTSI_TYPE];
5553 spu_builtin_types[SPU_BTI_S10] = global_trees[TI_INTSI_TYPE];
5554 spu_builtin_types[SPU_BTI_S10_4] = global_trees[TI_INTSI_TYPE];
5555 spu_builtin_types[SPU_BTI_U14] = global_trees[TI_INTSI_TYPE];
5556 spu_builtin_types[SPU_BTI_16] = global_trees[TI_INTSI_TYPE];
5557 spu_builtin_types[SPU_BTI_S16] = global_trees[TI_INTSI_TYPE];
5558 spu_builtin_types[SPU_BTI_S16_2] = global_trees[TI_INTSI_TYPE];
5559 spu_builtin_types[SPU_BTI_U16] = global_trees[TI_INTSI_TYPE];
5560 spu_builtin_types[SPU_BTI_U16_2] = global_trees[TI_INTSI_TYPE];
5561 spu_builtin_types[SPU_BTI_U18] = global_trees[TI_INTSI_TYPE];
5562
5563 spu_builtin_types[SPU_BTI_INTQI] = global_trees[TI_INTQI_TYPE];
5564 spu_builtin_types[SPU_BTI_INTHI] = global_trees[TI_INTHI_TYPE];
5565 spu_builtin_types[SPU_BTI_INTSI] = global_trees[TI_INTSI_TYPE];
5566 spu_builtin_types[SPU_BTI_INTDI] = global_trees[TI_INTDI_TYPE];
5567 spu_builtin_types[SPU_BTI_UINTQI] = global_trees[TI_UINTQI_TYPE];
5568 spu_builtin_types[SPU_BTI_UINTHI] = global_trees[TI_UINTHI_TYPE];
5569 spu_builtin_types[SPU_BTI_UINTSI] = global_trees[TI_UINTSI_TYPE];
5570 spu_builtin_types[SPU_BTI_UINTDI] = global_trees[TI_UINTDI_TYPE];
5571
5572 spu_builtin_types[SPU_BTI_FLOAT] = global_trees[TI_FLOAT_TYPE];
5573 spu_builtin_types[SPU_BTI_DOUBLE] = global_trees[TI_DOUBLE_TYPE];
5574
5575 spu_builtin_types[SPU_BTI_VOID] = global_trees[TI_VOID_TYPE];
5576
5577 spu_builtin_types[SPU_BTI_PTR] =
5578 build_pointer_type (build_qualified_type
5579 (void_type_node,
5580 TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE));
5581
5582 /* For each builtin we build a new prototype. The tree code will make
5583 sure nodes are shared. */
5584 for (i = 0, d = spu_builtins; i < NUM_SPU_BUILTINS; i++, d++)
5585 {
5586 tree p;
5587 char name[64]; /* build_function will make a copy. */
5588 int parm;
5589
5590 if (d->name == 0)
5591 continue;
5592
5593 /* Find last parm. */
5594 for (parm = 1; d->parm[parm] != SPU_BTI_END_OF_PARAMS; parm++)
5595 ;
5596
5597 p = void_list_node;
5598 while (parm > 1)
5599 p = tree_cons (NULL_TREE, spu_builtin_types[d->parm[--parm]], p);
5600
5601 p = build_function_type (spu_builtin_types[d->parm[0]], p);
5602
5603 sprintf (name, "__builtin_%s", d->name);
5604 spu_builtin_decls[i] =
5605 add_builtin_function (name, p, i, BUILT_IN_MD, NULL, NULL_TREE);
5606 if (d->fcode == SPU_MASK_FOR_LOAD)
5607 TREE_READONLY (spu_builtin_decls[i]) = 1;
5608
5609 /* These builtins don't throw. */
5610 TREE_NOTHROW (spu_builtin_decls[i]) = 1;
5611 }
5612 }
5613
5614 void
5615 spu_restore_stack_block (rtx op0 ATTRIBUTE_UNUSED, rtx op1)
5616 {
5617 static unsigned char arr[16] =
5618 { 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 };
5619
5620 rtx temp = gen_reg_rtx (Pmode);
5621 rtx temp2 = gen_reg_rtx (V4SImode);
5622 rtx temp3 = gen_reg_rtx (V4SImode);
5623 rtx pat = gen_reg_rtx (TImode);
5624 rtx sp = gen_rtx_REG (V4SImode, STACK_POINTER_REGNUM);
5625
5626 emit_move_insn (pat, array_to_constant (TImode, arr));
5627
5628 /* Restore the sp. */
5629 emit_move_insn (temp, op1);
5630 emit_move_insn (temp2, gen_frame_mem (V4SImode, stack_pointer_rtx));
5631
5632 /* Compute available stack size for sp. */
5633 emit_insn (gen_subsi3 (temp, temp, stack_pointer_rtx));
5634 emit_insn (gen_shufb (temp3, temp, temp, pat));
5635
5636 emit_insn (gen_addv4si3 (sp, sp, temp3));
5637 emit_move_insn (gen_frame_mem (V4SImode, stack_pointer_rtx), temp2);
5638 }
5639
5640 int
5641 spu_safe_dma (HOST_WIDE_INT channel)
5642 {
5643 return TARGET_SAFE_DMA && channel >= 21 && channel <= 27;
5644 }
5645
5646 void
5647 spu_builtin_splats (rtx ops[])
5648 {
5649 machine_mode mode = GET_MODE (ops[0]);
5650 if (GET_CODE (ops[1]) == CONST_INT || GET_CODE (ops[1]) == CONST_DOUBLE)
5651 {
5652 unsigned char arr[16];
5653 constant_to_array (GET_MODE_INNER (mode), ops[1], arr);
5654 emit_move_insn (ops[0], array_to_constant (mode, arr));
5655 }
5656 else
5657 {
5658 rtx reg = gen_reg_rtx (TImode);
5659 rtx shuf;
5660 if (GET_CODE (ops[1]) != REG
5661 && GET_CODE (ops[1]) != SUBREG)
5662 ops[1] = force_reg (GET_MODE_INNER (mode), ops[1]);
5663 switch (mode)
5664 {
5665 case V2DImode:
5666 case V2DFmode:
5667 shuf =
5668 immed_double_const (0x0001020304050607ll, 0x1011121314151617ll,
5669 TImode);
5670 break;
5671 case V4SImode:
5672 case V4SFmode:
5673 shuf =
5674 immed_double_const (0x0001020300010203ll, 0x0001020300010203ll,
5675 TImode);
5676 break;
5677 case V8HImode:
5678 shuf =
5679 immed_double_const (0x0203020302030203ll, 0x0203020302030203ll,
5680 TImode);
5681 break;
5682 case V16QImode:
5683 shuf =
5684 immed_double_const (0x0303030303030303ll, 0x0303030303030303ll,
5685 TImode);
5686 break;
5687 default:
5688 abort ();
5689 }
5690 emit_move_insn (reg, shuf);
5691 emit_insn (gen_shufb (ops[0], ops[1], ops[1], reg));
5692 }
5693 }
5694
5695 void
5696 spu_builtin_extract (rtx ops[])
5697 {
5698 machine_mode mode;
5699 rtx rot, from, tmp;
5700
5701 mode = GET_MODE (ops[1]);
5702
5703 if (GET_CODE (ops[2]) == CONST_INT)
5704 {
5705 switch (mode)
5706 {
5707 case V16QImode:
5708 emit_insn (gen_vec_extractv16qi (ops[0], ops[1], ops[2]));
5709 break;
5710 case V8HImode:
5711 emit_insn (gen_vec_extractv8hi (ops[0], ops[1], ops[2]));
5712 break;
5713 case V4SFmode:
5714 emit_insn (gen_vec_extractv4sf (ops[0], ops[1], ops[2]));
5715 break;
5716 case V4SImode:
5717 emit_insn (gen_vec_extractv4si (ops[0], ops[1], ops[2]));
5718 break;
5719 case V2DImode:
5720 emit_insn (gen_vec_extractv2di (ops[0], ops[1], ops[2]));
5721 break;
5722 case V2DFmode:
5723 emit_insn (gen_vec_extractv2df (ops[0], ops[1], ops[2]));
5724 break;
5725 default:
5726 abort ();
5727 }
5728 return;
5729 }
5730
5731 from = spu_gen_subreg (TImode, ops[1]);
5732 rot = gen_reg_rtx (TImode);
5733 tmp = gen_reg_rtx (SImode);
5734
5735 switch (mode)
5736 {
5737 case V16QImode:
5738 emit_insn (gen_addsi3 (tmp, ops[2], GEN_INT (-3)));
5739 break;
5740 case V8HImode:
5741 emit_insn (gen_addsi3 (tmp, ops[2], ops[2]));
5742 emit_insn (gen_addsi3 (tmp, tmp, GEN_INT (-2)));
5743 break;
5744 case V4SFmode:
5745 case V4SImode:
5746 emit_insn (gen_ashlsi3 (tmp, ops[2], GEN_INT (2)));
5747 break;
5748 case V2DImode:
5749 case V2DFmode:
5750 emit_insn (gen_ashlsi3 (tmp, ops[2], GEN_INT (3)));
5751 break;
5752 default:
5753 abort ();
5754 }
5755 emit_insn (gen_rotqby_ti (rot, from, tmp));
5756
5757 emit_insn (gen_spu_convert (ops[0], rot));
5758 }
5759
5760 void
5761 spu_builtin_insert (rtx ops[])
5762 {
5763 machine_mode mode = GET_MODE (ops[0]);
5764 machine_mode imode = GET_MODE_INNER (mode);
5765 rtx mask = gen_reg_rtx (TImode);
5766 rtx offset;
5767
5768 if (GET_CODE (ops[3]) == CONST_INT)
5769 offset = GEN_INT (INTVAL (ops[3]) * GET_MODE_SIZE (imode));
5770 else
5771 {
5772 offset = gen_reg_rtx (SImode);
5773 emit_insn (gen_mulsi3
5774 (offset, ops[3], GEN_INT (GET_MODE_SIZE (imode))));
5775 }
5776 emit_insn (gen_cpat
5777 (mask, stack_pointer_rtx, offset,
5778 GEN_INT (GET_MODE_SIZE (imode))));
5779 emit_insn (gen_shufb (ops[0], ops[1], ops[2], mask));
5780 }
5781
5782 void
5783 spu_builtin_promote (rtx ops[])
5784 {
5785 machine_mode mode, imode;
5786 rtx rot, from, offset;
5787 HOST_WIDE_INT pos;
5788
5789 mode = GET_MODE (ops[0]);
5790 imode = GET_MODE_INNER (mode);
5791
5792 from = gen_reg_rtx (TImode);
5793 rot = spu_gen_subreg (TImode, ops[0]);
5794
5795 emit_insn (gen_spu_convert (from, ops[1]));
5796
5797 if (GET_CODE (ops[2]) == CONST_INT)
5798 {
5799 pos = -GET_MODE_SIZE (imode) * INTVAL (ops[2]);
5800 if (GET_MODE_SIZE (imode) < 4)
5801 pos += 4 - GET_MODE_SIZE (imode);
5802 offset = GEN_INT (pos & 15);
5803 }
5804 else
5805 {
5806 offset = gen_reg_rtx (SImode);
5807 switch (mode)
5808 {
5809 case V16QImode:
5810 emit_insn (gen_subsi3 (offset, GEN_INT (3), ops[2]));
5811 break;
5812 case V8HImode:
5813 emit_insn (gen_subsi3 (offset, GEN_INT (1), ops[2]));
5814 emit_insn (gen_addsi3 (offset, offset, offset));
5815 break;
5816 case V4SFmode:
5817 case V4SImode:
5818 emit_insn (gen_subsi3 (offset, GEN_INT (0), ops[2]));
5819 emit_insn (gen_ashlsi3 (offset, offset, GEN_INT (2)));
5820 break;
5821 case V2DImode:
5822 case V2DFmode:
5823 emit_insn (gen_ashlsi3 (offset, ops[2], GEN_INT (3)));
5824 break;
5825 default:
5826 abort ();
5827 }
5828 }
5829 emit_insn (gen_rotqby_ti (rot, from, offset));
5830 }
5831
5832 static void
5833 spu_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
5834 {
5835 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
5836 rtx shuf = gen_reg_rtx (V4SImode);
5837 rtx insn = gen_reg_rtx (V4SImode);
5838 rtx shufc;
5839 rtx insnc;
5840 rtx mem;
5841
5842 fnaddr = force_reg (SImode, fnaddr);
5843 cxt = force_reg (SImode, cxt);
5844
5845 if (TARGET_LARGE_MEM)
5846 {
5847 rtx rotl = gen_reg_rtx (V4SImode);
5848 rtx mask = gen_reg_rtx (V4SImode);
5849 rtx bi = gen_reg_rtx (SImode);
5850 static unsigned char const shufa[16] = {
5851 2, 3, 0, 1, 18, 19, 16, 17,
5852 0, 1, 2, 3, 16, 17, 18, 19
5853 };
5854 static unsigned char const insna[16] = {
5855 0x41, 0, 0, 79,
5856 0x41, 0, 0, STATIC_CHAIN_REGNUM,
5857 0x60, 0x80, 0, 79,
5858 0x60, 0x80, 0, STATIC_CHAIN_REGNUM
5859 };
5860
5861 shufc = force_reg (TImode, array_to_constant (TImode, shufa));
5862 insnc = force_reg (V4SImode, array_to_constant (V4SImode, insna));
5863
5864 emit_insn (gen_shufb (shuf, fnaddr, cxt, shufc));
5865 emit_insn (gen_vrotlv4si3 (rotl, shuf, spu_const (V4SImode, 7)));
5866 emit_insn (gen_movv4si (mask, spu_const (V4SImode, 0xffff << 7)));
5867 emit_insn (gen_selb (insn, insnc, rotl, mask));
5868
5869 mem = adjust_address (m_tramp, V4SImode, 0);
5870 emit_move_insn (mem, insn);
5871
5872 emit_move_insn (bi, GEN_INT (0x35000000 + (79 << 7)));
5873 mem = adjust_address (m_tramp, Pmode, 16);
5874 emit_move_insn (mem, bi);
5875 }
5876 else
5877 {
5878 rtx scxt = gen_reg_rtx (SImode);
5879 rtx sfnaddr = gen_reg_rtx (SImode);
5880 static unsigned char const insna[16] = {
5881 0x42, 0, 0, STATIC_CHAIN_REGNUM,
5882 0x30, 0, 0, 0,
5883 0, 0, 0, 0,
5884 0, 0, 0, 0
5885 };
5886
5887 shufc = gen_reg_rtx (TImode);
5888 insnc = force_reg (V4SImode, array_to_constant (V4SImode, insna));
5889
5890 /* By or'ing all of cxt with the ila opcode we are assuming cxt
5891 fits 18 bits and the last 4 are zeros. This will be true if
5892 the stack pointer is initialized to 0x3fff0 at program start,
5893 otherwise the ila instruction will be garbage. */
5894
5895 emit_insn (gen_ashlsi3 (scxt, cxt, GEN_INT (7)));
5896 emit_insn (gen_ashlsi3 (sfnaddr, fnaddr, GEN_INT (5)));
5897 emit_insn (gen_cpat
5898 (shufc, stack_pointer_rtx, GEN_INT (4), GEN_INT (4)));
5899 emit_insn (gen_shufb (shuf, sfnaddr, scxt, shufc));
5900 emit_insn (gen_iorv4si3 (insn, insnc, shuf));
5901
5902 mem = adjust_address (m_tramp, V4SImode, 0);
5903 emit_move_insn (mem, insn);
5904 }
5905 emit_insn (gen_sync ());
5906 }
5907
5908 static bool
5909 spu_warn_func_return (tree decl)
5910 {
5911 /* Naked functions are implemented entirely in assembly, including the
5912 return sequence, so suppress warnings about this. */
5913 return !spu_naked_function_p (decl);
5914 }
5915
5916 void
5917 spu_expand_sign_extend (rtx ops[])
5918 {
5919 unsigned char arr[16];
5920 rtx pat = gen_reg_rtx (TImode);
5921 rtx sign, c;
5922 int i, last;
5923 last = GET_MODE (ops[0]) == DImode ? 7 : 15;
5924 if (GET_MODE (ops[1]) == QImode)
5925 {
5926 sign = gen_reg_rtx (HImode);
5927 emit_insn (gen_extendqihi2 (sign, ops[1]));
5928 for (i = 0; i < 16; i++)
5929 arr[i] = 0x12;
5930 arr[last] = 0x13;
5931 }
5932 else
5933 {
5934 for (i = 0; i < 16; i++)
5935 arr[i] = 0x10;
5936 switch (GET_MODE (ops[1]))
5937 {
5938 case HImode:
5939 sign = gen_reg_rtx (SImode);
5940 emit_insn (gen_extendhisi2 (sign, ops[1]));
5941 arr[last] = 0x03;
5942 arr[last - 1] = 0x02;
5943 break;
5944 case SImode:
5945 sign = gen_reg_rtx (SImode);
5946 emit_insn (gen_ashrsi3 (sign, ops[1], GEN_INT (31)));
5947 for (i = 0; i < 4; i++)
5948 arr[last - i] = 3 - i;
5949 break;
5950 case DImode:
5951 sign = gen_reg_rtx (SImode);
5952 c = gen_reg_rtx (SImode);
5953 emit_insn (gen_spu_convert (c, ops[1]));
5954 emit_insn (gen_ashrsi3 (sign, c, GEN_INT (31)));
5955 for (i = 0; i < 8; i++)
5956 arr[last - i] = 7 - i;
5957 break;
5958 default:
5959 abort ();
5960 }
5961 }
5962 emit_move_insn (pat, array_to_constant (TImode, arr));
5963 emit_insn (gen_shufb (ops[0], ops[1], sign, pat));
5964 }
5965
5966 /* expand vector initialization. If there are any constant parts,
5967 load constant parts first. Then load any non-constant parts. */
5968 void
5969 spu_expand_vector_init (rtx target, rtx vals)
5970 {
5971 machine_mode mode = GET_MODE (target);
5972 int n_elts = GET_MODE_NUNITS (mode);
5973 int n_var = 0;
5974 bool all_same = true;
5975 rtx first, x = NULL_RTX, first_constant = NULL_RTX;
5976 int i;
5977
5978 first = XVECEXP (vals, 0, 0);
5979 for (i = 0; i < n_elts; ++i)
5980 {
5981 x = XVECEXP (vals, 0, i);
5982 if (!(CONST_INT_P (x)
5983 || GET_CODE (x) == CONST_DOUBLE
5984 || GET_CODE (x) == CONST_FIXED))
5985 ++n_var;
5986 else
5987 {
5988 if (first_constant == NULL_RTX)
5989 first_constant = x;
5990 }
5991 if (i > 0 && !rtx_equal_p (x, first))
5992 all_same = false;
5993 }
5994
5995 /* if all elements are the same, use splats to repeat elements */
5996 if (all_same)
5997 {
5998 if (!CONSTANT_P (first)
5999 && !register_operand (first, GET_MODE (x)))
6000 first = force_reg (GET_MODE (first), first);
6001 emit_insn (gen_spu_splats (target, first));
6002 return;
6003 }
6004
6005 /* load constant parts */
6006 if (n_var != n_elts)
6007 {
6008 if (n_var == 0)
6009 {
6010 emit_move_insn (target,
6011 gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)));
6012 }
6013 else
6014 {
6015 rtx constant_parts_rtx = copy_rtx (vals);
6016
6017 gcc_assert (first_constant != NULL_RTX);
6018 /* fill empty slots with the first constant, this increases
6019 our chance of using splats in the recursive call below. */
6020 for (i = 0; i < n_elts; ++i)
6021 {
6022 x = XVECEXP (constant_parts_rtx, 0, i);
6023 if (!(CONST_INT_P (x)
6024 || GET_CODE (x) == CONST_DOUBLE
6025 || GET_CODE (x) == CONST_FIXED))
6026 XVECEXP (constant_parts_rtx, 0, i) = first_constant;
6027 }
6028
6029 spu_expand_vector_init (target, constant_parts_rtx);
6030 }
6031 }
6032
6033 /* load variable parts */
6034 if (n_var != 0)
6035 {
6036 rtx insert_operands[4];
6037
6038 insert_operands[0] = target;
6039 insert_operands[2] = target;
6040 for (i = 0; i < n_elts; ++i)
6041 {
6042 x = XVECEXP (vals, 0, i);
6043 if (!(CONST_INT_P (x)
6044 || GET_CODE (x) == CONST_DOUBLE
6045 || GET_CODE (x) == CONST_FIXED))
6046 {
6047 if (!register_operand (x, GET_MODE (x)))
6048 x = force_reg (GET_MODE (x), x);
6049 insert_operands[1] = x;
6050 insert_operands[3] = GEN_INT (i);
6051 spu_builtin_insert (insert_operands);
6052 }
6053 }
6054 }
6055 }
6056
6057 /* Return insn index for the vector compare instruction for given CODE,
6058 and DEST_MODE, OP_MODE. Return -1 if valid insn is not available. */
6059
6060 static int
6061 get_vec_cmp_insn (enum rtx_code code,
6062 machine_mode dest_mode,
6063 machine_mode op_mode)
6064
6065 {
6066 switch (code)
6067 {
6068 case EQ:
6069 if (dest_mode == V16QImode && op_mode == V16QImode)
6070 return CODE_FOR_ceq_v16qi;
6071 if (dest_mode == V8HImode && op_mode == V8HImode)
6072 return CODE_FOR_ceq_v8hi;
6073 if (dest_mode == V4SImode && op_mode == V4SImode)
6074 return CODE_FOR_ceq_v4si;
6075 if (dest_mode == V4SImode && op_mode == V4SFmode)
6076 return CODE_FOR_ceq_v4sf;
6077 if (dest_mode == V2DImode && op_mode == V2DFmode)
6078 return CODE_FOR_ceq_v2df;
6079 break;
6080 case GT:
6081 if (dest_mode == V16QImode && op_mode == V16QImode)
6082 return CODE_FOR_cgt_v16qi;
6083 if (dest_mode == V8HImode && op_mode == V8HImode)
6084 return CODE_FOR_cgt_v8hi;
6085 if (dest_mode == V4SImode && op_mode == V4SImode)
6086 return CODE_FOR_cgt_v4si;
6087 if (dest_mode == V4SImode && op_mode == V4SFmode)
6088 return CODE_FOR_cgt_v4sf;
6089 if (dest_mode == V2DImode && op_mode == V2DFmode)
6090 return CODE_FOR_cgt_v2df;
6091 break;
6092 case GTU:
6093 if (dest_mode == V16QImode && op_mode == V16QImode)
6094 return CODE_FOR_clgt_v16qi;
6095 if (dest_mode == V8HImode && op_mode == V8HImode)
6096 return CODE_FOR_clgt_v8hi;
6097 if (dest_mode == V4SImode && op_mode == V4SImode)
6098 return CODE_FOR_clgt_v4si;
6099 break;
6100 default:
6101 break;
6102 }
6103 return -1;
6104 }
6105
6106 /* Emit vector compare for operands OP0 and OP1 using code RCODE.
6107 DMODE is expected destination mode. This is a recursive function. */
6108
6109 static rtx
6110 spu_emit_vector_compare (enum rtx_code rcode,
6111 rtx op0, rtx op1,
6112 machine_mode dmode)
6113 {
6114 int vec_cmp_insn;
6115 rtx mask;
6116 machine_mode dest_mode;
6117 machine_mode op_mode = GET_MODE (op1);
6118
6119 gcc_assert (GET_MODE (op0) == GET_MODE (op1));
6120
6121 /* Floating point vector compare instructions uses destination V4SImode.
6122 Double floating point vector compare instructions uses destination V2DImode.
6123 Move destination to appropriate mode later. */
6124 if (dmode == V4SFmode)
6125 dest_mode = V4SImode;
6126 else if (dmode == V2DFmode)
6127 dest_mode = V2DImode;
6128 else
6129 dest_mode = dmode;
6130
6131 mask = gen_reg_rtx (dest_mode);
6132 vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);
6133
6134 if (vec_cmp_insn == -1)
6135 {
6136 bool swap_operands = false;
6137 bool try_again = false;
6138 switch (rcode)
6139 {
6140 case LT:
6141 rcode = GT;
6142 swap_operands = true;
6143 try_again = true;
6144 break;
6145 case LTU:
6146 rcode = GTU;
6147 swap_operands = true;
6148 try_again = true;
6149 break;
6150 case NE:
6151 case UNEQ:
6152 case UNLE:
6153 case UNLT:
6154 case UNGE:
6155 case UNGT:
6156 case UNORDERED:
6157 /* Treat A != B as ~(A==B). */
6158 {
6159 enum rtx_code rev_code;
6160 enum insn_code nor_code;
6161 rtx rev_mask;
6162
6163 rev_code = reverse_condition_maybe_unordered (rcode);
6164 rev_mask = spu_emit_vector_compare (rev_code, op0, op1, dest_mode);
6165
6166 nor_code = optab_handler (one_cmpl_optab, dest_mode);
6167 gcc_assert (nor_code != CODE_FOR_nothing);
6168 emit_insn (GEN_FCN (nor_code) (mask, rev_mask));
6169 if (dmode != dest_mode)
6170 {
6171 rtx temp = gen_reg_rtx (dest_mode);
6172 convert_move (temp, mask, 0);
6173 return temp;
6174 }
6175 return mask;
6176 }
6177 break;
6178 case GE:
6179 case GEU:
6180 case LE:
6181 case LEU:
6182 /* Try GT/GTU/LT/LTU OR EQ */
6183 {
6184 rtx c_rtx, eq_rtx;
6185 enum insn_code ior_code;
6186 enum rtx_code new_code;
6187
6188 switch (rcode)
6189 {
6190 case GE: new_code = GT; break;
6191 case GEU: new_code = GTU; break;
6192 case LE: new_code = LT; break;
6193 case LEU: new_code = LTU; break;
6194 default:
6195 gcc_unreachable ();
6196 }
6197
6198 c_rtx = spu_emit_vector_compare (new_code, op0, op1, dest_mode);
6199 eq_rtx = spu_emit_vector_compare (EQ, op0, op1, dest_mode);
6200
6201 ior_code = optab_handler (ior_optab, dest_mode);
6202 gcc_assert (ior_code != CODE_FOR_nothing);
6203 emit_insn (GEN_FCN (ior_code) (mask, c_rtx, eq_rtx));
6204 if (dmode != dest_mode)
6205 {
6206 rtx temp = gen_reg_rtx (dest_mode);
6207 convert_move (temp, mask, 0);
6208 return temp;
6209 }
6210 return mask;
6211 }
6212 break;
6213 case LTGT:
6214 /* Try LT OR GT */
6215 {
6216 rtx lt_rtx, gt_rtx;
6217 enum insn_code ior_code;
6218
6219 lt_rtx = spu_emit_vector_compare (LT, op0, op1, dest_mode);
6220 gt_rtx = spu_emit_vector_compare (GT, op0, op1, dest_mode);
6221
6222 ior_code = optab_handler (ior_optab, dest_mode);
6223 gcc_assert (ior_code != CODE_FOR_nothing);
6224 emit_insn (GEN_FCN (ior_code) (mask, lt_rtx, gt_rtx));
6225 if (dmode != dest_mode)
6226 {
6227 rtx temp = gen_reg_rtx (dest_mode);
6228 convert_move (temp, mask, 0);
6229 return temp;
6230 }
6231 return mask;
6232 }
6233 break;
6234 case ORDERED:
6235 /* Implement as (A==A) & (B==B) */
6236 {
6237 rtx a_rtx, b_rtx;
6238 enum insn_code and_code;
6239
6240 a_rtx = spu_emit_vector_compare (EQ, op0, op0, dest_mode);
6241 b_rtx = spu_emit_vector_compare (EQ, op1, op1, dest_mode);
6242
6243 and_code = optab_handler (and_optab, dest_mode);
6244 gcc_assert (and_code != CODE_FOR_nothing);
6245 emit_insn (GEN_FCN (and_code) (mask, a_rtx, b_rtx));
6246 if (dmode != dest_mode)
6247 {
6248 rtx temp = gen_reg_rtx (dest_mode);
6249 convert_move (temp, mask, 0);
6250 return temp;
6251 }
6252 return mask;
6253 }
6254 break;
6255 default:
6256 gcc_unreachable ();
6257 }
6258
6259 /* You only get two chances. */
6260 if (try_again)
6261 vec_cmp_insn = get_vec_cmp_insn (rcode, dest_mode, op_mode);
6262
6263 gcc_assert (vec_cmp_insn != -1);
6264
6265 if (swap_operands)
6266 {
6267 rtx tmp;
6268 tmp = op0;
6269 op0 = op1;
6270 op1 = tmp;
6271 }
6272 }
6273
6274 emit_insn (GEN_FCN (vec_cmp_insn) (mask, op0, op1));
6275 if (dmode != dest_mode)
6276 {
6277 rtx temp = gen_reg_rtx (dest_mode);
6278 convert_move (temp, mask, 0);
6279 return temp;
6280 }
6281 return mask;
6282 }
6283
6284
6285 /* Emit vector conditional expression.
6286 DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
6287 CC_OP0 and CC_OP1 are the two operands for the relation operation COND. */
6288
6289 int
6290 spu_emit_vector_cond_expr (rtx dest, rtx op1, rtx op2,
6291 rtx cond, rtx cc_op0, rtx cc_op1)
6292 {
6293 machine_mode dest_mode = GET_MODE (dest);
6294 enum rtx_code rcode = GET_CODE (cond);
6295 rtx mask;
6296
6297 /* Get the vector mask for the given relational operations. */
6298 mask = spu_emit_vector_compare (rcode, cc_op0, cc_op1, dest_mode);
6299
6300 emit_insn(gen_selb (dest, op2, op1, mask));
6301
6302 return 1;
6303 }
6304
6305 static rtx
6306 spu_force_reg (machine_mode mode, rtx op)
6307 {
6308 rtx x, r;
6309 if (GET_MODE (op) == VOIDmode || GET_MODE (op) == BLKmode)
6310 {
6311 if ((SCALAR_INT_MODE_P (mode) && GET_CODE (op) == CONST_INT)
6312 || GET_MODE (op) == BLKmode)
6313 return force_reg (mode, convert_to_mode (mode, op, 0));
6314 abort ();
6315 }
6316
6317 r = force_reg (GET_MODE (op), op);
6318 if (GET_MODE_SIZE (GET_MODE (op)) == GET_MODE_SIZE (mode))
6319 {
6320 x = simplify_gen_subreg (mode, r, GET_MODE (op), 0);
6321 if (x)
6322 return x;
6323 }
6324
6325 x = gen_reg_rtx (mode);
6326 emit_insn (gen_spu_convert (x, r));
6327 return x;
6328 }
6329
6330 static void
6331 spu_check_builtin_parm (struct spu_builtin_description *d, rtx op, int p)
6332 {
6333 HOST_WIDE_INT v = 0;
6334 int lsbits;
6335 /* Check the range of immediate operands. */
6336 if (p >= SPU_BTI_7 && p <= SPU_BTI_U18)
6337 {
6338 int range = p - SPU_BTI_7;
6339
6340 if (!CONSTANT_P (op))
6341 error ("%s expects an integer literal in the range [%d, %d]",
6342 d->name,
6343 spu_builtin_range[range].low, spu_builtin_range[range].high);
6344
6345 if (GET_CODE (op) == CONST
6346 && (GET_CODE (XEXP (op, 0)) == PLUS
6347 || GET_CODE (XEXP (op, 0)) == MINUS))
6348 {
6349 v = INTVAL (XEXP (XEXP (op, 0), 1));
6350 op = XEXP (XEXP (op, 0), 0);
6351 }
6352 else if (GET_CODE (op) == CONST_INT)
6353 v = INTVAL (op);
6354 else if (GET_CODE (op) == CONST_VECTOR
6355 && GET_CODE (CONST_VECTOR_ELT (op, 0)) == CONST_INT)
6356 v = INTVAL (CONST_VECTOR_ELT (op, 0));
6357
6358 /* The default for v is 0 which is valid in every range. */
6359 if (v < spu_builtin_range[range].low
6360 || v > spu_builtin_range[range].high)
6361 error ("%s expects an integer literal in the range [%d, %d]. (%wd)",
6362 d->name,
6363 spu_builtin_range[range].low, spu_builtin_range[range].high,
6364 v);
6365
6366 switch (p)
6367 {
6368 case SPU_BTI_S10_4:
6369 lsbits = 4;
6370 break;
6371 case SPU_BTI_U16_2:
6372 /* This is only used in lqa, and stqa. Even though the insns
6373 encode 16 bits of the address (all but the 2 least
6374 significant), only 14 bits are used because it is masked to
6375 be 16 byte aligned. */
6376 lsbits = 4;
6377 break;
6378 case SPU_BTI_S16_2:
6379 /* This is used for lqr and stqr. */
6380 lsbits = 2;
6381 break;
6382 default:
6383 lsbits = 0;
6384 }
6385
6386 if (GET_CODE (op) == LABEL_REF
6387 || (GET_CODE (op) == SYMBOL_REF
6388 && SYMBOL_REF_FUNCTION_P (op))
6389 || (v & ((1 << lsbits) - 1)) != 0)
6390 warning (0, "%d least significant bits of %s are ignored", lsbits,
6391 d->name);
6392 }
6393 }
6394
6395
6396 static int
6397 expand_builtin_args (struct spu_builtin_description *d, tree exp,
6398 rtx target, rtx ops[])
6399 {
6400 enum insn_code icode = (enum insn_code) d->icode;
6401 int i = 0, a;
6402
6403 /* Expand the arguments into rtl. */
6404
6405 if (d->parm[0] != SPU_BTI_VOID)
6406 ops[i++] = target;
6407
6408 for (a = 0; d->parm[a+1] != SPU_BTI_END_OF_PARAMS; i++, a++)
6409 {
6410 tree arg = CALL_EXPR_ARG (exp, a);
6411 if (arg == 0)
6412 abort ();
6413 ops[i] = expand_expr (arg, NULL_RTX, VOIDmode, EXPAND_NORMAL);
6414 }
6415
6416 gcc_assert (i == insn_data[icode].n_generator_args);
6417 return i;
6418 }
6419
6420 static rtx
6421 spu_expand_builtin_1 (struct spu_builtin_description *d,
6422 tree exp, rtx target)
6423 {
6424 rtx pat;
6425 rtx ops[8];
6426 enum insn_code icode = (enum insn_code) d->icode;
6427 machine_mode mode, tmode;
6428 int i, p;
6429 int n_operands;
6430 tree return_type;
6431
6432 /* Set up ops[] with values from arglist. */
6433 n_operands = expand_builtin_args (d, exp, target, ops);
6434
6435 /* Handle the target operand which must be operand 0. */
6436 i = 0;
6437 if (d->parm[0] != SPU_BTI_VOID)
6438 {
6439
6440 /* We prefer the mode specified for the match_operand otherwise
6441 use the mode from the builtin function prototype. */
6442 tmode = insn_data[d->icode].operand[0].mode;
6443 if (tmode == VOIDmode)
6444 tmode = TYPE_MODE (spu_builtin_types[d->parm[0]]);
6445
6446 /* Try to use target because not using it can lead to extra copies
6447 and when we are using all of the registers extra copies leads
6448 to extra spills. */
6449 if (target && GET_CODE (target) == REG && GET_MODE (target) == tmode)
6450 ops[0] = target;
6451 else
6452 target = ops[0] = gen_reg_rtx (tmode);
6453
6454 if (!(*insn_data[icode].operand[0].predicate) (ops[0], tmode))
6455 abort ();
6456
6457 i++;
6458 }
6459
6460 if (d->fcode == SPU_MASK_FOR_LOAD)
6461 {
6462 machine_mode mode = insn_data[icode].operand[1].mode;
6463 tree arg;
6464 rtx addr, op, pat;
6465
6466 /* get addr */
6467 arg = CALL_EXPR_ARG (exp, 0);
6468 gcc_assert (POINTER_TYPE_P (TREE_TYPE (arg)));
6469 op = expand_expr (arg, NULL_RTX, Pmode, EXPAND_NORMAL);
6470 addr = memory_address (mode, op);
6471
6472 /* negate addr */
6473 op = gen_reg_rtx (GET_MODE (addr));
6474 emit_insn (gen_rtx_SET (op, gen_rtx_NEG (GET_MODE (addr), addr)));
6475 op = gen_rtx_MEM (mode, op);
6476
6477 pat = GEN_FCN (icode) (target, op);
6478 if (!pat)
6479 return 0;
6480 emit_insn (pat);
6481 return target;
6482 }
6483
6484 /* Ignore align_hint, but still expand it's args in case they have
6485 side effects. */
6486 if (icode == CODE_FOR_spu_align_hint)
6487 return 0;
6488
6489 /* Handle the rest of the operands. */
6490 for (p = 1; i < n_operands; i++, p++)
6491 {
6492 if (insn_data[d->icode].operand[i].mode != VOIDmode)
6493 mode = insn_data[d->icode].operand[i].mode;
6494 else
6495 mode = TYPE_MODE (spu_builtin_types[d->parm[i]]);
6496
6497 /* mode can be VOIDmode here for labels */
6498
6499 /* For specific intrinsics with an immediate operand, e.g.,
6500 si_ai(), we sometimes need to convert the scalar argument to a
6501 vector argument by splatting the scalar. */
6502 if (VECTOR_MODE_P (mode)
6503 && (GET_CODE (ops[i]) == CONST_INT
6504 || GET_MODE_CLASS (GET_MODE (ops[i])) == MODE_INT
6505 || GET_MODE_CLASS (GET_MODE (ops[i])) == MODE_FLOAT))
6506 {
6507 if (GET_CODE (ops[i]) == CONST_INT)
6508 ops[i] = spu_const (mode, INTVAL (ops[i]));
6509 else
6510 {
6511 rtx reg = gen_reg_rtx (mode);
6512 machine_mode imode = GET_MODE_INNER (mode);
6513 if (!spu_nonmem_operand (ops[i], GET_MODE (ops[i])))
6514 ops[i] = force_reg (GET_MODE (ops[i]), ops[i]);
6515 if (imode != GET_MODE (ops[i]))
6516 ops[i] = convert_to_mode (imode, ops[i],
6517 TYPE_UNSIGNED (spu_builtin_types
6518 [d->parm[i]]));
6519 emit_insn (gen_spu_splats (reg, ops[i]));
6520 ops[i] = reg;
6521 }
6522 }
6523
6524 spu_check_builtin_parm (d, ops[i], d->parm[p]);
6525
6526 if (!(*insn_data[icode].operand[i].predicate) (ops[i], mode))
6527 ops[i] = spu_force_reg (mode, ops[i]);
6528 }
6529
6530 switch (n_operands)
6531 {
6532 case 0:
6533 pat = GEN_FCN (icode) (0);
6534 break;
6535 case 1:
6536 pat = GEN_FCN (icode) (ops[0]);
6537 break;
6538 case 2:
6539 pat = GEN_FCN (icode) (ops[0], ops[1]);
6540 break;
6541 case 3:
6542 pat = GEN_FCN (icode) (ops[0], ops[1], ops[2]);
6543 break;
6544 case 4:
6545 pat = GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]);
6546 break;
6547 case 5:
6548 pat = GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3], ops[4]);
6549 break;
6550 case 6:
6551 pat = GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3], ops[4], ops[5]);
6552 break;
6553 default:
6554 abort ();
6555 }
6556
6557 if (!pat)
6558 abort ();
6559
6560 if (d->type == B_CALL || d->type == B_BISLED)
6561 emit_call_insn (pat);
6562 else if (d->type == B_JUMP)
6563 {
6564 emit_jump_insn (pat);
6565 emit_barrier ();
6566 }
6567 else
6568 emit_insn (pat);
6569
6570 return_type = spu_builtin_types[d->parm[0]];
6571 if (d->parm[0] != SPU_BTI_VOID
6572 && GET_MODE (target) != TYPE_MODE (return_type))
6573 {
6574 /* target is the return value. It should always be the mode of
6575 the builtin function prototype. */
6576 target = spu_force_reg (TYPE_MODE (return_type), target);
6577 }
6578
6579 return target;
6580 }
6581
6582 rtx
6583 spu_expand_builtin (tree exp,
6584 rtx target,
6585 rtx subtarget ATTRIBUTE_UNUSED,
6586 machine_mode mode ATTRIBUTE_UNUSED,
6587 int ignore ATTRIBUTE_UNUSED)
6588 {
6589 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
6590 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
6591 struct spu_builtin_description *d;
6592
6593 if (fcode < NUM_SPU_BUILTINS)
6594 {
6595 d = &spu_builtins[fcode];
6596
6597 return spu_expand_builtin_1 (d, exp, target);
6598 }
6599 abort ();
6600 }
6601
6602 /* Implement targetm.vectorize.builtin_mask_for_load. */
6603 static tree
6604 spu_builtin_mask_for_load (void)
6605 {
6606 return spu_builtin_decls[SPU_MASK_FOR_LOAD];
6607 }
6608
6609 /* Implement targetm.vectorize.builtin_vectorization_cost. */
6610 static int
6611 spu_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
6612 tree vectype,
6613 int misalign ATTRIBUTE_UNUSED)
6614 {
6615 unsigned elements;
6616
6617 switch (type_of_cost)
6618 {
6619 case scalar_stmt:
6620 case vector_stmt:
6621 case vector_load:
6622 case vector_store:
6623 case vec_to_scalar:
6624 case scalar_to_vec:
6625 case cond_branch_not_taken:
6626 case vec_perm:
6627 case vec_promote_demote:
6628 return 1;
6629
6630 case scalar_store:
6631 return 10;
6632
6633 case scalar_load:
6634 /* Load + rotate. */
6635 return 2;
6636
6637 case unaligned_load:
6638 return 2;
6639
6640 case cond_branch_taken:
6641 return 6;
6642
6643 case vec_construct:
6644 elements = TYPE_VECTOR_SUBPARTS (vectype);
6645 return elements / 2 + 1;
6646
6647 default:
6648 gcc_unreachable ();
6649 }
6650 }
6651
6652 /* Implement targetm.vectorize.init_cost. */
6653
6654 static void *
6655 spu_init_cost (struct loop *loop_info ATTRIBUTE_UNUSED)
6656 {
6657 unsigned *cost = XNEWVEC (unsigned, 3);
6658 cost[vect_prologue] = cost[vect_body] = cost[vect_epilogue] = 0;
6659 return cost;
6660 }
6661
6662 /* Implement targetm.vectorize.add_stmt_cost. */
6663
6664 static unsigned
6665 spu_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
6666 struct _stmt_vec_info *stmt_info, int misalign,
6667 enum vect_cost_model_location where)
6668 {
6669 unsigned *cost = (unsigned *) data;
6670 unsigned retval = 0;
6671
6672 if (flag_vect_cost_model)
6673 {
6674 tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
6675 int stmt_cost = spu_builtin_vectorization_cost (kind, vectype, misalign);
6676
6677 /* Statements in an inner loop relative to the loop being
6678 vectorized are weighted more heavily. The value here is
6679 arbitrary and could potentially be improved with analysis. */
6680 if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info))
6681 count *= 50; /* FIXME. */
6682
6683 retval = (unsigned) (count * stmt_cost);
6684 cost[where] += retval;
6685 }
6686
6687 return retval;
6688 }
6689
6690 /* Implement targetm.vectorize.finish_cost. */
6691
6692 static void
6693 spu_finish_cost (void *data, unsigned *prologue_cost,
6694 unsigned *body_cost, unsigned *epilogue_cost)
6695 {
6696 unsigned *cost = (unsigned *) data;
6697 *prologue_cost = cost[vect_prologue];
6698 *body_cost = cost[vect_body];
6699 *epilogue_cost = cost[vect_epilogue];
6700 }
6701
6702 /* Implement targetm.vectorize.destroy_cost_data. */
6703
6704 static void
6705 spu_destroy_cost_data (void *data)
6706 {
6707 free (data);
6708 }
6709
6710 /* Return true iff, data reference of TYPE can reach vector alignment (16)
6711 after applying N number of iterations. This routine does not determine
6712 how may iterations are required to reach desired alignment. */
6713
6714 static bool
6715 spu_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED, bool is_packed)
6716 {
6717 if (is_packed)
6718 return false;
6719
6720 /* All other types are naturally aligned. */
6721 return true;
6722 }
6723
6724 /* Return the appropriate mode for a named address pointer. */
6725 static machine_mode
6726 spu_addr_space_pointer_mode (addr_space_t addrspace)
6727 {
6728 switch (addrspace)
6729 {
6730 case ADDR_SPACE_GENERIC:
6731 return ptr_mode;
6732 case ADDR_SPACE_EA:
6733 return EAmode;
6734 default:
6735 gcc_unreachable ();
6736 }
6737 }
6738
6739 /* Return the appropriate mode for a named address address. */
6740 static machine_mode
6741 spu_addr_space_address_mode (addr_space_t addrspace)
6742 {
6743 switch (addrspace)
6744 {
6745 case ADDR_SPACE_GENERIC:
6746 return Pmode;
6747 case ADDR_SPACE_EA:
6748 return EAmode;
6749 default:
6750 gcc_unreachable ();
6751 }
6752 }
6753
6754 /* Determine if one named address space is a subset of another. */
6755
6756 static bool
6757 spu_addr_space_subset_p (addr_space_t subset, addr_space_t superset)
6758 {
6759 gcc_assert (subset == ADDR_SPACE_GENERIC || subset == ADDR_SPACE_EA);
6760 gcc_assert (superset == ADDR_SPACE_GENERIC || superset == ADDR_SPACE_EA);
6761
6762 if (subset == superset)
6763 return true;
6764
6765 /* If we have -mno-address-space-conversion, treat __ea and generic as not
6766 being subsets but instead as disjoint address spaces. */
6767 else if (!TARGET_ADDRESS_SPACE_CONVERSION)
6768 return false;
6769
6770 else
6771 return (subset == ADDR_SPACE_GENERIC && superset == ADDR_SPACE_EA);
6772 }
6773
6774 /* Convert from one address space to another. */
6775 static rtx
6776 spu_addr_space_convert (rtx op, tree from_type, tree to_type)
6777 {
6778 addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (from_type));
6779 addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (to_type));
6780
6781 gcc_assert (from_as == ADDR_SPACE_GENERIC || from_as == ADDR_SPACE_EA);
6782 gcc_assert (to_as == ADDR_SPACE_GENERIC || to_as == ADDR_SPACE_EA);
6783
6784 if (to_as == ADDR_SPACE_GENERIC && from_as == ADDR_SPACE_EA)
6785 {
6786 rtx result, ls;
6787
6788 ls = gen_const_mem (DImode,
6789 gen_rtx_SYMBOL_REF (Pmode, "__ea_local_store"));
6790 set_mem_align (ls, 128);
6791
6792 result = gen_reg_rtx (Pmode);
6793 ls = force_reg (Pmode, convert_modes (Pmode, DImode, ls, 1));
6794 op = force_reg (Pmode, convert_modes (Pmode, EAmode, op, 1));
6795 ls = emit_conditional_move (ls, NE, op, const0_rtx, Pmode,
6796 ls, const0_rtx, Pmode, 1);
6797
6798 emit_insn (gen_subsi3 (result, op, ls));
6799
6800 return result;
6801 }
6802
6803 else if (to_as == ADDR_SPACE_EA && from_as == ADDR_SPACE_GENERIC)
6804 {
6805 rtx result, ls;
6806
6807 ls = gen_const_mem (DImode,
6808 gen_rtx_SYMBOL_REF (Pmode, "__ea_local_store"));
6809 set_mem_align (ls, 128);
6810
6811 result = gen_reg_rtx (EAmode);
6812 ls = force_reg (EAmode, convert_modes (EAmode, DImode, ls, 1));
6813 op = force_reg (Pmode, op);
6814 ls = emit_conditional_move (ls, NE, op, const0_rtx, Pmode,
6815 ls, const0_rtx, EAmode, 1);
6816 op = force_reg (EAmode, convert_modes (EAmode, Pmode, op, 1));
6817
6818 if (EAmode == SImode)
6819 emit_insn (gen_addsi3 (result, op, ls));
6820 else
6821 emit_insn (gen_adddi3 (result, op, ls));
6822
6823 return result;
6824 }
6825
6826 else
6827 gcc_unreachable ();
6828 }
6829
6830
6831 /* Count the total number of instructions in each pipe and return the
6832 maximum, which is used as the Minimum Iteration Interval (MII)
6833 in the modulo scheduler. get_pipe() will return -2, -1, 0, or 1.
6834 -2 are instructions that can go in pipe0 or pipe1. */
6835 static int
6836 spu_sms_res_mii (struct ddg *g)
6837 {
6838 int i;
6839 unsigned t[4] = {0, 0, 0, 0};
6840
6841 for (i = 0; i < g->num_nodes; i++)
6842 {
6843 rtx_insn *insn = g->nodes[i].insn;
6844 int p = get_pipe (insn) + 2;
6845
6846 gcc_assert (p >= 0);
6847 gcc_assert (p < 4);
6848
6849 t[p]++;
6850 if (dump_file && INSN_P (insn))
6851 fprintf (dump_file, "i%d %s %d %d\n",
6852 INSN_UID (insn),
6853 insn_data[INSN_CODE(insn)].name,
6854 p, t[p]);
6855 }
6856 if (dump_file)
6857 fprintf (dump_file, "%d %d %d %d\n", t[0], t[1], t[2], t[3]);
6858
6859 return MAX ((t[0] + t[2] + t[3] + 1) / 2, MAX (t[2], t[3]));
6860 }
6861
6862
6863 void
6864 spu_init_expanders (void)
6865 {
6866 if (cfun)
6867 {
6868 rtx r0, r1;
6869 /* HARD_FRAME_REGISTER is only 128 bit aligned when
6870 frame_pointer_needed is true. We don't know that until we're
6871 expanding the prologue. */
6872 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = 8;
6873
6874 /* A number of passes use LAST_VIRTUAL_REGISTER+1 and
6875 LAST_VIRTUAL_REGISTER+2 to test the back-end. We want them
6876 to be treated as aligned, so generate them here. */
6877 r0 = gen_reg_rtx (SImode);
6878 r1 = gen_reg_rtx (SImode);
6879 mark_reg_pointer (r0, 128);
6880 mark_reg_pointer (r1, 128);
6881 gcc_assert (REGNO (r0) == LAST_VIRTUAL_REGISTER + 1
6882 && REGNO (r1) == LAST_VIRTUAL_REGISTER + 2);
6883 }
6884 }
6885
6886 static machine_mode
6887 spu_libgcc_cmp_return_mode (void)
6888 {
6889
6890 /* For SPU word mode is TI mode so it is better to use SImode
6891 for compare returns. */
6892 return SImode;
6893 }
6894
6895 static machine_mode
6896 spu_libgcc_shift_count_mode (void)
6897 {
6898 /* For SPU word mode is TI mode so it is better to use SImode
6899 for shift counts. */
6900 return SImode;
6901 }
6902
6903 /* Implement targetm.section_type_flags. */
6904 static unsigned int
6905 spu_section_type_flags (tree decl, const char *name, int reloc)
6906 {
6907 /* .toe needs to have type @nobits. */
6908 if (strcmp (name, ".toe") == 0)
6909 return SECTION_BSS;
6910 /* Don't load _ea into the current address space. */
6911 if (strcmp (name, "._ea") == 0)
6912 return SECTION_WRITE | SECTION_DEBUG;
6913 return default_section_type_flags (decl, name, reloc);
6914 }
6915
6916 /* Implement targetm.select_section. */
6917 static section *
6918 spu_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align)
6919 {
6920 /* Variables and constants defined in the __ea address space
6921 go into a special section named "._ea". */
6922 if (TREE_TYPE (decl) != error_mark_node
6923 && TYPE_ADDR_SPACE (TREE_TYPE (decl)) == ADDR_SPACE_EA)
6924 {
6925 /* We might get called with string constants, but get_named_section
6926 doesn't like them as they are not DECLs. Also, we need to set
6927 flags in that case. */
6928 if (!DECL_P (decl))
6929 return get_section ("._ea", SECTION_WRITE | SECTION_DEBUG, NULL);
6930
6931 return get_named_section (decl, "._ea", reloc);
6932 }
6933
6934 return default_elf_select_section (decl, reloc, align);
6935 }
6936
6937 /* Implement targetm.unique_section. */
6938 static void
6939 spu_unique_section (tree decl, int reloc)
6940 {
6941 /* We don't support unique section names in the __ea address
6942 space for now. */
6943 if (TREE_TYPE (decl) != error_mark_node
6944 && TYPE_ADDR_SPACE (TREE_TYPE (decl)) != 0)
6945 return;
6946
6947 default_unique_section (decl, reloc);
6948 }
6949
6950 /* Generate a constant or register which contains 2^SCALE. We assume
6951 the result is valid for MODE. Currently, MODE must be V4SFmode and
6952 SCALE must be SImode. */
6953 rtx
6954 spu_gen_exp2 (machine_mode mode, rtx scale)
6955 {
6956 gcc_assert (mode == V4SFmode);
6957 gcc_assert (GET_MODE (scale) == SImode || GET_CODE (scale) == CONST_INT);
6958 if (GET_CODE (scale) != CONST_INT)
6959 {
6960 /* unsigned int exp = (127 + scale) << 23;
6961 __vector float m = (__vector float) spu_splats (exp); */
6962 rtx reg = force_reg (SImode, scale);
6963 rtx exp = gen_reg_rtx (SImode);
6964 rtx mul = gen_reg_rtx (mode);
6965 emit_insn (gen_addsi3 (exp, reg, GEN_INT (127)));
6966 emit_insn (gen_ashlsi3 (exp, exp, GEN_INT (23)));
6967 emit_insn (gen_spu_splats (mul, gen_rtx_SUBREG (GET_MODE_INNER (mode), exp, 0)));
6968 return mul;
6969 }
6970 else
6971 {
6972 HOST_WIDE_INT exp = 127 + INTVAL (scale);
6973 unsigned char arr[16];
6974 arr[0] = arr[4] = arr[8] = arr[12] = exp >> 1;
6975 arr[1] = arr[5] = arr[9] = arr[13] = exp << 7;
6976 arr[2] = arr[6] = arr[10] = arr[14] = 0;
6977 arr[3] = arr[7] = arr[11] = arr[15] = 0;
6978 return array_to_constant (mode, arr);
6979 }
6980 }
6981
6982 /* After reload, just change the convert into a move instruction
6983 or a dead instruction. */
6984 void
6985 spu_split_convert (rtx ops[])
6986 {
6987 if (REGNO (ops[0]) == REGNO (ops[1]))
6988 emit_note (NOTE_INSN_DELETED);
6989 else
6990 {
6991 /* Use TImode always as this might help hard reg copyprop. */
6992 rtx op0 = gen_rtx_REG (TImode, REGNO (ops[0]));
6993 rtx op1 = gen_rtx_REG (TImode, REGNO (ops[1]));
6994 emit_insn (gen_move_insn (op0, op1));
6995 }
6996 }
6997
6998 void
6999 spu_function_profiler (FILE * file, int labelno ATTRIBUTE_UNUSED)
7000 {
7001 fprintf (file, "# profile\n");
7002 fprintf (file, "brsl $75, _mcount\n");
7003 }
7004
7005 /* Implement targetm.ref_may_alias_errno. */
7006 static bool
7007 spu_ref_may_alias_errno (ao_ref *ref)
7008 {
7009 tree base = ao_ref_base (ref);
7010
7011 /* With SPU newlib, errno is defined as something like
7012 _impure_data._errno
7013 The default implementation of this target macro does not
7014 recognize such expressions, so special-code for it here. */
7015
7016 if (TREE_CODE (base) == VAR_DECL
7017 && !TREE_STATIC (base)
7018 && DECL_EXTERNAL (base)
7019 && TREE_CODE (TREE_TYPE (base)) == RECORD_TYPE
7020 && strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (base)),
7021 "_impure_data") == 0
7022 /* _errno is the first member of _impure_data. */
7023 && ref->offset == 0)
7024 return true;
7025
7026 return default_ref_may_alias_errno (ref);
7027 }
7028
7029 /* Output thunk to FILE that implements a C++ virtual function call (with
7030 multiple inheritance) to FUNCTION. The thunk adjusts the this pointer
7031 by DELTA, and unless VCALL_OFFSET is zero, applies an additional adjustment
7032 stored at VCALL_OFFSET in the vtable whose address is located at offset 0
7033 relative to the resulting this pointer. */
7034
7035 static void
7036 spu_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
7037 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
7038 tree function)
7039 {
7040 rtx op[8];
7041
7042 /* Make sure unwind info is emitted for the thunk if needed. */
7043 final_start_function (emit_barrier (), file, 1);
7044
7045 /* Operand 0 is the target function. */
7046 op[0] = XEXP (DECL_RTL (function), 0);
7047
7048 /* Operand 1 is the 'this' pointer. */
7049 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
7050 op[1] = gen_rtx_REG (Pmode, FIRST_ARG_REGNUM + 1);
7051 else
7052 op[1] = gen_rtx_REG (Pmode, FIRST_ARG_REGNUM);
7053
7054 /* Operands 2/3 are the low/high halfwords of delta. */
7055 op[2] = GEN_INT (trunc_int_for_mode (delta, HImode));
7056 op[3] = GEN_INT (trunc_int_for_mode (delta >> 16, HImode));
7057
7058 /* Operands 4/5 are the low/high halfwords of vcall_offset. */
7059 op[4] = GEN_INT (trunc_int_for_mode (vcall_offset, HImode));
7060 op[5] = GEN_INT (trunc_int_for_mode (vcall_offset >> 16, HImode));
7061
7062 /* Operands 6/7 are temporary registers. */
7063 op[6] = gen_rtx_REG (Pmode, 79);
7064 op[7] = gen_rtx_REG (Pmode, 78);
7065
7066 /* Add DELTA to this pointer. */
7067 if (delta)
7068 {
7069 if (delta >= -0x200 && delta < 0x200)
7070 output_asm_insn ("ai\t%1,%1,%2", op);
7071 else if (delta >= -0x8000 && delta < 0x8000)
7072 {
7073 output_asm_insn ("il\t%6,%2", op);
7074 output_asm_insn ("a\t%1,%1,%6", op);
7075 }
7076 else
7077 {
7078 output_asm_insn ("ilhu\t%6,%3", op);
7079 output_asm_insn ("iohl\t%6,%2", op);
7080 output_asm_insn ("a\t%1,%1,%6", op);
7081 }
7082 }
7083
7084 /* Perform vcall adjustment. */
7085 if (vcall_offset)
7086 {
7087 output_asm_insn ("lqd\t%7,0(%1)", op);
7088 output_asm_insn ("rotqby\t%7,%7,%1", op);
7089
7090 if (vcall_offset >= -0x200 && vcall_offset < 0x200)
7091 output_asm_insn ("ai\t%7,%7,%4", op);
7092 else if (vcall_offset >= -0x8000 && vcall_offset < 0x8000)
7093 {
7094 output_asm_insn ("il\t%6,%4", op);
7095 output_asm_insn ("a\t%7,%7,%6", op);
7096 }
7097 else
7098 {
7099 output_asm_insn ("ilhu\t%6,%5", op);
7100 output_asm_insn ("iohl\t%6,%4", op);
7101 output_asm_insn ("a\t%7,%7,%6", op);
7102 }
7103
7104 output_asm_insn ("lqd\t%6,0(%7)", op);
7105 output_asm_insn ("rotqby\t%6,%6,%7", op);
7106 output_asm_insn ("a\t%1,%1,%6", op);
7107 }
7108
7109 /* Jump to target. */
7110 output_asm_insn ("br\t%0", op);
7111
7112 final_end_function ();
7113 }
7114
7115 /* Canonicalize a comparison from one we don't have to one we do have. */
7116 static void
7117 spu_canonicalize_comparison (int *code, rtx *op0, rtx *op1,
7118 bool op0_preserve_value)
7119 {
7120 if (!op0_preserve_value
7121 && (*code == LE || *code == LT || *code == LEU || *code == LTU))
7122 {
7123 rtx tem = *op0;
7124 *op0 = *op1;
7125 *op1 = tem;
7126 *code = (int)swap_condition ((enum rtx_code)*code);
7127 }
7128 }
7129 \f
7130 /* Table of machine attributes. */
7131 static const struct attribute_spec spu_attribute_table[] =
7132 {
7133 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
7134 affects_type_identity } */
7135 { "naked", 0, 0, true, false, false, spu_handle_fndecl_attribute,
7136 false },
7137 { "spu_vector", 0, 0, false, true, false, spu_handle_vector_attribute,
7138 false },
7139 { NULL, 0, 0, false, false, false, NULL, false }
7140 };
7141
7142 /* TARGET overrides. */
7143
7144 #undef TARGET_ADDR_SPACE_POINTER_MODE
7145 #define TARGET_ADDR_SPACE_POINTER_MODE spu_addr_space_pointer_mode
7146
7147 #undef TARGET_ADDR_SPACE_ADDRESS_MODE
7148 #define TARGET_ADDR_SPACE_ADDRESS_MODE spu_addr_space_address_mode
7149
7150 #undef TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
7151 #define TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P \
7152 spu_addr_space_legitimate_address_p
7153
7154 #undef TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS
7155 #define TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS spu_addr_space_legitimize_address
7156
7157 #undef TARGET_ADDR_SPACE_SUBSET_P
7158 #define TARGET_ADDR_SPACE_SUBSET_P spu_addr_space_subset_p
7159
7160 #undef TARGET_ADDR_SPACE_CONVERT
7161 #define TARGET_ADDR_SPACE_CONVERT spu_addr_space_convert
7162
7163 #undef TARGET_INIT_BUILTINS
7164 #define TARGET_INIT_BUILTINS spu_init_builtins
7165 #undef TARGET_BUILTIN_DECL
7166 #define TARGET_BUILTIN_DECL spu_builtin_decl
7167
7168 #undef TARGET_EXPAND_BUILTIN
7169 #define TARGET_EXPAND_BUILTIN spu_expand_builtin
7170
7171 #undef TARGET_UNWIND_WORD_MODE
7172 #define TARGET_UNWIND_WORD_MODE spu_unwind_word_mode
7173
7174 #undef TARGET_LEGITIMIZE_ADDRESS
7175 #define TARGET_LEGITIMIZE_ADDRESS spu_legitimize_address
7176
7177 /* The current assembler doesn't like .4byte foo@ppu, so use the normal .long
7178 and .quad for the debugger. When it is known that the assembler is fixed,
7179 these can be removed. */
7180 #undef TARGET_ASM_UNALIGNED_SI_OP
7181 #define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
7182
7183 #undef TARGET_ASM_ALIGNED_DI_OP
7184 #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
7185
7186 /* The .8byte directive doesn't seem to work well for a 32 bit
7187 architecture. */
7188 #undef TARGET_ASM_UNALIGNED_DI_OP
7189 #define TARGET_ASM_UNALIGNED_DI_OP NULL
7190
7191 #undef TARGET_RTX_COSTS
7192 #define TARGET_RTX_COSTS spu_rtx_costs
7193
7194 #undef TARGET_ADDRESS_COST
7195 #define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
7196
7197 #undef TARGET_SCHED_ISSUE_RATE
7198 #define TARGET_SCHED_ISSUE_RATE spu_sched_issue_rate
7199
7200 #undef TARGET_SCHED_INIT_GLOBAL
7201 #define TARGET_SCHED_INIT_GLOBAL spu_sched_init_global
7202
7203 #undef TARGET_SCHED_INIT
7204 #define TARGET_SCHED_INIT spu_sched_init
7205
7206 #undef TARGET_SCHED_VARIABLE_ISSUE
7207 #define TARGET_SCHED_VARIABLE_ISSUE spu_sched_variable_issue
7208
7209 #undef TARGET_SCHED_REORDER
7210 #define TARGET_SCHED_REORDER spu_sched_reorder
7211
7212 #undef TARGET_SCHED_REORDER2
7213 #define TARGET_SCHED_REORDER2 spu_sched_reorder
7214
7215 #undef TARGET_SCHED_ADJUST_COST
7216 #define TARGET_SCHED_ADJUST_COST spu_sched_adjust_cost
7217
7218 #undef TARGET_ATTRIBUTE_TABLE
7219 #define TARGET_ATTRIBUTE_TABLE spu_attribute_table
7220
7221 #undef TARGET_ASM_INTEGER
7222 #define TARGET_ASM_INTEGER spu_assemble_integer
7223
7224 #undef TARGET_SCALAR_MODE_SUPPORTED_P
7225 #define TARGET_SCALAR_MODE_SUPPORTED_P spu_scalar_mode_supported_p
7226
7227 #undef TARGET_VECTOR_MODE_SUPPORTED_P
7228 #define TARGET_VECTOR_MODE_SUPPORTED_P spu_vector_mode_supported_p
7229
7230 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
7231 #define TARGET_FUNCTION_OK_FOR_SIBCALL spu_function_ok_for_sibcall
7232
7233 #undef TARGET_ASM_GLOBALIZE_LABEL
7234 #define TARGET_ASM_GLOBALIZE_LABEL spu_asm_globalize_label
7235
7236 #undef TARGET_PASS_BY_REFERENCE
7237 #define TARGET_PASS_BY_REFERENCE spu_pass_by_reference
7238
7239 #undef TARGET_FUNCTION_ARG
7240 #define TARGET_FUNCTION_ARG spu_function_arg
7241
7242 #undef TARGET_FUNCTION_ARG_ADVANCE
7243 #define TARGET_FUNCTION_ARG_ADVANCE spu_function_arg_advance
7244
7245 #undef TARGET_MUST_PASS_IN_STACK
7246 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
7247
7248 #undef TARGET_BUILD_BUILTIN_VA_LIST
7249 #define TARGET_BUILD_BUILTIN_VA_LIST spu_build_builtin_va_list
7250
7251 #undef TARGET_EXPAND_BUILTIN_VA_START
7252 #define TARGET_EXPAND_BUILTIN_VA_START spu_va_start
7253
7254 #undef TARGET_SETUP_INCOMING_VARARGS
7255 #define TARGET_SETUP_INCOMING_VARARGS spu_setup_incoming_varargs
7256
7257 #undef TARGET_MACHINE_DEPENDENT_REORG
7258 #define TARGET_MACHINE_DEPENDENT_REORG spu_machine_dependent_reorg
7259
7260 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
7261 #define TARGET_GIMPLIFY_VA_ARG_EXPR spu_gimplify_va_arg_expr
7262
7263 #undef TARGET_INIT_LIBFUNCS
7264 #define TARGET_INIT_LIBFUNCS spu_init_libfuncs
7265
7266 #undef TARGET_RETURN_IN_MEMORY
7267 #define TARGET_RETURN_IN_MEMORY spu_return_in_memory
7268
7269 #undef TARGET_ENCODE_SECTION_INFO
7270 #define TARGET_ENCODE_SECTION_INFO spu_encode_section_info
7271
7272 #undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
7273 #define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD spu_builtin_mask_for_load
7274
7275 #undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
7276 #define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST spu_builtin_vectorization_cost
7277
7278 #undef TARGET_VECTORIZE_INIT_COST
7279 #define TARGET_VECTORIZE_INIT_COST spu_init_cost
7280
7281 #undef TARGET_VECTORIZE_ADD_STMT_COST
7282 #define TARGET_VECTORIZE_ADD_STMT_COST spu_add_stmt_cost
7283
7284 #undef TARGET_VECTORIZE_FINISH_COST
7285 #define TARGET_VECTORIZE_FINISH_COST spu_finish_cost
7286
7287 #undef TARGET_VECTORIZE_DESTROY_COST_DATA
7288 #define TARGET_VECTORIZE_DESTROY_COST_DATA spu_destroy_cost_data
7289
7290 #undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
7291 #define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE spu_vector_alignment_reachable
7292
7293 #undef TARGET_LIBGCC_CMP_RETURN_MODE
7294 #define TARGET_LIBGCC_CMP_RETURN_MODE spu_libgcc_cmp_return_mode
7295
7296 #undef TARGET_LIBGCC_SHIFT_COUNT_MODE
7297 #define TARGET_LIBGCC_SHIFT_COUNT_MODE spu_libgcc_shift_count_mode
7298
7299 #undef TARGET_SCHED_SMS_RES_MII
7300 #define TARGET_SCHED_SMS_RES_MII spu_sms_res_mii
7301
7302 #undef TARGET_SECTION_TYPE_FLAGS
7303 #define TARGET_SECTION_TYPE_FLAGS spu_section_type_flags
7304
7305 #undef TARGET_ASM_SELECT_SECTION
7306 #define TARGET_ASM_SELECT_SECTION spu_select_section
7307
7308 #undef TARGET_ASM_UNIQUE_SECTION
7309 #define TARGET_ASM_UNIQUE_SECTION spu_unique_section
7310
7311 #undef TARGET_LEGITIMATE_ADDRESS_P
7312 #define TARGET_LEGITIMATE_ADDRESS_P spu_legitimate_address_p
7313
7314 #undef TARGET_LEGITIMATE_CONSTANT_P
7315 #define TARGET_LEGITIMATE_CONSTANT_P spu_legitimate_constant_p
7316
7317 #undef TARGET_TRAMPOLINE_INIT
7318 #define TARGET_TRAMPOLINE_INIT spu_trampoline_init
7319
7320 #undef TARGET_WARN_FUNC_RETURN
7321 #define TARGET_WARN_FUNC_RETURN spu_warn_func_return
7322
7323 #undef TARGET_OPTION_OVERRIDE
7324 #define TARGET_OPTION_OVERRIDE spu_option_override
7325
7326 #undef TARGET_CONDITIONAL_REGISTER_USAGE
7327 #define TARGET_CONDITIONAL_REGISTER_USAGE spu_conditional_register_usage
7328
7329 #undef TARGET_REF_MAY_ALIAS_ERRNO
7330 #define TARGET_REF_MAY_ALIAS_ERRNO spu_ref_may_alias_errno
7331
7332 #undef TARGET_ASM_OUTPUT_MI_THUNK
7333 #define TARGET_ASM_OUTPUT_MI_THUNK spu_output_mi_thunk
7334 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
7335 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
7336
7337 /* Variable tracking should be run after all optimizations which
7338 change order of insns. It also needs a valid CFG. */
7339 #undef TARGET_DELAY_VARTRACK
7340 #define TARGET_DELAY_VARTRACK true
7341
7342 #undef TARGET_CANONICALIZE_COMPARISON
7343 #define TARGET_CANONICALIZE_COMPARISON spu_canonicalize_comparison
7344
7345 #undef TARGET_CAN_USE_DOLOOP_P
7346 #define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost
7347
7348 struct gcc_target targetm = TARGET_INITIALIZER;
7349
7350 #include "gt-spu.h"