]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/v850/v850.h
Merge from gcc-2.8
[thirdparty/gcc.git] / gcc / config / v850 / v850.h
1 /* Definitions of target machine for GNU compiler. NEC V850 series
2 Copyright (C) 1996, 1997 Free Software Foundation, Inc.
3 Contributed by Jeff Law (law@cygnus.com).
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "svr4.h" /* Automatically does #undef CPP_PREDEFINES */
23
24 #undef ASM_SPEC
25 #define ASM_SPEC "%{mv*:-mv%*}"
26
27 #ifndef CPP_SPEC
28 #define CPP_SPEC "-D__v850__"
29 #endif
30
31 #undef ASM_FINAL_SPEC
32 #undef LIB_SPEC
33 #undef ENDFILE_SPEC
34 #undef LINK_SPEC
35 #undef STARTFILE_SPEC
36
37 /* Names to predefine in the preprocessor for this target machine. */
38 #define CPP_PREDEFINES "-D__v851__ -D__v850"
39
40 /* Print subsidiary information on the compiler version in use. */
41
42 #ifndef TARGET_VERSION
43 #define TARGET_VERSION fprintf (stderr, " (NEC V850)");
44 #endif
45
46
47 /* Run-time compilation parameters selecting different hardware subsets. */
48
49 extern int target_flags;
50
51 /* Target flags bits, see below for an explanation of the bits. */
52 #define MASK_GHS 0x00000001
53 #define MASK_LONG_CALLS 0x00000002
54 #define MASK_EP 0x00000004
55 #define MASK_PROLOG_FUNCTION 0x00000008
56 #define MASK_DEBUG 0x40000000
57
58 #define MASK_CPU 0x00000030
59 #define MASK_V850 0x00000010
60
61 #define MASK_BIG_SWITCH 0x00000100
62
63 #ifndef MASK_DEFAULT
64 #define MASK_DEFAULT MASK_V850
65 #endif
66
67 #define TARGET_V850 ((target_flags & MASK_CPU) == MASK_V850)
68
69
70 /* Macros used in the machine description to test the flags. */
71
72 /* The GHS calling convention support doesn't really work,
73 mostly due to a lack of documentation. Outstanding issues:
74
75 * How do varargs & stdarg really work. How to they handle
76 passing structures (if at all).
77
78 * Doubles are normally 4 byte aligned, except in argument
79 lists where they are 8 byte aligned. Is the alignment
80 in the argument list based on the first parameter,
81 first stack parameter, etc etc.
82
83 * Passing/returning of large structures probably isn't the same
84 as GHS. We don't have enough documentation on their conventions
85 to be compatible.
86
87 * Tests of SETUP_INCOMING_VARARGS need to be made runtime checks
88 since it depends on TARGET_GHS. */
89 #define TARGET_GHS (target_flags & MASK_GHS)
90
91 /* Don't do PC-relative calls, instead load the address of the target
92 function into a register and perform a register indirect call. */
93 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
94
95 /* Whether to optimize space by using ep (r30) for pointers with small offsets
96 in basic blocks. */
97 #define TARGET_EP (target_flags & MASK_EP)
98
99 /* Whether to call out-of-line functions to save registers or not. */
100 #define TARGET_PROLOG_FUNCTION (target_flags & MASK_PROLOG_FUNCTION)
101
102 /* Whether to emit 2 byte per entry or 4 byte per entry switch tables. */
103 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
104
105 /* General debug flag */
106 #define TARGET_DEBUG (target_flags & MASK_DEBUG)
107
108 /* Macro to define tables used to set the flags.
109 This is a list in braces of pairs in braces,
110 each pair being { "NAME", VALUE }
111 where VALUE is the bits to set or minus the bits to clear.
112 An empty string NAME is used to identify the default VALUE. */
113
114 #define TARGET_SWITCHES \
115 {{ "ghs", MASK_GHS }, \
116 { "no-ghs", -MASK_GHS }, \
117 { "long-calls", MASK_LONG_CALLS }, \
118 { "no-long-calls", -MASK_LONG_CALLS }, \
119 { "ep", MASK_EP }, \
120 { "no-ep", -MASK_EP }, \
121 { "prolog-function", MASK_PROLOG_FUNCTION }, \
122 { "no-prolog-function", -MASK_PROLOG_FUNCTION }, \
123 { "space", MASK_EP | MASK_PROLOG_FUNCTION }, \
124 { "debug", MASK_DEBUG }, \
125 { "v850", MASK_V850 }, \
126 { "v850", -(MASK_V850 ^ MASK_CPU) }, \
127 { "big-switch", MASK_BIG_SWITCH }, \
128 EXTRA_SWITCHES \
129 { "", TARGET_DEFAULT}}
130
131 #ifndef EXTRA_SWITCHES
132 #define EXTRA_SWITCHES
133 #endif
134
135 #ifndef TARGET_DEFAULT
136 #define TARGET_DEFAULT MASK_DEFAULT
137 #endif
138
139 /* Information about the various small memory areas. */
140 struct small_memory_info {
141 char *name;
142 char *value;
143 long max;
144 long physical_max;
145 };
146
147 enum small_memory_type {
148 /* tiny data area, using EP as base register */
149 SMALL_MEMORY_TDA = 0,
150 /* small data area using dp as base register */
151 SMALL_MEMORY_SDA,
152 /* zero data area using r0 as base register */
153 SMALL_MEMORY_ZDA,
154 SMALL_MEMORY_max
155 };
156
157 extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
158
159 /* This macro is similar to `TARGET_SWITCHES' but defines names of
160 command options that have values. Its definition is an
161 initializer with a subgrouping for each command option.
162
163 Each subgrouping contains a string constant, that defines the
164 fixed part of the option name, and the address of a variable. The
165 variable, type `char *', is set to the variable part of the given
166 option if the fixed part matches. The actual option name is made
167 by appending `-m' to the specified name.
168
169 Here is an example which defines `-mshort-data-NUMBER'. If the
170 given option is `-mshort-data-512', the variable `m88k_short_data'
171 will be set to the string `"512"'.
172
173 extern char *m88k_short_data;
174 #define TARGET_OPTIONS \
175 { { "short-data-", &m88k_short_data } } */
176
177 #define TARGET_OPTIONS \
178 { \
179 { "tda=", &small_memory[ (int)SMALL_MEMORY_TDA ].value }, \
180 { "tda-", &small_memory[ (int)SMALL_MEMORY_TDA ].value }, \
181 { "sda=", &small_memory[ (int)SMALL_MEMORY_SDA ].value }, \
182 { "sda-", &small_memory[ (int)SMALL_MEMORY_SDA ].value }, \
183 { "zda=", &small_memory[ (int)SMALL_MEMORY_ZDA ].value }, \
184 { "zda-", &small_memory[ (int)SMALL_MEMORY_ZDA ].value }, \
185 }
186
187 /* Sometimes certain combinations of command options do not make
188 sense on a particular target machine. You can define a macro
189 `OVERRIDE_OPTIONS' to take account of this. This macro, if
190 defined, is executed once just after all the command options have
191 been parsed.
192
193 Don't use this macro to turn on various extra optimizations for
194 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
195 #define OVERRIDE_OPTIONS override_options ()
196
197
198 /* Show we can debug even without a frame pointer. */
199 #define CAN_DEBUG_WITHOUT_FP
200
201 /* Some machines may desire to change what optimizations are
202 performed for various optimization levels. This macro, if
203 defined, is executed once just after the optimization level is
204 determined and before the remainder of the command options have
205 been parsed. Values set in this macro are used as the default
206 values for the other command line options.
207
208 LEVEL is the optimization level specified; 2 if `-O2' is
209 specified, 1 if `-O' is specified, and 0 if neither is specified.
210
211 You should not use this macro to change options that are not
212 machine-specific. These should uniformly selected by the same
213 optimization level on all supported machines. Use this macro to
214 enable machine-specific optimizations.
215
216 *Do not examine `write_symbols' in this macro!* The debugging
217 options are not supposed to alter the generated code. */
218
219 #define OPTIMIZATION_OPTIONS(LEVEL) \
220 { \
221 if (LEVEL) \
222 target_flags |= (MASK_EP | MASK_PROLOG_FUNCTION); \
223 }
224
225 \f
226 /* Target machine storage layout */
227
228 /* Define this if most significant bit is lowest numbered
229 in instructions that operate on numbered bit-fields.
230 This is not true on the NEC V850. */
231 #define BITS_BIG_ENDIAN 0
232
233 /* Define this if most significant byte of a word is the lowest numbered. */
234 /* This is not true on the NEC V850. */
235 #define BYTES_BIG_ENDIAN 0
236
237 /* Define this if most significant word of a multiword number is lowest
238 numbered.
239 This is not true on the NEC V850. */
240 #define WORDS_BIG_ENDIAN 0
241
242 /* Number of bits in an addressable storage unit */
243 #define BITS_PER_UNIT 8
244
245 /* Width in bits of a "word", which is the contents of a machine register.
246 Note that this is not necessarily the width of data type `int';
247 if using 16-bit ints on a 68000, this would still be 32.
248 But on a machine with 16-bit registers, this would be 16. */
249 #define BITS_PER_WORD 32
250
251 /* Width of a word, in units (bytes). */
252 #define UNITS_PER_WORD 4
253
254 /* Width in bits of a pointer.
255 See also the macro `Pmode' defined below. */
256 #define POINTER_SIZE 32
257
258 /* Define this macro if it is advisable to hold scalars in registers
259 in a wider mode than that declared by the program. In such cases,
260 the value is constrained to be within the bounds of the declared
261 type, but kept valid in the wider mode. The signedness of the
262 extension may differ from that of the type.
263
264 Some simple experiments have shown that leaving UNSIGNEDP alone
265 generates the best overall code. */
266
267 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
268 if (GET_MODE_CLASS (MODE) == MODE_INT \
269 && GET_MODE_SIZE (MODE) < 4) \
270 { (MODE) = SImode; }
271
272 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
273 #define PARM_BOUNDARY 32
274
275 /* The stack goes in 32 bit lumps. */
276 #define STACK_BOUNDARY 32
277
278 /* Allocation boundary (in *bits*) for the code of a function.
279 16 is the minimum boundary; 32 would give better performance. */
280 #define FUNCTION_BOUNDARY 16
281
282 /* No data type wants to be aligned rounder than this. */
283 #define BIGGEST_ALIGNMENT 32
284
285 /* Alignment of field after `int : 0' in a structure. */
286 #define EMPTY_FIELD_BOUNDARY 32
287
288 /* No structure field wants to be aligned rounder than this. */
289 #define BIGGEST_FIELD_ALIGNMENT 32
290
291 /* Define this if move instructions will actually fail to work
292 when given unaligned data. */
293 #define STRICT_ALIGNMENT 1
294
295 /* Define this as 1 if `char' should by default be signed; else as 0.
296
297 On the NEC V850, loads do sign extension, so make this default. */
298 #define DEFAULT_SIGNED_CHAR 1
299
300 /* Define results of standard character escape sequences. */
301 #define TARGET_BELL 007
302 #define TARGET_BS 010
303 #define TARGET_TAB 011
304 #define TARGET_NEWLINE 012
305 #define TARGET_VT 013
306 #define TARGET_FF 014
307 #define TARGET_CR 015
308 \f
309 /* Standard register usage. */
310
311 /* Number of actual hardware registers.
312 The hardware registers are assigned numbers for the compiler
313 from 0 to just below FIRST_PSEUDO_REGISTER.
314
315 All registers that the compiler knows about must be given numbers,
316 even those that are not normally considered general registers. */
317
318 #define FIRST_PSEUDO_REGISTER 34
319
320 /* 1 for registers that have pervasive standard uses
321 and are not available for the register allocator. */
322
323 #define FIXED_REGISTERS \
324 { 1, 1, 0, 1, 1, 0, 0, 0, \
325 0, 0, 0, 0, 0, 0, 0, 0, \
326 0, 0, 0, 0, 0, 0, 0, 0, \
327 0, 0, 0, 0, 0, 0, 1, 0, \
328 1, 1}
329
330 /* 1 for registers not available across function calls.
331 These must include the FIXED_REGISTERS and also any
332 registers that can be used without being saved.
333 The latter must include the registers where values are returned
334 and the register where structure-value addresses are passed.
335 Aside from that, you can include as many other registers as you
336 like. */
337
338 #define CALL_USED_REGISTERS \
339 { 1, 1, 0, 1, 1, 1, 1, 1, \
340 1, 1, 1, 1, 1, 1, 1, 1, \
341 1, 1, 1, 1, 0, 0, 0, 0, \
342 0, 0, 0, 0, 0, 0, 1, 1, \
343 1, 1}
344
345 /* List the order in which to allocate registers. Each register must be
346 listed once, even those in FIXED_REGISTERS.
347
348 On the 850, we make the return registers first, then all of the volatile
349 registers, then the saved registers in reverse order to better save the
350 registers with an out of line function, and finally the fixed
351 registers. */
352
353 #define REG_ALLOC_ORDER \
354 { \
355 10, 11, /* return registers */ \
356 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
357 6, 7, 8, 9, 31, /* argument registers */ \
358 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
359 21, 20, 2, \
360 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
361 }
362
363 /* Return number of consecutive hard regs needed starting at reg REGNO
364 to hold something of mode MODE.
365
366 This is ordinarily the length in words of a value of mode MODE
367 but can be less for certain modes in special long registers. */
368
369 #define HARD_REGNO_NREGS(REGNO, MODE) \
370 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
371
372 /* Value is 1 if hard register REGNO can hold a value of machine-mode
373 MODE. */
374
375 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
376 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
377
378 /* Value is 1 if it is a good idea to tie two pseudo registers
379 when one has mode MODE1 and one has mode MODE2.
380 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
381 for any hard reg, then this must be 0 for correct output. */
382 #define MODES_TIEABLE_P(MODE1, MODE2) \
383 (MODE1 == MODE2 || GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4)
384
385 \f
386 /* Define the classes of registers for register constraints in the
387 machine description. Also define ranges of constants.
388
389 One of the classes must always be named ALL_REGS and include all hard regs.
390 If there is more than one class, another class must be named NO_REGS
391 and contain no registers.
392
393 The name GENERAL_REGS must be the name of a class (or an alias for
394 another name such as ALL_REGS). This is the class of registers
395 that is allowed by "g" or "r" in a register constraint.
396 Also, registers outside this class are allocated only when
397 instructions express preferences for them.
398
399 The classes must be numbered in nondecreasing order; that is,
400 a larger-numbered class must never be contained completely
401 in a smaller-numbered class.
402
403 For any two classes, it is very desirable that there be another
404 class that represents their union. */
405
406 enum reg_class {
407 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
408 };
409
410 #define N_REG_CLASSES (int) LIM_REG_CLASSES
411
412 /* Give names of register classes as strings for dump file. */
413
414 #define REG_CLASS_NAMES \
415 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
416
417 /* Define which registers fit in which classes.
418 This is an initializer for a vector of HARD_REG_SET
419 of length N_REG_CLASSES. */
420
421 #define REG_CLASS_CONTENTS \
422 { 0x00000000, /* No regs */ \
423 0xffffffff, /* GENERAL_REGS */ \
424 0xffffffff, /* ALL_REGS */ \
425 }
426
427 /* The same information, inverted:
428 Return the class number of the smallest class containing
429 reg number REGNO. This could be a conditional expression
430 or could index an array. */
431
432 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS
433
434 /* The class value for index registers, and the one for base regs. */
435
436 #define INDEX_REG_CLASS NO_REGS
437 #define BASE_REG_CLASS GENERAL_REGS
438
439 /* Get reg_class from a letter such as appears in the machine description. */
440
441 #define REG_CLASS_FROM_LETTER(C) (NO_REGS)
442
443 /* Macros to check register numbers against specific register classes. */
444
445 /* These assume that REGNO is a hard or pseudo reg number.
446 They give nonzero only if REGNO is a hard reg of the suitable class
447 or a pseudo reg currently allocated to a suitable hard reg.
448 Since they use reg_renumber, they are safe only once reg_renumber
449 has been allocated, which happens in local-alloc.c. */
450
451 #define REGNO_OK_FOR_BASE_P(regno) \
452 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
453
454 #define REGNO_OK_FOR_INDEX_P(regno) 0
455
456 /* Given an rtx X being reloaded into a reg required to be
457 in class CLASS, return the class of reg to actually use.
458 In general this is just CLASS; but on some machines
459 in some cases it is preferable to use a more restrictive class. */
460
461 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
462
463 /* Return the maximum number of consecutive registers
464 needed to represent mode MODE in a register of class CLASS. */
465
466 #define CLASS_MAX_NREGS(CLASS, MODE) \
467 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
468
469 /* The letters I, J, K, L, M, N, O, P in a register constraint string
470 can be used to stand for particular ranges of immediate operands.
471 This macro defines what the ranges are.
472 C is the letter, and VALUE is a constant value.
473 Return 1 if VALUE is in the range specified by C. */
474
475 #define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
476 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
477 /* zero */
478 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
479 /* 5 bit signed immediate */
480 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
481 /* 16 bit signed immediate */
482 #define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
483 /* valid constant for movhi instruction. */
484 #define CONST_OK_FOR_L(VALUE) \
485 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
486 && CONST_OK_FOR_I ((VALUE & 0xffff)))
487 /* 16 bit unsigned immediate */
488 #define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
489 /* 5 bit unsigned immediate in shift instructions */
490 #define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
491
492 #define CONST_OK_FOR_O(VALUE) 0
493 #define CONST_OK_FOR_P(VALUE) 0
494
495
496 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
497 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
498 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
499 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
500 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
501 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
502 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
503 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
504 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
505 0)
506
507 /* Similar, but for floating constants, and defining letters G and H.
508 Here VALUE is the CONST_DOUBLE rtx itself.
509
510 `G' is a zero of some form. */
511
512 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
513 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
514 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
515 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
516 && CONST_DOUBLE_LOW (VALUE) == 0 \
517 && CONST_DOUBLE_HIGH (VALUE) == 0))
518
519 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
520
521 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
522 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
523 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
524 : 0)
525
526 \f
527 /* Stack layout; function entry, exit and calling. */
528
529 /* Define this if pushing a word on the stack
530 makes the stack pointer a smaller address. */
531
532 #define STACK_GROWS_DOWNWARD
533
534 /* Define this if the nominal address of the stack frame
535 is at the high-address end of the local variables;
536 that is, each additional local variable allocated
537 goes at a more negative offset in the frame. */
538
539 #define FRAME_GROWS_DOWNWARD
540
541 /* Offset within stack frame to start allocating local variables at.
542 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
543 first local allocated. Otherwise, it is the offset to the BEGINNING
544 of the first local allocated. */
545
546 #define STARTING_FRAME_OFFSET 0
547
548 /* Offset of first parameter from the argument pointer register value. */
549 /* Is equal to the size of the saved fp + pc, even if an fp isn't
550 saved since the value is used before we know. */
551
552 #define FIRST_PARM_OFFSET(FNDECL) 0
553
554 /* Specify the registers used for certain standard purposes.
555 The values of these macros are register numbers. */
556
557 /* Register to use for pushing function arguments. */
558 #define STACK_POINTER_REGNUM 3
559
560 /* Base register for access to local variables of the function. */
561 #define FRAME_POINTER_REGNUM 32
562
563 /* On some machines the offset between the frame pointer and starting
564 offset of the automatic variables is not known until after register
565 allocation has been done (for example, because the saved registers
566 are between these two locations). On those machines, define
567 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
568 be used internally until the offset is known, and define
569 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
570 used for the frame pointer.
571
572 You should define this macro only in the very rare circumstances
573 when it is not possible to calculate the offset between the frame
574 pointer and the automatic variables until after register
575 allocation has been completed. When this macro is defined, you
576 must also indicate in your definition of `ELIMINABLE_REGS' how to
577 eliminate `FRAME_POINTER_REGNUM' into either
578 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
579
580 Do not define this macro if it would be the same as
581 `FRAME_POINTER_REGNUM'. */
582 #define HARD_FRAME_POINTER_REGNUM 29
583
584 /* Base register for access to arguments of the function. */
585 #define ARG_POINTER_REGNUM 33
586
587 /* Register in which static-chain is passed to a function. */
588 #define STATIC_CHAIN_REGNUM 5
589
590 /* Value should be nonzero if functions must have frame pointers.
591 Zero means the frame pointer need not be set up (and parms
592 may be accessed via the stack pointer) in functions that seem suitable.
593 This is computed in `reload', in reload1.c. */
594 #define FRAME_POINTER_REQUIRED 0
595
596 /* If defined, this macro specifies a table of register pairs used to
597 eliminate unneeded registers that point into the stack frame. If
598 it is not defined, the only elimination attempted by the compiler
599 is to replace references to the frame pointer with references to
600 the stack pointer.
601
602 The definition of this macro is a list of structure
603 initializations, each of which specifies an original and
604 replacement register.
605
606 On some machines, the position of the argument pointer is not
607 known until the compilation is completed. In such a case, a
608 separate hard register must be used for the argument pointer.
609 This register can be eliminated by replacing it with either the
610 frame pointer or the argument pointer, depending on whether or not
611 the frame pointer has been eliminated.
612
613 In this case, you might specify:
614 #define ELIMINABLE_REGS \
615 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
616 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
617 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
618
619 Note that the elimination of the argument pointer with the stack
620 pointer is specified first since that is the preferred elimination. */
621
622 #define ELIMINABLE_REGS \
623 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
624 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
625 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
626 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
627
628 /* A C expression that returns non-zero if the compiler is allowed to
629 try to replace register number FROM-REG with register number
630 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
631 defined, and will usually be the constant 1, since most of the
632 cases preventing register elimination are things that the compiler
633 already knows about. */
634
635 #define CAN_ELIMINATE(FROM, TO) \
636 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
637
638 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
639 specifies the initial difference between the specified pair of
640 registers. This macro must be defined if `ELIMINABLE_REGS' is
641 defined. */
642
643 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
644 { \
645 if ((FROM) == FRAME_POINTER_REGNUM) \
646 (OFFSET) = get_frame_size () + current_function_outgoing_args_size; \
647 else if ((FROM) == ARG_POINTER_REGNUM) \
648 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
649 else \
650 abort (); \
651 }
652
653 /* A guess for the V850. */
654 #define PROMOTE_PROTOTYPES 1
655
656 /* Keep the stack pointer constant throughout the function. */
657 #define ACCUMULATE_OUTGOING_ARGS
658
659 /* Value is the number of bytes of arguments automatically
660 popped when returning from a subroutine call.
661 FUNDECL is the declaration node of the function (as a tree),
662 FUNTYPE is the data type of the function (as a tree),
663 or for a library call it is an identifier node for the subroutine name.
664 SIZE is the number of bytes of arguments passed on the stack. */
665
666 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
667
668 \f
669 /* Define a data type for recording info about an argument list
670 during the scan of that argument list. This data type should
671 hold all necessary information about the function itself
672 and about the args processed so far, enough to enable macros
673 such as FUNCTION_ARG to determine where the next arg should go. */
674
675 #define CUMULATIVE_ARGS struct cum_arg
676 struct cum_arg { int nbytes; };
677
678 /* Define where to put the arguments to a function.
679 Value is zero to push the argument on the stack,
680 or a hard register in which to store the argument.
681
682 MODE is the argument's machine mode.
683 TYPE is the data type of the argument (as a tree).
684 This is null for libcalls where that information may
685 not be available.
686 CUM is a variable of type CUMULATIVE_ARGS which gives info about
687 the preceding args and about the function being called.
688 NAMED is nonzero if this argument is a named parameter
689 (otherwise it is an extra parameter matching an ellipsis). */
690
691 struct rtx_def *function_arg();
692 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
693 function_arg (&CUM, MODE, TYPE, NAMED)
694
695 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
696 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
697
698 /* Initialize a variable CUM of type CUMULATIVE_ARGS
699 for a call to a function whose data type is FNTYPE.
700 For a library call, FNTYPE is 0. */
701
702 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
703 ((CUM).nbytes = 0)
704
705 /* Update the data in CUM to advance over an argument
706 of mode MODE and data type TYPE.
707 (TYPE is null for libcalls where that information may not be available.) */
708
709 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
710 ((CUM).nbytes += ((MODE) != BLKmode \
711 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
712 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
713
714 /* When a parameter is passed in a register, stack space is still
715 allocated for it. */
716 #define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
717
718 /* Define this if the above stack space is to be considered part of the
719 space allocated by the caller. */
720 #define OUTGOING_REG_PARM_STACK_SPACE
721
722 extern int current_function_anonymous_args;
723 /* Do any setup necessary for varargs/stdargs functions. */
724 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PAS, SECOND) \
725 current_function_anonymous_args = (!TARGET_GHS ? 1 : 0);
726
727 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
728 ((TYPE) && int_size_in_bytes (TYPE) > 8)
729
730 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
731 ((TYPE) && int_size_in_bytes (TYPE) > 8)
732
733 /* 1 if N is a possible register number for function argument passing. */
734
735 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
736
737 /* Define how to find the value returned by a function.
738 VALTYPE is the data type of the value (as a tree).
739 If the precise function being called is known, FUNC is its FUNCTION_DECL;
740 otherwise, FUNC is 0. */
741
742 #define FUNCTION_VALUE(VALTYPE, FUNC) \
743 gen_rtx (REG, TYPE_MODE (VALTYPE), 10)
744
745 /* Define how to find the value returned by a library function
746 assuming the value has mode MODE. */
747
748 #define LIBCALL_VALUE(MODE) \
749 gen_rtx (REG, MODE, 10)
750
751 /* 1 if N is a possible register number for a function value. */
752
753 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
754
755 /* Return values > 8 bytes in length in memory. */
756 #define DEFAULT_PCC_STRUCT_RETURN 0
757 #define RETURN_IN_MEMORY(TYPE) \
758 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
759
760 /* Register in which address to store a structure value
761 is passed to a function. On the V850 it's passed as
762 the first parameter. */
763
764 #define STRUCT_VALUE 0
765
766 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
767 the stack pointer does not matter. The value is tested only in
768 functions that have frame pointers.
769 No definition is equivalent to always zero. */
770
771 #define EXIT_IGNORE_STACK 1
772
773 /* Output assembler code to FILE to increment profiler label # LABELNO
774 for profiling a function entry. */
775
776 #define FUNCTION_PROFILER(FILE, LABELNO) ;
777
778 #define TRAMPOLINE_TEMPLATE(FILE) \
779 do { \
780 fprintf (FILE, "\tjarl .+4,r12\n"); \
781 fprintf (FILE, "\tld.w 12[r12],r5\n"); \
782 fprintf (FILE, "\tld.w 16[r12],r12\n"); \
783 fprintf (FILE, "\tjmp [r12]\n"); \
784 fprintf (FILE, "\tnop\n"); \
785 fprintf (FILE, "\t.long 0\n"); \
786 fprintf (FILE, "\t.long 0\n"); \
787 } while (0)
788
789 /* Length in units of the trampoline for entering a nested function. */
790
791 #define TRAMPOLINE_SIZE 24
792
793 /* Emit RTL insns to initialize the variable parts of a trampoline.
794 FNADDR is an RTX for the address of the function's pure code.
795 CXT is an RTX for the static chain value for the function. */
796
797 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
798 { \
799 emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 16)), \
800 (CXT)); \
801 emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 20)), \
802 (FNADDR)); \
803 }
804
805 /* Addressing modes, and classification of registers for them. */
806
807 \f
808 /* 1 if X is an rtx for a constant that is a valid address. */
809
810 /* ??? This seems too exclusive. May get better code by accepting more
811 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
812
813 #define CONSTANT_ADDRESS_P(X) \
814 (GET_CODE (X) == CONST_INT \
815 && CONST_OK_FOR_K (INTVAL (X)))
816
817 /* Maximum number of registers that can appear in a valid memory address. */
818
819 #define MAX_REGS_PER_ADDRESS 1
820
821 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
822 and check its validity for a certain class.
823 We have two alternate definitions for each of them.
824 The usual definition accepts all pseudo regs; the other rejects
825 them unless they have been allocated suitable hard regs.
826 The symbol REG_OK_STRICT causes the latter definition to be used.
827
828 Most source files want to accept pseudo regs in the hope that
829 they will get allocated to the class that the insn wants them to be in.
830 Source files for reload pass need to be strict.
831 After reload, it makes no difference, since pseudo regs have
832 been eliminated by then. */
833
834 #ifndef REG_OK_STRICT
835
836 /* Nonzero if X is a hard reg that can be used as an index
837 or if it is a pseudo reg. */
838 #define REG_OK_FOR_INDEX_P(X) 0
839 /* Nonzero if X is a hard reg that can be used as a base reg
840 or if it is a pseudo reg. */
841 #define REG_OK_FOR_BASE_P(X) 1
842 #define REG_OK_FOR_INDEX_P_STRICT(X) 0
843 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
844 #define STRICT 0
845
846 #else
847
848 /* Nonzero if X is a hard reg that can be used as an index. */
849 #define REG_OK_FOR_INDEX_P(X) 0
850 /* Nonzero if X is a hard reg that can be used as a base reg. */
851 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
852 #define STRICT 1
853
854 #endif
855
856 /* A C expression that defines the optional machine-dependent
857 constraint letters that can be used to segregate specific types of
858 operands, usually memory references, for the target machine.
859 Normally this macro will not be defined. If it is required for a
860 particular target machine, it should return 1 if VALUE corresponds
861 to the operand type represented by the constraint letter C. If C
862 is not defined as an extra constraint, the value returned should
863 be 0 regardless of VALUE.
864
865 For example, on the ROMP, load instructions cannot have their
866 output in r0 if the memory reference contains a symbolic address.
867 Constraint letter `Q' is defined as representing a memory address
868 that does *not* contain a symbolic address. An alternative is
869 specified with a `Q' constraint on the input and `r' on the
870 output. The next alternative specifies `m' on the input and a
871 register class that does not include r0 on the output. */
872
873 #define EXTRA_CONSTRAINT(OP, C) \
874 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP)) \
875 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
876 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF && ! ZDA_NAME_P (XSTR (OP, 0))) \
877 : (C) == 'T' ? 0 \
878 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF && ZDA_NAME_P (XSTR (OP, 0))) \
879 || (GET_CODE (OP) == CONST \
880 && GET_CODE (XEXP (OP, 0)) == PLUS \
881 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
882 && ZDA_NAME_P (XSTR (XEXP (XEXP (OP, 0), 0), 0)))) \
883 : 0)
884 \f
885 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
886 that is a valid memory address for an instruction.
887 The MODE argument is the machine mode for the MEM expression
888 that wants to use this address.
889
890 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
891 except for CONSTANT_ADDRESS_P which is actually
892 machine-independent. */
893
894 /* Accept either REG or SUBREG where a register is valid. */
895
896 #define RTX_OK_FOR_BASE_P(X) \
897 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
898 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
899 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
900
901 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
902 do { \
903 if (RTX_OK_FOR_BASE_P (X)) goto ADDR; \
904 if (CONSTANT_ADDRESS_P (X) \
905 && (MODE == QImode || INTVAL (X) % 2 == 0)) \
906 goto ADDR; \
907 if (GET_CODE (X) == LO_SUM \
908 && GET_CODE (XEXP (X, 0)) == REG \
909 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
910 && CONSTANT_P (XEXP (X, 1)) \
911 && (GET_CODE (XEXP (X, 1)) != CONST_INT \
912 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
913 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
914 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
915 goto ADDR; \
916 if (special_symbolref_operand (X, MODE) \
917 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
918 goto ADDR; \
919 if (GET_CODE (X) == PLUS \
920 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
921 && (MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
922 && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR; \
923 } while (0)
924
925 \f
926 /* Try machine-dependent ways of modifying an illegitimate address
927 to be legitimate. If we find one, return the new, valid address.
928 This macro is used in only one place: `memory_address' in explow.c.
929
930 OLDX is the address as it was before break_out_memory_refs was called.
931 In some cases it is useful to look at this to decide what needs to be done.
932
933 MODE and WIN are passed so that this macro can use
934 GO_IF_LEGITIMATE_ADDRESS.
935
936 It is always safe for this macro to do nothing. It exists to recognize
937 opportunities to optimize the output. */
938
939 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
940
941 /* Go to LABEL if ADDR (a legitimate address expression)
942 has an effect that depends on the machine mode it is used for. */
943
944 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
945
946 /* Nonzero if the constant value X is a legitimate general operand.
947 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
948
949 #define LEGITIMATE_CONSTANT_P(X) \
950 (GET_CODE (X) == CONST_DOUBLE \
951 || !(GET_CODE (X) == CONST \
952 && GET_CODE (XEXP (X, 0)) == PLUS \
953 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
954 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
955 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
956
957 /* In rare cases, correct code generation requires extra machine
958 dependent processing between the second jump optimization pass and
959 delayed branch scheduling. On those machines, define this macro
960 as a C statement to act on the code starting at INSN. */
961
962 #define MACHINE_DEPENDENT_REORG(INSN) v850_reorg (INSN)
963
964 \f
965 /* Tell final.c how to eliminate redundant test instructions. */
966
967 /* Here we define machine-dependent flags and fields in cc_status
968 (see `conditions.h'). No extra ones are needed for the vax. */
969
970 /* Store in cc_status the expressions
971 that the condition codes will describe
972 after execution of an instruction whose pattern is EXP.
973 Do not alter them if the instruction would not alter the cc's. */
974
975 #define CC_OVERFLOW_UNUSABLE 0x200
976 #define CC_NO_CARRY CC_NO_OVERFLOW
977 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
978
979 /* A part of a C `switch' statement that describes the relative costs
980 of constant RTL expressions. It must contain `case' labels for
981 expression codes `const_int', `const', `symbol_ref', `label_ref'
982 and `const_double'. Each case must ultimately reach a `return'
983 statement to return the relative cost of the use of that kind of
984 constant value in an expression. The cost may depend on the
985 precise value of the constant, which is available for examination
986 in X, and the rtx code of the expression in which it is contained,
987 found in OUTER_CODE.
988
989 CODE is the expression code--redundant, since it can be obtained
990 with `GET_CODE (X)'. */
991
992 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
993 case CONST_INT: \
994 case CONST_DOUBLE: \
995 case CONST: \
996 case SYMBOL_REF: \
997 case LABEL_REF: \
998 { \
999 int _zxy = const_costs(RTX, CODE); \
1000 return (_zxy) ? COSTS_N_INSNS (_zxy) : 0; \
1001 }
1002
1003 /* A crude cut at RTX_COSTS for the V850. */
1004
1005 /* Provide the costs of a rtl expression. This is in the body of a
1006 switch on CODE.
1007
1008 There aren't DImode MOD, DIV or MULT operations, so call them
1009 very expensive. Everything else is pretty much a constant cost. */
1010
1011 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
1012 case MOD: \
1013 case DIV: \
1014 return 60; \
1015 case MULT: \
1016 return 20;
1017
1018 /* All addressing modes have the same cost on the V850 series. */
1019 #define ADDRESS_COST(ADDR) 1
1020
1021 /* Nonzero if access to memory by bytes or half words is no faster
1022 than accessing full words. */
1023 #define SLOW_BYTE_ACCESS 1
1024
1025 /* Define this if zero-extension is slow (more than one real instruction). */
1026 #define SLOW_ZERO_EXTEND
1027
1028 /* According expr.c, a value of around 6 should minimize code size, and
1029 for the V850 series, that's our primary concern. */
1030 #define MOVE_RATIO 6
1031
1032 /* Indirect calls are expensive, never turn a direct call
1033 into an indirect call. */
1034 #define NO_FUNCTION_CSE
1035
1036 /* A list of names for sections other than the standard two, which are
1037 `in_text' and `in_data'. You need not define this macro on a
1038 system with no other sections (that GCC needs to use). */
1039 #undef EXTRA_SECTIONS
1040 #define EXTRA_SECTIONS in_tdata, in_sdata, in_zdata, in_const, in_ctors, in_dtors
1041
1042 /* One or more functions to be defined in `varasm.c'. These
1043 functions should do jobs analogous to those of `text_section' and
1044 `data_section', for your additional sections. Do not define this
1045 macro if you do not define `EXTRA_SECTIONS'. */
1046 #undef EXTRA_SECTION_FUNCTIONS
1047 #define EXTRA_SECTION_FUNCTIONS \
1048 CONST_SECTION_FUNCTION \
1049 CTORS_SECTION_FUNCTION \
1050 DTORS_SECTION_FUNCTION \
1051 \
1052 void \
1053 sdata_section () \
1054 { \
1055 if (in_section != in_sdata) \
1056 { \
1057 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
1058 in_section = in_sdata; \
1059 } \
1060 } \
1061 \
1062 void \
1063 tdata_section () \
1064 { \
1065 if (in_section != in_tdata) \
1066 { \
1067 fprintf (asm_out_file, "%s\n", TDATA_SECTION_ASM_OP); \
1068 in_section = in_tdata; \
1069 } \
1070 } \
1071 \
1072 void \
1073 zdata_section () \
1074 { \
1075 if (in_section != in_zdata) \
1076 { \
1077 fprintf (asm_out_file, "%s\n", ZDATA_SECTION_ASM_OP); \
1078 in_section = in_zdata; \
1079 } \
1080 }
1081
1082 #define TEXT_SECTION_ASM_OP "\t.section .text"
1083 #define DATA_SECTION_ASM_OP "\t.section .data"
1084 #define BSS_SECTION_ASM_OP "\t.section .bss"
1085 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
1086 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
1087 #define ZDATA_SECTION_ASM_OP "\t.section .zdata,\"aw\""
1088 #define ZBSS_SECTION_ASM_OP "\t.section .zbss,\"aw\""
1089 #define TDATA_SECTION_ASM_OP "\t.section .tdata,\"aw\""
1090
1091 /* A C statement or statements to switch to the appropriate section
1092 for output of EXP. You can assume that EXP is either a `VAR_DECL'
1093 node or a constant of some sort. RELOC indicates whether the
1094 initial value of EXP requires link-time relocations. Select the
1095 section by calling `text_section' or one of the alternatives for
1096 other sections.
1097
1098 Do not define this macro if you put all read-only variables and
1099 constants in the read-only data section (usually the text section). */
1100 #undef SELECT_SECTION
1101 #define SELECT_SECTION(EXP, RELOC) \
1102 do { \
1103 if (TREE_CODE (EXP) == VAR_DECL) \
1104 { \
1105 if (!TREE_READONLY (EXP) || TREE_SIDE_EFFECTS (EXP) \
1106 || !DECL_INITIAL (EXP) \
1107 || (DECL_INITIAL (EXP) != error_mark_node \
1108 && !TREE_CONSTANT (DECL_INITIAL (EXP)))) \
1109 data_section (); \
1110 else \
1111 const_section (); \
1112 } \
1113 else if (TREE_CODE (EXP) == STRING_CST) \
1114 { \
1115 if (! flag_writable_strings) \
1116 const_section (); \
1117 else \
1118 data_section (); \
1119 } \
1120 \
1121 else \
1122 const_section (); \
1123 \
1124 } while (0)
1125
1126 /* A C statement or statements to switch to the appropriate section
1127 for output of RTX in mode MODE. You can assume that RTX is some
1128 kind of constant in RTL. The argument MODE is redundant except in
1129 the case of a `const_int' rtx. Select the section by calling
1130 `text_section' or one of the alternatives for other sections.
1131
1132 Do not define this macro if you put all constants in the read-only
1133 data section. */
1134 /* #define SELECT_RTX_SECTION(MODE, RTX) */
1135
1136 /* Output at beginning/end of assembler file. */
1137 #undef ASM_FILE_START
1138 #define ASM_FILE_START(FILE) asm_file_start(FILE)
1139
1140 #define ASM_COMMENT_START "#"
1141
1142 /* Output to assembler file text saying following lines
1143 may contain character constants, extra white space, comments, etc. */
1144
1145 #define ASM_APP_ON "#APP\n"
1146
1147 /* Output to assembler file text saying following lines
1148 no longer contain unusual constructs. */
1149
1150 #define ASM_APP_OFF "#NO_APP\n"
1151
1152 /* This is how to output an assembler line defining a `double' constant.
1153 It is .double or .float, depending. */
1154
1155 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
1156 do { char dstr[30]; \
1157 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1158 fprintf (FILE, "\t.double %s\n", dstr); \
1159 } while (0)
1160
1161
1162 /* This is how to output an assembler line defining a `float' constant. */
1163 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
1164 do { char dstr[30]; \
1165 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
1166 fprintf (FILE, "\t.float %s\n", dstr); \
1167 } while (0)
1168
1169 /* This is how to output an assembler line defining an `int' constant. */
1170
1171 #define ASM_OUTPUT_INT(FILE, VALUE) \
1172 ( fprintf (FILE, "\t.long "), \
1173 output_addr_const (FILE, (VALUE)), \
1174 fprintf (FILE, "\n"))
1175
1176 /* Likewise for `char' and `short' constants. */
1177
1178 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
1179 ( fprintf (FILE, "\t.hword "), \
1180 output_addr_const (FILE, (VALUE)), \
1181 fprintf (FILE, "\n"))
1182
1183 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
1184 ( fprintf (FILE, "\t.byte "), \
1185 output_addr_const (FILE, (VALUE)), \
1186 fprintf (FILE, "\n"))
1187
1188 /* This is how to output an assembler line for a numeric constant byte. */
1189 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
1190 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1191
1192 /* Define the parentheses used to group arithmetic operations
1193 in assembler code. */
1194
1195 #define ASM_OPEN_PAREN "("
1196 #define ASM_CLOSE_PAREN ")"
1197
1198 /* This says how to output the assembler to define a global
1199 uninitialized but not common symbol.
1200 Try to use asm_output_bss to implement this macro. */
1201
1202 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1203 asm_output_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
1204
1205 /* This is how to output the definition of a user-level label named NAME,
1206 such as the label on a static function or variable NAME. */
1207
1208 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1209 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1210
1211 /* This is how to output a command to make the user-level label named NAME
1212 defined for reference from other files. */
1213
1214 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1215 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1216
1217 /* This is how to output a reference to a user-level label named NAME.
1218 `assemble_name' uses this. */
1219
1220 #undef ASM_OUTPUT_LABELREF
1221 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1222 do { \
1223 char* real_name; \
1224 STRIP_NAME_ENCODING (real_name, (NAME)); \
1225 fprintf (FILE, "_%s", real_name); \
1226 } while (0)
1227
1228 /* Store in OUTPUT a string (made with alloca) containing
1229 an assembler-name for a local static variable named NAME.
1230 LABELNO is an integer which is different for each call. */
1231
1232 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1233 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1234 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1235
1236 /* This is how we tell the assembler that two symbols have the same value. */
1237
1238 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
1239 do { assemble_name(FILE, NAME1); \
1240 fputs(" = ", FILE); \
1241 assemble_name(FILE, NAME2); \
1242 fputc('\n', FILE); } while (0)
1243
1244
1245 /* How to refer to registers in assembler output.
1246 This sequence is indexed by compiler's hard-register-number (see above). */
1247
1248 #define REGISTER_NAMES \
1249 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
1250 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1251 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
1252 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
1253 ".fp", ".ap"}
1254
1255 #define ADDITIONAL_REGISTER_NAMES \
1256 { { "zero", 0 }, \
1257 { "hp", 2 }, \
1258 { "r3", 3 }, \
1259 { "r4", 4 }, \
1260 { "tp", 5 }, \
1261 { "fp", 29 }, \
1262 { "r30", 30 }, \
1263 { "lp", 31} }
1264
1265 /* Print an instruction operand X on file FILE.
1266 look in v850.c for details */
1267
1268 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
1269
1270 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1271 ((CODE) == '.')
1272
1273 /* Print a memory operand whose address is X, on file FILE.
1274 This uses a function in output-vax.c. */
1275
1276 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1277
1278 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
1279 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
1280
1281 /* This is how to output an element of a case-vector that is absolute. */
1282
1283 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1284 asm_fprintf (FILE, "\t%s .L%d\n", \
1285 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
1286
1287 /* This is how to output an element of a case-vector that is relative. */
1288
1289 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1290 fprintf (FILE, "\t%s .L%d-.L%d\n", \
1291 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
1292 VALUE, REL)
1293
1294 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1295 if ((LOG) != 0) \
1296 fprintf (FILE, "\t.align %d\n", (LOG))
1297
1298 /* We don't have to worry about dbx compatibility for the v850. */
1299 #define DEFAULT_GDB_EXTENSIONS 1
1300
1301 /* Use stabs debugging info by default. */
1302 #undef PREFERRED_DEBUGGING_TYPE
1303 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1304
1305 #define DBX_REGISTER_NUMBER(REGNO) REGNO
1306
1307 /* Define to use software floating point emulator for REAL_ARITHMETIC and
1308 decimal <-> binary conversion. */
1309 #define REAL_ARITHMETIC
1310
1311 /* Specify the machine mode that this machine uses
1312 for the index in the tablejump instruction. */
1313 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
1314
1315 /* Define this if the case instruction drops through after the table
1316 when the index is out of range. Don't define it if the case insn
1317 jumps to the default label instead. */
1318 /* #define CASE_DROPS_THROUGH */
1319
1320 /* We must use a PC relative entry for small tables. It would be more
1321 efficient to use an absolute entry for big tables, but this is not
1322 a runtime choice yet. */
1323 #define CASE_VECTOR_PC_RELATIVE
1324
1325 /* The switch instruction requires that the jump table immediately follow
1326 it. */
1327 #define JUMP_TABLES_IN_TEXT_SECTION
1328
1329 /* svr4.h defines this assuming that 4 byte alignment is required. */
1330 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
1331 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1332 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
1333
1334 #define WORD_REGISTER_OPERATIONS
1335
1336 /* Byte and short loads sign extend the value to a word. */
1337 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1338
1339 /* Specify the tree operation to be used to convert reals to integers. */
1340 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1341
1342 /* This flag, if defined, says the same insns that convert to a signed fixnum
1343 also convert validly to an unsigned one. */
1344 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1345
1346 /* This is the kind of divide that is easiest to do in the general case. */
1347 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1348
1349 /* Max number of bytes we can move from memory to memory
1350 in one reasonably fast instruction. */
1351 #define MOVE_MAX 4
1352
1353 /* Define if shifts truncate the shift count
1354 which implies one can omit a sign-extension or zero-extension
1355 of a shift count. */
1356 #define SHIFT_COUNT_TRUNCATED 1
1357
1358 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1359 is done just by pretending it is already truncated. */
1360 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1361
1362 #define STORE_FLAG_VALUE 1
1363
1364 /* Specify the machine mode that pointers have.
1365 After generation of rtl, the compiler makes no further distinction
1366 between pointers and any other objects of this machine mode. */
1367 #define Pmode SImode
1368
1369 /* A function address in a call instruction
1370 is a byte address (for indexing purposes)
1371 so give the MEM rtx a byte's mode. */
1372 #define FUNCTION_MODE QImode
1373
1374 /* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS
1375 is a valid machine specific attribute for DECL.
1376 The attributes in ATTRIBUTES have previously been assigned to DECL. */
1377 #define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \
1378 v850_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)
1379
1380 /* Tell compiler we have {ZDA,TDA,SDA} small data regions */
1381 #define HAVE_ZDA 1
1382 #define HAVE_SDA 1
1383 #define HAVE_TDA 1
1384
1385 /* Tell compiler we want to support GHS pragmas */
1386 #define HANDLE_GHS_PRAGMA
1387
1388 /* The assembler op to to start the file. */
1389
1390 #define FILE_ASM_OP "\t.file\n"
1391
1392 /* Enable the register move pass to improve code. */
1393 #define ENABLE_REGMOVE_PASS
1394
1395
1396 /* Implement ZDA, TDA, and SDA */
1397
1398 #define EP_REGNUM 30 /* ep register number */
1399
1400 #define ENCODE_SECTION_INFO(DECL) \
1401 do { \
1402 if ((TREE_STATIC (DECL) || DECL_EXTERNAL (DECL)) \
1403 && TREE_CODE (DECL) == VAR_DECL) \
1404 v850_encode_data_area (DECL); \
1405 } while (0)
1406
1407 #define ZDA_NAME_FLAG_CHAR '@'
1408 #define TDA_NAME_FLAG_CHAR '%'
1409 #define SDA_NAME_FLAG_CHAR '&'
1410
1411 #define ZDA_NAME_P(NAME) (*(NAME) == ZDA_NAME_FLAG_CHAR)
1412 #define TDA_NAME_P(NAME) (*(NAME) == TDA_NAME_FLAG_CHAR)
1413 #define SDA_NAME_P(NAME) (*(NAME) == SDA_NAME_FLAG_CHAR)
1414
1415 #define ENCODED_NAME_P(SYMBOL_NAME) \
1416 (ZDA_NAME_P (SYMBOL_NAME) \
1417 || TDA_NAME_P (SYMBOL_NAME) \
1418 || SDA_NAME_P (SYMBOL_NAME))
1419
1420 #define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
1421 (VAR) = (SYMBOL_NAME) + (ENCODED_NAME_P (SYMBOL_NAME) || *(SYMBOL_NAME) == '*')
1422
1423 /* Define this if you have defined special-purpose predicates in the
1424 file `MACHINE.c'. This macro is called within an initializer of an
1425 array of structures. The first field in the structure is the name
1426 of a predicate and the second field is an array of rtl codes. For
1427 each predicate, list all rtl codes that can be in expressions
1428 matched by the predicate. The list should have a trailing comma. */
1429
1430 #define PREDICATE_CODES \
1431 { "ep_memory_operand", { MEM }}, \
1432 { "reg_or_0_operand", { REG, SUBREG, CONST_INT, CONST_DOUBLE }}, \
1433 { "reg_or_int5_operand", { REG, SUBREG, CONST_INT }}, \
1434 { "call_address_operand", { REG, SYMBOL_REF }}, \
1435 { "movsi_source_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
1436 CONST_DOUBLE, CONST, HIGH, MEM, \
1437 REG, SUBREG }}, \
1438 { "special_symbolref_operand", { SYMBOL_REF }}, \
1439 { "power_of_two_operand", { CONST_INT }}, \
1440 { "pattern_is_ok_for_prologue", { PARALLEL }}, \
1441 { "pattern_is_ok_for_epilogue", { PARALLEL }}, \
1442 { "register_is_ok_for_epilogue",{ REG }}, \
1443 { "not_power_of_two_operand", { CONST_INT }},
1444
1445 extern void override_options ();
1446 extern void asm_file_start ();
1447 extern int function_arg_partial_nregs ();
1448 extern int const_costs ();
1449 extern void print_operand ();
1450 extern void print_operand_address ();
1451 extern char *output_move_double ();
1452 extern char *output_move_single ();
1453 extern int ep_operand ();
1454 extern int reg_or_0_operand ();
1455 extern int reg_or_int5_operand ();
1456 extern int call_address_operand ();
1457 extern int movsi_source_operand ();
1458 extern int power_of_two_operand ();
1459 extern int not_power_of_two_operand ();
1460 extern void v850_reorg ();
1461 extern int compute_register_save_size ();
1462 extern int compute_frame_size ();
1463 extern void expand_prologue ();
1464 extern void expand_epilogue ();
1465 extern void notice_update_cc ();
1466 extern int v850_valid_machine_decl_attribute ();
1467 extern int v850_interrupt_function_p ();
1468
1469 extern int pattern_is_ok_for_prologue();
1470 extern int pattern_is_ok_for_epilogue();
1471 extern int register_is_ok_for_epilogue ();
1472 extern char *construct_save_jarl ();
1473 extern char *construct_restore_jr ();
1474
1475